
WHITE PAPER 

 

CA Single Sign-On 
Hardening 

JANUARY 2015 

Jack Saunders 
Principal Consultant, Technical Sales 

 

 



Table of Contents 

 

 

 

 

 

 



Page 3 

 

Executive summary 

Challenge 
Corporations have turned to CA SSO for their single sign-on and web access control needs. CA SSO itself is an 

application and very flexible in nature. Due diligence must be taken by deploying proper controls in order to 

mitigate any risks. 

Opportunity 
CA SSO does provide the controls and are well documented.  The controls are not always understood to be used 

as countermeasures for specific vulnerabilities.  The detail is spread out among several hundreds of pages of 

documentation. 

Benefits 
Misconfiguration is within the top 5 of the Open Web Application Security Project (OWASP). Implementing the 

proper countermeasures will help in hardening the CA SSO infrastructure. 

  

https://www.owasp.org/


Page 4 

 

Invalidated redirects are possible when a web application accepts untrusted input that could cause the web 

application to redirect the request to a URL contained within untrusted input. By modifying untrusted URL input 

to a malicious site, an attacker may successfully launch a phishing scam and steal user session or credentials. 

Prevention of invalidated redirects can be achieved by sanitizing input by using a list of trusted URL's or also 

known as white list.   

CA SSO provides the following agent configuration parameter. 

ValidTargetDomain 

Specifies the domains to which a credential collector is allowed to redirect users. If the domain in the URL does 

not match the domains set in this parameter, the redirect is denied. 

Default: No. 

Examples 

validtargetdomain=".xyzcompany.com" 

validtargetdomain=".abccompany.com" 

CA Single Sign-On provides a centralized security management foundation that enables the secure use of the 

web to deliver applications and cloud services to customers, partners, and employees." CA Single Sign-On 

software fails to sanitize POST requests sent to the login.fcc form. As a result, stored and reflective cross site 

scripting (XSS) attacks can be conducted. An attacker can inject javascript code that will be run each time the 

specified webpage is accessed by inserting javascript code in the affected parameter. According to the reporter 

the login.fcc webpage and postpreservationdata parameter is affected by a reflective XSS vulnerability, 

postpreservationdata=fail&target="><script>alert(1)</script><" 

 

There are 3 ways to block some/all of the XSS/CSS attacks: 

1. Use Bad Character checking 

2. HTTP-Only attribute 

 

 



Page 5 

 

1. Bad Character checking  

BadCSSChars=<, >, ', ;, ), (, &, +, %00 

*Note: Setting BadCSSChars overrides the default cross-site scripting character set. Single Sign-On 

administrators need to carefully review the setting to ensure all cross-site scripting characters are blocked for 

their specific environment. Enable cross-site scripting checking by setting CSSChecking=Yes. 

2. BadQueryChars=<, >, ', ;, ), (, &, +, %00 

3. BadUrlChars=//, ./, /., /*, *., ~, \, %00-%1f, %7f-%ff, %25 

4. HTTP-Only attribute 

 To help protect against cross-site scripting attacks, set the Web Agent HTTP-Only attribute for 

any cookies it creates using the UseHTTPOnlyCookies=Yes parameter. When a Web Agent 

returns a cookie with this attribute to a user's browser, the contents of the cookie cannot be 

read by a script, even a script from the web site which originally set the cookie. This helps 

prevent any sensitive information in the cookie from being sent to an unauthorized third party 

via malicious script code. 

Note: The above recommendations and some throughout the document are available in the default Agent 

Configuration Object (ACO) templates if importing the default policy store objects file “smpolicy-secure.xml”.  

FCC HTML ENCODING 

FCCs can be vulnerable to CSS/XSS attack so make sure the recommend measures referenced above have been 

considered. 

HTML encoding ensures that the characters are treated as their literal value and not as HTML syntax. Encoding 

ensures that the damaging cross-site scripting syntax is rendered as literal text as it must appear and that the 

browser does not execute the code while rendering the HTML form. You can encode all the syntax that could be 

misused during an attack. 

The fcchtmlencoding parameter instructs an agent to apply an HTML encoding algorithm to all the values 

inserted into the FCC variables that have the following syntax: 

$$varname$$ 

If the characters that are traditionally blocked are necessary in the FCC data, then enable the fcchtmlencoding 

parameter. 

fcchtmlencoding 

Specifies whether the HTML encoding is enabled to prevent Cross-Site Scripting attacks against web agent FCC 

pages. This parameter does not block any characters. 

Values: Yes and No. 

Default: No 

 

Custom Login JSP or ASP 

https://wiki.ca.com/display/sm1252sp1/Default+Policy+Store+Objects+and+Schema+Files


Page 6 

 

Custom login JSP or ASP will perform POST action on FCC. Remove all HTML code in the FCC and leave only the 

variables. 

Example 

<!-- Single Sign-On Encoding=ISO-8859-1; --> 

@username=%USER% 

@smretries=0 

1. Perform secondary authentication for sensitive functions using challenge-response techniques. The 

following are integrated with CA Single Sign-On and compliment the solution. 

a. CAPTCHA (CA Advanced Authentication) 

b. Re-Authentication (password) – Provided OOTB using User Re-validation.  Detailed 

reference – Require Re-Authentication 

c. One-time Token (CA Advanced Authentication or IDF Connect SSO/MobileKey) 

1. Cookie Domain 

 Use Host only cookie Architecture – For additional detail please reference the SSO Strong 

Architecture document. 

2. Secure Cookies 

 Prevents the browser from sending the cookie over clear-text, although it will be sent to SSL 

enabled sites that are not using Single Sign-On that match the CookieDomain.  Set the web 

agent parameter UseSecureCookies=Yes. 

3. HTTP-Only attribute 

 To help protect against cross-site scripting attacks, set the Web Agent HTTP-Only attribute for 

any cookies it creates using the UseHTTPOnlyCookies=Yes parameter. When a Web Agent 

returns a cookie with this attribute to a user's browser, the contents of the cookie cannot be 

read by a script, even a script from the web site which originally set the cookie. This helps 

prevent any sensitive information in the cookie from being sent to an unauthorized third party 

via malicious script code. 

4. IP Checking 

 To help prevent cookie replay set the Web Agent TransientIPCheck=Yes or 

PersistentIPCheck=Yes parameter.  This verifies that the cookie came from the same Browser / 

IP address to where it was originally sent. Forces IP Address spoofing on top of Cookie 

Capturing, however consider the web server doesn’t always see the actual IP address of the end 

user due to NAT, firewalls,  proxies, etc.  

https://support.ca.com/cadocs/0/CA%20SiteMinder%2012%2052-ENU/Bookshelf_Files/HTML/idocs/require_reauthentication_for_sensitive_resources.html
http://www.idfconnect.com/products/totp-for-ca-sso/
https://www.ca.com/us/collateral/technology-briefs/na/designing-a-ca-single-sign-on-architecture-for-enhanced-security.aspx
https://www.ca.com/us/collateral/technology-briefs/na/designing-a-ca-single-sign-on-architecture-for-enhanced-security.aspx


Page 7 

 

 Additional configurations such as Custom IP header can be found here.    

5. Session Server 

 Session cookies are stored on the client computer of the end user. Increase the security of your 

environment by having CA Single-SignOn create session cookies that are stored in the session 

store. Storing session cookies in the session data store prevents anyone with access to the 

following items from copying a session cookie from a client computer and then attempting a 

replay attack: 

i. Web server logs. 

ii. CA SiteMinder® Web Agent logs. 

iii. Browsers 

 A single use cookie is placed into the session data store and mapped to a GUID.  A GUID also 

known as Session ID is passed to the browser. 

 If a CA Single-SignOn log off URI is implemented, a session store prevents the session from being 
used again (replay) after a user logs off. 

 Requires a session store database which is included with CA Single Sign-On using CA Directory to 

support high performing multiple write / master directory servers in multiple data center 

deployments. 

 

6. Session Attacks Detection 

1. Session token replay and brute force attacks are very common and is why the statement “your 

session token is equivalent to your strongest authentication method” is so very true and must be 

taken seriously. Detecting session token anomalies by binding the session token to client IP address 

is not always sufficient for very sensitive web content or transactions.  CA Single Sign-On Session 

Assurance uses device fingerprinting to bind the session token to several user client properties is the 

most secure method to prevent session hijacking and brute force attacks.  The fingerprint DNA is 

determined by the following factors.  More detail on Session Assurance and how to enable it can be 

found using the online CA BookShelf. 

Browser UserAgent : This depends on the browser that end user uses for 

authentication e.g, in case of Chrome is “Mozilla/5.0 (Windows NT 5.1) 

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/31.0.1650.63 

Safari/537.36” 

 Vendor: Browser vendor e.g., for this value in chrome “Google” 

 VendorSubID: ID for the browser vendor. 

 BuildID: Build Id of the browser. 

 CookieEnabled: Whether cookies are enabled in the browser or not. 

https://supportcontent.ca.com/cadocs/0/CA%20SiteMinder%2012%2051-ENU/Bookshelf_Files/HTML/idocs/256659.html#o256348
https://wiki.ca.com/display/sm1252sp1/Session+Cookie+Management#SessionCookieManagement-StoreSessionCookiesontheSessionStoreforImprovedSecurity
http://www.ca.com/us/securecenter/ca-directory/details.aspx
http://www.ca.com/us/collateral/videos/na/introducing-ca-siteminder-enhanced-session-assurance-with-devicedna.aspx
http://www.ca.com/us/collateral/videos/na/introducing-ca-siteminder-enhanced-session-assurance-with-devicedna.aspx
https://support.ca.com/cadocs/0/CA%20SiteMinder%2012%2052-ENU/Bookshelf_Files/HTML/idocs/session_assurance_new.html


Page 8 

 

Clientcaps/Plugin IEPlugins: Plugins installed in case if browser is IE. In other cases this will 

be empty. 

 NetscapePlugins: List of plugins installed on the browser and 

corresponding version numbers. 

Screen FullHeight:  

 AvlHeight: 

 FullWidth: 

 AvlWidth: 

 ColorDepth: 

 PixelDepth: 

 DeviceXDPI: This is collected based on the browser that is used. 

 DeviceYDPI: This is collected based on the browser that is used. 

 FontSmoothing: This is collected based on the browser that is used. 

 UpdateInterval: This is collected based on the browser that is used 

System Platform: OS details 

 systemLanguage:  

 Timezone: 

 OSCPU: Architecture type  

7. FORMCRED Cookie 

 Traditional 4.x agent architecture written the FORMCRED cookie to the web browser in which 

contained the encrypted user credentials then redirected back to the web agent after login.  

 It provides another attack vector for malicious code to vulnerability such as HeartBleed to 

retrieve your credentials and replay them! 

  To mitigate this be sure to set the agent configuration parameter “FCCCompatMode=No”  

 This is typically set by default with more recent versions of CA Single-SignOn however early 

adopters of SiteMinder 4.x / 5.x days would have understood the new agent architecture change 

in what is now known as the Framework agent. 

http://heartbleed.com/


Page 9 

 

8. Verify your system’s configuration management 

 Keep up with patches for ALL components including software libraries, not just OS and Server 

applications.  CA Technologies provides security related notices using proactive notifications via 

the support site or the community site. 

 Disallow requests to unauthorized privileged users config files, log files, source files, etc. (ex 

WebAgent.conf, sm.registry, system_odbc.ini, EncryptionKey.txt, etc).  Most of the files have 

been configured for a purpose either for tuning purposes or database connectivity.  These 

configurations have been tested through a formal QA processes and change management.  To 

enforce no direct or anytime changes to these files that could impact service availability it is 

recommended to have access controls in place using a Privileged Identity Management product. 

Session Expiration 

Once an authenticated session has been established, the session ID (or token) is equivalent to the strongest 

authentication method used by the application, such as username and password, passphrases, CA Auth ID, one-

time passwords (OTP), client-based digital certificates, smartcards, or biometrics. 

CA SSO session token also known as “SMSESSION” is double encrypted using the policy server keys and then 

web agent keys.  By default the session token is a transient cookie and uses the “Expires” attribute.  A persistent 

cookie which uses the “Max-Age” attribute is not recommended.   

The session “Expires” attribute of the session token (SMSESSION) also known as automatic session expiration is 

configured within the policy itself. 

 

Simultaneous Session Logons 

If the web application does not want to allow simultaneous session logons, it must take effective actions after 

each new authentication event, implicitly terminating the previously available session, or asking the user 

(through the old, new or both sessions) about the session that must remain active.  This is achieved using the 

add-on Limit Concurrent Login. 

 

DNS denial of service will result only if the server on which the agent is installed is flooded with HTTP requests 

using IP addresses or server names, which the agent would then lookup causing extra DNS calls to the IP stack 

and out to the DNS server.  Agents cache results to avoid unnecessary DNS calls, however if unique values are 

https://support.ca.com/
https://communities.ca.com/community/ca-security
http://www.ca.com/us/securecenter/ca-privileged-identity-manager.aspx
http://www.ca.com/~/media/files/technologybriefs/ca-arcotid-tech-brief.pdf
http://www.ca.com/~/media/files/productbriefs/ca_arcototp_for_mobile_authentication_product_sheet.pdf
http://www.ca.com/~/media/files/productbriefs/ca_arcototp_for_mobile_authentication_product_sheet.pdf
http://www.bio-key.com/
http://www.ca.com/~/media/Files/Add-OnServicesComponents/Limit-Concurrent-Login-for-CA-SiteMinder.pdf


Page 10 

 

somehow used in the attack, then the agent could still make an unnecessary number of calls out to a DNS 

server. 

Disabling DNS lookups will mean that web agents will no longer try to resolve IP addresses, or hostnames that 

are not fully qualified. If a site and its users are always using fully qualified host names in their HTTP requests 

then this will have little impact.  Agent names are mapped to hostnames unless you are using the 

defaultagentname setting.  So without DNS lookups to resolve IP addresses and server names to FQDNs, you 

would need to have an agentname ACO entry for each server name or IP address you would want to map to an 

agentname.  Otherwise 500 errors will result if an agent is unable to map an incoming HTTP HOST to an agent 

name. 

Options: 

1. Set web agent parameter DisableDNSLookup=Yes 

2. Use local host entries.  Note: this approach is a challenge if hundreds or thousands of servers with 

agents are deployed. 

 

References 

Help Prevent Attacks 

OWASP Top Ten 

About The Author 

 

https://wiki.ca.com/display/sm1252sp1/Help+Prevent+Attacks
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.linkedin.com/pub/jack-saunders/

