
The Use of Complexity Metrics in Testing CA Gen Projects

Abstract
Projects that do not have sufficient testing resources to perform 100% testing of new and changed

programs may wish to focus their testing efforts on programs that are more likely to contain errors.

Simple statement count metrics are compared with Cyclomatic Complexity counts and these are

correlated with historical data from a large Gen application to understand the relationship between

these metrics and the number of changes that have affected each program.

The results indicate that Cyclomatic Complexity is a useful indicator of the probability that a program

will contain errors and hence a useful metric to use in prioritising testing effort.

Introduction
The objective of this study is to investigate the usefulness of complexity metrics in managing the

testing of CA Gen developed applications.

IET have developed a code coverage testing tool (pathvIEw), which measures how complete the

testing is for each program (action block) based on the percentage of statements that have been

executed during testing.

Ideally the testing of the application would ensure 100% test coverage of all changed programs, i.e.

every statement in the code is thoroughly tested. However this can often not be achieved, especially

without using comprehensive automated testing software and associated test scripts, and when

testing resources are limited.

For situations where testers wish to focus their testing efforts, this study aims to establish whether

there are any metrics that would indicate which programs are more likely to contain errors

This study will also be comparing results of various methods of calculating complexity and the

differences between them and the benefits of each one, as well as less established methods that

have been suggested as more useful.

Complexity Metrics
A complexity metric produces a measure of how complex a program is, based on factors such as

lines of code and types of statement.

The simplest metric is Lines of Code (LOC) which is a simple count of the number of lines in the

source program. Whilst often used because it is so simple to calculate, and perhaps modified to only

count logical lines of code (i.e. ignoring comments), there are many disadvantages of LOC, for

example, it is dependent on coding style and each type of statement has equal weighting. For CA

Gen action blocks, number of statements is the nearest equivalent to LOC and is perhaps more

accurate because of the highly controlled structure of the action block syntax.

Cyclomatic Complexity is a measure of how complex a program is, and was originally developed by

Thomas McCabe in 1976. The Cyclomatic Complexity is a count of the number of linearly

independent paths within a program. For instance a simple linear program that has no decision

points has a complexity of 1, whereas if it contained an IF statement, then there are two separate

paths through the code and so it would have a complexity of 2. A way of calculating the Cyclomatic

Complexity of a program is to look at its control flow graph.

The formula for the complexity is: M= (E-N) +2P

where: M= complexity, E= the number of edges in the graph, N= the number of nodes, P= the

number of connected components (always 1 for a single program).

A easy formula of calculating Cyclomatic Complexity for CA Gen action blocks is

Number of Decisions +1.

A decision in this context is a possible branch in the code, and the method adopted in this study is to

increment the count by one for each of the following types of statements:

 IF

 ELSE IF

 REPEAT – UNTIL

 WHILE

 FOR

 CASE

 Database exception clause (except for when successful)

The original McCabe method treated each branch as adding one to the complexity count. A variation

of this method (extended cyclomatic complexity) includes Boolean operators in the count. In this

study we refer to the original method as CC1 and the extended method as CC2.

 For example, the statement:

IF a=1 AND b=1 adds a complexity of +1 in CC1, but +2 in CC2.

The study compared the results of an additional two types of method, CC3 which only increments

the count by one for each CASE OF clause and ignores each individual CASE clause and CC4 which

counts distinct IF/ELSEIF statements, i.e. if the same IF statement is present multiple times, it is only

counted once. An advantage of CC4 is that logic that repeats the same test multiple times (for

The complexity of this program is 3.

E=9

N=8

P=1

M= (9-8) + 2, M=3

Edges

example debug statements nested within IF debug = ‘Y’ do not have an artificially high complexity

count.

The table below summarises each of the four methods used in the study.

Statement Type CC1 CC2 CC3 CC4

IF / ELSE IF +1 +1 for IF/ELSEIF
and +1 for each
AND/OR clause

+1 +1 for each
distinct IF/ELSEIF
clause

REPEAT – UNTIL +1 +1 +1 +1

WHILE +1 +1 +1 +1

FOR +1 +1 +1 +1

CASE OF +1

CASE +1 +1 +1

Database

exception clause

(except for when

successful)

+1 +1 +1 +1

Study Data
The data used for the study is a sample of around 1500 programs (action blocks) from the GuardIEn

product, which is a change and configuration management tool developed by IET using CA Gen.

GuardIEn provides suitable data for the study as it has been developed over a 20 year period; it

contains a large variety of programs ranging in complexity from simple action blocks with a few

statements to large and complex ones with thousands of statements. In addition, every change to

the programs over the period of time has been logged in a change request database, and this

provides historical data on how many times the program has been modified.

For each action block the following metrics were calculated:

 STMT: number of statements (only executable statements have been counted, excluding

disabled statements and comments)

 CC1: Complexity Count using CC1 (i.e. Boolean operators not included)

 CC2: Complexity Count using CC2 (i.e. Boolean operators included)

 CC4: Complexity Count using CC4 (i.e. counting distinct IF statements)

 CR: Number of individual Change Requests (changes).

In the data the correlation has been measured as a Pearson correlation coefficient; this gives a value

between -1 and 1: where 1 is directly proportional and -1 is inversely proportional and 0 is

completely uncorrelated. A value above 0.5 indicates a high positive correlation and a value below -

0.5 a high negative correlation.

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000 3500 4000

Statements/Complexity CC1

Complexity vs. Statements

Figure 1 – Statements vs. Complexity (CC1)

Fig. 1 plots STMT against CC1 for each action block. As shown in the table below, there is a high

degree of correlation between the complexity count and the number of statements.

The correlation was also calculated for CC2 vs. STMT and CC4 vs. STMT. These results indicate that

there is very little change in correlation when using CC1, CC2 or CC4.

Method Correlation

Statements/CC1 0.945

Statements/CC2 0.943

Statements/CC4 0.936

Correlation with Changes
The sample data included the number of changes made to a program. These changes include fixes,

enhancements and other changes implemented because of external factors, for example, changes in

the 3rd party products used by or supported by the application.

A hypothesis of this study is that the number of changes introduced to a program over time is

strongly correlated with the inherent testing complexity of the program. If it has been developed

and never changed, then it is likely to have been less complex to test because it was error free and

had a stable specification. In contrast, a program that has been changed a lot is likely to have had a

combination of a complex and varying specification and/or many errors in its implementation.

CC1

Statements

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200

Complexity/Changes

The study therefore decided to compare the correlation between the CRs for a program and its CC

and STMT metrics as shown in Figures 2 and 3.

Figure 2: Complexity vs. Changes

Figure 3: Statements vs. Changes

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000 3500 4000

Statements/Changes

Statements

Changes

Complexity (CC1)

Changes

The table below shows the correlation for these two sets of data. It shows that complexity count

correlates marginally more strongly with the number of changes made to a program than the

number of statements.

This implies that that complexity is a slightly better predictor of the amount of testing required for a

program.

Comparing Client & Server Logic
GuardIEn is a client/server application with the client (windows presentation) logic concerned with

handling the user interface and the server logic executing on a remote server. The majority of the

complex business logic is contained within the server logic.

The data was divided into client-side and server-side and the correlations re-calculated. For this

analysis, CC4 was used because it has the advantage of not duplicating repeated IF statements. The

table below shows the correlations between Statements and CC4 complexity, Statements and

Change Requests and CC4 complexity and Change Requests.

It shows that for server logic, there is a much higher correlation between Cyclomatic Complexity and

number of changes compared with using simple statement counts. For client logic, the difference

was less pronounced and there was a also a lower correlation between number of changes and

either statements or complexity.

Correlation Server Logic Client Logic

Statements/CC4 0.86 0.98

Statements/CR 0.61 0.69

CC4/CR 0.73 0.67

This implies that complexity count it is a much better predictor of how much testing is required for

server logic than the number of statements.

However with client logic the correlation between the number of statements and the complexity is

so high that we don’t see a very significant change in the correlations between them and the

number of changes.

 Complexity/Changes Statements/Changes

Correlation 0.743 0.718

The following two graphs show the data for Change Requests against Statements and Complexity for

server logic.

Figure 4: Complexity vs. Changes for Server Logic

Figure 5: Statements vs. Changes for Server Logic

Complexity Density
As an alternative metric, the study also calculated the Complexity Density, which is the CC divided by

effective number of statements, i.e. CC/STMT.

The correlation between Complexity Density and Changes was -0.04, which indicates that there is no

correlation between them and hence the conclusion that Complexity Density is not a useful metric in

the context of this study.

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300 350 400

Complexity/Changes (Server)

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000 3500

Statements/Changes (Server)

Changes

Complexity (CC4)

Statements

Changes

Conclusion
The results from the study show that the complexity count correlates more strongly with the

number of changes made to a program than the number of statements for server logic. This implies

that the complexity count is a more useful predictor of the number of changes compared with using

just the number of statements.

However, when dealing with client logic, there is a very high correlation between statement number

and complexity, and so either can be used as a reasonable but less accurate predictor of the number

of changes.

Using the hypothesis that the number of changes over the life-cycle of a program is a useful measure

of how much effort should have been expended on testing a program; the complexity count is a

useful metric to use when prioritising which programs to fully test.

However, it must be stressed that these conclusions cannot be considered absolute as they are only

showing correlations and therefore the probable outcomes of creating a large complex program. It is

also the case that large programs are not always complex and that small programs are not always

simple. The amount of changes made to the program may not be the result of errors made in

development and therefore cannot be found during testing. It is also possible for a very competent

programmer to create a large and complex program perfectly with no need for changes; and a

sloppy one to create a small simple program with many errors. However, when testing a number of

programs, with limited testing time available, it is a useful way of allocating testing efforts so as to

maximise the probability of finding errors.

References:
http://en.wikipedia.org/wiki/Cyclomatic_complexity,
http://www.literateprogramming.com/mccabe.pdf
http://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://www.enerjy.com/blog/?p=198

http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://www.literateprogramming.com/mccabe.pdf
http://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://www.enerjy.com/blog/?p=198

