Debugging Plex C# Server Applications Using Visual Studio
Introduction

The following shows you how to debug a simple Plex-generated .NET Server application running under the Plex .NET Runtime Console. Note that although this example uses Plex r7.0 and Visual Studio 2010 – the principle is the same for all other versions of Plex and Visual Studio which support .NET. Note that some of the paths may differ with earlier versions of Plex (e.g. the .Net Runtime was stored under a ‘bin’ folder at Plex r6.0 which was omitted at later releases).

If this example is useful, then it might be that we can extend this document for debugging other versions of Plex-generated .NET applications; e.g. WPF client applications or .NET Runtime Service or WCF Proxy applications. Let me know at robert.layzell@ca.com.

Happy debugging!
(1) Open the model \Documents\CA\Plex\7.0\Samples\Dot NET Support and Code Libraries\SalesSystem.mdl. This is a good first example to use because the function names are human readable names; which makes things easier to see what’s going on (if you speak English anyway!).

(2) In the generate and build settings; make sure you have the following options checked:

a. Include Comments in Source

b. Build for .NET CLR Debugging

(3) Generate and build everything in the subject area Generate and Build Me.

(4) You should find that you have the default library SalesSystem.dll and an associated PDB file built into the folder \Samples\Dot NET Support and Code Libraries\Gen\Bld\Debug\.

(5) Configure the Debug .NET Runtime Console to host your server application. To do this, launch the version of the .NET Management Console located in \Program Files\CA\Plex\7.0\ob.Net\Debug\PlexManagementConsole.exe.
(6) By default, the Debug version of the .NET Management Console should load the configuration file associated with the Debug version of the .NET Runtime Console; as shown in the screenshot below. Note the path next to the node PlexRuntimeConsole.
[image: image1.png]@ PloGenericRuriime (C:\ProgramDeta\CA\Plex\7 0\ab Net\Debug\Plex ObRun dl.corfig)

logType RatText

“The default culure used by this NET
Rurtime instance..

(7) Configure the settings for your server application; generally this consists of the following:
a. AssemblyList: Point this to the default assembly built in step (4). Note that any Plex-generated C# functions that you wish to debug MUST be built in debug mode, and MUST have their associated PDB files available in the same location.

b. UDLFilename: This is the path to the data source you wish to connect with; this, and any other configuration settings (e.g. remote locations) are configured in exactly the same way as they are for non-debug environments.

(8) Save the configuration settings and close the .NET Management Console before continuing.

(9) Launch the debug version of the .NET Runtime Console located at \Program Files\CA\Plex\7.0\ob.Net\Debug\PlexRuntimeConsole.exe. Make sure that the path to the configuration file listed in the command window matches the path to the file you edited in (6).
[image: image2.png][Found Conf iguration File [C:\ProgranData\CA\PLex\7.8\0b-Net\Debug\PLexRuntineConl
fsole.oxe. config
[PLEX0B421 CA Plex .NET Runtime Console started.

(10) Create an executable for the WinC Application you will use to connect to the Plex .NET Server application by creating an EXE for the function under the subject area Create an Executable for Me. Make sure you update the client INI file if you changed any of the connection settings used to access the server application.
(11) Launch the application and run it. It’s always good to make sure you can run the application to the point where you are exactly recreating the same problem you are seeing in Release mode before even starting a debug session; just to make sure that you’ve built and got your configuration set up correctly.

(12) I’m going to debug the Order.Detail.Update.InsertRow function which will be executed when I press Apply on the Order.Detail.Edit function. Let’s see if we can see the values inserted into the database when we add 54 Dongles at a line price of $198.49.
[image: image3.png]v N

|
ORDERNUNBER | LINENUMBER PRODUCTHANE

PAODUCTNAMfDongies
UNEQUANTITY 57
LINEPRICE 15649 aonly | New | Betesn |

Continienen? ||

(13) Launch Visual Studio 2010 and select Debug(Attach To Process… Select the PlexRuntimeConsole.exe process launched in step (9) and press Attach.

(14) Visual Studio will attach to your running process. Before you start rooting around in your generated code; make sure that the Output window is visible, and review its contents. You should see an output like the following. The highlighted lines show that the relevant Plex runtime assemblies were loaded and that their debug symbols were valid and have also been loaded. This is good; and it should also be the first port of call whenever you can’t set a breakpoint in source code when you expect that you should be able to. You need to make sure that the assemblies you were expecting have been loaded and that their associated PDB files are available and also loaded.

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_64\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\mscorlib.dll'

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Program Files (x86)\CA\Plex\7.0\ob.Net\Debug\PlexRuntimeConsole.exe', Symbols loaded.

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System.Configuration\v4.0_4.0.0.0__b03f5f7f11d50a3a\System.Configuration.dll'

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Program Files (x86)\CA\Plex\7.0\ob.Net\Debug\Plex.Common.dll', Symbols loaded.

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System\v4.0_4.0.0.0__b77a5c561934e089\System.dll'

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System.Xml\v4.0_4.0.0.0__b77a5c561934e089\System.Xml.dll'

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Program Files (x86)\CA\Plex\7.0\ob.Net\Debug\Plex.ObRun.dll', Symbols loaded.

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Program Files (x86)\CA\Plex\7.0\ob.Net\Debug\Plex.Controls.dll', Symbols loaded.

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System.Drawing\v4.0_4.0.0.0__b03f5f7f11d50a3a\System.Drawing.dll'

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Users\Public\Documents\CA\Plex\7.0\Samples\Dot NET Support and Code Libraries\Gen\Bld\Debug\SalesSystem.dll', Symbols loaded.

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_64\System.Data\v4.0_4.0.0.0__b77a5c561934e089\System.Data.dll'

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System.Numerics\v4.0_4.0.0.0__b77a5c561934e089\System.Numerics.dll'

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_64\System.Transactions\v4.0_4.0.0.0__b77a5c561934e089\System.Transactions.dll'

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_64\System.EnterpriseServices\v4.0_4.0.0.0__b03f5f7f11d50a3a\System.EnterpriseServices.dll'

'PlexRuntimeConsole.exe' (Managed (v4.0.30319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_64\System.EnterpriseServices\v4.0_4.0.0.0__b03f5f7f11d50a3a\System.EnterpriseServices.Wrapper.dll'
(15) In Visual Studio, select File(Open(File… and locate the Plex-generated _ObFnc.cs source file associated with the Plex function you are interested in debugging. In this case, it’s the file \Documents\CA\Plex\7.0\Samples\Dot NET Support and Code Libraries\Gen\Src\Order\DetailInsertRow_ObFnc.cs.
(16) Locate the generated source line(s) associated with the AD code you are interested in debugging; in this case it’s the Insert statement. Add a breakpoint to the line of code by pressing F9. You should see the line go red and have a red dot next to it – this means that the VS debugger has confirmed that it has been able to associate the source line with a compiled class inside a currently loaded assembly. If you don’t see the following, go back to step (14) and make sure that the assemblies loaded are the ones you think they are, and that they contain the functions that you are expecting.
[image: image4.png]0 DetaillnsertRow, ObFnccs (Running) - Microsoft Visual Studio (Administrator) I 0 - ol S

File Edt View Project Debug Tesm Data Tools Test Window Help

M= T IR R A |3 [obstr petitnseriows || I ¢

I BABQ[i > 0w @ A== He %3 4

DetaillnsertRow_ObFnc.cs X
4 Order.DetaillnsertRow_ObFnc =¥ ObSbr_DetaillnsertRowd ()

17 Tnsert
KeyFields = new System.Collections.ArrayList();
KeyFieLds.Add (v-ge tVariable(n_s€nVarDe tailInserthow_Vien) . getAsObLongF LdFie1d(n_s€rVarORDERNUNBER))
KeyFieLds.Add(v. getVar iable(n_s€rVarDetaiLInsertRow_View) getAsObLongF 1dF ield(n s rVar LIVENUNBER))3
KeyFieLds.Add(v. getVar able(nstrVarDetailInsertRow View) getAsObChar FLAF ield(n +¢rVarPRODUCTIANE))
KeyFields.Add(v. getVar Lable(nstrVarDetailInsertRon View) getAsObLongF LiF ield(n strVarl INEQUANTITY)) 5
KeyFields. Add(v. getVar iable(n_striarDe taiLInserthou View) getASObDBLF LdFieLd(n ServarL IEPRICE));
sqlstring = new System.Collections.array.ist(D);

DBigr. insertx(sqlstring, keyFields, this) ;
DBMgr . setViewI0Statusx((ObCharFLd)v. getvariable(m_strVarDetailInsertRow_Environment).getAsObCharFldFie!

T ——]

The thread '<No Name>' (Bxb28) has exited with code 0 (6x0).
The thread ‘<No Name>' (6x1448) has exited with code @ (6x0).
The thread '<No Name>' (6x16d8) has exited with code @ (6x0).
The thread ‘<No Name>' (Bx13bc) has exited with code @ (6x0).

*<No Name>' (8x1768) has exited with code @ (6x8).

B Immediate Window B Locals

(17) Run the client application so that the function is executed (in this case, by pressing Apply on the client to insert the new order detail record). You should find that the breakpoint is triggered in Visual Studio as soon as the line of code is executed.
(18) One of the best watch windows (I think) is the Locals window (Debug(Windows(Locals). For example, using this you can see the array of values which will be bound to the Insert SQL statement which the function executes.

[image: image5.png]- =

©9 DetaillnsertRow_ObFnc.cs (Debugging) - Microsoft Visual Studio (Administrator)

Fie Edt View Projct Debug Teom Data Tools Test Window Help
I |8 oo 535 5
IPRB e B@ DR > 0@ a|> =% Hx % |B 4
~| Thread: | [5116) Client 22 ¥ ¥ Stack Frame: | SalesSystem.dlOrder DetaillnsertRow_Ob |

 Process: |[4344] PleRuntimeConsole.exe:

DetaillnsertRow_ObFnc.cs X

~ [ObSbr_DetailnsertRowd(

> — = —
keyFields.Add(v.getVariable(m_strVarDetailInsertRow_View).getAsObLongFLdField(m_strVarLINEQUANTITY));
keyFields.Add(v.getVariable(m_strVarDetailInsertRow_View).getAsObDb1F1dField(m_strVarLINEPRICE));

" O s
-

DbMgr. insertx(sqlstring, keyFields, this) ;
DBMgr. setViewI0Statusx((ObCharFld)v. getVariable(m_strVarDetailInsertRow_Environment).getAsobCharFldFic:

% Order.DetaillnsertRow_ObFnc

/7 Set Environment<*Returning status> = Environment<*View status>
s amtVArs Ahlalm <trVArData3)TnsartBoe Enviranment) amtOsORCharElARSAlA(m <triarSamvarR) Assian(y amtiiar

Value Type
{Order DetaillnsertRow_ObFnc} ‘OrderDetaillnsertRow_ObFnc
{Order DetaillnsertRow_ObFnc.DetailnsertRow_ObDat} ‘Order.DetaillnsertRow_ObFnc DetaillnsertRow_ObDat
{Order.DetaillnsertRow_ObFnc} ‘OrderDetaillnsertRow_ObFnc

SystemCollections ArrayList
string
SystemCollections ArrayList

9 sqlString
4 whereString

kpoints 2 Colltock 1B Output % Find Resuls 1

W ErorList 8 Immediate

Ready

