@ Symantec.

Confidence in a connected world.

Custom Inventory for ITMS 7.1
Creating Custom Inventory with VBScript

Steven Riley, Technical Field Enablement
Inventory Solution

Symantec Technical White Paper

Version 1.0 Released

White Paper: Creating Custom Inventory with VBScript

Custom inventory for ITMS 7.1

Creating Custom Inventory with VBScript

Table of Contents

INtroduction tO CUSTOM INVENTONYooiiiiiiiiiiiiee et 3
INTrodUCTION TO DAta ClASSES.....uuuuviiiiiiiiiiiriiiiiiriiiirrerr i ——. 4
(D= v= IO =TT R [T 1= = |

Development Objects and Methods

ASXNSEVENt ODJECE tuvvrtiiiiiniiiiiiiiiii i it et et e eeeaees 13
AeXNSEVentResoUrce ODbDJECt......uiiiueiiiiiiiiiiiiiiiiiiiiiii e eaas 14
AeXNSEventDataClass ObjJectcvviiiiiiiiiiiiiiiiiiiiiiiiiiiiciii e 15
AeXNSEventDataBlock ODbDJECE ..couvivuiiiiiiniiiiiiiiiiiiiiiiiii i 15
AeXNSEventDataRow ODbJeCtuuviiiiiiiiiiiiiiiiiiiiiiiiii e 16
AeXNSEventAssociation ODbJECE......ovvuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 17
SCripting USING VBSCEIPToiiiiiiiiieie et 18
Monitoring a Service EXample.....ccoviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 18
Reading an INI File EXamplec.ooviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i 20
Reading the Registry EXampleccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i 23
Creating a Task for the Script......cooeviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 25

L IS BT 0 o] o =1)Y 2RO 28

White Paper: Creating Custom Inventory with VBScript

Introduction to Custom Inventory

The approach to creating custom inventory for an environment follows some simple steps from data class
creation, script testing to validating that the data flows through the system and associates with the
appropriate machine. This paper steps through the initial creation of a Custom Inventory and
demonstrates how to create the data classes along with three simple scripting examples; a registry read

example, an INI file read example and then capturing an Operating System event example.

We will demonstrate what we believe are best practices for the creation of these script items including the
process to follow for creating them. It is important to realize that many functions are available directly
within Inventory Solution itself please review the Inventory Solution documentation so you are clear what

you are able to do from the solution before starting with custom inventory.

White Paper: Creating Custom Inventory with VBScript

Introduction to Data Classes
Custom Inventory has a specific area were Data Classes are to be created, these are located through the
Symantec Management Console from the console menu select settings->Discovery and Inventory-

>Manage Custom Data Classes

So what are Data Classes? Data Classes in the world of Symantec Altiris products are simply tables that
are created within the data base. So when we are referring to Data Classes we are talking about the
fields, the data type and actual information created in the database. This data is usually associated with a
computer or other resource of some type. We typically will talk about “custom” data types only within

Inventory Solution and Asset Management Suite.

Let's have a look at how custom data classes are created for Inventory Solution and discuss the location
from a Symantec Management Console point of view and then look at the specific tables within the
database. We’ll also discuss some of the elements that you require to be able to write scripts that send

information to these data classes.

First let’s create a Data Class for ourselves called Monitor Print Spooler, and within that data class we’ll
create a field called ‘Status’ were we will store information about the Microsoft Print Spooler, and send

information such as is it “Running” or is it “Stopped”?

We always create Custom Inventory Data Classes through the Manage Custom Data Classes interface

located here:

= @l Settings
+] Agents/Plug-ins
] AssetManagementWorkflows
+] Deployment and Migration
= |:| Discovery and Inventory
= 7] Inventory Solution
'.fT Stand-alone Inventory Packages
@, Application Metering Configuration
'.fT Manage Custom Data Classes

White Paper: Creating Custom Inventory with VBScript

Click on the Manage Custom Data Classes to bring up the following screen:
i Manage Custom Data Classes

Customn inventory data class configuration

UNIX_PS_List

Data class Click Add attribute to add properti
Processor Extension add attribute ;

es. Once the data class is populated with data, existing attributes are no longer editable.

|size

ey
There are no tems in the grid.

™ Allow multiple rows from a single computer resource.

We now need to create the Custom Data Class, to do this click on the New Data Class button found top

right to display the New Data Class; here we’ll create a data class called Monitor Print Spooler:

e = e

Processor Extension

UNIX_PS_List

Click Add attribute to add properties. Once the data class is populated with data, existi

:-‘Ijll ‘ T ..'H ta typ

I —— T
New Data Class

Mame:

Monitor Print Spooler
Description:

B
i

Click OK for the initial Data Class to be created.

White Paper: Creating Custom Inventory with VBScript

You should see a screen similar to this with the Monitor Print Spooler data class listed.

i Manage Custom Data Classes

Custom inventory data class configuration

57 New data class | & | X

Data class Click &dd attri
Monitor Print Spooler o= Add attrit
Processor Extensiaon W
UNI¥_PS_List rouEe

I Allow multip

) o = Add attribute)
Now we need to add some attributes by clicking the button. Before you click Add

Attribute, click on the Monitor Print Spooler data class and then add a field called Status; ensure that you

have clicked on Monitor Print Spooler first:

White Paper: Creating Custom Inventory with VBScript

2% New data class | 1 | b

Data class Click Add attribute to add properties. Once the data
Monitor Print Spooler o Add attribute | & | K|l | |ﬂ
Processor Extancion |
UNIX_PS L| Symantec Management Console E

Data Class Attributes

Define a data class attribute by giving it 8 name and datatype. Attributes that
help uniguely define a row should be defined as a key. Do not set data required,
unless you are sure that data will be recerved for this attribute.

Mame: IStatus
Data type: IString vI Maximum size: IEIZI
Key: Mo - Diata reguired: Mo -

Ok Cancel

As indicated above we do not need a key as we are not storing multiples of these, in this case we only
want a one to one relationchip, meaning that we only want to know when the item is runnning or when it

is stopped. Click OK, your screen should look like the following:

£Z New dataclass | 1 | X

Data class Click Add attribute to add properties. Once the data class is populated with data, existing attributes are no longer editable.
Monitor Print Spooler & Add attribute ‘ & | » | [a] | [

Processor Extension
UNIX_PS_List

Attribute Data type Size Key Required

Status String 50 No No

Save changes

You MUST click on the button found at the bottom of the screen.
You have now successfully created a data class that you can use for collecting data. Next let’s look at

some of the details behind this data class we just created.

Data Class in Detail
So you have created a Data Class, great, so where does all this information get stored you might ask
yourself? Let’s look at a few locations you may look to find the data class you just created. Those that

have used or are familiar with Asset Management Suite will know a little about these locations already.

The first location you can look at details about your data class is by clicking on the properties icon found

just above the data classes themselves as shown here:

White Paper: Creating Custom Inventory with VBScript

P |
E2 Mew data class v.@l U‘x

s

Data class

Manitor Print Spooler
Processor Extension
UNI¥_PS List

This will open a screen showing you the GUID, Display name and Table name along with the fields you

just created e.g.

Symantec Management Console E

Data Class Details

GUID: e3220123-4987-4b5e-bc39-eceeacail2ef

Display Name: Processor Extension

Description: Sample Custom Processor dataclass extending
the pre-shipped Processor dataclass.

Table Name: Processor_Ex

Attributes: Device ID, L2 Cache Size, L2 Cache Speed

This is great information, you need to know the table to open up from an MS SQL perspective and you
have the GUID which you’ll need for your VBscript; you’ll want to reference the data class via it’'s GUID

name when you write your final script.

The other location you will find this information is also located under the Notification Server under Data

Classes:

= (O] Motification Server
[:I Account Management
[Connector
] Console Settings
[Hierarchy
[IT Analytics Settings
[Z1 Replication
[Reports
= [Resource and Data Class Settings
= [Data Classes
[_ Barcode
[CMDE Data Classes
7] Computer Events
[Z Contract Data Classes
[_] Directory Connector
[_ Financial Data Classes
[Z7] General Data Classes
[:I Inventory
1 Application metering
(] Basic Inventory
= (] custom
@ Processor Extension
$ UNIX_PS_List
@ Manitor Print Spooler

0EHBBHBRBB

White Paper: Creating Custom Inventory with VBScript

If you just click on the Monitor Print Spooler you get the following information:

Resource Data Class

Mame : Monitor Print Spooler

Description :

Guid : 5170c5f2-8238-4dcd-abk99-dB81fc8d21406
Type : itemtype (Inventory)

Data Table Name : Inv_Monitor_Print_Spooler

Multi- Rowed : False

Mumber of Resources Reported Data : 0
Last Reported Data : Mewver

Resource Type(s) Using This Data Class

Attributes

Status nwvarchar {50)

When you click on the properties from the right click menu you will have the following displayed:

/= symantec Management Console - Windows Internet Explorer

—

ey Iﬁ, I'|tt|:|:_."_.'1ocaIhost_.')'a.Iti|'is_.'NS_.'"ItemF‘erertiesr-JSF.aspx:'"-.-'iE';.-=|:||'|:||:|E|'ties&ItemGuid=51?I]c5f2-8238-4dcd-j @ +4

.7 Favarites i€ Symantec Management Console

Properties
General " Audit |
Name: Monitor Print Spooler

Diescription:

Product Name: Inventory Solution

Folder: ‘\Settings'\Motification Server\Resource and Data Class Settings\Data Classes\Inventory\Custom
Creation Date: Thursday, March 24, 2011, 1:59 PM

Maodification Date: Thursday, March 24, 2011, 1:59 PM

Last modified by:

Guid: {5170c5f2-8238-4dcd-a599-d81fc8d21406%

This gives you the GUID and the Table name. To view the Table open up the SQL Server Management
Studio:

|| Microsoft SQL Server 2003 R.2
L Import and Export Data (32-bit)
& Impart and Export Data (54-hit)
ﬁg SQL Server Business Inteligence Develo
L%:\g SQL Server Management Studio

) tON .
Click on New Query * :‘l =i Query found at the top right of your screen and select the Symantec_CMDB

database as shown:

White Paper: Creating Custom Inventory with VBScript

.:J__New Query |_'|‘*J 'E_ﬁi 'iff’a ﬂ'} Iqu

Ohiject ExpljuEE=s

model
Connect * |madh
ProcessManager
Reportserver

IF

Within the Query windows right the following code as shown here:

SQLQueryl.sql ...trator (112))* |
select = from Inv Monitor Print Spooler

You’'ll see the folllowing window with no results in it; this is OK as we haven’t collected any data at this
time.

] Resutts | 3 Messagesl
| _id | _ResourceGuid | Status |

When the data class is created and you are tracking the flow of data against a specific machine you can

find the detail by running the resource explorer against that specific machine and selecting inventory from
the view menu:

Resource Manager B nNs71

Home Summaries View Tasks Help

Irwent

Name: NS71 | oo g
IP Addre=s: 169.25) Events -
Momain: SYMPI 1 Real-Time Gener

Look under Data Classes Inventory and if the data came in correctly you’'ll see another Folder entry called
Custom and you’ll find the data class within that folder:

("] Basic Inventory
] Software Deliyéry Summary

[P

We’ll show this later in the document when showing how the scripts work.

White Paper: Creating Custom Inventory with VBScript

Now that all the pieces are in place for storing the data our next steps will be to go ahead and write a
script to collect the information we want, then modify the script to work with the Altiris Agent and send
data back to the Notification Server. The next sections will cover writing various scripts to collect the

information.

White Paper: Creating Custom Inventory with VBScript

Development Objects and Methods
The agent NSE Generator provides an object model that allows the developer to create an NSE without

working directly with XML.

AeMM=Event T M AeXhSEvertResource
- _I
1
1
1
1
|
1
AeMh=EventAszociation !
f—-—1
1
1
1
1
1
i
AeXNSEventDataClass o
I K
! 1
! 1
! 1
! 1
! 1
! 1
1
| AexNSEvertDataBiock : :
_____ 1 1
1
1
1
1
1
:
b AeNNSEventData Row |

Object Model

White Paper: Creating Custom Inventory with VBScript

AeXNSEvent Object

AeXNSEvent represents the overall event object. This object has methods to create resources,

dataclasses, and datablocks; to generate the XML and hashes, and to send the event to the NS; and

properties to manage the overall event.

When the object is serialized to XML, either to obtain the XML or send the XML to a server as an event,

any special characters that have been added to the data are escaped.

Properties
Name Mode |Type Description
To get/set|string Guid or alias of the item that handles the event
Priority get/set|int The priority of the event
Guid get GUID The GUID of the event. This is generated when the event is created.
DefaultResource|get IAeXNSEvent™ The de]_‘ault resource object, th_ls_ represents_the computer that the agent
is running on. Requires the Altiris Agent be installed.
Xml get string Returns the event XML.
. Returns the hash for the entire event, excluding any data that is
Hash get string .
excluded from hashing.
Methods
Name Parameter Type Required|Description
AddResource Adds a new resource to the event.
return IAeXNSEventResource* The newly added resource.
typeGuid GUID Required |The type GUID of the resource.
The GUID of the resource if it is known. If
. . the GUID is not known it may be omitted,
CJUle VARIANT Pt e and keys should be added to the returned
resource object.
AddDataClass Adds a new dataclass to the event.
return IAeXNSEventDataClass* The newly added dataclass

Either the name or GUID of the dataclass

dataClassName|VARIANT Required e
must be specified.
Adds a datablock to the event. A dataclass
and resource must be specified. For simple
dataclasses the name or GUID of the

AddDataBlock dataclass may be specified instead of

adding a dataclass. If the data applies to
the computer resource, the resource may
be omitted.

return IAeXNSEventDataBlock* The newly added datablock.
The dataclass that the new data will be

. used to populate. This may be an

datacle s VARIANT REGLirEe! AeXNSEventDataClass object, the name of
the dataclass, or the GUID of the dataclass.
The resource that the data applies to. If this

resource VARIANT Optional |is omitted the default resource (the
computer) is used.
Adds a resource association. Either resource

AddAssociation GUIDs or resource objects may be specified

to create the association.

return IAeXNSEventAssociation* The newly added association.

White Paper: Creating Custom Inventory with VBScript

type GUID

Required |The GUID of the resource association type.

parent VARIANT

The resource that is the parent of the
Required |association. This may be an
AeXNSEventResource object or a GUID.

child VARIANT

The resource that is the child of the
association. This may be an

Optional |AeXNSEventResource object or a GUID. If
this parameter is omitted children must be
added to the association.

Send

Sends the event to the server. Requires the
Altiris Agent be installed.

server VARIANT

The name of the server. If omitted the
Optional |event is sent to the NS that the agent is
reporting to.

SendQueued

Queues the event for the server. Requires
the Altiris Agent be installed.

server VARIANT

The name of the server. If omitted the
Optional |event is sent to the NS that the agent is
reporting to.

AeXNSEventResource Object
AeXNSResource represents a single resource that has data contained in the event. Using the resource

object it is possible to manage resource keys.

Properties

Name Mode Type Description

Guid get GUID Returns the resource GUID, if it has been specified

TypeGuid|get GUID Returns the resource type GUID.

Name get/set|string The name of the resource, this will be used if the resource is created.

NumKeys|get int The number of keys that have been added

KeyName|get string The name of the indexed key

KeyValue |get string The value of the indexed key

KeyType |get KeyOperationMode|The type of the indexed key, whether it is add or replace.

Deleted |get/set|bool Set this to true to delete the resource from the server.

Methods

Name Parameter|Type Required|Description

AddKey Adds a key to the resource.
name string Required |The name of the key, such as "name.domain"
value string Required |The value of the key.

operation |KeyOperationMode

Required

The operation to be performed with the key, either
KEYOP_ADD which will add new keys to the resource,
or KEYOP_REPLACE which will replace existing keys on
the resource with the new keys.

AddAssociation

Adds a new association with this resource being the
parent. For a description of this method and it's
parameters see IAeXNSEvent: :AddAssociation ()

White Paper: Creating Custom Inventory with VBScript

AeXNSEventDataClass Object

AeXNSDataClass represents a dataclass. Using the dataclass object it is possible to specify columns names

for the dataclass, as well as which columns participate in hashing.

It is not strictly necessary to specify column names, since columns are represented in the event using the
short names, and column names are only used when specifying data using column names, in order to look

up the short name.

Any columns that do not participate in hashing should be specified to ensure that correct hashes are

generated.

Properties

Name Mode |Type |Description

Name get string|The name or GUID of the dataclass.

Controls whether the indexed column is excluded from hashing. This is the most

gmerelHesn | EErsen el common use of the dataclass object.

NumColumns|get int The number of columns defined for the dataclass.

The short name index for the first column. This is usually either O or 1, representing

FirstColumn |get/setjint short names of cO and c1, respectively.

Methods
Name Parameter|Type Required|Description
Adds a named column to the dataclass, whether the column is
AddColumn o
hashed may also be specified.
name string Required |The name of the column.
. . A boolean indicating whether the column is ignored when hashing.
'gnore VARSI (TR If omitted this defaults to false.
Sets the name of the indexed column, whether the column is
SetColumn =2
hashed may also be specified.
index int Required |The index of the column being specified.
name string Required |The name of the column.
. . A boolean indicating whether the column is ignored when hashing.
ignore VARIANT Optional ¢ itted this defaults to false.

AeXNSEventDataBlock Object

AeXNSDataBlock represents a block of data that applies to a particular resource, and is in the format
described by a particular dataclass. This object has properties indicating whether the datablock should be
used to perform a partial or full update; and methods that allow adding additional rows of data as well as

inserting field data into the rows.

White Paper: Creating Custom Inventory with VBScript

Properties

Name Mode |Type Description

DataClass get IAeXNSEventDataClass* Returns the dataclass object which specifies the datablock
schema.

Resource get IAeXNSEventResource* |Returns the resource object that the data applies to.

PartialUpdate|get/set|bool Sp_ec_lfles whether the datablock should completely replace the
existing data, or be appended.

Hash get string The hash of all of the data in the datablock.

Methods

Name |Parameter|Type Required|Description

AddRow Begins a new row, and returns a row object.

return IAeXNSEventDataRow™* The newly added row.

type

VARIANT/RowType

The type of row. This may be REPLACE_ROW to replace
the row, which is default if omitted; MERGE_ROW to
merge rows with missing columns into the existing data
(which is the default behaviour when fields are missing);
and DELETE_ROW to delete rows if they already exist.

Optional

AeXNSEventDataRow Object

AeXNSEventDataRow represents a single row of data.

Properties
Name|Mode|Type |Description
Hash |get |string|The hash of all of the fields in the row.
Methods
Name |Parameter|Type Required|Description
AddField Adds a field to the current row.
The value of the field. This may be a string, a number, a GUID, a
resource object to reference another resource defined in the event,
value VARIANT |Optional |NULL to represent a database NULL value, or omitted to represent the
default value (the default value is specified for the column when the
dataclass is configured on the NS.)
SetField Sets the value of the indexed field.
index VARIANT|Required The |nd_ex of the field to set, this may be an integer index or the name
of the field.
The value of the field. This may be a string, a number, a GUID, a
resource object to reference another resource defined in the event,
value VARIANT | Optional |NULL to represent a database NULL value, or omitted to represent the
default value (the default value is specified for the column when the
dataclass is configured on the NS.)

White Paper: Creating Custom Inventory with VBScript

AeXNSEventAssociation Object
AeXNSEventAssociation represents an association between a resource and one or more other resources.

Properties

Name|Mode |[Type Description

Determines the action taken when the association is loaded into the database. This
may be ASSOC_ADD (the default), which will add the child resources to any existing
Mode |get/set|AssocMode association; ASSOC_REPLACE which will replace any existing associated resources
with the child resources; and ASSOC_DELETE which will remove the child resources
from any existing associations.

Hash |get string The hash of the association.

Methods

Name |Parameter|Type Required|Description

Adds a child resource to the association, this must be done if one is

aodeiid not specified when the association is created.

The resource to associate with the parent. This may be the GUID of

child VARIANT|Required the resource or an AeXNSEventResource object.

White Paper: Creating Custom Inventory with VBScript

Scripting using VBScript

So now that we have created the data classes here we will look at various methods of collecting data and
sending it back to the notification server for processing. Note that initial testing does not need to be run
through task server or any other scheduled tasks, this should be a manual exercise so that you can slowly
watch the data flow through the system and identify coding mistakes, as a best practice the following

process is recommended:

Test Script has correct Modify Script with Test script collects data
Create Basic Script P AeXNSEvent Methods and delivers the data to
output
remove screen outputs the Data Class

Process for Developing Scripts

Monitoring a Service Example
First we need to create the basic script that will display the monitoring service (we’ll assume at this stage
you have already created the data class as indicated in previous sections of this paper); the following is a

basic illustration of a VBscript that will pull that information back from your machine:

strComputer = "."
Set objWMIService = GetObject("winmgmts:" & "{impersonationLevel=impersonate}"\\" & strComputer &
"\root\cimv2")
Set colRunningServices = objWMIService.ExecQuery("select * from win32_service")
For each objService in colRunningServices

if objService.DisplayName = "Print Spooler" then

wscript.echo objService.State
end if

Next

When you run this script you’ll see output like the following:

Windows Script H... 22 Windows Script H... @

Running Stepped

QK QK

White Paper: Creating Custom Inventory with VBScript

We test that all our scenarios work, now we go back and modify our script putting in the methods we need
to call for sending the NSE; the following is an example script that will work for this scenario, compare the
calls with the methods listed previously in this document, notice that we use the same script but instead

of sending objService.State to the screen we send it to the Notification Server:

strComputer = "."
Set objWMIService = GetObject("winmgmts:" & "{impersonationLevel=impersonate}"\\" & strComputer &
"\root\cimv2")

Set colRunningServices = objWMIService.ExecQuery("select * from win32_service")

‘Create instance of Altiris NSE component
dim nse
set nse = WScript.CreateObject ("Altiris. AeXNSEvent™)
nse.To = "{1592B913-72F3-4C36-91D2-D4EDA21D2F96}"
nse.Priority = 1
dim objDClInstance
set objDClInstance = nse.AddDataClass ("{XXX}")
dim objDataClass
set objDataClass = nse.AddDataBlock (objDClnstance)
For each objService in colRunningServices
if objService.DisplayName = "Print Spooler” then
dim objDataRow
set objDataRow = objDataClass.AddRow
objDataRow.SetField O, objService.State
end if
Next

nse.SendQueued

In the above script there are two specific areas highlighted in yellow with text in red. The first of these is a
GUID, this GUID is to remain the same, never change it. On any Notification Server if you look under Jobs
and Tasks-=>Samples->Discovery and Inventory->Inventory Samples->Custom->Custom Inventory —
Processor you'll find an example script with this GUID listed there as well so you will always have it

somewhere at your disposal when developing.

The second item is XXX highlighted; this needs to be modified so that the XXX is replaced with the GUID
of the data class that you created. Look at the previous section on Data Classes to see how to get the
GUID.

White Paper: Creating Custom Inventory with VBScript

Finally when you run the script the following data should appear on the Notification Server. | run this

script manually on the Notification Server itself, so in my case | right clicked on the computer | ran the

script on and selected resource manager and drill into my custom inventory, | see the following:

“p Settings + Motification Server + Resource and Data Class Settings -
2 (] Data Classes N Honitor Print Spooler
=] Inventory Add description
- J Basic Inventory Current Status
=l] Custom
® Monitor Print Spooler
] Software Delivery Summary Property
(] Monitor Status
®] Software Management

Note unlike before when we looked at the Resource Explorer the folder Custom is now available along with

the data class showing the property that we created in the data class along with the value sent back to the

notification server from our script. One more test to see that it works when we stop the service:

“ Settings = Notification Server » Resource and Data Class Settings -
= (] Data Classes & Iﬁonitor Print Spooler
= Inventory Add description
i j (::;Istom =Her Currant Status
@ Monitor Print Spooler
7] Software Delivery Summary Property
] Monitor Status
*) Software Management
& Audit

The new value of Stopped came back, now we’re ready to put the script into a Client side task and target

the machines we want it to run on and create a schedule. See creating the Script at the end of this

particular section.

Reading an INI File Example

First we need to create the basic script that will display the INI file content, in this case I’'m only interested

in the first data line so | created a very basic script that collected my basic data (we’ll assume at this

stage you have already created the data class as indicated in previous sections of this paper); the

following is a basic illustration of a VBscript that will pull that information back from your machine:

- INI FILE DATA STARTS HERE------—----——————————
[INSTALL]
PATH=C:\MyTest

Dim arrFileLines()

i=0

Set objFSO = CreateObject("Scripting.FileSystemObject")
Set objFile = objFSO.OpenTextFile("C:\data\MYTEST.INI", 1)

White Paper: Creating Custom Inventory with VBScript

Do Until objFile.AtEndOfStream
Redim Preserve arrFileLines(i)
arrFileLines(i) = objFile.ReadLine
i=i+1

Loop

objFile.Close

Wscript.Echo arrFileLines(1)

Note: You may want to modify the highlighted directory and test file name for your purposes.

When you run this script you’ll see output like the following:

Windows Script H... SRES

PATH=C\MyTest

QK

We test that all our scenarios work, now we go back and modify our script putting in the methods we need
to call for sending the NSE; the following is an example script that will work for this scenario, compare the
calls with the methods listed previously in this document, notice that we use the same script but instead

of sending arrFileLines(1) to the screen we send it to the Notification Server:

Dim arrFileLines()
i=0
Set objFSO = CreateObject("Scripting.FileSystemObject")
Set objFile = objFSO.OpenTextFile("C:\data\MYTEST.INI", 1)
Do Until objFile.AtEndOfStream

Redim Preserve arrFileLines(i)

arrFileLines(i) = objFile.ReadLine

i=i+1

Loop

dim nse

set nse = WScript.CreateObject ("Altiris. AeXNSEvent™)
nse.To = "{1592B913-72F3-4C36-91D2-D4EDA21D2F96}"
nse.Priority = 1

dim objDClInstance

White Paper: Creating Custom Inventory with VBScript

set objDClInstance = nse.AddDataClass ("{XXX}")

dim objDataClass

set objDataClass = nse.AddDataBlock (objDClnstance)
dim objDataRow

set objDataRow = objDataClass.AddRow

objFile.Close

objDataRow.SetField O, arrFileLines(1)

nse.SendQueued

In the above script there are two specific areas highlighted in yellow with text in red. The first of these is a
GUID, this GUID is to remain the same, never change it. On any Notification Server if you look under Jobs
and Tasks->Samples->Discovery and Inventory->Inventory Samples->Custom->Custom Inventory —
Processor you’ll find an example script with this GUID listed there as well so you will always have it

somewhere at your disposal when developing.

The second item is XXX highlighted; this needs to be modified so that the XXX is replaced with the GUID
of the data class that you created. Look at the previous section on Data Classes to see how to get the

GUID.

Finally when you run the script the following data should appear on the Notification Server. | run this
script manually on the Notification Server itself, so in my case | right clicked on the computer | ran the

script on and selected resource manager and drill into my custom inventory, | see the following:

“, Settings = MNotification Server » Resource and Data Class Settings = Data Classes ~
= (*] Data Classes & !ulomtor Prmt Spooler
=] Inventory Add descriptio
] Basic Inventor
_\I ¥ Current Status
=l] Custom
<> Monitor Print Spooler
] Software Delivery Summary Property Value
(] Monitor Status PATH=C:\MyTest
) Software Management
& Audit
A Fliant Tack Dacnrrae

Note unlike before when we looked at the Resource Explorer the folder Custom is now available along with
the data class showing the property that we created in the data class along with the value sent back to the

notification server from our script.

NOTE: that I provisioned the Monitor Print Spooler data class for demonstration purposes here.

White Paper: Creating Custom Inventory with VBScript

Reading the Registry Example

First we need to create the basic script that will display the INI file content, in this case I’'m only interested
in the first data line so | created a very basic script that collected my basic data (we’ll assume at this
stage you have already created the data class as indicated in previous sections of this paper); the

following is a basic illustration of a VBscript that will pull that information back from your machine:

—————————————————————— REGISTRY KEY START

HKEY_LOCAL_MACHINE\Software\Altiris
InstallPath REG_SZ C:\Program Files\Altiris\

—————————————————————— REGISTRY KEY END--------—---—---————-

"****Get the registry value***

const HKEY_LOCAL_MACHINE = &H80000002
strComputer = "."

Set oReg=GetObject("winmgmts:{impersonationLevel=impersonate}"\\" &
strComputer & "\root\default:StdRegProv")

strkeyPath = "SOFTWARE\AItiris"

strValueName = "InstallPath"

oReg.GetStringValue HKEY_LOCAL_MACHINE,strKeyPath,strValueName,strValue

wscript.echo strvalue

When you run this script you’ll see output like the following:

Windows Script x|

C:\Program Files\Altirish,

White Paper: Creating Custom Inventory with VBScript

We test that all our scenarios work, now we go back and modify our script putting in the methods we need
to call for sending the NSE; the following is an example script that will work for this scenario, compare the
calls with the methods listed previously in this document, notice that we use the same script but instead

of sending strValue to the screen we send it to the Notification Server:

"****Get the registry value***

const HKEY_LOCAL_MACHINE = &H80000002

strComputer = "."

Set oReg=GetObject("winmgmts:{impersonationLevel=impersonate}"\\" & _
strComputer & "\root\default:StdRegProv")

strKeyPath = "SOFTWARE\AItiris"

strValueName = "InstallPath"

oReg.GetStringValue HKEY_LOCAL_MACHINE,strKeyPath,strValueName,strValue

dim nse

set nse = WScript.CreateObject ("Altiris. AeXNSEvent™)
nse.To = "{1592B913-72F3-4C36-91D2-D4EDA21D2F96}"
nse.Priority = 1

dim objDClInstance

set objDClInstance = nse.AddDataClass ("{XXX}")

dim objDataClass

set objDataClass = nse.AddDataBlock (objDClnstance)
dim objDataRow

set objDataRow = objDataClass.AddRow
objDataRow.SetField 0, strValue

nse.SendQueued

In the above script there are two specific areas highlighted in yellow with text in red. The first of these is a
GUID, this GUID is to remain the same, never change it. On any Notification Server if you look under Jobs
and Tasks->Samples->Discovery and Inventory->Inventory Samples->Custom->Custom Inventory —
Processor you’ll find an example script with this GUID listed there as well so you will always have it

somewhere at your disposal when developing.

The second item is XXX highlighted; this needs to be modified so that the XXX is replaced with the GUID
of the data class that you created. Look at the previous section on Data Classes to see how to get the
GUID.

Finally when you run the script the following data should appear on the Notification Server. | run this
script manually on the Notification Server itself, so in my case | right clicked on the computer | ran the

script on and selected resource manager and drill into my custom inventory, | see the following:

White Paper: Creating Custom Inventory with VBScript

“a
=) Data Classes
= 2] Inventory
1 Basic Inventory
=) Custom
@ Monitor Print Spooler

1 Maonitor
| Software Management

Note unlike before when we looked at the Resource Explorer the folder Custom is now available along with

the data class showing the property that we created in the data class along with the value sent back to the

| software Delivery Summary

Settings -

Notification Server -

&> Monitor Print Spooler
2dd description

Current " Status |

Property
Status

Value

C:\Program Files\Altiris\

notification server from our script.

NOTE: that | provisioned the Monitor Print Spooler data class for demonstration purposes here.

Creating a Task for the Script

The script needs to be run as a client side script, the following steps through creating a client side script.
First we need to drill down to Jobs and Tasks, then into an appropriate folder structure in Discovery and

Inventory and right click and select

SEI0E And ASHEL MANBQETHENRT
Software
Symantec Endpoint Protection Man

B — S

Virtual Machine Managenment

Folder
&l Ttern Link
Client Task Schedule

Server Job
~liant Job

N Web Link

Resource and Data Class Settings -

White Paper: Creating Custom Inventory with VBScript

Scroll down to the Run Script task.

Symantec Management Console

Create New Task

v Falkdle DENVEDY

0y Quick Delivery

Software Virtualization Comman
'@ Source Path Update
"';:"’" Windows Installer Repair

=] Symantec Endpoint Protection Man

Al

!

IRLm Script

i Executes a script on one or more remote computers

Script Details

Script type: ICDmmand Ecript;l

Insert token: |Select token to insert ~ dplnsert

@ Install Symantec Endpoint Prote
@ Migrate computers to latest Sym
@ Power Sensitive Malware Scanni
T Remote SERT Boot Task

@ Uninstall Antivirus
4@ Call Web Service
‘h. Contral Service State
iy , .
d* Enable/Disable Policy
Bl Get IP Configuration
(') Power Control
%, Reset Task Agent

\ . Run Script
"4t Run Script on Server

@ Aszets that have attached devices
ﬁ Call Web Service on Server
;. Defragment Computer

@ Generate Invoice Task
@ Generate Purchase Order Task

Advanced... |

Place your script into the task and select VBScript from the Script Type then click OK.

'i Source Path Update
‘;}4‘ Windows Installer Repair
= Symantec Endpoint Protection Man

@ Install Symantec Endpoint Prote
@ Migrate computers to latest Sym
's Power Sensitive Malware Scanni
1 Remote SERT Boot Task
's Uninstall Antivirus

[, Assets that have attached devices |

43 Call Web Service

@ Call Web Service on Server

‘h‘ Control Service State

. Defragment Computer

Q?‘- Enable,Tisable Policy

%Jb Generate Invoice Task

Jb Generate Purchase Order Task

Bl Get IP Configuration

(") Power Control

% Reset Task Agent

= Run Seript

U Run Script on Server

S . Run Seript on Task Server

:ﬂ Run SGQL Query an Server
[, 5end E-mail

1 I »

‘h- UMIX {Linux/Mac Service Control =

Secript type: W =

Insert token: Select token to insert v oplnsert

'Following is & custom inventory sript gathering informstion skbout SEBOOLEER &
'to NS using RAltiris NSE Component

'Create instance of Wbem service cbkject and connect to namespsace
strComputer = "_"
Set objWMIService = Getlbject("winmgmts:" & "{impersconationlLevel=impersonat

'Fire WMI Query
Set colBunningServices = cbjWMIService.Execfueryi("select * from win3Z serwvi

'Create instance of Rltiris N5SE component
dim nse -

' Cancel |

White Paper: Creating Custom Inventory with VBScript

You should now have a Task created ready to schedule against your designated workstations. Remember
to test against a small group first testing variations of the machines you wish to target.

| p| Tasks + Jobs and Tasks » System Jobs and Tasks + Discovery and Inventory + Monitor Print Spooler
Monitor Print Spooler

Executes a script on one or more remote computers

Jobs and Tasks

k. Samples Script Details

) System Jobs and Tasks

- Script type: IVEIScri t vl Insert token: |Select token to insert .
) . Deployment and Migration Pt typ g Insert Create/Edit
4 | Discovery and Inventory 'Following is a custom inventory sript gathering information about SPOOLER service of a machine and pt
"to N5 using Zltiris NSE Component
J . Inventory .
\;" Right Click Discover Device 'Create instance of Wbem service object and connect to namespace
strComputer = "_."
Monitor Print Spooler Set objWMIService = Getlbject("winmgmts:™ & "{impersonationlevel=impersonate}!%\" & strComputer & "\ =t
J . Monitoring and Alerting "Fire WMI Query
) Notification Server Set colBunningServices = cbjiMIService.ExecQuery("select * from win3Z_service™)
) . Power Scheme Tasks '
}- Real-Time Console Infrastructure 'Create instance of Altiris NSE component
). Real-Time System Manager dim nse
J.. Senvice and Asset Management Save changes Cance| |
). Software
;) Task Status
) . Symantec Endpoint Protection Mani
) i Quick Run U New Schedule #2 | ¥
) Virtual Machine Management

| Description | Start Time | Started By Computers | Status

White Paper: Creating Custom Inventory with VBScript

In Summary
This paper went through the process of creating data classes and looking at these data classes, creating

basic scripts and then modifying those scripts so that you could then send NSE data back to the
notification server. This is a start to your development exercises and using these techniques you will be

able to work through the process of creating and working with more sophisticated inventories in the near

future.

White Paper: Creating Custom Inventory with VBScript

About Symantec

Symantec is a global leader in providing security, storage and systems management solutions to help

businesses and consumers secure and manage their information. Headquartered in Cupertino, Calif.,

Symantec has operations in 40 countries. More information is available at www.symantec.com .

For specific country offices and contact
numbers, please visit our Web site.
For product information in the U.S.,

call toll-free 1

(800) 745 6054.

Symantec Corporation

World Headquarters

20330 Stevens Creek Boulevard
Cupertino, CA 95014 USA

+1 (408) 517 8000

+1 (800) 721 3934
www.symantec.com

Copyright © 2010 Symantec
Corporation. All rights reserved.
Symantec and the Symantec logo are
trademarks or registered trademarks of
Symantec Corporation or its affiliates in
the U.S. and other countries. Other
names may be trademarks of their
respective owners.

