
Introduction to Microservices

Ronnie Mitra
Director of Design
@mitraman
ronnie.mitra@ca.com

What are

Microservices?

• Componentization via Services

• Organized around Business Capabilities

• Products not Projects

• Smart endpoints and dumb pipes

• Decentralized Governance

• Decentralized Data Management

• Infrastructure Automation

• Design for failure

• Evolutionary Design

James Lewis & Martin Fowler

on Microservices

http://martinfowler.com/articles/microservices.html

Fred George’s

Principles of Micro Services

• Very, very small

• Loosely coupled (including flow)

• Multiple versions acceptable (encouraged)

• Self-execution monitoring of each service

• Publish interesting stuff (w/o requirement)

• “application” seems to be poor

conceptualization

http://www.slideshare.net/fredgeorge/micro-service-architecure

Fred George’s

Principles of uServices

• Very, very small

• Loosely coupled (including flow)

• Multiple versions acceptable (encouraged)

• Self-execution monitoring of each service

• Publish interesting stuff (w/o requirement)

• “application” seems to be poor

conceptualization

http://www.slideshare.net/fredgeorge/micro-service-architecure

Loosely coupled service-oriented

architecture with bounded context

Adrian Cockroft

On Microservices

“
”

http://www.hpts.ws/papers/2015/cockcroft-hpts.pdf

Loosely coupled service-oriented

architecture with bounded context

Adrian Cockroft

On Microservices

“
”

http://www.hpts.ws/papers/2015/cockcroft-hpts.pdf

A microservice is an independently

deployable component of bounded

scope that supports interoperability

through message based

communications.

“

”

“

”

Microservice Architecture is a

style of engineering highly-

automated, evolvable software

systems made up of capability-

aligned microservices.

A microservice is an independently

deployable component of bounded

scope that supports interoperability

through message based

communications.

“

”

“

”

Microservice Architecture is a

style of engineering highly-

automated, evolvable software

systems made up of capability-

aligned microservices.

Small
Continuous

improvement
Evolutionary Automated Loosely Coupled

Container-based Conway’s law
Independent

Deployability

Decentralized

Governance
Decentralized Data

Immutable Message Based Service-oriented
Products not

Projects

Smart Endpoints

Dumb Pipes

Bounded in Scope Modular Smart Endpoints
Continuous

Deployment

Asynchronous

Messaging

Interoperable Capability Aligned Design for Failure Event Based Autonomous

Small
Continuous

improvement
Evolutionary Automated Loosely Coupled

Container-based Conway’s law
Independent

Deployability

Decentralized

Governance
Decentralized Data

Immutable Message Based Service-oriented
Products not

Projects

Smart Endpoints

Dumb Pipes

Bounded in Scope Modular Smart Endpoints
Continuous

Deployment

Asynchronous

Messaging

Interoperable Capability Aligned Design for Failure Event Based Autonomous

Microservice Complexity

• Microservices are simple

• Microservice systems are complex

Fred Brooks on Software

Complexity

The complexity of software is an essential
property not an accidental one. Hence
descriptions of a software entity that
abstract away its complexity often abstract
away its essence.

“

”

Service

(micro)

Solution

(macro)

Organization Culture

Process

and

Tools

Small
Continuous

improvement
Evolutionary Automated Loosely Coupled

Container-based Conway’s law
Independent

Deployability

Decentralized

Governance
Decentralized Data

Immutable Message Based Service-oriented
Products not

Projects

Smart Endpoints

Dumb Pipes

Bounded in Scope Modular Smart Endpoints
Continuous

Deployment

Asynchronous

Messaging

Interoperable Capability Aligned Design for Failure Event Based Autonomous

Small
Continuous

improvement
Evolutionary Automated Loosely Coupled

Container-based Conway’s law
Independent

Deployability

Decentralized

Governance
Decentralized Data

Immutable Message Based Service-oriented
Products not

Projects

Smart Endpoints

Dumb Pipes

Bounded in Scope Modular Smart Endpoints
Continuous

Deployment

Asynchronous

Messaging

Interoperable Capability Aligned Design for Failure Event Based Autonomous

Why Microservices?

a useful way of managing

change in software

applications

The Microservices Way

Speed and Safety at Scale

and in Harmony

Speed and Safety at Scale and in

Harmony

We Want Change and We Want it Now

Business Models Products Experiences

What Would Amazon Do?

Business Models Products Experiences

Applications Data Models Architecture

Business Models Products Experiences

Applications Data Models Architecture

What Would Netflix Do?

We want to combine the extraordinary

customer-serving capabilities that are enabled

by size with the speed of movement,

nimbleness, and risk-acceptance mentality

normally associated with entrepreneurial start-

ups.

Jeff Bezos Wants Amazon to be Fast

“

”
Jeff Bezos

Amazon 2015 Letter to Shareholders

Examples of Increasing Speed

• Zero beuracracy, don’t ask for permission

• Zero validation, don’t test anything

• Increase change frequency

• Higher faster programmers

• Use un-constrained languages and tools

• Change production directly

Facebook’s Motto

Move Fast and Break

Things

“

”

Mark Zuckerberg

Speed and Safety at Scale and in

Harmony

Why Safe?

• Sometimes failures are catastrophic

• Startups can afford to be less-safe, endups are
usually more cautious

Examples of Increasing Safety

• Strong governance, control everything

• Always validate, test everything

• Reduce change frequency

• Higher safer programmers

• Use constrained languages and tools

• No access to production environments

Speed and Safety at Scale and in

Harmony

The Scaling Factor

A changes in size can have a big impact on our

system:

Scaled demand

Scaled distance

Scaled organizations

Speed and Safety at Scale and in

Harmony

Speed Safety

Autonomy

De-centralization

Embrace Risk

Control

Centralization

Avoid Risk

Speed Safety

Trade-Offs

Speed Safety

Harmony

Harmony

“Cheating” the speed-safety trade-off:

• Introduce automation

• Change process and tooling

• Alter the organizational design

• Improve the architecture

• Design the culture

• Move the change boundaries

Small
Continuous

improvement
Evolutionary Automated Loosely Coupled

Container-based Conway’s law
Independent

Deployability

Decentralized

Governance
Decentralized Data

Immutable Message Based Service-oriented
Products not

Projects

Smart Endpoints

Dumb Pipes

Bounded in Scope Modular Smart Endpoints
Continuous

Deploiyment

Asynchronous

Messaging

Interoperable Capability Aligned Design for Failure Event Based Autonomous

Service

(micro)

Solution

(macro)

Organization Culture

Process

and

Tools

Facebook’s Motto (reprised)

Move Fast and Break

Things

“

”

Facebook’s Motto (reprised)

Move Fast and Break

Things

“

”

Move Fast with

Stable Infra

“

”

Facebook’s motto in 2014

Microservices
System

Organization

Solution

(macro)

Process and

Tools

Service

(micro)

Culture

44

Organization

Solution

(macro)

Process and

Tools

Service

(micro)

Culture

45

SYSTEM

46

How We Work Today

adaptive prescribed

The System That Outputs a
System

The People Elements

Service

(micro)

Solution

(macro)

Organization Culture

Process

and

Tools

▪ Co-ordination costs are too high

▪ Change is laborious

▪ Risk levels are too high (human error)

Towards Harmony: Traditional Obstacles

Lighter Co-ordination Labour Reduction Risk Reduction

Solution
(macro) De-Centralization Evolvability

Adaptiveness /
“Anti-Fragility”

Emerging Trends

Lighter Co-ordination Labour Reduction Risk Reduction

Solution
(macro) De-Centralization Evolvability

Adaptiveness /
“Anti-Fragility”

Service
(micro)

Independent
Deployability

Implementation
Autonomy

Constrained Size

Emerging Trends

Lighter Co-ordination Labour Reduction Risk Reduction

Solution
(macro) De-Centralization Evolvability

Adaptiveness /
“Anti-Fragility”

Service
(micro)

Independent
Deployability

Implementation
Autonomy

Reduced Size

Process and Tools
Smaller Units of

Change
Work Automation Test Automation

Emerging Trends

Lighter Co-ordination Labour Reduction Risk Reduction

Solution
(macro) De-Centralization Evolvability

Adaptiveness /
“Anti-Fragility”

Service
(micro)

Independent
Deployability

Implementation
Autonomy

Reduced Size

Process and Tools
Smaller Units of

Change
Work Automation Test Automation

Culture Trust Tool Making
Accountability &

Responsibility

Emerging Trends

Lighter Co-ordination Labour Reduction Risk Reduction

Solution
(macro)

De-Centralization Evolvability
Adaptiveness /
“Anti-Fragility”

Service
(micro)

Independent
Deployability

Implementation
Autonomy

Reduced Size

Process and Tools
Smaller Units of

Change
Work Automation Test Automation

Culture Trust Tool Making
Accountability &

Responsibility

Organization
Distributed
Authority

Specialization Better Talent

Emerging Trends

Speed and Safety at Scale and in

Harmony

Introduction to Microservices

Ronnie Mitra
Director of Design
@mitraman
ronnie.mitra@ca.com

