
qos_aggregate v1.4

QOS_AGGREGATE V1.4

Release history
Version Author Comments

1.0 Gijsbert Wiesenekker Initial release.

1.1 Gijsbert Wiesenekker Supports multiple monitors, source and alarm expressions.

1.2 Gijsbert Wiesenekker Supports delta qos, delta alarms, speed QoS, speed alarms and
receive alarms.

1.3 Gijsbert Wiesenekker Code cleanup. QoS messages are now prefixed with the name
of the probe.

1.4 Gijsbert Wiesenekker The documentation is now in PDF format.

Description
This probe subscribes to certain QoS messages and performs calculations on the subscribed QoS
messages. You can for example take the average of three QoS values. The aggregate will be
published as a QoS.

Installation
Import the probe into the archive.
Install the corresponding Perl_ package from the Archive on the robot that will run
qos_aggregate if it is a Unix robot.
Install ActiveState Perl 5.14 on the robot that will run qos_aggregate if it is a Windows
robot. Note that ActiveState Perl is not available in the Archive.
Install the SDK_Perl package from the Archive on the robot that will run qos_aggregate.
Install the probe from the Archive.

Usage
Double click the probe in Infrastructure Manager to raw configure it or edit the configuration file
with a text-editor (recommended):

Name Optional/Required Description
interval Optional. The default is 300. The interval at which the probe should check if

all QoS messages have been received for the
defined monitors. The interval should be smaller
than any of the intervals for all QoS watchers (see
below).

The <monitors> section defines the monitors. For each monitor you specify:

1

qos_aggregate v1.4

Name Optional or required Description
description Optional A description of the monitor. If description is

not defined no aggregated QoS will be
published and no aggregated alarm will be
generated. You can still specify QoS
messages to subcribe to. This allows you to
calculate delta QoS, delta alarms, speed QoS
and speed alarms without having to generate
an aggregate QoS.

name Required The name for the aggregate QoS. THE
NAME OF THE PROBE WILL BE
PREFIXED TO IT.

source Required The source of the QoS. You can use a static
value but also any valid Perl eval()
expression as described below.

target Required The target of the QoS. You can use a static
value but also any valid Perl eval()
expression as described below.

expression Optional Any valid Perl eval() expression to
calculate the aggregated QoS as described
below.

alarm Optional A valid Perl boolean expression to determine
if an alarm has to be sent for the aggregated
QoS as described below.

interval Optional The interval in which all of the subscribed
QoS messages should occur.

delta_target Optional If specified the difference between
successive aggregated QoS values will be
published as a QoS. The target of the QoS
will be equal to the target of the aggregated
QoS postfixed by delta_target. So if the
target is ‘average’ and delta_target is
‘_delta’, the delta target will be
‘average_delta’.

delta_alarm Optional A valid Perl boolean expression to determine
if an alarm has to be sent for the aggregated
QoS delta as described below.

2

qos_aggregate v1.4

Name Optional or required Description
speed_target Optional If specified the difference between

successive aggregated QoS values divided by
the difference between successive aggregated
QoS sample times will be published as a
QoS. The target of the QoS will be equal to
the target of the aggregated QoS postfixed
by speed_target. So if the target is
‘average’ and speed_target is ‘_speed’, the
speed target will be ‘average_speed’.

speed_alarm Optional A valid Perl boolean expression to determine
if an alarm has to be sent for the aggregated
QoS speed as described below.

The qos section specifies the QoS messages to subscribe to as follows:

Name Optional or required Description
name Required The name of the QoS to subscribe to.
source Required The source of the QoS to subscribe to.
target Required The target of the QoS to subscribe to.
delta_target Optional If specified the difference between

successive QoS values will be published as a
QoS. The target of the QoS will be equal to
the target of the QoS postfixed by
delta_target. So if the target is ‘System’
and delta_target is ‘_delta’, the delta
target will be ‘system_delta’.

delta_alarm Optional A valid Perl boolean expression to determine
if an alarm has to be sent for the QoS delta as
described below.

speed_target Optional If specified the difference between
successive QoS values divided by the
difference between successive QoS sample
times will be published as a QoS. The target
will be equal to the target of the QoS
postfixed by speed_target. So if the
target is ‘System’ and speed_target is
‘_speed’, the speed target will be
‘System_speed’.

speed_alarm A valid Perl boolean expression to determine
if an alarm has to be sent for the QoS speed
as described below.

3

qos_aggregate v1.4

Name Optional or required Description
receive_alarm Optional If specified an alert will be generated if a

QoS has not been received during
(receive_alarm * samplerate) seconds.

The source of the subscribed QoS messages is stored in a Perl array @s in the order specified in the
configuration file, so
$s[0] will contain the source of the first subscribed QoS message,
$s[1] will contain the source of the second subscribed QoS message,
$s[2] will contain the source of the third subscribed QoS message,
etc.
This allows you to construct a value for the source of the aggregated QoS using a Perl string
expression like $s[0] . $[s1] . $s[2]

The subscribed QoS messages are collected in a buffer. The buffer contains the sampletime and the
samplevalue of the QoS messages.
When all slots in the buffer have been filled, the probe checks if the time between the oldest and
newest message is less than or equal to the interval time. If so, the aggregate value is calculated as
follows:

The samplevalues of the subscribed QoS messages are stored in a Perl array @v in the order
specified in the configuration file, so
$v[0] will contain the samplevalue of the first subscribed QoS message,
$v[1] will contain the samplevalue of the second subscribed QoS message,
$v[2] will contain the samplevalue of the third subscribed QoS message,
etc.
The samplevalues of the subscribed QoS messages sorted in numerical order from low to high are
stored in a Perl array @w.

The QoS expression and alarm expression can refer to the arrays @v and @w. In addition you can use
the variable $e that will be set to the value of the aggregated QoS in an alarm expression.
Two examples:
If you want to alert if the aggregated QoS value is below 10 you use the alarm expression:
alarm = $e < 10
If you want to alert if one of the three QoS metrics is 50% below the average of the other two you
can use the alarm expression:
alarm = $w[0] < ($w[1] + $w[2])/2.0 * 0.50

The Perl variable $d will be set to the value of the difference between successive (aggregated) QoS
values. You can use that variable in an alarm expression, for example if you want to alert if the
difference is larger than 10 you use the alarm expression:

delta_alarm = $d > 10

The Perl variable $s will contain the value of the speed between successive (aggregated) QoS
speeds. You can use that variable in an alarm expression. For example, if you want to alert if the
speed lies between 1 and 10 you use the alarm expression:

4

qos_aggregate v1.4

speed_alarm = ($s > 1) && ($s < 10)

The following configuration file gives an example on how to subscribe to three QoS messages and
publish the average of those.

<setup>
 loglevel = 2
 logfile = qos_aggregate.log
 interval = 300
 <monitors>
 <0>
 description = take the average of 3 CPU values on Linux
 name = CPU_USAGE_AVERAGE
 source = $s[0]
 target = average
 expression = ($v[0] + $v[1] + $v[2])/3.0
 alarm = $e > 2
 interval = 600
 <qos>
 <0>
 name = QOS_CPU_USAGE
 source = centos64int123
 target = User
 receive_alarm = 3.5
 </0>
 <1>
 name = QOS_CPU_USAGE
 source = centos64int123
 target = System
 receive_alarm = 3.5
 </1>
 <2>
 name = QOS_CPU_USAGE
 source = centos64int123
 target = Idle
 receive_alarm = 3.5
 </2>
 </qos>
 </0>
...</monitors>
</setup>

5

	QOS_AGGREGATE V1.4
	Release history
	Description
	Installation
	Usage

