
Symantec Technical White Paper 

Version 1.0 Released 

 

TE
C

H
N

IC
A

L W
H

ITE
 P

A
P

E
R

: C
U

S
TO

M
 IN

V
E

N
TO

R
Y

 FO
R

 ITM
S

 7.1 

  

 

Custom Inventory for ITMS 7.1 
Creating Custom Inventory with VBScript  
 
Steven Riley, Technical Field Enablement 
Inventory Solution 



 
 

 

Table of Contents 

Introduction to Custom Inventory ............................................................................... 3 

Introduction to Data Classes .......................................................................................... 4 

Data Class in Detail ............................................................................... 7 
Development Objects and Methods ........................................................................... 12 

AeXNSEvent Object ............................................................................... 13 
AeXNSEventResource Object .................................................................... 14 
AeXNSEventDataClass Object ................................................................... 15 
AeXNSEventDataBlock Object ................................................................... 15 
AeXNSEventDataRow Object .................................................................... 16 
AeXNSEventAssociation Object .................................................................. 17 

Scripting using VBScript ................................................................................................ 18 

Monitoring a Service Example .................................................................. 18 
Reading an INI File Example ................................................................. 20 
Reading the Registry Example ................................................................ 23 
Creating a Task for the Script ................................................................ 25 

In Summary ........................................................................................................................ 28 

 

 

White Paper: Creating Custom Inventory with VBScript 

Custom inventory for ITMS 7.1 
Creating Custom Inventory with VBScript 

 



White Paper: Creating Custom Inventory with VBScript 

 

Introduction to Custom Inventory 
The approach to creating custom inventory for an environment follows some simple steps from data class 

creation, script testing to validating that the data flows through the system and associates with the 

appropriate machine. This paper steps through the initial creation of a Custom Inventory and 

demonstrates how to create the data classes along with three simple scripting examples; a registry read 

example, an INI file read example and then capturing an Operating System event example. 

 

We will demonstrate what we believe are best practices for the creation of these script items including the 

process to follow for creating them. It is important to realize that many functions are available directly 

within Inventory Solution itself please review the Inventory Solution documentation so you are clear what 

you are able to do from the solution before starting with custom inventory. 



White Paper: Creating Custom Inventory with VBScript 

 

Introduction to Data Classes 
Custom Inventory has a specific area were Data Classes are to be created, these are located through the 

Symantec Management Console from the console menu select settings->Discovery and Inventory-

>Manage Custom Data Classes 

 
So what are Data Classes? Data Classes in the world of Symantec Altiris products are simply tables that 

are created within the data base. So when we are referring to Data Classes we are talking about the 

fields, the data type and actual information created in the database. This data is usually associated with a 

computer or other resource of some type. We typically will talk about “custom” data types only within 

Inventory Solution and Asset Management Suite. 

 

Let’s have a look at how custom data classes are created for Inventory Solution and discuss the location 

from a Symantec Management Console point of view and then look at the specific tables within the 

database.  We’ll also discuss some of the elements that you require to be able to write scripts that send 

information to these data classes. 

 

First let’s create a Data Class for ourselves called Monitor Print Spooler, and within that data class we’ll 

create a field called ‘Status’ were we will store information about the Microsoft Print Spooler, and send 

information such as is it “Running” or is it “Stopped”? 

 

We always create Custom Inventory Data Classes through the Manage Custom Data Classes interface 

located here: 

 
 



White Paper: Creating Custom Inventory with VBScript 

 

 

Click on the Manage Custom Data Classes to bring up the following screen: 

 

We now need to create the Custom Data Class, to do this click on the New Data Class button found top 

right to display the New Data Class; here we’ll create a data class called Monitor Print Spooler: 

 

 

Click OK for the initial Data Class to be created. 

 



White Paper: Creating Custom Inventory with VBScript 

 

 

 

 

You should see a screen similar to this with the Monitor Print Spooler data class listed. 

 

  
 

 

Now we need to add some attributes by clicking the   button.  Before you click Add 

Attribute, click on the Monitor Print Spooler data class and then add a field called Status; ensure that you 

have clicked on Monitor Print Spooler first: 

 



White Paper: Creating Custom Inventory with VBScript 

 

 

As indicated above we do not need a key as we are not storing multiples of these, in this case we only 

want a one to one relationchip, meaning that we only want to know when the item is runnning or when it 

is stopped. Click OK, your screen should look like the following: 

 

You MUST click on the  button found at the bottom of the screen. 

 

You have now successfully created a data class that you can use for collecting data. Next let’s look at 

some of the details behind this data class we just created. 

 

Data Class in Detail 
So you have created a Data Class, great, so where does all this information get stored you might ask 

yourself? Let’s look at a few locations you may look to find the data class you just created. Those that 

have used or are familiar with Asset Management Suite will know a little about these locations already. 

 

The first location you can look at details about your data class is by clicking on the properties icon found 

just above the data classes themselves as shown here: 

 



White Paper: Creating Custom Inventory with VBScript 

 

 

This will open a screen showing you the GUID, Display name and Table name along with the fields you 

just created e.g. 

 
 

This is great information, you need to know the table to open up from an MS SQL perspective and you 

have the GUID which you’ll need for your VBscript; you’ll want to reference the data class via it’s GUID 

name when you write your final script. 

 

The other location you will find this information is also located under the Notification Server under Data 

Classes: 

 
 



White Paper: Creating Custom Inventory with VBScript 

 

If you just click on the Monitor Print Spooler you get the following information: 

 
When you click on the properties from the right click menu you will have the following displayed: 

 

 

This gives you the GUID and the Table name. To view the Table open up the SQL Server Management 

Studio: 

 

 

Click on New Query  found at the top right of your screen and select the Symantec_CMDB 

database as shown: 



White Paper: Creating Custom Inventory with VBScript 

 

 
Within the Query windows right the following code as shown here: 

 

You’ll see the folllowing window with no results in it; this is OK as we haven’t collected any data at this 

time. 

 
 

 

When the data class is created and you are tracking the flow of data against a specific machine you can 

find the detail by running the resource explorer against that specific machine and selecting inventory from 

the view menu: 

 

 
 

Look under Data Classes Inventory and if the data came in correctly you’ll see another Folder entry called 

Custom and you’ll find the data class within that folder: 

 
 

 

We’ll show this later in the document when showing how the scripts work. 

 

 

 



White Paper: Creating Custom Inventory with VBScript 

 

 

 

Now that all the pieces are in place for storing the data our next steps will be to go ahead and write a 

script to collect the information we want, then modify the script to work with the Altiris Agent and send 

data back to the Notification Server. The next sections will cover writing various scripts to collect the 

information. 



White Paper: Creating Custom Inventory with VBScript 

 

 

Development Objects and Methods 

The agent NSE Generator provides an object model that allows the developer to create an NSE without 

working directly with XML.   

 

 

 
Object Model 



White Paper: Creating Custom Inventory with VBScript 

 

AeXNSEvent Object 

AeXNSEvent represents the overall event object. This object has methods to create resources, 

dataclasses, and datablocks; to generate the XML and hashes, and to send the event to the NS; and 

properties to manage the overall event. 

When the object is serialized to XML, either to obtain the XML or send the XML to a server as an event, 

any special characters that have been added to the data are escaped. 

Properties 

Name Mode Type Description 
To get/set string Guid or alias of the item that handles the event 
Priority get/set int The priority of the event 
Guid get GUID The GUID of the event. This is generated when the event is created. 

DefaultResource get IAeXNSEvent* The default resource object, this represents the computer that the agent 
is running on. Requires the Altiris Agent be installed. 

Xml get string Returns the event XML. 

Hash get string Returns the hash for the entire event, excluding any data that is 
excluded from hashing. 

Methods 

Name Parameter Type Required Description 
AddResource    Adds a new resource to the event. 

 return IAeXNSEventResource*  The newly added resource. 

 typeGuid GUID Required The type GUID of the resource. 

 guid VARIANT Optional 

The GUID of the resource if it is known. If 
the GUID is not known it may be omitted, 
and keys should be added to the returned 
resource object. 

AddDataClass    Adds a new dataclass to the event. 

 return IAeXNSEventDataClass*  The newly added dataclass  

 dataClassName VARIANT Required Either the name or GUID of the dataclass 
must be specified. 

AddDataBlock    

Adds a datablock to the event. A dataclass 
and resource must be specified. For simple 
dataclasses the name or GUID of the 
dataclass may be specified instead of 
adding a dataclass. If the data applies to 
the computer resource, the resource may 
be omitted. 

 return IAeXNSEventDataBlock*  The newly added datablock. 

 dataClass VARIANT Required 

The dataclass that the new data will be 
used to populate. This may be an 
AeXNSEventDataClass object, the name of 
the dataclass, or the GUID of the dataclass. 

 resource VARIANT Optional 
The resource that the data applies to. If this 
is omitted the default resource (the 
computer) is used. 

AddAssociation    

Adds a resource association. Either resource 
GUIDs or resource objects may be specified 
to create the association. 

 return IAeXNSEventAssociation*  The newly added association. 



White Paper: Creating Custom Inventory with VBScript 

 

 type GUID Required The GUID of the resource association type. 

 parent VARIANT Required 
The resource that is the parent of the 
association. This may be an 
AeXNSEventResource object or a GUID. 

 child VARIANT Optional 

The resource that is the child of the 
association. This may be an 
AeXNSEventResource object or a GUID. If 
this parameter is omitted children must be 
added to the association. 

Send    
Sends the event to the server. Requires the 
Altiris Agent be installed. 

 server VARIANT Optional 
The name of the server. If omitted the 
event is sent to the NS that the agent is 
reporting to. 

SendQueued    
Queues the event for the server. Requires 
the Altiris Agent be installed. 

 server VARIANT Optional 
The name of the server. If omitted the 
event is sent to the NS that the agent is 
reporting to. 

 

AeXNSEventResource Object 
AeXNSResource represents a single resource that has data contained in the event. Using the resource 

object it is possible to manage resource keys. 

Properties 

Name Mode Type Description 
Guid get GUID Returns the resource GUID, if it has been specified 
TypeGuid get GUID Returns the resource type GUID. 
Name get/set string The name of the resource, this will be used if the resource is created. 
NumKeys get int The number of keys that have been added 
KeyName get string The name of the indexed key 
KeyValue get string The value of the indexed key 
KeyType get KeyOperationMode The type of the indexed key, whether it is add or replace. 
Deleted get/set bool Set this to true to delete the resource from the server. 

Methods  

Name Parameter Type Required Description 
AddKey    Adds a key to the resource. 

 name string Required The name of the key, such as "name.domain" 

 value  string Required The value of the key. 

 operation KeyOperationMode Required 

The operation to be performed with the key, either 
KEYOP_ADD which will add new keys to the resource, 
or KEYOP_REPLACE which will replace existing keys on 
the resource with the new keys. 

AddAssociation    

Adds a new association with this resource being the 
parent. For a description of this method and it's 
parameters see IAeXNSEvent::AddAssociation () 

 



White Paper: Creating Custom Inventory with VBScript 

 

AeXNSEventDataClass Object 

AeXNSDataClass represents a dataclass. Using the dataclass object it is possible to specify columns names 

for the dataclass, as well as which columns participate in hashing. 

It is not strictly necessary to specify column names, since columns are represented in the event using the 

short names, and column names are only used when specifying data using column names, in order to look 

up the short name. 

Any columns that do not participate in hashing should be specified to ensure that correct hashes are 

generated. 

Properties 

Name Mode Type Description 
Name get string The name or GUID of the dataclass. 

IgnoreHash get/set bool Controls whether the indexed column is excluded from hashing. This is the most 
common use of the dataclass object. 

NumColumns get int The number of columns defined for the dataclass. 

FirstColumn get/set int The short name index for the first column. This is usually either 0 or 1, representing 
short names of c0 and c1, respectively. 

Methods 

Name Parameter Type Required Description 

AddColumn    
Adds a named column to the dataclass, whether the column is 
hashed may also be specified. 

 name string Required The name of the column. 

 ignore VARIANT Optional A boolean indicating whether the column is ignored when hashing. 
If omitted this defaults to false. 

SetColumn    
Sets the name of the indexed column, whether the column is 
hashed may also be specified. 

 index int Required The index of the column being specified. 

 name string Required The name of the column. 

 ignore VARIANT Optional A boolean indicating whether the column is ignored when hashing. 
If omitted this defaults to false. 

AeXNSEventDataBlock Object 

AeXNSDataBlock represents a block of data that applies to a particular resource, and is in the format 

described by a particular dataclass. This object has properties indicating whether the datablock should be 

used to perform a partial or full update; and methods that allow adding additional rows of data as well as 

inserting field data into the rows.  



White Paper: Creating Custom Inventory with VBScript 

 

 

Properties 

Name Mode Type Description 

DataClass get IAeXNSEventDataClass* Returns the dataclass object which specifies the datablock 
schema. 

Resource get IAeXNSEventResource* Returns the resource object that the data applies to. 

PartialUpdate get/set bool Specifies whether the datablock should completely replace the 
existing data, or be appended. 

Hash get string The hash of all of the data in the datablock. 

Methods 

Name Parameter Type Required Description 
AddRow    Begins a new row, and returns a row object. 

 return IAeXNSEventDataRow*  The newly added row. 

 type VARIANT/RowType Optional 

The type of row. This may be REPLACE_ROW to replace 
the row, which is default if omitted; MERGE_ROW to 
merge rows with missing columns into the existing data 
(which is the default behaviour when fields are missing); 
and DELETE_ROW to delete rows if they already exist. 

AeXNSEventDataRow Object 

AeXNSEventDataRow represents a single row of data. 

Properties 

Name Mode Type Description 
Hash get string The hash of all of the fields in the row. 

Methods 

Name Parameter Type Required Description 
AddField    Adds a field to the current row. 

 value VARIANT Optional 

The value of the field. This may be a string, a number, a GUID, a 
resource object to reference another resource defined in the event, 
NULL to represent a database NULL value, or omitted to represent the 
default value (the default value is specified for the column when the 
dataclass is configured on the NS.) 

SetField    Sets the value of the indexed field. 

 index VARIANT Required The index of the field to set, this may be an integer index or the name 
of the field. 

 value VARIANT Optional 

The value of the field. This may be a string, a number, a GUID, a 
resource object to reference another resource defined in the event, 
NULL to represent a database NULL value, or omitted to represent the 
default value (the default value is specified for the column when the 
dataclass is configured on the NS.) 

 



White Paper: Creating Custom Inventory with VBScript 

 

AeXNSEventAssociation Object 

AeXNSEventAssociation represents an association between a resource and one or more other resources. 

Properties 

Name Mode Type Description 

Mode get/set AssocMode 

Determines the action taken when the association is loaded into the database. This 
may be ASSOC_ADD (the default), which will add the child resources to any existing 
association; ASSOC_REPLACE which will replace any existing associated resources 
with the child resources; and ASSOC_DELETE which will remove the child resources 
from any existing associations. 

Hash get string The hash of the association. 

Methods 

Name Parameter Type Required Description 

AddChild    
Adds a child resource to the association, this must be done if one is 
not specified when the association is created. 

 child VARIANT Required The resource to associate with the parent. This may be the GUID of 
the resource or an AeXNSEventResource object. 

 



White Paper: Creating Custom Inventory with VBScript 

 

Scripting using VBScript 
So now that we have created the data classes here we will look at various methods of collecting data and 

sending it back to the notification server for processing. Note that initial testing does not need to be run 

through task server or any other scheduled tasks, this should be a manual exercise so that you can slowly 

watch the data flow through the system and identify coding mistakes, as a best practice the following 

process is recommended: 

 

 

 
Process for Developing Scripts 

 

Monitoring a Service Example 
First we need to create the basic script that will display the monitoring service (we’ll assume at this stage 

you have already created the data class as indicated in previous sections of this paper); the following is a 

basic illustration of a VBscript that will pull that information back from your machine: 

----------------------VBSCRIPT STARTS HERE--------------------- 

strComputer = "." 

Set objWMIService = GetObject("winmgmts:" & "{impersonationLevel=impersonate}!\\" & strComputer & 

"\root\cimv2") 

Set colRunningServices = objWMIService.ExecQuery("select * from win32_service") 

For each objService in colRunningServices 

    if objService.DisplayName = "Print Spooler" then 

 wscript.echo objService.State 

    end if  

Next 

----------------------VBSCRIPT ENDS HERE--------------------- 

 

When you run this script you’ll see output like the following: 

 

 
 



White Paper: Creating Custom Inventory with VBScript 

 

 

We test that all our scenarios work, now we go back and modify our script putting in the methods we need 

to call for sending the NSE; the following is an example script that will work for this scenario, compare the 

calls with the methods listed previously in this document, notice that we use the same script but instead 

of sending objService.State to the screen we send it to the Notification Server: 

 

----------------------VBSCRIPT STARTS HERE--------------------- 

strComputer = "." 

Set objWMIService = GetObject("winmgmts:" & "{impersonationLevel=impersonate}!\\" & strComputer & 

"\root\cimv2") 

Set colRunningServices = objWMIService.ExecQuery("select * from win32_service") 

'============================================ 

'Create instance of Altiris NSE component 

dim nse 

set nse = WScript.CreateObject ("Altiris.AeXNSEvent") 

nse.To = "{1592B913-72F3-4C36-91D2-D4EDA21D2F96}" 

nse.Priority = 1 

dim objDCInstance 

set objDCInstance = nse.AddDataClass ("{XXX}") 

dim objDataClass 

set objDataClass = nse.AddDataBlock (objDCInstance) 

For each objService in colRunningServices 

    if objService.DisplayName = "Print Spooler" then 

       dim objDataRow 

       set objDataRow = objDataClass.AddRow 

       objDataRow.SetField 0, objService.State 

    end if  

Next 

nse.SendQueued 

----------------------VBSCRIPT ENDS HERE--------------------- 

 

In the above script there are two specific areas highlighted in yellow with text in red. The first of these is a 

GUID, this GUID is to remain the same, never change it. On any Notification Server if you look under Jobs 

and Tasks->Samples->Discovery and Inventory->Inventory Samples->Custom->Custom Inventory – 

Processor you’ll find an example script with this GUID listed there as well so you will always have it 

somewhere at your disposal when developing. 

 

The second item is XXX highlighted; this needs to be modified so that the XXX is replaced with the GUID 

of the data class that you created. Look at the previous section on Data Classes to see how to get the 

GUID. 

 



White Paper: Creating Custom Inventory with VBScript 

 

Finally when you run the script the following data should appear on the Notification Server. I run this 

script manually on the Notification Server itself, so in my case I right clicked on the computer I ran the 

script on and selected resource manager and drill into my custom inventory, I see the following: 

 

 

 

 

Note unlike before when we looked at the Resource Explorer the folder Custom is now available along with 

the data class showing the property that we created in the data class along with the value sent back to the 

notification server from our script. One more test to see that it works when we stop the service: 

 

 

 

The new value of Stopped came back, now we’re ready to put the script into a Client side task and target 

the machines we want it to run on and create a schedule. See creating the Script at the end of this 

particular section. 

 

Reading an INI File Example 
First we need to create the basic script that will display the INI file content, in this case I’m only interested 

in the first data line so I created a very basic script that collected my basic data (we’ll assume at this 

stage you have already created the data class as indicated in previous sections of this paper); the 

following is a basic illustration of a VBscript that will pull that information back from your machine: 

----------------------INI FILE DATA STARTS HERE--------------------- 

[INSTALL] 

PATH=C:\MyTest 

----------------------INI FILE DATA ENDE HERE--------------------- 

 

----------------------VBSCRIPT STARTS HERE--------------------- 

Dim arrFileLines() 

i = 0 

Set objFSO = CreateObject("Scripting.FileSystemObject") 

Set objFile = objFSO.OpenTextFile("C:\data\MYTEST.INI", 1) 



White Paper: Creating Custom Inventory with VBScript 

 

Do Until objFile.AtEndOfStream 

     Redim Preserve arrFileLines(i) 

     arrFileLines(i) = objFile.ReadLine 

     i = i + 1 

Loop 

objFile.Close 

Wscript.Echo arrFileLines(1) 

----------------------VBSCRIPT ENDS HERE--------------------- 

 

Note: You may want to modify the highlighted directory and test file name for your purposes. 

 

When you run this script you’ll see output like the following: 

 

 
 

 

We test that all our scenarios work, now we go back and modify our script putting in the methods we need 

to call for sending the NSE; the following is an example script that will work for this scenario, compare the 

calls with the methods listed previously in this document, notice that we use the same script but instead 

of sending arrFileLines(1) to the screen we send it to the Notification Server: 

 

----------------------VBSCRIPT STARTS HERE--------------------- 

Dim arrFileLines() 

i = 0 

Set objFSO = CreateObject("Scripting.FileSystemObject") 

Set objFile = objFSO.OpenTextFile("C:\data\MYTEST.INI", 1) 

Do Until objFile.AtEndOfStream 

     Redim Preserve arrFileLines(i) 

     arrFileLines(i) = objFile.ReadLine 

     i = i + 1 

Loop 

 

dim nse 

set nse = WScript.CreateObject ("Altiris.AeXNSEvent") 

nse.To = "{1592B913-72F3-4C36-91D2-D4EDA21D2F96}" 

nse.Priority = 1 

dim objDCInstance 



White Paper: Creating Custom Inventory with VBScript 

 

set objDCInstance = nse.AddDataClass ("{XXX}") 

dim objDataClass 

set objDataClass = nse.AddDataBlock (objDCInstance) 

dim objDataRow 

set objDataRow = objDataClass.AddRow 

objFile.Close 

objDataRow.SetField 0, arrFileLines(1) 

nse.SendQueued 

 

----------------------VBSCRIPT ENDS HERE--------------------- 

 

In the above script there are two specific areas highlighted in yellow with text in red. The first of these is a 

GUID, this GUID is to remain the same, never change it. On any Notification Server if you look under Jobs 

and Tasks->Samples->Discovery and Inventory->Inventory Samples->Custom->Custom Inventory – 

Processor you’ll find an example script with this GUID listed there as well so you will always have it 

somewhere at your disposal when developing. 

 

The second item is XXX highlighted; this needs to be modified so that the XXX is replaced with the GUID 

of the data class that you created. Look at the previous section on Data Classes to see how to get the 

GUID. 

 

Finally when you run the script the following data should appear on the Notification Server. I run this 

script manually on the Notification Server itself, so in my case I right clicked on the computer I ran the 

script on and selected resource manager and drill into my custom inventory, I see the following: 

 

 

 

 

Note unlike before when we looked at the Resource Explorer the folder Custom is now available along with 

the data class showing the property that we created in the data class along with the value sent back to the 

notification server from our script.  

 

NOTE: that I provisioned the Monitor Print Spooler data class for demonstration purposes here. 

 

 

 



White Paper: Creating Custom Inventory with VBScript 

 

 

 

Reading the Registry Example 
First we need to create the basic script that will display the INI file content, in this case I’m only interested 

in the first data line so I created a very basic script that collected my basic data (we’ll assume at this 

stage you have already created the data class as indicated in previous sections of this paper); the 

following is a basic illustration of a VBscript that will pull that information back from your machine: 

 

----------------------REGISTRY KEY START --------------------- 

HKEY_LOCAL_MACHINE\Software\Altiris 

  InstallPath    REG_SZ    C:\Program Files\Altiris\ 

---------------------- REGISTRY KEY END--------------------- 

 

----------------------VBSCRIPT STARTS HERE--------------------- 

'****Get the registry value*** 

const HKEY_LOCAL_MACHINE = &H80000002 

strComputer = "." 

Set oReg=GetObject("winmgmts:{impersonationLevel=impersonate}!\\" &_ 

 strComputer & "\root\default:StdRegProv") 

strKeyPath = "SOFTWARE\Altiris" 

strValueName = "InstallPath" 

oReg.GetStringValue HKEY_LOCAL_MACHINE,strKeyPath,strValueName,strValue 

wscript.echo strValue 

----------------------VBSCRIPT ENDS HERE--------------------- 

 

 

When you run this script you’ll see output like the following: 

 

 
 



White Paper: Creating Custom Inventory with VBScript 

 

 

We test that all our scenarios work, now we go back and modify our script putting in the methods we need 

to call for sending the NSE; the following is an example script that will work for this scenario, compare the 

calls with the methods listed previously in this document, notice that we use the same script but instead 

of sending strValue to the screen we send it to the Notification Server: 

 

----------------------VBSCRIPT STARTS HERE--------------------- 

'****Get the registry value*** 

const HKEY_LOCAL_MACHINE = &H80000002 

strComputer = "." 

Set oReg=GetObject("winmgmts:{impersonationLevel=impersonate}!\\" &_ 

 strComputer & "\root\default:StdRegProv") 

strKeyPath = "SOFTWARE\Altiris" 

strValueName = "InstallPath" 

oReg.GetStringValue HKEY_LOCAL_MACHINE,strKeyPath,strValueName,strValue 

 

dim nse 

set nse = WScript.CreateObject ("Altiris.AeXNSEvent") 

nse.To = "{1592B913-72F3-4C36-91D2-D4EDA21D2F96}" 

nse.Priority = 1 

dim objDCInstance 

set objDCInstance = nse.AddDataClass ("{XXX}") 

dim objDataClass 

set objDataClass = nse.AddDataBlock (objDCInstance) 

dim objDataRow 

set objDataRow = objDataClass.AddRow 

objDataRow.SetField 0, strValue 

nse.SendQueued 

----------------------VBSCRIPT ENDS HERE--------------------- 

 

In the above script there are two specific areas highlighted in yellow with text in red. The first of these is a 

GUID, this GUID is to remain the same, never change it. On any Notification Server if you look under Jobs 

and Tasks->Samples->Discovery and Inventory->Inventory Samples->Custom->Custom Inventory – 

Processor you’ll find an example script with this GUID listed there as well so you will always have it 

somewhere at your disposal when developing. 

 

The second item is XXX highlighted; this needs to be modified so that the XXX is replaced with the GUID 

of the data class that you created. Look at the previous section on Data Classes to see how to get the 

GUID. 

 

Finally when you run the script the following data should appear on the Notification Server. I run this 

script manually on the Notification Server itself, so in my case I right clicked on the computer I ran the 

script on and selected resource manager and drill into my custom inventory, I see the following: 

 



White Paper: Creating Custom Inventory with VBScript 

 

 

 

 

Note unlike before when we looked at the Resource Explorer the folder Custom is now available along with 

the data class showing the property that we created in the data class along with the value sent back to the 

notification server from our script.  

 

NOTE: that I provisioned the Monitor Print Spooler data class for demonstration purposes here. 

 

Creating a Task for the Script 
The script needs to be run as a client side script, the following steps through creating a client side script. 
First we need to drill down to Jobs and Tasks, then into an appropriate folder structure in Discovery and 
Inventory and right click and select  
 
 

 
 



White Paper: Creating Custom Inventory with VBScript 

 

Scroll down to the Run Script task. 
 

 
 
 

Place your script into the task and select VBScript from the Script Type then click OK. 

 



White Paper: Creating Custom Inventory with VBScript 

 

 
You should now have a Task created ready to schedule against your designated workstations. Remember 
to test against a small group first testing variations of the machines you wish to target. 
 

 
 
 



White Paper: Creating Custom Inventory with VBScript 

 

 

In Summary 

This paper went through the process of creating data classes and looking at these data classes, creating 

basic scripts and then modifying those scripts so that you could then send NSE data back to the 

notification server. This is a start to your development exercises and using these techniques you will be 

able to work through the process of creating and working with more sophisticated inventories in the near 

future. 

 

 

 



White Paper: Creating Custom Inventory with VBScript 

 

 

   

For specific country offices and contact 
numbers, please visit our Web site. 
For product information in the U.S., 
call toll-free 1 (800) 745 6054. 

Symantec Corporation 
World Headquarters 
20330 Stevens Creek Boulevard 
Cupertino, CA 95014 USA 
+1 (408) 517 8000 
+1 (800) 721 3934  
www.symantec.com 

Copyright © 2010 Symantec 
Corporation. All rights reserved. 
Symantec and the Symantec logo are 
trademarks or registered trademarks of 
Symantec Corporation or its affiliates in 
the U.S. and other countries. Other 
names may be trademarks of their 
respective owners. 
 

About Symantec 

Symantec is a global leader in providing security, storage and systems management solutions to help 

businesses and consumers secure and manage their information. Headquartered in Cupertino, Calif., 

Symantec has operations in 40 countries. More information is available at www.symantec.com . 
 


