

Version 8.2

Layer 7
Policy Authoring
User Manual

Copyright © 2014 CA. All rights reserved.

This documentation and any related computer software help programs (hereinafter referred to as the
“Documentation”) are for your informational purposes only and are subject to change or withdrawal by
CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in
whole or in part, without the prior written consent of CA. This Documentation is confidential and
proprietary information of CA and may not be disclosed by you or used for any purpose other than as
may be permitted in a separate confidentiality agreement between you and CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the
Documentation, you may print a reasonable number of copies of the Documentation for internal use
by you and your employees in connection with that software, provided that all CA copyright notices and
legends are affixed to each reproduced copy.

The right to print copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason,
it is your responsibility to certify in writing to CA that all copies and partial copies of the Documentation
have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW OR AS AGREED BY CA IN ITS APPLICABLE LICENSE
AGREEMENT, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF M6ERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER
OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT, BUSINESS
INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable
license agreement and such license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is
subject to the restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and
DFARS Section 252.227-7014(b)(3), as applicable, or their successors.

Contents

Chapter 1: Working with Service Policies 1
Policy Organization 2

Special Assertions 2
Hints and Tips 3

Policy Revisions 6
Configuring Policy Revisions 6
Creating a New Policy Revision 6
Working with Policy Revisions 6

Policy Properties 9
Organizing Services and Policies into Folders 12

Controlling Access Using Folders 12
Refining Access with Security Zones 13

Authentication in a Policy 14
Working with Aliases 15

Security Zones for Aliases 16
Working with Multiple Signatures 17

How to Permit Multiple Signatures 18
Configuring a Policy 18
Creating a Policy 21
Editing a Service Policy 22
Deleting a Policy 23
Disabling a Policy 24
Enabling a Policy 24
Validating a Policy 25

Instant Feedback Messages 25
Final Policy Validation Messages 26
Invalid Users or Groups 27
Invalid JMS Queue 28

Comparing Policies 28
Using the Policy Comparison Window 29
Viewing Assertion Differences 30

Working with Multiple Policy Tabs 32
Working with Internal Use Policies 33

wsdm-notifications 34
Audit Message Filter (AMF) Policy 34
Audit Viewer (AV) Policy 36

Working with Non-XML Messages 37
Assertions that Require XML 37
Assertions that Require SOAP 38
Example of a Branching Policy 38

Working with Comments 40
Adding a Comment 40
Editing a Comment 41
Deleting a Comment 42

Exporting/Importing a Policy 42
Exporting a Policy 42
Importing a Policy from a File 44
Importing a Policy via UDDI Registry 46

i

Layer 7 Policy Authoring User Manual, v8.2

Import WS-Policy from URL in UDDI Registry Wizard 47
Searching the UDDI Registry 48
Resolve External Dependencies Wizard 51

Debugging a Policy 56
Working with the Service Debugger 56
Policy Debug Tracing 66
Working with the Debug Trace Policy 67

Managing Global Resources 72
Default Global Resources 73
Adding a New Global Resource 75
Editing a Global Resource 77
Deleting a Global Resource 77
Importing a Global Resource 77
Analyzing a Global Resource 84

Managing UDDI Registries 87
UDDI Registry Properties 89
Publish to UDDI Settings 92
Managing Meta Data 99

Chapter 2: Working with Policy Fragments 101
Types of Fragments 102
Adding a Policy Fragment to a Service Policy 103
Editing a Policy Fragment 104
Deleting a Policy 105
Working with Global Policy Fragments 106

Types of Global Policies 106
How Global Policies are Evaluated 107
How a Global Policy Relates to the Service Policy 108
Supported Assertions 108
Limitations to Global Policies 109

Chapter 3: Working with Policy Assertions 111
Adding an Assertion 112
Deleting an Assertion 119
Disabling an Assertion 119
Enabling an Assertion 121
Understanding Assertion Latency 122

How to Use the Assertion Latency Variables 122
When the Assertion Latency is Calculated 125

Working with Encapsulated Assertions 126
Encapsulated Assertions vs. Policy Fragments 126
Visibility of Context Variables 127
Understanding How Values are Passed to the Parent Policy 128
Making Encapsulated Assertions Available in a Role 130
Using Encapsulated Assertions 131
Managing Encapsulated Assertions 132
Encapsulated Assertion Configuration Properties 134

Policy Templates 142
Managing Kerberos Configuration 143
Authenticating a Client via Kerberos 145
Changing the WSS Assertion Recipient 146

ii

Layer 7 Policy Authoring User Manual, v8.2

New WSS Recipient Wizard 151
Selecting a Target Identity 152
Selecting a Target Message 153
Selecting an XPath 154
Namespace Map 156

Editing the Namespace Map 157
Migrating Namespaces 158
Using the XML Editor 159

Chapter 4: Access Control Assertions 161
Authenticate Against Identity Provider Assertion 163
Authenticate Against Radius Server Assertion 164

Context Variables Created by This Assertion 164
Authenticate Against SiteMinder Assertion 167
Authenticate User or Group Assertion 170

Authenticating Against a Simple LDAP Identity Provider 171
Authorize via SiteMinder Assertion 173
Check Protected Resource Against SiteMinder Assertion 175
Exchange Credentials using WS-Trust Assertion 177
Extract Attributes from Certificate Assertion 180

Context Variables for Subject/Issuer DN 180
Context Variables for Extended Attributes 182

Extract Attributes for Authenticated User Assertion 185
Perform JDBC Query Assertion 187

Unsupported Functionality 188
Context Variables Created by This Assertion 189
SQL Query Tips 196
Caching Metadata 206

Query LDAP Assertion 209
Require Encrypted UsernameToken Profile Credentials Assertion 213
Require FTP Credentials Assertion 214
Require HTTP Basic Credentials Assertion 215
Require HTTP Cookie Assertion 215

Context Variables Created by This Assertion 216
Require NTLM Authentication Credentials Assertion 217

Context Variables Created by This Assertion 219
Creating a Computer Account for NTLM Authentication 221

Require Remote Domain Identity Assertion 226
Context Variables Created by This Assertion 227

Require SAML Token Profile Assertion 228
Context Variables Created by This Assertion 229
SAML Token Profile Wizard 231

Require SSH Credentials Assertion 237
Require SSL or TLS Transport Assertion 238
Require Windows Integrated Authentication Credentials Assertion 241
Require WS-Secure Conversation Assertion 242

Context Variable Created by This Assertion 243
Require WS-Security Kerberos Token Profile Credentials Assertion 243
Require WS-Security Password Digest Credentials Assertion 244
Require WS-Security Signature Credentials Assertion 246
Require WS-Security UsernameToken Profile Credentials Assertion 248

iii

Layer 7 Policy Authoring User Manual, v8.2

Require XPath Credentials Assertion 248
Retrieve Credentials from Context Variable Assertion 250
Retrieve Kerberos Authentication Credentials Assertion 251

Using the Protocol Transition Delegation Method 252
Using the Constrained Proxy Delegation Method 254
Kerberos Service Ticket/Session Caching 255

Retrieve SAML Browser Artifact Assertion 258
Use WS-Federation Credential Assertion 263

Chapter 5: Transport Layer Security Assertions 267
Require SSL or TLS Transport Assertion 267

Chapter 6: XML Security Assertions 271
Add or Remove WS-Security Assertion 273
Add Security Token Assertion 277

Configuring the Private Key for SAML Assertions 277
Applying WS-Security 278
Adding a WS-S UsernameToken 279
Adding a WS-SC SecurityContextToken 281
Adding a SAML Assertion 281
Adding a WS-S EncryptedKey 282

Add Timestamp Assertion 283
Build RST SOAP Request Assertion 285

Context Variables Created by This Assertion 285
Build RSTR SOAP Response Assertion 288

Context Variables Created by This Assertion 289
Build SAML Protocol Request Assertion 291

SAML Protocol Request Wizard 292
Build SAML Protocol Response Assertion 299

Configuring the [General] Tab 301
Configuring the [Issuer] Tab (SAML 2.0 only) 305
Configuring the [Advanced] tab 306

Cancel Security Context Assertion 306
Configure WS-Security Decoration Assertion 309

Applying WS-Security 309
Configuring the [General] Tab 311
Configuring the [Signing] Tab 312
Configuring the [Encryption] Tab 313
Configuring the [Advanced] Tab 315

Create SAML Token Assertion 315
Context Variables Created by This Assertion 316
SAML Token Creation Wizard 317

Create Security Context Token Assertion 328
Context Variable Created by This Assertion 328

Create XACML Request Assertion 330
Configuring the Subject Node 332
Configuring the Resource Node 333
Configuring the Action Node 333
Configuring the Environment Node 334
Configuring the Attribute Node 334
Configuring the Multiple Attributes Node 340

iv

Layer 7 Policy Authoring User Manual, v8.2

Configuring the Resource Content Node 344
Encrypt Element Assertion 346
Establish Outbound Secure Conversation Assertion 348

Context Variables Created by This Assertion 349
Evaluate SAML Protocol Response Assertion 353
Evaluate XACML Policy Assertion 356
Generate OAuth Signature Base String Assertion 360

Context Variables Created by This Assertion 360
Generate Security Hash Assertion 365
Look Up Certificate Assertion 367
Look Up Outbound Secure Conversation Session Assertion 370

Context Variables Created by This Assertion 370
(Non-SOAP) Check Results from XML Verification Assertion 372
(Non-SOAP) Decrypt XML Element Assertion 374

Context Variables Created by This Assertion 374
(Non-SOAP) Encrypt XML Element Assertion 376
(Non-SOAP) Sign XML Element Assertion 377
(Non-SOAP) Validate SAML Token Assertion 380

Step 1: Introduction 381
Step 2: SAML Version 381
Step 3: SAML Statement Type 382
Step 4: Authentication Methods 383
Step 5: Authorization Statement 384
Step 6: Attribute Statement 385
Step 7: Subject Confirmation 386
Step 8: Name Identifier 389
Step 9: Conditions 390
Step 10: Embedded Signature 391

(Non-SOAP) Verify XML Element Assertion 391
Context Variables Created by This Assertion 391

Process RSTR Response Assertion 395
Context Variables Created by This Assertion 395

Protect Against Message Replay Assertion 397
Require Encrypted Element Assertion 400
Require Signed Element Assertion 402

Context Variables Created by This Assertion 402
Require Timestamp Assertion 405
Sign Element Assertion 407
Use WS-Security 1.1 Assertion 409

Chapter 7: Message Validation/ Transformation Assertions 411
Character Encoding 412
Add or Remove XML Element(s) Assertion 414
Add WS-Addressing Assertion 416

Context Variables Created by This Assertion 416
Applying the WS-Addressing Elements 416
Signing the WS-Addressing Elements 417

Apply JSON Transformation Assertion 419
Apply XSL Transformation Assertion 424

Context Variables Created by This Assertion 425
Compress Messages to/from SecureSpan XVC Assertion 429

v

Layer 7 Policy Authoring User Manual, v8.2

Customize Error Response Assertion 430
Decode MTOM Message Assertion 432
Encode/Decode Data Assertion 435
Encode to MTOM Format Assertion 437
Enforce WS-Security Policy Compliance Assertion 441
Enforce WS-I BSP Compliance Assertion 441
Enforce WS-I SAML Compliance Assertion 443
Evaluate JSON Path Expression Assertion 445

Context Variables Created by This Assertion 445
Evaluate Regular Expression Assertion 449

Context Variables Created by This Assertion 450
Evaluate Request XPath Assertion 458

Context Variables Created by This Assertion 458
Evaluate Response XPath Assertion 461

Context Variables Created by This Assertion 462
Evaluate WSDL Operation Assertion 465
Process SAML Attribute Query Request Assertion 466

Context Variables Created by This Assertion 466
Process SAML Authentication Request Assertion 472

Context Variables Created by This Assertion 472
Replace Tag Content Assertion 475
Require WS-Addressing Assertion 477

Context Variables Created by This Assertion 477
Set SAML Response Status Code Assertion 480
Translate HTTP Form to MIME Assertion 482
Translate MIME to HTTP Form Assertion 484
Validate Certificate Assertion 486

Context Variables Created by This Assertion 486
Validate HTML Form Data Assertion 488
Validate JSON Schema Assertion 490
Validate MTOM Message Assertion 493
Validate or Change Content Type Assertion 495
Validate SOAP Attachments Assertion 497
Validate XML Schema Assertion 499

Chapter 8: Message Routing Assertions 507
Configure Message Streaming Assertion 508
Copy Request Message to Response Assertion 510
Manage Cookie Assertion 512
Manage Transport Properties/Headers Assertion 515
Return Template Response to Requestor Assertion 518
Route via FTP(S) Assertion 520

FTP Cluster Properties for This Assertion 522
Configuring the [Connection] Tab 523
Configuring the [Authentication] Tab 526
Configuring the [Advanced] Tab 528

Route via HTTP(S) Assertion 529
Configuring the [Authentication] Tab 531
Configuring the [Headers] Tab 533
Configuring the [Connection] Tab 536
Configuring the [HTTP] Tab 538

vi

Layer 7 Policy Authoring User Manual, v8.2

Configuring the [Proxy] Tab 539
Configuring the [Other] Tab 539

Route via JMS Assertion 541
Context Variables Created by This Assertion 542
Configuring the [Target] Tab 544
Configuring the [Security] Tab 546
Configuring the [Request] Tab 548
Configuring the [Response] Tab 550

Route via MQ Native Assertion 551
Context Variables Created by This Assertion 552
Defined MQ Header Prefixes 553
Configuring the [Target] Tab 554
Configuring the [Request] Tab 556
Configuring the [Response] Tab 558

Route via Raw TCP Assertion 560
Route via SSH2 Assertion 563

Performing SFTP Partial Downloads/Uploads 563

Chapter 9: Service Availability Assertions 573
Apply Rate Limit Assertion 573
Apply Throughput Quota Assertion 578

Context Variables Created by This Assertion 579
Limit Availability to Time/Days Assertion 584
Look Up in Cache Assertion 585
Query Rate Limit Assertion 587

Context Variables Created by This Assertion 587
Query Throughput Quota Assertion 589

Context Variables Created by This Assertion 589
Resolve Service Assertion 590
Restrict Access to IP Address Range Assertion 592
Store to Cache Assertion 594

Chapter 10: Logging, Auditing, and Alerts Assertions 597
Message Auditing 597

System Audits 598
Administrative Audits 598
Policy Message Audits 598

Add Audit Detail Assertion 600
Audit Messages in Policy Assertion 602
Capture Identity of Requestor Assertion 604
Customize SOAP Fault Response Assertion 607

SOAP Faults 611
Send Email Alert Assertion 612
Send SNMP Trap Assertion 615

Chapter 11: Policy Logic Assertions 617
Add Comment to Policy Assertion 618
All Assertions Must Evaluate to True Assertion 619
At Least One Assertion Must Evaluate to True Assertion 619
Compare Expression Assertion 621
Continue Processing Assertion 625

vii

Layer 7 Policy Authoring User Manual, v8.2

Create Routing Strategy Assertion 626
Context Variables Created by This Assertion 626

Execute Routing Strategy Assertion 630
Context Variables Created by This Assertion 630

Export Variables from Fragment Assertion 632
When Used in a Global Policy Fragment 632

Generate UUID Assertion 634
Include Policy Fragment Assertion 635
Join Variable Assertion 636
Look Up Context Variable 637

Context Variables Created by This Assertion 638
Look Up Item by Index Position Assertion 640
Look Up Item by Value Assertion 641
Manipulate Multivalued Variable Assertion 642
Map Value Assertion 644
Process Routing Strategy Result Assertion 648
Run All Assertions Concurrently Assertion 651

Technical Issues to Consider 651
Configuring the Assertion 652

Run Assertions for Each Item Assertion 653
Context Variables Created by this Assertion 654

Set Context Variable Assertion 656
Split Variable Assertion 661
Stop Processing Assertion 664

Chapter 12: Threat Protection Assertions 665
Automatic Threat Protection 666

TCP/IP-Based Attacks 666
Coercive Parsing and XML Bomb 666
External Entity Attack 667
Schema Poisoning 667
WSDL Scanning 667
XML Routing Detours 668

Limit Message Size Assertion 668
Protect Against Code Injection Assertion 670
Protect Against Cross-Site Request Forgery Assertion 672

Context Variable Created by This Assertion 673
Protect Against Document Structure Threats Assertion 675
Protect Against JSON Document Structure Threats Assertion 678
Protect Against Message Replay Assertion 680
Protect Against SQL Attack Assertion 684

SQL Injections Detected 684
Scan Using ICAP-Enabled Antivirus Assertion 687

Context Variables Created by This Assertion 688
Scan Using Sophos Antivirus Assertion 692

Context Variables Created by This Assertion 692
Validate or Change Content Type Assertion 694
Validate JSON Schema Assertion 696
Validate OData Request Assertion 699

Retrieving the Service Metadata Document 700
Notes and Limitations 700

viii

Layer 7 Policy Authoring User Manual, v8.2

Context Variables Created by This Assertion 700
Validate XML Schema Assertion 703

Chapter 13: Internal Assertions 711
Collect WSDM Metrics Assertion 711
Convert Audit Record to XML Assertion 713
Handle UDDI Subscription Notification Assertion 714
Manage Gateway Assertion 715

Context Variables Created by Assertion 715
REST Manage Gateway Assertion 716

Context Variables Used by Assertion 717
Subscribe to WSDM Resource Assertion 717

Chapter 14: Custom Assertions 719
Access Resource Protected by JSAM Assertion 720

Context Variables Created by This Assertion 720
Access Resource Protected by Oracle Access Manager Assertion 722

Context Variables Created by This Assertion 722
Authenticate using Tivoli Access Manager Assertion 727

Usage Rules 727
Using the Assertion 728
Troubleshooting 730

Authenticate with SiteMinder R12 Protected Resource Assertion 730
Context Variables Created by This Assertion 731

Execute Salesforce Operation Assertion 734
Context Variables Created by This Assertion 735
Using the Assertion 737
Creating Objects 738
Updating Objects 740
Retrieving Objects 742
Retrieving Modified Objects 744
Retrieving Deleted Objects 745
Executing Queries 747
Searching Objects 748
Exporting/Importing Policies 749

Scan Using Symantec Antivirus Assertion 749

Index 751

ix

Layer 7 Policy Authoring User Manual, v8.2

List of Figures
 Figure 1: Sample policy assertion tree in the policy development window 3
 Figure 2: Policy with multiple identities 4
 Figure 3: Policy Revisions dialog 7
 Figure 4: Policy Properties 9
 Figure 5: Mechanisms for gathering credentials 15
 Figure 6: Enabling multiple signatures in a policy 18
 Figure 7: Choosing a revision to activate when enabling a policy 24
 Figure 8: The Policy Diff dialog 29
 Figure 9: Policy Diff window - Properties tab 31
 Figure 10: Policy Diff window - Raw XML tab 32
 Figure 11: Default AMF policy 35
 Figure 12: Default AV policy 36
 Figure 13: Enter Comment dialog 40
 Figure 14: Import WS-Policy from URL in UDDI Registry Wizard 47
 Figure 15: Search UDDI dialog (Search UDDI Registry for WSDL example) 49
 Figure 16: Selecting a wsdl:port 50
 Figure 17: Sample unresolved dependency in Resolve External Dependencies Wizard 52
 Figure 18: Example Service Debugger dialog, with a debug session in progress 59
 Figure 19: Sample message variable 64
 Figure 20: Debug Trace Policy on the interface 68
 Figure 21: Debug trace default policy 69
 Figure 22: Manage Global Resources dialog 74
 Figure 23: Adding a Global Resource (XML Schema) 75
 Figure 24: Resource Import Wizard 78
 Figure 25: Analyze Global Resource dialog 85
 Figure 26: Manage UDDI Registries dialog 87
 Figure 27: UDDI Registries Properties dialog 89
 Figure 28: Publish to UDDI Settings - [Service] tab 93
 Figure 29: Publish to UDDI Settings - [WS-Policy] tab 96
 Figure 30: Manage Meta Data dialog 99
 Figure 31: A disabled assertion 120
 Figure 32: Saving assertion latency by logging the message 123
 Figure 33: Saving assertion latency by copying the value to another variable 124
 Figure 34: Example of when assertion latency is calculated 125
 Figure 35: Manage Encapsulated Assertion Configurations dialog (with sample assertions) 132
 Figure 36: Encapsulated Assertion Configuration Properties dialog 136
 Figure 37: Kerberos Configuration dialog 143
 Figure 38: Configuring the HTTP(S) Routing Properties for Kerberos authentication 146
 Figure 39: Change WSS Recipient dialog 150
 Figure 40: New WSS Recipient Wizard 151
 Figure 41: Selecting a message target 153
 Figure 42: User interface for selecting an XPath 154
 Figure 43: Edit Namespaces and Prefixes dialog 157
 Figure 44: Migrate Namespaces dialog 159
 Figure 45: Changing the identity provider used for authentication 164
 Figure 46: Authenticate Against Radius Server Properties 166
 Figure 47: Authenticate Against SiteMinder Properties 168
 Figure 48: Search Identity Provider dialog 172
 Figure 49: Sample policy for setting the SiteMinder Cookie 174
 Figure 50: Authorize via SiteMinder Properties 174
 Figure 51: SiteMinder Check Protected Resource Properties 176
 Figure 52: WS-Trust Credential Exchange Properties 178

x

Layer 7 Policy Authoring User Manual, v8.2

 Figure 53: Certificate Attributes Properties 184
 Figure 54: Identity Attributes Properties 185
 Figure 55: User Attribute Mapping dialog 186
 Figure 56: Multiple result sets example 190
 Figure 57: JDBC Query Properties 192
 Figure 58: LDAP Query Properties 210
 Figure 59: Require Encrypted UsernameToken Profile Credentials Properties 214
 Figure 60: HTTP Cookie Properties 217
 Figure 61: NTLM Authentication Properties 220
 Figure 62: Server Manager 221
 Figure 63: Linux Properties - General tab 222
 Figure 64: Configuring the [Delegation] tab for a new computer account 223
 Figure 65: Add Services dialog 223
 Figure 66: Select Users or Computers dialog 224
 Figure 67: Add Services dialog containing available services 225
 Figure 68: The netlogon service is displayed in the Delegation tab 226
 Figure 69: Remote Domain Identity Properties 228
 Figure 70: Example of SAML Token Profile Wizard in edit mode 230
 Figure 71: SAML Token Profile Wizard 231
 Figure 72: Require SSH Credentials Properties 238
 Figure 73: SSL or TLS Transport Properties 239
 Figure 74: Policy to handle both Kerberos and NTLM protocols 241
 Figure 75: Require WS-Security Password Digest Credentials Properties 245
 Figure 76: WS-Security Signature Properties 247
 Figure 77: XPath Credentials Properties 249
 Figure 78: Credentials from Context Variable Properties 251
 Figure 79: Kerberos Authentication Credential Properties 256
 Figure 80: SAML Browser Artifact Properties 259
 Figure 81: Configure Authentication 261
 Figure 82: WS-Federation Request Properties 264
 Figure 83: SSL or TLS Transport Properties 268
 Figure 84: WS-Security Properties 274
 Figure 85: Security Token Properties - WS-S UsernameToken 279
 Figure 86: Security Token Properties - WS-SC SecurityContextToken 281
 Figure 87: Security Token Properties - SAML Assertion 282
 Figure 88: Security Token Properties - WS-S EncryptedKey 282
 Figure 89: Timestamp Properties 284
 Figure 90: RST SOAP Request Builder Properties 286
 Figure 91: RSTR SOAP Response Builder Properties 290
 Figure 92: SAML Protocol Request Wizard 292
 Figure 93: SAML Protocol Request Wizard - Step 8: Name Identifier (SAML 2.x version shown) 295
 Figure 94: SAML Protocol Request Wizard - Step 9: Subject Confirmation 297
 Figure 95: SAML Protocol Response Properties - [General] tab (SAML 2.0 shown) 301
 Figure 96: Security Context Cancellation Properties 308
 Figure 97: Configure WS-Security Decoration Properties - [General] tab 311
 Figure 98: Configure WS-Security Decoration Properties - [Signing] tab 312
 Figure 99: Configure WS-Security Decoration Properties - [Signing] tab 313
 Figure 100: Configure WS-Security Decoration Properties - [Advanced] tab 315
 Figure 101: SAML Token Creation Wizard 317
 Figure 102: SAML Token Creation Wizard - Step 6: Attribute Statement (SAML 2.x version shown) 321
 Figure 103: Edit SAML Attribute Properties dialog (SAML 2.x version shown) 322
 Figure 104: SAML Token Creation Wizard - Step 8: Subject Confirmation 326
 Figure 105: Security Context Token Creator Properties 329
 Figure 106: XACML Request Properties 331

xi

Layer 7 Policy Authoring User Manual, v8.2

 Figure 107: AttributeValue node 336
 Figure 108: Multiple Attributes node (XACML 2.0 screen) 340
 Figure 109: Resource Content node 345
 Figure 110: Encrypt Request Element Properties dialog 347
 Figure 111: Outbound Secure Conversation Properties 350
 Figure 112: SAML Protocol Response Wizard 354
 Figure 113: XACML Policy Properties 357
 Figure 114: Generate OAuth Signature Base String Properties - Client mode 362
 Figure 115: Generate OAuth Signature Base String Properties - Server mode 363
 Figure 116: Generate Security Hash Properties 366
 Figure 117: Certificate Lookup Properties 368
 Figure 118: Outbound Secure Conversation Session Lookup Properties 371
 Figure 119: (Non-SOAP) Check Results from XML Verification Properties 373
 Figure 120: (Non-SOAP) XML Element Decryption Properties 375
 Figure 121: (Non-SOAP) XML Element Encryption Properties 377
 Figure 122: (Non-SOAP) XML Element Signature Properties 378
 Figure 123: (Non-SOAP) Validate SAML Token Properties - Step 1 381
 Figure 124: (Non-SOAP) Validate SAML Token Properties - Step 2 382
 Figure 125: (Non-SOAP) Validate SAML Token Properties - Step 3 382
 Figure 126: (Non-SOAP) Validate SAML Token Properties - Step 4 383
 Figure 127: (Non-SOAP) Validate SAML Token Properties - Step 5 384
 Figure 128: (Non-SOAP) Validate SAML Token Properties - Step 6 385
 Figure 129: (Non-SOAP) Validate SAML Token Properties - Step 7 386
 Figure 130: (Non-SOAP) Validate SAML Token Properties - Step 8 389
 Figure 131: (Non-SOAP)Validate SAML Token Properties - Step 9 390
 Figure 132: (Non-SOAP)Validate SAML Token Properties - Step 10 391
 Figure 133: (Non-SOAP) XML Element Verification Properties 393
 Figure 134: RSTR Response Processor Properties 396
 Figure 135: Message Replay Protection Properties 399
 Figure 136: Encrypted Element Properties 401
 Figure 137: Signed Element Properties 404
 Figure 138: Timestamp Properties 406
 Figure 139: Sign Element Properties 408
 Figure 140: Add or Remove XML Elements Properties 415
 Figure 141: Add WS-Addressing Properties 417
 Figure 142: JSON Transformation Properties 420
 Figure 143: JSON Transformation Properties - [Test] tab 423
 Figure 144: XSL Transformation Properties 426
 Figure 145: Compression Properties 430
 Figure 146: Error Response Properties 431
 Figure 147: MTOM Decode Properties 434
 Figure 148: Encode/Decode Properties 436
 Figure 149: MTOM Encode Properties 439
 Figure 150: WS-I BSP Compliance Properties 442
 Figure 151: WS-I SAML Compliance Properties 444
 Figure 152: Evaluate JSON Path Expression Properties - [Source and Destination] tab 447
 Figure 153: Evaluate JSON Path Expression Properties - [Test] tab 449
 Figure 154: Regular Expression Properties - [Source and Destination] tab 451
 Figure 155: Evaluate Regular Expression assertion - [Test] tab 458
 Figure 156: WSDL Operation Properties 466
 Figure 157: SAML Attribute Query Request Properties 469
 Figure 158: SAML Authentication Request Properties 474
 Figure 159: Replace Tag Content Properties 476
 Figure 160: WS-Addressing Properties 479

xii

Layer 7 Policy Authoring User Manual, v8.2

 Figure 161: SAML Response Status Properties dialog 481
 Figure 162: HTTP Form to MIME Translation Properties 483
 Figure 163: Configure Field Information form 483
 Figure 164: MIME to HTTP Form Translation Properties 485
 Figure 165: Configure Field Name form 485
 Figure 166: Validate Certificate Properties 487
 Figure 167: HTML Form Data Properties 489
 Figure 168: JSON Schema Validation Properties 491
 Figure 169: MTOM Validate Properties 494
 Figure 170: MTOM Validate Properties - Rule 495
 Figure 171: Content Type Properties 496
 Figure 172: SOAP Attachment Properties 498
 Figure 173: XML Schema Validation Properties 501
 Figure 174: Extract Schema from WSDL dialog 504
 Figure 175: Confirming importing schema dependencies 505
 Figure 176: Select Import Option dialog 506
 Figure 177: Configure Message Streaming Properties 509
 Figure 178: Request to Response Properties 511
 Figure 179: Cookie Properties, with "Update" operation example 513
 Figure 180: Transport Properties/Headers Properties 516
 Figure 181: Template Response Properties 519
 Figure 182: FTP(S) Routing Properties - [Connection] tab 523
 Figure 183: FTP(S) Routing Properties - [Authentication] tab 526
 Figure 184: FTP(S) Routing Properties - [Advanced] tab 528
 Figure 185: JMS Routing Properties - [Target] tab 544
 Figure 186: JMS Routing Properties - [Security] tab 546
 Figure 187: JMS Routing Properties - [Request] tab 548
 Figure 188: JMS Routing Properties - [Response] tab 550
 Figure 189: MQ Native Routing Properties - [Target] tab 554
 Figure 190: MQ Native Routing Properties - [Request] tab 556
 Figure 191: MQ Native Routing Properties - [Response] tab 558
 Figure 192: Raw TCP Routing Properties 561
 Figure 193: Sample policy for SFTP partial downloads 563
 Figure 194: SSH2 Routing Properties - [Connection] tab 565
 Figure 195: SSH2 Routing Properties - [Authentication] tab 569
 Figure 196: SSH2 Routing Properties - [Advanced] tab 570
 Figure 197: Rate Limit Properties 574
 Figure 198: Throughput Quota Properties 580
 Figure 199: Time/Day Availability Properties 584
 Figure 200: Cache Lookup Properties 586
 Figure 201: Rate Limit Query Properties 588
 Figure 202: Throughput Quota Query Properties 590
 Figure 203: Resolve Service Properties 591
 Figure 204: IP Address Range Properties 593
 Figure 205: Cache Storage Properties 595
 Figure 206: Audit message path 599
 Figure 207: Audit Detail Properties 601
 Figure 208: Audit Properties 603
 Figure 209: Viewing message context mappings in the Gateway Audit Events window 605
 Figure 210: Requestor Identity Properties 606
 Figure 211: Fault Response Properties 609
 Figure 212: Email Alert Properties 613
 Figure 213: SNMP Trap Properties 615
 Figure 214: Comment Properties 618

xiii

Layer 7 Policy Authoring User Manual, v8.2

 Figure 215: Compare Expression Properties 622
 Figure 216: Create Routing Strategy Properties 627
 Figure 217: Execute Routing Strategy Properties 631
 Figure 218: Export Variables from Fragment Properties 633
 Figure 219: Generate UUID Properties 635
 Figure 220: Selecting a policy fragment to include 636
 Figure 221: Join Variable Properties 637
 Figure 222: Look Up Context Variable Properties 639
 Figure 223: Look Up Item by Index Position Properties 640
 Figure 224: Look Up Item by Value Properties 642
 Figure 225: Manipulate Multivalued Variable Properties 643
 Figure 226: Map Value Properties 647
 Figure 227: Process Routing Strategy Result Properties 649
 Figure 228: Sample Policy Fragment for Run Assertions for Each Item assertion 653
 Figure 229: Run Assertions for Each Item Properties 655
 Figure 230: Context Variable Properties - data type "Message" 657
 Figure 231: Context Variable Properties - data type "Date/Time" 658
 Figure 232: Split Variable Properties 662
 Figure 233: Message Size Limit Properties 669
 Figure 234: Code Injection Protection Properties 671
 Figure 235: CSRF Protection Properties 674
 Figure 236: Document Structure Threat Protection Properties 676
 Figure 237: JSON Document Structure Threat Protection Properties 679
 Figure 238: Message Replay Protection Properties 683
 Figure 239: SQL Attack Protection Properties 686
 Figure 240: ICAP Antivirus Scanner Properties 689
 Figure 241: Sophos Antivirus Properties 693
 Figure 242: Content Type Properties 695
 Figure 243: JSON Schema Validation Properties 697
 Figure 244: OData Validate Request Properties 702
 Figure 245: XML Schema Validation Properties 705
 Figure 246: Extract Schema from WSDL dialog 708
 Figure 247: Confirming importing schema dependencies 710
 Figure 248: Select Import Option dialog 710
 Figure 249: Gateway Management Properties 716
 Figure 250: WSDM Subscription Properties 718
 Figure 251: Access Resource Protected by JSAM Properties 721
 Figure 252: Oracle Access Manager Protected Resource Properties 724
 Figure 253: Tivoli Access Manager Authentication Properties 729
 Figure 254: SiteMinder R12 Custom Assertion Properties 732
 Figure 255: Execute Salesforce Operation Wizard: Configure Connection 738
 Figure 256: Execute Salesforce Operation Wizard: Configure Action - Create Objects 739
 Figure 257: Execute Salesforce Operation Wizard: Configure Action - Update Objects 741
 Figure 258: Execute Salesforce Operation Wizard: Configure Action - Retrieve Objects 743
 Figure 259: Execute Salesforce Operation Wizard: Configure Action - Retrieve Modified Objects 744
 Figure 260: Execute Salesforce Operation Wizard: Configure Action - Retrieve Deleted Objects 746
 Figure 261: Execute Salesforce Operation Wizard: Configure Action - Execute Query 747
 Figure 262: Execute Salesforce Operation Wizard: Configure Action - Search Objects 748

xiv

Layer 7 Policy Authoring User Manual, v8.2

List of Tables
 Table 1: Policy revision tasks 7
 Table 2: Policy Properties settings 10
 Table 3: Organizing assertions in the policy development window 20
 Table 4: Instant feedback message types 25
 Table 5: Troubleshooting final policy validation errors 26
 Table 6: Resolving identity errors 27
 Table 7: Sample branching policy for XML 39
 Table 8: Options for importing a file 44
 Table 9: Using the Import WS-Policy from URL in UDDI 47
 Table 10: Configuring the Search UDDI settings 49
 Table 11: Resolve External Dependencies Wizard settings 52
 Table 12: Context variables for debug trace policy 71
 Table 13: Global Resource settings 75
 Table 14: Analyze Global Resource dialog 85
 Table 15: Manage UDDI Registries columns 87
 Table 16: Manage UDDI Registries tasks 88
 Table 17: UDDI Registries settings 89
 Table 18: Publish to UDDI Settings - [Service] tab 94
 Table 19: [Service] tab - Publishing Status 96
 Table 20: Publish to UDDI Settings - [WS-Policy] tab 97
 Table 21: keyedReference settings 99
 Table 22: Policy fragment tasks 102
 Table 23: Policy Manager assertions 112
 Table 24: Encapsulated assertions vs. Policy fragments 127
 Table 25: Encapsulated assertion tasks 131
 Table 26: Encapsulated assertion configuration columns 132
 Table 27: Manage Encapsulated Assertions tasks 133
 Table 28: Encapsulated assertions: Argument Properties 139
 Table 29: Encapsulated assertions: Argument Properties 140
 Table 30: Encapsulated assertions: Result Properties 141
 Table 31: Editing policy templates 142
 Table 32: Kerberos Configuration settings 143
 Table 33: WSS Assertion Recipient tasks 150
 Table 34: Using the New WSS Recipient Wizard 151
 Table 35: Namespace map actions 157
 Table 36: XML Editor options 159
 Table 37: XML Editor keyboard shortcuts 160
 Table 38: Context variables created by Authenticate Against Radius Server assertion 164
 Table 39: Radius reason codes 165
 Table 40: Authenticate Against Radius Server settings 166
 Table 41: Authenticate Against SiteMinder settings 169
 Table 42: Search Identity Provider settings 172
 Table 43: Authorize via SiteMinder settings 174
 Table 44: SiteMinder Check Protected Resource settings 176
 Table 45: WS-Trust Credential Exchange settings 179
 Table 46: Context variables for Subject/Issuer DN in an X.509 certificate 180
 Table 47: Context variables for extended attributes in an X.509 certificate 182
 Table 48: Identity Attributes settings 186
 Table 49: User Attribute Mapping settings 187
 Table 50: Perform JDBC Query context variables 189

xv

Layer 7 Policy Authoring User Manual, v8.2

 Table 51: JDBC Query settings 193
 Table 52: Default output variables from a function 199
 Table 53: Messages for procedures or functions with no parameters 199
 Table 54: Supported data types 205
 Table 55: Boolean value support 205
 Table 56: LDAP Query settings 210
 Table 57: Inbound context variables created by Require NTLM Authentication assertion 219
 Table 58: NTLM Authentication settings 220
 Table 59: Context variables created by Require Remote Domain Identity assertion 227
 Table 60: SAML Token Profile Wizard tabs in edit mode 230
 Table 61: Using the SAML Token Profile Wizard 231
 Table 62: SSL or TLS Transport settings 239
 Table 63: WS-Security Signature settings 245
 Table 64: WS-Security Signature settings 247
 Table 65: XPath Credentials settings 249
 Table 66: Kerberos Authentication Credentials settings 256
 Table 67: SAML Browser Artifact settings 259
 Table 68: Authentication methods 260
 Table 69: Authentication methods 261
 Table 70: WS-Federation Request settings 264
 Table 71: SSL or TLS Transport settings 268
 Table 72: WS-Security Properties settings 275
 Table 73: Configured private key for various SAML Assertion types 277
 Table 74: Adding a WS-S UsernameToken 279
 Table 75: Timestamp settings 284
 Table 76: Context variables created by Build RST SOAP Request assertion 285
 Table 77: RST SOAP Request Builder settings 286
 Table 78: Context variables created by Build RSTR SOAP Response Assertion 289
 Table 79: Using the SAML Protocol Request Wizard 293
 Table 80: SAML Protocol Response Properties - [General] tab 301
 Table 81: SAML Protocol Response Properties - [Issuer] tab - SAML 2.0 only 305
 Table 82: Security Context Cancellation settings 308
 Table 83: WS-Security decorations in Configure WS-Security Decoration assertion 309
 Table 84: Context variables created by Create SAML Token assertion 316
 Table 85: Using the SAML Token Creation Wizard 318
 Table 86: SAML Attribute Properties settings 322
 Table 87: Filter options in the Attribute StatementTable 3 325
 Table 88: Security Context Token Creator settings 329
 Table 89: AttributeValue node settings 336
 Table 90: Effects of multivalued variables in AttributeValues 337
 Table 91: Multiple Attribute node settings 340
 Table 92: Resource Content node settings 345
 Table 93: Outbound secure conversation session attributes 349
 Table 94: Outbound Secure Conversation settings 350
 Table 95: SAML Protocol Response Wizard settings 354
 Table 96: XACML Policy settings 357
 Table 97: Context variables created by Generate OAuth Signature Base String assertion 360
 Table 98: Generate OAuth Signature Base String Properties settings 363
 Table 99: Generate Security Hash settings 366
 Table 100: Certificate Lookup settings 369
 Table 101: Outbound secure conversation session attributes 370
 Table 102: Context variables created by (Non-SOAP) Decrypt XML Element assertion 374
 Table 103: (Non-SOAP) XML Element Signature settings 379
 Table 104: Context variables created by (Non-SOAP) Verify XML Element assertion 392

xvi

Layer 7 Policy Authoring User Manual, v8.2

 Table 105: (Non-SOAP) XML Element Verification settings 393
 Table 106: Context variables created by Process RSTR Response assertion 395
 Table 107: Message Replay Protection settings 399
 Table 108: Context variables created by Require Signed Element assertion 402
 Table 109: Timestamp settings 406
 Table 110: Add or Remove XML Elements settings 415
 Table 111: Add WS-Addressing settings 418
 Table 112: JSON Transformation Settings 420
 Table 113: Transformation stylesheet locations 427
 Table 114: Error Response settings 431
 Table 115: MTOM Decode Settings 434
 Table 116: Encode/Decode Data settings 436
 Table 117: MTOM Encode Settings 439
 Table 118: WS-I BSP Compliance Properties settings 443
 Table 119: WS-I SAML Compliance Properties settings 444
 Table 120: Context variables created by Evaluate JSON Path Expression assertion 446
 Table 121: Evaluate JSON Path Expression Properties - basic settings 447
 Table 122: Evaluate JSON Path Expression Properties - [Source and Destination] tab 447
 Table 123: Regular Expression Properties - basic settings 451
 Table 124: Regular Expression Properties - Source & Destination settings 453
 Table 125: Context variables created by Evaluate Request XPath assertion 459
 Table 126: Context variables created by Evaluate Response XPath assertion 462
 Table 127: Context variables created by Process SAML Attribute Query Request assertion 467
 Table 128: SAML Attribute Query Request settings 470
 Table 129: Context variables created by Process Authentication Request assertion 473
 Table 130: SAML Authentication Request settings 475
 Table 131: Replace Tag Content settings 476
 Table 132: Context variables created by Require WS-Addressing assertion 477
 Table 133: WS-Addressing settings 479
 Table 134: SAML Response Status settings 482
 Table 135: HTTP Form to MIME Translation settings 483
 Table 136: Configure Field Information 484
 Table 137: MIME to HTTP Form Translation actions 485
 Table 138: Context variables created by the Validate Certificate assertion 486
 Table 139: Validate Certificate settings 487
 Table 140: HTML Form Data settings 489
 Table 141: Configuring the JSON schema based on location 492
 Table 142: MTOM Validate Settings 494
 Table 143: Rate Limit settings 496
 Table 144: SOAP Attachment Properties settings 498
 Table 145: Configuring the schema based on location 502
 Table 146: Extract Schema from WSDL settings 504
 Table 147: Configure Message Streaming settings 509
 Table 148: Request to Response Properties settings 511
 Table 149: Cookie tasks 513
 Table 150: Transport Properties/Headers tasks 516
 Table 151: Template Response settings 519
 Table 152: FTP Cluster Properties that only affect the Route via FTP(S) assertion 522
 Table 153: FTP(S) connection settings 524
 Table 154: FTP(S) command settings 524
 Table 155: WSS header handling 528
 Table 156: Route via HTTP(S): Authentication methods 531
 Table 157: Scenarios for header rules 535
 Table 158: Retrieving IP addresses during HTTP routing 536

xvii

Layer 7 Policy Authoring User Manual, v8.2

 Table 159: Failover Strategies during HTTP routing 536
 Table 160: WSS Header Handling during HTTP routing 539
 Table 161: Assertion Outcome during HTTP routing 541
 Table 162: Context variables created by the Route via JMS assertion 542
 Table 163: Dynamic properties for template outbound destinations 545
 Table 164: Service Authentication during JMS routing 546
 Table 165: WSS Header Handling during JMS routing 547
 Table 166: Defining the JMS properties for forwarding 549
 Table 167: Context variables created by the Route via MQ Native assertion 552
 Table 168: Defined MQ Headers Prefixes 553
 Table 169: WSS Header Handling during MQ Native routing 555
 Table 170: MQ Native Route Properties - [Request] 557
 Table 171: MQ Native Route Properties - [Response] 559
 Table 172: Raw TCP Routing settings 561
 Table 173: Assertions in SFTP partial downloads fragment 563
 Table 174: SSH2 Routing Settings [Connection] tab 565
 Table 175: Command Types for the Command Selection drop down list 567
 Table 176: SSH2 Routing Settings [Authentication] tab 569
 Table 177: SSH2 Routing Settings [Advanced] tab 570
 Table 178: Rate Limit settings 574
 Table 179: Context variables created by Apply Throughput Quota assertion 579
 Table 180: Throughput Quota settings 580
 Table 181: Time/Day Availability settings 585
 Table 182: Cache Lookup settings 586
 Table 183: Context variables created by Query Rate Limit assertion 587
 Table 184: Rate Limit Query settings 588
 Table 185: Context variables created by Query Throughput Quota assertion 589
 Table 186: Throughput Quota Query settings 590
 Table 187: IP Address Range settings 593
 Table 188: Cache Storage settings 595
 Table 189: Interaction between cluster properties and auditing assertions 600
 Table 190: Audit Detail settings 601
 Table 191: Audit settings 603
 Table 192: Requestor Identity settings 606
 Table 193: Fault Response settings 609
 Table 194: Email Alert settings 614
 Table 195: SNMP Trap settings 616
 Table 196: Compare Expression assertion: Data type 623
 Table 197: Compare Expression assertion: Handling multivalued context variables 624
 Table 198: Compare Expression assertion: Comparison rules 624
 Table 199: Context variables created by the Create Routing Strategy assertion 626
 Table 200: Configuring the Route List 628
 Table 201: Configuring route properties 629
 Table 202: Context variables created by the Execute Routing Strategy assertion 630
 Table 203: Execute Routing Strategy assertion settings 631
 Table 204: Generate UUID settings 635
 Table 205: Join Variable settings 637
 Table 206: Context variables created by the Look Up Context Variable assertion 638
 Table 207: Look Up Context Variable settings 639
 Table 208: Manipulate Multivalued Variable settings 643
 Table 209: Map Value settings 647
 Table 210: Process Routing Strategy Result Properties 649
 Table 211: Feedback information for the current route 650
 Table 212: Explanation of Policy Fragment for Run Assertions for Each Item assertion 653

xviii

Layer 7 Policy Authoring User Manual, v8.2

 Table 213: Context variables created by Run Assertions for Each Item assertion 655
 Table 214: Run Assertions for Each Item settings 656
 Table 215: Context Variable settings 658
 Table 216: Split Variable settings 662
 Table 217: Request Size Limit settings 669
 Table 218: Code Injection Protection settings 671
 Table 219: CSRF Protection settings 674
 Table 220: Document Structure Threat Protection settings 676
 Table 221: JSON Document Structure Threat Protection settings 679
 Table 222: Message Replay Protection settings 683
 Table 223: SQL Attack Protection - response to injections 684
 Table 224: SQL Attack Protection settings 687
 Table 225: Context variables created by the ICAP-Enabled Antivirus assertion 688
 Table 226: Configuring the ICAP Antivirus server list 689
 Table 227: Configure the ICAP antivirus service parameters 690
 Table 228: Failover Strategies for ICAP antivirus 691
 Table 229: Context variables created by the Sophos Antivirus assertion 692
 Table 230: Sophos Antivirus settings 693
 Table 231: Rate Limit settings 695
 Table 232: Configuring the JSON schema based on location 698
 Table 233: Context variables created by Validate OData Request assertion 701
 Table 234: Odata Validate Settings 702
 Table 235: Configuring the schema based on location 707
 Table 236: Extract Schema from WSDL settings 708
 Table 237: QosMetrics properties supported in Gateway 712
 Table 238: Context variables created by Manage Gateway assertion 715
 Table 239: Context variables used by REST Manage Gateway assertion 717
 Table 240: Context variables created by Access Resource Protected by JSAM assertion 720
 Table 241: Access Resource Protected by JSAM settings 721
 Table 242: Context variables created by the Access Resources Protected by OAM assertion 722
 Table 243: Oracle Access Manager Protected Resource settings 724
 Table 244: Tivoli Access Manager assertion settings 729
 Table 245: Tivoli Access Manager errors 730
 Table 246: SiteMinder R12 Custom Assertion settings 732
 Table 247: SiteMinder R12 errors 733
 Table 248: Context variables created by the Execute Salesforce Operation assertion 735
 Table 249: Configure Action - Create Objects 739
 Table 250: Configure Action - Update Objects 741
 Table 251: Configure Action - Retrieve Objects 743
 Table 252: Configure Action - Retrieve Modified Objects 744
 Table 253: Configure Action - Retrieve Deleted Objects 746
 Table 254: Configure Action - Execute Query 747
 Table 255: Configure Action - Search Objects 749

xix

Layer 7 Policy Authoring User Manual, v8.2

Layer 7 Policy Authoring User Manual, v8.2

xx

Chapter 1:
 Working with Service Policies

The core function of the Policy Manager is its ability to centrally define, provision,
monitor, and audit security and integration policies for web services and XML
applications.

After a service is published (using either the Publish SOAP Web Service Wizard, Create
WSDL Wizard, Publish Web API Wizard, or Publish REST Service Proxy Wizard), it appears in
the Services and Policies list and an initial policy is created in the policy development
window (this is called the "service policy"). If the WSDL document of a published web
service contains at least one HTTP(S) binding URL, then the initial policy will include a
Route via HTTP(S) assertion preconfigured to point to the HTTP(S) binding URL. Before a
service is adequately protected, you will need to configure additional policy assertions.

In addition to the service policy, you can also create these other types of policies:

 l Global policy fragments: These are special policies that can be configured to run
automatically at certain points within any service policy, without needing to be
explicitly added to the service policy. For more information, see "Working with
Global Policy Fragments" on page 106.

 l Included policy fragments: These are "boilerplate" policies that can be inserted
into any service policy. They are also known as "policy fragments". For more
information, see "Chapter 2: Working with Policy Fragments" on page 101.

 l Internal use policies: These are policies associated with internal services. For more
information, see Working with Internal Services in the Layer 7 Policy Manager User
Manual.

 l Policy-Backed Identity Provider Policy Fragment: Similar to included policy
fragments, except they are intended for use as an authentication policy for Policy-
Backed Identity Providers. For more information, see Policy-Backed Identity
Providers in the Layer 7 Policy Manager User Manual.

A policy defines restrictions for the consumption of a published Gateway-protected
service. To learn about the interface areas related to services and policies, see Interfaces
in the Layer 7 Policy Manager User Manual.

Note: In this chapter, the term identity includes both users and groups; user can represent an
individual human or machine; service includes both web services and XML applications.

Chapter 1: Working with Service Policies 1

Layer 7 Policy Authoring User Manual, v8.2

Policy Organization
In the Policy Manager, a policy includes assertions that determine the authentication
method, identity credentials, transport method, and routing method for the web service
or XML application. The specific types of assertions, their relative location, and the other
assertions determine the properties and validity of a policy.

You construct a policy by moving assertions and policy fragments into a meaningful tree
structure in the policy development window. During processing, the Gateway scans each
policy assertion from top to bottom, assigning a 'succeed' or 'fail' outcome to each.

The following is the message processing model for a typical policy:

 1. Service request arrives.

 2. Request is run through the WS-Security processor:

 l Encrypted sections are decrypted and WS-Security Signatures are verified.
The sign and/or encrypt order is chosen by the sender

 l Default security header can be optionally removed before routing.

 3. Request is run through the policy assertions:

 l Routing assertion sends a request to the service server

 l Remainder of policy assertions are applied to the service response.

 4. Response is run through the WS-Security decorator:

 l Default security header is created

 l Signatures specified by the policy are applied

 l Encryption specified by the policy is performed.

 5. Response is sent back to the client.

Special Assertions

There are two special assertions that can help you refine the policy logic:

 l "At least one assertion must evaluate to true" folder

2 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Each child assertion placed in this folder is processed until an assertion succeeds.
At this point, processing of the folder stops and the "At least one" folder is
assigned a successful outcome. However if all assertions in the folder fail, then the
"At least one" assertion is assigned a failure outcome.

 l "All assertions must evaluate to true" folder

Each child assertion placed in this folder is processed until an assertion fails. At
this point, processing of the folder stops and the "All assertions" folder is assigned
a failure outcome. However if all assertions in the folder succeed, then the "All
assertions" folder is assigned a successful outcome.

 Figure 1: Sample policy assertion tree in the policy development window

All first level assertions in a policy (including first level "At least" and "All assertions"
folders) must succeed in order for the overall policy to succeed. When the policy
succeeds, the service requestor receives a response message. If the policy fails, the service
 requestor receives an error message.

Hints and Tips
 l Turn on assertion line numbers to help you edit or troubleshoot a policy. You can

jump to a specific line number ([Edit] > Go to Assertion) or use the search feature
([Edit] > Find) to quickly locate an assertion.

 l If you do not want the failure of an "At least one assertion must evaluate to true"
folder to fail the entire policy, then add a Continue Processing assertion into the
assertion folder. This assertion will always evaluate to true, preventing the failure
of a policy due to the failure of a non-essential or conditional assertion.

Chapter 1: Working with Service Policies 3

Layer 7 Policy Authoring User Manual, v8.2

 l Some policy assertions work together and require the presence of each other to
succeed. For example, the Authenticate User or Group assertion requires an
authentication assertion such as Require HTTP Basic Credentials to provide the
credentials for validating the user's identity. Moreover, the authentication
assertion must appear before the user or group. This example illustrates how the
presence and order of assertions can affect the ultimate validity of a policy.

 l An authentication assertion (such as Require HTTP Basic Credentials) can only
provide credentials for a single user or group. The authentication assertion must
appear before the identity provider assertion (Authenticate User or Group).

 l It is best not to include more than one first-level identity assertion in a policy or
within an "At least" or "All assertions" folder. If you must because the client
expects the Gateway to authenticate more than one identity per request, the
policy validator will display a warning, but you can still proceed.

To add more than one user or group in a policy, you should place each individual
Authenticate User or Group assertion in a separate "At least one assertion" or "All
assertions" folder with an authentication assertion (and other assertions, as
required).

In Figure 2, the credentials for user "Bob" are authenticated by the Require HTTP
Basic Credentials assertion, while "Sue" is authenticated by the Require SSL or TLS
Transport with Client Authentication assertion.

 Figure 2: Policy with multiple identities

 l It is best to put a Stop Processing assertion after any assertion whose sole
purpose is to report on a prior error—for example, these assertions: Audit
Messages in Policy, Send Email Alert, Send SNMP Trap, or Return Template
Response to Requestor. Reason: These assertions always succeed, even though
the intent is to halt the policy and send an HTTP challenge.

Example 1: You construct the following expecting the policy to halt if
authentication fails, but in this case the routing will occur regardless:

Require HTTP Basic Credentials
At least one assertion must evaluate to true
 Request: Authenticate against Internal Identity Provider

4 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 Audit: "Authentication Failed!"
Route

Example 2: To correct Example 1 so that the policy operates as intended, add a
Stop Processing assertion:

Require HTTP Basic Credentials
At least one assertion must evaluate to true
 Request: Authenticate against Internal Identity Provider
 All assertions must be true
 Audit: "Authentication Failed!"
 Stop Processing
Route

 l In general, assertions should be placed before the routing assertion in a policy.
This is to ensure that all assertion conditions are met before the request is routed
to the protected web service or XML application.

 l Exceptions to the above are the assertions designed to operate on the response;
these should be placed after the routing assertion:

Add Security Token (with target set to 'Response')
Add Timestamp (with target set to 'Response')
Encrypt Element (with target set to 'Response')
Evaluate Response XPath
Sign Element (with target set to 'Response')
Validate XML Schema
Apply XSL Transformation

 l Assertions where you can specify the target message to be acted upon will be
prefixed with "Request:", "Response:", or "${VARIABLE_NAME}" in the policy window.
For example: Request: Authenticate against XYZ or Response: Add signed
Timestamp. For more information, see "Selecting a Target Message" on page 153.

 l Pay attention to Policy Validation Messages window. It will display helpful
messages as you configure or validate a policy.

 l Use the Copy and Paste options on the Edit menu to help you organize the policy.

 l Instead of deleting an assertion, consider disabling it instead. Disabling an
assertion is useful during testing and troubleshooting. It has the same effect as
deleting the assertion, but you can easily restore the assertion by re-enabling it.

 l If you disable all assertions in a "All assertions..." folder, this folder will succeed.
However if you disable all assertions within a "At least one..." folder, this folder will
fail.

Chapter 1: Working with Service Policies 5

Layer 7 Policy Authoring User Manual, v8.2

Policy Revisions
The Policy Manager can keep a revision history of changes made to a policy or policy
fragment. It can record when a change was made and who made it. A version number is
assigned to each change. You can roll back to any version, making it the "active" policy.

Note: The policy revisions feature only tracks changes to the policy XML. It will not record
changes to other objects such as users, groups, private keys, certificates, or JMS connections.
It will also not include changes to other service or policy properties (for example, SOAP
services intended, routing to URI or WSDL location).

Configuring Policy Revisions

By default, the Gateway is preconfigured to store 20 versions. You can change the
number of versions stored by setting the policyVersioning.maxRevisions cluster property.

Note: A policy revision is "protected" once it is assigned a comment. This means it will never
be overwritten and it does not count toward the stored revisions maximum. To remove this
protection, simply delete the comment.

Creating a New Policy Revision

When policy revisions are enabled, the Policy Manager automatically creates a new
revision each time you save a policy. If you wish to describe the policy, add a comment
using the Policy Revisions dialog. Versions containing a comment are protected from
being overwritten. Versions without a comment will be automatically overwritten when
the revision limit is reached.

A new revision is created each time the policy is saved, even if no changes have been
made.

Working with Policy Revisions

The title of the policy gives a concise indication of the revision in use and whether it is the
active revision. Consider the following example:

This indicates that the policy has 32 revisions and revision 22, currently being edited, is
the active revision.

The word "active" changes to "inactive" if the revision being edited is not the active
revision.

6 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 To view policy versions:

 l In the Services and Policies list, right-click the service name or policy name and
then select Revision History. The assertion properties are displayed.

Tip: To quickly open the active version of the policy, right-click the service name and
select Active Policy Assertions or double-click the service name in the Services and
Policies list. The word "active" will appear next to the service name and version number
above the policy window to remind you that you are working with the active version.

 Figure 3: Policy Revisions dialog

The following table describes the dialog:

Element Description

Policy tree at top The tree shows the policy revision currently selected. This helps you
better visualize each revision.

Tip: You can click the and icons next to a folder to collapse or
expand the folder.

Act. Indicates the version that is currently active. It is possible to have a
policy with no active versions; this disables the policy.

Vers. The version number, assigned by the Policy Manager. Version
numbers may not be contiguous, but they will be unique.

The number of versions stored is controlled by the

 Table 1: Policy revision tasks

Chapter 1: Working with Service Policies 7

Layer 7 Policy Authoring User Manual, v8.2

Element Description

policyVersioning.maxRevisions cluster property. By default, 20
"uncommented" versions are stored.

Tip: Once a comment is entered, the version is preserved
permanently and does not count against the revision limit. For
example, 30 versions may be displayed even though the maximum is
20, because 10 of those versions have comments entered. To allow a
version to be discarded, simply delete the comment.

Administrator The person who was logged in at the time when the changes were
saved.

Date and Time When the version was created.

Comment A description of the version. To enter a comment, click [Set
Comment]. Entering a comment is not mandatory but recommended
for versions you may wish to roll back to in the future.

Notes: (1) Revisions with comments will be protected against
deletion; they will also be excluded from the maximum revisions cap.
(2) Policy revisions for a policy fragment used in an encapsulated
assertion may display an "Artifact Version" number. This number is
automatically inserted when the encapsulated assertion configuration
is imported into the Gateway. For information about the Artifact
Version number, see "Encapsulated Assertion Configuration
Properties" on page 134.

Open in Editor Opens the currently selected version in a new tab within the policy
development window for editing.

Tip: The version number and its active status are displayed next to the
service name in the tab for that version in the policy development
window.

Set Comment Allows you to enter or remove a comment for the selected version.

Set Active Designates the currently selected version as the active version for the
policy and loads the version into a new tab in the policy development
window.

For more information, see "Enabling a Policy" on page 24.

Notes: (1) If the active version is currently open in the policy
development window, it automatically becomes inactive. (2) Reverting
to an older version of a policy may rely on objects (users, groups,
WSDLs, private keys) that no longer exist. Be sure to validate the
policy afterward.

Clear Active Clears the active version and disables the policy. Click [Yes] to confirm
when prompted. It is not necessary to select the active version before
clicking [Clear Active].

Note: If the active version is currently open in the policy development
window, it automatically becomes inactive.

8 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Element Description

For more information, see "Disabling a Policy" on page 24.

Compare Policy:
Left|Right

Loads the selected revision for policy comparison. The button label
shows either "Left"or "Right" depending on whether this is the first or
second revision or policy selected.

Tip: Comparison begins immediately after the second policy is
selected and may require a moment to complete. The results are
displayed in a separate window.

For more information, see "Comparing Policies" on page 28.

Close Closes the Policy Revisions dialog.

Policy Properties
A policy's properties are displayed when you create a new policy. You can also view and
edit the properties later.

Note: Service policies do not have properties visible on the interface. These policies are
automatically created when a service is published and only one service policy may exist for a
published service. For more information, see "Working with Service Policies" in the Layer 7
Policy Manager User Manual.

 To access the properties for a policy:

 1. Do either of the following:

 l Select [Tasks] > Create Policy from the Main Menu

 l Right-click a policy in the Services and Policies list and then select Policy
Properties.

 Figure 4: Policy Properties

Chapter 1: Working with Service Policies 9

Layer 7 Policy Authoring User Manual, v8.2

 2. Configure the properties as follows:

Setting Description

Name Enter a name for the policy. This name should readily identify the
purpose of the policy (i.e,. global, included, or internal). This name is
displayed in the Services and Policies list and the policy assertions
palette.

Policy GUID This is the Globally Unique Identifier for the policy. It is assigned by the
system and cannot be changed.

Policy ID This is the entity ID for the policy. It is assigned by the system and
cannot be changed.

Policy Type From the drop-down list, select the type of policy being created:

 l Global Policy Fragment (in the Services and Policies list)

 l Included Policy Fragment (in the Services and Policies
list)

 l Internal Use Policy (in the Services and Policies list)

 l Policy-Backed Identity Provider Policy Fragment (in
the Services and Policies list)

For a description of each type, see "Creating a Policy" on page 21.

Only users with the role of 'Administrator' can create a policy.

Note: The Internal Use Policy option is available only when an internal
service has been published.

Tip: For a shortcut method to creating an Included Policy Fragment,
see "Policy Fragment Shortcut" on page 102.

Policy Tag This tag specifies the purpose of the policy and is used for these policy
types:

 l Internal Use Policy: The tag specifies which type of internal
service can use the policy. Select one of the following:

 l wsdm-notification: The policy is eligible to be selected
as a notification policy from the "Subscribe to WSDM
Resource Assertion" on page 717.

 l audit-message-filter: The policy is an Audit Message
Filter (AMF) policy. For more information on this type of
policy, see "Working with Internal Use Policies" on page
33.

 l audit-viewer: The policy is an Audit Viewer (AV) policy.
For more information on this type of policy, see "Working
with Internal Use Policies" on page 33.

 l Global Policy Fragment: This tag indicates when the global

 Table 2: Policy Properties settings

10 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

policy fragment should be executed. Select one of the
following:

 l message-received: Global policy runs on receipt of a
message before service resolution

 l pre-security: Global policy runs before (request)
security undecoration

 l pre-service: Global policy runs before the service policy

 l post-service: Global policy runs after the service policy

 l post-security: Global policy runs after (response)
security decoration

 l message-completed: Global policy runs when
processing for a message completes (even on policy
failure/exception, service not resolved, etc)

The policy tags will be evaluated in the order shown above. For
more information about global policies, see "Working with
Global Policy Fragments" on page 106.

Tip: The policy tag is displayed next to the policy name in the Services
& Policies list on the Policy Manager interface.

Intended for SOAP
services

Indicates whether the policy can be used in SOAP-only policies or in
both SOAP and non-SOAP policies:

 l If the policy will contain assertions that require SOAP, select
the Intended for SOAP services check box. The policy
validator will issue a warning if anyone attempts to use the
policy in a non-SOAP policy. Selecting this check box does not
enforce the presence of SOAP-only assertions in the policy (in
other words, the validator will not alert you if you have not
added a SOAP-only assertion to the policy). For more
information, see "Assertions that Require SOAP" under
"Working with Non-XML Messages" on page 37.

Note: For SOAP-only assertions, an error occurs only when a
non-SOAP request is received.

 l If the policy is intended for use in both SOAP and non-SOAP
policies, clear this check box. The policy validator will issue a
warning if you attempt to add a SOAP-only assertion to the
policy.

Note: The Intended for SOAP services check box only
controls the validator warnings. It does not affect how the
policy functions at policy runtime. Normal policy logic still
applies.

Security Zone

(for "Included Policy
Fragment" only)

Optionally choose a security zone. To remove this entity from a
security zone (security role permitting), choose "No security zone".

For more information about security zones, see Understanding
Security Zones in the Layer 7 Policy Manager User Manual.

Chapter 1: Working with Service Policies 11

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Note: This control is hidden if either: (a) no security zones have been
defined, or (b) you do not have Read access to any security zone
(regardless of whether you have Read access to entities inside the
zones).

Tip: A policy may allow entities that are not members of its security
zone to be added and edited, but validation will prevent unpermitted
entities to be saved. For example, it is possible to paste policy XML for
assertions that are not part a policy's security zone. While authoring,
you are not prevented from editing these assertions. However these
unpermitted assertions will be detected during policy validation when
you attempt to save the policy.

 3. Click [OK].

Organizing Services and Policies into Folders
In the Services and Policies list, you can create folders to help you organize your services
and policies, and to control access to them. Only users with a role of Administrator or
Manage Web Services can create and manipulate folders. For more information, see
Predefined Roles and Permissions in the Layer 7 Policy Manager User Manual.

Controlling Access Using Folders

In addition to the organizational benefits provided by folders, controlling access to your
services and policies is simplified too. Each time a folder is created, the Policy Manager
automatically creates two corresponding folder roles:

 l Manage <folderName> Folder: This role allows a user to create, read, update, and
delete services or policies within the folder, including nested sub folders. If aliases
are present in the folder, permission to read, update, or delete an alias is granted
only if:

 l the user is assigned to a role that has access to the original entity, AND

 l the user has the "Manage Folder" role

 l View <folderName> Folder: This role only allows a user to view entities within the
folder, including the contents of nested sub folders. If aliases are present in the
folder, the original entity may be modified but not deleted only if:

 l the user is assigned to a role that has access to the original entity, AND

 l the user has the "View Folder" role

12 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Folder roles let you grant access to many policies to a user via a single role assignment.
Once a folder role is assigned, the user is granted access to all services/policies in the
folder, including services/policies contained in sub folders.

If a user has not been granted any folder roles, yet has permission to a service or policy
nested within several sub folders, that user will be able to see all folder names between
the root and the service's parent folder. However, all other folder content will not be
visible.

For more information, see Managing Roles in the Layer 7 Policy Manager User Manual.

Refining Access with Security Zones

In addition to the two folder-based security roles mentioned above, you can also place
folders into security zones to further refine access. Users with either the corresponding
"Manage X Zone" or "View X Zone" roles will be able to view the items in the folders that
are also in the X zone. Users without either of these roles but who have a "Manage X
Folder" or "View X Folder" folder will be able to view the folder's content. User with none
of these roles will not have access to the folder at all.

For more information, see Understanding Security Zones in the Layer 7 Policy Manager
User Manual.

 To create a folder:

 1. Right-click any folder or the root node and then select Create New Folder.

 2. Enter a name for the new folder. The new folder is created as a subfolder within
the chosen folder. You can create up to 8 levels of folders.

Tip: Ensure that all your folders have unique names, to avoid potential problems with roles
and permissions.

 3. Optionally choose a security zone. To remove this entity from a security zone
(security role permitting), choose "No security zone". For more information about
security zones, see Understanding Security Zones in the Layer 7 Policy Manager
User Manual. Note: This control is hidden if either: (a) no security zones have been
defined, or (b) you do not have Read access to any security zone (regardless of
whether you have Read access to entities inside the zones).

 4. Click [OK] when done.

Chapter 1: Working with Service Policies 13

Layer 7 Policy Authoring User Manual, v8.2

 To delete a folder:

 1. Ensure that no services or policies in the folder being deleted are still in use. You
can delete a non-empty folder containing items that are no longer referenced
elsewhere.

 2. Right-click the folder and then select Delete Folder.

 To change a folder's name or security zone:

 1. Right-click the folder and then select Folder Properties.

 2. Modify the name, if necessary

 3. Choose another security zone, if necessary.

 4. Click [OK].

Tip: Renaming a folder or changing its security zone automatically updates its associated
folder role. For more information, see Predefined Roles and Permissions in the Layer 7 Policy
Manager User Manual.

 To move a service, policy, or folder:

 l Drag and drop the item from one folder to another.

Or:

 1. Right-click the item to move and then select Cut ...

 2. Right-click the destination folder and then select Paste ...

Tips: (1) You can move multiple items at once by holding down the [Ctrl] key to select the
items before performing a drag and drop or cut and paste. (2) When moving services or policies
between two folders (regardless of security zones), you must have Update permission on the
entity (i.e., service or policy) and Update permission for the source and destination folders.

 To search for a service or policy:

 l See "Quick Search" in Services and Policies in the Layer 7 Policy Manager User
Manual.

Authentication in a Policy
How a user is authenticated in a service policy is a two step process:

 l First, the credentials are collected.

 l Next, the credentials are authenticated against an identity provider.

14 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

There are numerous mechanisms for gathering credentials, most of which are based
upon industry standards. The chart in Figure 5 illustrates the different standards used.

Note: The mechanisms shown in red send passwords in the clear and should be sent over SSL.
However, mechanisms shown in green are considered secure.

 Figure 5: Mechanisms for gathering credentials

Working with Aliases
An alias allows a service or policy to appear in more than one folder in the Services and
Policies list. The alias is a linked copy of the original policy or service: all changes made to
the alias are reflected in the original; changes to the original are automatically reflected in
all aliases. Aliases help you organize your services and policies. User can modify a service
alias or policy alias if they have the correct permissions.

Note the following if you choose to use aliases:

 l An entity may have multiple aliases.

 l The name of an alias is derived from the original and cannot be changed.

 l Deleting an original removes all its aliases; deleting an alias does not affect the
original or other aliases. Deleting an alias is possible only if you have delete
privileges to the parent folder of the alias.

 l Access to an alias depends on your access to the alias' parent folder and access to
the original entity. Privileges will vary depending on whether your role for the
parent folder is View Folder or Manage Folder (the 'Manage' role permits deletion of
aliases, while 'View' role does not; both roles permit modifying the alias). Access to
the original does not imply access to any of its aliases. For more information, see
Organizing Services and Policies into Folders in the Layer 7 Policy Manager User
Manual.

Chapter 1: Working with Service Policies 15

Layer 7 Policy Authoring User Manual, v8.2

 l Access to an alias also requires a role assignment that grants access to original
service or policy. For more information, see Managing Roles in the Layer 7 Policy
Manager User Manual.

 l Folders cannot have aliases.

Note: Only users with a role of Administrator or Manage Web Services can create, delete, or
view aliases. Other users will not see the aliases.

Security Zones for Aliases

If the source service or policy has been placed in a security zone, any aliases created will
inherit that zone by default. However the original and alias may have independent
security zones. This means security zone changes to the original will not affect the alias
and vice-versa.

Aliases will always be visible provided you have access to the alias' owning policy/service
and to the folder containing the alias. This holds true even after an entity type is removed
from a security zone. For example, the Policy Alias entity type is removed from the "Test"
zone. Three aliases have already been assigned to the "Test" zone and you have the
Manage Test Zone role. After the removal, you can still see the three aliases, though you
can no longer change their security zone since they are no longer zoned for your role.

To learn more about security zones, see Understanding Security Zones in the Layer 7
Policy Manager User Manual.

 To create an alias:

 1. In the Services and Policies list, right-click a service/policy and select Copy as Alias.

Tip: You can select multiple services or policies by holding down the [Ctrl] key while
selecting.

 2. Create a destination folder for the alias, if necessary. For more information, see
"Organizing Services and Policies into Folders" on page 12.

 3. Right-click on the destination folder and then select Paste as Alias. The alias is
added. The icon for the alias contains an 'a' and the word 'alias' is added to the
policy name to remind you that this is not the original.

Note: You cannot create an alias in the same folder as the original.

16 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 To delete an alias:

 1. In the Services and Policies list, right-click the alias to remove and then select
Delete Service Alias or Delete Policy Alias.

 2. Click [Yes] to confirm. The alias is removed.

Tip: The ability to delete an alias depends on the user having the 'Manage Folder' role. If you
can see an alias, it means that you have been assigned the role for the original service or
policy.

 To change the security zone for an alias:

 1. In the Services and Policies list, right-click the alias to change and then select
Security Zone.

 2. Choose the new security zone from the drop-down list and then click [OK].

Working with Multiple Signatures
The Gateway can create or validate multiple signatures in a message with multiple
identities involved.

Note: The Securespan XML VPN Client does not support multiple signatures in a message.
Service consumption will always fail when there are multiple signatures in the
response/request.

When multiple signatures are in use, there is more than one identity responsible for the
contents of a message. A policy must be constructed in a way to indicate which identity is
responsible for signing the various parts of a message. The signing identities may
originate from different identity providers, for example:

At least one assertion must evaluate to true:
User: Alice [Internal Identity Provider]
User: Bob [Internal Identity Provider]
Member of Group: Service Users [My Federated Provider]

In the example above, the policy is indicating that any of the identities ("Alice", "Bob", or
"Service Users") are permitted as the signing identity.

There may be instances where it is not possible to distinguish between multiple signing
identities, or when one of the identities does not correspond to an existing Group or
Identity Provider. In this case, identity tagging can be used during authentication:

At least one assertion must evaluate to true:
User: Alice [Internal Identity Provider] as "user"
User: Bob [Internal Identity Provider] as "user"
Member of Group: Service Users [My Federated Provider] as "user"

Chapter 1: Working with Service Policies 17

Layer 7 Policy Authoring User Manual, v8.2

In the example above, the identity tag is "user". Here is another example:

Authenticate against: My Federated Provider as "identity1"
Authenticate against: My Federated Provider as "identity2"

Where "identity1" and "identity2" are the identity tags. For more information on using
identity tags, see Identity Tags.

How to Permit Multiple Signatures

To permit multiple X.509 signatures in a policy, you must select the Allow multiple
signatures check box in the "Require WS-Security Signature Credentials Assertion" on
page 246:

 Figure 6: Enabling multiple signatures in a policy

You will also need to set the cluster property
wss.processor.allowMultipleTimestampSignatures to "true".

Note: The Require WS-Security Signature Credentials assertion will fail if a message has
multiple X.509 signatures but the Allow multiple signatures check box is not selected.

Configuring a Policy
In the Policy Manager, you construct a policy for a published service using these four
general steps:

 1. Select the service for the policy.

 2. Add the assertions to the policy development window and configure as necessary.
Refer to the documentation for specific assertions for configuration instructions.
You can use policy fragments to help maintain consistency and enforce global
rules across different services.

 3. Organize the assertions into a logical tree-structure that conforms to the policy

18 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

and assertions rules..

 4. Validate the policy.

A logical policy must be in place for each published service in the Policy Manager. In
addition to manually constructing a policy, you can also:

 l Import a policy from a local file

 l Import a policy from a UDDI registry

Tip: When configuring a policy for the first time on a newly published service, you may want to
disable the service while constructing the policy. This removes any possibility of unsecured and
unauthorized access. A disabled service contains a red "X" through its icon.

 To configure a policy:

 1. Access the policy development window for the target service by one of two
methods:

 l Right-click the service name in the Services and Policies list and then select
Active Policy Assertions

 l Double-click the service name in the Services and Policies list.

The policy development window appears.

 2. Add assertions to the policy and configure if necessary. Some assertions require
configuration immediately, while others have adequate defaults such that
additional configuration may not be required. Some assertions do not require
configuring at all.

When you publish a service using the Publish SOAP Web Service Wizard, Create
WSDL Wizard, or Publish Web API Wizard, the Policy Manager automatically adds
the service URL specified during the publication process as an Route via HTTP(S)
assertion in the policy development window.

Note: Certain assertions in the Policy Manager expect an XML payload and will fail on
non-XML messages. If you expect your published service to handle both XML and non-
XML messages, then you should structure the policy to branch accordingly. For more
information, see Working with Non-XML Messages.

 3. Organize the assertions into a logical structure as follows:

Chapter 1: Working with Service Policies 19

Layer 7 Policy Authoring User Manual, v8.2

Action Description

Move an assertion
up

Do any of the following:

 l Select the assertion, then click on the Assertions Tool Bar

 l Right-click the assertion and then select Move Assertion Up

 l Drag and drop the assertion to its new position

Tip: You can move several assertions at once by using [Ctrl]-click to
select them first.

Move an assertion
down

Do any of the following:

 l Select the assertion, then click on the Assertions Tool Bar

 l Right-click the assertion and then select Move Assertion
Down

 l Drag and drop the assertion to its new position

Tip: You can move several assertions at once by using [Ctrl]-click to
select them first.

Remove an
assertion

Do any of the following:

 l Select the assertion, then click on the Assertions Tool Bar.
Click Yes to confirm.

 l Right-click the assertion and then select Delete Assertion

Add an "All" or
"One or more"
folder

Organize the assertions into an "At least one assertion must evaluate
to true" or "All assertions must evaluate to true" assertion folder in
the policy development window. See "Policy Organization" for
examples.

Edit an assertion's
properties

This applies only if an assertion has editable properties. Do one of the
following:

 l Press [Enter] while a single assertion is selected in the policy
development window.

 l Double-click an assertion in the policy development window.

 l Right-click the assertion in the policy development window and
select "<assertion name> Properties".

 Table 3: Organizing assertions in the policy development window

Some additional tips to keep in mind:

 l Use the feedback messages in the Policy Validation Messages window to
help you construct your policy. See "Validating a Policy" on page 25 for more
information.

 l You can also use Copy and Paste in the Edit menu to organize the
assertions.

 l Instead of deleting an assertion, consider disabling it instead. Disabling an
assertion is useful during testing and troubleshooting.

20 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 4. Validate the policy one more time. If no issues remain, you may now enable the
service.

Creating a Policy
The Create Policy task is used to create these types of policies:

 l Global policy fragments: These are policies that are always applied before or after
every service policy in the system. Only Administrators can create global policies.
For more information, see "Working with Global Policy Fragments" on page 106.

 l Included Policy Fragments: These are fragments that group any number of
assertions into a self-contained unit that can be dropped into any service policy.
For more information, see "Chapter 2: Working with Policy Fragments" on page
101.

Tip: For a shortcut method to creating an Included Policy Fragment, see "Policy
Fragment Shortcut" on page 102.

 l Policy-Backed Identity Provider Policy Fragment: These are fragments
specifically intended for use with Policy-Backed Identity Providers. For more
information, see Policy-Backed Identity Providers in the Layer 7 Policy Manager User
Manual.

 l Internal use policies: These are ready-made policies predefined in the CA API
Gateway. These policies are designed to achieve a specific objective. For more
information, see "Working with Internal Use Policies" on page 33.

There are several other types of policies that are not created via the Create Policy task:

 l Audit sink policy: This is a special policy that is created when auditing to a policy
is enabled. This policy may be edited, but it cannot be renamed nor deleted. For
more information, see Managing Audit Sinks in the Layer 7 Policy Manager User
Manual.

 l Debug trace policy: This is a special trace policy to help you troubleshoot a service
policy. For more information, see "Working with the Debug Trace Policy" on page
67.

Only users with the role of "Administrator" can create a policy.

 To create a policy:

 1. Do either of the following:

Chapter 1: Working with Service Policies 21

Layer 7 Policy Authoring User Manual, v8.2

 l Select [Tasks] > Create Policy from the Main Menu

 l Right-click a folder within the Services and Policies list and then select Create
Policy.

 2. Complete the properties for the type of policy that you wish to create. For more
information, see "Policy Properties" on page 9.

 3. Click [OK]. The new policy is created and loaded in the policy window for editing. If
you currently have unsaved changes in the policy window, you are prompted to
save before the new policy is loaded. New policies have the following default
assertions:

 l For included policy fragments: An Add Audit Detail assertion that logs the
creation of the new fragment.

 l For internal use policies: See Working with Internal Use Policies in the Layer 7
Policy Manager User Manual for details.

Tips: (1) The icon color in the Services and Policies list help you readily identify the type of

policy: = Global policy fragment; = Included policy fragment; = Internal policy. For

global and internal policies, the policy tag is displayed next to the policy name. (2) If security
zones have been deployed and you have been assigned a "Manage X Zone" role, the security

zone 'X' must include the "All assertions must..." composite assertion as well as every
assertion in the policy (or that will be added to the policy) before you can create or edit the
policy.

Editing a Service Policy
 To edit a service policy:

 1. Open the policy to edit for the target service using either of the following
methods:

 l Right-click the service name in the Services and Policies list and then select
Active Policy Assertions.

 l Double-click the service name in the Services and Policies list.

The active version of the policy is open for editing in a new tab. Tip: To edit an
inactive version, right-click the service name and select Revision History instead.

 2. In the policy development window:

22 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 l Reorganize the assertions as necessary (see step 3 in Configuring a Policy).

 l Modify assertions as necessary.

 l Add or remove policy fragments as necessary.

 3. Validate the policy. This is important because changing assertions within a policy
may affect the validity of the policy.

Deleting a Policy
There are several ways to delete a policy in the Policy Manager:

 l For included policies (i.e., policy fragments), you can delete it directly from the
service policy. This removes the policy and all its assertions from that one service
policy only.

 l For all policy types, you can delete it from Policy Manager. This removes it from the
Services and Policies list and makes it unavailable for use in any service policy.

Deletions may take up to 15 seconds to take effect. Tip: Consider disabling a policy
instead if you think you may need it again in the future.

Note: You cannot delete a service policy unless you first delete its associated published
service. For more information, see Deleting a Published Service in the Layer 7 Policy Manager
User Manual.

 To delete an included policy from a service policy:

 l Delete the "Include: <fragment name>" assertion from the policy. For more
information, see "Deleting an Assertion" on page 119. You cannot delete individual
assertions within the fragment; you must delete the entire fragment. Tip: To
remove individual assertions within a policy fragment, you should edit the
fragment instead.

 To delete a policy from the Policy Manager:

 1. Right-click the policy icon in the Services and Policies list and then select Delete.

 2. Click Yes to confirm.

Notes: (1) You cannot delete a policy that is still in use in any service. (2) You can delete only
one policy at a time. If more than one policy icon is selected in the Services and Policies list,
only the first will be deleted.

Chapter 1: Working with Service Policies 23

Layer 7 Policy Authoring User Manual, v8.2

Disabling a Policy
You can temporarily disable a policy to prevent it from executing. A disabled policy will
behave as follows depending on the policy type:

 l A disabled non-global policy fragment (for example, service policy or policy
fragment) will always fail.

 l A disabled global policy fragment will not be used—it is as though the global
fragment was deleted.

A disabled policy can be re-enabled at any time.

 To disable a policy in the Policy Manager:

 1. Right-click the policy icon in the Services and Policies list and then select Revision
History. The Policy Revisions dialog appears.

 2. Click [Clear Active] to revoke the active revision. It is not necessary to select the
active revision first.

 3. Click [OK] to confirm that you wish to disable the policy.

The policy is now disabled: the Policy Revisions dialog shows "Policy disabled - no active
version" and "(inactive)" is displayed next to the policy name above the policy development
window.

Enabling a Policy
A disabled policy is one that has had its active revision revoked. You can enable a policy
by selecting an active revision or by starting with a new revision.

 To enable a policy, do any of the following:

 l Double-click the policy name in the Services and Policies list and then select a
revision to activate:

 Figure 7: Choosing a revision to activate when enabling a policy

24 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Tip: Instead of choosing a revision, you can select "Start from an empty policy" to
create a new policy revision and set it as the active revision.

 l Right-click the policy name in the Services and Policies list and then select Active
Policy Assertions from the Choose Starting Revision dialog as shown above.

 l Right-click the policy name in the Services and Policies list and then select Revision
History. Select a revision to activate and then click [Set Active]. For more
information, see "Policy Revisions" on page 6.

Validating a Policy
The Policy Manager provides two types of policy validation:

 l Instant feedback messages in the Policy Validation Messages window when you
configure or edit a policy

 l Final policy validation when [Save] or [Validate] is clicked on the Policy Tool Bar. A
final policy validation is more thorough than an instant feedback message, as it
queries the server.

Ensure that the Policy Validation Message window is visible and that policy validation
feedback has not been disabled in the Preferences. Disabled assertions in a policy are
ignored during validation.

Note: A service with an invalid policy is still active, enabled, and accessible. Only a disabled
service is inactive and inaccessible. See Service Properties in the Layer 7 Policy Manager User
Manual for information on disabling a service.

Instant Feedback Messages

The Policy Validation Messages window displays valuable feedback messages during
policy configuration or editing. The window displays the following types of messages:

Message Type Description

Confirmation Confirmation messages confirm that an assertion has been properly
added and configured.

Warning Warning messages warn that an assertion:

 l Has been duplicated

 l Requires another assertion to be valid

 l Has been configured improperly

 Table 4: Instant feedback message types

Chapter 1: Working with Service Policies 25

Layer 7 Policy Authoring User Manual, v8.2

Message Type Description

Error Error messages warn that an assertion:

 l Has not been configured

 l Is located improperly within the policy

 l Is in conflict with another assertion

Note: The instant feedback messages are not designed to detect all possible errors. For
example, it will not report on non-existent identities in an imported policy. Always perform a
final policy validation and carefully review any messages.

Final Policy Validation Messages

The Policy Manager performs additional validation checks when you click [Save] or
[Validate] on the Policy Tool Bar, or select [File] > Validate from the Main Menu.

 l If the policy contains no errors, the message "Policy validated ok" is displayed. You
may now enable or export the policy.

 l If error messages appear, refer to the following table to troubleshoot.

Message Type Suggested Solution

Assertion
organization errors

Assertions must be placed in a logical order, and must be valid at the time
of validation. Common policy errors include:

 l Assertions out of order

 l Assertion dependencies not established

 l User/group IP referenced in the policy are no longer valid

Reorganize the assertions so that they conform to the organization and
rules described in "Policy Organization" on page 2.

Assertion
configuration errors

Double check the settings of each assertion in the policy. Refer to the
documentation for each assertion for more details.

Assertion permission
errors

The validation message "Permission is denied for this assertion. The
policy cannot be saved." indicates that the policy contains assertions that
are not permitted for the policy. This could be caused by the assertions
belonging to a different security zone from the policy or the user does not
have sufficient permissions to save the assertions.

Identity errors See "Invalid Users or Groups" below for more details.

An example of such an error: "The corresponding identity cannot be
found. Please remove the assertion from the policy."

JMS warning
messages

See "Invalid JMS Queue" below for more details.

An example of such an error: "The assertion might not work as

 Table 5: Troubleshooting final policy validation errors

26 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Message Type Suggested Solution

configured. There is no protected service JMS queue defined."

Save errors The message "Error saving service and policy" appears. This error can
occur if multiple Policy Managers modify the same policy simultaneously,
resulting in conflicts. If this happens, dismiss the error message, refresh
the service policy, modify the policy further if necessary, then try saving
again.

Namespace errors A message similar to the following appears: "Assertion: <name>
Warning: This assertion contains an XPath that uses the SOAP 1.1
envelope namespace URI, but the service is configured as using only
SOAP 1.2. The XPath will always fail."

To correct this, click the Fix It link next to the message. This will allow you
to update the namespaces for all your XPath assertions. For more
information, see "Migrating Namespaces" on page 158.

Continue validating the policy until no errors remain. At this point, you may enable or
export the policy. If you require assistance troubleshooting the policy, contact CA
Technical Support.

Invalid Users or Groups

You will receive an identity error during policy validation if either of the following occurs:

 l An Internal Identity Provider user in the policy has an expired account

 l The user or group in the policy has been deleted from the LDAP Identity Provider,
Federated Identity Provider, or Internal Identity Provider.

To resolve these errors, refer to the following table:

Resolution Steps

Identity no longer
required

 l Delete the assertion.

Need to keep the
user or group

 1. Delete the assertion.

 2. Set a new account expiration date for the user (see Internal
Identity Provider Users and Group)

OR:

Re-add the user or group to the appropriate Internal Identity
Provider Users and Groups, Federated Identity Provider Users
and Groups, or LDAP Identity Provider. Note: Since LDAP
Identity Provider users and groups are defined outside of the
Policy Manager, use the appropriate external management

 Table 6: Resolving identity errors

Chapter 1: Working with Service Policies 27

Layer 7 Policy Authoring User Manual, v8.2

Resolution Steps

program to re-add the missing LDAP Identity Provider user or
group.

 3. Use the Authenticate User or Group assertion to re-add the
user or group into the policy.

 4. Click [Validate] or [Save] on the Policy Tool Bar to perform the
final validation check.

When constructing a new policy, you will not be able to add a user or group that is not in
the target identity provider.

Invalid JMS Queue

When JMS routing is used in a new or existing policy, the validation process checks the
outbound queue attached to the Route via JMS assertion. An error message will appear
in the Policy Validation Messages window if the queue is unspecified or invalid. Try the
following steps if errors occur:

 1. Enter or re-enter the outbound JMS queue.

 2. Test the outbound JMS queue.

 3. Edit the JMS Routing assertion, if necessary, for the new or revised queue.

Comparing Policies
The policy compare tool in the Policy Manager lets you compare any two policies. The
summary appears in a separate dual-pane window that shows which assertions were
added/removed or changed between the policies. Use this feature to compare any two
policy versions or two completely different policies. The comparison results are shown in
different colors, allowing you to see differences at a glance.

You can view assertion differences two ways: a high level summary listing the property
changes, or a low level view showing the raw XML differences.

 To compare policies:

 1. Choose the first policy to be compared, using any of the following methods. This
will be added to the left pane of the results windows:

 l If the policy is already open in the editor: Right-click the policy name in the tab title
and then select Compare Policy: Left.

28 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 l If the policy is not yet open: Right-click the policy in the services and policies list
and then select Compare Policy: Left. Desktop client users can also select File
> Compare Policy: Left.

 l If you are currently browsing policy revisions: Select the revision in the Policy
Revision dialog and then click Compare Policy: Left.

 2. Repeat this to choose the second policy (label now reads Compare Policy: Right).
Allow a moment for the policy comparison to complete. Note that complex,
dissimilar policies will take longer to complete. The Policy Comparison window is
displayed when the comparison is complete.

Tip: If you decide not to proceed with a comparison or if you decide you want a different
left pane policy, simply choose the same policy and then close the resulting comparison
window.

Using the Policy Comparison Window

The Policy Comparison window displays your left and right policies and uses color coding
to illustrate the differences.

 Figure 8: The Policy Diff dialog

The following color coding scheme is used:

 l Red: Assertions in the left policy that are not present in the right policy. This may
indicate assertions added to the left or deleted from the right.

Chapter 1: Working with Service Policies 29

Layer 7 Policy Authoring User Manual, v8.2

 l Green: Assertions in the right policy that are not present in the left policy. This may
indicated assertions added to the right or deleted from the left.

 l Gray: Shows where the assertions are missing as compared to the other pane.

 l Blue: Matching assertions; assertions with the same names but their properties
differ.

Assertions with no color highlighting are the same in both panes.

Tips and Hints

The following are some tips for using the Policy Comparison window:

Use the and buttons to jump to the next/previous difference.

 l For matching assertions that differ (highlighted in blue), you can view the
differences in greater detail (see "Viewing Assertion Differences" below).

 l Maximize the window to see your policies more easily.

 l Scrolling is synchronized between the two panes.

 l Use the line numbers to help you reference assertions.

 l The policy name, revision number, and active status is displayed above each pane.
Note: If the policy name is too long to display (more than half the width of the
result window), it is truncated. However the full name will be visible in the tooltip
that appears when you point at the policy name.

 l Copy selected assertions from either pane into any open policy by using the
standard Copy and Paste commands.

Viewing Assertion Differences

For assertions that are highlighted in blue (meaning assertions with the same name
which exist in both policies, but their configurations differ), you can view the differences
using any of these methods:

 l Select the assertion (from either pane) and then click [Show Assertion
Differences]. This opens another two-tab pane at the bottom of the window.

 l Double-click the assertion (from either pane). This displays the same information
as above, but in a separate Assertion Comparison window.

 l Right-click the assertion and then select Compare Assertions. As above, this
opens a separate Assertion Comparison window.

30 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Assertion Properties

The [Properties] tab displays a high level summary of the differences between the two
assertions:

 Figure 9: Policy Diff window - Properties tab

The middle column lists the properties of the assertion, while the left and right columns
show the values of the properties in each assertion. Note: The properties listed use
internal system nomenclature, which may differ from the labels found in the interface.

The [Properties] tab is useful to see the differences "at a glance", however it is not
possible to display all differences due to the complexity of certain object types. The [Raw
XML] tab will show complete assertion differences.

Raw XML Properties

The [Raw XML] tab shows the low level XML code for each assertion, allowing you to see
precisely where the differences occur.

Chapter 1: Working with Service Policies 31

Layer 7 Policy Authoring User Manual, v8.2

Tip: The Raw XML view is designed for advanced users familiar with interpreting XML code.
For a more easily interpreted high level summary of the differences, use the [Properties] tab
instead.

 Figure 10: Policy Diff window - Raw XML tab

The [Raw XML] tab has its own and buttons at the bottom to jump to the
next/previous difference. The same color coding is used as in Figure 8.

Working with Multiple Policy Tabs
When you open a policy version for editing, it is displayed in its own tab within the policy
development window. Once you have reached the maximum number of tabs (set in the
Preferences dialog), the Policy Manager automatically closes the oldest tab for which
there are no unsaved changes. If there are no unsaved tabs, you are prompted to
manually close some tabs.

To close a tab, do either of the following:

32 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 l Click the 'x' to the right of the tab title.

 l Right-click the tab and select one of the close tab commands. These close
commands mimic those used in Web browsers. Note that the Reopen Closed Tab
command will not work if the policy revision from the closed tab no longer exists.

The following are additional hints and tips relating to policy tabs:

 l You can choose how tabs should be displayed once you reach the browser's
width: either wrap onto multiple rows (default) or maintain a single row that
requires scrolling. This is set in the Preferences dialog.

 l You can define how many tabs can be open at once in the policy editor workspace
(maximum 100). When the maximum is reached, the Policy Manager will
automatically close the least recently-used tab with no unsaved changes. This is
set in the Preferences dialog.

 l The Policy Manager remembers the open tabs when you disconnect (or when
timeout occurs) and will reopen them for you the next time.

 l The Policy Manager automatically updates all open tabs if the service name is
changed or when a policy's active status is changed.

 l When a service is deleted, all tabs related to that service are closed, regardless of
whether there are unsaved changes.

 l An asterisk (*) appears next to the names of the tabs with unsaved changes.

 l Closing the last tab will result in a blank panel. Click [Home] in the main tool bar to
return to the home screen.

 l Tab titles too long to display are truncated on the interface, but will appear in full
in a tooltip when you point at the tab.

 l Each tab maintains its own settings for: (1) settings from the policy tool bar: Show
Comments, Show Assertion Numbers, (2) all settings for the policy search bar, and
(3) position of the dividing line between the policy development window and the
Policy Validation Messages pane.

Working with Internal Use Policies
An internal use policy is a special preconfigured policy that is designed to achieve a
specific outcome. These policies are prepackaged in every Gateway.

To use an internal use policy, choose "Internal Use Policy" as the policy type when
creating a new policy, then choose the policy to use from the list of policy tags. For more
information, see "Creating a Policy" on page 21.

The following internal use policies are currently available on the CA API Gateway:

Chapter 1: Working with Service Policies 33

Layer 7 Policy Authoring User Manual, v8.2

wsdm-notifications
Audit Message Filter
Audit Viewer

wsdm-notifications

The wsdm-notifications policy is evaluated for each WSDM notification message. This
message is related to a subscription added via the "WSDM Subscription Service" internal
service. In this policy, the request is initialized to the notification messasge.

This policy adds a A Route via HTTP(S) assertion that routes to ${esmNotificationUrl}, which
refers to the value of the
"<wsnt:Subscribe><wsnt:ConsumerReference><wsa:Address>" tag of the Subscribe
method in EsmSubscriptionManagementServiceBinding.

Audit Message Filter (AMF) Policy

The AMF policy is designed to remove sensitive data from messages and to protect data
prior to auditing. This policy is intended to be used in conjunction with the AV (Audit
Viewer) policy.

After the service policy and any global policy fragment completes, the AMF policy will be
executed for each request and/or the response that will be audited. This allows the policy
author to (for example) remove sensitive data from the message or apply any necessary
encryption or signature to the message.

Note: The request message that is run through the AMF policy may have undergone a security
undecoration process by the Gateway. As a result, it may not be the same as the request first
received by the Gateway.

A message is audited under the following conditions:

 1. The policy contains the Audit Messages in Policy assertion, configured with a
sufficiently high level.

 2. An assertion fails, causing the target message to be audited. (This assumes the
audit.hinting cluster property is set to its default value of "true".)

If the AMF policy completes successfully, the value in the request or response message is
passed onto the Gateway's auditing subsystem (either the internal database and/or an
audit log sink, if one has been configured). If the AMF policy fails (that is, one of its
assertions returns any assertion status code other than '0'), then the message is not sent
to the auditing subsystem. Instead, an audit detail is added to the audit record stating
that the AMF policy failed for the relevant message—request or response.

34 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Note: The Audit Message Filter policy only runs for policy message audits. To learn more about
this type of audit and about Gateway auditing in general, see Message Auditing in the Layer 7
Policy Authoring User Manual.

Keep in mind the following when using the AMF policy:

 l Only one AMF policy can be created per Gateway cluster.

 l This policy cannot access context variables created by any other service policy or
global policy fragment.

 l Auditing within an AMF policy is disabled.

 l The output of the AMF policy must be text/xml for it to work with the AV policy.

 l The AMF policy may use the audit viewer subject certificate as the recipient
certificate for the (Non-SOAP) Encrypt XML assertion. If you create an AMF policy
after designating an AV key, then the default AMF policy will encrypt for the AV
key. However, there is currently no warning if the recipient certificate is something
other than the designated AV key.

Understanding the Default AMF Policy

The following default policy is created when you add an AMF policy (assuming that all the
assertions are licensed):

 Figure 11: Default AMF policy

The default policy contains these assertions to help you get started:

 l Encode/Decode Data Assertion: This assertion encodes the request into Base64
format, which offers the greatest flexibility in handling the various message types.

 l Set Context Variable Assertion: This assertion creates an XML Message variable
using an arbitrary Layer 7 schema containing the Base64 data.

 l (Non-SOAP) Encrypt XML Element Assertion: This assertion encrypts the
XML message into the request.

Use the default assertions as a starting point to help you create your own AMF policy. For
more information, see Creating a Policy in the Layer 7 Policy Authoring User Manual.

Chapter 1: Working with Service Policies 35

Layer 7 Policy Authoring User Manual, v8.2

Tip: Develop your AMF policy as policy fragments. This makes it easier for testing and
troubleshooting. For more information, see Working with Policy Fragments in the Layer 7
Policy Authoring User Manual.

Audit Viewer (AV) Policy

The AV policy can be invoked when viewing audits (for audit messages or audit details) in
the Gateway Audit Events window. The AV policy is intended to reverse the actions of the
AMF policy. Using security roles, you can restrict the AV policy only to individuals who
have a business need to view data protected by the AMF policy. The AV policy uses a
special "audit viewer" private key to enforce this restricted access.

For information on viewing audits, see Gateway Audit Events in the Layer 7 Policy Manager
User Manual. For information on the audit viewer private key, see Private Key Properties in
the Layer 7 Policy Manager User Manual.

The AV policy takes messages (requests or responses) that were encrypted by the
AMF policy and displays them in decrypted form in the Gateway Audit Events window.

Keep in mind the following when using the AV policy:

 l Only one AV policy can be created per Gateway cluster.

 l The AV policy assumes that the audit message or detail to be processed is in
XML format (Content-Type 'text/xml'). If it is not, then the AV policy cannot process
it.

 l This policy cannot access context variables created by any other service policy or
global policy fragment.

 l Avoid using the Run All Assertions Concurrently assertion in the AV policy.

Understanding the Default AV Policy

The following default policy is created when you add an AV policy (assuming that all the
assertions are licensed).

 Figure 12: Default AV policy

The default policy contains these assertions:

36 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 l (Non-SOAP) Decrypt XML Element Assertion: This assertion decrypts the XML that
was encrypted by the AMF policy.

 l Evaluate Request XPath Assertion: This assertion uses an XPATH query to extract
the Base64 data from the request.

 l Encode/Decode Data Assertion: This assertion decodes the results back to
text/xml format.

The default assertions are designed to reverse the effects of the default AMF policy. Use
them as a starting point to help you create your own AV policy. For more information, see
Creating a Policy in the Layer 7 Policy Authoring User Manual.

Tip: Develop your AV policy as policy fragments. This makes it easier for testing and
troubleshooting. Policy fragments can also be used to protect data audited via the Add Audit
Detail Assertion. For more information, see Working with Policy Fragments in the Layer 7
Policy Authoring User Manual.

Working with Non-XML Messages
Certain assertions expect an XML payload and will fail if such a Content-Type is not
detected at runtime. If your published service is expected to process both XML and non-
XML messages, or process messages without payloads (such as GET or DELETE requests),
then you should structure your policy to separate XML processing from non-XML
processing. This will prevent inconsequential assertion failures from affecting the
outcome of your policy.

For example, the Protect Against Document Structure Threats assertion is designed to
detect XML threats and will fail when processing a non-XML message. However, failing in
this manner has little consequence, since non-XML messages cannot contain an XML
threat.

Assertions that Require XML

The following assertions require that a message be XML:

(Non-SOAP) Check Results from XML Verification
(Non-SOAP) Decrypt XML Element
(Non-SOAP) Encrypt XML Element
(Non-SOAP) Sign XML Element
(Non-SOAP) Verify XML Element
Add or Remove XML Elements(s)
Apply XSL Transformation
Document Structure Threats
Evaluate Request XPath

Chapter 1: Working with Service Policies 37

Layer 7 Policy Authoring User Manual, v8.2

Evaluate Response XPath
Require XPath Credentials
Validate XML Schema

Assertions that Require SOAP

The following assertions not only require that the request be in XML but that it be SOAP:

Add WS-Addressing
Add or Remove WS-Security
Add Security Token
Add Timestamp
Configure WS-Security Decoration
Encrypt Element
Encode to MTOM Format
Enforce WS-Security Policy Compliance
Enforce WS-I BSP Compliance
Enforce WS-I SAML Compliance
Evaluate WSDL Operation
Exchange Credentials using WS-Trust
Process SAML Authentication Request
Process RSTR Response
Require Encrypted Element
Require Encrypted UsernameToken Profile Credentials
Require SAML Token Profile
Require Signed Element
Require Timestamp
Require WS-Addressing
Require WS-Secure Conversation
Require WS-Security Kerberos Token Profile Credentials
Require WS-Security Signature Credentials
Require WS-Security UsernameToken Profile Credentials
Sign Element
Use WS-Federation Credential
Validate SOAP Attachments

Example of a Branching Policy

The following sample illustrates how you might implement branching in your policy, to
separate the processing of XML requests from non-XML requests:

1 At Least One Assertion Must Evaluate to True

2 All Assertions Must Evaluate to True

38 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

3 Compare Expression: Proceed if ${request.http.header.content-
type} contains "text/xml"

4 All Assertions Must Evaluate to True

5 <portion of policy relating to XML messages>

6 All Assertions Must Evaluate to True

7 Compare Expression: Proceed if ${request.http.header.content-
type} does not contain "text/xml"

8 All Assertions Must Evaluate to True

9 <portion of policy relating to non-XML messages or empty
payloads>

10 <portion of policy common to both>

The following table explains the above sample:

Line Description

1 The "At least" branching ensures that either line 2 (message is XML) or line 6 (message is
non-XML) is executed.

2 This "All assertions" folder groups the portion of the policy to be processed if the request is
XML.

3 Tests whether the message is XML by examining the Content-Type header. If true,
processing continues with line 4. If false, then the Compare Expression assertion fails and
the "All assertions" in line 2 fails. Processing then continues with line 6.

4 This "All assertions" folder groups the assertions to be processed for XML requests.

5 This portion of the policy contains the assertions listed under "Assertions that Require XML"
or "Assertions that Require SOAP" above.

6 This "All assertions" folder groups all the assertions to be processed if the request is non-
XML or if line 4 fails.

7 Tests whether the message is non-XML by examining the Content-Type header. If true,
processing continues with line 8. If false, then the Compare Expression assertion fails and
the "All assertions" in line 6 fails. Processing then continues with line 10.

8 This "All assertions" folder groups the assertions to be processed for non-XML requests.

9 This portion of the policy contains the assertions not listed under "Assertions that Require
XML" or "Assertions that Require SOAP" above.

10 List policy logic common to both XML and non-XML messages here.

 Table 7: Sample branching policy for XML

Chapter 1: Working with Service Policies 39

Layer 7 Policy Authoring User Manual, v8.2

Working with Comments
It may be useful to annotate your policy with comments. This will make it easier for others
to understand the policy logic or to assist you during policy troubleshooting.

Adding a Comment 40

Editing a Comment 41

Deleting a Comment 42

Adding a Comment

There are two different ways to add a comment to your policy:

 l Use the Add Comment to Policy assertion. This assertion can be placed anywhere
in the policy and is intended for comments not specific to any assertion (for
example, to document the policy logic). You can add as many of these assertions as
necessary.

 l Append a comment directly to an item in the policy development window, such as
an assertion, folder, or policy fragment. This method ensures that the comment
remains with the item even after repositioning, copying/pasting, or
exporting/importing the item.

Tip: If your comments are not visible in the policy window, click [Show Comments] in the
Policy Tool Bar.

 To add a comment to an assertion or folder:

 1. In the policy window, right-click the assertion or folder and then select Add
Comment. The Enter Comment dialog is displayed:

 Figure 13: Enter Comment dialog

40 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 2. Type your comments in the "Left" and "Right" boxes:

 l Left Comment will appear before the item, left-aligned in the policy window.
The maximum for this comment is 100 characters.

 l Right Comment will appear after the item, right-aligned in the policy window.
The maximum for this comment is 4000 characters.

Here are some tips when entering comments:

 l By default, only the first 30 characters of the left comment and first 100
characters of the right comment are displayed in the policy development
window. These can be changed in the Preferences.

 l Comments will be displayed in a tooltip when you hover the mouse pointer
over the assertion in the policy window. This is useful to read long comments
that have been truncated.
Exception: Comments are not visible if the tooltip is displaying a warning that
should be resolved. For example, you might see this warning message in a
tooltip: "The policy may be invalid due to warnings. The assertion might now work as
configured."

 l You can prefix the comment with any separator character but you are not
required to do so. The comments will be displayed in a different font color in
the policy window to make them stand out.

 3. Click [OK]. The comment is displayed next to the assertion or folder in the policy
window, unless comments have been hidden.

Editing a Comment

 To edit a comment in the policy window:

 l If the comment appears as "Comment: <comment text>", then double-click it to
edit the comment. For more information, see "Add Comment to Policy Assertion"
on page 618.

 l If the comment is in light grey text aligned to the left or right of an assertion or
folder:

 a. Right-click the assertion or folder and select Edit Comment.

 b. Modify the comment as required. For more information, see "Adding a
Comment" on page 40.

Chapter 1: Working with Service Policies 41

Layer 7 Policy Authoring User Manual, v8.2

Deleting a Comment

 To delete a comment in the policy window:

 l If the comment appears as "Comment: <comment text>", then right-click it and
select Delete Assertion. The entire "Comment:" line is removed. For more
information, see "Deleting an Assertion" on page 119.

 l If the comment is in light grey text aligned to the left or right of an assertion or
folder, then right-click it and select Delete Comment. The comment text is
removed after confirmation.

IMPORTANT: If both left and right comments exist, they will both be removed. If you
wish to remove only one of the comments, edit the comment instead and remove the
desired comment.

Exporting/Importing a Policy
The following topics describe how to export or import a policy, as well as to resolve any
conflicts that may arise during importing.

Exporting a Policy 42

Importing a Policy from a File 44

Importing a Policy via UDDI Registry 46

Import WS-Policy from URL in UDDI Registry Wizard 47

Searching the UDDI Registry 48

Resolve External Dependencies Wizard 51

Exporting a Policy

The Policy Manager allows you to export a policy to a file. Use this feature to share
policies internally or externally, or to save copies of policies for record-keeping purposes.
Exported policies that are saved locally can be renamed, deleted, or edited by
replacement.

It is recommended that you only export valid policies. Validation confirms the proper
configuration and organization of a policy. See "Validating a Policy" on page 25 for more
information. An exported policy may contain disabled assertions. If security zones have
been defined, you must have Read permissions to the policy in order to export.

The portable policy XML file generated during export includes references to:

42 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 l The identity providers belonging to the users and groups in the policy

 l The JMS routing endpoints, or destinations, if included in the policy, and

 l Any custom assertions, if present in the policy.

When exporting a policy using the browser client version of the Policy Manager, the Java
applet must be running in the trusted mode. For more information, see Policy Manager
Browser Client in the Layer 7 Policy Manager User Manual.

 To export a policy:

 1. Open the policy to be exported using either of the following methods:

 l Right-click the service name in the Services and Policies list and then select
Active Policy Assertions. Or,

 l Double-click the service name in the Services and Policies list.

 2. Click [Export Policy] on the Policy Tool Bar or select The Export Policy dialog
appears.

 3. Do one of the following:

 l If using the standard client: Either use the default directory offered or
navigate to another location. If you use the default location
(".l7tech\policy.templates"), the exported policy will appear under the Policy
Templates section of the [Assertions] tab.

Note: Only exported policies saved as a template in the default directory will
appear under the Policy Templates section of the [Assertions] tab. Policies
saved to any other location will not appear in the Policy Templates section.
Policies can be imported regardless of their saved locations.

 l If using the browser client: Navigate to a folder of your choice to save the
template.

Note: Be sure to note the location of the saved templates for later import. This
is because there is no Policy Templates section in the [Assertions] tab for the
browser client version.

 4. Enter a descriptive name for the exported policy and then click [Save]. The policy is
exported as a portable XML file which encapsulates all of the assertions and back-
end settings. The policy appears under Policy Templates in the [Assertions] tab
(standard client version only).

Chapter 1: Working with Service Policies 43

Layer 7 Policy Authoring User Manual, v8.2

Tip: You can open the exported XML file in a text editor to view policy details. Be sure
you have a backup before you make any modifications to the file.

Importing a Policy from a File

The Policy Manager allows you to import a policy into the policy development window
from a file. This ensures policy consistency and saves configuration time. Importing a
policy is particularly useful for sharing policies with external departments, partners, and
others who have separate Gateway installations.

The imported XML file encapsulates all of the originating policy information. Any disabled
assertions in the imported policy will remain disabled after import.

When importing a policy using the browser client version of the Policy Manager, the Java
applet must be running in the trusted mode. For more information, see Policy Manager
Browser Client in the Layer 7 Policy Manager User Manual.

Importing encapsulated assertions: Do not use the policy import feature if you want to
import an encapsulated assertion. To correctly import an encapsulated assertion, use the
Import button in the Manage Encapsulated Assertions Configuration dialog. For more
information, see "Working with Encapsulated Assertions" on page 126 and "Managing
Encapsulated Assertions" on page 132.

Note the following security zone considerations:

 l If the policy being imported belongs to a security zone, you must have a security
role that permits updating of the policy.

 l If the policy being imported contains assertions that have been placed in a security
zone, you must have a security role that has Read permissions for those
assertions, otherwise you will not be able to save the imported policy.

 To import a policy from a file:

 1. Make sure the service that is receiving the imported policy is open. If not, double-
click the service in the Services and Policies list, or right-click the service name and
select Active Policy Assertions. The policy development window appears.

 2. Import your policy using either of the following methods:

Method Description

Import from "Policy
Templates"

Use this method if the policy you want is visible under the Policy
Templates section of the [Assertions] tab. This method is not available
in the browser client version of Policy Manager.

 Table 8: Options for importing a file

44 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Method Description

(Standard client only) Do one of the following:

 l Drag and drop the policy you want from the Policy Templates
section into the policy development window.

 l Select the template in the Policy Templates section and click

the (Add Assertion) button in the Assertions Tool Bar.

Import from any file

(Standard and
Browser client version)

Use this method to import version 3.0 or later XML policy files. Note: In
the browser client, importing is possible only when the Java applet is
running in the trusted mode.

 1. Click [Import Policy] on the Policy Tool Bar. The default folder
for storing saved templates appears.

 2. Select the template to import. If the policy was not stored in the
default location, navigate to the correct folder first.

 3. Click [Open].

Note: When you import a policy, the target policy in the policy development window is
completely replaced by the elements in the incoming policy template. These include
policy assertions, policy fragments, identity providers, JMS destination references, and
any custom assertion, if present.

 3. Before importing the policy into the policy development window, the Policy
Manager automatically attempts to resolve the back-end requirements of the
imported policy against the back-end configuration of the target policy's Gateway.

 l If the automatic reconciliation is successful, the imported policy will appear
in the policy development window.

 l If the automatic reconciliation is not successful, the Resolve External
Dependencies Wizard appears. Use this wizard to instruct the Policy
Manager how to handle each unresolved element.

The wizard appears if the imported policy contains references to elements that
are not present on the target system. This will typically happen if the policy
came from another system or if the policy refers to an element (for example, a
user or group) that had been deleted since the policy was originally exported.

The Policy Manager compares the object-level property values of the imported
identity provider with each identity provider configured in the target Gateway.
A difference in even one value will cause a reconciliation failure

 4. The routing assertion(s) and other assertions in the policy development window
are specific to the service that originated the policy. Edit the assertions for the

Chapter 1: Working with Service Policies 45

Layer 7 Policy Authoring User Manual, v8.2

target service as required:

 l See Message Routing Assertions to re-configure the replaced routing
assertion with service-specific information

 l See Policy Assertions Overview to re-configure other assertions as required.

Ensure that policy edits conform to the policy and assertion rules outlined in
"Policy Organization" on page 2.

 5. Finish the import procedure by doing the following:

 l Proceed to Validating a Policy to perform a final validation check on the
policy. When the policy passes the validation process, enable the service, if
necessary

 l If the imported policy contains a Validate XML Schema assertion that
includes an import statement, then you will need to resolve the external
reference(s) using the Manage Global Resources task.

 l (Optional) Export the validated policy as a new policy template, or use it to
replace an existing template. This provides a backup of your policy for
safekeeping.

Importing a Policy via UDDI Registry

Importing a policy via the UDDI registry is similar to importing a policy from a file, except
that the source is not a policy XML file on a hard disk, but rather XML resolved from an
HTTP URL published in a UDDI registry.

Note: Importing a policy via the UDDI registry is supported in the browser client version of the
Policy Manager only when the Java applet is running in the trusted mode. For more information,
see Policy ManagerBrowser Client in the Layer 7 Policy Manager User Manual.

 To import a policy via the UDDI Registry:

 1. Make sure the service that is receiving the imported policy is open. If not, double-
click the service in the [Services] tab, or right-click the service name and select
Policy Assertions. The policy development window appears.

 2. Click [Import from UDDI] on the Policy Tool Bar. The Import WS-Policy from URL in
UDDI Registry wizard appears.

 3. Complete the wizard to import the policy.

46 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Import WS-Policy from URL in UDDI Registry Wizard

The Import WS-Policy from URL in UDDI Registry Wizard extracts a WS-Policy document
from a URL in the UDDI registry. This wizard starts when you attempt to import a policy
via the UDDI registry.

Note: Importing a policy via the UDDI registry is supported in the browser client version of the
Policy Manager only when the Java applet is running in the trusted mode. For more information,
see Policy ManagerBrowser Client in the Layer 7 Policy Manager User Manual.

 Figure 14: Import WS-Policy from URL in UDDI Registry Wizard

For more information about wizards, see "Wizard" under Interfaces in the Layer 7 Policy
Manager User Manual.

Wizard Step Description

Step 1: Select Policy
from UDDI

Select the policy from the UDDI registry to be imported:

 1. Select the registry to use from the UDDI Registries drop-down
list. These registries were defined using the Manage UDDI
Registries task. Only enabled registries are displayed.

 2. Optionally type a few characters of the policy name in the Policy
name field. This will help narrow down the search if there are
many policies stored in the UDDI registry. Leave this field blank to

 Table 9: Using the Import WS-Policy from URL in UDDI

Chapter 1: Working with Service Policies 47

Layer 7 Policy Authoring User Manual, v8.2

Wizard Step Description

see all the policies.

 3. Click [Search]. The policies containing the string entered above
are displayed. If no string was entered, all policies are listed.

 4. Select the policy you want and then click [Next].

Note: You will see an error if the selected policy does not resolve to a
policy document. If this happens, try another policy. If no policy yields a
policy document, then you cannot import a policy from the specified
UDDI registry.

Step 2: Complete
Import Process

Review the details for the selected policy to ensure that you have
selected the correct one. Click [Finish] to close the wizard and import
the policy into the policy development window.

Searching the UDDI Registry

The Search UDDI dialog allows you to search a UDDI registry while performing the
following tasks:

 l When publishing a SOAP web service, you can enter either the URL or file path to
the WSDL document. If a UDDI registry has been configured, you can also search
the UDDI to retrieve the appropriate URL.

 l When publishing a business service, you can search a UDDI registry for a specific
business entity.

Note: Before you can search a UDDI registry, ensure that the UDDI registry product is correctly
installed and at least one UDDI registry has been configured in the Gateway. For more
information, see "Managing UDDI Registries" on page 87.

 To search a UDDI registry:

 1. Do one of the following:

 l Click [UDDI] button in Step 1 of the Publish SOAP Web Service Wizard in the
Layer 7 Policy Manager User Manual. Note: If the [UDDI] button is not visible,
then no UDDI registries were configured. For more information, see "Managing
UDDI Registries" on page 87.

 l Click the [Select] button on the [UDDI] tab of the Service Properties dialog.

The Search UDDI dialog is displayed. Figure 15 shows the dialog that is displayed
when searching for a WSDL URL from a UDDI registry.

48 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 Figure 15: Search UDDI dialog (Search UDDI Registry for WSDL example)

 2. Configure the search as follows:

Setting Description

UDDI Registries From the drop-down list, select the UDDI registry to be searched. Only
registries that are enabled are shown.

Service Name To refine your search, you can optionally specify that the Service
Name Contains or Equals the string of characters that you specify.
('Contains' encloses the search string within '%' characters.)

Leave the Service Name search field blank to retrieve all available
services.

Case Sensitive Select this check box to make the search case sensitive.

Allow Wildcards Select this check box to use the percent symbol (%) wildcard to match
any number of characters, or the underscore symbol (_) to match any
single character.

Wildcards can be used with both 'Contains' and 'Equals'. When used
with 'Contains', they work in addition to the '%' already added to the
start and end of the entered search text.

Retrieve WSDL URL
in search results

(only for Service

Select this check box to retrieve the WSDL URL for each service in the
search results. Clearing this check box will improve the search
performance as only a single UDDI query needs to be made.

 Table 10: Configuring the Search UDDI settings

Chapter 1: Working with Service Policies 49

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

searches) Tip: Many UDDI queries are required to assemble the list of service
names and WSDL locations. By omitting the WSDL URL, fewer
searches are required and the results are returned more quickly.
When you select a service, the WSDL location is then resolved for that
service.

[Search] Click this button to begin the search. The search will run until it returns
results or is cancelled by the user.

Results The number of items found is displayed. The table shows the results of
the search.

The WSDL Locations column will be blank if the Retrieve
WSDL URL in search results check box is not selected.

Show select
wsdl:port dialog

(only for Service
searches)

Select this check box if you need to select a specific port to use from the
WSDL. See "Selecting a wsdl:port" below for more information.

 3. Click [Select] after selecting the Business Service or Business Entity. The Search
UDDI dialog closes and your selected service is added to the previous dialog.

Selecting a wsdl:port

When the Show select wsdl:port check box is selected in Figure 15, the "Select wsdl:port"
dialog is displayed after you select a row and click [Select]. This dialog allows you to select
a specific wsdl:port to use.

Tip: Why select a wsdl:port? You will do this if you want to place the published service's
WSDL to be under the control of the UDDI registry. Once the WSDL is under UDDI control, its
possible to enable monitoring. Monitoring cannot be enabled unless the Gateway knows which
specific wsdl:port (bindingTemplate) in the UDDI Business Service to monitor.

 Figure 16: Selecting a wsdl:port

50 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Technical note

When a Gateway publishes a WSDL to a UDDI Registry, it may publish each wsdl:port
twice, if the Gateway cluster defines an HTTPS and an HTTP endpoint. When this happens,
the search results will shown more than a single wsdl:port and possibly namespace with
the same values. In this case the endpoint values should differ by protocol. For WSDL's
published to UDDI which do not originate from the Gateway, the wsdl:port and
namespace columns uniquely identify each wsdl:port from a WSDL.

Resolve External Dependencies Wizard

The Resolve External Dependencies Wizard lets you manually reconcile the following from an
imported policy:

Custom assertions
Identity providers
JDBC connections
JMS routing endpoints
Policy fragments
Private keys
SiteMinder configurations
Stored passwords
Trusted certificates
XML schemas

Chapter 1: Working with Service Policies 51

Layer 7 Policy Authoring User Manual, v8.2

This wizard appears when Policy Manager is unable to automatically reconcile these
elements during import. For more information, see "Importing a Policy from a File" on
page 44.

For more information about wizards, see "Wizards" under Interfaces in the Layer 7 Policy
Manager User Manual.

 Figure 17: Sample unresolved dependency in Resolve External Dependencies Wizard

The steps that appear in this wizard depend on the elements that require manual
reconciliation; the steps shown in Figure 17 are just an example. Table 11 describes all the
external dependencies that can be resolved by this wizard.

Note that you can click [Cancel] at any time to cancel the importing of the policy.

Dependency Description

Unknown custom
assertion

The incoming policy contains one or more custom assertions that are
not configured in the target policy is listed. Choose a solution:

 l Remove the unknown assertion from the import.

 l Ignore the error and import the assertions as-is.

Unresolved global
resource

The incoming policy contains assertions that reference an unresolved

global resource. The missing global resource details are displayed.

Choose a solution:

 l Remove the assertions from the policy that refer to the missing
global resource.

 l Ignore the error and import the assertions as-is.

 l Click [Add Global Resource] to manually add the missing

 Table 11: Resolve External Dependencies Wizard settings

52 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Dependency Description

global resource to the Policy Manager. Complete the Edit Global
Resource dialog. For more information, see "Adding a New
Global Resource" on page 75.

Unknown identity
provider

The incoming policy contains assertions referring an identity provider
that is unknown in the target policy. Details of the identity provider are
displayed. Choose a solution:

 l Select a local identity provider to substitute for the imported
identity provider. This option is available only when there is
another identity provider of the same type to choose.

 l Remove the assertions from the policy that refer to the missing
identity provider

 l Ignore the error and import the assertions as-is

 l Click [Create a new Identity Provider] to configure a new
identity provider. Use the details displayed to assist you, if
necessary. Complete the Federated Identity Provider Wizard or
LDAP Identity Provider Wizard that appears.

 l Exit the wizard and edit an existing identity provider so that its
properties match the imported identity provider. Repeat the
import process and then choose the first option in the wizard
("Change assertions to use this identity provider").

Tip: When creating or editing an identity provider, consult the properties
values of the imported identity provider found in the imported policy XML
file. Open the file in a text editor and note the values in the
"<exp:References>" parameter. Policies displayed under Policy
Templates can be found in the ".l7tech\policy.templates" directory.

Unresolved JDBC
connections

The incoming policy contains a JDBC connection that cannot be resolved

in the target policy. The name of the missing JDBC connection is

displayed. Choose a solution:

 l Select another connection from the drop-down list.

 l Remove the assertions from the policy that refer to the missing
connection.

 l Ignore the error and import the assertions as-is.

 l Click [Manage JDBC Connections] to create a new JDBC
connection. Complete the Manage JDBC Connections dialog.
For more information, see Managing JDBC Connections in the
Layer 7 Policy Manager User Manual.

Unresolved JMS
routing endpoint

The incoming policy contains a Route via JMS assertion or JMS
endpoints that cannot be resolved in the target policy. Details of the
missing JMS endpoints are displayed. Choose a solution:

 l Change the assertions to use another JMS endpoint selected
from the drop-down list. This option is available only when there
is another JMS endpoint to choose.

Chapter 1: Working with Service Policies 53

Layer 7 Policy Authoring User Manual, v8.2

Dependency Description

 l Remove the assertions from the policy that refer to the missing
endpoint.

 l Ignore the error and import the assertions as-is.

 l Click [Manage JMS Destinations] to create a new JMS
endpoint. Complete the Manage JMS Destinations dialog. For
more information, see Managing JMS Destinations in the Layer 7
Policy Manager User Manual.

 l Exit the wizard and edit existing inbound/outbound queues to
match the configuration of the imported queue references.
Repeat the import process and then choose the first option in the
wizard ("Change assertions to use this endpoint").

Tip: When creating or editing a JMS destination, consult the properties
values of the imported queues found in the imported policy XML file.
Open the file in a text editor and note the values in the
"<exp:References>" parameter. Policies displayed under Policy
Templates can be found in the ".l7tech\policy.templates" directory.

Unresolved policy
fragments

The incoming policy contains a policy fragment that has the same name
as an existing fragment, but has a different GUID. You are prompted to
enter a new name for the incoming policy fragment.

Note: If the incoming policy has the same GUID as an existing fragment
but different contents, the Resolve External Dependencies Wizard does
not appear. Instead, you are notified that the existing fragment will be
used instead of the incoming fragment.

Unresolved private
keys

The incoming policy contain a private key that is not present in the target
policy. Details of the missing key are displayed. Choose a solution:

 l Use default private key: Select this option to use the default
SSL key for the target policy.

 l Use custom private key: Select this option to choose another
private key from the drop-down list. You can click [Manage
Private Keys] to import or create new private keys or to view
details for any key. For more information, see Managing Private
Keys in the Layer 7 Policy Manager User Manual.

 l Remove all assertions from the incoming policy that refer to the
missing private key.

 l Import the erroneous assertions without changes. You will need
to correct this error later to prevent policy validation errors.

Unresolved
SiteMinder
Configuration

The incoming policy contains assertions referencing a SiteMinder
configuration that does not exist in the target policy. The following
missing SiteMinder details are displayed:

Configuration Name
Hostname

Choose a solution:

54 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Dependency Description

 l Change the assertion to reference another SiteMinder
configuration that does exist in the policy.

 l Remove the assertions that refer to the missing configuration.

 l Ignore the error and import the assertions as-is.

 l Click [Create SiteMinder Configuration] to create a new
SiteMinder configuration.

Unresolved stored
password

The incoming policy contains one or more assertions that refer to
unknown stored (secure) passwords. The details for the unknown
stored passwords are displayed. Choose an action:

 l Change the incoming assertions to use another stored password
instead. Either choose a stored password from the drop-down
list. If the password you require is not listed, click [Create Stored
Passwords] to define one now. For more information, see
Managing Stored Passwords in the Layer 7 Policy Manager User
Manual.

 l Remove all assertions from the incoming policy that refer to the
missing stored password.

 l Import the erroneous assertions without changes. You will need
to correct this error later to prevent policy validation errors.

Unresolved trusted
certificate

The incoming policy contains one or more assertions that refer to

unknown trusted certificates. The details for the unknown certificate are

displayed. Choose an action:

 l Change the incoming assertions to use another trusted
certificate instead. Either select a certificate listed and then click
[Select a Certificate] or click [Create a new certificate] to
create a new trusted certificate. For more information see
Adding a New Certificate in the Layer 7 Policy Manager User
Manual.

 l Remove all assertions from the incoming policy that refer to the
missing trusted certificate.

 l Import the erroneous assertions without changes. You will need
to correct this error later to prevent policy validation errors.

Unresolved XML
schemas

The incoming policy contains assertions that refer to an unresolved
external schema. Information about the missing external schema is
shown. Choose an action:

 l Change the assertion to use another schema from the drop-
down list. This option is not available if no other suitable schemas
are available.

Note: If a target namespace is listed, then only schemas from
that namespace are shown, otherwise all namespaces are
shown. Ensure that the schema you choose is an appropriate
schema to use as a replacement, as the wizard does not check

Chapter 1: Working with Service Policies 55

Layer 7 Policy Authoring User Manual, v8.2

Dependency Description

for appropriateness.

 l Remove the Validate XML Schema assertions that reference the
missing schema.

 l Ignore the error and import the assertions as-is. The wizard
indicates whether the reference is currently valid or invalid
(depending on schemas added using [Add External Schema]).
If the reference is invalid, you will need to correct this error later to
prevent policy validation errors.

 l Click [Add External Schema] to add a new schema to the
Gateway. For more information, see "Adding a New Global
Resource" on page 75.

When the wizard is finished, the imported policy will appear in the policy development
window.

Note: If you chose "Import assertion as-is" in any wizard step, then the imported policy will
contain validation errors. These errors must be corrected before the policy is used. For more
information, see "Validating a Policy" on page 25.

Debugging a Policy
The following topics describe how to use the debugging features in the Policy Manager
to perform advanced policy troubleshooting.

Working with the Service Debugger 56

Policy Debug Tracing 66

Working with the Debug Trace Policy 67

Working with the Service Debugger

The Policy Manager has a built-in debugger that can help you troubleshoot your policies.
This debugger behaves much like the debuggers available within programming
environments, allowing you to:

 l Add or remove breakpoints

 l Step through a policy and view its path

 l Step into or over composite assertions

 l View values within context variables

 l Pause and resume debugging

56 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Tip: The Service Debugger is different from the Debug Trace Policy that can also be used to
help you troubleshoot your policies in the Policy Manager. For more information, see "Working
with the Debug Trace Policy" on page 67.

Keep in mind the following before you debug a policy:

 l Only the main service policy and global policy fragments can be debugged. Aliases
and all other policy types cannot be debugged.

 l Included policy fragments cannot be debugged on their own, but they can be
debugged once inserted into a service policy or global policy fragment (using the
"Step Into" function of the debugger).

 l Only the active and saved version of a policy can be debugged. To debug another
policy or version, close and reopen the debugger.

 l There can be only one active debugger session per policy per Gateway node. In a
clustered environment, you can have one active debugger session per policy per
node.

 l Encapsulated assertions cannot be stepped into.

 l Once the debugger is started, the next message that arrives at the service
endpoint is sent to the debugger, regardless of port number. In a high traffic
Gateway, consider creating a copy of the policy and start the debugger in the
copied policy.

 l If the active version of a policy changes after a debugger is started, be sure to
close and reopen the debugger to re-synchronize the debugger with the correct
policy.

 l Be aware that the debugger is attached to a service on a specific node. This means
that if the debugger is started on only some (or one) node in a clustered
environment, the load balancer may route a message to a node without the
debugger attached. To prevent this from happening, start the debugger on all
nodes for the service.

Security Roles

In order to use the Service Debugger, you must have debugger permission to the policy
being debugged. The following predefined roles have this permission:

 l Administrator: Allows you to launch the debugger for all policies.

 l Manage Webservices: Allows you to launch the debugger for all policies.

 l Manage [name] Service: Allows you to launch the debugger for the named
service only.

Chapter 1: Working with Service Policies 57

Layer 7 Policy Authoring User Manual, v8.2

Note: Debugger access to any global policy fragments also require a separate
"Manage [name] Policy" role. If the service policy contains an included fragment,
you require Read permission to that fragment in order to view or step into that
fragment.

 l Manage [name] Policy: Allows you to launch the debugger for the named global
policy fragment only. If the service policy contains an included fragment, you
require Read permission to that fragment in order to view or step into that
fragment. Note: For all other fragment types, this role has no impact on the
Service Debugger.

For more information about the predefined roles, see Predefined Roles and Permissions
on page 1.

Notes: (1) The "Service Debugger" option will not be visible for unsupported roles. (2) It is
currently not possible to add debugger permissions to custom roles.

Running the Service Debugger

 To debug a policy:

 1. Right-click a policy in the services and policies list and then select Service
Debugger. The active version of the policy is loaded into the Service Debugger
dialog.

Notes: (1) Only the main service policy and global policy fragments can be debugged.
All other policy types cannot be debugged and will not display the "Service Debugger"
option. (2) You must have debugger permission for the given policy in order to see the
debugger option.

58 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 Figure 18: Example Service Debugger dialog, with a debug session in progress

The top pane displays the policy that was active when the Service Debugger was
open. Once debugging begins, the bottom pane shows the context variables in
use by the policy, along with their values at the particular point in the policy. For
more information, see "Using the Context Variables Tree". Tip: You may resize the
Service Debugger dialog and alter the size of each pane by dragging the split bar
separating the two panes.

 2. Add one or more breakpoints to the policy. This allows you to temporarily pause
policy processing in order to examine the results. For more information, see "Using
Breakpoints".

 3. Optionally add more context variables that you wish to inspect to the variables
tree in the bottom pane. For more information, see "Using the Context Variables
Tree".

Chapter 1: Working with Service Policies 59

Layer 7 Policy Authoring User Manual, v8.2

 4. Click [Start] (shortcut key: [F1]) to start the debugging monitor. The Service
Debugger will wait for the next message destined for the service endpoint. When a
message arrives, it is sent to the debugger and will be processed by the policy until
it reaches the first breakpoint, at which point processing is suspended. If no
breakpoints are defined, then the message runs to the end of the policy.

 5. When processing pauses at a breakpoint, you can choose to use one of the
stepping options to manually step through the assertions or click [Resume] to
resume processing until the end of the policy or the next breakpoint is reached,
whichever comes first. For more information, see "Stepping Through the Policy".

 6. When the policy finishes executing, a message is displayed in the status area at the
bottom of the dialog.

 l If the policy executed successfully, the message will read "Policy completed
successfully".

 l If the policy did not complete successfully, the message describes the failure
and the line number where it occurred; for example: "Policy completed with
error. Assertion Falsified: assertion number 27".

At this point, you can choose to do any of the following:

 l Click [Start] to restart debugging monitoring again.

 l Modify your breakpoints or list of context variables before restarting
monitoring.

 l Click [Close] to dismiss the Service Debugger dialog and then alter the policy
before debugging again.

You can click [Stop] (shortcut: Shift+[F1]) at any time to stop the debugging.

Using Breakpoints

Breakpoints allow you to suspend processing of a message at a particular point in the
policy. This allows you to examine the values of context variables used in the policy or to
manually step through the policy.

Notes: (1) Breakpoints are discarded when you close the Service Debugger dialog. (2)
Breakpoints cannot be added to the Add Comment to Policy assertion or for any disabled
assertion in the policy. (3) Breakpoints added to assertions within the Run All Assertions
Concurrently assertion will be ignored during debugging. (4) Breakpoints inside of composite
assertions can affect how the "stepping" controls work. See "Stepping Through the Policy"
for more details.

You can set a breakpoint in any number of ways:

60 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 l Click in the white space between the line number and assertion name in the top
pane of Figure 18.

 l Right-click an assertion and select Toggle Breakpoint.

 l Select an assertion and then click [Toggle Breakpoint].

You can clear a breakpoint in any number of ways:

 l Click the breakpoint icon next to the assertion name.

 l Right-click an assertion and select Toggle Breakpoint.

 l Select an assertion and then click [Toggle Breakpoint].

 l Click [Remove All Breakpoints] to delete all breakpoints at once. This is useful if
you wish to replace all existing breakpoints with new ones. Tip: Breakpoints are
not saved when the debugger is closed, so it is not necessary to clear the
breakpoints before returning to your policy.

When processing is paused at a breakpoint, the assertion is highlighted in yellow to
indicate the progress of the message. Choose one of the "stepping" options below to
continue.

Stepping Through the Policy

When processing is paused at a breakpoint, you can use one of the stepping options in
Figure 18 to manually step through the policy.

Note: If breakpoints exist inside a composite assertion or included policy, they take precedence
over the stepping hierarchy. See examples below for more details.

Step Over

Click [Step Over] to step to the next non-disabled assertion at the same level. For
composite assertions, [Step Over] will move to the composite assertion parent, then to
the next equal-level assertion immediately after the composite assertion. Shortcut key: [F3]

For example, consider the following:

 Assertion 1 <-- breakpoint here
 Assertion 2 (composite assertion or policy
fragment)
 Child A
 Child B
 Child C
 Assertion 3

This is how [Step Over] will behave:

Chapter 1: Working with Service Policies 61

Layer 7 Policy Authoring User Manual, v8.2

 l Assertion 1 --> Assertion 2 --> Assertion 3

 l If also breakpoint at Child A: Assertion 1 --> Assertion 2 --> Child assertion A -->
Assertion 3

 l If also breakpoints at Childs A & C: Assertion 1 --> Assertion 2 --> Child A --> Child C
--> Assertion 3

Step Into

Click [Step Into] to step to the next non-disabled assertion, regardless of hierarchy.
Shortcut key: [F2]

Note: It is not possible to step into the Run All Assertions Concurrently assertion or an
encapsulated assertion. Clicking [Step Into] in this case will have the same effect as [Step
Over].

Step Out

Click [Step Out] if you wish to exit processing a composite assertion. This will select the
next parent-level assertion. Shortcut key: Shift+[F3]

For example, consider the following:

 Assertion 1
 Assertion 2 (composite assertion or policy
fragment)
 Child A
 Child B <-- breakpoint here
 Child C
 Assertion 2a (composite assertion or
policy fragment)
 Child D
 Child E
 Assertion 3

This is how [Step Out] will behave:

 l From Child B --> Assertion 3

 l If also breakpoint at Child D: Child B --> Child D --> Assertion 3

 l If also breakpoints at Child D & E: Child B --> Child D --> Child E --> Assertion 3

Note: Stepping out within a Run Assertions for Each Item assertion will step out of the current
loop only, not the entire assertion. If there are more iterations remaining in this assertion, the
debugger will enter the loop again and then stop at the next breakpoint within that assertion (if
one exists).

62 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Resume

Click [Resume] to continue processing based on the policy logic. Processing continues
until the next breakpoint or the end of the policy, whichever comes first. (shortcut key:
[F4])

Stop

Click [Stop] to stop debugging, but leave the Service Debugger dialog open. Policy
processing continues in the background until the end of the policy is reached.

Using the Context Variables Tree

The context variables tree (bottom half of Figure 18) displays the context variables that
have been set as of a particular breakpoint. It offers an easy way to "peek" into a variable
in real time during processing. The context variables are listed in the following format:

name = {dataType} "value"

Where:

 l name is the name of the context variable

 l dataType is the Java class name of the context variable (for example: String,
Integer, Message, ArrayList)

 l value is the value of the variable at that particular breakpoint

Example:

error.status = {String} "403"

Tips: (1) The context variables are listed in alphabetical order. (2) You can copy any line in the
context variables tree by selecting it and pressing Ctrl-[C]. Note that child nodes need to be
specifically selected (use the Shift or Ctrl keys to select). (3) The context variables are retained
when the debugger stops, but are cleared when the debugger is started again.

Message Variables

For context variables of type Message, child nodes display the values for the attributes of
the message; for example:

Chapter 1: Working with Service Policies 63

Layer 7 Policy Authoring User Manual, v8.2

 Figure 19: Sample message variable

Interpreting the example above:

 l The context variable is a request message, where "request" is the root node of the
variable. All information about this variable are given in the child nodes.

 l The three context variables for this message are:

request.contentType
request.http.allheadervalues
request.mainpart

Tip: These three variables are automatically shown in the context variables tree
as you step through the policy.

 l The variable request.http.allheadervalues is an array containing seven values. The
child nodes list of the value of all the headers in the message.

List Variables

For context variables of type List or Array, child nodes display the value of each index. For
an example, see "http.allheadervalues" in Figure 19.

Context Variable Exceptions

Context variables set by the Evaluate Request XPath and Evaluate Response XPath
assertions will not show in the context variables tree unless these context variables are
used later in the policy. To make these variables visible, add an assertion to the policy that
uses these variables (for example, the Export Variables from Fragment assertion).

Context variables set by the Require WS-Addressing assertion will show in the context
variables tree only if a prefix is defined in the WS-Addressing Properties (a prefix is
optional for this assertion). Exception: The ${<prefix>.elements} variable is displayed in the
context variables tree only if it is used later in the policy.

64 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Searching for a Context Variable

To quickly locate a context variable, type the first few characters of its name in the Search
box to display all matching variables. You can jump to a variable by clicking on the
displayed name or by selecting it using the Up/Down arrow keys followed by the [Enter]
key.

The following are some search tips:

 l The search is not case sensitive.

 l The search will match the typed text anywhere within the variable name.

 l Only variable names are matched; variable values are not included in the search.

 l For nested variables, only the child portion of the name is matched. For example, in
Figure 19 the full name for the "contentType" variable is actually
"request.contentType". However you need to search for "contentType", not
"request.contentType".

Manually Adding Context Variables

In addition to the context variables set in the policy, you can also manually add other
context variables to the variable tree. This allows you to view other built-in variables that
are not displayed by default in the tree or to examine any custom context variables.

Context variables may be added while the debugger is running or stopped.

Note: Manually added variables are not saved in the context variable tree when the debugger is
closed.

 To manually add another built-in context variable:

 1. Choose the variable from the drop-down list below the context variable tree. For a
description of the variables, see Context Variables.

 2. Click [Add]. The variable is added to the tree and is shown in blue to indicate a
manually added variable. The variable will have an empty value initially, until the
debugger resumes.

 To specify a custom context variable:

 1. Type in the name of the custom variable in the drop-down list box, with or without
the "${ }" wrapper characters. The on-screen validator will check the syntax of the
variable.

Chapter 1: Working with Service Policies 65

Layer 7 Policy Authoring User Manual, v8.2

 2. Click [Add]. The variable is added to the tree and is shown in blue to indicate a
manually added variable. The variable will have an empty value initially, until the
debugger resumes.

 To remove a manually added variable from the tree:

 l Right-click the variable and then select Delete.

Variables that are displayed by default (that is, those not manually added) cannot be
removed.

Policy Debug Tracing

The Policy Manager has a special "trace policy" that can be invoked to help you diagnose
and troubleshoot problems in a service policy, for both SOAP and non-SOAP services.
When enabled, this trace policy executes after each assertion has completed within the
service being debugged. The following is a partial list of the information that is passed to
the trace policy for the assertion that just finished executing:

service entity ID
service ordinal
policy entity ID
policy ordinal
assertion status

For a complete list of information available to the trace policy, see "Context Variables in
Debug Trace Policy" on page 71.

IMPORTANT: Enable policy debug tracing only for troubleshooting purposes. Do not enable it
for production use. As the trace policy is run for each assertion in the policy, performance is
significantly degraded.

Debug Tracing with an Audit Sink

For a comprehensive debugging solution, you can configure an audit sink to be run in
addition to a debug trace policy. This will help troubleshoot issues such as the service
policy terminating unexpectedly with a serious policy exception. When a policy terminates
abnormally, debug tracing also stops. The addition of an audit sink lets you take some
action after the termination.

If an audit sink is configured, it will be invoked after a request has finished processing.
However, be aware that the audit sink policy cannot access any of the context variables
created by the debug trace policy.

66 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

For more information on using audit sinks, see Managing the Audit Sink and Working
with the Audit Sink Policy, both in the in the Layer 7 Policy Manager User Manual.

 To enable policy debug tracing:

 1. Open the properties for the service being debugged.

 2. In the [General] tab, select the Enable policy debug tracing check box.

 3. Click [OK]. You are asked whether you wish to edit the debug trace policy.

 l Click [Yes] to open the trace policy for editing. You will have a chance to save
any currently open policy as a new revision.

 l Click [No] to continue working in the current policy. You can edit the trace
policy later by opening [Internal Debug Trace Policy] from the Services and
Policies list. Tip: There is a default trace policy that you can use right away
without further configuration.

Once tracing is enabled, the trace policy is run every time an assertion completes in the
service policy. The performance impact depends on the complexity of the trace policy, but
it will likely be significant.

Tip: To allow debug tracing to access the assertions within the underlying policy fragment
("backing policy") of an encapsulated assertion, you must select the "Allow debug tracing into
backing policy" check box in the "Encapsulated Assertion Configuration Properties" on page
134.

To learn more about the trace policy, see "Working with the Debug Trace Policy" on page
67.

Working with the Debug Trace Policy

A special trace policy is available to help you troubleshoot a service policy. This trace
policy is enabled by selecting the Enable policy debug tracing check box in the [General]
tab of the Service Properties in the Layer 7 Policy Manager User Manual. Any existing trace
policy is used, otherwise one is created.

Tip: You can also use the Service Debugger to help you troubleshoot your policies. For more
information, see "Working with the Service Debugger" on page 56.

When the tracing policy is enabled, it appears in the Services and Policies list on the Policy
Manager interface with the name "[Internal Debug Trace Policy]", which is fixed and
cannot be changed.

Chapter 1: Working with Service Policies 67

Layer 7 Policy Authoring User Manual, v8.2

 Figure 20: Debug Trace Policy on the interface

When enabled, the trace policy is executed once for each assertion that completes in the
target policy.

The following characteristics are unique to the debug trace policy:

 l There is a single trace policy shared by all published services that have tracing
enabled.

 l The debug trace policy is edited like a normal policy, but cannot be deleted while it
is in use (i.e., enabled in the Service Properties of any published service).

 l The debug trace policy can access a large number of debug-specific context
variables that exist only while the trace policy is active. See "Context Variables for
the Debug Trace Policy" below for details.

 l The debug trace policy uses the same audit context as the policy being traced. For
example, audit detail messages added during tracing will be combined with the
detail messages from the target policy.

 l The properties for a debug trace policy cannot be modified.

 l The debug policy can optionally trace into the underlying policy fragment of an
encapsulated assertion. For details, see "Encapsulated Assertion Configuration
Properties" on page 134.

Aside from the above exceptions, the debug trace policy is configured and edited in
similar fashion to an ordinary policy. Multiple policy revisions may be created and you may
export or import the debug trace policy.

Deleting the Debug Trace Policy

When the debug trace policy is no longer required, you can delete it by right-clicking it in
the Services and Policies list and selecting Delete Policy. Note that you cannot delete the
trace policy if debug tracing is still enabled on any policy.

68 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Tip: If you delete the debug trace policy, it will be recreated the next time policy debug tracing
is enabled. However note that this will be an entirely new trace policy—it will not have access to
any policy revision history from the previously deleted trace policy. Do not delete the trace
policy if you wish to keep its revision history.

Understanding the Debug Trace Policy

When the debug trace policy is enabled for the first time, it is created with the simple
default policy (line wraps under "Audit Details" have been added for clarity):

 Figure 21: Debug trace default policy

The default trace policy can be used immediately, without modification. It will do the
following:

 1. Enables auditing with the Audit Messages in Policy assertion.

 2. Adds the following details to the audit record via the Add Audit Detail assertion:

name of the service
name of the policy
GUID of the policy
number of the assertion within the policy
name of the assertion
status returned by the assertion

These details are retrieved from the corresponding debug trace context variables,
described below. You may edit the default trace policy as necessary.

More Complex Example

The following is a more complex trace policy that will collect trace information for an
entire request as a batch, then email it to someone, sending no more than one email per
traced request:

Set Context Variable: ${trace.out} = "${trace.out}
TRACE: service.oid=${trace.service.oid}
assertion.number=${trace.assertion.numberstr}
policy.guid=${trace.policy.guid}
assertion.shortname=${trace.assertion.shortname}
status=${trace.status}\n"

Chapter 1: Working with Service Policies 69

Layer 7 Policy Authoring User Manual, v8.2

At Least One Assertion Must Evaluate to True

All Assertions Must Evaluate to True

Compare Expression: ${trace.final} == "true"

Send Email Alert: bob@acmecorp.com: subject=Debug trace for policy
body="${trace.out}"

Continue Processing

In this more complex example, a new line beginning with "TRACE:" is appended to the
${trace.out} context variable each time the trace policy is invoked for a request. When the
debug trace is complete (${trace.final} returns "true"), the contents of the ${trace.out}
variable is emailed to bob@acmecorp.com.

Tip: Though the trace policy can be as complex and full featured as any normal service policy,
it is highly recommended to keep it as short and basic as possible. Remember, the full trace
policy will be executed each time an assertion completes in the target policy.

Saving Trace Information to a File

 To save the trace information to a log file:

 1. Using the Manage Log Sinks task, create a new log sink with the following
properties:

Name: trace
Description: Save trace information to a file
Type: File
Severity Threshold: All
Selected Categories: Gateway Log, Audits (hold down [Ctrl] key to select both)

 2. Using the Manage Cluster-Wide Properties task, add the cluster property log.levels
with the following line appended to the value:

com.l7tech.server.trace.TracePolicyEvaluator.level = FINER

 3. Configure your trace policy to accumulate any desired trace information in the
context variable ${trace.out}. For example, the policy sample under "More Complex
Example" above is a good example.

 4. When service consumption is complete, you can find the trace log file in this
directory:

/opt/SecureSpan/Gateway/node/default/var/logs

70 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Security Permissions

In order to edit a Debug Trace Policy, you must have one or more roles that grant
permission for:

 l Managing services

 l Managing policies

 l Managing cluster-wide properties

These can be either predefined roles or custom roles with the appropriate permissions.

Context Variables in Debug Trace Policy

The following context variables contain values only when used in a debug trace policy, or
within a policy fragment that is included in a debug trace policy. If called from any other
policy, these variables will not exist and will be interpolated as blank (unless the
template.strictmode cluster property is enforced, in which case the calling assertion will
fail).

Variable Description

trace.service.oid The internal object identifier of the published service with the policy
currently being traced.

trace.service.name The name of the published service with the policy currently being
traced.

trace.policy.guid The GUID of the policy containing the assertion that just executed.

trace.policy.name The name of the policy containing the assertion that just executed.

trace.policy.version The policy version number that is active in the policy containing the
assertion that just executed.

trace.assertion.number This is a multivalued variable that contains the full path to the traced
assertion, with each position in the path as a separate value. For
example, for "3.2.17 Compare Expression", this variable will
contain the values "3", "2", "17".

trace.assertion.numberStr Similar to trace.assertion.number above, except the full path is
recorded as an assertion number; for example, "3.2.17".

trace.assertion.ordinal The ordinal of the assertion within its policy fragment. Using the
"Compare Expression" example under trace.assertion.number
above, this will be "17".

trace.assertion.shortName The short name of the assertion; for example "Continue
Processing".

 Table 12: Context variables for debug trace policy

Chapter 1: Working with Service Policies 71

Layer 7 Policy Authoring User Manual, v8.2

Variable Description

trace.assertion.xml The raw XML code for the assertion; useful for deeper inspection.

IMPORTANT: Use this variable carefully, as it will further impact
system performance during debug tracing.

trace.status The assertion status code returned by the assertion that just
finished. A status of "0" means the assertion succeeded. Any other
status means the assertion failed.

trace.status.message The text from the assertion status code message; for example,
"Authentication Failed".

trace.request The original request message from the policy being traced.

trace.response The original response message from the policy being traced.

Note: Take care not to modify the original request or response
within the trace policy to avoid affecting the behaviour of the policy
being traced. Even strictly read-only operations like XPath or
schema validation may affect the exact behaviour of the original
policy in subtle ways by changing how and when the XML is parsed
or the data is read.

trace.var.<variableName> Returns the contents of the ${variableName} context variable from
the policy being traced. The ${variableName} variable can be any
context variable that has been set in the policy up to that point.

trace.final This variable is set to "true" for the final trace invocation, after the
last assertion has finished for this request.

trace.out This is a special utility variable that is empty initially. It is normally
used to accumulate trace information during debug tracing.

Managing Global Resources
The Manage Global Resources task is used to manage resources that apply globally, such
as XML schema or DTD (Document Type Definition) resources. A global resource can be
referenced by an import statement in one or more Validate XML Schema assertions in a
policy, or from another global resource. During runtime, the Gateway resolves a schema
referenced by an import, include or redefine statement as part of the validation process.
The referenced schema, or global schema, must exist in the Manage Global Resources
table—and hence in the Gateway—in order for validation to proceed.

Tip: Schema dependencies (i.e., import targets) do not need to be in the Manage Global
Resources table when monitoring a URL for a schema to validate (“Monitor URL for latest
value” option in the Validate XML Schema assertion).

72 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

In order for the Gateway to be able to resolve external schemas when running the
Validate XML Schema assertion, the import statement in the assertion schema must
contain a "schemaLocation" attribute value that matches the global schema's "System ID"
value.

Default Global Resources

The following global resources are present by default:

 l SOAP 1.1 and 1.2 XML Schemas:

http://schemas.xmlsoap.org/soap/envelope/ (SOAP 1.1)
http://www.w3.org/2003/05/soap-envelope/ (SOAP 1.2)
http://www.w3.org/2001/xml.xsd (XML namespace)

 l DTDs:

http://www.w3.org/2001/XMLSchema.dtd (XML Schema)
http://www.w3.org/2001/datatypes.dtd (XML Schema Datatypes)

You can edit and delete these resources as with other resources.

Tip: By default, an XML schema may not reference a DTD. If you wish to override this
behaviour, set the schema.allowDoctype cluster property to "true".

 To manage global resources:

 1. In the Policy Manager, select [Tasks] > Manage Global Resources from the Main
Menu (on the browser client, from the Manage menu). The Manage Global
Resources dialog appears.

Chapter 1: Working with Service Policies 73

Layer 7 Policy Authoring User Manual, v8.2

 Figure 22: Manage Global Resources dialog

 2. Optionally filter the list of resources displayed:

 a. In the Matches field, enter the filter string. You can use a regular expression
for more precise matching. Tip: Some characters used in a URI may need to be
escaped to be used.

 b. Select the Type of resources to be matched: XML Schema, DTD, or Any.

 c. Click [Filter]. The list is filtered to display only the matching resources. Tip: The
status message at the bottom of the dialog summarizes any filtering in effect.

To return the list to an unfiltered state, clear the Matches field, select type Any,
then click [Filter].

 3. Choose an action to perform:

To... See

Import a global resource "Importing a Global Resource" on page 77

Add a XML schema "Adding a New Global Resource" on page 75

Add a DTD "Adding a New Global Resource" on page 75

Edit a global resource "Editing a Global Resource" on page 77

74 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

To... See

Remove a global resource "Deleting a Global Resource" on page 77

Analyze a global resource "Analyzing a Global Resource" on page 84

 4. Click [Close] when done.

Adding a New Global Resource

You can manually add a global resource to the Gateway at any time.

 To add a new global resource:

 1. In the Policy Manager, select [Tasks] > Manage Global Resources from the Main
Menu. The Manage Global Resources dialog appears.

 2. Click [Add XML Schema] or [Add DTD], depending on the type of resource to be
added. The Edit Global Resource dialog appears.

 Figure 23: Adding a Global Resource (XML Schema)

 3. Complete the dialog as follows:

Setting Description

System ID Enter the URI that indicates the location of the resource, maximum
4096 characters. Tip: For backwards compatibility, you may enter a
relative URI. However, a warning will appear.

 Table 13: Global Resource settings

Chapter 1: Working with Service Policies 75

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

For global XML schemas, this value relates to the "schemaLocation"
attribute in the schema import, include or redefine statement that
references the global schema. For example, schema A contains an
import statement that references global schema B. The value in the
"schemaLocation" attribute in schema A is
http://example.org/account.xsd:

<s:import
namespace="http://www.acme.com/schemas/account"
schemaLocation="http://example.org/account.xsd" />

And the System ID of schema A is http://example.org/main.xsd

In order to connect schema A and global schema B in the Gateway, the
System ID of global schema B must be http://example.org/account.xsd.

Note: The System ID field is case sensitive. Entering a value with the
incorrect case will cause connection problems.

Public ID (DTD only) For DTD resources, enter the public identifier for the resource. The
valid characters are [a-zA-Z0-9 -'()+,./:=?;!*#@$_%], with a maximum
4096 characters. Any white space will be replaced with a single space
character (#x20), and leading and trailing spaces will be removed.

Description Optionally enter a "friendly" description of the global resource, with a
maximum 255 characters.

[code window] In the code window, type or paste the XML schema or DTD content.
The XML Editor is available in the code window to help you search,
parse, format, or comment as required.

[Read URL] Use this to retrieve an XML schema or DTD resource from a URL.

[Read File] Use this to retrieve an XML schema or DTD resource from a file.

Security Zone Optionally choose a security zone. To remove this entity from a security
zone (security role permitting), choose "No security zone".

For more information about security zones, see Understanding
Security Zones in the Layer 7 Policy Manager User Manual.

Note: This control is hidden if either: (a) no security zones have been
defined, or (b) you do not have Read access to any security zone
(regardless of whether you have Read access to entities inside the
zones).

 4. Click [OK] when done. The new resource is added to the Manage Global Resources
table.

76 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Editing a Global Resource

 To edit an existing global resource:

 1. In the Policy Manager, select [Tasks] > Manage Global Resources from the Main
Menu. The Manage Global Resources dialog appears.

 2. In the table, select the global resource to edit and then click [Edit]. The Edit Global
Resource dialog appears.

 3. Modify the resource details as necessary. See "Adding a New Global Resource" on
page 75 for information about each field.

Deleting a Global Resource

You can delete a global resource using the Manage Global Resources task.

 To delete an existing global resource:

 1. Select [Tasks] > Manage Global Resources from the Main Menu. The Manage
Global Resources dialog appears.

 2. In the table, select the global resource(s) to delete. You can delete multiple
resources by holding down the [Ctrl] key while selecting.

 3. Click [Remove] and then click [OK] to confirm. The resource(s) are removed from
the Manage Global Resources table.

Note: You are warned if the resource being deleted is used in policies or is registered for
hardware use. You can acknowledge the warning and continue with the deletion. In this case,
you should adjust the affected policies or edit the schema.hardwareTargetNamespaces cluster
property afterward. Note that no warning is given if the schema being deleted is referenced
from another schema that is unused. To detect these references, use the Analyze feature in
the Manage Global Resources task. For more information, see "Analyzing a Global Resource"
on page 84.

Importing a Global Resource

You can import resources and dependencies into the Manage Global Resources table
using the import wizard. You can add resources individually or in bulk.

 To import a global resource:

 1. In the Policy Manager, select [Tasks] > Manage Global Resources from the Main
Menu. The Manage Global Resources dialog appears.

 2. Click [Import]. The Resource Import Wizard appears.

Chapter 1: Working with Service Policies 77

Layer 7 Policy Authoring User Manual, v8.2

 Figure 24: Resource Import Wizard

 3. Complete the wizard as described below

Step 1: Select Resources

In this step, specify the resources to import. You can either add them directly from a URL
or file, or search within a specified directory.

 To add a resource directly, do either of the following:

 l Click [Add from URL] and enter the URL. Tip: To configure options for the URL (for example,

to specify the credentials, SSL, or proxy options), click [HTTP Options] to open the Manage HTTP
Options dialog.

 l Click [Add from File] and browse to the file containing the resource to add.

 To remove resources from the list, do either of the following:

 l Select a resource to remove and then click [Remove]. The resource is removed
from the list.

 l Click [Clear]. This removes all the resources from the list.

78 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 To add resources by searching within a directory:

 1. Enter the path in the Directory field or click [Select] to browse for the directory.

 2. Select [Include subdirectories] to include the subdirectories of the specified
directory in the search. Otherwise, only the specified directory itself is searched.

 3. Optionally specify a Pattern to match. If you do not specify a pattern, all files with
the following extensions are located: *.xsd or *.dtd.

 4. Select the Type of resource to match using the drop-down list: XML Schema or
DTD.

 5. Click [Find]. The matching resources are added to the "Resources to Import"
table.

 6. Review the resources in the "Resources to Import" table carefully to ensure that
the correct resources have been identified. To make corrections:

 l Use either of the [Add...] buttons to manually specify the resource to import.
(See "To add a resource directly" from above.)

 l Use [Remove] to remove a single resource from the list.

 l Use [Clear] to clear all files from the list to start over again.

Step 2: Import Options

In this step, indicate how the wizard should respond to any of the following issues during
resource importing:

 l If a resource dependency's target namespace matches multiple existing XML
Schemas:

 l Ask: Allows you to choose a resolution each time this issue occurs. This setting
is the default.

 l Manually select an existing XML Schema: Lets you select an existing XML
Schema to use; does not import the XML Schema belonging to the
dependency.

 l Import the XML Schema: Always import the XML Schema associated with the
dependency. This will create a new resource with the same target namespace.

 l Don't import the XML Schema: Don't import the dependency or any
resources that depend on it. This represents a failure case as the main schema
will not be imported.

 l If a resource dependency's public identifier matches multiple existing resources:

Chapter 1: Working with Service Policies 79

Layer 7 Policy Authoring User Manual, v8.2

 l Ask: Allows you to choose a resolution each time this issue occurs. This setting
is the default.

 l Manually select an existing resource: Lets you select the existing resource to
use for the dependency.

 l Import the duplicate resource: Always import the resource associated with
the dependency. This will create a new resource with the same target
namespace.

 l Don't import the duplicate resource: Don't import the dependency or any
resources that depend on it.

 l If an imported resource's system identifier conflicts with an existing system
identifier:

 l Ask: Allows you to choose a resolution each time this issue occurs. This setting
is the default.

 l Use the existing resource: The existing resource is used; a new resource is not
created for this dependency.

 l Update the existing resource: Replace the existing system identifier with the
one from the imported resource.

 l Don't import the conflicting resource: Exclude the conflicting resource from
the import. Resources that depend on the resource will not be imported. This is
a failure case for the import.

 l If an imported XML Schema's target namespace matches an existing value:

 l Ask: Allows you to choose a resolution each time this issue occurs. This setting
is the default.

 l Use the existing XML Schema: Use the existing XML Schema; the contents of
the imported dependency are ignored.

 l Update the existing XML Schema: Update the existing XML Schema with the
import. This will preserve the current URI and use the content of the imported
schema.

 l Replace the existing XML Schema: Replace the existing XML Schema with the
one from the import. This will use the URI and content from the import. Any
existing XML Schemas that reference the dependency should be updated to
use the new URI.

 l Import the XML Schema: Import the incoming XML Schema as is. This will use
the URI from the import. This will create a new resource.

 l Don't import the matching resource: Exclude the resource with the matching
target namespace from the import. Resources that depend on the resource will
not be imported.

80 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 l If an imported resource's public identifier duplicates an existing value:

 l Ask: Allows you to choose a resolution each time this issue occurs. This setting
is the default.

 l Use the existing resource: Use the existing resource; the contents of the
imported dependency are ignored.

 l Update the existing resource: Update the resource with the contents from
the import. This will preserve the current URI.

 l Replace the existing resource: Replace the existing resource with the one
from the import. This will use the URI and content from the import. Any existing
resources that reference the dependency should be updated to use the new
URI.

 l Import the duplicate resource: Always import the resource, using the import
URI. This will result in duplicate resources.

 l Don't import the duplicate resource: Exclude the duplicate resource from the
import. Resources that depend on the resource will not be imported.

 l If a resource dependency cannot be found, or is invalid:

 l Ask: Allows you to choose a resolution each time this issue occurs. This setting
is the default.

 l Manually resolve or fix the dependency: Displays a dialog that lets you
manually resolve or update the dependency.

 l Don't import the invalid resource: Exclude the invalid resource from the
import. Also exclude all other resources that depend on this resource.

When 'Ask' is specified in any of the settings, you will be prompted to respond to any
issues that need attention.

Example 1:

The following dialog is displayed when there is a conflicting System ID:

Chapter 1: Working with Service Policies 81

Layer 7 Policy Authoring User Manual, v8.2

Select a resolution from the drop-down list, then specify whether:

 l [This Time Only]: Use the selected action only for this occurrence of the conflict.
When another similar conflict occurs, you will be asked again how to resolve it.

 l [Always]: Use the selected action for all the conflicts of this type. You will not be
prompted for a resolution if another similar conflict occurs during this import. This
is the same as configuring the choice in the wizard step.

Example 2:

The following dialog is displayed when a dependency of an imported resource is invalid:

Select a resolution from the drop-down list, as in the previous example. If you choose to
manually resolve, you will be given a chance to fix the dependency in the following dialog:

82 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Click [Import] to select the dependency from a URL or a file.

Step 3: Import Details

This step summarizes what actions will be taken when finishing the import. If any
resource could not be created due to an error, the details will be shown here.

Import Summary

The table lists all the resources involved in the import:

 l System ID: The URI of the resource being imported.

 l Details: The target namespace (for XML Schemas) or the public identifier of the
resource (for DTDs).

 l Type: Whether the resource is a XML Schema or DTD.

 l Status: The resource import status.

 l Action: What will be done with the resource:

 l Ignore: The resource will not be imported.

 l Update: The resource will update an existing global resource.

 l Create: A new global resource will be created for the resource.

 l [View]: Use this to view the contents of a resource.

 l [Remove]: Use this to remove a resource from the import list. Any resource that
depends on this resource will also be removed.

 l [Update]: Use this to update the system identifiers of any matching resources
before importing, if this is possible. This will alter all resources being imported for
consistency; it does not act on any resource that may be selected in the import list.
Enter the current and updated System Identifier prefixes as prompted. Note: The
updated system identifiers must be absolute URIs.

You cannot update system identifiers if:

Chapter 1: Working with Service Policies 83

Layer 7 Policy Authoring User Manual, v8.2

 l The updated system identifier conflicts with an existing global resource.

 l The content of a resource must be updated due to the change and the
dependency is not an XML Schema.

Resource Details

This section displays details about the currently selected resource:

 l System ID: The URI of the resource.

 l Description: A description of the resource.

 l Status: The resource import status.

 l Status Detail: A more verbose description explaining why the particular status
was assigned.

 l Dependencies: Shows the dependencies for the resource. You can choose to
Show all dependencies, Show only direct dependencies, or Show only transitive
dependencies (these are shown in italicized text). Note: Transitive dependencies
of existing resources are not displayed here.

 l Uses: The resource(s) that the selected resource uses.

 l Used by: The resource(s) in which the selected resource is used.

Note: The [Finish] button is activated only when there are resources that can be imported. If it
is not possible to import any resources, use the [Back] button to return to previous steps to
make corrections, or click [Cancel] to exit the wizard and try again later.

Analyzing a Global Resource

You can analyze any resources from the Manage Global Resources table. During the
analysis, you can do the following:

 l View details about the resource

 l Validate the resource

 l View dependencies for the resource: what the resource uses and what the
resource is used by

 l Reset the resource to its default value (contents and system identifier), if available

 To analyze global resource:

 1. In the Policy Manager, choose [Manage] > Manage Global Resources from the
Main Menu. The Manage Global Resources dialog appears.

84 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

 2. Choose one or more resource to analyze (hold down the [Ctrl] key to select
multiple resources).

 3. Click [Analyze]. The Analyze Global Resources dialog appears.

 Figure 25: Analyze Global Resource dialog

 4. The following table describes the dialog in detail:

Setting Description

Resources The Resources table at the top lists the resources that were selected
before the [Analyze] button was used and any dependencies:

 l System ID: The URI for the selected resource(s), as entered
in "Adding a New Global Resource" on page 75.

 l Details: The target namespace (for XML Schemas) or the
public identifier of the resource (for DTDs).

 l Type: The resource is either a XML Schema or DTD.

 l Status: The status for the resource.

[View] Choose this to display the content of the selected resource.

[Validate] Choose this to validate all the displayed resources. The number of

 Table 14: Analyze Global Resource dialog

Chapter 1: Working with Service Policies 85

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

validation failures is displayed next to "Validation Failures" below the
list of resources. The text "(not validated yet)" indicates that validation
has not yet been performed.

Note: For resources of type "DTD", validation will occur only if the
resource is used.

[Reset] Choose this to reset the system identifier and/or contents of the
selected resource back to its default values. If resetting both is
possible, you will be prompted to choose either or both to reset. If
resetting neither is possible, then this button will not be activated.

The non-default contents and /or the system identifier will be reflected
in the 'Status' for the resource. For example, the "Status" for
resources that have been reset might look like this:

OK (System ID and content modified from default value)
Failed (System ID modified from default value)
OK (content modified from default value)

Resource Details This section displays details about the resource:

 l System ID: Displays the URI for the resource.

 l Status: Whether the resource has passed validation.

 l Status Detail: The target namespace (for XML Schemas) or
the public identifier of the resource (for DTDs). If the system
identifier for a resource can be reset, then the default system
identifier is also displayed in the Status Detail for the resource.

Dependencies This section shows the dependencies for the resource. You can
choose to show all dependencies, only direct dependencies, or only
transitive dependencies (shown in italicized text). Note: Only
dependencies within the global resources are displayed. Schemas
that are configured within policies will be not be included.

 l Uses: The resource(s) that the selected resource uses.

 l Used by: The resource(s) in which the selected resource is
used.

IMPORTANT: If a resource has a Status of "Fail", the Dependencies
section does not display the other dependencies that the resource
may have.

 5. Click [Close] when done.

86 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Managing UDDI Registries
The Gateway can publish a web service by using a WSDL located in a UDDI (Universal
Description, Discovery and Integration) registry. The Gateway supports the following
registry types:

CentraSite ActiveSOA
CentraSite Governance Edition
CentraSite UDDI Enterprise Edition
Systinet UDDI Registry
Generic UDDI v3

The Manage UDDI Registries task is used to create, remove, or edit UDDI registries.

Note: If the Gateway only has HTTPS endpoints, ensure that the specific UDDI registry has
been configured to trust the Gateway's SSL certificate. For assistance, please contact your
administrator for the UDDI registry.

 To manage UDDI registries:

 1. In the Policy Manager, select [Tasks] > Manage UDDI Registries from the Main
Menu (on the browser client, from the Manage menu). The Manage
UDDI Registries dialog appears.

 Figure 26: Manage UDDI Registries dialog

 2. The following table describes each column; these are set in the UDDI registry's
properties:

Column Description

Enabled Indicates whether the UDDI registry is enabled. If disabled, the UDDI
registry is no longer usable, but it will continue to be displayed in drop-

 Table 15: Manage UDDI Registries columns

Chapter 1: Working with Service Policies 87

Layer 7 Policy Authoring User Manual, v8.2

Column Description

down lists showing all registries.

UDDI Registry Name A name that identifies the UDDI registry. This name must be unique.

Base URL The URL for the UDDI registry. This URL is unique because it is not
possible to register the same UDDI registry more than once.

UDDI Registry Type The type of UDDI registry that was published.

 3. Select a task to perform:

To... Do this...

Add a new
UDDI registry

 1. Click [Create].

 2. Complete the "UDDI Registry Properties" on page 89.

Clone an existing
UDDI registry

 1. Select the registry to clone.

 2. Click [Clone].

 3. Edit the "UDDI Registry Properties" on page 89 as required.

Remove a UDDI
registry

 1. Select the registry to remove.

 2. Click [Remove].

 3. Click [OK] to confirm. The UDDI registry is removed from the
Gateway's records.

Notes: (1) While it is possible to remove a UDDI registry that is
currently in use, information published to that registry will not be
removed. You must manually delete the various published items or use
the native UDDI interface of the registry. (2) When removing a UDDI
registry, previously published information will be deleted from the
Gateway (the UDDI registry itself is not affected).

View or edit the
properties of a
UDDI registry

 1. Select the UDDI registry to view.

 2. Click [Properties]. See "UDDI Registry Properties" on page
89 for details.

 Table 16: Manage UDDI Registries tasks

 4. Click [Close] when done.

88 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

UDDI Registry Properties

When creating or viewing details about a UDDI registry, the UDDI Registry Properties
dialog is displayed. This dialog lets you configure a UDDI registry to be recognized by the
Gateway.

 To access the properties for a UDDI registry:

 1. Run the Manage UDDI Registries task.

 2. Select a registry from the list and then click [Properties]. You can also click [Create]
to enter the properties for a new UDDI registry. The UDDI Registries Properties
appear.

 Figure 27: UDDI Registries Properties dialog

 3. Configure the properties as follows:

Setting Description

UDDI Registry Name Enter a name to identify the UDDI registry. This name must be unique.

[Enabled] Select this check box to enable the UDDI registry. Clear the check box
to disable the registry.

Tip: A disabled registry will not appear in searches where the UDDI
registry serves as the "source" for an entity (for example, when
searching for a UDDI registry from the Publish SOAP Web Service

 Table 17: UDDI Registries settings

Chapter 1: Working with Service Policies 89

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Wizard). However, a disabled registry will still appear in the Publish to
UDDI Settings dialog and the [UDDI] tab under Service Properties. If
the settings in these dialogs need to be changed for a disabled
registry, it will not be possible until the registry is re-enabled..

UDDI Registry Type Select the type of UDDI registry from the drop-down list. If you are not
using one of the listed registry types, select Generic.

Note: If the 'Generic' UDDI registry type is chosen, certain features
may not be available (for example, the collection of metrics because
the Gateway will have no prior knowledge of the registry).

Base URL Enter the base URL for the UDDI registry. The Policy Manager will
automatically copy this URL to all the other URL fields by default. The
Base URL is required.

Security URL

Inquiry URL

Publish URL

Subscription URL

These URLs are automatically populated when the Base URL is first
entered. If any of these URLs differ from the Base, edit as necessary.
If the 'Generic' UDDI registry type was selected, you must manually
complete each field.

Tip: You can quickly revert all these URLs back to the Base by clicking
[Reset URLs to Base URL].

[Reset URLs to Base
URL]

Click this to update the URL fields with the Base URL. If the UDDI
registry type is not 'Generic', then the specific relative parts of the URL
is also auto populated.

[Use Client
Authentication]

Select this check box to present a certificate to the server during the
SSL handshake, if one is requested. Clear this check box to never
present a certificate, even if one is requested. Note that access may
be denied in this case.

[Keystore] From the drop-down list, select the keystore from which to retrieve the
certificate. This is available only if the Use Client Authentication
check box is selected.

UDDI Registry
Account

Enter the Username and Password to access the UDDI registry.

Note: Although you may enter the actual password here, it is
recommended that you use a secure password reference instead. To
do this, define your password using the Manage Stored Passwords
task and then reference it here using the
${secpass.<name>.plaintext} context variable.

[Metrics Enabled] Select this check box to enable the collection of metrics data. This is
available only for the UDDI registry type "CentraSite ActiveSOA".

Metrics Publish
Frequency

The interval in minutes between successive publications of metrics
data.

[Monitoring
Enabled]

This setting allows monitoring to be enabled or disabled at a UDDI

90 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

registry level. Monitoring may be enabled or disabled for Individual
published services, but the Monitoring Enabled check box affects all
services using this UDDI registry.

Note: The Monitoring Enabled check box is available only when a
Subscription URL is supplied.

[Subscribe for
notification]

When monitoring is enabled, select this option to subscribe to be
notified about changes to the UDDI. This is a global setting that affects
how the UDDI is monitored. When this option is selected, the UDDI
registry will notify the Gateway about changes via the UDDI
notification internal service. This is an asynchronous notification from
UDDI.

To enable monitoring by subscription, the following must be done:

 1. A "UDDI Notification" internal service has been published to
the Gateway.

 2. The "UDDI Notification" internal service is published to the
UDDI registry.

If the Gateway being published contains only HTTPS
endpoints, ensure that the UDDI registry to which you are
publishing has been configured to trust the Gateway's SSL
certificate.

Note: When subscribing to receive notifications, a WSDL document
may need to be downloaded. The maximum size of this document is
controlled by the wsdlDownload.maxSize cluster property.

[Poll for
notifications]

When monitoring is enabled, select this option to automatically check
the UDDI for notifications after a specified time period.

Note: When polling for notifications, a WSDL document may need to
be downloaded. The maximum size of this document is controlled by
the wsdlDownload.maxSize cluster property.

Frequency If [Polling for notifications] was selected, specify the how
frequently to check for notifications. The default is every 10 minutes.

[Test UDDI
Connection]

Click this button to test the connection to the UDDI Registry. If
credentials were supplied, they will be used when trying to connect to
the registry, otherwise the connection attempt will use no credentials.

The test involves looking up a well known UDDI tModelKey:
uddi:uddi.org:specification:v3_policy, which also validates that the
registry is a V3 registry.

Security Zone Optionally choose a security zone. To remove this entity from a
security zone (security role permitting), choose "No security zone".

For more information about security zones, see Understanding
Security Zones in the Layer 7 Policy Manager User Manual.

Note: This control is hidden if either: (a) no security zones have been

Chapter 1: Working with Service Policies 91

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

defined, or (b) you do not have Read access to any security zone
(regardless of whether you have Read access to entities inside the
zones).

Note: If you change monitoring methods (for example, from monitoring to polling or vice
versa) or disable/enable monitoring, this will cause an update of each service that is
monitoring a Business Service in the modified UDDI registry.

 4. Click [OK] when done.

Publish to UDDI Settings

The Publish to UDDI Settings dialog is used to publish information to a UDDI registry. You
can do the following:

 l Publish a Gateway WSDL to a UDDI registry

 l Publish a Gateway endpoint as a BindingTemplate in a Business Service in the
UDDI Registry

 l Overwrite an existing Business Service in the UDDI registry with corresponding
WSDL information from the Gateway

Notes: (1) If any Gateway endpoint information (for example, cluster hostname or port
settings) is changed after the Gateway has published to UDDI, the Gateway will automatically
update UDDI so that it contains the correct gateway endpoint URLs. You can control this
behaviour using the uddi.auto_republish cluster property. By default, this property is "true"
enables auto update. Set it to "false" to disable the automatic update. (2) If service entity ID
resolution is disabled in the Service Resolution Settings dialog, then any service URLs
published to UDDI by the Gateway will not resolve if consumed.

 To configure settings for publishing to UDDI:

 l Do either of the following:

 l Right-click a web service under the Services and Policies list and then select
Publish to UDDI.

 l Select [File] > Publish to UDDI from the Main Menu.

The Publish to UDDI Settings dialog appears. This dialog organizes the settings
across these tabs: Service, WS-Policy, and Metrics.

92 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Configuring the [Service] tab

 Figure 28: Publish to UDDI Settings - [Service] tab

The [Service] tab lets you publish the Gateway's WSDL as a 'proxy binding Template'
Business Service to a UDDI registry. You can also use it to update an existing Business
Service with a new proxy bindingTemplate with a valid keyReference attached for a
Gateway endpoint. The options that are available depend on whether the published
service was created from a UDDI registry.

Publishing establishes a link between the Gateway and the UDDI registry. Once a publish
action has been performed, you cannot perform another publish unless you use the
[Don't Publish] option in Figure 28 to reverse the publish action. However, you can still
update the Gateway endpoint, which is the proxy bindingTemplate in the service, by
using the [Manage Meta Data] option.

If any meta data is added to a BusinessService or bindingTemplate published by the CA
API Gateway, that meta data will be preserved should the Gateway need to update the
UDDI.

Chapter 1: Working with Service Policies 93

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Publish Business
Services

This option publishes the WSDL from the Gateway as Business
Services in a UDDI. Only SOAP with HTTP endpoints from the
Gateway's WSDL are published to UDDI. Note: If the Gateway
WSDL contains more than one wsdl:service, then more than one
UDDI Business Service will be created. The wsdl:service maps 1:1
to a UDDI Business Service.

Complete the following:

 l UDDI Registry: From the drop-down list, select the UDDI
registry to publish to. The registry must be configured in the
Managing UDDI Registries task to appear in this list.

 l Business Entity: Click [Select] and search for the
destination Business Entity. For more information, see
"Searching the UDDI Registry" on page 48.

 l Update when Gateway WSDL changes: Select this
check box to have the Gateway update the UDDI when the
Gateway's WSDL changes. These changes may arise from
manual user edits, from refreshing the WSDL, or from a
UDDI notification causing the WSDL to be redownloaded..

This setting may be changed later, after publishing has

occurred.

After publishing, all the URLs in this Business Service in the UDDI
will point to the Gateway.

Publish Gateway
endpoint as
BindingTemplate

Available only when the
Gateway has a record of the
'original' service in UDDI and
the published service is not
under UDDI control: Service
Properties -> [UDDI] tab ->
uncheck [WSDL under
UDDI control]

Once this publishing action is performed, the WSDL under UDDI
control check box will be disabled; it will be re-enabled only when
the [Don't Publish] action is taken.

Publishing a Gateway Endpoint

You can indicate whether existing bindings should be removed
during publishing.

 l Remove existing bindings: Select this check box to have
the Policy Manager remove all bindings contained in the
original Business Service.

GIF Publishing

 l Publish using GIF: When the original service is from a
Systinet UDDI, you can choose to publish the Gateway

 Table 18: Publish to UDDI Settings - [Service] tab

94 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

endpoint according to the GIF (Governance Interoperability
Framework) specification. This option is available only
when the WSDL is not under UDDI control.

Tip: Endpoints previously published without using this
option are not GIF compliant. To make them compliant, you
must first unpublish the endpoint (using the "Don't Publish"
option), then re-publish.

 l Endpoint Type: If more than one endpoint type is
available, select which one to use when publishing using
GIF.

Publish Gateway
endpoint as
BindingTemplate (cont'd)

 l Manage Meta Data: This opens the Manage Meta Data
dialog to manage the list of keyedReferences. Use it to add,
edit, or remove keyed References. For more information
on this dialog, see "Managing Meta Data" on page 99.

Tip: It is possible to change the meta data after the endpoint
has been published. Modification of the meta data will cause
UDDI to be updated.

Note: This option cannot remove or edit the existing
keyedReferences attached to the bindingTemplate in the
Business Service on the UDDI registry. This is because the
[Remove] and [Edit] options can only be used on
keyedReference entries that were entered using [Add].

Overwrite existing
BusinessService with
Gateway URLs

Available only when the
Gateway has a record of the
'original' service in UDDI.

This option updates the entire Business Service to point to the
Gateway cluster hostname for all URLs. Note: This overwriting
cannot be undone. If the Business Service contains any non SOAP
bindings, then they are not removed. Only SOAP + HTTP bindings
are removed.

The information that is published to UDDI is taken from the
Gateway's WSDL.

 l Update when Gateway WSDL changes: Select this
check box to have the Gateway update the UDDI when the
Gateway's WSDL changes.

IMPORTANT: Once this publishing action is performed, the
WSDL under UDDI control check box in the [UDDI] tab of the
service properties will be permanently disabled. Using the [Don't
Publish] action will remove all the published bindings.

Don't Publish This option reverses the publishing effects of the [Publish
Business Services and Publish Gateway endpoint as
BindingTemplate] actions. It will not reverse the overwriting
made by the [Overwrite existing BusinessService with
Gateway URLs] action, apart from deleting the published
bindings.

Once the [Don't Publish] action has been used to reverse a
publishing action, the other three actions are once again available.

Chapter 1: Working with Service Policies 95

Layer 7 Policy Authoring User Manual, v8.2

Publishing Status

After a publishing action from Table 18 is performed, the status is shown in the [Service]
tab, next to the action selected:

Status Description

Published The information has been successfully published to the UDDI registry.

Publishing The information is actively being published or updated to the UDDI
registry.

Publish failed x times.
Set to retry

The publish failed. See Gateway Audit Events or Viewing Logs for
details. The publish will be retried if the retry attempts is less than the
uddi.wsdlpublish.maxretries cluster property.

Cannot publish. Tried
x times. Please select
'Don't Publish' to retry

Unable to publish to the UDDI registry after exhausting the maximum
number of times in the uddi.wsdlpublish.maxretries cluster property.
To clear this status to try again, run the [Don't Publish] action first.

Deleting The information is being actively deleted from the UDDI registry.

Delete failed x times.
Set to retry

The delete failed. The delete will be retried if the retry attempts is less
than the uddi.wsdlpublish.maxretries cluster property.

Cannot delete. Tried x
times. Please select
'Dont Publish' to retry

Unable to delete from the UDDI registry after exhausting the maximum
number of times in the uddi.wsdlpublish.maxretries cluster property.
To clear this status to try again, run the [Don't Publish] action first.

 Table 19: [Service] tab - Publishing Status

Configuring the [WS-Policy] tab

 Figure 29: Publish to UDDI Settings - [WS-Policy] tab

This tab is used to configure publishing settings for the WS-Policy.

96 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Publish and Attach
WS-Policy

Select this check box to publish the WS-Policy to the UDDI registry. The
policy can be attached to the original business service or to all published
business services.

The following settings are available only when the Publish and Attach WS-Policy check box is
selected:

WS-Policy
Attachment
Business Service

From the drop-down list, select the target for the WS-Policy attachment.
The options that are available depend on the [Service] tab and whether
there is an "Original UDDI Business Service" selected:

 l If a service has a selected "Original UDDI Business Service",
then "Original Business Service" is available.

 l If business services were published (first option on [Service] tab),
then "Published Business Services" is available.

 l If both of the above, then "Both Business Services" is
available.

Publish URL to full
Layer 7 policy

The policy published to the UDDI registry can be either the client view of
the policy (which is sufficient to allow a client to consume the service) or
the full policy (as shown when editing the policy in the Policy Manager).
The full policy is only available when the policy is downloaded from a
white-listed IP address. Tip: Use the service.passthroughdownloads
cluster property to configure white-listed addresses.

Inline policy
includes

This check box is used to control how to handle included policy fragments
in a WS-Policy registered in the UDDI. (These fragments are added
using the "Include Policy Fragment Assertion" on page 635.) It is
enabled only when [Publish URL to full....] is selected.

 l Select this check box to insert all the assertions from the policy
fragment into the main policy. This way you can see all the
assertions from the fragment, but the hierarchy is lost.

 l Clear this check box to show just the "Include Policy Fragment"
assertion in the policy. This will retain the policy structure in the
fragment but you will not see the individual assertions.

 Table 20: Publish to UDDI Settings - [WS-Policy] tab

Configuring the [Metrics] tab

The [Metrics] tab is available only for services that have been published to a CentraSite
ActiveSOA UDDI registry. Ensure that a Layer 7 Policy Enforcement Point target type has
been created in Centrasite ActiveSOA and that a target has been created.

Tip: To publish metrics to UDDI, ensure that the uddi.centrasite.activesoa.target cluster
property is configured with the name of the target as configured target in CentraSite
ActiveSOA.

Chapter 1: Working with Service Policies 97

Layer 7 Policy Authoring User Manual, v8.2

 l Select the Publish Service Metrics for Published Business Services check box to
enable metrics.

The following metrics will be collected:

Total Count
Success Count
Failure Count
Minimum Response Time
Maximum Response Time
Average Response Time Availability

Controlling Access to the WSDL or WS-Policy

When publishing a service (WSDL) or its WS-Policy to UDDI, a remote requestor may
attempt to download the published WSDL/WS-Policy from the Gateway after obtaining
the WSDL/WS-Policy URL from UDDI. To control who is permitted to download and the
extent of what is downloaded, configure these two cluster properties:

 l service.passthroughdownloads: This property defines a "whitelist" of who is
permitted to download WSDL and policy documents without credentials. By
default, only the localhost is permitted. Tip: This cluster property allows the use of
IP prefixes/masks to configure a wide range of IPv4 or IPv6 addresses for a
whitelist. For example, use "10.7.32.0/24" to permit the address range 10.7.32.0 to
10.7.32.254.

 l service.wsdlDependenciesEnabled: This property defines whether any WSDL
dependencies may be downloaded in addition to the WSDL itself. Examples of
dependencies include child WSDLs or XML schemas that enable the main WSDL to
be fully functional.

For more information on these cluster properties, see "Service Settings" in the Gateway
Cluster Properties

98 Chapter 1: Working with Service Policies

Layer 7 Policy Authoring User Manual, v8.2

Managing Meta Data

When publishing a proxied Gateway endpoint based on the GIF (Governance
Interoperability Framework) specifications, it may be necessary to add keyedReference
meta data to identify the management server's businessService. The Manage Meta Data
dialog allows you to do this when publishing to a UDDI registry.

 To manage meta data:

 1. Access the Publish to UDDI Settings dialog. For more information, see "Publish to
UDDI Settings" on page 92.

 2. In the [Service] tab, select the 'Publish Gateway endpoint as Binding Template'
option.

 3. Select [Manage meta data]. The Manage Meta Data dialog appears. This dialog
lists the tModelKey, keyName, and keyValue for each keyedReference.

 Figure 30: Manage Meta Data dialog

 4. Configure the dialog as follows:

To... Do this...

Add a new
keyedReference

 1. Click [Add].

 2. Enter the tModelKey, keyName, and keyValue.

 3. Click [OK].

Edit a keyedReference 1. Select the item to edit.

 2. Click [Edit] and then modify the values as required.

 3. Click [OK].

Remove a
keyedReference

 1. Select the item to remove.

 2. Click [Remove].

 Table 21: keyedReference settings

 5. Click [OK] when done.

Chapter 1: Working with Service Policies 99

Layer 7 Policy Authoring User Manual, v8.2

Layer 7 Policy Authoring User Manual, v8.2

100 Chapter 1: Working with Service Policies

Chapter 2:
 Working with Policy Fragments

Policy fragments provide a convenient way to create a group of assertions that can be
used in any published service. These "fragments" behave as boilerplate text to help
maintain consistency when constructing a policy: once a fragment is created, it can be
added to any service policy only as a "read only" entity. This allows you to enforce global
rules across any number of services. Maintenance is also simplified: when the active
version of a fragment is updated, the changes are instantly applied in every policy where
the fragment is used. When a policy is exported or imported, any fragments present are
also included.

Tip: Policy fragment can also be used in encapsulated assertions, to create a self-contained
package that looks and behaves like a standard assertion. For a detailed explanation on
encapsulated assertions, including their similarities and differences with policy fragments, see
"Working with Encapsulated Assertions" on page 126.

As with conventional policies, the ability to use a policy fragment depends on the role
and permissions of the user currently logged in. At the very least, the user must have
Read access to the fragment and Update access to the policy to which the fragment is
being added. For more information, see Predefined Roles and Permissions in the Layer 7
Policy Manager User Manual.

Example:

The following example illustrates how a service policy can be constructed by users in
different roles throughout an organization, using policy fragments that were predefined
earlier:

 1. The first phase of a policy (e.g., IP address and authentication assertions) is edited
by DMZ network operations staff.

 2. A subsequent phase containing WS-Security and schema validation assertions
could be under the control of a security architect.

 3. The routing assertion and other assertions related to Protected Service behaviour
assertions are added by the application deployer.

Chapter 2: Working with Policy Fragments 101

Layer 7 Policy Authoring User Manual, v8.2

Types of Fragments
There are three types of fragments that you can create:

 l Global policy fragments: These fragments are predefined by the administrator
and will run at specific points during message processing, depending on the
global policy tag. These fragments do not appear in the service policy. For more
information, see "Working with Global Policy Fragments" on page 106.

 l Included policy fragments: These are fragments that are manually added to a
service policy as required, using the "Include Policy Fragment Assertion" on page
635. The fragment appears in the service policy as "Include Policy
Fragment: <name>" and can be repositioned as necessary.

 l Policy-Backed Identity Provider Policy Fragment: These fragments contain
identity provider policies and are intended for use with Policy-Backed Identity
Providers (PBID). (Only policy fragments of this type may be selected for use in a
PBID.) For more information, see Policy-Backed Identity Providers in the Layer 7
Policy Manager User Manual.

Choose a task from the following table:

For information on how to... See

Create a new policy fragment

(see also "Policy Fragment Shortcut" below)

"Creating a Policy" on page 21

Create a new version of a policy
fragment

"Editing a Policy Fragment" on page 104

Add a policy fragment to a policy "Adding a Policy Fragment to a Service Policy" on
page 103

Delete a policy fragment "Deleting a Policy" on page 105

Edit a policy fragment "Editing a Policy Fragment" on page 104

 Table 22: Policy fragment tasks

Policy Fragment Shortcut

 To quickly create a fragment based on existing assertions:

 1. Open the policy revision containing the assertions to be added to a fragment.

 2. Select one or more assertions in the policy window.

 3. Right-click and select Create Include Fragment.

 4. Enter a name for the fragment and then click [OK].

102 Chapter 2: Working with Policy Fragments

Layer 7 Policy Authoring User Manual, v8.2

The Policy Manager replaces the selected assertions with a new Include Policy
Fragment that contains those assertions. The new fragment is added to the
Services and Policies list, where it will be available to be added to any other policy.

Policy Fragment Tips

The following tips apply to included policy fragments. For tips and suggestions related to
global policy fragments, see "Working with Global Policy Fragments" on page 106.

 l Policy fragments are listed in the Services and Policies list.

 l Fragments can be as short as a single assertion or as long as a complete policy.

 l The assertions in an included policy fragment cannot be edited when the fragment
is inserted into a policy. However you can edit an included policy fragment and the
changes instantly apply everywhere the fragment is used.

 l You can import items from a policy template into a fragment, but you cannot
import from a UDDI registry.

 l You can drag and drop one policy fragment into another (i.e., a fragment can be
made up of other fragments).

 l Policy fragments have their own revision history.

 l If the fragment contains assertions that create their own context variables and
these variables need to be available to the parent policy (that is, outside of the
policy fragment), ensure that a Export Variables from Fragment assertion appears
in the fragment. An example of assertions that create context variables are the
XPath-based assertions (Evaluate Request XPath or Evaluate Response XPath).

 l If the fragment is to be used in an encapsulated assertion, it is not necessary to
include the a Export Variables from Fragment assertion unless XPath-based
assertions are involved.

For more information on policies, see "Configuring a Policy" on page 18.

Adding a Policy Fragment to a Service Policy
You can add an included policy fragment to any service policy provided that the
permissions in your role permit it. Keep the following in mind:

 l Adding a fragment adds all the assertions defined within that fragment. It is not
possible to remove any assertion in a policy added by a fragment.

 l You can view the properties for assertions added by a fragment, but you cannot
make changes.

Chapter 2: Working with Policy Fragments 103

Layer 7 Policy Authoring User Manual, v8.2

 l The policy is parsed as if the assertions in the fragment were manually added to
the policy. In other words, the fragment does not interrupt the normal policy logic.

Note: Global policy fragments do not need to be manually added to a service policy. These
global fragments have predefined rules as to when and where they are run. For more
information, see "Working with Global Policy Fragments" on page 106.

 To add an included policy fragment to a service policy:

 1. Open the service policy that will receive the fragment. For more information, see
"Editing a Service Policy" on page 22.

Tip: You can choose to open an existing fragment as it is possible to nest a fragment
within another fragment. For more information, see "Editing a Policy Fragment" on page
104.

 2. Add the Include Policy Fragment assertion to the appropriate location in service
policy.

 3. Choose the policy fragment to be added from the list displayed. The fragment
appears as: "Include Policy Fragment: <name>" in the policy window. Some tips to
note:

 l If the list of fragments is empty, this means no included policy fragments have
been created yet. For information on creating a policy fragment, see "Creating
a Policy" on page 21.

 l You can activate another version of the fragment before adding it to the policy.
For more information, see "Policy Revisions" on page 6.

 4. Use the Assertions Tool Bar to reposition the policy fragment if necessary.

 5. Repeat steps 2 to 4 to add additional policy fragments if required.

Editing a Policy Fragment
Policy fragments are edited in the same manner as service policies. Keep the following in
mind:

 l When you save the active version of a fragment, the changes are effective
immediately in all policies using that fragment.

 l A new revision is created every time you save changes to a policy fragment. For
more information, see "Policy Revisions" on page 6.

104 Chapter 2: Working with Policy Fragments

Layer 7 Policy Authoring User Manual, v8.2

 To edit a policy fragment:

 1. Load the fragment into the policy development window using one of the following
methods:

 l Double-click the fragment name in the Services and Policies list. This loads the
"active" version of the fragment.

 l Right-click the fragment name in the Services and Policies list and then select
Active Policy Assertions. This loads the "active" version of the fragment.

 l Right-click the fragment name in the policy window and then select Active
Policy Assertions. This loads the "active" version of the fragment.

 l Right-click the fragment name in the Services and Policies list and then select
Revision History. This lets you edit any version of the fragment or set any
version as the "active" version. For more information, see "Policy Revisions" on
page 6.

 2. Modify the fragment as necessary. For more information, see "Configuring a Policy"
on page 18.

 3. Save the changes using either [Save] or [Save and Activate].

Deleting a Policy
There are several ways to delete a policy in the Policy Manager:

 l For included policies (i.e., policy fragments), you can delete it directly from the
service policy. This removes the policy and all its assertions from that one service
policy only.

 l For all policy types, you can delete it from Policy Manager. This removes it from the
Services and Policies list and makes it unavailable for use in any service policy.

Deletions may take up to 15 seconds to take effect. Tip: Consider disabling a policy
instead if you think you may need it again in the future.

Note: You cannot delete a service policy unless you first delete its associated published
service. For more information, see Deleting a Published Service in the Layer 7 Policy Manager
User Manual.

 To delete an included policy from a service policy:

 l Delete the "Include: <fragment name>" assertion from the policy. For more
information, see "Deleting an Assertion" on page 119. You cannot delete individual
assertions within the fragment; you must delete the entire fragment. Tip: To

Chapter 2: Working with Policy Fragments 105

Layer 7 Policy Authoring User Manual, v8.2

remove individual assertions within a policy fragment, you should edit the
fragment instead.

 To delete a policy from the Policy Manager:

 1. Right-click the policy icon in the Services and Policies list and then select Delete.

 2. Click Yes to confirm.

Notes: (1) You cannot delete a policy that is still in use in any service. (2) You can delete only
one policy at a time. If more than one policy icon is selected in the Services and Policies list,
only the first will be deleted.

Working with Global Policy Fragments
Global policies are policy fragments that are always applied before or after every service
policy in the system. They can be used to configure global behaviors like auditing or
logging, where it may not be feasible to manually add the policy logic to all service
policies.

Global policies ensure consistency and reduce possible errors, because an administrator
no longer needs to remember to manually insert policy fragments to every service policy
to achieve a specific outcome (in that scenario, the Policy Manager is not able to detect
instances where the administrator forgets to add a policy fragment) .

Only users with the role of 'Administrator' can create or delete global policies.
Administrators and those with the role 'Manage Web Service' can edit global policies.
Administrators, Operators, and Manage Web Service roles can read global policies.

IMPORTANT: It is important to plan your global policies carefully. Careless use of these
policies can cause service requests to fail in ways that may be difficult to diagnose.

Types of Global Policies

The following types of global policies are available (these are selected from the "Policy
Tag" field in the policy properties):

 l message-received: A policy of this type will run when a message is received, but
before the service is resolved.

 l pre-security: A policy of this type will run before any security is processed in the
request. This policy runs even if there is no security in the message.

106 Chapter 2: Working with Policy Fragments

Layer 7 Policy Authoring User Manual, v8.2

Other items of note about this policy type: A 'pre-security' global policy can run
even before the target service is determined, since it may be necessary to decrypt a
message in order to resolve the service. As a result, it is possible that the 'pre-
security' policy may run without the corresponding 'post-security' policy being
run. For example, consider this scenario: a 'pre-security' policy runs, but then
service resolution fails. When this happens, the only policy that can run upon
resolution failure is the 'message-completed' policy.

 l pre-service: A policy of this type will run before the service policy is executed.

 l post-service: A policy of this type will run after the service policy is executed.

 l post-security: A policy of this type will run after security is processed for the
response. This policy runs even if there is no security processing is required.

 l message-completed: A policy of this type will run when processing for a message
completes. It will run even if the service policy fails, an exception occurs, the service
could not be resolved, or any other condition that prevents the service policy from
being completed.

Note that only one policy of each type is permitted.

How Global Policies are Evaluated

Global policies are evaluated in the order shown under "Types of Global Policies" above.
However note that not all global policies will be evaluated in all cases. If a service cannot
be resolved, then only the following global policies would be run:

 l message-received policy

 l pre-security policy (only if security processing is required during service resolution,
i.e., for an encrypted message body)

 l message-completed policy

Global policies of these types should be configured to run without a resolved service and
should not assume there is a response message. As a result, a WSDL operation assertion
(for example) should not be used in these policies.

If policy processing failed due to an exception or policy falsified error, then the following
global policies will be run:

 l message-received policy

 l pre-security policy

 l pre-service policy

 l message-completed policy

Chapter 2: Working with Policy Fragments 107

Layer 7 Policy Authoring User Manual, v8.2

The Gateway will stop evaluating global policies on any error or on policy failure, except
for the message-completed policy, which always runs.

Tip: A global policy that contains no assertions or all disabled assertions will always succeed.

How a Global Policy Relates to the Service Policy

A global policy shares the following with a service policy:

request/response messages
message context mappings
audit/fault settings
authentication details
built-in context variables (all other variables local to the policy being run)

Routing assertions in a global policy will not affect the routing latency or the URL for the
service policy.

The policy status of a global policy affects the overall status for a service: a failure of a
global policy causes a "policy falsified" error for message processing.

Details in SOAP faults will not include details for global policies.

If an audit sink policy is configured, it will run after the service policy and all global policies
complete.

When constructing a global policy, you may use any policy fragments.

Supported Assertions

The following assertions are tested and certified for use in global policies:

"Add Audit Detail Assertion" on page 600

"Add Comment to Policy Assertion" on page 618

"All Assertions Must Evaluate to True Assertion" on page 619

"Apply Rate Limit Assertion" on page 573

"At Least One Assertion Must Evaluate to True Assertion" on page 619

"Audit Messages in Policy Assertion" on page 602

"Capture Identity of Requestor Assertion" on page 604

"Compare Expression Assertion" on page 621

"Continue Processing Assertion" on page 625

"Customize Error Response Assertion" on page 430

108 Chapter 2: Working with Policy Fragments

Layer 7 Policy Authoring User Manual, v8.2

"Customize SOAP Fault Response Assertion" on page 607

"Include Policy Fragment Assertion" on page 635

"Limit Availability to Time/Days Assertion" on page 584

"Limit Message Size Assertion" on page 668

"Restrict Access to IP Address Range Assertion" on page 592

"Send Email Alert Assertion" on page 612

"Send SNMP Trap Assertion" on page 615

"Set Context Variable Assertion" on page 656

"Stop Processing Assertion" on page 664

W A R N I N G

Other assertions not listed above may work but are not recommended and not
supported by CA Technologies. Avoid using assertions in a global policy that have
significant side effects, as this can make debugging service policies extremely
difficult. Please contact CA Technical Support if you are unsure.

Limitations to Global Policies

Note the following scenarios when global policies will not be processed:

 l Global policies will not be processed when the Gateway generates a policy for the
SecureSpan XML VPN Client.

 l Global policies will be not processed when the Gateway generates the WS-
SecurityPolicy document attached to a service WSDL.

 l Global policies will not be included if policy debug tracing is enabled for a service.

 l Global policies will not be included when the service policy is exported.

 l Global policies will not be included in policy migrations.

Validating Global Policies

As with policy fragments, the policy validator built into the Policy Manager can provide
only limited assistance when editing a global policy.

When global policies are in effect, the validator may display unexpected warnings when
editing a service policy since the validator will not see the effects of the global policies. For
example, if credentials are collected in a global policy, a service policy that uses those
credentials may trigger a validator warning that no credentials have been collected. Note:
Use of such a global policy is not recommended.

Chapter 2: Working with Policy Fragments 109

Layer 7 Policy Authoring User Manual, v8.2

Layer 7 Policy Authoring User Manual, v8.2

110 Chapter 2: Working with Policy Fragments

Chapter 3:
 Working with Policy Assertions

A policy defines restrictions for the consumption of a published service that is protected
by the Gateway. Policy assertions are the building blocks for policies in the Policy
Manager. Located in the [Assertions] tab, the assertions are organized into categories
corresponding to the main requirements of a policy:

Access Control

Transport Layer Security

XML Security

Message Validation/Transformation

Message Routing

Service Availability

Logging, Auditing, and Alerts

Policy Logic

Threat Protection

Internal Assertions

Custom Assertions (visible only when Custom Assertions are present)

The Policy Templates folder is the repository for exported policies. (Note: The Policy
Templates folder does not appear in the browser client version of Policy Manager.)

Unless specified otherwise, all assertions can be used in a web service and XML
application policy. A policy is constructed by either:

 l Dragging and dropping an assertion from the [Assertions] tab into the policy
development window, or by

 l Highlighting the target assertion in the [Assertions] tab and clicking the (Add
Assertion) button in the Assertions Tool Bar.

Most assertions require configuration either before or after being added to the policy
development window.

Note: Depending on which Gateway product you have installed, not all assertions described in
this help system may be available. See Features by Product in the Layer 7 Policy Manager User
Manual for a list of which features are available for each product.

Chapter 3: Working with Policy Assertions 111

Layer 7 Policy Authoring User Manual, v8.2

Adding an Assertion
You can add an assertion to a service as follows:

 1. Ensure the policy window for the service is visible. You can open this window by
doing one of the following:

 l Right-click the service name in the Services and Policies list and then select
Active Policy Assertions, or

 l Double-click the service name in the Services and Policies list

 2. Locate the assertion to add using either of these methods:

 l Browse for the assertion by expanding each category under the [Assertions]
tab.

 l Type a few characters of the assertion's name in the Search box and then select
a match to jump directly to the assertion.

 3. Add the assertion to the policy by doing one of the following:

 l Drag and drop the assertion from the [Assertions] tab into the policy
development window.

 l Select the assertion in the [Assertions] tab and click the (Add
Assertion) button in the Assertions Tool Bar.

Note: Depending on which Gateway product you have installed, not all the assertions listed in
Table 23 may be available. See Features by Product in the Layer 7 Policy Authoring User
Manual for a list of which features are available for each product.

After adding, some assertions may require additional configuration. Please refer to the
documentation for the specific assertion for more details.

Table 23 lists all the predefined assertions their categories under the [Assertions] tab.

Tips: (1) The encapsulated assertions feature also allows you to populate any category with
custom created assertions based on policy fragments. For more information, see "Working with
Encapsulated Assertions" on page 126. (2) When adding an encapsulated assertion to a policy,
it is recommended that you manually open the assertion properties to review the required
inputs, if the properties dialog does not display automatically.

Assertion Category

Access Resource Protected by JSAM Access Control

 Table 23: Policy Manager assertions

112 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

Assertion Category

Custom Assertions

Access Resource Protected by OAM Access Control
Custom Assertions

Add Audit Detail Logging, Auditing and Alerts

Add Comment to Policy Policy Logic

Add or Remove WS-Security XML Security

Add or Remove XML Element(s) Message Validation/Transformation

Add Security Token XML Security

Add Timestamp XML Security

Add WS-Addressing Message Validation/Transformation

All assertions must evaluate to true Policy Logic

Apply JSON Transformation Message Validation/Transformation

Apply Rate Limit Service Availability

Apply Throughput Quota Service Availability

Apply XSL Transformation Message Validation/Transformation

At least one assertion must evaluate to true Policy Logic

Audit Messages in Policy Logging, Auditing and Alerts

Authenticate Against Identity Provider Access Control

Authenticate Against Radius Server Access Control

Authenticate User or Group Access Control

Authenticate Using Tivoli Access Manager Access Control
Custom Assertions

Authenticate Against SiteMinder Access Control

Authenticate with Siteminder R12 Protected
Resource

Access Control
Custom Assertions

Authorize via SiteMinder Access Control

Build RST SOAP Request XML Security

Build RSTR SOAP Response XML Security

Build SAML Protocol Request XML Security

Chapter 3: Working with Policy Assertions 113

Layer 7 Policy Authoring User Manual, v8.2

Assertion Category

Build SAML Protocol Response XML Security

Cancel Security Context XML Security

Capture Identity of Requestor Logging, Auditing and Alerts

Check Protected Resource Against SiteMinder Access Control

Collect WSDM Metrics Internal Assertions

Compare Expression Policy Logic

Compress Messages to/from SecureSpan XVC Message Validation/Transformation

Configure WS-Security Decoration XML Security

Configure Message Streaming Message Routing

Continue Processing Policy Logic

Convert Audit Record to XML Internal Assertions

Copy Request Message to Response Message Routing

Create Routing Strategy Policy Logic

Create SAML Token XML Security

Create Security Context Token XML Security

Create XACML Request XML Security

Customize Error Response Logging, Auditing and Alerts

Customize SOAP Fault Response Logging, Auditing and Alerts

Decode MTOM Message Message Validation/Transformation

Encode/Decode Data Message Validation/Transformation

Encode to MTOM Format Message Validation/Transformation

Encrypt Element XML Security

Enforce WS-I BSP Compliance Message Validation/Transformation

Enforce WS-I SAML Compliance Message Validation/Transformation

Enforce WS-Security Policy Compliance Message Validation/Transformation

Establish Outbound Secure Conversation XML Security

Evaluate JSON Path Expression Message Validation/Transformation

114 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

Assertion Category

Evaluate Regular Expression Message Validation/Transformation

Evaluate Request XPath Message Validation/Transformation

Evaluate Response XPath Message Validation/Transformation

Evaluate SAML Protocol Response XML Security

Evaluate WSDL Operation Message Validation/Transformation

Evaluate XACML Policy XML Security

Exchange Credentials using WS-Trust Access Control

Execute Routing Strategy Policy Logic

Execute Salesforce Operation Message Routing
Custom Assertions

Export Variables from Fragment Policy Logic

Extract Attributes for Authenticated User Access Control

Extract Attributes from Certificate Access Control

Generate OAuth Signature Base String XML Security

Generate Security Hash XML Security

Generate UUID Policy Logic

Handle UDDI Subscription Notification Internal Assertions

Include Policy Fragments Policy Logic

Join Variable Policy Logic

Limit Availability to Time/Days Service Availability

Limit Message Size Threat Protection

Look Up Certificate XML Security

Look Up Context Variables Policy Logic

Look Up in Cache Service Availability

Look Up Item by Index Position Policy Logic

Look Up by Item by Value Policy Logic

Look Up Outbound Secure Conversation Session XML Security

Manage Cookie Message Routing

Chapter 3: Working with Policy Assertions 115

Layer 7 Policy Authoring User Manual, v8.2

Assertion Category

Manage Gateway Internal Assertions

Manage Transport Properties/Headers Message Routing

Map Values Policy Logic

Manipulate Multivalued Variable Policy Logic

(Non-SOAP) Check Results from XML Verification XML Security

(Non-SOAP) Decrypt XML Element XML Security

(Non-SOAP) Encrypt XML Element XML Security

(Non-SOAP) Sign XML Element XML Security

(Non-Soap) Validate SAML Token XML Security

(Non-SOAP) Verify XML Element XML Security

Perform JDBC Query Access Control

Process Routing Strategy Result Policy Logic

Process RSTR Response XML Security

Process SAML Attribute Query Request Message Validation/Transformation

Process SAML Authentication Request Message Validation/Transformation

Protect Against Code Injection Threat Protection

Protect Against Cross-Site Request Forgery Assertion Threat Protection

Protect Against Document Structure Threats Threat Protection

Protect Against JSON Document Structure Threats Threat Protection

Protect Against Message Replay XML Security Threat Protection

Protect Against SQL Attack Threat Protection

Query LDAP Access Control

Query Rate Limit Service Availability

Query Throughput Quota Service Availability

Replace Tag Content Message Validation/Transformation

Require Encrypted Element XML Security

Require Encrypted UsernameToken Profile Credentials Access Control

116 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

Assertion Category

Require FTP Credentials Access Control

Require HTTP Basic Credentials Access Control

Require HTTP Cookie Access Control

Require NTLM Authentication Credentials Access Control

Require Remote Domain Identity Access Control

Require SAML Token Profile Access Control

Require Signed Element XML Security

Require SSH Credentials Access Control

Require SSL or TLS Transport Transport Layer Security

Require SSL or TLS Transport with Client
Authentication

Access Control

Require Timestamp XML Security

Require Windows Integrated Authentication
Credentials

Access Control

Require WS-Addressing Message Validation/Transformation

Require WS-Secure Conversation Access Control

Require WS-Security Kerberos Token Profile
Credentials

Access Control

Require WS-Security Password Digest Credentials Access Control

Require WS-Security Signature Credentials Access Control

Require WS-Security UsernameToken Profile
Credentials

Access Control

Require XPath Credentials Access Control

Resolve Service Service Availability

REST Manage Gateway Internal Assertions

Restrict Access to IP Address Range Service Availability

Retrieve Credentials from Context Variable Access Control

Retrieve Kerberos Authentication Credentials Access Control

Retrieve SAML Browser Artifact Access Control

Chapter 3: Working with Policy Assertions 117

Layer 7 Policy Authoring User Manual, v8.2

Assertion Category

Return Template Response to Requestor Message Routing

Route via FTP(S) Message Routing

Route via HTTP(S) Message Routing

Route via JMS Message Routing

Route via MQ Native Message Routing

Route via Raw TCP Message Routing

Route via SSH2 Message Routing

Run All Assertions Concurrently Policy Logic

Run Assertions for Each Item Policy Logic

Scan Using ICAP-Enabled Antivirus Threat Protection

Scan Using Sophos Antivirus Threat Protection
Custom Assertions

Scan Using Symantec Antivirus XML Security
Custom Assertions

Send Email Alert Logging, Auditing and Alerts

Send SNMP Trap Logging, Auditing and Alerts

Set Context Variable Policy Logic

Set SAML Response Status Code Message Validation/Transformation

Sign Element XML Security

Split Variable Policy Logic

Stop Processing Policy Logic

Store to Cache Service Availability

Subscribe to WSDM Resource Internal Assertions

Translate HTTP Form to MIME Message Validation/Transformation

Translate MIME to HTTP Form Message Validation/Transformation

Use WS-Federation Credential Access Control

Use WS-Security version 1.1 XML Security

Validate Certificate Message Validation/Transformation

Validate or Change Content Type Message Validation/Transformation

118 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

Assertion Category

Threat Protection

Validate HTML Form Data Message Validation/Transformation

Validate JSON Schema Message Validation/Transformation
Threat Protection

Validate MTOM Message Message Validation/Transformation

Validate OData Request Threat Protection

Validate SOAP Attachments Message Validation/Transformation

Validate XML Schema Message Validation/Transformation

Threat Protection

Deleting an Assertion
You can delete an assertion that you no longer need in a policy.

Note: Removing an assertion may affect the integrity of a policy. Be sure to check the
messages in the Policy Validation Messages window after deleting.

Tip: If you only need remove an assertion from a policy temporarily, consider disabling the
assertion instead.

 To delete an assertion:

 1. In the policy window, right-click the assertion to remove and then select Delete
Assertion.

Or:

In the policy window, select the assertion to remove, then click .

Tip: You can delete several assertions at the same time by using [Ctrl]-click to
select them first.

 2. Click [Yes] to confirm the deletion.

Disabling an Assertion
You can disable specific assertions in a published policy or policy fragment. This has the
same effect as deleting the assertion, while preserving the assertion's properties and
structure of the policy. Disabling an assertion can help you troubleshoot or test a policy.
Disabled assertions are ignored by the Gateway during policy consumption and by the

Chapter 3: Working with Policy Assertions 119

Layer 7 Policy Authoring User Manual, v8.2

policy validator.

Note: Disabling an assertion may affect the integrity of a policy. Be sure to check the
messages in the Policy Validation Messages window after disabling.

Disabled assertions will stand out in the policy development window as follows:

 Figure 31: A disabled assertion

 l Red "X" over the assertion icon

 l Assertion name shown as italicized gray text

A disabled assertion can be enabled at any time.

Note the following when using the disabling feature with the composite assertions ("All
assertions must evaluate to true", "At least one assertion must evaluate to true", Run All
Assertions Concurrently):

 l Disabling a composite assertion will disable all child assertions contained within it.

 l Disabling all child assertions does not disable the parent composite assertion. The
end result is the same as a composite assertion with no child assertions.

 l If a composite assertion is disabled, enabling any child assertion within it will also
enable all parent composite assertions.

 l Any assertion added to a disabled composite parent will be disabled, regardless of
its original state. Any assertion added to an enabled composite parent retains its
previous state.

 l New assertions added from the palette to a composite assertion will assume the
state of the parent composite assertion.

Tip: To select multiple assertions for disabling, hold down the [Ctrl] key while clicking on the
assertion.

 To disable an assertion:

 l In the policy window, right-click the assertion to disable and then select Disable
Assertion.

Or:

In the policy window, select one or more assertions to disable, then click .

120 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

The assertion is removed from the policy logic.

Enabling an Assertion
You can manually re-enable any disabled assertion individually in a policy. Enabling the
assertion restores the assertion properties that were in effect at the time of disabling.

In general, enabling an assertion has the same effect as adding an assertion to a policy.
For the composite assertions ("All assertions must evaluate to true", "At least one
assertion must evaluate to true", Run All Assertions Concurrently), note the following:

 l If a composite assertion is disabled, enabling a child assertion within it
automatically enables all parent composite assertions.

 l Enabling a disabled composite assertion does not automatically enable all of its
child assertions - they will be restored to the state they were in when the
composite assertion was disabled.

 l Child assertions that were disabled at the time of disabling the composite
assertion will remain disabled. You need to manually enable the appropriate
assertions.

Tip: To select multiple assertions for disabling, hold down the [Ctrl] key while clicking on the
assertion.

 To enable an assertion:

 1. In the policy window, right-click the assertion to enable and then select Enable
Assertion.

Or:

 2. In the policy window, select one or more assertions to enable, then click .
You should now validate the policy.

 To enable all child assertions under a parent assertion:

 l In the policy window, right-click the parent assertion and then select Enable All
Assertions.
Or:

In the policy window, select one or more child assertions to enable, then click .

Chapter 3: Working with Policy Assertions 121

Layer 7 Policy Authoring User Manual, v8.2

Understanding Assertion Latency
The CA API Gateway can calculate the latency for virtually any assertion in a policy. This
latency information may be useful in helping to troubleshoot issues, for example
connection issues with the back-end service.

The following built-in context variables record the latency:

 l ${assertion.latency.ms}: Stores the assertion latency in milliseconds.
 l ${assertion.latency.s}: Stores the assertion latency in seconds.

Keep in mind the following important information about assertion latency:

 l To reduce the system overhead, the Gateway will calculate the latency only when
required. You indicate that the latency is "required" by referencing either the
${assertion.latency.ms} or ${assertion.latency.s} variables in the next assertion (see the
example in Figure 34).

 l Calculating assertion latency may affect the outcome of the "At least one assertion
must evaluate to true" composite assertion. Reason: The Set Context Variable or
Add Audit Detail assertion (required to trigger the capture of assertion latency
values) will always return "true". This may affect the outcome of the composite
assertion (for example, prior to calculating the latency, the composite assertion
could have returned "false"; after calculating the latency, the composite assertion
will always return "true"). To avoid this, you will need to restructure the policy logic.

 l It is not possible to determine assertion latency for child assertions within the Run
All Assertions Concurrently composite assertion. Note: If the child assertion is one
of the "At least one..." or "All assertions..." composite assertions, then its children
are eligible for latency calculation. For an illustration of this, see line 12 in Figure 34
below.

How to Use the Assertion Latency Variables

The two latency variables are overwritten each time latency is calculated. To preserve the
latency values, you can use either of the following strategies:

 l Log the message
 l Save the variable for later use

These are described in more detail below, using the ${assertion.latency.ms} as an example.

122 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

Logging the Message

To log the assertion latency, you can use the Add Audit Detail assertion with the
${assertion.latency.ms} variable defined in the message body—see the following policy
sample :

 Figure 32: Saving assertion latency by logging the message

In this example, the output log will contain the assertion latency for the composite
assertion Run All Assertions Concurrently:

2012-04-26T11:37:38.349-0700 INFO 159

com.l7tech.server.policy.assertion.ServerAuditDetailAssertion: -4: LatencyTrace: "Run

All Assertion Concurrently": 16

For more information on the output log, see Viewing Logs in the Layer 7 Policy Manager
User Manual.

Chapter 3: Working with Policy Assertions 123

Layer 7 Policy Authoring User Manual, v8.2

Saving the Variable for Later Use

To save the assertion latency, use the Set Context Variable assertion to copy the
${assertion.latency.ms} value to another variable:

 Figure 33: Saving assertion latency by copying the value to another variable

In this example, the ${jdbclatency} variable contains the latency for the Perform JDBC
Query assertion in line 3, while the ${httproutelatency} variable contains the latency for the
Route via HTTP(S) assertion in line 5.

124 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

When the Assertion Latency is Calculated

Consider the following example policy:

 Figure 34: Example of when assertion latency is calculated

In the sample above:

 l Latency will be calculated for Perform JDBC Query in line 3, because Set Context
Variable is used in line 4 to capture the value from ${assertion.latency.ms}.

 l Latency will be calculated for Route via HTTP in line 5, because Set Context Variable
is used in line 6 to capture the value from ${assertion.latency.ms}.

 l Latency will be calculated for the Run All Assertions Concurrently composite
assertion in line 7, because the Add Audit Details assertion is used in line 15 to
capture the value from ${assertion.latency.ms}. (Note that line 15 is used because
that is the first line after the composite assertion.)

 l Latency will be calculated for Perform JDBC Query in line 12, because Set Context
Variable is used in line 13 to capture the value from ${assertion.latency.ms}. Note
that line 12 is eligible for assertion latency capture because it is the child of the "All
assertions..." composite assertion in line 11 and is not affected by the disabling of
latency capture from the parent Run All Assertions Concurrently assertion in line 7.

It is equally important to understand when latency is not calculated:

 l Latency is not calculated for lines 2, 4, 6, 8, 11, 13, 15, 16 because neither the
${assertion.latency.ms} nor ${assertion.latency.s} variables are referenced in the next
assertion.

Chapter 3: Working with Policy Assertions 125

Layer 7 Policy Authoring User Manual, v8.2

 l In line 9, the latency is not calculated even though ${assertion.latency.ms} is used in
line 10 because the Set Context Variable assertion appears under the Run All
Assertions Concurrently assertion (which disables the capture of assertion
latency).

 l In line 14, the latency is not calculated because this line is the last child in the
composite assertion (line 7) and the Add Audit Details assertion in line 15 is
considered the next assertion for line 7, not line 14.

Working with Encapsulated Assertions
Encapsulated assertions is a feature within the Policy Manager that lets you turn any
policy fragment into a self-contained "assertion" that accepts input values and sets
output values. These encapsulated assertions can be placed in the assertion palette in
any folder that you choose and they can be added to a service policy, deleted from a
policy, or disabled within a policy in the same fashion as the normal assertions. They can
also be manipulated using the Assertions Tool Bar.

Tips: (1) Make a note of the encapsulated assertions created, to prevent potential confusion
should a policy author need to consult the Policy Manager documentation or contact CA
Technical Support for assistance. (2) Encapsulated assertions created outside of the Policy
Manager (for example, using the Gateway Management API) will not be visible until the next
time a Policy Manager connects to the Gateway. To make them appear immediately,
disconnect and then reconnect the Policy Manager to the Gateway.

Encapsulated Assertions vs. Policy Fragments

Though the encapsulated assertions behave similar to policy assertions superficially, they
more closely resemble policy fragments from a functional perspective. This is reinforced
by the fact that each encapsulated assertion uses a policy fragment as its foundation—if
no fragments have been defined, then is it not possible to create an encapsulated
assertion.

Encapsulated assertions and policy fragments share the following similarities:

 l Both facilitate modularity and policy reuse.

 l Both make use of the existing policy assertions.

 l Both accept input and produces output, with similar runtime behavior.

 l Both use the predefined roles and permissions to control who can create and
access these entities.

 l For policy fragments, the "Manage <fragmentName>" role controls who has
access to the fragment.

126 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l For encapsulated assertions, the "Manage Encapsulated Assertion" role
controls who is able to configure an encapsulated assertion. Policy authors
who need to use the assertion in a policy can add them, even though they may
lack permission to create new ones.

However, there are notable differences between the two, as shown in the following table:

Encapsulated Assertions Policy Fragments

Authors of encapsulated assertions can see
which underlying policy fragment was used, but
this is hidden from the policy authors.

Users of the policy fragment (i.e., policy authors)
can expand the fragment to see the assertions
inside it.

No impact on validation speed in a policy with
encapsulated assertions. This is because the
underlying policy fragment is not expanded
during validation.

Validation speed may be impacted if many policy
fragments or large policy fragments are inserted
into a policy. This is because the fragment is
always expanded during validation.

Each is displayed as its own entry within the
assertion palettes, with a configurable name,
description, and icon.

Can only be added to a policy using the Include
Policy Fragments assertion. No description or
icon.

Runs in its own "policy context" so that it can use
its own local context variables without conflicting
with those in the parent policy.

Tip: The request and response themselves are
not privately scoped—only the context variables.
The request and response for encapsulated
assertions point to the actual default request
and response.

Runs as part of the parent policy and uses the
same context variables as the parent.

Has mechanisms to control the sharing of
context variables with the parent policy, via input
parameters and output results.

No special mechanism for sharing—policy
fragments behave as if you manually inserted
the assertions in the policy.

No need to grant permission to the underlying
policy fragment in order to use an encapsulated
assertion. Anyone with permission to edit a
policy may use any encapsulated assertion.

Must be explicitly granted permission to the
policy fragment via the "Manage <policy>" role
before it can be used.

 Table 24: Encapsulated assertions vs. Policy fragments

Visibility of Context Variables

It is important to understanding the visibility of context variables between the parent
service policy and the underlying policy fragment ("backing policy") of an encapsulated
assertion:

 l Context variables set in the parent service policy are not visible to the
encapsulated assertion's backing policy.

Chapter 3: Working with Policy Assertions 127

Layer 7 Policy Authoring User Manual, v8.2

 l Context variables set within an encapsulated assertion's backing policy are local
only to that encapsulated assertion. These variables are not visible to the parent
policy afterward.

 l An encapsulated assertion's input and output arguments are visible to both the
parent policy and the backing policy (see "Understanding How Values are Passed
to the Parent Policy" below for details).

Understanding How Values are Passed to the Parent
Policy

Every instance of an encapsulated assertion runs in its own "policy context" that is
separate from the context of the parent policy. It is important to understand how values
are passed between the assertion and its parent. You may assume that all values are
passed via context variables.

When you create an encapsulated assertion, you can define a series of inputs and outputs
(see "Encapsulated Assertion Configuration Properties" on page 134). For inputs, you
choose a preferred data type and then specify whether that input is shown in the
assertion properties or whether it will remain invisible to the interface—the choices you
make determines how values are passed to the parent policy.

Example #1: Message input shown in the properties dialog

Suppose you have an encapsulated assertion "ABC Assertion" with the following input
definition:

Input Name: foobar
Input Type: Message
Show in assertion properties dialog: true

In the parent policy you have the following:

 l Set Context Variable Assertion

Variable Name: fromParent
Data Type: Message
Content-Type: text/plain
Expression: "Hi there!"

 l ABC Assertion

In the assertion properties, choose fromParent from the drop-down list for
the foobar field.

128 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

When the ABC Assertion executes, the following context variable is visible to the
underlying policy fragment:

 l foobar of type "Message", which is an alias to the fromParent variable in the parent
policy's context

If the variable foobar is changed within the ABC Assertion, these changes will be reflected
in the fromParent variable. (Examples of changes include: changes to the content-type
using the Validate or Change Content Type assertion, or setting the variable as the
response target message within the Route via HTTP(S) assertion.)

Example #2: String input not shown in the properties dialog

The encapsulated assertion "ABC Assertion" has this input definition:

Input Name: widget
Input Type: String
Show in assertion properties dialog: false

In the parent policy you have the following:

 l Set Context Variable Assertion

Variable Name: widget
Data Type: String
Content-Type: text/plain
Expression: "Pass it along!"

 l ABC Assertion

No properties are available for this assertion, as its only input is hidden from
the interface. Running the "View Info" option on the ABC Assertion shows that
a single variable widget is used, with no variables set. The policy XML of this
instance of the ABC Assertion within the parent policy will not contain any
"widget" parameter.

When the ABC Assertion executes, the following context variable is visible to the
underlying policy fragment:

 l widget of type "String", which is an alias to the widget variable in the parent policy's
context

If the variable widget is changed within the ABC Assertion, these changes will be reflected
in the widget variable in the parent context, after the ABC Assertion has finished.

Chapter 3: Working with Policy Assertions 129

Layer 7 Policy Authoring User Manual, v8.2

Example #3: String input shown in the properties dialog

This example is similar to #2, except it shows the impact of displaying the input in the
properties dialog box.

Input Name: widget
Input Type: String
Show in assertion properties dialog: true

In the parent policy you have the following:

 l Set Context Variable Assertion

Variable Name: widget
Data Type: String
Content-Type: text/xml; charset=utf-8
Expression: "Don't pass it along!"

 l ABC Assertion

In the assertion properties, enter "This is my value!" for the widget field.
Entering this value in the properties causes a parameter named "widget" with
the value "This is my value!" to be stored in the ABC Assertion instance in the
parent policy.

At runtime, each time the ABC Assertion is invoked, the value "This is my
value!" will be copied into a new "widget" context variable in the child policy
context before the ABC Assertion's underlying policy fragment is executed.

Running the "View Info" option on the ABC Assertion will not show any
variables being used or set. However the policy XML of this instance of the ABC
Assertion within the parent policy will include a parameter widget="This is my
value!".

Advanced Tip: You can view the policy XML by copying the assertion and then
pasting it into any text editor.

When the ABC Assertion executes, the widget context variable in the parent context will
be ignored completely, and a new widget context variable will be created in the child
context with the value "This is my value!".

Making Encapsulated Assertions Available in a Role

In order for encapsulated assertions to be visible in the assertion palette, a role must
have the following permissions:

 l READ all Encapsulated Assertions

130 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

and one of:

 l READ all Assertions

or if it is not desirable to grant permission to all assertions for that role:

 l READ Assertions with name=com.l7tech.policy.assertion.EncapsulatedAssertion

Optionally, if you wish to make the underlying policy fragment visible:

 l READ all Policies of type "policy fragment"

Tip: The encapsulated assertions will still operate correctly when there is no Read access
to policy fragments; the users will just not be able to view the underlying policy fragment.

The predefined role "Manage Encapsulated Assertions" provides this access. If you are
using custom roles, be sure they conform to the above.

For more information, see these topics in the Layer 7 Policy Manager User Manual:

Managing Roles
Understanding Role Permissions

Using Encapsulated Assertions

Choose a task from the following table:

For information on how to... See

Create a new encapsulated assertion "Managing Encapsulated Assertions" on page
132

Remove an encapsulated assertion from
the system

"Managing Encapsulated Assertions" on page
132

Edit an encapsulated assertion "Encapsulated Assertion Configuration
Properties" on page 134

Enable debug tracing in an encapsulated
assertion

"Encapsulated Assertion Configuration
Properties" on page 134

Add an encapsulated assertion to a
policy

"Adding an Assertion" on page 112

Remove an encapsulated assertion from
a policy

"Deleting an Assertion" on page 119

Disable an encapsulated assertion in a
policy

"Disabling an Assertion" on page 119

Reposition an encapsulated assertion
within a policy

Assertions Tool Bar in the Layer 7 Policy
Manager User Manual

 Table 25: Encapsulated assertion tasks

Chapter 3: Working with Policy Assertions 131

Layer 7 Policy Authoring User Manual, v8.2

Managing Encapsulated Assertions

The Manage Encapsulated Assertion Configurations task is used to create, modify, and delete
encapsulated assertions. These assertions are then available from the assertion palette
configured in the encapsulated assertion properties.

To learn more about encapsulated assertions, see "Working with Encapsulated
Assertions" on page 126.

Note: One or more policy fragments must be defined before you can create an encapsulated
assertion.

 To manage encapsulated assertions:

 1. In the Policy Manager, select [Tasks] > Manage Encapsulated Assertions from the
Main Menu (on the browser client, from the Manage menu). The Manage
Encapsulated Assertion Configurations dialog appears.

 Figure 35: Manage Encapsulated Assertion Configurations dialog (with sample assertions)

Tip: This dialog box is used solely for the creation and maintenance of the encapsulated
assertions. How to add, remove, and use them in a policy is the same as the factory
created assertions.

 2. The following table describes each column (these are set in the encapsulated
assertion's properties):

Column Description

Name The name of the encapsulated assertion as it appears in the
assertions palette.

 Table 26: Encapsulated assertion configuration columns

132 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

Column Description

Palette Folder The palette in which this assertion appears.

Policy Name The name of the underlying policy fragment for the encapsulated
assertion.

In How many input variables are defined for the encapsulated assertion.

Out How many output variables are defined for the encapsulated
assertion.

 3. Select a task to perform:

To... Do this...

Create a new
encapsulated
assertion

 1. Click [Create].

 2. Complete the Encapsulated Assertion Configuration Properties.

Tip: You can also create a new encapsulated assertion by right-clicking
the policy fragment in the Services and Policies list and then selecting
Create Encapsulated Assertion. If the fragment is already
associated with an encapsulated assertion, select Encapsulated
Assertion Properties to view the settings.

Clone an existing
encapsulated
assertion

 1. Select the assertion to clone.

 2. Click [Clone]. A new encapsulated assertion is created, populated
with information from the clone source. The name of this assertion
defaults to "Copy of <assertion name>".

 3. Edit the Encapsulated Assertion Configuration Properties as
required.

Remove an
encapsulated
assertion

 1. Select the assertion(s) to remove.

 2. Click [Remove].

 3. Select the confirmation check box, and then click [OK].

IMPORTANT: Ensure that the encapsulated assertion is not in use in
any policy prior to removal. If it is in use, removing the assertion will
make the policy invalid.

View or edit the
properties of an
encapsulated
assertion

 1. Select the assertion to view.

 2. Click [Properties]. See "Encapsulated Assertion Configuration
Properties" on page 134 for details.

Export an
encapsulated
assertion

 1. Select the assertion to export.

 2. Click [Export].

 3. Enter a name for the exported file and choose a target directory,
then click [Save]. Both the encapsulated assertion and its
underlying policy fragment are saved to an XML file.

 Table 27: Manage Encapsulated Assertions tasks

Chapter 3: Working with Policy Assertions 133

Layer 7 Policy Authoring User Manual, v8.2

To... Do this...

Note: If a policy containing an encapsulated assertion will be migrated
to a different Gateway using the Layer 7 Enterprise Service Manager,
ensure the encapsulated assertion is first exported from the source
Gateway and then imported into the destination Gateway.

Import an
encapsulated
assertion

 1. Click [Import].

 2. Choose the encapsulated assertion file to import and then click
[Open].

 3. If there is a conflict with the GUID for the encapsulated assertion,
choose an action:

 l Overwrite: Select this to update the existing
encapsulated assertion with attributes from the imported
assertion except for the name, which remains
unchanged. The underlying policy fragment of the
existing assertion will also be overwritten by fragment
associated with the imported encapsulated assertion.

 l Create New: Select this to give a new name for the
imported encapsulate assertion and its underlying policy
fragment. You will be asked to resolve naming conflicts if
you enter a name already in use.

 l Cancel: Close the dialog box without importing anything.

Notes: (1) The encapsulated assertion and its underlying policy
fragment are imported. If the policy fragment includes references to
other entities (for example, JDBC connections or other policy
fragments), these will also be imported. If conflicts occur, the "Resolve
External Dependencies Wizard" on page 51 will display. (2) See the
note under "Export the Encapsulated Assertion" for information about
migrating policies.

Filter list of
encapsulated
assertions

To locate a specific encapsulated assertion more easily, type a few
characters of its name into the Filter on name box. The list is filtered
to display only those encapsulated assertions that contain the typed
characters anywhere within their names.

To reset the display, clear the filter text.

 4. Click [Close] when done.

Encapsulated Assertion Configuration Properties

When creating, cloning, or viewing details about an encapsulated assertion, the
Encapsulated Assertion Configuration Properties appear. These properties allow you to
configure the behavior and appearance of the assertion:

 l The name, description, and icon that will appear in as assertion palette.

 l The palette from which the assertion is available.

134 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l The underlying policy fragment that forms the foundation of the assertion.

 l Configurable inputs and outputs.

For a detailed description of how encapsulated assertions work, see "Working with
Encapsulated Assertions" on page 126.

 To access the Encapsulated Assertion Configuration Properties:

 1. Run the Manage Encapsulated Assertions task. A list of the available encapsulated
assertions is displayed.

 2. Perform any of the following actions:

 l Create a new encapsulated assertion.

 l Clone an existing encapsulated assertion.

 l View or edit the properties of an encapsulated assertion.

The Encapsulated Assertion Configuration Properties appear.

Chapter 3: Working with Policy Assertions 135

Layer 7 Policy Authoring User Manual, v8.2

 Figure 36: Encapsulated Assertion Configuration Properties dialog

 3. Choose an Icon and then enter a Name for the encapsulated assertion. These will
appear in the assertion palette and the policy window. Tip: If you use your own
icon, the recommended size is 16x16 pixels, with a maximum file size of 32KB.

 4. Choose the Palette Folder where the encapsulated assertion will be located. You
can decide which folder best represents your assertion.

 5. Click [Set Policy] to select the underlying Policy for the encapsulated assertion.
The underlying policy can be any Included Policy Fragment. Also specify whether to
Auto-populate inputs and outputs:

 l Select the check box to have the Policy Manager automatically populate the
Input and Output sections based on the definition of the chosen policy
fragment. The auto population will not update or remove any existing entries

136 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

with the same name. You can still make changes to the fields after auto
population.

 l Clear the check box to populate the inputs and outputs yourself.

Note: Although it is possible to create multiple encapsulated assertions using the same
underlying policy fragment, CA recommends against doing this.

 6. Enter a Description for your encapsulated assertion. This will appear on the Policy
Manager interface when the encapsulated assertion is selected. Tip: It may be
helpful to identify the encapsulated assertion, to prevent possible confusion
should policy authors need to consult the Policy Manager documentation or
contact CA Technical Support.

 7. An Artifact Version identifier is displayed for all encapsulated assertions that have
been exported or imported using the Manage Encapsulated Assertions task. This
number uniquely identifies the encapsulate assertion plus its associated policy
fragment. Identical encapsulated assertions will have the same Artifact Version
identifier. Any differences, even to the underlying policy fragment, will trigger a
different version number when the encapsulated assertion is exported (no change
occurs prior to export). Tip: You can use this number to help determine whether
an exported encapsulated assertion is the same as one that has already been
imported.

The Artifact Version identifier is also visible in the Comment field of the policy
revision created for the underlying policy fragment, to make it possible to roll the
policy fragment back to its original state.

Notes: (1) The Artifact Version is not a version number and newer versions may not have
an incremented number. It is simply a unique identifier, similar to a generated hash value.
(2) The Artifact Version identifier does not change if you modify the encapsulated
assertion. It will change only if another file (with a different artifact version) is used to
import and overwrite the encapsulated assertion.

 8. The Inputs section lists the context variables and GUI fields that will be used to
configure this encapsulated assertion. See "Configuring Inputs" below for details.

 9. The Outputs section lists the context variables that will be made available to the
parent context after this encapsulated assertion has run. See "Configuring Outputs"
below for details.

Chapter 3: Working with Policy Assertions 137

Layer 7 Policy Authoring User Manual, v8.2

 10. Optionally choose a security zone. To remove this entity from a security zone
(security role permitting), choose "No security zone". For more information about
security zones, see Understanding Security Zones in the Layer 7 Policy Manager
User Manual. Note: This control is hidden if either: (a) no security zones have been
defined, or (b) you do not have Read access to any security zone (regardless of
whether you have Read access to entities inside the zones).

 11. Select Allow debug tracing into backing policy if you want to include the
underlying policy fragment during debug tracing; otherwise the backing policy is
invisible to the trace (replicates Policy Manager behavior prior to v8.2.0).

To enable debug tracing, you must select the "Enable debug policy tracing" check
box in the [General] tab of the published service's properties. For more
information, see "Policy Debug Tracing" on page 66.

Note: This setting does not enable or disable debug tracing. It merely controls whether
tracing should include the individual assertions within the backing policy when policy
tracing is enabled.

 12. Click [OK] when done.

Configuring Inputs

Note: It is important to have a sound understanding of how the input definition can affect the
flow of information between the encapsulated assertion and its parent policy. For more
information, see "Understanding How Values are Passed to the Parent Policy" in "Working
with Encapsulated Assertions" on page 126.

The Inputs section is used to define the input arguments for the encapsulated
assertion—in other words, the values that will be passed to the underlying policy
fragment. The table contains the following columns:

 l GUI: Whether the input will appear in the encapsulated assertion's properties.

 l Name: The name of the input.

 l Type: The data type of the input.

 l Label: The label that will appear on the interface, if different from the name.

These column values are described in more detail in Table 28 below.

Tip: The Policy Manager will pre-configure inputs for you if the Auto-populate inputs and
outputs check box was selected. You can change any auto-populated input as necessary.

138 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

Choose an action to perform:

To... Do this...

Add an input 1. Click [Add].

 2. Complete the Argument Properties (see "Completing the
Argument Properties" below for details).

Edit an input 1. Select the input to change.

 2. Click [Edit].

 3. Modify the Argument Properties as required (see "Completing the
Argument Properties" below for details).

Delete an input 1. Select the input to change.

 2. Click [Delete]. The input is deleted immediately.

Reposition an input
in the assertion
properties

 1. Select the input to reposition.

 2. Click [Move Up] or [Move Down].

Tip: Repositioning an input only applies to inputs that are shown in the
assertion properties dialog. It has no effect on functionality and does not
apply to inputs suppressed from the dialog.

 Table 28: Encapsulated assertions: Argument Properties

IMPORTANT: Be extremely careful when changing the inputs of an encapsulated assertion
that is currently in use by policies. In particular, pay careful attention when adding new inputs
or renaming existing inputs: ensure that the underlying policy fragment will respond gracefully
if the input is not provided.

Completing the Argument Properties

When adding or editing an input, the Argument Properties dialog is displayed:

Chapter 3: Working with Policy Assertions 139

Layer 7 Policy Authoring User Manual, v8.2

Complete the properties as follows:

Setting Properties

Name Enter a name for the input. This name should generally match the name
of a context variable from the parent context and should be meaningful
to the underlying policy fragment.

The name must conform to the "Context Variable Naming Rules",
described under Context Variables in the Layer 7 Policy Manager User
Manual.

Type From the drop-down list, choose a data type for the input. This sets the
GUI control that is visible if the input is set to show in the assertion
properties dialog.

Note: The data types "Message" or "Element" will always result in the
child policy context containing a reference to the value from the parent
context, while the other data types will vary depending on whether input
is shown on the assertion properties. For more information, see
"Working with Encapsulated Assertions" on page 126.

Show in assertion
properties dialog

Select this check box to display the input in the assertion properties.
When visible, all inputs of type "Message" and "Element" are aliased in
the child policy context. All other data types are copied into the child policy
context.

Clear this check box to hide the input from the assertion properties.
When hidden, all values are aliased in the child policy context, and will
appear in the Assertion Information dialog as variables used by the
encapsulated assertion.

Tip: For more information, see "Understanding How Values are Passed
to the Parent Policy" under "Working with Encapsulated Assertions" on
page 126. Examples #1 and #2 in that section illustrate "aliasing", while
Example #3 demonstrates "copying".

Label Optionally enter a label that will appear in the assertion properties. If not
specified, the Name is used as the label.

A label allows you to display a more descriptive or "friendly" name in the
assertion properties. Unlike the Name, the Label may contain any string
of characters.

 Table 29: Encapsulated assertions: Argument Properties

140 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

Configuring Outputs

The Outputs section is used to define the context variables that will be set by the
encapsulated assertion. Only the context variables declared here will be visible to the
parent context once the encapsulated assertion has finished running.

Tip: The Policy Manager will pre-configure outputs for you if the Auto-populate inputs and
outputs check box was selected.

Choose an action to perform:

To... Do this...

Add an output 1. Click [Add].

 2. Complete the Result Properties (see "Completing the Result
Properties" below for details).

Edit an output 1. Select the output to change.

 2. Click [Edit].

 3. Modify the Result Properties as required (see "Completing the
Result Properties" below for details).

Delete an output 1. Select the output to change.

 2. Click [Delete]. The output is deleted immediately.

 Table 30: Encapsulated assertions: Result Properties

IMPORTANT: Proceed with caution when changing the output of an encapsulated assertion
currently in use. Ensure that any new output does not conflict or overwrite any context variables
already in use by existing user policies. When modifying or removing an output, consider the
behavior of any existing user policies that rely on that output.

Completing the Result Properties

When adding or editing an output, the Result Properties dialog is displayed:

Complete the fields:

Chapter 3: Working with Policy Assertions 141

Layer 7 Policy Authoring User Manual, v8.2

 l Enter the Name of the context variable that will be set by the underlying policy
fragment and made available to the parent policy context.

 l Choose the data Type of the result.

Tip: The output Type is currently useful for your own documentation purposes, but it is not
enforced at runtime. The type selected here will be displayed in the Assertion Information
dialog for the encapsulated assertion.

Policy Templates
Note: Policy templates have limited support in the browser client version of the Policy
Manager. There is no Policy Templates category in the [Assertion] tab, but you can still import
and export template files.

The Policy Manager allows you to rename and delete an exported policy that appears in
the Policy Templates category of the [Assertions] tab. Although you cannot directly edit
the XML content of an exported policy, you can modify an exported template by
importing it, updating the assertions, then exporting it back to the same template name.

The following table summarizes the tasks for policy templates.

Task Description

Rename a policy template 1. Right-click the policy name under Policy Templates and then
select Rename.

 2. Enter a new template name.

 3. Click [OK]. The template is renamed.

Delete a policy template 1. Right-click the policy name under Policy Templates and then
select Delete.

 2. Click [Yes] to confirm. The template is removed.

Edit the assertions in a
policy template

 1. Import the policy to be edited. (Hint: Save your current policy
first by exporting it.)

 2. Modify the assertions as required.

 3. Export the edited policy back to the same file name, in the
default directory.

 Table 31: Editing policy templates

142 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

Managing Kerberos Configuration
The Manage Kerberos Configuration task displays information about your Windows
Domain Login configuration (Kerberos). Use it to install a Kerberos keytab file and to
verify your Kerberos configuration.

Prerequisite: Ensure that Kerberos and the Active Directory is configured and operational.

Note: For information on creating keytab files, refer to "Using Windows Domain Login" in the
Layer 7 Installation and Maintenance Manual.

 To manage Kerberos configuration:

 1. In the Policy Manager, select [Tasks] > Manage Kerberos Configuration from the
Main Menu (on the browser client, from the Manage menu). The Kerberos
Configuration dialog appears.

 Figure 37: Kerberos Configuration dialog

 2. The following table describes each setting and control in the configuration dialog.

Field Description

Valid Displays the status of the keytab:

 l Yes = valid keytab file has been loaded

 l No = no valid keytab file has been loaded

 l "–" = a keytab file has been loaded, but not validated

Summary Summarizes the state of your Kerberos configuration. Message is one
of:

Keytab file not present
Keytab file is invalid

 Table 32: Kerberos Configuration settings

Chapter 3: Working with Policy Assertions 143

Layer 7 Policy Authoring User Manual, v8.2

Field Description

Authentication failed
Authentication successful
Checking configuration...
Updating configuration...

Automatically
Validate Keytab

Select this check box to validate the keytab principal against the
corresponding KDC. This validation occurs automatically whenever:

 l the Kerberos Configuration dialog is displayed

 l a new keytab is loaded

Clear this check box to not automatically validate the keytab. In this
case, no validation status or summary is displayed until you click
[Validate Keytab].

Keytab details:

KDC Key Distribution Center

Realm Identifier for the secured network

Principal Name Service (gateway cluster) identifier

Date Keytab date, if available

Version Keytab version number 1-X

Encryption Keytab algorithms (rc4-hmac, des-cbc-md5, etc.)

Keytab configuration controls:

[Load Keytab] Loads a keytab file directly into the Gateway database. Select the
keytab file to upload, then click [OK] to confirm.

If automatic validation is enabled, this keytab will be validated upon
loading, otherwise you should use [Validate Keytab] to trigger a
validation.

For information on how to create the keytab file, see Using Windows
Domain Login in the Layer 7 Installation and Maintenance Manual. If
you are working with multiple principals, ensure that you select a
keytab that has been configured with multiple principals.

Tip: Ensure that you have a backup of the keytab file, as it cannot be
downloaded once uploaded.

Note: Loading a keytab file here will overwrite any existing keytab file.

[Delete Keytab] Removes the loaded keytab file. As deleting a keytab file is permanent
and may have consequences, you must confirm by first selecting the
To enable [OK] ... check box before you can click [OK].

Tip: If you are simply replacing the keytab file with another one, you
can use [Load Keytab] without needing to delete the old keytab first.

144 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

Field Description

[Validate Keytab] Validates the keytab against the corresponding KDC. The results are
displayed in the Summary above. If the keytab is invalid, a message is
displayed.

Tip: Clicking [Validate Keytab] is not necessary if the Automatically
Validate Keytab check box is selected.

 3. Click [Close] when done.

Authenticating a Client via Kerberos
There are two ways to authenticate a client via Kerberos:

 l Authenticate via the XML VPN Client: If the SecureSpan XML VPN Client is used
in the workflow, then Kerberos authentication can be configured there. For
information on how to do this, see "Authenticating a Client via Kerberos" in the
SecureSpan XML VPN Client User Manual.

Note: If the SecureSpan XML VPN Client is in use, it must be connected to a Gateway
policy that contains the "Require WS-Security Kerberos Token Profile Credentials
Assertion" on page 243.

 l Authenticate via the Gateway: In the absence of the SecureSpan XML VPN Client,
Kerberos authentication can be configured on the CA API Gateway. This is
described below.

 To authenticate a client via Kerberos using the Gateway:

 1. Ensure that the client is logged into the domain trusted by the Key Distribution
Center (KDC). The client must be able to acquire the Kerberos ticket from the KDC
that issued the keytab.

The KDC is also known as the "Active Directory" and is listed on the Kerberos
Configuration dialog (see next step).

 2. Run the Manage Kerberos Configuration task and import the keytab into the
Kerberos Configuration dialog. For more information, see "Managing Kerberos
Configuration" on page 143

 3. Ensure that the service policy contains both these assertions:

Require Windows Integrated Authentication Credentials
Route via HTTP(S)

Chapter 3: Working with Policy Assertions 145

Layer 7 Policy Authoring User Manual, v8.2

 4. Access the HTTP(S) Routing Properties and select the [Security] tab.

 5. Under Service Authentication, choose the Use Windows Integrated option and
then choose Use Delegated Credentials (see Figure 38).

 Figure 38: Configuring the HTTP(S) Routing Properties for Kerberos authentication

Once a client is authenticated via Kerberos, Authorization Data attributes from the
Kerberos ticket are exposed via context variables. For a list of the available attributes, see
"Kerberos Ticket Authorization Info Variables" under Context Variables in the Layer 7
Policy Manager User Manual.

Changing the WSS Assertion Recipient
You can change the default WSS assertion recipient in the Policy Manager. The effect of
the change will differ depending on the type of assertion:

 l Request security assertions

These assertions control the requests entering the Gateway. The following are the
request security assertions:

Add Security Token (with target set to "Request")
Encrypt Element (with target set to "Request")
Protect Against Message Replay
Require SAML Token Profile
Require WS-Addressing

146 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

Require WS-Secure Conversation
Require WS-Security Kerberos Token Profile Credentials
Require WS-Security Password Digest Credentials
Require WS-Security Signature Credentials
Require WS-Security UsernameToken Profile Credentials
Sign Element (with target set to "Request")

The client (typically the Securespan XML VPN Client) creates the security header in
the request before it is sent to the Gateway.

How this affects the Gateway

On the Gateway, configuring the WSS recipient for these assertions has little
effect: the Gateway will ignore any security decorations in a security header that is
not addressed to the Gateway itself. If the assertion specifies a foreign WSS
recipient, then the assertion will immediately succeed on the Gateway with no
further checks on the request.

Note: A security header is considered addressed to the Gateway when it contains one
of the following Actor attributes:
secure_span
http://www.layer7tech.com/ws/policy
http://schemas.xmlsoap.org/soap/actor/next/
an empty or unspecified Actor

How this affects the Securespan XML VPN Client

On the Securespan XML VPN Client, configuring the WSS recipient for these
assertions will configure which security header and recipient certificate to use for
the security decorations. Using these assertions will often cause the Securespan
XML VPN Client to include security decorations not intended for the Gateway.
When this happens, the Gateway will process the decorations that are intended
for it and ignore the others. The Gateway can be configured to promote the
foreign security header to the default security header when the request is routed
to the back-end system.

The Securespan XML VPN Client includes no Actor attribute on the Security header
when it is intended for the default WSS Recipient for a generic (i.e., not a Gateway)
web service.

 l Response security assertions

These assertions control the responses returned by the Gateway to the client. The
following are the response security assertions:

Chapter 3: Working with Policy Assertions 147

Layer 7 Policy Authoring User Manual, v8.2

The security header in the response is created by the Gateway after the policy is
finished.

How this affects the Gateway

On the Gateway, configuring the WSS recipient for these assertions causes the
response security header to have a specific Actor attribute value; it also causes the
Gateway to use the specified certificate for any message decorations that require a
recipient certificate.

Example: The Encrypt Element assertion will encrypt the element for the specified
certificate's public key instead of using the public key in the client certificate from
the request (if any).

How this affects the Securespan XML VPN Client

On the Securespan XML VPN Client, configuring the WSS recipient for these
assertions will have little effect. The Securespan XML VPN Client will ignore any
response security decorations within a security header not addressed to it (in
other words, with an Actor attribute of "secure_span", or
"http://schemas.xmlsoap.org/soap/actor/next/", or an empty or unspecified
Actor). If the assertion specified a foreign WSS recipient, then the assertion will
immediately succeed on the Securespan XML VPN Client with no further checks on
the response.

 l Routing assertions that support SAML sender-vouches attachment

These assertions control the requests from the Gateway to the back-end system.
The following routing assertions support SAML sender-vouches attachment:

Route via HTTP(S)
Route via JMS

The security header is created by the Gateway while the routing assertion is
executing.

How this affects the Gateway

On the Gateway, configuring the WSS recipient for these assertions has no effect
unless "Attach SAML sender vouches" is selected for the back-end authentication.
When this is the case, the Gateway will use the specified Actor attribute value for
the security header that contains the SAML token.

148 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

How this affects the Securespan XML VPN Client

On the Securespan XML VPN Client, this is not applicable since the Securespan
XML VPN Client never receives the routing assertions (they are filtered out from
the policy it downloads).

When a WSS assertion is added to a policy, the associated WSS decoration will be written
in the Security header, intended by default for the "next-in-line" recipient (the Gateway)
in the SOAP message. Changing the recipient of a WSS assertion configures a different
downstream recipient, with a unique Actor attribute value, for the WSS decoration,
essentially by-passing the Gateway. A policy can contain multiple alternate recipients,
each resulting in a separate Security SOAP header with its associated unique Actor
attribute.

W A R N I N G

If the intended recipient does not accept or recognize Security headers that contain
Actor attributes, then you must configure the Route via HTTP(S) assertion in the
policy to instruct the Gateway to promote one of the downstream WSS recipients as
the next default WSS header. To do so, select the "Promote other Security header as
default before routing" option in the WSS Header Handling section of the HTTP(S)
Routing Properties dialog.

The procedure below provides general instruction on how to change the WSS assertion
recipient. For more information, refer to the configuration instructions for each assertion.
The Gateway supports both versions 1.0 and 1.1 of the WS-Security standard.

To change the WSS recipient for an individual WSS assertion:

 1. Right-click a WSS assertion in the policy development window and then select WSS
 Recipient. The assertion properties are displayed.

Chapter 3: Working with Policy Assertions 149

Layer 7 Policy Authoring User Manual, v8.2

 Figure 39: Change WSS Recipient dialog

 2. The current Gateway is selected as the default target recipient for the WSS
decoration. To change the recipient, select the Specific Recipient option.

 3. At this point, you can either choose an existing recipient to change to, or you can
change to a new recipient.

Task Description

Choose an existing
recipient

If the intended downstream recipient was already defined for another
WSS assertion in the policy, then:

 1. Select the corresponding recipient's Actor attribute value from
the Security Header "Actor" Attribute drop-down list.

The certificate subject information for the previously configured
target appears in the Recipient Certificate Subject field.

 2. Click [OK]. The recipient's Actor attribute value appears as an
extension of the WSS assertion's name in the policy
development window.

Adding a new
recipient

Note: To create a new downstream recipient, you will need access to
the recipient's certificate.

To configure a new recipient for use in the WSS assertions:

 1. Click [Add Recipient].

 2. Complete the Add WSS Recipient Wizard. When the wizard is
complete, the new recipient's information appears in the
Security Header "Actor" Attribute and Recipient
Certificate Subject fields.

 3. Click [OK]. The recipient's Actor attribute value appears as an
extension of the WSS assertion's name in the policy

 Table 33: WSS Assertion Recipient tasks

150 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

Task Description

development window.

To view or edit the recipient for a WSS assertion, right-click the
assertion and select WSS Recipient from the drop-down menu.

 4. Click [OK].

New WSS Recipient Wizard
The New WSS Recipient Wizard helps you create a new WSS recipient. This wizard starts
when you click [Add Recipient] on the Change WSS Recipient dialog. For more
information, see "Changing the WSS Assertion Recipient" on page 146.

 Figure 40: New WSS Recipient Wizard

For more information about wizards, see "Wizard" under Interfaces in the Layer 7 Policy
Manager User Manual.

Wizard Step Description

Step 1: Enter
Certificate Info

This step lets you specify the source of the new certificate. Specify how to
obtain the certificate:

 l Retrieve via SSL Connection: Select this option to get the
certificate from an HTTPS URL.

 l Import from a File: Select this option to get the certificate from
a local file. Either enter the file path in the field, or use [Browse] to
locate the file.

 l Copy and Paste: Select this option to copy and paste the entire
certificate from the originating file into the code window.

Note: You can only cut and paste a certificate that is in Base 64 PEM

 Table 34: Using the New WSS Recipient Wizard

Chapter 3: Working with Policy Assertions 151

Layer 7 Policy Authoring User Manual, v8.2

Wizard Step Description

format. In the Code window, the Policy Manager will only add a
pasted certificate that begins with "BEGIN TRUSTED
CERTIFICATE."

If you encounter an error moving to the next step of the wizard, verify that
the certificate information entered is correct and then try again. If you
require assistance, contact CA Technical Support.

Step 2: View
Certificate Details

This step appears if the Policy Manager was able to obtain the certificate
successfully.

 l Certificate Name: Optionally enter a descriptive name for the
certificate.

 l Details: Examine the certificate details.

Step 3: Associate
Actor Attribute

Enter a unique Actor attribute for the recipient certificate into the Actor
Attribute Value field. Uniqueness is necessary because a recipient is
identified in the Change WSS Recipient dialog by its associated Actor
attribute.

In the Policy Manager, the certificate and Actor attribute are a locked
combination that can be used multiple times by multiple WSS assertions.

Selecting a Target Identity
When multiple signatures are in use, you must specify which identity is the signing
identity for each assertion that requires a signature.

Note: If multiple signatures are present in a message, you must specify the signing identity.
Otherwise, the assertion will fail even if the element is signed.

 To select a target identity:

 1. In the policy window, right-click on an assertion that deals with signatures and
then choose Select Target Identity. Only assertions that support target identities
will display this option. The Select Identity dialog appears.

 2. Select the target identity from the drop-down list. Note that you can either select
a previously authorized user (i.e., "Bob [Internal Identity Provider]") or an identity
tag (i.e., "tag1") that was defined earlier.

 3. Click [OK]. The selected identity is displayed in the policy as follows:

[User: <Login>, <Provider Name>] (example: "[User: Alice, Internal
Identity Provider]")

[Group Membership: <Group Name>, <Provider Name>] (example: "
[Group Membership: A Group, Internal Identity Provider]")

152 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

[Authenticated against: <Provider Name>] (example: "[Authenticated
against: Internal Identity Provider]")

[Identity Tag: <Tag>] (example: "[Identity Tag: A-User_1, internal]")

Selecting a Target Message
Many assertions can apply to a specific target message: request, response, or a context
variable. The default target depends on whether the assertion appears before or after a
routing assertion.

Tip: Be sure the assertion is located correctly in a policy after selecting a target message (see
the policy validator for warnings). For example, specifying "Response" as the target message
when the assertion appears before the routing assertion will not return correct results.

 To select a target message:

 1. Add the assertion to the policy development window.

 2. Right-click on the assertion and then choose "Select Message Target" from the
context menu. The Message Target dialog is displayed.

 Figure 41: Selecting a message target

Tip: If the Message Target dialog is "read only" (i.e., not editable), it may be caused by
the policy being imported into a Gateway where the licensing does not include the
specified assertion. For a list of assertions licensed in each version of the Gateway, see
Features by Product in the Layer 7 Policy Manager User Manual.

 3. Specify the target for the message:

 l Request: The target is the request message. This includes both the inbound
request (message from the client to the Gateway) and outbound request
(message from Gateway to the web service).

Chapter 3: Working with Policy Assertions 153

Layer 7 Policy Authoring User Manual, v8.2

 l Response: The target is the response message. This includes both the inbound
response (message from the web service to the Gateway) and outbound response
(message from Gateway to the client).

 l Other Context Variable: The target is the specified context variable. This
variable must be of type Message and must be predefined or has been set in
the policy prior to the assertion. For more information on Message variables,
see "Context Variable Data Types" under Context Variables in the Layer 7 Policy
Manager User Manual.

 l Enter the context variable in the field in the format: ${variableName}

 4. Click [OK]. The message target is indicated by a "Request:", "Response:" or
"${variableName}" prefix in the assertion name in the policy window.

Examples:

Request: Authenticate against XYZ
Response: Add signed Timestamp

Selecting an XPath
Some assertions require you to specify an XPath on which to perform an operation. For
example, you may be evaluating a request XPath, encrypting an element, or signing a
non-SOAP element. Figure 42 shows an example of the interface used to select or modify
an XPath.

 Figure 42: User interface for selecting an XPath

This interface contains the following elements. Every assertion with an XPath selection
task contains these elements; some assertion contain additional elements specific to that
assertion.

 List of available web services and their operations. The operations shown are retrieved from

the WSDL document for the web service. For information about the WSDL that defines a web
service, see Working with SOAP Web Services in the Layer 7 Policy Manager User Manual.

154 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

 The XPath expression selected for the task. If you know the XPath, you can type it directly

into this box. For greater flexibility, you may reference context variables within the
expression or you may specify a fully-dynamic XPath expression (in the format
"${xpathVar}"). For more information, see "Fully Dynamic XPath Expressions" in Context
Variables for XPaths in the Layer 7 Policy Manager User Manual. Alternatively, you can let

the Policy Manager build it for you by selecting the target element in the code window.

Note: While context variables within the expression are supported by all XPath
assertions, fully-dynamic XPath expressions are only available in the Evaluate Request
XPath and Evaluate Response XPath assertions.

 The code box that displays a sample message for the selected operation. Use the and

 buttons to collapse and expand the nodes (respectively).

 By default, the sample message shown in the code window will be used. You can modify the

sample message or enter you own message. For more information, see Sample Messages in
the Layer 7 Policy Manager User Manual.

 You can optionally edit the namespace map if necessary. You cannot remove namespaces

that originate from the WSDL document. For more information, see "Namespace Map" on
page 156.

 To select an XPath:

 1. In section , select the operation containing the element you want to use for the
task (evaluating, encrypting, etc.) A sample message is displayed in the code
window .

 2. Examine the sample message generated by the Policy Manager in to see if it
meets your needs. If not, use the Sample Messages section in to create your
own message. Messages generated by the system are limited to elements defined
in the WSDL document.

 3. In the code box , click a target element to build your XPath expression. The
XPath for this element is displayed in the XPath field .

Note: The Policy Manager will only build an XPath expression to an element. If you need a
more complex expression, you must edit the XPath manually in .

 4. Edit the XPath in if necessary. For greater flexibility, you may reference context

variables within the expression. For more information, see Context Variables
for XPaths in the Layer 7 Policy Manager User Manual.

 5. Edit the namespace map in if necessary.

Chapter 3: Working with Policy Assertions 155

Layer 7 Policy Authoring User Manual, v8.2

Namespace Map
The Policy Manager cannot predict which namespace prefixes, if any, might be found in
the messages that will be received by the Gateway. To allow the use of namespace
prefixes in XPath expressions, the Gateway supports a user-editable namespace map
attached to any XPath-based assertion (the Evaluate Request XPath, Evaluate Response
XPath, and Require XPath Credentials assertions). Without namespace prefixes,
constructing correct and namespace-aware XPath expressions is extremely complicated.
For example, a correct, namespace-aware XPath expression that will match the top-level
Envelope element in a SOAP 1.1 message without using prefixes is:

/*[local-name()="Envelope" and namespace-uri()
="http://schemas.xmlsoap.org/soap/envelope"]

Since the http://schemas.xmlsoap.org/soap/envelope namespace URI is typically declared
in the namespace map under the prefix "soapenv", the same XPath expression can be
rewritten just as correctly as:

/soapenv:Envelope

To allow a given prefix to be used in the XPath expression in an XPath-based assertion, an
entry for the prefix must be present in the assertion's namespace map. Using the custom
mapping feature, a namespace map can be defined and saved in the Evaluate Request
XPath assertion. For XML applications, custom namespace mapping is essential for
defining the XPath query pattern for incoming XML request messages. For SOAP web
services, the namespace list is automatically populated with the namespaces declared in
the WSDL. New namespaces can be added and removed from the default namespace list,
but the default namespaces themselves cannot be removed or changed.

Namespace prefixes that may appear in messages received by the Gateway are unrelated
to those found in the namespace map of XPath-based assertions, even if they may
happen to be identical. In order for an XPath expression using prefixes to match
namespace-qualified nodes in a message, the message's namespace URIs must exactly
match those found in the assertion's namespace map. For example, consider the
following simplified SOAP 1.1 message:

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope">
 <Body>
 <someApplication:operationName
xmlns:someApplication="urn:example.com:someApp"/>
 </Body>
</Envelope>

156 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

Even though this message's Body element appears without a namespace prefix, it is still
qualified with the standard SOAP 1.1 namespace URI. The naive XPath expression
"//Body" might match this particular message, but would fail to match another message
that happened to employ a prefix for the SOAP 1.1 namespace URI. With the namespace
map feature, the expression "//soapenv:Body" can match any message that uses the
correct namespace URI, regardless of what prefix, if any, it uses to declare it.

Editing the Namespace Map

You cannot change or remove the namespaces originating from the WSDL document, but
you can modify the namespace map in the following assertions:

Encrypt Element (see page 346)
Evaluate Request XPath (see page 458)
Evaluate Response XPath (see page 461)
Sign Element (see page 407)
Require XPath Credentials (see page 248)

 To modify the namespace map:

 1. Open the properties for any of the assertions listed above.

 2. Click [Edit Namespaces]. The Edit Namespaces and Prefixes dialog appears with
the default WSDL namespaces and prefixes.

 Figure 43: Edit Namespaces and Prefixes dialog

 3. Choose an action to perform:

To... Do this

Add a new
namespace prefix

 1. Click [Add].

 2. Enter the Prefix and Namespace URI for the new

 Table 35: Namespace map actions

Chapter 3: Working with Policy Assertions 157

Layer 7 Policy Authoring User Manual, v8.2

To... Do this

namespace.

 3. Click [OK]

Edit a user-defined
namespace prefix

 1. Select a user-defined namespace prefix to edit. These are
shown in bold.

 2. Click [Edit].

 3. Modify the Prefix or Namespace URI.

 4. Click [OK].

Note: Only user-defined namespaces may be edited (those entered
using the [Add] button). Predefined namespaces cannot be
modified.

Delete a user-defined
namespace prefix

 1. Select the user-defined namespace prefix. These are shown
in bold.

 2. Click [Remove]. The entry is removed immediately.

Note: Only user-defined namespaces may be removed (those
entered using the [Add] button). Predefined namespaces cannot be
removed.

 4. Click [OK] to close the dialog.

Migrating Namespaces
The Migrate Namespaces feature allows you to quickly update all XPath-based assertions
from one namespace to another. The XPath-based assertions include the following:

"Encode to MTOM Format Assertion" on page 437
"Encrypt Element Assertion" on page 346
"Evaluate Request XPath Assertion" on page 458
"Evaluate Response XPath Assertion" on page 461
"Require Encrypted Element Assertion" on page 400
"Require Signed Element Assertion" on page 402
"Require XPath Credentials Assertion" on page 248
"Sign Element Assertion" on page 407

 To migrate namespaces:

 1. In the policy window, select the assertion(s) to migrate. You can select multiple
assertions by holding down the [Ctrl] key while selecting the assertions. To update
all eligible assertions in the policy, select the first assertion in the policy, hold down
the [Shift] key, then select the last assertion in the policy.

158 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

 2. In the Policy Manager, select [Edit] > Migrate Namespaces from the Main Menu
(browser client: use the "Edit" menu next to the "Help" menu within the client). Tip:
If the option is not available, click on an assertion in the policy window first.

The Migrate Namespaces dialog appears.

 Figure 44: Migrate Namespaces dialog

 3. Enter the original namespace or select a namespace from the drop-down list.

 4. Enter the new namespace or select from a list of common namespaces from the
drop-down list.

 5. Click [OK]. All XPath-based assertions listed above are automatically updated to
use the new namespace.

Using the XML Editor
When XML code is required in some Policy Manager forms, there is a set of built-in tools
that can help you work with the code. These tools are known as the XML Editor and they
are available from the following locations:

"Apply XSL Transformation Assertion" on page 424

"Managing Global Resources" on page 72

Sample Messages in the Layer 7 Policy Manager User Manual

"Validate XML Schema Assertion" on page 703

To access the XML Editor, right-click anywhere within the XML code box. A context menu
will appear with the following options (options that are currently unavailable are
dimmed):

 Table 36: XML Editor options

Menu Option Description

Document > Insert
file

Inserts a file containing XML code into the box, at the location of the
cursor. Once the code is inserted, you may edit it within the XML code
box if necessary.

Chapter 3: Working with Policy Assertions 159

Layer 7 Policy Authoring User Manual, v8.2

Menu Option Description

Undo Reverses the last action, such as character typed, text pasted/deleted, or
file inserted. Multiple levels of undo are available.

Redo Reverses the last undo action. Multiple levels of redo are available.

Cut Removes the selected text and places it on the clipboard for pasting
elsewhere.

Copy Copies the selected text and places it on the clipboard for pasting
elsewhere.

Paste Inserts the contents of the clipboard.

Search a node Displays a search dialog containing an expandable list of the nodes.
Clicking on a node in the search dialog highlights its location in the XML
code window.

XML > Parse Parses the XML code and notifies you of any syntax errors.

XML > Format Formats the XML code for improved readability.

XML > Comment Used to enter text that will be automatically formatted as comments in the
XML code box. The comment is inserted at the cursor location.

In addition to the XML Editor options, the following keystrokes can also be used:

 Table 37: XML Editor keyboard shortcuts

Keystroke Action

[Ctrl-A] Selects all the text within the XML code box

[Ctrl-X] Performs a Cut operation

[Ctrl-V] Performs a Paste operation

[Home] Moves the cursor to the beginning of the line

[End] Moves the cursor to the end of the line

[Ctrl-Home] Moves the cursor to the beginning of the XML code box

[Ctrl-End] Moves the cursor to the end of the XML code box

[Ctrl-right arrow]
[Ctrl-left arrow]

Moves the cursor one item to the right or left within a line of XML code.

[Ctrl-Shift-right arrow]
[Ctrl-Shift-left arrow]

Selects the item to the right or left in a line of XML code.

160 Chapter 3: Working with Policy Assertions

Layer 7 Policy Authoring User Manual, v8.2

Chapter 4:
 Access Control Assertions

Notes: (1) Depending on which Gateway product you have installed, not all the assertions
shown below may be available. See Features by Product in the Layer 7 Policy Manager User
Manual for a list of which features are available for each product. (2) This category may also
include custom-created encapsulated assertions. For more information, see "Working with
Encapsulated Assertions" on page 126.

In the Policy Manager, the following assertions are available in the Access Control
category of the [Assertions] tab:

Authenticate Against Identity Provider Assertion 163

Authenticate Against Radius Server Assertion 164

Context Variables Created by This Assertion 164
Authenticate Against SiteMinder Assertion 167

Authenticate User or Group Assertion 170

Authenticating Against a Simple LDAP Identity Provider 171
Authorize via SiteMinder Assertion 173

Check Protected Resource Against SiteMinder Assertion 175

Exchange Credentials using WS-Trust Assertion 177

Extract Attributes from Certificate Assertion 180

Context Variables for Subject/Issuer DN 180
Context Variables for Extended Attributes 182

Extract Attributes for Authenticated User Assertion 185

Perform JDBC Query Assertion 187

Unsupported Functionality 188
Context Variables Created by This Assertion 189
SQL Query Tips 196
Caching Metadata 206

Query LDAP Assertion 209

Require Encrypted UsernameToken Profile Credentials Assertion 213

Require FTP Credentials Assertion 214

Require HTTP Basic Credentials Assertion 215

Require HTTP Cookie Assertion 215

Context Variables Created by This Assertion 216
Require NTLM Authentication Credentials Assertion 217

Context Variables Created by This Assertion 219
Creating a Computer Account for NTLM Authentication 221

Require Remote Domain Identity Assertion 226

Context Variables Created by This Assertion 227

Chapter 4: Access Control Assertions 161

Layer 7 Policy Authoring User Manual, v8.2

Require SAML Token Profile Assertion 228

Context Variables Created by This Assertion 229
SAML Token Profile Wizard 231

Require SSH Credentials Assertion 237

Require SSL or TLS Transport Assertion 238

Require Windows Integrated Authentication Credentials Assertion 241

Require WS-Secure Conversation Assertion 242

Context Variable Created by This Assertion 243
Require WS-Security Kerberos Token Profile Credentials Assertion 243

Require WS-Security Password Digest Credentials Assertion 244

Require WS-Security Signature Credentials Assertion 246

Require WS-Security UsernameToken Profile Credentials Assertion 248

Require XPath Credentials Assertion 248

Retrieve Credentials from Context Variable Assertion 250

Retrieve Kerberos Authentication Credentials Assertion 251

Using the Protocol Transition Delegation Method 252
Using the Constrained Proxy Delegation Method 254
Kerberos Service Ticket/Session Caching 255

Retrieve SAML Browser Artifact Assertion 258

Use WS-Federation Credential Assertion 263

The Access Control assertions establish the authorized identities and corresponding
credential authentication protocols and requirements in a policy. A policy can contain
more than one access control assertion, but only one can appear in a single policy
execution path (parent or child assertion folder) before the single Grant Access to
Users/Groups assertion to which it is assigned.

Note: The SiteMinder Protected Resource, Sun Java System Access Manager Protected
Resource, and Tivoli Access Manager assertions, if present, are optional custom assertions
that are purchased and installed separately. For more information on acquiring custom
assertions, please contactCA Technologies.

162 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Authenticate Against Identity Provider Assertion
The Authenticate Against Identity Provider assertion authenticates the current credentials
against a selected identity provider, using credentials gathered from a credential source
assertions (for example, Require HTTP Basic Credentials, Require SAML Token Profile, or
Require SSL or TLS Transport). It is similar to using the Authenticate User or Group
assertion except that it does not match the authenticated user against any particular
user or group.

Use this assertion when you need to separate authentication and authorization, for
example:

 l You want to authenticate the credentials already gathered in the policy, but you
don't need to authorize that the resulting user is a particular user or member of a
particular group.

 l The policy contains many "User" or "Group" assertions. You want to authenticate
first so that if it fails, the identity assertions can be skipped, saving processing
time.

 l You wish to perform branching based on the results of authentication (for
example, "If the authentication fails, do this; otherwise do this...")

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more applying a tag to the identity, see Identity Tags in the Layer 7 Policy
Manager User Manual.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Change Authentication Identity Provider dialog
automatically appears; when modifying the assertion, right-click <target>:
Authenticate against... in the policy window and choose Change Authentication
Identity Provider or double-click the assertion in the policy window.

Chapter 4: Access Control Assertions 163

Layer 7 Policy Authoring User Manual, v8.2

 Figure 45: Changing the identity provider used for authentication

 3. Choose the identity provider that will be authenticated against. Only configured
identity providers appear on the list.

 4. Click [OK] when done.

Authenticate Against Radius Server Assertion
The Authenticate Against Radius Server assertion is used to authenticate credentials against
a RADIUS (Remote Authentication Dial In User Service) Server.

Note: This assertion only provides authentication—authorization and accounting against the
RADIUS server is not supported.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Be sure to precede this assertion with a username/password credential source.

Example: The following simple policy fragment authenticates a user's HTTP Basic
Credentials against the Radius server:

Context Variables Created by This Assertion

The Authenticate Against Radius Server assertion sets the following context variables.
Note: The default <prefix> is "radius" and can be changed in the assertion properties
(Figure 46).

Context variable Description

<prefix>.<AttributeName> Returns the value for the Radius attribute name (for example,

 Table 38: Context variables created by Authenticate Against Radius Server assertion

164 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Context variable Description

${radius.User-Name} will return the user's name).

<prefix>.reasonCode Returns a success/fail reason code from Table 39 below.

Note: A reason code is not returned if the authentication failed
due to invalid credentials.

Code Name Description

0 Success Authenticated against the Radius server successfully

-1 Radius Server
Error

Any Radius server error (view the audit events for the failure
reason)

-2 Radius Server
Timeout

Radius server timed out. This code will be returned when the
Radius server is unresponsive or if an invalid IP address is
specified.

-3 Unknown Host Unknown Radius server host. This code will be returned when the
Radius server cannot be found or if an invalid hostname was
specified.

-4 Secret Not
Found

Secret key cannot be found from the stored password

-5 Configuration
Error

The "Auth Port" or "Timeout" fields contain a context variable that
did not resolve to a numeric value

 Table 39: Radius reason codes

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Authenticate Against Radius Server Properties
automatically appears; when modifying the assertion, right-click <target>
Authenticate Against Radius Server in the policy window and choose
Authenticate Against Radius Server Properties or double-click the assertion in
the policy window. The properties dialog appears.

Chapter 4: Access Control Assertions 165

Layer 7 Policy Authoring User Manual, v8.2

 Figure 46: Authenticate Against Radius Server Properties

 3. Configure the properties as follows:

Setting Description

Host
Enter the Radius Server host name. You may reference context
variables.

Secret Choose the stored secret to use from the drop-down list.

Note: Only stored passwords may be used here —you cannot type in
the secret. To define a stored password, click [Manage Passwords].
For more information, see Managing Stored Passwords in the Layer 7
Policy Manager User Manual.

Auth Port
Enter the Radius Server authorization port number. You may
reference context variables.

The default port is: 1812

Timeout
Enter the Radius Server authorization timeout value. You may
reference context variables.

The default timeout is: 5 seconds

 Table 40: Authenticate Against Radius Server settings

166 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Authenticator Choose the authentication protocol to use from the drop-down list.

Attributes Optionally add Radius attributes for the access request.

Tip: For a list of the Radius attributes, see
http://freeradius.org/rfc/attributes.html. Note that the attributes
User-Name and User-Password are overridden by the user
credentials.

To add an attribute:

 1. Click [Add].

 2. Enter a Name and Value for the attribute. You may reference
context variables for the Value, but not the Name.

 3. Click [OK].

To modify an attribute:

 1. Select the attribute and then click [Edit].

 2. Modify the Value. You may reference context variables for the
Value, but not the Name.

 3. Click [OK].

To remove an attribute:

 1. Select the attribute to remove.

 2. Click [Delete]. The attribute is removed.

Radius Variable
Prefix

Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

Note: Context variables are not supported for the prefix. If a variable is
specified, the assertion will strip away the enclosing characters and
use the variable name itself as the prefix. For example, specifying the
variable "${abc}" will result in "abc" as the variable prefix.

 4. Click [OK] when done.

Authenticate Against SiteMinder Assertion
The Authenticate Against SiteMinder assertion is used to authenticate credentials against
the CA SiteMinder Policy Server.

For a description of the context variables that this assertion can set or use, see Context
Variables for CA SiteMinder in the Layer 7 Policy Manager User Manual.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Chapter 4: Access Control Assertions 167

Layer 7 Policy Authoring User Manual, v8.2

http://freeradius.org/rfc/attributes.html

Tip: The Authenticate Against SiteMinder assertion offers a different solution for interacting
with the CA SiteMinder policy server as compared to the current custom Authenticate with
SiteMinder R12 Protected Resource assertion.The policy-based approach is more flexible than
what is employed by the custom assertion. The Authenticate Against SiteMinder assertion also
offers advanced features such as caching SSO tokens and multiple authorizations of the token.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Authenticate Against SiteMinder Properties
automatically appears; when modifying the assertion, right-click Authenticate
Against SiteMinder [<prefix>] in the policy window and choose Authenticate
Against SiteMinder Properties or double-click the assertion in the policy window.
The properties dialog appears.

 Figure 47: Authenticate Against SiteMinder Properties

 3. Configure the properties as follows:

168 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

SiteMinder Variable
Prefix

Enter a prefix that will be added to the context variables created and
used by this assertion. This prefix will ensure uniqueness and will
prevent the variables from overwriting each other when multiple
instances of this assertion appear in a policy.This field is required.

For a list of the variables set by this assertion, see Context Variables
for CA SiteMinder in the Layer 7 Policy Manager User Manual.

Credentials Choose where to retrieve the credentials to authenticate:

 l Use Last Credentials: Choose this option to use the most
recently-collected user credentials of the specified type (under
"Supported Credential Types"). This is the default.

 l Specify Credentials: Choose this to use the specific
credentials entered under "Supported Credential Types".

Tip: See "Understanding the Credential Combinations" below for
additional information.

Supported
Credential Types

Specify the credentials to be used for authentication. Note: If the
Credentials option is "Use Last Credentials", then at least one
credential type must be selected, otherwise the assertion will fail during
policy execution.

 l Username Password: Select this option to use basic
authentication credentials to authenticate the user. Enter the
Username if you have chosen to specify the credentials. You
may reference context variables. This is the default.

 l X509 Certificate: Select this option to authenticate a user via
a client certificate. Enter the subject name under Certificate
CN or DN if you have chosen to specify the credentials. You
may reference context variables.

The subject name of the X509 certificate can be a fully-
specified DN (in which case it is matched exactly) or the CN
attribute of a DN (in which case it is matched against just the
CN value).

Tip: See "Understanding the Credential Combinations" below for
additional information.

Use SSO Token
from Context
Variable

 l Select this check box to specify a context variable containing
the SiteMinder SSO Token, then enter the name of the context
variable that will contain this token.

 l Clear this check box to not use the SSO Token for
authentication. Collected user credentials will be used instead
(for example, via the Require HTTP Basic Credentials
assertion).

 Table 41: Authenticate Against SiteMinder settings

Chapter 4: Access Control Assertions 169

Layer 7 Policy Authoring User Manual, v8.2

Understanding the Credential Combinations

The Authenticate SiteMinder Properties offers multiple combinations of
credentials settings for flexibility. Here is a brief explanation of the results of
various combinations:

 l If you select "Use Last Credentials" and then select both the "Username
Password" and "X.509 Credentials" check boxes, the actual credentials used will
depend on the authentication scheme present in the policy:

 l If only HTTP is used, then the X.509 Credentials is ignored.

 l If only client certificate authentication is used, then the Username Password
is ignored.

 l If both authentication schemes are present in the policy, then the client
certification authentication is chosen first, followed by HTTP Basic.

 l If you select "Use Last Credentials" and then fail to select a credential type, then
the service policy will fail because no credentials are collected.

 l If you select "Specify Credentials" and then select both credential type options,
then you must enter the appropriate credentials for the same user, otherwise
authentication will fail during policy execution.

 l If you select "Specify Credentials" and then fail to select a credential type
option, an error will be displayed when you try to close the properties.

 4. Click [OK] when done.

Authenticate User or Group Assertion
The Authenticate User or Group assertion allows you to authenticate users and/or groups
from specific LDAP Identity Providers, Simple LDAP Identity Providers, Federated Identity
Providers (FIP), or Internal Identity Providers (IIP), using credentials gathered from a
credential source assertions (for example, Require HTTP Basic Credentials, Require SAML
Token Profile, or Require SSL or TLS Transport).

If you need to add more than one user or group to a policy, add several Authenticate
User or Group assertions into an At Least One Assertion Must Evaluate to True folder.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more applying a tag to the identity, see Identity Tags in the Layer 7 Policy
Manager User Manual.

170 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Authenticating Against a Simple LDAP Identity Provider

The authentication process differs slightly when a Simple LDAP Identity Provider is
involved:

 l Only users, not groups, can be authenticated against a Simple LDAP.

 l When using the Policy Manager interface to search for a user in a Simple LDAP, the
LDAP server is not actually consulted and no validation of the user name is
performed by either the Policy Manager or the Gateway. The user name will always
be displayed in the Search Results window, even if no such user exists (in other
words, a "virtual" user is created).

Note: The Gateway will reject the user if the user name contains characters not
permitted by the regular expression defined in the ldap.simple.username.pattern cluster
property.

 l At policy runtime, the Authenticate User or Group assertion succeeds only if the
username and password provided by the client authenticates successfully and if
the client-provided username matches the "virtual" user name from the
Authenticate User or Group assertion.

Using the Assertion

 1. Add the assertion to the policy development window using one of the methods
described in Adding an Assertion.

Tip: You can also right-click within either the "All assertions must evaluate to true" or
"At least one assertion must evaluate to true" assertion folders and then choose Add
User or Group.

The Search Identity Provider dialog appears:

Chapter 4: Access Control Assertions 171

Layer 7 Policy Authoring User Manual, v8.2

 Figure 48: Search Identity Provider dialog

 2. Configure your search details as follows:

Detail Description

Search Choose the identity provider that contains the target user and/or
group.

Type Specify whether to search for groups, users, or all.

Note: Groups are not supported when authenticating against a Simple
LDAP Identity Provider.

Name Optionally refine your search by specifying whether the name should
be Equal to or Starts with a specific string of characters.

You can use the asterisk (*) wildcard to match any number of
characters, or the question mark (?) to match any single character.

Note: The "Starts with" and "Equals" settings have no effect when
search a Simple LDAP Identity Provider.

 Table 42: Search Identity Provider settings

 3. Click [Search]. Matching groups/users appear in the Search Results box. Note that
if searching against a Simple LDAP Identity Provider, the user will always be "found"
(see "Authenticating Against a Simple LDAP Identity Provider" above for details).

 4. Choose the users and/or groups to be added to the policy.

172 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

You can choose a continuous block of rows by dragging the mouse over the rows
you want; or, choose the first row, hold down the [Shift] key, then choose the last
row. You can choose individual rows by holding down the [Ctrl] key while clicking
on the rows you want.

 5. Click [Select]. The Search Identity Provider dialog closes and an assertion for each
user or group is added to the policy development window.

 6. Repeat this process to grant access to other users or groups.

Authorize via SiteMinder Assertion
The Authorize via SiteMinder assertion is used to authorize a user against the CA
SiteMinder Policy Server. This assertion also sets a SiteMinder cookie and adds it to the
response.

For a description of the context variables that this assertion can set or use, see Context
Variables for CA SiteMinder in the Layer 7 Policy Manager User Manual.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Setting SiteMinder Cookies

Prior to version 8.2.0, SiteMinder cookies were set in the Authorize via SiteMinder
assertion. This functionality has now been moved to the "Manage Cookie Assertion" on
page 512. As a result:

 l Instances of the Authorize via SiteMinder assertion in use prior to v8.2.0 will
continue to display the SiteMinder cookie controls until the "Set SiteMinder
Cookie" check box is deselected. At this point, the cookie controls are removed
and the properties will resemble Figure 50. To set a SiteMinder cookie in the
future, use the "Manage Cookie Assertion" on page 512 (see Figure 49 for an
example).

 l New instances of the Authorize via SiteMinder assertion added to a policy in
version 8.2.0 or later will only display the properties shown in Figure 50. If a
SiteMinder cookie is required, use the "Manage Cookie Assertion" on page 512 to
set it (see Figure 49 for an example).

The following policy sample shows how you might replace the Setting SiteMinder Cookies
functionality. Note that the name of the cookie is SMSESSION by default and the value is
$"{siteminder.smcontext.ssotoken}". Note the double quotes in this context variable; these
quotes are required in this instance.

Chapter 4: Access Control Assertions 173

Layer 7 Policy Authoring User Manual, v8.2

 Figure 49: Sample policy for setting the SiteMinder Cookie

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Authorize via SiteMinder Properties
automatically appears; when modifying the assertion, right-click Authorize via
SiteMinder: [<prefix>] in the policy window and choose Authorize via
SiteMinder Properties or double-click the assertion in the policy window. The
properties dialog appears.

 Figure 50: Authorize via SiteMinder Properties

 3. Configure the properties as follows:

Setting Description

SiteMinder Variable
Prefix

Enter a prefix that will be added to the smcontext context variables
created and used by this assertion. This prefix will ensure uniqueness
and will prevent the variables from overwriting each other when

 Table 43: Authorize via SiteMinder settings

174 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

multiple instances of this assertion appear in a policy. This field is
required.

For a list of the variables set by this assertion, see Context Variables
for CA SiteMinder in the Layer 7 Policy Manager User Manual.

<location of
SSO Token>

Specify where to obtain the SSO Token:

 l Use SSO Token from SiteMinder context: Select this
option to attempt to gather the SSO token from the SiteMinder
context object. For more information about the SiteMinder
context object, , see Context Variables for CA SiteMinder in the
Layer 7 Policy Manager User Manual.

 l Use SSO Token from Context Variable: Select this option
to obtain the SSO token from the context variable specified in
the adjacent box.

 4. Click [OK] when done.

Check Protected Resource Against SiteMinder
Assertion

The Check Protected Against SiteMinder assertion is used to determine whether the
specified resource (URL) is protected via a CA SiteMinder Policy Server, and then it
establishes the authentication method.

For a description of the context variables that this assertion can set or use, see Context
Variables for CA SiteMinder in the Layer 7 Policy Manager User Manual.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the SiteMinder Check Protected Resource Properties
automatically appears; when modifying the assertion, right-click Check Protected
Resource Against SiteMinder <prefix>, agent <SM configuration name> in the

Chapter 4: Access Control Assertions 175

Layer 7 Policy Authoring User Manual, v8.2

policy window and choose SiteMinder Check Protected Resource Properties or
double-click the assertion in the policy window. The properties dialog appears.

 Figure 51: SiteMinder Check Protected Resource Properties

 3. Configure the properties as follows. All fields are required.

Setting Description

Configuration Name Choose the SiteMInder configuration to use from the drop-down list.
These configurations are defined using the Manage SiteMinder
Configurations task.

Agent
Enter the name of the CA SiteMinder agent associated with the
resource. You may reference context variables.

Protected Resource Enter the name of the resource being protected by the CA SiteMinder
Policy Server. You may reference context variables.

Action Choose an action for the Web Agent from the drop-down list:

GET
POST
PUT

Other actions may be available, depending on the CA SiteMinder
Policy Server Rule associated with the domain of the protected
resource. You may specify a context variable in lieu of choosing from
the drop-down list. This field is blank by default.

Source IP Address Optionally, specify the source IP address that is used in the
authentication/authorization procedure. You may reference context
variables.

 Table 44: SiteMinder Check Protected Resource settings

176 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Notes: (1) If a source IP is not specified, then the client's remote
address from the target message is used. If this remote address is null,
then the value of the Address field from the SiteMinder Configuration
Properties is used instead. (2) The source IP address is ignored if the
IP Check check box in the the SiteMinder Configuration Properties is
not selected.

SiteMinder Variable
Prefix

Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

For a list of the variables set by this assertion, see Context Variables
for CA SiteMinder in the Layer 7 Policy Manager User Manual.

 4. Click [OK] when done.

Exchange Credentials using WS-Trust Assertion
The Exchange Credentials using WS-Trust assertion takes credentials gathered by a
preceding credential source assertion, such as the transport-level Require HTTP Basic
Credentials or message-level Require WS-Security UsernameToken Profile Credentials
assertions, and sends them via a WS-Trust RequestSecurityToken (RST) SOAP request to
a WS-Trust Security Token Service (STS). If the resulting SOAP response is a
RequestSecurityTokenResponse (RSTR) and not a fault, and its RequestedSecurityToken
element contains a valid security token (either a SAML token or a UsernameToken) the
assertion will replace the current request's credentials with that token. If the message's
original credentials were XML-based, then the XML element containing those credentials
will be removed from the message and replaced with the RequestedSecurityToken
element.

For more information about the Security Token Service, see Working with the Security
Token Service in the Layer 7 Policy Manager User Manual.

Chapter 4: Access Control Assertions 177

Layer 7 Policy Authoring User Manual, v8.2

W A R N I N G

The Exchange Credentials using WS-Trust assertion will be invalidated if the routing
assertion in the policy is set to remove processed Security headers. When using the
Exchange Credentials using WS-Trust assertion, you must configure the Route via
HTTP(S) assertion to maintain the Security header in the message. To do so, select
the "Leave current Security header in request before routing" option in the HTTP(S)
Routing Properties that is used by both assertions. If the credentials in a message are
covered by an XML Signature using the Sign Element assertion, then the signature
will be invalidated when the credentials are replaced by the Exchange Credentials
using WS-Trust assertion.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the WS-Trust Credential Exchange Properties
automatically appear; when modifying the assertion, right-click Exchange
Credentials using WS-Trust Request... in the policy window and select WS-Trust
Credential Exchange Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

 Figure 52: WS-Trust Credential Exchange Properties

 3. Configure the properties as follows:

178 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

WS-Trust Namespace From the drop-down list, select the WS-Trust namespace to
use. This will determine the version of WS-Trust used by the
assertion.

 l <Not Specified>: The system default WS-Trust
namespace is used.

 l http://docs.oasis-open.org/ws-sx/ws-
trust/200512: When this namespace is selected, the
RST request messages will no longer use the
"wst:Base" element for the token in "Issue" requests.
Instead, a security header will be added to the
message containing the token and a timestamp.

 l http://schemas.xmlsoap.org/ws/2005/02/trust:
When this namespace is selected, the RST message
uses the selected namespace and corresponding
"RequestType"; the "Base" element is used. This
namespace is typically used when "<Not Specified>"
is selected.

Note: When this namespace is used, the cluster
property wss.decorator.wsTrustRequestTypeIndex is
respected. Changes to this property requires a restart
of the Gateway. For more information, see Gateway
Cluster Properties.

 l http://schemas.xmlsoap.org/ws/2004/04/trust:
When this namespace is selected, the RST message
uses the selected namespace and corresponding
"RequestType"; the "Base" element is used.

Token Service URL Enter the complete URL of the WS-Trust Security Token
Service (STS).

The STS must be running and configured to accept
RequestSecurityToken (RST) requests containing the values
configured below

wsp:Applies to URI Enter a URI that describes the service for which the token will
be used. For example: urn:example.com:services:echo or
http://services.example.com/EchoService.

wst:Issuer URI Enter a URI that describes the issuer (identity provider) of the
security token being sent. For example,
urn:example.com:users or http://example.com.

Request Type Select the type of request from the drop-down list.

Tip: Most WS-Trust Security Token Service implementations
deal with validation requests.

 Table 45: WS-Trust Credential Exchange settings

 4. Click [OK] when done.

Chapter 4: Access Control Assertions 179

Layer 7 Policy Authoring User Manual, v8.2

Extract Attributes from Certificate Assertion
The Extract Attributes from Certificate assertion extracts information from the X.509
Certificate of the last authenticated user and places them in context variables. Specifically,
the subject/issuer DN fields are parsed and made available as context variables, as well as
some extended attributes.

You can create a custom prefix to be added to context variables created by this assertion,
to help make the context variables more readily identified.

In a policy, the Extract Attributes from Certificate assertion must be preceded by:

 l At least one credential source assertion:

 l Require SSL or TLS Transport with Client Authentication

 l Require WS-Secure Conversation

 l Require WS-Security Signature Credentials

 l Require SAML Token Profile (Subject Confirmation: Holder of Key, Require Message
Signature)

 l An identity assertion (for example, Authenticate User or Group)

Context Variables for Subject/Issuer DN

The Extract Attributes from Certificate assertion sets the following context variables for
the subject/issuer DN in an X.509 certificate. Note: The default <prefix> is "certificate" and
can be changed in the assertion properties (Figure 53).

The sample values shown are based on the following example subject DN:

cn=jsmith, OU=support, OU=IT, OU=Services, DC=acmecorp, DC=org, C=US

Context variable Description

${<prefix>.subject.dn} Contains the subject DN in a format that is easier to
read.

${<prefix>.subject.dn.canonical} Contains the subject DN in a format suitable for
comparisons (limited subset of entity ID names;
strict sorting, whitespace, and case rules).

${<prefix>.subject.dn.rfc2253} Contains the subject DN in a format that is
technically precise, yet maintains readability. This
only includes RFC 2253 entity ID names.

${<prefix>.subject.cn} Contains the "cn" value of the subject (e.g., jsmith)

 Table 46: Context variables for Subject/Issuer DN in an X.509 certificate

180 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Context variable Description

${<prefix>.subject.ou} Contains the "ou" values of the subject (e.g.,
support, IT, Services)

${<prefix>.subject.dc } Contains the "dc" value of the subject (e.g.,
acmecorp, org)

${<prefix>.subject.c } Contains the "c" value of the subject (e.g., US)

${<prefix>.subjectPublicKeyAlgorithm } Contains the Name of the Signature Algorithm for
the certificate (e.g., "SHA1withRSA")

${<prefix>.subjectEmail} Contains the email address (if any) from the
Subject DN

${<prefix>.subjectAltNameEmail} Contains the email address (if any) for the Subject
Alternative Name (rfc288) (e.g.,
"example2@oasis-open.org")

${<prefix>.subjectAltNameDNS} Contains the DNS Name address (if any) for the
Subject Alternative Name (e.g., "example2.oasis-
open.org")

${<prefix>.subjectAltNameURI} Contains the Uniform Resource Identifier (if any)
for the Subject Alternative Name (e.g.,
"http://example2.oasis-open.org/")

${<prefix>.issuer.dn} Contains the issuer DN in a format that is easier to
read.

${<prefix>.issuer.dn.canonical} Contains the issuer DN in a format suitable for
comparisons (limited subset of entity ID names;
strict sorting, whitespace, and case rules).

${<prefix>.issuer.dn.rfc2253} Contains the issuer DN in a format that is
technically precise, yet maintains readability. This
only includes RFC 2253 entity ID names.

${<prefix>.issuer.c } Contains the "c" (CountryName) value of the
issuer

${<prefix>.issuer.cn} Contains the "cn" (CommonName) value of the
issuer

${<prefix>.issuer.dc } Contains the "dc" (DomainComponent) value of
the issuer

${<prefix>.issuer.l } Contains the "l" (LocalityName) value of the issuer

Chapter 4: Access Control Assertions 181

Layer 7 Policy Authoring User Manual, v8.2

Context variable Description

${<prefix>.issuer.o} Contains the "o" (OrganizationName) value of the
issuer

${<prefix>.issuer.ou} Contains the "ou" (OrganizationalUnitName) value
of the issuer

${<prefix>.issuer.st } Contains the 'st' (StateorProvinceName) value of
the issuer

${<prefix>.issuer.street } Contains the 'street' (StreetAdress) value of the
issuer

${<prefix>.issuerEmail} Contains the email address (if any) from the Issuer
DN

${<prefix>.issuerAltNameEmail} Contains the email address (if any) for the Issuer
Alternative Name (rfc288)

${<prefix>.issuerAltNameDNS} Contains the DNS Name address (if any) for the
Issuer Alternative Name

${<prefix>.issuerAltNameURI} Contains the Uniform Resource Identifier (if any)
for the Issuer Alternative Name

Note: If an attribute is not recognized, the following variable will be created for it:
${prefix.subject.oid.1.2.3}, where "1.2.3" is the dotted-decimal entity ID of the attribute.

Context Variables for Extended Attributes

The Extract Attributes from Certificate assertion sets the following context variables for
the extended attributes of an X.509 certificate. Note: The default <prefix> is "certificate"
and can be changed in the assertion properties (Figure 53).

Context variable Description

${<prefix>.countryOfCitizenship} Contains the country of citizenship. Since there can
be multiple values, this is an array of 2-letter country
codes.

${<prefix>.signatureAlgorithmName} Contains the Name of the Signature Algorithm for
the certificate (e.g., "SHA1withRSA")

${<prefix>.signatureAlgorithmOID} Contains the entity ID of the Signature Algorithm for
the certificate (e.g., "1.2.840.113549.1.1.5")

${<prefix>.serial} Contains the Certificate Serial#

${<prefix>.notAfter} Contains the Certificate Not After Date (e.g.,

 Table 47: Context variables for extended attributes in an X.509 certificate

182 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Context variable Description

"2018-03-19T23:59:59.000Z")

${<prefix>.notBefore Contains the Certificate Not Before Date (e.g.,
"2005-03-19T00:00:00.000Z")

Key usage information are stored in the following variables. If no key usage extension is present in the
certificate, the criticality is set to "none" and all the Boolean variables are set to "false".

${<prefix>.keyUsage.criticality} Whether the extension is present; if so whether it is
critical. The following values are used:

 l none = extension not present

 l noncrit = extension is present but not
critical

 l critical = extension is present and critical

${<prefix>.keyUsage.digitalSignature} Digital signature (true/false)

${<prefix>.keyUsage.nonRepudiation} Non Repudiation (true/false)

${<prefix>.keyUsage.keyEncipherment} Key Encipherment (true/false)

${<prefix>.keyUsage.dataEncipherment} Data Encipherment (true/false)

${<prefix>.keyUsage.keyAgreement} Key Agreement (true/false)

${<prefix>.keyUsage.KeyCertSign} Key Certificate Sign (true/false)

${<prefix>.keyUsage.cRLSign} CRL Sign (true/false)

${<prefix>.keyUsage.decipherOnly} Decipher Only (true/false)

Extended key usage information is stored in the ${<prefix>.extendedKeyUsage} variable. If no
extended key usage information is present in the certificate, the criticality is set to "none" and the arrays
are empty.

${
<prefix>.extendedKeyUsage.criticality}

Whether extended key usage is present; if so
whether it is critical. The following values are used:

 l none = extended information not present

 l noncrit = extended information is present
but not critical

 l critical = extended information is present
and critical

${<prefix>.extendedKeyUsage} Contains the extended key usage information,
stored as an array of strings. Each value is a dotted-
decimal entity ID.

${<prefix>.certificatePolicies} Contains certificate policies information, stored as
an array of strings. Each value is a dotted-decimal
entity ID.

Chapter 4: Access Control Assertions 183

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Certificate Attributes Properties automatically
appear; when modifying the assertion, right-click Extract Attributes from
Certificate in the policy window and select Certificate Attributes Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 53: Certificate Attributes Properties

 3. Enter a prefix that will be added to the context variables created by this assertion.
This prefix will ensure uniqueness and will prevent the variables from overwriting
each other when multiple instances of this assertion appear in a policy.

The default variable prefix is certificate.

For an explanation of the validation messages displayed, see Context Variable
Validation in the Layer 7 Policy Manager User Manual.

 4. Click [OK] when done.

184 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Extract Attributes for Authenticated User Assertion
The Extract Attributes for Authenticated User assertion is used to create context variables
based on the attributes of a previously authenticated user. The context variables created
here are primarily intended to be used by the Create SAML Token assertion, but they can
be read by any assertion that uses context variables.

The context variables created by this assertion have user-defined names.

Note: The Extract Attributes for Authenticated User assertion must be placed after the
Authenticate User or Group assertion. If the Gateway is unable to authenticate a user, then no
context variables will be created.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the properties automatically appear; when modifying
the assertion, right-click Extract Attributes for Authenticated User in the policy
window and select Identity Attributes Properties. The assertion properties are
displayed.

 Figure 54: Identity Attributes Properties

Chapter 4: Access Control Assertions 185

Layer 7 Policy Authoring User Manual, v8.2

 3. Configure the properties as follows:

Setting Description

Identity Provider Select the identity provider from the drop-down list.

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

The default is authenticatedUser.

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

User/Group
Attribute

This table lists the context variables that have been created for the
identity provider and the attributes to be extracted from the
authenticated user. Choose one of the following actions:

 l To add a new context variable, click [Add] and then complete
the User Attribute Mapping dialog in step 4.

 l To change a context variable in the list, select it, click [Edit], and
then complete the User Attribute Mapping dialog in step 4.

 l To remove a context variable in the list, select it and then click
[Remove].

 Table 48: Identity Attributes settings

 4. If adding or editing a context variable, the User Attribute Mapping dialog appears:

 Figure 55: User Attribute Mapping dialog

 5. Configure the dialog as follows:

186 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Identity Provider The identity provider that was selected on the Identity Attributes
dialog, displayed here for your reference.

Built-In Attribute Select this option to create a context variable based on a predefined
attribute in the system. Choose the attribute to use from the drop-
down list.

Note: Not all identity providers can provide every attribute shown in
the list. If you select a combination that results in no attribute, the
resulting context variable will have no value.

Custom Attribute Select this option if you are using an LDAP identity provider and you
wish to use an attribute not in the built-in list. Type the name of the
custom attribute to use. The validator will give you instant feedback as
to whether the attribute contains valid characters.

Context Variable
Name

The system displays the name of the context variable that will be
created, based on the attribute specified and the prefix entered on the
previous screen. You may edit the attribute portion of the name if
necessary. The validator will give you instant feedback as to whether
the variable name contains valid characters

Multivalued Select this check box if the variable is expected to hold multiple values
and all values from the attribute should be stored in the context
variable.

Clear this check box if the context variable is not expected to be
multivalued. Only the first value is stored, even if multiple values are
present.

For more information on using multivalued variables, including
delimiter characters and concatenation options, see Working with
Multivalued Context Variables in the Layer 7 Policy Manager User
Manual.

 Table 49: User Attribute Mapping settings

 6. Click [OK] when done.

Perform JDBC Query Assertion
The Perform JDBC Query assertion is used to query an external database and use the
query results later. The query results are stored in context variables created by this
assertion.

Tip: To support using multivalued context variables in the JDBC Query assertion, you can build
up the values of such a variable using the "Manipulate Multivalued Variable Assertion" on page
642.

Chapter 4: Access Control Assertions 187

Layer 7 Policy Authoring User Manual, v8.2

Before you can perform a JDBC query, be sure a JDBC connection has been configured
through the Manage JDBC Connections task.

W A R N I N G

Do not create connections to the Gateway's MySQL database in general. Any query
which writes to this database may render the Gateway inoperable.

The Perform JDBC Query Assertion is able to write to a variety of databases, even
during a "Test". Ensure you are aware of the changes you are making as they are
irreversible through the JDBC Query Properties.

Unsupported Functionality

Note the following functionality is not currently supported by the Perform JDBC Query
assertion:

 l Functions and Procedures are not supported on DB2.

 l Functions and Procedures are supported on MySQL only when the database name
is provided in the JDBC connection URL. Only supported when using the native
MySQL driver and not DataDirect.

 l Functions and Procedures with nested function calls are not supported.

 l PL/SQL blocks are not supported.

 l Calling overloading procedures or functions is not supported.

 l Calling functions on MySQL Enterprise Edition using the Data Direct MySQL driver
is not supported.

 l Calling functions on Oracle via the native driver is not supported.

 l Calling functions that return a Boolean with the DataDirect driver is not
supported.

 l Procedures and functions with lowercase names are not supported in Oracle.

 l Functions and procedures in Oracle that return NCLOBs or NBLOBs with values
greater than 32KB cannot be called from the CA API Gateway.

 l The Boolean parameters BOOLEAN and BOOL are not supported for the native
MySQL driver.

188 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Context Variables Created by This Assertion

The Perform JDBC Query assertion sets the following context variables with the query
results. Note: The default <prefix> is "jdbcQuery" and can be changed in the assertion
properties (Figure 57).

Variable Description

<prefix>.<column_name> Returns the column name specified in the SQL query.
This variable is created when one result set is returned.

<prefix>.resultSet1.<column_name> If a stored procedure returns multiple result sets, then
"resultSet1...N" will be added to the name of the
variable.

<prefix>.queryresult.count Returns the number of records returned by the query
(if using a SELECT query) or the number of records
affected by the query (if using a non-SELECT query).
This variable is always created.

<prefix>.xmlResult Returns the XML results and is created when the
Generate XML Results check box is selected in the
properties.

<prefix>.multipleResultSet.count This variable is set when there is more than one result
set. This will occur when a called procedure returns
more than one result set. This variable is not set if there
is only a single result set.

Tip: If OUT parameters are also set, they will be
counted as one result set..

<prefix>.
multipleResultSet.queryresult.count

This variable is only set when there is more than one
result set. If it is set, it contains the number of results in
total across all result sets.

Tip: If OUT parameters are also set, these will count as
one row.

<prefix>.<out_parameter> Returns the name of an OUT parameter from a
procedure.

<prefix>.return

<prefix>.RETURN_VALUE

These variables are set by calling a function, with the
name of the variable depending on the DBMS (see
Table 52).

 Table 50: Perform JDBC Query context variables

During policy consumption, the Gateway will create one multivalued context variable per
column name. The number of values in the multivalued context variable corresponds to
the number of records returned.

Chapter 4: Access Control Assertions 189

Layer 7 Policy Authoring User Manual, v8.2

Tip: If you want to use names other than the SQL column names in the context variables, you
can specify a mapping in the assertion properties.

Understanding Result Set Variables and Multiple Result Sets

The Perform JDBC Query assertion supports multiple result sets. When a SQL query is run
(for example, "select * from my_table"), a "result set" is returned. This result set is a logical
set of rows, with each row made up of a series of columns. When you (for example) select
column_a and column_b from my_table, and there are 10 rows in my_table, the result set
will contain 10 rows with each row having 2 columns.

When you call a procedure (for example, "CALL MY_PROC"), it is possible that the
procedure may return more than one result set (uncommon but possible). When this
happens, the <prefix>.multipleResultSet.count variable will be set to "2" if two result sets
were returned. If the result set #1 has 10 rows and result set #2 has 5 rows, then the
<prefix>.multipleResultSet.queryresult.count variable will be set to "15".

For example, consider a stored procedure that returns the following result sets:

 Figure 56: Multiple result sets example

These will be the context variables that will be returned (using the default prefix
"jdbcQuery"):

${jdbcQuery.resultSet1.group} = set1,set1
${jdbcQuery.resultSet1.id} = 8,3
${jdbcQuery.resultSet1.name} = name8,name3
${jdbcQuery.resultSet1.value = test value8,test value3

190 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

${jdbcQuery.resultSet2.group} = set2,set2
${jdbcQuery.resultSet2.field1} = 1,4
${jdbcQuery.resultSet2.field2} = extra1,test1
${jdbcQuery.resultSet2.field3 = extra4,test4

${jdbcQuery.resultSet3.group} = set3,set3
${jdbcQuery.resultSet3.id} = 6,5
${jdbcQuery.resultSet3.name} = name6,name5
${jdbcQuery.resultSet3.value} = test value6,test value5

${jdbcQuery.multipleResultSet.count} = 3

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the JDBC Query Properties automatically appear;
when modifying the assertion, right-click Perform JDBC Query in the policy
window and select JDBC Query Properties or double-click the assertion in the
policy window. The assertion properties are displayed.

Chapter 4: Access Control Assertions 191

Layer 7 Policy Authoring User Manual, v8.2

 Figure 57: JDBC Query Properties

Tip: You can use the split bar between the "SQL Query" and "Context Variables Naming"
panels to adjust the relative panels sizes to suit your needs (see Figure 57).

 3. Configure the properties as follows:

192 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

JDBC Connection

Choose
one
connectio

n

Choose the JDBC connection being queried from the drop-down list. If the
connection isn't visible in the list, you may type the connection name in the box.
You may reference context variables.

Note: If context variables are specified in the connection name, it will not be
possible to test the connection using the [Test] button.

For information on defining these connections, see Managing JDBC
Connections in the Layer 7 Policy Manager User Manual.

SQL Query (see "SQL Query Tips" below for more information)

Convert
Variables
to Strings

This check box determines how context variables are processed before being
sent to the JDBC driver:

 l Select this check box to convert context variable contents into a string.
For multivalued variables, their contents are concatenated into a single
value, with the values delimited by commas.

 l Clear this check box to add each value of a multivalue or single-value
context variable as is. When the policy containing the Perform
JDBC Query assertion is executed, the Gateway will construct a
statement with the list of parameters per each value of the multivalued
context variable. This setting is the default.

Query
Timeout

Enter the length of time the assertion will wait (in seconds) for a response to the
query before timing out.

Default: 0 (zero, which means use the Gateway-wide timeout, described
below)

Tips: (1) The value entered here overrides the Gateway-wide timeout setting
defined by the jdbcqueryManager.maxGatewayStatementTimeout cluster
property. The intent is to supply a shorter timeout value than the Gateway
default. If a longer timeout value is entered, it will be ignored and the Gateway
default is used instead. (2) The JDBC driver may be configured to ignore all
calls to set a timeout. If it is so configured, then it is not possible for the Gateway
to control the timeout for any queries using that JDBC Connection. For more
information, please consult your JDBC administrator. (3) The connection
property EnableCancelTimeout set to "true" may be needed when using the
DataDirect drivers, to ensure that cancel requests to an unresponsive DBMS
do not wait indefinitely.

SQL query

box

Enter the SQL query to perform. Be cautious about any usages of non-Select
DML queries. There is no transaction management within the Perform JDBC
Query assertion. Once this assertion executes, the results are permanent in the
DBMS, regardless of the policy logic surrounding the assertion. You may
reference context variables in the SQL query; for example:

SELECT column_name FROM table WHERE username =

${request.user} AND password = ${request.password}

 Table 51: JDBC Query settings

Chapter 4: Access Control Assertions 193

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Do not enclose context variables within quotes. This applies to both SELECT
and INSERT statements.

The maximum length of the query is 4 KB (4096 characters).

For more information about SQL queries, refer to "SQL Query Tips" and
"Examples Using Functions and Procedures" within this topic.

[Test] Click [Test] to verify whether the SQL query is valid on the chosen JDBC
connection. You must confirm that you understand the consequences of the
query before proceeding. You will see a message stating whether or not the
SQL query is valid.

Note: Testing is not possible if context variables are used in either the
connection name or SQL query.

Specify
Schema

This check box is available only under the following conditions:

 l A procedure or function call is defined in the SQL query text box.

AND

 l The database is Oracle or SQL Server.

Since the SQL query text box does not accept a schema value as part of the
query, select this check box if you need to specify a schema and then enter the
name of the schema in the adjacent field (must be a string without spaces or a
single-value context variable).This value is passed to the JDBC driver to allow it
to obtain the correct metadata from the database.

If the SQL query requires a schema value for a procedure or function call, select
this check box and then enter the name of the schema.You may reference
context variables. If an object is contained within a package, then the SQL query
itself should reference the package; for example:

CALL mypackage.myfunction

Tip: You may need to specify a schema if your query fails with this error
message: "The database object either does not exist or the SQL query contains
the object's schema".

Context Variables Naming

Save results
to context
variables

This check box is located above the "Context Variables Naming" table. It is used
to quickly enable or disable the saving of SQL results to the context variables
specified in the table. Tip: CA recommends leaving this check box enabled. But
consider disabling the saving of results if you are experiencing any memory
issues.

 l Select this check box to operate the table normally: you can add, edit, or
remove context variables and the SQL results will be saved to the
variables specified.

 l Clear this check box to disable the saving of SQL results to context
variables. This will disable the table and its editing controls. Any variable
defined in the table will remain.

Notes: (1) This check box operates independently of the Generate XML Result

194 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

check box below. This allows you to populate the ${<prefix>.xmlResult} variable
even when opting to not save results to context variables. (2) The following
context variables are always created, regardless of the "Save results to context
variables" check box: ${<prefix>.queryresult.count},
${<prefix>.multipleResultSet.count}, and
${<prefix>.multipleResultSet.queryresult.count}. These variables were
described under "Context Variables Created by This Assertion" (Table 50).

table This table allows you to map the SQL column headings to different names. This
will change the names of the context variables created. For example, you
require more descriptive variable names or if you require the names to conform
to naming standards at your organization. For more information, see "Context
Variables Created by This Assertion" (Table 50).

The assertion supports multiple result sets. For more information, see the
variables under "Context Variables Created by This Assertion" and
"Understanding Result Set Variables and Multiple Result Sets" above.

To add a mapping:

 1. Click [Add]. The Context Variable Naming dialog appears.

 2. Enter the SQL Column Label. For example: "Column1".

 3. Enter the mapping destination in Variable Name. For example: "Cust_
Acct".

 4. Click [OK]. This will create a context variable named ${<prefix>.Cust_
Acct} instead of ${<prefix>.Column1}.

To edit a mapping:

 1. Select a row and click [Edit].

 2. Modify the fields as necessary.

 3. Click [OK].

To remove a mapping:

 1. Select a row and click [Remove].

 2. Click [Remove] to confirm. The naming will revert to the SQL column
name.

Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the variables from
overwriting each other when multiple instances of this assertion appear in a
policy.

You may reference context variables.

The default prefix is jdbcQuery.

For more information, see "Context Variables Created by This Assertion"
(Table 50).

Other Settings

Query Optionally enter a name for the query. This name is used only for display

Chapter 4: Access Control Assertions 195

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Name purposes in the Policy Manager.

Maximum
records
per query

Specify the maximum number of records to be returned from the SQL query.
The default is 10; this can be changed using the
jdbcquery.maxRecords.defaultValue cluster property.

Fail
assertion
if no
results

Select this check box if you want the assertion to fail if the SQL query returns no
results.

Clear this check box to prevent an assertion failure on no results. (The assertion
can still fail for other reasons—for example, an invalid query.)

Generate
XML Resul
t

You can place the XML results of the JDBC query in a context variable.

 l Select this check box to store the XML string representation of every
variable that was set, in the context variable ${<prefix>.xmlResult}.

 l Clear this check box to not place the XML result in the context variable.
Note: If ${<prefix>.xmlResult} was populated previously, that content
will remain.

The following is an illustration of the structure of the XML result:

<?xml version="1.0" encoding="UTF-8"?>

<L7j:jdbcQueryResult

xmlns:L7j="http://ns.l7tech.com/2012/08/

 jdbc-query-result">

<L7j:row>

<L7j:col name="COLNAME" type=

 "JAVA_DATA_TYPE">DATA_VALUE</L7j:col>

....

</L7j:row>

....

<L7j:jdbcQueryResult>

Note: The type shown is the data type after the XML results have been
retrieved, not the actual database field type.

 4. Click [OK] when done.

SQL Query Tips

Keep in mind the following when entering an SQL query:

 l All variables created by the Perform JDBC Query assertion are multivalued. As such,
it not possible to use array syntax when a suffix (i.e., selector) is present. Similarly,
the variable "${jdbcQuery.return_value.millis}" will not work ("millis" can be any
suffix).

For a more detailed description, see "Multivalued Variables and Selectors" in
Working with Multivalued Context Variables in the Layer 7 Policy Manager User
Manual.

196 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l If a query requires a null value, use the context variable ${policy.nullvalue}. This
built-in variable always resolves to null.

Tip: For Oracle databases, null values are equivalent to the empty string for
VARCHAR types. Thus, another way to pass null values in Oracle is to pass the
empty string. For example, both of the following would result in the same, when
nullFunction takes a VARCHAR parameter:

func nullFunction ""
func nullFunction ${policy.nullvalue}

 l If a query contains SQL functions such as AVG(), MAX(), MIN(), or nested SELECT,
you should use the "AS" keyword to alias the returned value; for example:
SELECT max(column_name) AS alias_name FROM table;
SELECT column_name, (SELECT COUNT(*) FROM table1 WHERE conditions) AS alias_name
FROM table2 WHERE conditions;

Note: The "AS" keyword is fully supported on in version 7.1 or later of the Gateway.
Prior to version 7.1, the "AS" keyword does not work on simple column alias
definitions. For example, you attempt to join two tables with an identically named
column. In version 7.1, you can use an alias to separate the two columns in the
result set:
SELECT tableA.id, tableA.firstName, tableA.lastName AS lastNameA, tableB.lastName
AS lastNameB,
FROM tableA
INNER JOIN tableB ON tableA.id = tableB.id
WHERE tableA.city = 'Vancouver';

This will result in the following context variables available:

id
firstName
lastNameA
lastNameB

In version 7.0 or earlier, the "AS" keyword is ignored, which results in only these
variables being available:

id
firstName

The workaround is to modify the above SQL query as follows:
SELECT tableA.id, tableA.firstName, CONCAT(tableA.lastName,'') AS lastNameA,
CONCAT(tableB.lastName,'') AS lastNameB,
FROM tableA
INNER JOIN tableB ON tableA.id = tableB.id
WHERE tableA.city = 'Vancouver';

This query uses the function CONCAT and the "AS" keyword takes effect. The
query will now produce the expected four context variables listed above.

Chapter 4: Access Control Assertions 197

Layer 7 Policy Authoring User Manual, v8.2

 l The SQL query cannot reference a schema. If you need to specify a schema value,
select the Specify Schema check box and enter the value there. Note: The ability
to specify a schema is available only for Oracle and SQL Server.

W A R N I N G

The Policy Manager will not prevent you from entering a destructive SQL query. Such
a query may corrupt your database irrevocably, even during testing.

Converting Variables into Strings

When writing an SQL Query that will reference context variables, you need to decide
whether to use the value converted to a string or to use the raw value. When the raw value
is used, it will be passed directly to the JDBC driver, which will then convert it as needed, if
the value is supported.

If the type of your variable is supported by the JDBC driver but you wish to use its string
value while at the same time using the raw value of other variables, then you will need to
create a new variable first to convert the raw variable into a string variable. For more
information, see the "Convert Variables to String" option in Table 51.

Using Functions and Stored Procedures

The query statement may contain calls to functions and stored procedures. The Gateway
will determine what parameters a function or procedure require as input, output, or
both, by examining the database metadata for it.

To call a stored procedure, use either the CALL OR EXEC keyword followed by the name of
the procedure and then the parameters for the procedure. To call a function, use the
FUNC keyword.

The procedure/function parameters can be supplied as literal values, single or
multivalued context variables. These parameters can either be encoded within
parentheses (for example, "CALL myproc (param1, param2,.....,paramN)") or without (for
example, "CALL myproc param1, param2,, paramN").

The only parameters for a procedure that must be supplied are the IN or INOUT
parameters. The Gateway will automatically handle correctly registering any OUT or
INOUT parameters based on the metadata for the procedure.

Note: There is no method/syntax to bind a context variable in the 'SQL Query' text field with
an OUT variable from a procedure (or any other SQL statement).

198 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

To call a function, use the FUNC keyword followed by the name of the function and its
parameters. The same rules for how to supply parameters apply to functions.

The output of a procedure or function will be set automatically after it has been invoked.
The following table lists the names of the output variable for each database when calling
a function.

Database Default variable name

MySQL (only with native driver) return

Oracle RETURN_VALUE

MS SQL Server RETURN_VALUE

DB2 (not supported) n/a

 Table 52: Default output variables from a function

All OUT/INOUT parameters are handled automatically. When calling either a procedure or
a function, consider the types of the input parameters. For types such as Date,
Timestamp, and BLOB to work correctly, you need to ensure the context variable is off the
correct type (Date/Time or byte []). Also ensure that the Perform JDBC Query assertion is
configured to not convert variables to Strings. This allows the raw type to be passed the
JDBC Driver, which can then provide any conversions it supports.

Note that when calling a nonexistent function or procedure, an exception is triggered
only if the package name was also specified. For example, calling the nonexistent
"mypackage.myfunction" will trigger an exception, but using "myfunction" will not trigger
an exception.

Note: For Oracle databases, the function and procedure names should be in uppercase and
must not contain spaces or special characters. Exception: It is possible to call a function or
procedure containing lowercase characters in its name provided that it was not created using
quotes around the name.

Messages Returned for Application Users

When a user is connected to the database as an application user (not as the schema
owner), the following messages will be returned when a valid stored procedure or
function is called with no parameters:

Database Message returned

MySQL "query testing failed: [l7tech][MySQL JDBC Driver][MySQL]No database
selected

 Table 53: Messages for procedures or functions with no parameters

Chapter 4: Access Control Assertions 199

Layer 7 Policy Authoring User Manual, v8.2

Database Message returned

Oracle "query testing failed: [l7tech][Oracle JDBC Driver][Oracle]ORA-06564: object
<object name> does not exist ORA-06512: at "sys.dbms_utility", line 156
ORA-06512: at line 1

MS SQL Server "query testing failed: [l7tech][SQL Server JDBC Driver][SQLServer]Could
not find stored procedure 'sp name'."

DB2 n/a (procedures and functions not currently supported in DB2)

Known Issues

Note the following known issues:

 l There is a known issue in MS SQL databases where the OUT parameter is treated
as INOUT, which may result in parameters being set improperly. To avoid this, set
all the parameters (IN and OUT) explicitly in the query. For further assistance,
please contact CA Technical Support.

 l Stored procedures that use the OUT/INOUT parameter will always return a value
"1" or greater for the variable ${jdbcQuery.queryresult.count}. This is because the
parameters are always returned in the results and the assertion will never fail.
However, the assertion is configured to fail if there are no results.

 l Functions and procedures in Oracle that return NCLOBs or NBLOBs with values
greater than 32KB cannot be called from the CA API Gateway.

Examples Using Procedures and Functions

The following are some examples showing how to use keywords to execute functions and
procedures. Tip: The name of the output variable from a function is determined by the
database; "outParameter" shown below is just an example.

 l Using the FUNC keyword to execute functions:

FUNC [package].[function]([IN parameters]...)
 Sets jdbcQuery.[<outParameter>]

 l Using the EXEC keyword to execute procedures:

EXEC [package].[procedure]([IN and INOUT parameters]...)

 l Using the CALL keyword to execute procedures

CALL [package].[procedure]([IN and INOUT parameters]...)
Sets jdbcQuery.[<outParameter>] etc.

 l The 'Specify Schema' text field:

200 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

using multi-valued context variables
 FUNC [package].[function](${vars},${singleVar}) is equivalent to
 FUNC [package].[function](${vars.1},${vars.2}....,${singleVar})

The following are examples of how to call functions and procedures including:

 l How to access out values from procedures

 l How to access one or more output result sets from a procedure

 l How to supply non primitive types as parameters

The examples below will use the following variables:

 l ${myvars} = "multivalue1", "multivalue2" - This multivalued variable contains two
values.

 l ${myvar1} = "singlevalue1" - This variable contains a single value.

 l ${myvar2} = "singlevalue2" - This variable contains a single value.

Calling a function

Example function definition on Oracle, which takes two parameters and returns a
varchar2 value:

CREATE or REPLACE FUNCTION MY_FUNC(a IN VARCHAR2, b IN VARCHAR2)RETURN VARCHAR2

After calling this function there will be a single output variable set. The name of the
return variable depends on the DBMS (for more information, see Table 52).

In this example, if the prefix configured is 'jdbcQuery', then the output variable will be:

jdbcQuery.RETURN_VALUE

Call with a multivalued variable:

FUNC MY_FUNC(${myvars})

Call with single values:

FUNC MY_FUNC(${myvar1}, ${myvar2})

Call without parenthesis:

FUNC MY_FUNC ${myvars}
OR
FUNC MY_FUNC ${myvar1}, ${myvar2}

Call with literal values:

FUNC MY_FUNC "input1", 'input2'
OR
FUNC MY_FUNC ("input1", 'input2')

Chapter 4: Access Control Assertions 201

Layer 7 Policy Authoring User Manual, v8.2

Calling a procedure

Example procedure definition on Oracle, which takes 3 parameters, two of which are OUT
parameters.

CREATE or REPLACE PROCEDURE MY_PROC (a IN VARCHAR2, b INOUT VARCHAR2, c OUT

VARCHAR2, d IN VARCHAR2)

After calling this function there will be two output variables set. The default values
depend on the name of the OUT variables. If jdbcQuery is the prefix in use the following
context variables will be set:

jdbcQuery.b
jdbcQuery.c

Tip: CALL and EXEC are interchangeable. Neither has any specific meaning; they both indicate
that your SQL Query will call a procedure equally.

Call with a multivalued variable and a literal value:

CALL MY_PROC (${myvars}, "d value")

Call with a multivalued variable and a single variable:

EXEC MY_PROC (${myvars}, ${myvar1})

Tip: After all variables are processed, the number of values must match the number of
expected input parameters. The position of the OUT parameters do not matter. After each
context variable has been evaluated, the number of values resolved must match the number of
input parameters. The values will be applied based on the order they were resolved.

In the above example the procedure would be called with the following runtime values:

multivalue1, multivalue2, singlevalue1

Call with single value variables and a literal value:

CALL MY_PROC (${myvar1}, ${myvar2}, 'd value')

As with functions the parenthesis around the parameters is optional.

Using date type parameters

Example function definition on Oracle:

create or replace FUNCTION DATE_FUNC (param1 IN DATE) RETURN DATE

Invoke the function with a literal string date value:

func DATE_FUNC '2012-12-31 23:55:40.99'

Invoke the function using a Date/Time typed context variable:

202 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Set Context Variable date as Date/Time

func DATE_FUNC ${date}

Invoke the function sing a String typed context variable:

${dateStr} = "2012-12-31 23:55:40.99"

func DATE_FUNC ${dateStr}

If the [Convert Variables to String] check box is selected, then the Date/Time variable will
be converted into a string using the default formatting for a Date/Time variable. In order
to work with the format required by your DBMS, you may need to explicitly format the
Date/Time when referencing it in a function:

Set Context Variable date as Date/Time

func DATE_FUNC ${date.yyyy-MM-dd HH:mm:ss.SS}

In the above example the Date/Time is actually converted into a String when it is resolved
at runtime. This is only needed when "Convert Variables to Strings' is being used.

Using numeric types

Example function definition on Oracle:

create or replace FUNCTION NUMBER_FUNC (param1 IN NUMBER) RETURN NUMBER

Invoke the function with a literal numeric value:

func NUMBER_FUNC 1243

Invoke the function using an Integer typed context variable:

Set Context Variable integer as Integer to 5

func NUMBER_FUNC ${integer}

Invoke the function using a String typed context variable:

${integerStr} = "12345"

func NUMBER_FUNC ${integerStr}

Using Boolean values

Example function definition on SQL Server:

CREATE or ALTER FUNCTION BOOL_FUNC(@a BIT, @b BIT)

Invoke the function with a literal boolean value:

func BOOL_FUNC 'false', 'true'

or

func BOOL_FUNC 0, 1

or

func BOOL_FUNC '0', '1'

Invoke the function with an Integer typed context variable:

Set Context Variable a as Integer to 0

Set Context Variable b as Integer to 1

func BOOL_FUNC ${a}, ${b}

Chapter 4: Access Control Assertions 203

Layer 7 Policy Authoring User Manual, v8.2

Invoke the function with a String typed context variable

${falseStr} = "false"

${trueStr} = "true"

func BOOL_FUNC ${falseStr},${trueStr}

or

${aStr} = "0"

${bStr} = "1"

func BOOL_FUNC ${aStr},${bStr}

Using byte[] and BLOB values

Example function definition:

create or replace function BLOB_FUNC (a in BLOB) return BLOB

Invoke using a literal hexadecimal string:

func BLOB_FUNC '0123456789abcdef'

Invoke using a String typed context variable:

${hexString} = "0123456789abcdef"

func BLOB_FUNC ${hexString}

Invoke using a String value converted into hex using the 'Encode / Decode' assertion:

Base16 Encode ${myvar1} into ${hexString}

func BLOB_FUNC ${hexString}

Invoke using a byte[] context variable created via an Encapsulated Assertion:

Output a byte[] variable called ${bytes} from an encapsulated assertion

func BLOB_FUNC ${bytes}

Using null values

It is possible to supply a null value in a SQL Query via a special built in variable. It is also
possible to supply a null value via any existing variable or multivalued variable that may
contain a null value.

The predefined variable ${policy.nullvalue}supports passing null values into SQL queries.
This variable will only pass a null value into a SQL query when the [Convert Variables to
Strings] check box is not selected.

Example function definition

create or replace function NULL_FUNC (a in NUMBER, b in VARCHAR2) return VARCHAR2

Invoke a function using a literal null value:

func NULL_FUNC null 'asdf'

Invoke a function using a context variable with a null value:

func BOOL_FUNC ${policy.nullvalue}, 'b value'

204 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Supported Data Types

These DBMS types are supported via DML statements via the 'SQL Query' text box (see
Figure 57). When calling procedures or functions they are supported as either input or
output values.

DBMS type Context variable type

Char, Varchar, etc String

Numeric (Integer, Long,
etc.)

Integer or String

BLOB String with hex values or a byte [] (not settable via the set context
variable)

CLOB String

Date Date/Time

Timestamp Date/Time

Boolean String or Integer when supported by the DBMS (see "Boolean values"
below)

 Table 54: Supported data types

A String value can be used to supply a value for many DBMS types—for example, all
character types including CLOB, Numeric types, Date and Timestamps (if formatted
correctly) and Blob (via hex strings).

Boolean values

The following are support for Boolean values for each database type:

DBMS Support

Oracle Not supported by either the Data Direct driver or the native
driver

MySQL 0 = false, everything else = true

Note: Boolean does not work with MySQL with the native
driver.

SQL Server 0 or "false" = false, 1 or "true" = true

DB2 No boolean type

 Table 55: Boolean value support

Chapter 4: Access Control Assertions 205

Layer 7 Policy Authoring User Manual, v8.2

Date values

It is possible to supply the value for a DATE or TIMESTAMP using either literal values,
String context variables, or Date/Time context variables (recommended for easiest
integration).

The formatting required for a literal string value which represents a date or timestamp is
determined by a number of factors, including DBMS settings and connection properties.
The following default formats are known to work:

 l Oracle: yyyy-mm-dd hh:mm:ss.fffffffff (for example, '1999-01-31 24:24:24:123456')

 l Other DBMS: yyyy-mm-dd hh:mm:ss (for example, '1999-01-31 24:24:24')

BLOB values

To supply a BLOB value in SQL Query, either a context variable or a literal value may be
used. You can also supply binary data as hexidecimal strings either via a String context
variable or via a literal hex value (for example, "0123456789abcdef"). Please contact CA
Technical Support for more information.

Known Oracle issues

 l Function and procedure names must be in uppercase

 l Binary_Float, Binary_Double, Binary_Integer, Pls_Integer are returned as strings

 l Functions which return NCLOB values greater than 32kB are not supported

Caching Metadata

This section provides some insight on how the Perform JDBC Query assertion queries the
database for metadata via the JDBC driver.

Function and Procedure metadata are cached. Caching can be performed:

 l eagerly, via a background caching task

 l lazily, when metadata is downloaded at message traffic processing time (MTPT)

Notes: (1) When caching is configured and no data is available in the cache, then the
metadata will be downloaded by the message processing thread. (2) When a nonexistent
function or procedure is referenced, an exception will be issued and cached only if a package
name has been specified. For example, calling the nonexistent function
"mypackage.myfunction" will trigger an exception. But calling the nonexistent "myfunction"
will not trigger an exception.

206 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

The caching metadata is enabled by the jdbcQueryManager.cacheMetaData.enable cluster
property set to "true" (default). Note that this property does not affect existing cached
data and does not prevent background tasks from caching metadata.

For more information on the caching cluster properties, see JDBC Cluster Properties in
the Layer 7 Policy Manager User Manual.

Background Caching of Metadata

The Gateway has a background task that downloads metadata eagerly, to ensure that it
will be available at message traffic processing time. This eager caching will occur when the
Gateway starts or when a policy is saved and activated; it is possible only when no context
variables are used for the JDBC connection name or for the schema.

The caching of data is based on tracking a set of unique keys. Each key is defined as:

Connection name + Procedure or Function name + Optional Schema name

Therefore, if two Perform JDBC Query assertions reference the same procedure or
function, only a single copy of that metadata will be kept. This background task runs
every 10 minutes by default and is enabled or disabled via the
jdbcQueryManager.cacheMetaDataTask.enable cluster property. The task interval is
controlled by the jdbcQueryManager.cacheRefreshInterval cluster property.

To improve the processing time of this background task, you can increase the number of
background processing threads when a large volume of metadata is being managed. The
number of processing threads is 10 by default but can be increased up to 200 via the
jdbcQueryManager.minCacheConcurrency cluster property. Note: Increase the
concurrent threads with caution.

When the background task is not able to obtain the metadata for a unique key, an
exception is cached. When a policy containing a Perform JDBC Query assertion for this
cache key executes, it will return this cached exception (for example, the assertion may
fail) repeatedly until it is cleared out by the cleanup background task, or it is corrected by
the background task downloading the metadata.

The cleanup cache task runs every minute by default and is controlled by the
jdbcQueryManager.cacheCleanUpInterval cluster property.

Life cycle of a managed key

After the background task starts to manage a unique key, at some point it may need to
stop managing it. This can happen when no Perform JDBC Query assertion is referencing
the unique key, however this may be difficult to track when context variables are used (for
example, the unique key being referenced is unknown until context variables are resolved

Chapter 4: Access Control Assertions 207

Layer 7 Policy Authoring User Manual, v8.2

during runtime).

To resolve this problem, the Gateway can track how often the data from the cache for a
particular key is used. If it is over the threshold, then the background task will stop
managing that meta data.

The value is defined in the jdbcQueryManager.cacheKeyNoUsageExpiration cluster
property. The default is 31 days and the value is configured in seconds.

Automatic Lazy Caching

If the background task is not enabled but caching is allowed, then all metadata
downloaded will be cached to avoid it being downloaded a second time. The unique key
for this metadata will be added to the list of keys to manage.

Cache Expiration

Any cached item can be configured to expire, to prevent outdated meta from causing the
Perform JDBC Query assertion to fail.

The expiration should be longer than the background task refresh interval. It should also
be longer than the estimated time it takes the job to complete.

Cache expiration is controlled via jdbcQueryManager.cacheStaleTimeout cluster property.
The default is 30 minutes and is configured in seconds.

Manually Populating the Cache

If caching is enabled, you can manually invoke it by clicking the [Test] button (see Figure
57) in the Perform JDBC Query assertion. This will cause metadata to be downloaded and
cached, if not already present in the cache.

Cache Logging

Items which indicate that background tasks are running or working are logged at a FINE
level. Items which indicate that the cache is working at message traffic processing time
are logged at the FINEST level.

FINE logging is used for:

 l When metadata is downloaded and added to the cache.

 l When metadata could not be downloaded and an exception is added to the cache.

 l When the task to maintain metadata in the background starts and when it
finishes.

208 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l When a unique key representing a procedure to manage metadata for is removed
from the cache by the clean up task.

FINEST logging is used for:

 l Metadata cache hit

 l Metadata cache hit but data has expired (it is stale)

 l Metadata cache miss

Query LDAP Assertion
The Query LDAP assertion reads attributes from LDAP entries and stores them in context
variables.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the LDAP Query Properties automatically appear;
when modifying the assertion, right-click Query LDAP in the policy window and
select LDAP Query Properties or double-click the assertion in the policy window.
The assertion properties are displayed.

Chapter 4: Access Control Assertions 209

Layer 7 Policy Authoring User Manual, v8.2

 Figure 58: LDAP Query Properties

 3. Configure the properties as follows:

Setting Description

LDAP Connector Select the LDAP connector to use from the drop-down list. This LDAP
identity provider must already be configured in the Gateway. For more
information, see Creating an LDAP or Simple LDAP Identity Provider
in the Layer 7 Policy Manager User Manual.

LDAP Search Filter Specify a search string that will be used to select the LDAP entry to
query; for example: (cn=jsmith) or (mail=jane). You may use a context
variable.

When the request is processed, the Query LDAP assertion connects to
the specified LDAP connector and selects a node based on the search
filter. The selected node is then used to extract the LDAP attributes;
the values from those attributes are then assigned to the specified
context variables based on the table below.

Note: If the search filter matches no LDAP nodes, then the context
variables specified in the table below will not be created.

Technical Details

When an LDAP "object" is returned to the Gateway, it has a set of
attributes such as:

 Table 56: LDAP Query settings

210 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

cn=jsmith
ph=6045551234

...

Technically, the "dn" of an object is not an attribute of the object
itself; rather, it represents its location (name) within the LDAP
database. However, the "dn" is treated like other attributes by the
Gateway.

Protect against
LDAP injection

Select this check box to protect against an LDAP injection attack (for
example, attempts to substitute a context variable in place of a static
value).

Technical Details

When the Protect against LDAP injection check box is
selected, any substituted variables are escaped in an LDAP
search filter, as per RFC 2254 (section "4. String Search Filter
Definition"). The following are some examples

myVar = user* // variable
cn=${myVar} // filter
cn=user\2a // filter after variable substitution with escaping
enabled

[Add] Displays the Attribute Variable Mapping dialog to create a new pairing:

 l LDAP Attribute Name: Enter the name of the LDAP attribute
to be stored as a context variable.

 l Context Variable Name: Enter the name of a new context
variable to hold the attribute value. Observe the naming rules
for your new variables.

 l If multivalued: If the attribute contains more than one value,
indicate how the values should be handled:

 l Use first value: Select this option to use only the first
value, regardless of how many values are present.

 l Join with commas: Select this option to concatenate all
the values into one string, separated by commas. For
example, if the context variable "medal" has three values
bronze, silver, gold, choosing this option will define
"medal" as "bronze, silver, gold". Note: Using this option,
the individual elements in the value are not separately
addressable as with the "Set multivalued context variable"
option.

 l Set multivalued context variable: Select this option to
place the values in an array where each element is
addressable. Using the "medal" example from above,
calling ${medal} will return "bronze, silver, and gold".
Calling ${medal[0]} will return "bronze"; calling ${medal
[2]} will return "gold".

Chapter 4: Access Control Assertions 211

Layer 7 Policy Authoring User Manual, v8.2

http://www.faqs.org/rfcs/rfc2254.html

Setting Description

 l Fail: Select this option to fail the assertion if the attribute
contains more than one value.

For more information on using multivalued variables, including
delimiter characters and concatenation options, see Working
with Multivalued Context Variables in the Layer 7 Policy
Manager User Manual.

[Edit] Displays the Attribute Variable Mapping dialog to modify an existing
pairing.

[Remove] Removes the selected pairing from the table.

Allow multiple
search results

Select this check box to allow multiple search results for the LDAP
query. When this option is used the resulting context variables will
always be multivalued.

Clear this check box to not allow multiple search results.

Maximum results If allowing multiple search results, enter the maximum number of
results permitted. The default "0" (zero) indicates no limit.

Tip: The setting [Fail assertion if search yields too many results]
lets you control what happens when the maximum is exceeded.

Cache LDAP
attribute values

Select this check box to cache the LDAP search results. When a search
is performed, the Gateway will use cached results first. This can
improve performance in environments where the data on the LDAP
server changes infrequently.

Clear this check box to not cache any LDAP search results. The LDAP
directory is queried for every search.

Cache size If LDAP search results are being cached, specify the maximum
number of LDAP search results to be cached. A size of '0' (zero)
means an unlimited cache size.

The default is 100 for new installations of the Gateway and 0 when
upgrading from a system prior to version 5.3.

Cache maximum
age

If LDAP search results are being cached, specify how long to cache an
item before the information is discarded.

Fail assertion if
search yields no
results

Select this check box to have the assertion fail if no search results are
returned.

Clear this check box if the assertion should always succeed, regardless
of the search outcome.

Fail assertion if
search yields too
many results

Select this check box to fail the assertion if the number of search results
exceeds the specified maximum.

Clear this check box to never fail the assertion regardless of the
number of search results.

 4. Click [OK] when done.

212 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Require Encrypted UsernameToken Profile Credentials
Assertion

The Require Encrypted UsernameToken Profile Credentials assertion requires an encrypted
Username Token element to be present and that it be encrypted with the same key that
was used to sign the timestamp or other parts of the message. This provides message
level security without requiring a client certificate. The client creates a new symmetric key
and encrypts it for the server. The encrypted symmetric key prevents the UsernameToken
from being intercepted and attached to another message.

Note: This assertion only ensures that client credentials are encrypted using the same key that
was used elsewhere in the message. To enforce the signing or encryption of other parts of a
message, you need to include one or more of the following assertions in the policy: Require
SSL or TLS Transport, Sign Element, or Encrypt Element. If response security is configured,
the response security will attempt to use (by reference) the session key used by the client in
the request.

The Require Encrypted UsernameToken Profile Credentials assertion requires message
security features contained in WS-Security version 1.1 or later.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about changing the WSS Recipient for this assertion, see "Changing the
WSS Assertion Recipient" on page 146.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click the <target>: Require Encrypted UsernameToken Profile Credentials
in the policy window and select Require Encrypted UsernameToken Profile
Credentials Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

Chapter 4: Access Control Assertions 213

Layer 7 Policy Authoring User Manual, v8.2

 Figure 59: Require Encrypted UsernameToken Profile Credentials Properties

 3. By default, all encryption methods are permitted. To choose specific methods to
permit in the target message, select the Specify permitted encryption methods
check box and select the appropriate check boxes next to:

AES 128 CBC
AES 192 CBC
AES 256 CBC
Triple DES
AES 128 GCM
AES 256 GCM

Note: If your security provider does not support the "AES-GCM" encryption options,
encryption/decryption attempts may fail at runtime if these options are selected.

 4. Click [OK].

Require FTP Credentials Assertion
The Require FTP Credentials assertion allows you to require FTP authentication—user
name, plain text password. This assertion is a credential source that saves the user name
and password from the FTP session for later authentication and authorization using the
"Authenticate User or Group Assertion" on page 170.

Using the Assertion

 l Add the assertion as described in "Adding an Assertion" on page 112.

The assertion is added to the policy window; no further configuration is required.

214 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Require HTTP Basic Credentials Assertion
The Require HTTP Basic Credentials assertion allows you to require basic HTTP
authentication—user name, plain text password, and the authentication realm—as a
string in the web service or XML application request headers. This assertion is a
credential source that saves the user name and password from the HTTP headers for later
authentication and authorization via the "Authenticate User or Group Assertion" on
page 170 or the "Authenticate Against Identity Provider Assertion" on page 163. This
assertion should be used in conjunction with the "Require SSL or TLS Transport
Assertion" on page 267

Note the following limitations when authenticating via HTTP Basic:

 l The HTTP Basic specification defines the encoding of the username and password
as ISO-8859-1. As a result, it is possible to define users in the Internal Identity
Provider using arbitrary encoding (for example, multi-byte characters), but these
users will not be authenticated successfully over HTTP Basic. Tip: Consider using
the "Require WS-Security UsernameToken Profile Credentials Assertion" on page
248 instead for authentication in this scenario. The WSS standard accepts arbitrary
encoding.

 l The Require HTTP Basic Credentials assertion does not support user names
containing the ":" (colon) character.

 l The Require HTTP Basic Credentials assertion should not be used in NTLM
Authentication scenarios where the Require NTLM Authentication Credentials
assertion is also present. Doing so may cause severe performance issues on the
Gateway.

Using the Assertion

 l Add the assertion as described in "Adding an Assertion" on page 112.

The assertion is added to the policy window; no further configuration is required.

Require HTTP Cookie Assertion
The Require HTTP Cookie assertion checks that a request contains a cookie with the same
name as that specified in the assertion. If the request does not contain a cookie with this
name, then the assertion fails.

The HTTP Cookie assertion does not check the validity or expiry of a cookie. It only checks
for the presence of a cookie. A custom assertion such as the Access Resource Protected
by JSAM assertion should be used to validate the content of the cookie.

Chapter 4: Access Control Assertions 215

Layer 7 Policy Authoring User Manual, v8.2

Policy Example

The following illustrates how this assertion might be used in a policy:

"At least one assertion must evaluate to true"

Require HTTP Basic Credentials
HTTP Cookie: iPlanetDirectoryPro

Access Resource Protected by JSAM (or another custom assertion that uses cookies)

Route via HTTP(S) to URL

Note: The HTTP Cookie assertion should be positioned after the Require HTTP Basic
Credentials assertion, within an "At least one..." folder. The sample arrangement above does
not imply that the Require HTTP Basic Credentials assertion will always be used if present. This
is because the custom assertion that follows will check for both a cookie and user/password
credentials. If a valid cookie is found, it is used.

Context Variables Created by This Assertion

The Require HTTP Cookie assertion sets the following context variable when a cookie is
found.

<prefix>.<cookieName>

Where:

 l <prefix> is defined in the assertion properties (default: cookie)
 l <cookieName> is the name of the cookie from the cookie header

For example, if the cookie header contains: var1=value1; var2=value2

The following context variables will be set:

 l ${cookie.var1}, which contains the value of cookie "var1"
 l ${cookie.var2}, which contains the value of cookie "var2"

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

216 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 2. When adding the assertion, the HTTP Cookie Properties automatically appear;
when modifying the assertion, right-click Require HTTP Cookie in the policy
window and select HTTP Cookie Properties or double-click the assertion in the
policy window. The assertion properties are displayed.

 Figure 60: HTTP Cookie Properties

 3. Configure the properties as follows.

Settings Description

Cookie Name Enter the name of the cookie that is expected to contain the request
credentials.

Tip: If a cookie with this name is found, the cookie value is placed in the
context variable: ${cookie.<cookieName>} (based on the default
prefix).

Variable Prefix Optionally, change the prefix that will be added to the context variable
created by this assertion. The prefix will prevent the context variable
from being overwritten if the assertion appears more than once in a
policy. The default prefix is "cookie."

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

Table 1: HTTP Cookie Properties settings

 4. Click [OK] when done.

Require NTLM Authentication Credentials Assertion
The Require NTLM Authentication Credentials assertion allows a single point of
authentication via NTLM, in addition to the ability to receive authorization data used to
control resource access. This data includes the full user name, home directory path, user
account permissions and Group membership.

Chapter 4: Access Control Assertions 217

Layer 7 Policy Authoring User Manual, v8.2

The connection is authenticated via an NTLM or Negotiate protocol and the CA API
Gateway will challenge the requester until a security context has been established. Once
the first authentication is established, the connection will continue to be authenticated
until either the connection drops or the authentication times out.

Once NTLM Authentication has been established, you can use the Authenticate Against
Identity Provider or Authenticate User or Group assertions to provide further
authorization of the user.

Keep in mind of the following points while using the Require NTLM Authentication
Credentials assertion:

 l The LDAP Identity Provider used in these assertions must match the one used in
the Require NTLM Authentication Credentials assertion. Changes to this assertion
do not affect established connections.

 l You can have only one active (executed) Require NTLM Authentication Credentials
assertion in the policy. The others may be present but should not be executed at
the same time. The others may be present but should not be executed at the same
time, otherwise connection issues may occur.

 l NTLM Proxy authentication is not supported in this version. Use pass-through
NTLM instead.

 l Users with single or multi-byte non-English characters in their names are not
supported for NTLM authentication. (As per RFC-4120 , Kerberos Principal names
cannot contain non-ASCII characters.)

Note: You may encounter NTLM connection issues when using the Chrome browser. CA
recommends using the Internet Explorer or Mozilla Firefox browsers.

Prerequisites:

 1. To be able to perform NTLM Authentication, a computer account with sufficient
privileges must exist to call the Netlogon service on behalf of the client in the
authenticating domain.

 2. Trust between Active Directory domains must exist in order to perform NTLM
pass-through authentication.

 3. NTLM Configuration must already be enabled in the LDAP Identity Provider Wizard.
For more information, see LDAP Identity Provider Wizard in the Layer 7 Policy
Manager User Manual.

218 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Context Variables Created by This Assertion

The Require NTLM Authentication Credentials assertion sets the following context
variables for inbound NTLM requests, upon successful NTLM authentication. Note: The
default <prefix> is "ntlm" and can be changed in the assertion properties (Figure 61)."

Note: The variables in Table 57 below (except for sAMAccountName) are set only if the user
account has the corresponding values set in the Active Directory.

Setting Description

<prefix>
.sAMAccountName

This is the pre-Windows 2000 user name, which is the only required
variable prefix.

<prefix>.fullName Contains the full user name of the account (first and last name).

<prefix>.homeDirectory Contains the home directory path from the account profile.

<prefix>
.homeDirectoryDrive

Contains the home directory drive from the account profile.

<prefix>
.userAccountFlags

Sets the user flags for permissions.

<prefix>.session.key Contains the session key from the Netlogon server.

<prefix>.sid Contains the SID of the primary group.

<prefix>.sidGroups
[index]

This is a list of any additional SIDS of which the account is a member.

<prefix>
.logonDomainName

The domain to which the user is logged.

 Table 57: Inbound context variables created by Require NTLM Authentication assertion

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, Require NTLM Authentication Credentials
automatically appears. When modifying the assertion, right-click Require NTLM
Authentication Credentials in the policy window and select NTLM
Authentication Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

Chapter 4: Access Control Assertions 219

Layer 7 Policy Authoring User Manual, v8.2

 Figure 61: NTLM Authentication Properties

 3. An authenticated connection can have one of the following maximum types of
durations. Configure the table as follows.

Setting Description

Default The timeout is unlimited.

Custom This is a timeout specific to the assertion, which can range from 0 to
2147483647.

0 This is the same as "Default", in which there is an unlimited time
duration.

Variable Prefix Enter a prefix that will be added to the context variables created by
this assertion . This prefix will ensure uniqueness and will prevent
the variables from overwriting each other when multiple instances
of this assertion appear in a policy.

The default prefix is ntlm.

For an explanation of the validation messages displayed, see
Context Variable Validation in the Layer 7 Policy Manager User
Manual.

 Table 58: NTLM Authentication settings

 4. Click [OK] when done.

Note: Once the maximum timeout period has been reached, the Gateway will request the
client to re-authenticate.

220 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Creating a Computer Account for NTLM Authentication

In order to use NTLM Authentication, a computer account must be first be created.

The following steps are performed on the Active Directory server.

 To create a computer account in the Active Directory Server:

 1. Start the Server Manager in the Active Directory.

 2. Open Active Directory Domain Services under Roles.

 Figure 62: Server Manager

 3. Expand the Active Directory Users and Computers node.

 4. Expand the specific directory (in the sample figure above, it is "l7tech.dev").

 5. Right-click the Computers node to create a new computer account.

 6. Choose the group called "Domain Computers" in the [Member of] tab if it is not
set by default. This is required before creating a computer account.

 7. Populate the fields in the [General] tab. The Computer name field is required.

Chapter 4: Access Control Assertions 221

Layer 7 Policy Authoring User Manual, v8.2

 Figure 63: Linux Properties - General tab

 To configure the delegation for the newly created computer account:

 1. Open the newly created computer account and select the [Delegation] tab.

 2. For the delegation, choose "Trust this computer for delegation to specified
services only".

 3. For the trust, choose the Use any authentication protocol option.

222 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 64: Configuring the [Delegation] tab for a new computer account

 4. Click [Add]. The "Add Services" dialog appears.

 Figure 65: Add Services dialog

Chapter 4: Access Control Assertions 223

Layer 7 Policy Authoring User Manual, v8.2

 5. Click [Users or Computers].

 6. From the "Search results" list, select the server in which the netlogon service is
running, and click [OK].

 Figure 66: Select Users or Computers dialog

 7. In Add Services, select netlogon under the Service Type column, and click [OK].

224 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 67: Add Services dialog containing available services

The [Delegation] tab displays the netlogon service available for the computer account.

Chapter 4: Access Control Assertions 225

Layer 7 Policy Authoring User Manual, v8.2

 Figure 68: The netlogon service is displayed in the Delegation tab

The final step is to create a set_password.vbs script using the following template:

When this is complete, execute the set_password.vbs script.

Require Remote Domain Identity Assertion
The Require Remote Domain Identity assertion enables the Windows Domain Injection
feature in the Securespan XML VPN Client.

 l When the Securespan XML VPN Client executes this assertion, it will deduce the
user name, domain name, and client program name from the operating system
and then insert them into the message header. On the Securespan XML VPN
Client, this assertion always succeeds.

226 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l When the Gateway executes this assertion, it will examine the headers provided by
the Securespan XML VPN Client and then create the corresponding context
variables. On the Gateway, this assertion succeeds only if the context variables are
set successfully.

For more information, see Configuring Windows Domain Injection in the Securespan XML
VPN Client documentation.

Note: If identity injection has been disabled on the Securespan XML VPN Client, adding this
assertion to a policy will have no effect. Conversely, if identity injection has been enabled full
time, it will occur even if this assertion is not used.

Context Variables Created by This Assertion

The Require Remote Domain Identity assertion sets the following context variables. Note:
The default <prefix> is "injected" and can be changed in the assertion properties (Figure
69).

Variable Description

<prefix>.user Contains the user name from the message header.

<prefix>.domain Contains the domain name from message header.

<prefix>.program Contains the client program name from the message header.

 Table 59: Context variables created by Require Remote Domain Identity assertion

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Require Remote Domain Identity in the policy window and select
Remote Domain Identity Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

Chapter 4: Access Control Assertions 227

Layer 7 Policy Authoring User Manual, v8.2

 Figure 69: Remote Domain Identity Properties

 3. Enter a prefix that will be added to the context variables created by this assertion.
This prefix will ensure uniqueness and will prevent the variables from overwriting
each other when multiple instances of this assertion appear in a policy.

 4. Click [OK] when done.

Require SAML Token Profile Assertion
The Require SAML Token Profile assertion allows you to require SAML constraints in a
policy. SAML (Security Assertions Markup Language) validates a ticket to ensure that it
falls within the required constraints. If validation succeeds, then the Gateway passes the
message through to the service. If validation fails, then the Gateway returns a SOAP fault.

The Require SAML Token Profile assertion is a credential source that saves subject
information for later authorization via the Authenticate User or Group assertion. This
assertion can be used in tandem with the Protect Against Message Replay, Sign Element,
and Encrypt Element assertions. This assertion is also used as a credential source for an
identity bridging configuration.

The Require SAML Token Profile assertion supports both the SAML 1.1 and 2.0 standards.

Note: To avoid constraint conflicts, only a single Require SAML Token Profile assertion should
be present in a policy.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about changing the WSS Recipient for this assertion, see "Changing the
WSS Assertion Recipient" on page 146.

228 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Context Variables Created by This Assertion

The Require SAML Token Profile assertion sets the following context variable after it is
used to validate an Attribute Statement.

saml.attr.<attribute_name>

Where:

 l saml.attr is a fixed prefix for all context variables created by this assertion
 l <attribute_name> is the attribute that was validated, with the following

transformations:

 l name is converted to lower case

 l non-alphanumeric characters changed to underscores ('_')

 l if the attribute begins with a number, an 'n' will be prepended

 l all attribute values will be converted to a string if not already a string

Technical tip If the <attribute_name> begins or ends with white space, it cannot be
accessed using the context variable described above. You must extract it using an
XPath assertion instead. For assistance, contact CA Technical Support.

If an attribute contains more than one value, a multivalued context variable is created.

Examples:

An attribute named "fruit" with a single value "pear" can be accessed with the context
variable ${saml.attr.fruit}, which will yield "pear". If the attribute "fruit" contains multiple
values, you can use ${saml.attr.fruit[0]} to access the first item, ${saml.attr.fruit[1]} for the
second item, etc.

An attribute named "99 beers!" would be accessible as ${saml.attr.n99_beers_}.

Note: Only attributes named in the assertion properties and validated are placed into context
variables. Any other attributes that may be present in the SAML token are ignored (these may
be validated using schema validation and/or XPath assertions if necessary).

Adding and Configuring the Assertion

 1. Add the Require SAML Token Profile assertion to the policy development window
as described in Adding an Assertion. The SAML Token Profile Wizard appears.

 2. Follow the wizard to complete the assertion. For details, see "SAML Token Profile
Wizard" on page 231.

Chapter 4: Access Control Assertions 229

Layer 7 Policy Authoring User Manual, v8.2

Editing the Assertion

 1. In the policy development window, right-click <target>: Require SAML <type>
Statement and then select SAML Token Profile Wizard. The wizard is displayed in
edit mode.

 Figure 70: Example of SAML Token Profile Wizard in edit mode

 2. In edit mode, each step in the wizard is represented by a tab. Select the
appropriate tabs to edit. For more information about each tab, refer to Table 60
for the corresponding step in the SAML Token Profile Wizard.

For information on
the tab...

See this step in the SAML Token
Profile Wizard...

SAML Version Step 2: SAML Version

SAML Statement
Type

Step 3: SAML Statement Type

Authentication
Methods

Step 4: Authentication Methods

Authorization
Statement

Step 5: Authorization Statement

Attribute Statement Step 6: Attribute Statement

Subject Confirmation Step 7: Subject Confirmation

Name Identifier Step 8: Name Identifier

Conditions Step 9: Conditions

 Table 60: SAML Token Profile Wizard tabs in edit mode

230 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 3. Click [OK] when done.

SAML Token Profile Wizard

The SAML Token Profile Wizard automatically starts when you add a Require SAML Token
Profile assertion to a policy.

 Figure 71: SAML Token Profile Wizard

For more information about wizards, see "Wizard" under Interfaces in the Layer 7 Policy
Manager User Manual.

 Table 61: Using the SAML Token Profile Wizard

Wizard Step Description

Step 1: Introduction Introduces the wizard.

Step 2: SAML
Version

Specify which SAML versions will be accepted by the Gateway: version
1.1, version 2.0, or any supported version.

Step 3: SAML
Statement Type

Select the type of SAML statement to configure:

 l Authentication Statement: Proceed to Step 4.

 l Authorization Decision Statement: Proceed to Step 5.

 l Attribute Statement: Proceed to Step 6.

Step 4:
Authentication
Methods

Use the chooser list to select the authentication methods that will be
enforced by the Require SAML Token Profile assertion. You must
choose at least one method.

Hints:

 l Hold down the [Ctrl] or [Shift] keys to select multiple items at
once.

 l Click [All] to choose every available authentication method.

 l Click [None] to quickly clear the Selected list and start again.

Chapter 4: Access Control Assertions 231

Layer 7 Policy Authoring User Manual, v8.2

Wizard Step Description

 l Select the Unspecified method to allow authentication by an
unspecified method.

 l The Available list only displays the methods that are applicable
to the SAML version chosen in Step 2 of the wizard.

In the Custom field, optionally enter any URI custom authentication
methods, separated by spaces. You may reference context variables
(either single- or multi-valued variables with space-separated URI
values).

Note: The SSL/TLS Certificate Based Client Authentication
method is not related to the Require SSL or TLS Transport assertion.
This method refers to the original authentication, not to the current
request which may or may not have used SSL. The SAML-supported
authentication methods are outlined in the SAML 1.1 and 2.0
specification documents provided at http://www.oasis-open.org

Proceed to Step 7: Subject Confirmation.

Step 5: Authorization
 Statement

Specify the resource that the SAML statement must describe, the
resource action, and the action namespace.

 l Resource: Enter a value for the resource that the SAML
statement must describe (for example, "http://acme.org").

 l Action: Enter an action value for the resource (for example,
"GET").

 l Action Namespace: Optionally enter a corresponding action
namespace value (for example, "acmeNamespace").

Proceed to Step 7: Subject Confirmation.

Step 6: Attribute
Statement

Define one or more SAML attributes that must be described by the
SAML statement.

 1. Click [Add] and then complete the Edit SAML Attribute
Constraints dialog:

 l Attribute Name: Enter the name of the attribute.

 l Attribute Namespace: Optionally enter a namespace for
the attribute. This applies only to SAML 1.1.

 l Attribute Name Format: Optionally specify a URI
reference that describes the format of the attribute name.
Only attributes that declare this format will be accepted.
This applies only to SAML 2.0.

 l Unspecified: If no name format is provided, the
default value of
urn:oasis:names:tc:SAML:2.0:attrname-
format:unspecified is used.

 l URI Reference: This option uses the URI
urn:oasis:names:tc:SAML:2.0:attrname-format:uri.

 l Basic: This option uses the URI:

232 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

http://www.oasis-open.org/

Wizard Step Description

urn:oasis:names:tc:SAML:2.0:attrname-
format:basic.

 l Other: Select this option to define your own attribute
name format in the box below.

 l Attribute Value: To require an exact variable match,
select Specific Value and then enter a set value. To
require that a particular attribute be present, but allow it to
have any non-empty value rather than requiring a specific
match, select the Allow any non-empty value option.

When a non-empty attribute value is required, you can
separately validate the attribute contents using XPath
expressions, transient variables, and the Compare Expression
assertion.

To modify an attribute statement, select it and click [Edit]. To
delete an attribute statement, select it and click [Delete].

 2. Click [OK] to enter the attribute into the table. Repeat to
configure additional attributes.

To modify an existing Attribute Statement, select it from the list and then
click [Edit].

To remove an Attribute Statement, select it from the list and then click
[Remove].

Tip: The attribute values validated by the Attribute Statement are
available in context variables. For more information, see "Context
Variables Created by This Assertion" in "Require SAML Token Profile
Assertion" on page 228.

Step 7: Subject
Confirmation

Select one or more subject confirmation methods that should be
accepted by the Gateway and indicate whether the message signature
is required as the proof material:

Holder-of-Key

This allows SAML tokens that use the Holder-of-Key subject
confirmation method (with the standard URI
urn:oasis:names:tc:SAML:1.0:cm:holder-of-key or
urn:oasis:names:tc:SAML:2.0:cm:holder-of-key, depending on the
selected SAML version in Step 2 of the wizard). For such assertions, the
Gateway will require that the subject demonstrate possession of the
private key corresponding to the public key in the Subject certificate.

The Holder-of-Key subject confirmation method currently requires that
the request ticket's "SubjectConfirmation" element contain a "KeyInfo"
element that contains a complete copy of the Subject's X.509 certificate.
Any other form of Holder-of-Key ticket will be rejected by the Gateway.

The request Subject may use one of two methods to prove that they hold
this key:

 l The request includes at least one element covered by a valid

Chapter 4: Access Control Assertions 233

Layer 7 Policy Authoring User Manual, v8.2

Wizard Step Description

WSS message signature, and the signing certificate is the
Subject certificate. Or,

 l The request arrived over SSL/TLS with client certificate
authentication, and the client certificate exactly matches the
Subject certificate.

When the Holder-of-Key subject confirmation method is selected, you
have access to the [Require Message Signature] check box:

 l Select this check box to require proof-of-possession using a
WSS message signature. Either the message body or security
header timestamp must be signed to prove possession.

 l To require that the message body is signed, use the
Require Signed Element assertion.

 l To require that the timestamp is signed, use the Require
Timestamp in Message assertion.

 l Clear this check box to not require that either the message body
or header timestamp be signed. In this case, the Require SSL or
TLS Transport assertion must be present in the policy.

Sender Vouches

This allows SAML tokens that use the Sender Vouches subject
confirmation method (with the standard URI
urn:oasis:names:tc:SAML:1.0:cm:sender-vouches or
urn:oasis:names:tc:SAML:2.0:cm:sender-vouches, depending on the
selected SAML version in Step 2 of the wizard). For such assertions, the
Gateway will require that the sender, presumably different from the
subject, vouches for the verification of the subject.

The Sender Vouches subject confirmation method is typically used only
in a SAML identity bridging policy.

Three conditions must be met in order to use the Sender Vouches
confirmation method:

 l An existing trust relationship with the sender ("Attesting Entity")
must be configured in the Gateway. To do this, import the
sender's certificate, configured as a "SAML Attesting Entity"
certificate, into the Trust Store. For more information, see
Managing Certificates.

 l The SAML ticket used by the SAML token must be bound to the
request message by one of the following methods:

 l Send the request over SSL using the sender certificate as
the SSL client certificate, OR

 l If SSL is not used, then the SAML ticket needs to be bound
to the message with a WSS signature. One complication
here is that the SAML ticket does not necessarily contain or
refer to the sender certificate; it usually contains or refers to
the subject certificate and, assuming that the ticket is
signed, contains or refers to the certificate of the ticket

234 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Wizard Step Description

issuer. In this method, therefore, the WSS signature must
cover both the SAML token and the relevant portions of the
rest of the message that use the sender certificate as the
signing certificate.

 l The format of the request message must conform to the OASIS
Web Services Security standards: SAML Token Profile 1.0 (for
SAML 1.1) or SAML Token Profile 1.1 (for SAML 2.0). The
Gateway does not support references to SAML tokens that are
not included with the request message.

The OASIS Web Services Security: SAML Token Profile 1.0
standards document is available online at: www.oasis-
open.org/committees/download.php/1048/WSS-SAML-06.pdf.

When the Sender Vouches subject confirmation method is selected, you
have access to the Require Message Signature check box:

 l Select this check box to require proof-of-possession using a
WSS message signature. Either the message body or security
header timestamp must be signed to prove possession.

 l To require that the message body is signed, use the
Require Signed Element assertion.

 l To require that the timestamp is signed, use the Require
Timestamp in Message assertion.

 l Clear this check box to not require that either the message body
or header timestamp be signed. In this case, the Require SSL or
TLS Transport assertion must be present in the policy.

Bearer

This allows SAML tokens that use the Bearer Token subject
confirmation method (with the standard URI
urn:oasis:names:tc:SAML:1.0:cm:bearer or
urn:oasis:names:tc:SAML:2.0:cm:bearer, depending on the selected
SAML version in Step 2 of the wizard). Like HTTP cookies, such
assertions will always be assumed to belong to whatever message
contains them, and the subject will be assumed to be the sender of the
message.

The Bearer Token subject confirmation method does not protect against
an attacker modifying the message or stealing a copy of the assertion
and attaching it to an unauthorized message. To protect the secrecy of
the SAML token when using the Bearer subject confirmation method, be
sure to select the SSL-TLS Certificate Based Client
Authentication check box in Step 4 of the SAML Token Profile Wizard.

None

This allows SAML tokens that do not contain a subject confirmation
method.

Not having a subject confirmation method exposes the system to various
threats. To protect the secrecy of the SAML token when a confirmation

Chapter 4: Access Control Assertions 235

Layer 7 Policy Authoring User Manual, v8.2

http://www.oasis-open.org/committees/download.php/1048/WSS-SAML-06.pdf
http://www.oasis-open.org/committees/download.php/1048/WSS-SAML-06.pdf

Wizard Step Description

method is not used, be sure to select the "SSL-TLS Certificate Based
Client Authentication" option in Step 3 of the SAML Token Profile
Wizard.

Step 7: Subject
Confirmation
(cont'd)

If SAML version 2.0 is permitted, complete the Subject Confirmation
Data fields:

 l Recipient: This property allows the expected recipient to be
configured. You may enter the name directly or enter a String
context variables. Leave this field blank to allow any recipient.

 l Check Address: Select this check box to validate the 'Address'
attribute. Currently, the Gateway only supports IPv4 addresses.

Note: Address validation is meaningful only when a transport
with a client IP address is used. For example, this setting is not
compatible with messages routed via JMS.

 l Check Validity Period: Select this check box to check the time
period validity period in the request. The permissible clock skew
for validation is defined by the cluster properties
samlAssertion.validate.notBeforeOffsetMin and
samlAssertion.validate.notOnOrAfterOffsetMin.

Note: If there are no validity period constraints in the request
message, then there is nothing to check and validation (of the
time period constraints) will always succeed.

Step 8: Name
Identifier

Specify the name formats that are acceptable to the Gateway; optionally
enter a subject name qualifier:

 l Name Qualifier: Optionally enter a subject name identifier (for
example, "www.example.com"). You may reference context

variables.

 l Format: Select one or more subject name formats that should
be accepted by the Gateway. Select the Unspecified] check
box if the subject name format is not known. This will cause the
Gateway to attempt to match the subject name identifier
specified in the Name Qualifier field against the user login
property. If the Name Qualifier field is blank, then the Gateway
will not verify the Name Qualifier attribute value.

You can only select name formats applicable to the SAML version
chosen in Step 2 of the wizard.

Step 9: Conditions In this step, you can optionally specify any conditions to be observed.

 l Check Assertion Validity Period: Select this check box to
verify that the SAML token is still within its validity period, using
the current Gateway time. Clear this check box to not check the
validity period within the token.

236 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Wizard Step Description

 l Maximum Expiry Time: Specify the maximum allowable expiry
time period for the SAML token. The Gateway will use the earlier
of the expiry date or the specified period. This allows you to
restrict the token's expiry date with an earlier date. (If the
specified date is later than the token's expiry date, then the
token's date takes priority.) Tokens that exceed the expiry time
will cause policy consumption to fail and audit message code
6108 will be logged.

The default is 0 (zero), which indicates that token expiration is
not checked. The maximum allowable expiry time is 100 years.

 l Audience Restriction: Optionally enter an audience
restriction constraint into the field. You may reference context

variables.

Require SSH Credentials Assertion
The Require SSH Credentials assertion allows you to require a user's SSH credentials in a
request. You can require either the user name and plain text password only, or the user
name and public key only, or the user name and either the plain text password or the
public key.

This assertion is a credential source that saves the user name with the password or public
key from the SSH session for later authentication and authorization using the
"Authenticate User or Group Assertion" on page 170.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Require SSH Credentials Properties automatically
appear; when modifying the assertion, right-click Require SSH Credentials in the
policy window and select Require SSH Credentials Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

Chapter 4: Access Control Assertions 237

Layer 7 Policy Authoring User Manual, v8.2

 Figure 72: Require SSH Credentials Properties

 3. Specify the credentials that are required in the request: Password, Public Key, or
both.

 4. Click [OK] when done.

Require SSL or TLS Transport Assertion
The Require SSL or TLS Transport /Require SSL or TLS Transport with Client Authentication
assertion allows you to specify the SSL or TLS requirement to ensure transport-level
confidentiality and integrity. You can specify whether an SSL/TLS connection is required,
optional, or forbidden.

You can optionally require client certificate authentication and can control whether to
check the validity period of the client certificate prior to gathering credentials.

Note: When requiring client certificate authentication, the assertion will behave as a
credential source that saves the client certificate from the SSL-TLS handshake for later
authentication and authorization via the Authenticate User or Group assertion.

This assertion appears in two different assertion palettes:

 l When accessed from the Access Control palette, this assertion is labeled "Require
SSL or TLS Transport with Client Authentication" and has the Require Client
Certificate Authentication check box selected by default.

 l When access from the Transport Layer Security palette, this assertion is labeled
"Require SSL or TLS Transport" and does not have the Require Client Certificate
Authentication check box selected by default.

In either instance, you are free to toggle this check box according to your needs.

Using the Assertion

 1. Do one of the following:

238 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click [Require|Forbid|Optional] SSL or TLS Transport <with Client
Authentication> in the policy window and select SSL or TLS Transport Properties
or double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 73: SSL or TLS Transport Properties

 3. Configure the properties as follows:

Setting Description

Select the SSL or
TLS requirements

 l Required: Select this option to disallow requests that do not
arrive over an SSL-secured connection. This setting is the
default setting for the assertion. When you select Required,
the Peer Authentication options are enabled.

 l Optional: Select this option to configure the Gateway to
match the behavior of the incoming request. Requests are not
required to arrive over an SSL-secured connection.

 l Forbidden: Select this option to disallow requests that arrive
over an SSL-secured connection. This setting can be used to
discourage users of a free service from consuming server SSL
resources without paying for an upgraded account.

Require Client
Certificate
Authentication

Indicates whether the client certificate needs to be authenticated:

 l Select this check box to gather the client certificate to be
authenticated later in the policy by an authentication assertion
(for example, "Authenticate User or Group Assertion" on page
170).

 Table 62: SSL or TLS Transport settings

Chapter 4: Access Control Assertions 239

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

This indicates that a client certificate is required as part of the
SSL-TLS handshake. The client certificate is used to
authenticate the service requestor.

This check box is available only when "Select the SSL or TLS
requirements" is set to Required.

Note: Selecting the check box does not ensure that the client
certificate will be authenticated. The Require SSL or TLS
Transport with Client Authentication assertion only behaves as
a credential source assertion. An authentication assertion
must be present in the policy to authenticate the certificate.

 l Clear this check box to not gather the client certificate. This
makes the "Require SSL or TLS Transport with Client
Authentication Assertion" (accessed from the Access Control
palette) identical to the "Require SSL or TLS Transport
Assertion" (accessed from the Transport Layer Security
palette).

Check Client
Certificate Validity
Period

Controls whether the validity period of the client certificate is checked
during SSL-secured connections.

 l Select this check box to check the validity period of the client
certificate and not gather credentials if the certificate is expired.
This option will not populate the ${request.ssl.clientCertificate}
variable. This setting is the default.

 l Clear this check box to not check the client certificate validity
period and gather credentials from all client certificates. This
options will allow the ${request.ssl.clientCertificate} variable to
be populated with expired certificates.

Notes: (1) Although expired certificate information may be gathered,
such certificates cannot be used to authenticate users. For example,
the Authenticate User or Group assertion will fail when an expired
certificate is used. (2) Regardless of whether you check the validity
period prior to gathering the credentials, validity will still be checked if
an actual authentication is attempted (using the Internal Identity
Provider, Federated Identity Provider, or LDAP Identity Provider).

 4. Click [OK] when done.

240 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Require Windows Integrated Authentication
Credentials Assertion

The Require Windows Integrated Authentication Credentials assertion requires the presence
of credentials from a Windows domain in the request.

As this assertion is a credential source, ensure that there no other conflicting credential
sources in the policy (for example, the Require HTTP Basic Credentials assertion).

The Require Windows Integrated Authentication Credentials assertion places the realm
of the client (which should be an expected value for the identity provider) into the
kerberos.realm context variable. This enables policy decisions based on this aspect of the
client credential and is useful in situations where the client can be from multiple
domains/realms. For example:

EAST.MYCOMPANY.COM
WEST.MYCOMPANY.COM

The realm is displayed when using the Manage Kerberos Configuration task. Ensure that
the realm has been validated by this task before an Kerberos authentication is
attempted.

This assertion supports both the Kerberos and NTLM protocols for Windows Integrated
Authentication. To allow a service policy to automatically handle both protocols, you
should structure your policy so that both the Require Windows Integrated
Authentication Credentials and Require NTLM Authentication Credentials assertions are
present in the policy (in that order):

 Figure 74: Policy to handle both Kerberos and NTLM protocols

Notes: (1) The policy fragment in Figure 74 does not support delegated credentials use case. It
is intended to support authentication of the user credentials using available authentication
assertions only. (2) Before using the Require Windows Integrated Authentication Credentials
assertion, be sure the Windows Domain Login Configuration in the Layer 7 Installation and
Maintenance Manual has been performed.

Chapter 4: Access Control Assertions 241

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

 1. Add the assertion to the policy development window. For more information, see
"Adding an Assertion" on page 112.

The assertion is added to the policy window; no further configuration is required.

 2. Move the assertion to the place in the policy list where enforcement should occur.

 3. Optionally use the Authenticate User or Group assertion to limit access to specific
users from an LDAP Identity Provider. (Note: If you do this, be sure the Active
Directory server has been configured as an LDAP provider.)

Require WS-Secure Conversation Assertion
The Require WS-Secure Conversation assertion allows you to require that request and
response messages be secured using a secure conversation session. Specifically,
messages must:

 l Include a "SecurityContextToken" referencing an already-established WS-Secure
Conversation session

 l Include at least one element signed with the shared secret from this session as
proof of possession of the session shared secret

The Require WS-Secure Conversation assertion is a credential source that saves the user
that owns the session for later authorization via the "Authenticate User or Group
Assertion" on page 170. This assertion can be used in tandem with the Protect Against
Message Replay, Sign Element, and Encrypt Element assertions.

Some more information about using WS-Secure Conversation on the Gateway:

 l The Require WS-Secure Conversation assertion, by itself, does not require that the
request message contain a timestamp, and does not check the validity of any time
stamp that might be present. To protect against stale or replayed messages, use
the Require WS-Secure Conversation assertion with the "Protect Against Message
Replay Assertion" on page 680.

 l This assertion may behave unexpectedly if there are two users in different identity
providers, with both recognizing the same certificate credentials.

 l To enable persistence for WS-Secure Conversation sessions, set the cluster
property wss.secureConversation.clusterSessions to "true". This will allow WSSC
sessions to be shared between cluster nodes.

242 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l Federated virtual users are not compatible with secure conversation. For more
information on virtual users, see Federated Identity Provider Users and Groups in
the Layer 7 Policy Manager User Manual.

Context Variable Created by This Assertion

When the Require WS-Secure Conversation assertion is used, it creates the following
context variable that contains the secure conversation context in the inbound request
message:

inboundSC.session

To access the session ID, use ${inboundSC.session.id}.

Using the Assertion

 l Add the assertion to the policy development window as described in Adding an
Assertion.

The assertion is added to the policy window; no further configuration is required.

Require WS-Security Kerberos Token Profile
Credentials Assertion

The Require WS-Security Kerberos Token Profile Credentials assertion requires that the
request message contains a valid WSS1.1 Kerberos Token (specifically, a GSS wrapped
Kerberos v5 AP-REQ, as defined in the GSSAPI specification).

This assertion places the realm of the client in the kerberos.realm context variable. This
enables policy decisions based on this aspect of the client credential and is useful in
situations where the client can be from multiple domains/realms. For example:

EAST.MYCOMPANY.COM
WEST.MYCOMPANY.COM

For more information on the Kerberos specification, see http://docs.oasis-
open.org/wss/v1.1/. From there, you can download the wss-v1.1-spec-pr-
KerberosTokenProfile-01 document in either HTML or PDF format.

Note: When authenticating users with Kerberos, the realm must be validated before
authentication is performed. Ensure that the kerberos.realm context variable is an expected
value for the identity provider.

Chapter 4: Access Control Assertions 243

Layer 7 Policy Authoring User Manual, v8.2

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-pr-KerberosTokenProfile-01.htm
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-pr-KerberosTokenProfile-01.htm

Note: The Gateway must be correctly configured to use the Require WS-Security Kerberos
Token Profile Credentials assertion. For more information, see Windows Domain Login
Configuration in the Layer 7 Installation and Maintenance Manual and Creating Trusted
Gateway Accounts in the Securespan XML VPN Client documentation.

Using the Assertion

 1. Add the assertion to the policy development window. For more information, see
"Adding an Assertion" on page 112.

The assertion is added to the policy window; no further configuration is required.

 2. Move the assertion to the place in the policy list where Kerberos authentication
should occur.

 3. Optionally use the Authenticate User or Group assertion to provide access to the
LDAP Identity Provider. (Note: If you do this, be sure the Active Directory server
has been configured as an LDAP provider.)

Require WS-Security Password Digest Credentials
Assertion

The Require WS-Security Password Digest Credentials assertion allows you to require that a
WSS Digest token is present with a matching username and password. You can optionally
check whether a timestamp or nonce is present, but this assertion does not confirm
whether the timestamp has expired nor does it enforce that the nonce is not reused.

This assertion will succeed if the processed security header of the target message
contains at least one WSS Digest Token with a matching username and password.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about changing the WSS Recipient for this assertion, see "Changing the
WSS Assertion Recipient" on page 146.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

244 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 2. Right-click <target>: Require WS-Security Password Credentials in the policy
window and select Require WS-Security Signature Properties or double-click the
assertion in the policy window.

 Figure 75: Require WS-Security Password Digest Credentials Properties

 3. Configure the properties as follows:

Setting Description

Expected Usename Specify the expected username in the WSS Digest Token. You may

reference context variables.

Expected Password Enter the expected password. You may type a plaintext password,
however it is highly recommended that you reference the password

using the ${secpass.*.plaintext} context variable instead.

Show Password Select this check box to display the password as it is being typed. Clear
this check box to obfuscate the typed password.

Require Timestamp Select this check box to require that a timestamp be present.

Note: This assertion does not confirm whether the timestamp has
expired .

Require Nonce Select this check box to require that a nonce is present.

Note: This assertion does not enforce whether the nonce is not
reused.

 Table 63: WS-Security Signature settings

 4. Click [OK] when done.

Chapter 4: Access Control Assertions 245

Layer 7 Policy Authoring User Manual, v8.2

Require WS-Security Signature Credentials Assertion
The Require WS-Security Signature Credentials assertion allows you to require that the web
service or XML application target message:

 l Includes an X.509 BinarySecurityToken containing a client certificate

 l Has at least one element signed by that client certificate's private key as a proof of
possession of the private key for the client certificate.

The Require WS-Security Signature Credentials assertion is a credential source that saves
the certificate from the X.509 BinarySecurityToken for later authorization via the
Authenticate User or Group or Authenticate Against Identity Provider assertions. This
assertion can be used in tandem with the Protect Against Message Replay, Sign Element,
and Encrypt Element assertions.

The Require WS-Security Signature Credentials assertion supports version 1.0 of the WS-
Security standard. The Gateway creates and uses X.509 v3 certificates.

W A R N I N G

The Require WS-Security Signature Credentials assertion, by itself, does not require
that the request message contain a timestamp, and does not check the validity of any
timestamp that might be present. To protect against stale or replayed messages, use
the Require WS-Security Signature Credentials assertion with the "Protect Against
Message Replay Assertion" on page 680.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about changing the WSS Recipient for this assertion, see "Changing the
WSS Assertion Recipient" on page 146.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Require WS-Security Signature Credentials in the policy
window and select WS-Security Signature Properties or double-click the
assertion in the policy window.

246 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 76: WS-Security Signature Properties

 3. Configure the properties as follows:

Setting Description

Allow multiple
signatures

Select this check box to permit multiple signatures in a policy.

Clear the check box to disallow multiple signatures. If this check box is
not selected and multiple signatures are present, then the assertion will
fail.

For more information, see "Working with Multiple Signatures" on page
17.

Signature Element

Variable

To pick a particular signature to use with an authentication, ensure that
an XPath assertion (for example, Sign Element, Encrypt Element) has
been used to set a context variable to restrict the processed signatures.
Then enter the context variable in the Signature Element Variable
field.

The following is a simple example of an XPath expression containing
signature information in the header:

/soapenv:Envelope/soapenv:Header/wsse:Security/ds:Signature[1]

Note: The ".element" variable is not compatible with the Require WS-
Security Signature Credentials assertion; use the ".elements" variable
instead. For more information about the XPath context variables, see
the Evaluate Request XPath and Evaluate Response XPath assertions.

Signature
Reference Element

Variable

Enter a context variable that will be used to select the signature by (one
or more) elements that it signs. This variable may be used in addition to
the Signature Element Variable.

The Signature Element Variable identifies the set of acceptable
signatures (which is all signatures in the message if the variable is not
set). The Signature Reference Element Variable further restricts
that set of signatures to ones that have signed the desired elements (if
the variable is set previously using XPath assertions).

Note: Specifying a Signature Reference Element Variable is not
validating the signature reference—it is only for signature selection. The
Require Signed Element assertion is still required to verify that the
correct message parts are signed.

 Table 64: WS-Security Signature settings

Chapter 4: Access Control Assertions 247

Layer 7 Policy Authoring User Manual, v8.2

 4. Click [OK] when done.

Require WS-Security UsernameToken Profile
Credentials Assertion

The Require WS-Security UsernameToken Profile Credentials assertion allows you to require basic
WS-Security UsernameToken authentication of user name, plain text password, and the
authentication realm in a section of the XML message for the web service or XML application. This
assertion is a credential source that saves the user name and password from the WSS
UsernameToken for later authentication and authorization via the "Authenticate User or Group
Assertion" on page 170.

This assertion supports version 1.0 of the WS-Security standard. The Gateway creates and
uses X.509 v3 certificates.

Tip: Since the Require WS-Security UsernameToken Profile Credentials assertion requires a
plain text password to be inserted into the service message, you should also select the Require
SSL or TLS Transport assertion when using basic WS Token authentication.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about changing the WSS Recipient for this assertion, see "Changing the
WSS Assertion Recipient" on page 146.

Using the Assertion

 l Add the assertion to the policy development window as described in "Adding an
Assertion" on page 112.

The assertion is added to the policy window; no further configuration is required.

Require XPath Credentials Assertion
The Require XPath Credentials assertion looks for a login (user name) and password in the
current request using a pair of XPath expressions. If the target credentials are found in
the message, then the Gateway sets the current request's credentials using the contents
of the elements described by the XPath expressions and optionally removes the original
elements from the request.

Note: In order to use the Require XPath Credentials assertion, both a user name and password
must be configured for the identity or identities in the policy. For more information, see the
"Authenticate User or Group Assertion" on page 170.

248 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the XPath Credentials Properties automatically
appear; when modifying the assertion, right-click <target>: Require XPath
Credentials... in the policy window and select XPath Credentials Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 77: XPath Credentials Properties

 3. Configure the properties as follows:

Setting Description

Login XPath

Expression

The XPath 1.0 expression that will locate the element containing the
login ID or user name. The default expressions is:

/s:Envelope/s:Body//Username (SOAP)
//Username (non-SOAP)

Click [Edit XPath] if you need to select another expression. For more
information, see "Selecting an XPath" on page 154.

Tip: Before constructing XPath expressions for the login/user name
and password elements, consult the service's namespace map to view
and choose the appropriate namespace prefixes. To access the map,
click [Edit Namespaces] while selecting an XPath to see the default

 Table 65: XPath Credentials settings

Chapter 4: Access Control Assertions 249

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

namespaces and prefixes.

Remove Login from
request if found

Select this check box to have the Gateway remove the element
containing the login/user name value from the request message. Use
this option when credentials must be authenticated by the Gateway but
not communicated to the protected service.

Tip: A request message will never expose login information if the
message uses context variables to hold a user's credentials. Thus,
login information will not be exposed regardless of whether the
Remove Login from request if found check box is selected.

Password XPath

Expression

The XPath 1.0 expression that will locate the element containing the
password. The default is:

/s:Envelope/s:Body//Password (SOAP)
 //Password (non-SOAP)

Click [Edit XPath] to construct this expression. For more information,
see "Selecting an XPath" on page 154.

Remove Password
from request if
found

Select this check box to have the Gateway remove the element
containing the password value from the request message, but save the
credentials in memory.

Tip: For greater flexibility, you may reference context variables in an XPath expression.
For more information, see Context Variables for XPaths in the Layer 7 Policy Manager
User Manual.

 4. If necessary, click [Namespaces] to edit the namespace map.

 5. Click [OK] when done.

Retrieve Credentials from Context Variable Assertion
Using the Retrieve Credentials from Context Variable assertion, you can use an X.509
certificate contained in a specified context variable as if had arrived as X.509 credentials
(for example, via an SSL client certificate or from a WS-Security signature). These
credentials can then be used for authentication purposes in the Authenticate User or
Group or Authenticate Against Identity Provider assertions.

This assertion could be used with the context variables created by the "(Non-SOAP) Verify
XML Element Assertion" on page 391.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

250 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

W A R N I N G

Only use certificate credentials from an entity that has proven that it possesses the
corresponding private key (for example, from a digital signature or a TLS client
certificate). Do not use certificates from unverified sources.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Retrieve Credentials from Context Variable: <variable> in
the policy window and select Credentials from Context Variable Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 78: Credentials from Context Variable Properties

 3. Enter a context variable containing an X.509 certificate. The Gateway will use this
certificate as though it had arrived from conventional credential sources.

 4. Click [OK].

Retrieve Kerberos Authentication Credentials
Assertion

The Retrieve Kerberos Authentication Credentials assertion enables the Gateway to support
the following extensions to the Kerberos Protocol:

 l Protocol Transition (S4U2Self): This is used for clients that require access to
Active Directory resources, but are unable to acquire a Kerberos token. The

Chapter 4: Access Control Assertions 251

Layer 7 Policy Authoring User Manual, v8.2

Protocol Transition delegation method allows the Gateway to request a Kerberos
service ticket on behalf of the client. The client may be using any other
authentication methods, such as: basic, or certificate-based authentication, or
SAML tokens.

 l Constrained Delegation (S4U2Proxy): Using this method, the client sends a
service ticket that will be presented along with the server's TGT (Ticket Granting
Ticket) to Active Directory. This is used to request a service ticket using
constrained delegation to another service. Only services in a previously configured
list can receive a service ticket. Constrained delegation ensures that only
authorized authenticated servers are permitted to perform constrained
delegation to the next server.

For a summary of the configuration required to support each delegation method, see
"Using the Protocol Transition Delegation Method" and "Using the Constrained Proxy
Delegation Method" below.

Prerequisites:

 l Kerberos and the Active Directory should be configured and operational

 l A valid keytab file has been generated on the Active Directory server

 l CA API Gateway must have a valid keytab uploaded, if keytab-based
authentication is used

 l Java 7 is require if using the browser client version of the Policy Manager

Using the Protocol Transition Delegation Method

The following is a summary of the workflow for using the "Protocol Transition" delegation
method. Note: These instructions assume familiarity with Active Directory. If you require
assistance, please contact your AD administrator.

 1. Configure the Gateway account on the Active Directory:

 a. Log in to the Active Directory and open the properties for the Gateway
account.

 b. In the Properties dialog: access [Delegation] tab > choose Trust this user for
delegation to specified services only > choose Use any authentication
protocol below it.

 c. Click [Add] below the list > click [Users or Computers] in the Add Services
dialog > click [Advanced] in the Select Users or Computers dialog.

252 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 d. Click [Find Now] in the Select Users or Computers dialog and then select the
server that requires Kerberos authentication.

 e. Click [OK] to dismiss the dialog boxes until you return to the Add Services
dialog.

 f. Select the "http" service and then click [OK].

 g. Click [OK] to close the Gateway account Properties dialog.

 2. Create a new service and construct a policy that includes:

 l One or more credential source assertions (for example, Require HTTP Basic
Credentials)

 l An identity assertion (for example, Authenticate Against Identity Provider)

 l Retrieve Kerberos Authentication Credentials assertion

 l Route via HTTP(S) assertion

 3. Configure the Retrieve Kerberos Authentication Credentials assertion as follows:

 l Realm: Realm of service

 l Target SPN: Service Principal Name of the destination service protected by
Kerberos. The Kerberos ticket obtained by the Gateway from KDC is passed to
that service.

 l Gateway Credentials: Can be either option. If Gateway credentials is "Use
Gateway Keytab", then the credentials stored in the keytab file will be used,
otherwise you must provide credentials in the assertions.

 l Delegation Method: Choose Protocol Transition

 l Authenticated User: Use either last authenticated user or provide an
authenticated user name and user realm.

 l User Realm: The realm of the user. If the user's realm differs from the service
realm, the Gateway automatically performs a Kerberos cross-realm referral
authentication. For more information about this process, refer to:
http://msdn.microsoft.com/en-us/library/cc246109.aspx.

 4. Configure the Route via HTTP(S) assertion:

 l In the [Target] tab, set the route URL.

 l In the [Security] tab, choose the Service Authentication method Use Windows
Integrated and then choose Use Delegated Credentials.

Chapter 4: Access Control Assertions 253

Layer 7 Policy Authoring User Manual, v8.2

http://msdn.microsoft.com/en-us/library/cc246109.aspx

 5. Call the service from a client that is not a part of the authenticating domain or
does not have a trusted relationship with the domain.

Using the Constrained Proxy Delegation Method

The following is a summary of the workflow for using the "Constrained Proxy" delegation
method. Note: These instructions assume familiarity with Active Directory. If you require
assistance, please contact your AD administrator.

 1. Configure the Gateway account on the Active Directory:

 a. Log in to the Active Directory and open the properties for the Gateway
account.

 b. In the Properties dialog: access [Delegation] tab > choose Trust this user for
delegation to specified services only > choose Use Kerberos only below it.

 c. Click [Add] below the list > click [Users or Computers] in the Add Services
dialog > click [Advanced] in the Select Users or Computers dialog.

 d. Click [Find Now] in the Select Users or Computers dialog and then select the
server that requires Kerberos authentication.

 e. Click [OK] to dismiss the dialog boxes until you return to the Add Services
dialog.

 f. Select the "http" service and then click [OK].

 g. Click [OK] to close the Gateway account Properties dialog.

 2. Create a new service and construct a policy that includes the following assertions:

 l Require Windows Integrated Authentication Credentials

 l Retrieve Kerberos Authentication Credentials

 l Route via HTTP(S)

 3. Configure the Retrieve Kerberos Authentication Credentials assertion as follows:

 l Realm: Realm of authenticated user (provided in the assertion; Gateway will
not locate the realm from the KDC)

 l Target SPN: Service Principal Name of the destination service protected by
Kerberos. The Kerberos ticket obtained by the Gateway from KDC is passed to
that service.

254 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l Gateway Credentials: Can be either option. If Gateway credentials is "Use
Gateway Keytab", then the credentials stored in the keytab file will be used,
otherwise you must provide credentials in the assertions.

 l Delegation Method: Choose Constrained Proxy

 4. Configure the Route via HTTP(S) assertion:

 l In the [Target] tab, set the route URL.

 l In the [Security] tab, choose the Service Authentication method Use Windows
Integrated and then choose Use Delegated Credentials.

 5. Call the service from the client that is logged to the authenticating domain or has
trusted relationship with the domain.

Kerberos Service Ticket/Session Caching

The Gateway implements Kerberos referral/credentials ticket caching to minimize the
number of requests sent to the KDC (Key Distribution Center) and improve transaction
response time. The entire referral chain is stored in the cache, as well as the session key.
These are reused later when generating a new service ticket. The following cluster
properties can be used to configure the cache:

 l kerberos.cache.size: Sets the maximum size of the cache.

 l kerberos.cache.timeToLive: Limits the maximum time the Kerberos tickets are store.
If any ticket in the chain expire before the maximum period is reached, the entire
chain is discarded and the Gateway will request new referral tickets and session
keys from the KDC again.

For more information about these and other Kerberos-related cluster properties, see
"Kerberos Cluster Properties" in the Layer 7 Policy Manager User Manual.

Note the following limitations to the Kerberos caching:

 l Cached data is not persisted to the data source.

 l Cached data is not synchronized to all cluster node.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

Chapter 4: Access Control Assertions 255

Layer 7 Policy Authoring User Manual, v8.2

 2. When adding the assertion, the Kerberos Authentication Credentials Properties
dialog automatically appears; when modifying the assertion, right-click Retrieve
Kerberos Authentication Credentials in the policy window and select Kerberos
Authentication Credentials Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

 Figure 79: Kerberos Authentication Credential Properties

 3. Configure the properties as follows:

Setting Description

KDC Settings Enter the following information about the KDC. You may reference
context variables in either field.

 l Realm: Enter the location of the KDC.

 l Target SPN: Enter the routing destination service principal
name.

The Target SPN will be used with the Realm to look up the
service principal name from the keytab file, if a multiple principal
keytab file is provided. For more information on multiple

 Table 66: Kerberos Authentication Credentials settings

256 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

principal keytab files, see "Using Windows Domain Login" in
the Layer 7 Installation and Maintenance Manual.

Gateway Credentials Specify the credentials for the KDC that will be used to authenticate the
Gateway in order to obtain a TGT (Ticket Granting Ticket) on the
client's behalf. Choose from the following:

 l Use Gateway Keytab: Use the credentials from the keytab
that was uploaded to the Gateway. For more information, see
Managing Kerberos Configuration in the Layer 7 Policy
Manager User Manual.

 l Use Configured Credentials: Specify the credentials to use
in the following fields:

 l Name: Enter the username.

 l Password: From the drop-down list, select the
Password to use to log in. If the password you require is
not listed, click [Managed Stored Passwords] to add it
to the list of store passwords. For more information, see
Managing Stored Passwords in the Layer 7 Policy
Manager User Manual.

Tip: You cannot type the password directly here; it must
be defined in the Gateway's secure password storage.

Delegation Method Choose the delegation method to use:

 l Protocol Transition: Choose this option to use the user login
credentials from the policy enforcement context to request a
Kerberos service ticket from KDC (Key Distribution Center) for
the Gateway on behalf of the authenticated user. This ticket will
be passed to the destination service protected by Kerberos via
the routing assertion. The Gateway account must be
configured to enable delegation to specified services only using
any authentication protocol.

Note: To use this method, the user must have been
authenticated via one of the credential source assertions such
as Require HTTP Basic Credentials.

 l Constrained Proxy (Kerberos Only): Choose this option if
the client forwarded Kerberos service ticket to the Gateway to
act on behalf of the client when the Gateway has limited access
to the services protected by Kerberos. The Gateway will
present this ticket to KDC in exchange to a new ticket for the
destination service. The Gateway account must be configured
to enable delegation to specified services only using Kerberos
authentication protocol.

Note: Currently, only the Route via HTTP(S) assertion supports
Kerberos constrained delegation.

Authenticated User When the delegation method is "Protocol Transition", identify the user

Chapter 4: Access Control Assertions 257

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

("Protocol Transition"
delegation method
only)

who will be acquiring the Kerberos ticket. You may reference context
variables.

This panel is disabled when delegation method is "Constrained Proxy".

 l Last Authenticated User: Use the most recently
authenticated user.

 l Specify User Name: Specify any user specified in the User
CN text field. You can enter any of the following:

 l a user CN name

 l a context variable that contains the user CN name

 l either of the predefined context variables:
${request.authenticateduser} or
${request.authenticatedusers[<index>]}

 l User Realm: Enter the realm of the authenticated user. If left
blank, this assertion will use the service realm as the user
realm.

Tip: When the user's realm differs from the service realm, the
Gateway automatically performs a Kerberos cross-realm
referral authentication, obtaining the necessary referral ticket
(s) in the background. For more information, refer to:
http://msdn.microsoft.com/en-us/library/cc246109.aspx.

 4. Click [OK] when done.

Retrieve SAML Browser Artifact Assertion
The Retrieve SAML Browser Artifact assertion uses the credentials in a request message to
obtain a SAML Browser Artifact from a SAML Single Sign-On (SSO) endpoint. The SSO
endpoint authenticates a requestor using either Basic Authentication or HTML Form
POST Authentication. If authentication succeeds, the Gateway parses the redirect header
and saves the "SAMLart" parameter in memory for future assertions in the same policy to
use.

The Retrieve SAML Browser Artifact assertion is useful for "mixed-mode" SAML
interactions in which an initial request containing a user's credentials establishes a SSO
session that can be used in subsequent browser-based requests from the same user.
Multiple instances of this assertion can be used in a policy if required.

The saved SAML artifact value can be used in the Evaluate Regular Expression assertion
by entering the variable "${samlBrowserArtifact.artifact}" in the Replacement field in the
Evaluate Regular Expression Properties. This is useful when resources require different
SAMLart parameters.

258 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

http://msdn.microsoft.com/en-us/library/cc246109.aspx

Note: The Retrieve SAML Browser Artifact assertion should be placed after the credential
source assertion (such as the Require HTTP Basic Credentials assertion) and before the
assertion that uses the obtained context parameters (such as the Evaluate Regular Expression
assertion).

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the SAML Browser Artifact Properties automatically
appear; when modifying the assertion, right-click Retrieve SAML Browser Artifact
in the policy window and select SAML Browser Artifact Properties or double-click
the assertion in the policy window. The assertion properties are displayed.

 Figure 80: SAML Browser Artifact Properties

 3. Configure the properties as follows:

Setting Description

SAML Single Sign-
On Endpoint URL

Enter the URL of the SAML identity provider endpoint. This URL must
include both the Single Sign-On (SSO) endpoint and the
corresponding service endpoint.

If the SSO system returns a '302' status code after processing, then the
assertion succeeds and will proceed to process the service endpoint

 Table 67: SAML Browser Artifact settings

Chapter 4: Access Control Assertions 259

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

URL. If the SSO system returns a non-302 status code, the assertion
will fail, possibly resulting in a failure of the policy if:

 l the target redirect URL cannot be parsed, or if

 l the result does not match the SAML Artifact Query Parameter
specified below,

Note: The URL specified here is only for authentication, not message
routing. Even if the URL is the same as the endpoint of the service, the
Route via HTTP(S) assertion is still required to route service messages.

SAML Artifact
Query Parameter

This field is populated with the default value "SAMLart". SAMLart is the
type of cookie returned from the SSO system, which is then sent on to
the target URL. If the return cookie is not the same type as the value in
the SAML Artifact Query Parameter, then the assertion will fail.

The SAMLart setting should suffice for most usage scenarios of the
Retrieve SAML Browser Artifact assertion. You should change the
default value only if the administrator of the Single Sign-On system has
chosen a different parameter name. The value in the SAML Artifact
Query Parameter field is case sensitive.

 4. Examine the information in the Authentication Summary box. There are two types
of authentication methods:

Method Description

Basic
Authentication

The Basic Authentication method uses a Require HTTP Basic
Credentials, Require WS-Security UsernameToken Profile
Credentials, or Retrieve XPath Credentials assertion to extract
credentials from an incoming request message. Credentials are
passed to the Single Sign-On (SSO) endpoint in an HTTP message
header.

This is the default authentication method.

Form Authentication Like Basic Authentication, Form Authentication uses a credential
source assertion to extract credentials from an incoming request
message, but uses an HTML form to pass the credentials to the SSO
endpoint. Form parameters can be auto-detected or manually
configured.

 Table 68: Authentication methods

 5. Do one of the following:

 l To use the default Basic Authentication, click [OK]. The assertion is added
to the policy development window.

 l To change to Form Authentication, click [Edit]. The Configure
Authentication dialog appears.

260 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 81: Configure Authentication

 6. Select Form Authentication and then choose a method to enter form parameters:

Method Description

Automatically
detect form
parameters

To automatically detect the user name and password in the HTML
form from the SSO endpoint:

 1. Select the [Request Before Submit] check box.

 2. If the HTML form contents are dynamic, also select the
Preserve Form Field check box to extract and include the
parameters in the HTML page in the Single Sign-On (SSO)
endpoint authentication form.

 3. Click [OK] to enter the form authentication details.

Manually configure
form parameters

Manually configuring form parameters improves the performance of
the Retrieve SAML Browser Artifact assertion. When parameters are
fully specified, there is no need to parse the authentication HTML form
from the Single Sign-On endpoint and, in some cases, the HTML form
may not need to be requested, optimizing the authentication workflow.

To manually configure the form parameters:

 1. To request the SSO endpoint HTML page containing the login
form, select the Request Before Submit check box. If the
HTML form contents are dynamic, also select the Preserve
Form Field] check box to extract and include the parameters

 Table 69: Authentication methods

Chapter 4: Access Control Assertions 261

Layer 7 Policy Authoring User Manual, v8.2

Method Description

in the HTML page in the Single Sign-On (SSO) endpoint
authentication form.

 2. If the initial redirect after the form POST is a re-direction to a
resource (as opposed to the redirect with the SAML Artifact),
check the Enable Redirect After Submit check box.

 3. To store the SAML Artifact authentication HTTP cookies, check
the Enable Cookies check box. When selected, the SAML
Artifact cookies will be re-used in future request messages with
the same credentials.

Note: Cookies are always supported during form processing,
even when the Enable Cookies check box is not selected. Any
cookie sent in the initial form request (when the Request
Before Submit check box is selected) will be passed back
during form submission and when an initial redirect is followed
(when the [Enable Redirect After Submit] check box is
selected).

 4. In the Form Target field, enter the URL to which the
authentication form should be submitted. This URL must
correspond with the form's action, such as
"http://sso.example.com/login".

 5. In the User Name Field Name field, enter the name of the
form parameter that specifies the user. For example, "User
Name".

 6. In the Password Field Name field, enter the name of the form
parameter that specifies the password. For example,
"Password".

 7. When the Request Before Submit check box is selected in step
1 above, select the Preserve Form Field check box to extract
and include the HTML form parameters in the authentication
form.

Tip: Instead of copying the parameters from the HTML form,
specify one or more additional fields for the authentication form
as outlined in step 8 below. Doing so saves time by forgoing the
form parsing process.

 8. Optionally configure additional fields for the authentication form
as follows:

 a. Click [Add] and then enter a Field Name (e.g., "Source")
and Field Value (e.g., "Form") for the form parameter.

 b. Click [OK] to add the new field to the [Additional Fields]
box in the Configure Authentication dialog. Repeat to
configure additional fields as required.

To modify a field, select the field name and click [Modify]. To
remove a field, select the field name and click [Remove].

 9. Click [OK] to add the form authentication details to the
Configure SAML Browser/Artifact dialog.

262 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

 7. Click [OK] when done.

Use WS-Federation Credential Assertion
The Use WS-Federation Credential assertion submits credentials from the current request
to the local ADFS Server. This assertion has two modes of operation:

 l Token Request: A login and password authenticated token request is submitted
to the local ADFS Server. On success a SAML token is added to the current
request's SOAP security header.

In "Token Request" mode, the Use WS-Federation Credential assertion takes
credentials gathered by a preceding credential source assertion, such as the
transport-level Require HTTP Basic Credentials assertion or message-level Require
WS-Security UsernameToken Profile Credentials assertion, and requests a token
from the local ADFS Server. In "Token Exchange" mode, the WS-Federation Passive
Credential assertion uses a SAML token from the request.

 l Token Exchange: A SAML token authenticated token request is submitted to the
local ADFS Server. On success, a SAML token is added to the current request's
SOAP security header.

In "Token Exchange" mode, the WS-Federation Passive Credential assertion uses a
SAML token from the request. If the token request/exchange is successful, a SAML
token will replace the current request's credentials. If the message's original
credentials are XML-based, then the XML element containing those credentials will
be removed from the message.

For more information on configuring the Gateway to use WS-Federation credentials, see
Configuring WS-Federation Credential Exchange in the Securespan XML VPN Client
documentation.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the WS-Federation Request Properties automatically
appear; when modifying the assertion, right-click
[Obtain|Exchange|Authenticate] Credentials using WS-Federation Request to...

Chapter 4: Access Control Assertions 263

Layer 7 Policy Authoring User Manual, v8.2

in the policy window and select WS-Federation Request Properties or double-
click the assertion in the policy window. The assertion properties are displayed.

 Figure 82: WS-Federation Request Properties

 3. Configure the properties as follows:

Setting Description

Action From the drop-down list, select whether to perform a Token
Request or Token Exchange. Refer to the introduction to this topic
for the differences.

Token Service URL Enter the complete URL of the WS-Federation server.

The server must be running and configured to accept requests
containing the values configured below.

Reply URL Optionally enter the address of the federated service.

Realm Enter the SOAP payload namespace URI of the requesting realm.
This should match the Realm entered for the Gateway account.

The Realm is only for token request actions.

Authenticate with
service

If the protected service requires authentication, select this check box
to have the Gateway authenticate with the protected service.

 Table 70: WS-Federation Request settings

264 Chapter 4: Access Control Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Context The context information that should be passed in with the request.

Include freshness
timestamp

Select this check box to include a timestamp. The timestamp is
available only for token request actions.

 4. Click [OK] when done.

Chapter 4: Access Control Assertions 265

Layer 7 Policy Authoring User Manual, v8.2

Layer 7 Policy Authoring User Manual, v8.2

266 Chapter 4: Access Control Assertions

Chapter 5:
 Transport Layer Security

Assertions

Note: This category may also include custom-created encapsulated assertions. For more
information, see "Working with Encapsulated Assertions" on page 126.

In the Policy Manager, the following assertion is available in the Transport Layer Security
(TLS) category of the [Assertions] tab:

Require SSL or TLS Transport Assertion 267

This assertion establishes the transport-level encryption requirement for a service.

Require SSL or TLS Transport Assertion
The Require SSL or TLS Transport /Require SSL or TLS Transport with Client Authentication
assertion allows you to specify the SSL or TLS requirement to ensure transport-level
confidentiality and integrity. You can specify whether an SSL/TLS connection is required,
optional, or forbidden.

You can optionally require client certificate authentication and can control whether to
check the validity period of the client certificate prior to gathering credentials.

Note: When requiring client certificate authentication, the assertion will behave as a
credential source that saves the client certificate from the SSL-TLS handshake for later
authentication and authorization via the Authenticate User or Group assertion.

This assertion appears in two different assertion palettes:

 l When accessed from the Access Control palette, this assertion is labeled "Require
SSL or TLS Transport with Client Authentication" and has the Require Client
Certificate Authentication check box selected by default.

 l When access from the Transport Layer Security palette, this assertion is labeled
"Require SSL or TLS Transport" and does not have the Require Client Certificate
Authentication check box selected by default.

In either instance, you are free to toggle this check box according to your needs.

Chapter 5: Transport Layer Security Assertions 267

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click [Require|Forbid|Optional] SSL or TLS Transport <with Client
Authentication> in the policy window and select SSL or TLS Transport Properties
or double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 83: SSL or TLS Transport Properties

 3. Configure the properties as follows:

Setting Description

Select the SSL or
TLS requirements

 l Required: Select this option to disallow requests that do not
arrive over an SSL-secured connection. This setting is the
default setting for the assertion. When you select Required,
the Peer Authentication options are enabled.

 l Optional: Select this option to configure the Gateway to
match the behavior of the incoming request. Requests are not
required to arrive over an SSL-secured connection.

 l Forbidden: Select this option to disallow requests that arrive
over an SSL-secured connection. This setting can be used to
discourage users of a free service from consuming server SSL
resources without paying for an upgraded account.

 Table 71: SSL or TLS Transport settings

268 Chapter 5: Transport Layer Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Require Client
Certificate
Authentication

Indicates whether the client certificate needs to be authenticated:

 l Select this check box to gather the client certificate to be
authenticated later in the policy by an authentication assertion
(for example, "Authenticate User or Group Assertion" on page
170).

This indicates that a client certificate is required as part of the
SSL-TLS handshake. The client certificate is used to
authenticate the service requestor.

This check box is available only when "Select the SSL or TLS
requirements" is set to Required.

Note: Selecting the check box does not ensure that the client
certificate will be authenticated. The Require SSL or TLS
Transport with Client Authentication assertion only behaves as
a credential source assertion. An authentication assertion
must be present in the policy to authenticate the certificate.

 l Clear this check box to not gather the client certificate. This
makes the "Require SSL or TLS Transport with Client
Authentication Assertion" (accessed from the Access Control
palette) identical to the "Require SSL or TLS Transport
Assertion" (accessed from the Transport Layer Security
palette).

Check Client
Certificate Validity
Period

Controls whether the validity period of the client certificate is checked
during SSL-secured connections.

 l Select this check box to check the validity period of the client
certificate and not gather credentials if the certificate is expired.
This option will not populate the ${request.ssl.clientCertificate}
variable. This setting is the default.

 l Clear this check box to not check the client certificate validity
period and gather credentials from all client certificates. This
options will allow the ${request.ssl.clientCertificate} variable to
be populated with expired certificates.

Notes: (1) Although expired certificate information may be gathered,
such certificates cannot be used to authenticate users. For example,
the Authenticate User or Group assertion will fail when an expired
certificate is used. (2) Regardless of whether you check the validity
period prior to gathering the credentials, validity will still be checked if
an actual authentication is attempted (using the Internal Identity
Provider, Federated Identity Provider, or LDAP Identity Provider).

 4. Click [OK] when done.

Chapter 5: Transport Layer Security Assertions 269

Layer 7 Policy Authoring User Manual, v8.2

Layer 7 Policy Authoring User Manual, v8.2

270 Chapter 5: Transport Layer Security Assertions

Chapter 6:
 XML Security Assertions

Notes: (1) Depending on which Gateway product you have installed, not all the assertions
shown below may be available. See Features by Product in the Layer 7 Policy Manager User
Manual for a list of which features are available for each product. (2) This category may also
include custom-created encapsulated assertions. For more information, see "Working with
Encapsulated Assertions" on page 126.

In the Policy Manager, the following assertions are available in the XML Security category
of the [Assertions] tab:

Add or Remove WS-Security Assertion 273

Add Security Token Assertion 277

Configuring the Private Key for SAML Assertions 277
Applying WS-Security 278
Adding a WS-S UsernameToken 279
Adding a WS-SC SecurityContextToken 281
Adding a SAML Assertion 281
Adding a WS-S EncryptedKey 282

Add Timestamp Assertion 283

Build RST SOAP Request Assertion 285

Context Variables Created by This Assertion 285
Build RSTR SOAP Response Assertion 288

Context Variables Created by This Assertion 289
Build SAML Protocol Request Assertion 291

SAML Protocol Request Wizard 292
Build SAML Protocol Response Assertion 299

Configuring the [General] Tab 301
Configuring the [Issuer] Tab (SAML 2.0 only) 305
Configuring the [Advanced] tab 306

Cancel Security Context Assertion 306

Configure WS-Security Decoration Assertion 309

Applying WS-Security 309
Configuring the [General] Tab 311
Configuring the [Signing] Tab 312
Configuring the [Encryption] Tab 313
Configuring the [Advanced] Tab 315

Create SAML Token Assertion 315

Context Variables Created by This Assertion 316
SAML Token Creation Wizard 317

Chapter 6: XML Security Assertions 271

Layer 7 Policy Authoring User Manual, v8.2

Create Security Context Token Assertion 328

Context Variable Created by This Assertion 328
Create XACML Request Assertion 330

Configuring the Subject Node 332
Configuring the Resource Node 333
Configuring the Action Node 333
Configuring the Environment Node 334
Configuring the Attribute Node 334
Configuring the Multiple Attributes Node 340
Configuring the Resource Content Node 344

Encrypt Element Assertion 346

Establish Outbound Secure Conversation Assertion 348

Context Variables Created by This Assertion 349
Evaluate SAML Protocol Response Assertion 353

Evaluate XACML Policy Assertion 356

Generate OAuth Signature Base String Assertion 360

Context Variables Created by This Assertion 360
Generate Security Hash Assertion 365

Look Up Certificate Assertion 367

Look Up Outbound Secure Conversation Session Assertion 370

Context Variables Created by This Assertion 370
(Non-SOAP) Check Results from XML Verification Assertion 372

(Non-SOAP) Decrypt XML Element Assertion 374

Context Variables Created by This Assertion 374
(Non-SOAP) Encrypt XML Element Assertion 376

(Non-SOAP) Sign XML Element Assertion 377

(Non-SOAP) Validate SAML Token Assertion 380

Step 1: Introduction 381
Step 2: SAML Version 381
Step 3: SAML Statement Type 382
Step 4: Authentication Methods 383
Step 5: Authorization Statement 384
Step 6: Attribute Statement 385
Step 7: Subject Confirmation 386
Step 8: Name Identifier 389
Step 9: Conditions 390
Step 10: Embedded Signature 391

(Non-SOAP) Verify XML Element Assertion 391

Context Variables Created by This Assertion 391
Process RSTR Response Assertion 395

Context Variables Created by This Assertion 395
Protect Against Message Replay Assertion 397

Require Encrypted Element Assertion 400

Require Signed Element Assertion 402

272 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Context Variables Created by This Assertion 402
Require Timestamp Assertion 405

Sign Element Assertion 407

Use WS-Security 1.1 Assertion 409

The XML Security assertions define the message-level encryption and signature
requirements for service XML messages and enable protection against replay attacks.

You can use multiple XML Security assertions in a single policy. These assertions can only
be used in a web service policy.

The default WSS recipient in the Sign Element and Encrypt Element assertions can be
changed if necessary.

Note: Many of the XML Security assertions must be preceded by specific assertions. Be sure
to refer to the Policy Validation Messages.

Add or Remove WS-Security Assertion
The Add or Remove WS-Security assertion is used to apply pending WS-Security
decorations to a message or to remove security headers. You can control how to handle
the WS-Security headers and the WS-Security options.

This assertion should be placed after the following WS-Security assertions in a policy if
the target message is the request message or a context variable:

Add Security Token
Add Timestamp
Configure WS-Security Decoration
Encrypt Element
Sign Element

Tip: Though it is not necessary to use the Add or Remove WS-Security assertion to apply
pending decoration to the default response message, it will not cause harm and may be
advantageous is some instances (for example, if you want to override the encryption recipient).

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Using the Assertion

 1. Do one of the following:

Chapter 6: XML Security Assertions 273

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: [Apply|Clear] WS-Security in the policy window and choose
WS-Security Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

 Figure 84: WS-Security Properties

 3. Configure the properties as follows:

274 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

WS-Security header options

Remove and recreate
matching security
headers (if found)

Select this check box to remove the existing header before applying
WS-Security, if there is an existing security header in the message
that matches one of the target headers. This setting is the default
behavior.

Clear this check box to retain the existing header(s) while applying
WS-Security.

Remove all
unmatched security
headers

Choose this option to remove any existing WS-Security headers
that do not match any of the target headers.

Clear this check box to retain all existing WS-Security headers.

Tip: This option can be used to remove all security headers when
the Apply WS-Security check box is not selected.

Use MustUnderstand
attribute

By default, the resulting security header will have a
mustUnderstand attribute.

 l Select this check box to use the recommended
mustUnderstand attribute from the resulting WS-Security
header.

 l Clear this check box to omit the recommended
mustUnderstand attribute from the Security header.

For the default
recipient:

Indicate how to handle the default recipient for the security header:

 l Omit actor attribute: Do not use an actor. This setting is
the default.

 l Use Layer 7 actor: Use the Layer 7 actor as the default
actor.

Apply WS-Security Select this check box to apply any pending WS-Security
decorations, as specified in the WS-Security options displayed
below. Note: When [Apply WS-Security] is used, any decorations
that were applied will be cleared automatically.

Clear this check box to not apply pending WS-Security decorations
to the header. The WS-Security options are disabled. Note:
This is not the same as clearing the decorations, which is done
using the [Clear WS-Security] option below .

Clear WS-Security Select this check box to clear any pending WS-Security decorations
and also any WS-Security decorations that would be applied
automatically after the policy complete.

Clear this check box to allow all WS-Security decoration
requirements to be processed normally.

About automatic WS-Security decoration

Automatic WS-Security decorations are those that are not

 Table 72: WS-Security Properties settings

Chapter 6: XML Security Assertions 275

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

currently "pending", but which will be applied automatically after the
policy completes.

For example, the Require WS-SecureConversation assertion
always signs the response and adds a timestamp. If this is not
desirable—for example, the Gateway is configured to pass-
through secure conversation—choose [Clear WS-Security] to
prevent automatic decoration.

Tip: When both [Apply WS-Security] and [Clear WS-Security] are selected, the
assertion will apply all pending WS-Security and clear any automatic WS-Security
decorations that would be applied automatically after the policy completes.

WS-Security options

Version Choose the version of WS-Security to use: 1.0 or 1.1. The default
<Not Specified> setting will use WSS 1.0, unless WSS 1.1 is
detected or explicitly configured in the policy.

Select the default
recipient certificate...

Choose which certificate to use with XML encryption:

 l Use default certificate: Use the default certificate for the
recipient.

Note: The certificate is for the default recipient. To override
this default recipient, see "Changing the WSS Assertion
Recipient" on page 146.

 l Use selected certificate for default recipient: Choose
this option to browse for the certificate to use. Click [Select]
and then locate the certificate to use. Examine the
certificate details displayed to ensure that it is the correct
certificate.

 l Lookup default recipient by name: Choose this option
to use the certificate of the specified default recipient. You
may reference a context variable that will resolve to the
recipient at run time. If more than one certificate matches

the name, then the first valid certificate is used.

 l Use Certificate from Context Variable: Choose this
option to use the context variable specified in the adjacent
box.
Note: This context variable must contain a type X.509

certificate.

 4. Click [OK] when done.

276 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Add Security Token Assertion
The Add Security Token assertion is used to signify that one of the following security
tokens should be added to the SOAP security header in the target message:

WS-S UsernameToken
WS-SC SecurityContextToken
SAML Assertion (Token)
WS-S EncryptedKey

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about changing the WSS Recipient for this assertion, see "Changing the
WSS Assertion Recipient" on page 146.

Note: The Add Security Token assertion only adds the token to the list of pending decoration
requirements for the message. The token is not actually added until the "Add or Remove WS-
Security Assertion" on page 273 is executed.

Configuring the Private Key for SAML Assertions

When adding a "SAML Assertion" as the Security Token Type (Figure 87), ensure that the
Add Security Token assertion is configured with the correct private key based on the
SAML Assertion type:

SAML Assertion
type Configured Private Key

Holder-of-Key Must be the subject's key

Sender Vouches Must be the sender's key

Bearer Can be either the default private key for the Gateway or some
other custom key

None Can be either the default private key for the Gateway or some
other custom key

 Table 73: Configured private key for various SAML Assertion types

To learn more about selecting a private key for this assertion, see Selecting a Custom
Private Key in the Layer 7 Policy Manager User Manual.

For more information about the SAML Assertion types, see "SAML Token Profile Wizard"
on page 231.

Chapter 6: XML Security Assertions 277

Layer 7 Policy Authoring User Manual, v8.2

Applying WS-Security

If this assertion targets a message other than the response, you must add the Add or
Remove WS-Security assertion after the Add Security Token assertion in the policy in
order for the token to be applied:

Request: Add Security Token
Request: Apply WS-Security

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Tip: When WS-Security is involved, be sure to specify the appropriate WSS header handling
option in the routing assertion's properties. In most instances, the setting "Don't modify the
request Security header" is usually appropriate.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Add [Signed] Security Token in the policy window and
choose Security Token Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

 3. Choose a Security Token Type to add and configure as required:

WS-S UsernameToken
WS-SC SecurityContextToken
SAML Assertion
WS-S EncryptedKey

 4. Set the Include Security Token in Message Signature check box as required:

 l Select this check box if you want the added token to be signed. (This will occur
even if the token itself is responsible for the signing.) The assertion name in the
policy window will appear as "Add Signed Security Token".

 l Clear this check box to include the token in the Security header but not sign it.
Other parts of the message may still be signed if so configured. The assertion
name in the policy window will appear as "Add Security Token".

 5. Click [OK] when done.

278 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Adding a WS-S UsernameToken

 Figure 85: Security Token Properties - WS-S UsernameToken

Configure the settings specific to each security token type:

Setting Description

Include Password Select this check box to include the password in the token.

When the Include Password check box is selected, this adds a
wsse:Password element to the security token in the target message:

<wsse:Password Type="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#PasswordText">password</wsse:Password>

This applies only where a password is provided by the requesting SOAP
message (as enforced by the "Require HTTP Basic Credentials
Assertion" on page 215) or is entered in the provided text box.

Use Last Gathered
Request Credentials

Choose this option to use the credentials from the most recently gathered
request.

 Table 74: Adding a WS-S UsernameToken

Chapter 6: XML Security Assertions 279

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Use Specified
Credentials

Choose this option to use credentials that you specify here:

 l Username: Enter the user name to use.

 l Password: Enter the password to use. Available only when the
password is included.

 l Choose [Show Password] if you wish the password text to
be visible as it is typed in.

 l Clear [Show Password] to display an obfuscated
password, for additional security.

 l Include Nonce: Select this check box to include a nonce in the
token.

 l Use Password Digest: Select this check box to calculate and
display a digest password in the Password element of the
UsernameToken. Clear this check box to use the basic password
as entered in the Password field for the Password element.
Available only when [Include Password] is selected.

 l Encrypt: Select this check box to encrypt the token.

Signature Key
Reference

Choose the method to use to embed the signing certificate:

 l BinarySecurityToken: The certificate is embedded within the
message and does not require the recipient to already possess a
copy of the signing certificate. This results in larger messages,
but is more compatible. This setting is the default.

 l SecurityTokenReference with SKI: Use
SecurityTokenReference containing the SubjectKeyIdentifier
(SKI). This produces smaller messages, but at the risk of
decreased compatibility.

 l Issuer Name/Serial Number: Use a SecurityTokenReference
containing the certificates issuer distinguished name and serial
number. This produces smaller messages, but at the risk of
decreased compatibility.

280 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Adding a WS-SC SecurityContextToken

 Figure 86: Security Token Properties - WS-SC SecurityContextToken

 l Session Variable Name: Enter the context variable containing the WS-
SecureConversation Security Context. This is normally scLookup.session, which is
defined in the "Look Up Outbound Secure Conversation Session Assertion" on

page 370.

Tip: You can use an indexing option to specify a value from a multivalued context variable.
For example, use foo[1] to select the second value in the multivalued variable foo. For
more information, see "Indexing Options during Interpolation" in Working with Multivalued
Context Variables in the Layer 7 Policy Authoring User Manual.

 l Include SecurityContextToken in message: The default is to add a
SecurityContextToken (SCT) in the message when it is decorated. Tip: You may
need to clear this check box when decorating responses to a WCF client.

Adding a SAML Assertion

IMPORTANT: When adding a SAML Assertion as the security token, ensure that the Add
Security Token assertion is configured with the correct private key. For more information, see
"Configuring the Private Key for SAML Assertions" at the beginning of this topic.

Chapter 6: XML Security Assertions 281

Layer 7 Policy Authoring User Manual, v8.2

 Figure 87: Security Token Properties - SAML Assertion

 l SAML Assertion Variable: Enter the context variable containing the SAML
Assertion (Token). This is normally issuedSamlAssertion, which is defined in the

"Create SAML Token Assertion" on page 315.

Tip: You can use an indexing option to specify a value from a multivalued context variable.
For example, use foo[1] to select the second value in the multivalued variable foo. For
more information, see "Indexing Options during Interpolation" in Working with Multivalued
Context Variables in the Layer 7 Policy Authoring User Manual.

Adding a WS-S EncryptedKey

 Figure 88: Security Token Properties - WS-S EncryptedKey

282 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

No further configuration is required for token type WS-S EncryptedKey. The Gateway will
create a new EncryptedKey and include it in the target message when the security
requirements are next applied.

The Gateway will cache the generated key for a period of time and will recognize it when
processing future incoming messages that refer to it by its EncryptedKeySHA1.

Add Timestamp Assertion
The Add Timestamp assertion is used to add a signed <wsu:Timestamp> element into the
SOAP security header of all target messages. You can configure the expiry time period for
the timestamp and you can choose the method used to include the SSL certificate for the
Gateway.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about selecting a private key for this assertion, see Selecting a Custom
Private Key in the Layer 7 Policy Manager User Manual.

To learn more about changing the WSS Recipient for this assertion, see "Changing the
WSS Assertion Recipient" on page 146.

Note: The "Add or Remove WS-Security Assertion" on page 273 must follow the Add
Timestamp assertion in a policy.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. This assertion contains default settings that are appropriate for most instances.
To change any of the settings, right-click <target>: Add [Signed] Timestamp in
the policy window and select Timestamp Properties or double-click the assertion
in the policy window. The assertion properties are displayed.

Chapter 6: XML Security Assertions 283

Layer 7 Policy Authoring User Manual, v8.2

 Figure 89: Timestamp Properties

 3. Configure the properties as follows:

Setting Description

Resolution To specify a timestamp resolution, select a value from the resolution
drop-down list. When the value is '<Default>', the Gateway default
resolution is used.

Expiry Time Select the unit of measure from the drop-down list (milliseconds,
seconds, minutes, hours), then enter the length of the expiry time for
the timestamp. Fractional measurements are permitted. The default is
5 minutes.

Sign Timestamp Select this check box to digitally sign the timestamp. When signatures
are used, "signed" will appear in the assertion name in the policy
window ("Add signed Timestamp").

Note: The [Sign Timestamp] check box must be enabled if a private
key has been selected for this assertion. If the check box is cleared, any
private key will be ignored.

Gateway Certificate
Inclusion

Select the method to use to include the SSL certificate for the Gateway:

 l BinarySecurityToken: The certificate is embedded within the
message and does not require the recipient to already possess
a copy of the signing certificate. This results in larger
messages, but is more compatible. This setting is the default.

 l SecurityTokenReference with SKI: Use
SecurityTokenReference containing the SubjectKeyIdentifier
(SKI). This produces smaller messages, but at the risk of
decreased compatibility.

 l Issuer Name/Serial Number: Use a
SecurityTokenReference containing the certificates issuer
distinguished name and serial number. This produces smaller
messages, but at the risk of decreased compatibility.

 Table 75: Timestamp settings

284 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 4. Click [OK] when done.

Build RST SOAP Request Assertion
The Build RST SOAP Request assertion is used to create a SOAP message containing a
Request Security Token (RST) in the SOAP body. The security token requested from the
service is either a Security Context Token (SCT) or a SAML Token.

Context Variables Created by This Assertion

The Build RST SOAP Request assertion sets details about the RST request message in the
following context variables. Note: The default <prefix> is "requestBuilder" and can be
changed in the assertion properties (Figure 90).

Variable Description

<prefix>.rstRequest Stores the RST Request message generated

<prefix>.clientEntropy Stores the client entropy, if the option [Generate and include client
entropy] is selected in the assertion properties

 Table 76: Context variables created by Build RST SOAP Request assertion

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Build RST SOAP [Cancel|Issue|Validate] Request in the policy window
and choose RST SOAP Request Builder Properties or double-click the assertion
in the policy window. The assertion properties are displayed.

Chapter 6: XML Security Assertions 285

Layer 7 Policy Authoring User Manual, v8.2

 Figure 90: RST SOAP Request Builder Properties

 3. Configure the properties as follows.

Setting Description

SOAP Version Choose the SOAP version to be used in the RST SOAP message: 1.1
or 1.2.

WS-Trust
Namespace

Choose the WS-Trust namespace to be used in a
RequestSecurityToken element:

 l http://docs.oasis-open.org/ws-sx/ws-trust/200512 (v1.3 and
v1.4)

 l http://schemas.xmlsoap.org/ws/2005/02/trust (v1.2)

 l http://schemas.xmlsoap.org/ws/2004/04/trust (pre-v1.2)

Token Type Choose the token type to be used in the message:

<Not Included> (no token is requested)
SAML2 Assertion
SAML Assertion
WS-SC SecurityContextToken

Request Type Choose the type of request to build:

Cancel
Issue (default)
Validate

 Table 77: RST SOAP Request Builder settings

286 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

<wst:Issuer>

Address

Optionally specify the issuer of the security token that is presented in
the RST SOAP request message. The Issuer element's type is an
endpoint reference as defined in WS-Addressing. You may reference
context variables.

<wsp:AppliesTo>

Address

Optionally specify the URL of the <Address> in a <wsp:AppliesTo>
element, which is a scope specified by the requestor for the issued
token. You may reference context variables.

Target Token

Variable

If the Request Type is either Cancel or Validate, optionally specify a
context variable of type String that will be used for the target element
(the CancelTarget or ValidateTarget elements, respectively). This
context variable should either contain:

 l an Element—for example, one that was selected using an
XPath; this Element should be a SecurityTokenReference or a
security token.

 l a Security Context Token (for example, one created by the
"Establish Outbound Secure Conversation Assertion " on page
348). A SecurityTokenReference will be generated for the
token.

Tip: You can use an indexing option to specify a value from a
multivalued context variable. For example, use foo[1] to choose the
second value in the multivalued variable foo. For more information,
see "Indexing Options during Interpolation" in Working with
Multivalued Context Variables in the Layer 7 Policy Authoring User
Manual.

Key Size (bits) Optionally specify the key size in bits.

Token Lifetime Optionally, select this check box to specify a time range for the returned
security token.

Note: The issuer is not obligated to honor this range and may return a
more (or less) restrictive interval.

Use System Default When specifying a Token Lifetime, select this check box to use the
system default, as defined by the
outbound.secureConversation.defaultSessionDuration cluster
property. The default value for this property is 2 hours.

Generate and
include client
entropy

Optionally select this check box to generate client entropy and include it
in the RST request. The generated entropy will be saved into the
context variable <prefix>.clientEntropy (see Table 76).

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

The default prefix is requestBuilder.

Chapter 6: XML Security Assertions 287

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

 4. Click [OK].

Build RSTR SOAP Response Assertion
Once a security token is issued by the Create Security Context Token assertion, the Build
RSTR SOAP Response Assertion is used to create a SOAP response message containing a
RequestSecurityTokenResponse (RSTR) element. This element does the following:

 l For token issuance, the RSTR will wrap the token issued.

 l For token cancellation, the RSTR will contain a RequestedTokenCanceled element.

This assertion can create two types of responses:

 l A response that indicates a security token is being issued.

 l A response that indicates a security token is being canceled.

The following is an example of the RSTR element in a response message:

<wst:RequestSecurityTokenResponse Context="..." xmlns:wst="...">
<wst:TokenType>...</wst:TokenType>
<wst:RequestedSecurityToken>

// The issued security token appears here
</wst:RequestedSecurityToken>
...

</wst:RequestSecurityTokenResponse>

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153. The target message is an inbound RST Request SOAP message
that provides the following useful information for building the RSTR:

 l All related namespaces such as SOAP Envelope, WS-Trust, WS-Secure
Conversation, WS-Addressing, WS-Policy, WS-Security, etc.

 l Entropy in the RST request, if applicable

 l Key size in the RST request, if applicable.

To learn more about selecting the target identity for this assertion, see "Selecting a
Target Identity" on page 152.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

288 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

To learn more about changing the WSS Recipient for this assertion, see "Changing the
WSS Assertion Recipient" on page 146.

Context Variables Created by This Assertion

The Build RSTR SOAP Response assertion sets the following context variables with details
of the response. Note: The default <prefix> is "responseBuilder" and can be changed in
the assertion properties (Figure 91).

Variable Description

<prefix>
.rstrResponse

Contains the RSTR SOAP response message.

<prefix>
.wsaNamespace

Contains the WS-Addressing namespace that will be used when WS-
Addressing is added to the RSTR SOAP response message.

<prefix>
.rstrWsaAction

Contains the RSTR WS-Addressing Action that will be used when WS-
Addressing is added to the RSTR SOAP response message.

 Table 78: Context variables created by Build RSTR SOAP Response Assertion

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Build RSTR SOAP Response in the policy window and choose RSTR
SOAP Response Builder Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

Chapter 6: XML Security Assertions 289

Layer 7 Policy Authoring User Manual, v8.2

 Figure 91: RSTR SOAP Response Builder Properties

 3. Specify the Response Message Type to create:

 l A response message that includes an issued a security token: Choose this
option to create a response with the <wst:RequestSecurityTokenResponse>
element, which contains the security token that was issued (either a
SAML Token or a Security Context Token).

Enter the context variable that contains the issued token. Tip: For Security
Context Tokens, this will be the ${<prefix>.issuedSCT} variable. For
SAML Tokens, this should be the ${issuedSamlAssertion} variable.

Optionally choose any of the following RSTR Configuration options to
include:

 l Include an <AppliesTo> element with WS-Addressing Address: This
optional element is used to specify the specify the address attribute of the
endpoint reference.. For example, the service(s) to which this token applies.

 l Include a <RequestedAttachedReference> element: Since returned
tokens are considered opaque to the requestor, this optional element is
used to indicate how to reference the returned token when that token
does not support references using URI fragments (XML ID).

290 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l Include a <RequestedUnattachedReference> element: In certain cases,
tokens do not need to be present in the message. This optional element is
used to indicate how to reference the token when it is not placed inside the
message.

 l Include a <KeySize> element: The size of the session key for a secure
conversation token will be included in the generated message.

 l Set Lifetime for the returned security token: This lifetime defines the
expiry duration of the returned security token. It is not the same as the
lifetime defined in the "Create Security Context Token Assertion" on page
328. The default expiry duration is 60 minutes for the returned security
token. Note: It is recommended that the issuer return this element with
issued tokens (in the RSTR) so the requestor knows the actual validity
period without needing to parse the returned token.

Note: For more information about the RSTR Configuration elements, please refer to
the specifications on WS-Trust and WS-Secure Conversation on www.oasis-
open.org.

 l A response message that includes the results of a token cancellation:
Choose this option to create a response with <wst:RequestedTokenCanceled/>
in the <wst:RequestSecurityTokenResponse> element.

 4. Enter a prefix to be added to the context variables created by this assertion. The
prefix allows you to uniquely identify the variables if the assertion appears more
than once within a policy.

The default variable prefix is responseBuilder.

 5. Click [OK].

Build SAML Protocol Request Assertion
The Build SAML Protocol Request assertion is used to create a SAMLP request from either a
request message, response message, or a Message variable. If the request can be
successfully fulfilled, a SAMLP request is returned containing one or more SAML tokens.
The Evaluate SAML Protocol Response assertion is then used to evaluate the request,
response, or Message variable.

The target message for this assertion is set within the wizard, but it may also be changed
in the policy window, without using the wizard. For more information, see "Selecting a
Target Message" on page 153.

Chapter 6: XML Security Assertions 291

Layer 7 Policy Authoring User Manual, v8.2

http://www.oasis-open.org/
http://www.oasis-open.org/

To learn more about selecting a private key for this assertion, see Selecting a Custom
Private Key in the Layer 7 Policy Manager User Manual.

The Build SAML Protocol Request assertion is typically used as follows in a policy:

Build SAML Protocol Request
Route via HTTP(S)
Evaluate SAML Protocol Response

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Build SAML Protocol Request... in the policy window and
select SAML Protocol Request Wizard or double-click the assertion in the policy
window.

 3. Follow the wizard to complete the assertion. For details, see "SAML Protocol
Request Wizard" on page 292.

SAML Protocol Request Wizard

The SAML Protocol Request Wizard automatically starts when you add or edit a Build
SAML Protocol Request assertion in a policy.

 Figure 92: SAML Protocol Request Wizard

For more information about wizards, see "Wizard" under Interfaces in the Layer 7 Policy
Manager User Manual.

292 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Tip: You can use context variables in many of the text fields in the wizard. These variables are
evaluated at runtime as the SAML Protocol request is being constructed.

Wizard Step Descriptions

Step 1: Introduction Introduces the wizard.

Step 2: Target
Message and SOAP
Version

 l Target Message: Choose the target location to set the SAMLP
query: Request, Response, or some Other Message
Variable, with the default being samlpRequest.message. For
more information on Message variables, see Context Variables
in the Layer 7 Policy Manager User Manual. To learn how to
change the message target, see "Selecting a Target Message"
on page 153.

 l SOAP Version: Specify the SOAP version to use: 1.1, 1.2, or
use version from request.

Step 3: SAML
Version

 l Create a SAMLP query...: Choose the version of the SAML
query request that will be created.

 l Request Identifier: Choose to have the wizard generate a
request identifier or reference a context variable that contains

the identifier.

 l Optional Request Attributes: Optionally specify a Destination
URI or Consent URI.

Step 4: Issuer

(SAML 2.0 only)

Configure the Issuer attribute value. For a description of these settings,
see "Configuring the [Issuer] Tab" in "Build SAML Protocol Response
Assertion" on page 299.

Step 5: SAMLP
Request Type

Specify the SAMLP query request to be configured:

 l Authentication Request: Select this option to request
assertions containing authentication statements to establish a
security context at one or more replying parties. Proceed to Step
8 to configure this request type. Note: The Authentication
Request option is available only when SAML 2.0 was selected in
Step 3.

 l Authorization Decision Request: Select this option to
request whether an assertion subject has permission to access
the specified resources. Proceed to Step 6 to configure this
request type.

 l Attribute Query Request: Select this option to make a query
that requests the assertion subject associated with the supplied
attributes. Proceed to Step 7 to configure this request type.

Step 6:
Authorization Query

This step is used if you chose "Authorization Decision Request" in Step 5.

 l Resource: Specify the URI for the resource for which
authorization is requested.

 Table 79: Using the SAML Protocol Request Wizard

Chapter 6: XML Security Assertions 293

Layer 7 Policy Authoring User Manual, v8.2

Wizard Step Descriptions

 l Action: Specify one or more actions for which authorization is
requested.

 l Action Namespace: Optionally specify a URI reference
representing the namespace in which the specified action should
be interpreted.

 l Evidence: Indicate whether the wizard should generate the
appropriate evidence block or whether it should obtain the
evidence block from a context variable.

Step 7: Attribute
Statement

This step is used if you chose "Attribute Query Request" in Step 5.

Define the attributes that the SAML statement will include.

 1. Click [Add] and then complete the Edit SAML Attribute
Properties dialog:

 l Attribute Name: Enter the name of the attribute.

 l Attribute Namespace: Optionally enter a namespace for
the attribute. This applies only to SAML 1.x.

 l Attribute Name Format: Optionally specify a URI
reference that describes the format of the attribute name.
Only attributes that declare this format will be accepted.
This applies only to SAML 2.x.

 l Unspecified: If no name format is provided, the
default value of
urn:oasis:names:tc:SAML:2.0:attrname-
format:unspecified is used.

 l URI Reference: This option uses the URI
urn:oasis:names:tc:SAML:2.0:attrname-format:uri

 l Basic: This option uses the URI
urn:oasis:names:tc:SAML:2.0:attrname-format:uri.

 l Other: Select this option to define your own attribute
name format in the box below.

 l Friendly Name: Optionally enter a friendly name for the
attribute to be used for display purposes. This applies only
to SAML 2.x.

 l Attribute Value: If defining your own attribute name
format, enter it here. This applies only to SAML 2.x.

 2. Click [OK] to enter the attribute into the table. Repeat to
configure additional attributes.

To modify an existing Attribute Statement, select it from the list and then
click [Edit].

To remove an Attribute Statement, select it from the list and then click
[Remove].

Step 8: Name
Identifier

Enter the details for the Name Identifier.

294 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Wizard Step Descriptions

See "Configuring the Name Identifier" below for details.

Step 9: Subject
Confirmation

Configure the subject confirmation method in this step.

See "Configuring the Subject Confirmation" below for details.

Step 10: Digital
Signature

Select the Sign Request check box to include a digital signature in the
request. Clear the check box to not include a digital signature.

A digital signature is not always required in SAML. The following are
some examples where the signature may not be required:

 l When a signature is "inherited"—an unsigned assertion gains
protection from a signature in the containing protocol response
message.

 l The SAML requestor has obtained an assertion from the SAML
authority directly, through a secure channel. In this case, the
SAML authority has been verified using means other than a
digital signature.

Configuring the Name Identifier

This wizard step configures the details for the Name Identifier in the SAML Protocol
Request.

 Figure 93: SAML Protocol Request Wizard - Step 8: Name Identifier (SAML 2.x version shown)

Chapter 6: XML Security Assertions 295

Layer 7 Policy Authoring User Manual, v8.2

 1. Select the Include Name Identifier check box to include the Name Identifier in the
SAML token.

Clear the check box to not include the Name Identifier. This disables all the
remaining settings in the wizard step; click [Next] to proceed to the next step in
the wizard.

 2. Select the Encrypt Name Identifier check box to encrypt the Name Identifier. This
causes a <saml:EncryptedID> to be placed in the <saml:Subject> element.

Clear the check box to not encrypt the Name Identifier. This will place a
<saml:NameID> in the <saml:Subject> element.

 3. If encrypting the Name Identifier, click [Configure] and complete the EncryptedID
Encryption Properties. For more information, see Configuring Encryption Settings
in the Layer 7 Policy Manager User Manual.

If not encrypting the Name Identifier, skip to step 4.

 4. Choose the Format of the Name Identifier:

 l Automatic: The Name Identifier Format URI will be selected based on the type
of credentials used to authenticate the user.

 l X.509 Subject Name: The Name Identifier Format URI is the X.509 Subject
Name.

 l Email Address: The Name Identifier Format URI is the email address.

 l Windows Domain Qualified Name: The Name Identifier Format URI is the
Windows Domain Qualified Name.

 l Unspecified: Indicates that the issuer of the SAML token is not warranting
that the Name Identifier value meets any particular format expectations.

 l Custom: Enter a custom Name Identifier Format URI. You may specify a context

variable. Ensure that the URI is valid to prevent the assertion from failing.

 5. Optionally enter a Name Qualifier template. This value determines the security or
administrative domain of the subject. An example of a Name Qualifier might be the
Gateway hostname (for example, gatewayhost.acmecorp.com). It is not necessary to
enter a fully-qualified hostname.

 6. For Name Identifier Value, indicate where the value of the Name Identifier is to
be retrieved:

 l From Credentials: The value is the user name from the credentials used to
authenticate the user.

296 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l From Authenticated User: The value is the most appropriate attribute
(matching the selected Format) available from the user who was authenticated.

 l From Template: The value is the result of evaluating the specified template.
This will typically be a context variable, perhaps one resulting from an XPath
(Evaluate Request XPath or Evaluate Response XPath) or from the Extract

Attributes for Authenticated User Assertion.

Configuring the Subject Confirmation

This wizard step configures the subject confirmation method to be used in the SAML
Protocol Request.

 Figure 94: SAML Protocol Request Wizard - Step 9: Subject Confirmation

 1. Choose the Subject Confirmation Method to be used in the issued SAML token.
This allows the SAML-relying party to confirm that the message came from a
system entity that corresponds to the subject in the statement or query.

Holder-of-Key

The SAML token will use the Holder-of-Key subject confirmation method (with the
standard URI urn:oasis:names:tc:SAML:1.0:cm:holder-of-key or
urn:oasis:names:tc:SAML:2.0:cm:holder-of-key, depending on the selected SAML
version in Step 3 of the wizard). For such assertions, the Gateway will require that
the subject demonstrate possession of the private key corresponding to the
public key in the Subject certificate.

Chapter 6: XML Security Assertions 297

Layer 7 Policy Authoring User Manual, v8.2

The request Subject may use one of two methods to prove that they hold this key:

 l The request includes at least one element covered by a valid WSS message
signature. The signing certificate will be used as the Subject certificate. Or,

 l The request arrived over SSL/TLS with client certificate. The client certificate will
be used as the Subject certificate.

Sender Vouches

The SAML token will use the Sender Vouches subject confirmation method (with the
standard URI urn:oasis:names:tc:SAML:1.0:cm:sender-vouches or
urn:oasis:names:tc:SAML:2.0:cm:sender-vouches, depending on the selected SAML
version in Step 2 of the wizard). For such assertions, the Gateway vouches for the
verification of the subject.

Bearer

The SAML token will use the Bearer Token subject confirmation method (with the
standard URI urn:oasis:names:tc:SAML:1.0:cm:bearer or
urn:oasis:names:tc:SAML:2.0:cm:bearer, depending on the selected SAML version in
Step 2 of the wizard). Like HTTP cookies, such assertions will always be assumed to
belong to whatever message contains them, and the subject will be assumed to be
the sender of the message.

None

The SAML token does not have a subject confirmation method.

 2. Configure the Include Subject Certificate check box as required. This is available
on when the Subject Confirmation Method is "Holder-of-Key".

Select this check box to specify that the subject's certificate (or a reference to it)
will be included in the SAML token. Choose the method by which it should be
included or referenced from one of the following options.

 l Literal Certificate (X509Data): The entire subject certificate is inserted into
the SAML token. This increases the size of the assertion significantly, but will
mean that the recipient does not have to locate the subject certificates.

 l SecurityTokenReference using SKI: A Subject Key Identifier (SKI) from the
certificate is included in the SAML token. This results in a smaller assertion, but
it requires that the recipient look up the subject certificate.

 l SecurityTokenReference using SHA1 Thumbprint: An SHA1 thumbprint from
the certificate is included in the SAML token. Like the SK1 option above, this
produces a smaller assertion, but it requires that the recipient look up the
subject certificate.

Clear this check box to not include the subject's certificate (or reference to it) in
the SAML token.

298 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 3. If SAML 2.0 is used and the Subject Confirmation Method is not set to "None",
optionally complete the Subject Confirmation Data section. These fields provide
additional information to be used by a specific confirmation method.

 l Recipient: Enter a URI that specifies the required entity or location. For
example, this attribute might indicate that a resulting SAML token must be
delivered to a particular network endpoint in order to prevent an intermediary

from redirecting it someplace else. You may reference context variables.

 l Address: Enter the required network address or location. For example, this
attribute might be used to bind a resulting SAML token to particular client
addresses to prevent an attacker from stealing and presenting the token from

another location. You may reference context variables.

 l In Response To: Enter the required message ID. For example, this attribute
might be used to correlate the resulting SAML token to the related SAML

request. You may reference context variables.

 4. If SAML 2.0 is used and the Subject Confirmation Method is not set to "None",
optionally complete define a Validity Period for the SAML token:

 l Not Before seconds in past: Select this check box and then enter the number
of seconds in the past before which the subject cannot be confirmed. The
default is 120 seconds.

 l Not On or After seconds in future: Select this check box and then enter the
number of seconds into the future after which the subject can no longer be
confirmed. The default is 300 seconds.

Build SAML Protocol Response Assertion
The Build SAML Protocol Response assertion places a SAML token into a SAML Protocol
<Response> message and allows various attributes/elements of <Response> to be
specified.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Note: If you select a context variable for the target message, that variable does not need to
exist already. The variable will be overwritten if it exists.

To learn more about selecting a private key for this assertion, see Selecting a Custom
Private Key in the Layer 7 Policy Manager User Manual.

Chapter 6: XML Security Assertions 299

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Build SAML Protocol Response in the policy window and select SAML
Protocol Response Properties or double-click the assertion in the policy window.
The assertion properties are displayed.

 3. Configure each tab as necessary. Note the fields differ depending on whether
SAML 2.0 or SAML 1.1 is selected. Refer to the appropriate section below for a
description of each tab.

 4. Click [OK] when done.

300 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Configuring the [General] Tab

 Figure 95: SAML Protocol Response Properties - [General] tab (SAML 2.0 shown)

Configure this tab as follows:

Setting Description

SAML Version Select the SAML version from the drop-down list: 2.0 or 1.1.

Default: 2.0.

Sign Response Select this check box if the response should be digitally signed.

For more information about selecting a private key for the signature,
see Selecting a Custom Private Key in the Layer 7 Policy Manager
User Manual.

Validate Web Select this check box if you want the assertion to validate Web SSO

 Table 80: SAML Protocol Response Properties - [General] tab

Chapter 6: XML Security Assertions 301

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

SSO Rules profile rules. If any rule is broken, the assertion fails and a warning is
logged. For a description of the rules validated, see "Validating Web
SSO Profile Rules" below.

Clear this check box if the assertion will be used in situations outside of
Web SSO and such validation is not desired (for example, SAML
Protocol Attribute Query Responses—see Step 4 in the Evaluate
SAML Protocol Response assertion).

Response Status

Status Code Specify a response status using either of the following methods:

 l Choose the response status from the drop-down list. By
default, these responses are used:

 l SAML 1.1: Success

 l SAML 2.0:
urn:oasis:names:tc:SAML:2.0:status:Success

 l Specify a context variable that will resolve to a valid status code
for the SAML version at run time. You will typically use the
context variable set by the "Set SAML Response Status Code
Assertion" on page 480.

Status Message Enter a status message to be returned in the response. This message
may reference String context variables.

Status Detail Optionally specify the status detail to be returned in the response. You
must use context variables; text entry is not permitted. The variables
may be concatenated or separated with a space.

The variables may be of type Element, Message (text/xml), or String
and may be multivalued.

Response Attributes

ResponseId

(SAML 1.1 only)

Enter the ID for the SAML response. May reference String context
variables.

Default: <auto>. This indicates that the system will automatically fill the
field if no ReponseID is entered.

ID

(SAML 2.0 only)

Enter the ID for the SAML response. May reference String context
variables.

Default: <auto>. This indicates that the system will automatically fill the
field if no ID is entered.

Issue Instant Specify the IssueInstant property to be used in the response. This
property contains the date and time when the response was issued.
May reference String context variables.

Default: <auto>. This indicates that the system will automatically fill the
field if no IssueInstant is entered.

302 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

InResponseTo Optionally specify the InResponseTo value to be used in the response.
This is an identifier to the request to which this response may
correspond. May reference String context variables.

Recipient

(SAML 1.1 only)

Specify the intended recipient for this response. May be a String
context variable.

Destination

(SAML 2.0 only)

Specify the URI to which the response will be sent.

Consent

(SAML 2.0 only)

Specify the Consent property. This indicates whether consent was
obtained from a principal in sending the response. May reference
String context variables.

Response Elements

Assertion(s) Enter one or more context variables containing the SAML tokens to be
returned in the response, in the format: ${variableName}. The
variables may be concatenated or separated with a space.

These variables may be of type Element, Message (text/xml), or
String. Variables may be multivalued.

Tip: Variables of type Element are created by the Evaluate Request
XPath and Evaluate Response XPath assertions in the ".elements"
context variable.

EncryptedAssertion
(s)

(SAML 2.0 only)

Enter one or more context variables containing the encrypted
SAML tokens to be returned in the response, in the
format: ${variableName}. The variables may be concatenated or
separated with a space.

These variables may be of type Element, Message (text/xml), or
String. Variables may be multivalued.

Extensions

(SAML 2.0 only)

Optionally enter one or more context variables, separating them with a
space.

These variables may be of type Element, Message (text/xml), or
String. Variables may be multivalued.

Validating Web SSO Profile Rules

This assertion validates the following profiles rules when the Validate Web SSO Rules
check box in the [General] tab is selected.

For SAML 2.0:

Note: If an encrypted token is present in the samlp:response, then no rules relating to the
enclosed saml:assertion (SAML tokens) can be validated, as the Gateway cannot examine the
contents of encrypted SAML tokens.

Chapter 6: XML Security Assertions 303

Layer 7 Policy Authoring User Manual, v8.2

The following Web SSO profile rules are validated:

 l If the Idp (SAML Web Browser SSO Profile Identity Provider) wants to return an
error, then the <Response> must not contain any assertions.

 l If the <Response> message is signed or if an enclosed assertion is encrypted, then
the <Issuer> element must be present.

 l Response must contain at least one <Assertion>, the same rule above for <Issuer>
applies for each assertion.

 l All assertions in the response must be from the same Identity Provider (for
example, the same Gateway).

 l If multiple assertions are included, then each <Subject> element must refer to the
same principal.

 l Any assertion issued must contain a <Subject> element with at least one
<SubjectConfirmation> element containing a Method of
urn:oasis:names:tc:SAML:2.0:cm:bearer.

 l The bearer <SubjectConfirmation> element must contain a
<SubjectConfirmationData> element that itself must contain a Recipient attribute
containing the service provider's assertion consumer service URL and a
NotOnOrAfter attribute that limits the assertion.

 l It must not contain a NotBefore attribute.

 l The set of bearer assertions must contain at least one <AuthnStatement> that
reflects who the principal was authenticated.

 l Each bearer assertion must contain an <AudienceRestriction> including the SP's
unique identifier as the <Audience> (for example, the web site's URL)

 l If no SAML tokens are specified for the response, then the Status Code cannot be
"Success", as the response that is generated must be an error.

For SAML 1.1:

The following Web SSO rules are validated:

 l At least one SSO assertion must be included. An SSO assertion is a SAML token
that has a <saml:Conditions> element with NotBefore and NotOnOrAfter attributes
present, and also contains at least one or more authentication statements about
the subject.

 l SAML Response must include the Recipient attribute - xsd:anyURI

304 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l Every subject-based statement in the assertion(s) returned to the destination site
must contain a <saml:SubjectConfirmation> element. The <ConfirmationMethod>
element in the <SubjectConfirmation> must be set to
urn:oasis:names:tc:SAML:1.0:cm:bearer.

 l If no SAML tokens are specified for the response, then the Status Code cannot be
"Success", as the response that is generated must be an error.

Configuring the [Issuer] Tab (SAML 2.0 only)

Configure this tab as follows.

Setting Description

Add Issuer Select this check box to add the Issuer element in the SAML Protocol
response. This enables the other settings in the tab.

Include Format
Attributes

Select this check box to include the Format attribute in the SAML token
and then select format of the Issuer attribute:

Entity Identifier
X.509 Subject Name
Unspecified
Windows Domain Qualified Name
Email Address
Kerberos Principal Name

 Table 81: SAML Protocol Response Properties - [Issuer] tab - SAML 2.0 only

Chapter 6: XML Security Assertions 305

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Name Qualifier Enter the value for the optional NameQualifier attribute. You may

reference context variables.

Issuer Value Specify how to obtain the value of the Issuer:

 l Default: Select this to use the subject DN from public key that
corresponds to the configured private key.

 l From Template: Select this to override the default by entering a

custom value. You may reference context variables.

Configuring the [Advanced] tab

Select this check box to include the entire certificate chain from the signing private key
when signing the response. This includes the root certificate as well as any intermediate
certificates.

Tip: The chain that is included will include the full path to the CA certificate only if the
corresponding private key certificate chain is complete. If it is a partial chain or if only the
subject certificate is available, then selecting the check box will have no effect.

Clear this check box to use only the X.509 certificate data from the signing certificate. The
rest of the certificate chain is ignored. This is the default.

Cancel Security Context Assertion
The Cancel Security Context assertion is used to cancel a secure conversation session
(either inbound or outbound) that is no longer in use.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153. The target message should be an RST SOAP message with the
CanceledTarget information.

306 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Canceling Inbound Session

Inbound sessions have a Security Context Token (SCT) created by the "Create Security
Context Token Assertion" on page 328. Once canceled, this token is no longer valid for
authentication and authorization purposes. The secure conversation session mapped by
the identifier defined in the SCT will be destroyed.

After the token is canceled, the "Build RSTR SOAP Response Assertion" on page 288 will
create a response message containing a <wst:RequestedTokenCanceled/>, similar to the
following:

<wst:RequestSecurityTokenResponse>
<wst:RequestedTokenCanceled/>

</wst:RequestSecurityTokenResponse>

Canceling Outbound Session

Outbound sessions are established using the Establish Outbound Secure Conversation
assertion. You simply need to specify the URL of the session being canceled.

Note: Canceling an outbound session will also cancel the inbound session, if both sessions are
the same. However if the inbound session is not available (for example, it has already been
canceled), this assertion will not fail.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Cancel Security Context to <service URL>in the policy
window and select Security Context Cancellation Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

Chapter 6: XML Security Assertions 307

Layer 7 Policy Authoring User Manual, v8.2

 Figure 96: Security Context Cancellation Properties

 3. Configure the properties as follows.

Setting Description

Inbound Secure
Conversation
Session

Select this option to cancel an inbound secure conversation session.

Permit cancellation If canceling an inbound session, choose when cancellation is
possible:

 l always: There is no permission check—the token can always
be canceled. When this option is selected, this assertion does
not require an authenticated user.

 l when the token is owned by an authenticated user:
Only the authenticated user has the right to cancel the token.

 l when the token was used to authenticate: Cancellation
is possible only if the security token was used to authenticate
the session. This setting is the default.

Outbound Secure
Conversation
Session

Select this option to cancel an outbound secure conversation
session. Note that the inbound session will also be canceled if both
sessions are the same session.

Service URL Enter the URL of the service that created the security token.

Fail if the context is
not found or has
expired

Select this check box to indicate that the assertion will fail if the secure
conversation session does not exist or has expired.

Clear this check box to allow the assertion to succeed even if the
context is not found or is expired.

 Table 82: Security Context Cancellation settings

 4. Click [OK].

308 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Configure WS-Security Decoration Assertion
The Configure WS-Security Decoration assertion is used to specify or override pending
security decorations for a message. This assertion provides a convenient location to set
security attributes that were previously configured in other assertions:

Decoration In tab Originally set in...

WS-Security Version [General] "Add or Remove WS-Security Assertion" on page 273

Signature Digest Algorithm [Signing] "Sign Element Assertion" on page 407

Encryption Algorithm(s) [Encryption] "Encrypt Element Assertion" on page 346

Signature Key Reference [Signing] "Sign Element Assertion" on page 407

Encryption Key Reference [Signing] "Encrypt Element Assertion" on page 346

Add Timestamp [General] "Add Timestamp Assertion" on page 283

Security Token Signing [Signing] "Sign Element Assertion" on page 407

Key Encryption Algorithm [Encryption] new option

Use DerivedKey Token [Advanced] new option

 Table 83: WS-Security decorations in Configure WS-Security Decoration assertion

Tips: (1) Decorations that were originally set elsewhere can continue to be configured in those
other assertions as well. (2) The Configure WS-Security Decoration assertion can be used to
remove the timestamp in the policy: add it after the Add Security Token assertion and
configure the properties to clear the Add Timestamp check boxes in the [General] and
[Signing] tabs.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about selecting a private key for this assertion, see Selecting a Custom
Private Key in the Layer 7 Policy Manager User Manual.

To learn more about changing the WSS Recipient for this assertion, see "Changing the
WSS Assertion Recipient" on page 146.

Applying WS-Security

If this assertion targets a message other than the response, you must add the Add or
Remove WS-Security assertion after the Configure WS-Security Decoration assertion in
the policy for the decorations to be applied:

Request: Configure WS-Security Decoration
Request: Apply WS-Security

Chapter 6: XML Security Assertions 309

Layer 7 Policy Authoring User Manual, v8.2

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Tip: When WS-Security is involved, be sure to specify the appropriate WSS header handling
option in the routing assertion's properties. In most instances, the setting "Don't modify the
request Security header" is usually appropriate.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Configure WS-Security Decoration in the policy window and select
Configure WS-Security Decoration Properties or double-click the assertion in the
policy window. The assertion properties are displayed. These properties are
organized across the following tabs:

General
Signing
Encryption
Advanced

 3. Configure each tab as necessary. Refer to the appropriate section below for a
complete description of each tab.

Tip: The "<Unchanged>" setting found in several of the tabs leaves the existing pending
decoration requirement setting unchanged—this is not necessarily the same as leaving
existing decoration in the message unchanged. Example: Suppose a message is currently
signed using SHA-384. One of the pending decorations is a new signature that uses the
default digest (which is SHA-1, as specified by the cluster property
wss.decorator.digsig.messagedigest). When "<Unchanged>" is selected in the [Signing]
tab for Signature Digest Algorithm, the new signature will use SHA-1, not SHA-384.

 4. Click [OK] when done.

310 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Configuring the [General] Tab

 Figure 97: Configure WS-Security Decoration Properties - [General] tab

The [General] tab is used to request a specific version of WS-Security or to force a
timestamp to be included.

 l WS-Security Version: Choose the WS-Security version to use: 1.0 or 1.1. The
default "<Unchanged>" setting uses the version of WS-Security in the target
message.

The WS-Security version can also be set in the "Add or Remove WS-Security
Assertion" on page 273.

 l Add Timestamp: Use this check box to add or remove a time stamp on the target
message.

Tips: (1) Timestamps can also be added (but not removed) using the "Add Timestamp
Assertion" on page 283. (2) An existing timestamp will only be removed if the [Remove
and recreate matching security header] setting in the "Add or Remove WS-Security
Assertion" on page 273 is selected (which is the default).

Chapter 6: XML Security Assertions 311

Layer 7 Policy Authoring User Manual, v8.2

Configuring the [Signing] Tab

 Figure 98: Configure WS-Security Decoration Properties - [Signing] tab

The [Signing] tab is used to set signing-related decorations.

 l Signature Digest Algorithm: Choose the Signature Digest Algorithm to use: SHA-
1, SHA-256, SHA-384, SHA-512. The default "<Unchanged>" setting uses the
algorithm in the target message's existing decoration requirements. (See the tip
under "Using the Assertion" above for more information.)

The Signature Digest Algorithm can also be set in the "Sign Element Assertion" on
page 407.

 l Reference Digest: Choose the Reference Digest to use: SHA-1, SHA-256, SHA-
384, SHA-512. The default "<Unchanged>" setting uses the algorithm in the
target message's existing decoration requirements. (See the tip under "Using the
Assertion" above for more information.)

 l Key Reference: Choose the signing key reference mechanism to use:
BinarySecurityToken, SubjectKeyIdentifier, IssuerSerial. The default
"<Unchanged>" setting uses the key reference in the target message's existing
decoration requirements. (See the tip under "Using the Assertion" above for more
information.)

 l Include Signed Timestamp: Select this check box to add a signed timestamp to
SOAP header of the target message.

Tips: (1) Signed timestamps can also be added (but not removed) using the "Add
Timestamp Assertion" on page 283. (2) If [Include Signed Timestamp] is disabled, but
[Add Timestamp] in the [General] tab is enabled, then an unsigned timestamp will be
added to the target message.

312 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l Sign Security Tokens: Select this check box to request that signing tokens be
included in the message signature.

 l Encrypt Signature: Select this check box to include the signature in the elements
to encrypt, marked as requiring whole-element encryption.

 l Sign WS-Addressing Headers: Select this check box to sign the WS-Addressing
headers and any CA addressing headers present in the message. Note: This
option must be enabled to ensure compatibility when the SecureSpan XML VPN
Client is used.

Configuring the [Encryption] Tab

 Figure 99: Configure WS-Security Decoration Properties - [Signing] tab

The [Encryption] tab is used to configure encryption-related decorations.

 l Data Encryption Algorithm: Choose a symmetric encryption algorithm to use for
data encryption. The default "<Unchanged>" setting uses the algorithm in the
target message's pending decoration requirements. (See the tip under "Using the
Assertion" above for more information.)

http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#aes192-cbc
http://www.w3.org/2001/04/xmlenc#aes256-cbc
http://www.w3.org/2009/xmlenc11#aes128-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm

The data encryption algorithm can also be set in the "Encrypt Element Assertion"
on page 346.

Chapter 6: XML Security Assertions 313

Layer 7 Policy Authoring User Manual, v8.2

Tip: CA strongly recommends using one of the GCM algorithms when possible (assuming
that the expected recipient can handle it). XML messages encrypted using CBC mode
could potentially be decrypted by an adversary who can send multiple modified messages
to servers that possess the decryption key and are running WS-Security software released
before November 2011.

 l Key Encryption Algorithm:

Key Encryption Algorithms are public key encryption algorithms especially
specified for encrypting and decrypting keys when adding an encrypted key to a
message during security decoration. Their identifiers appear as Algorithm
attributes to EncryptionMethod elements that are children of EncryptedKey. The
following is an example of EncryptedKey with a Key Encryption Algorithm:

<EncryptedKey Id="uuid...">
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-
 oaep-mgf1p"/>
...
</EncryptedKey>

Choose a key encryption algorithm to use. The default "<Unchanged>" setting
uses the algorithm in the target message's pending decoration requirements. (See
the tip under "Using the Assertion" above for more information.)

http://www.w3.org/2001/04/xmlenc#rsa-1_5 (RSA Version 1.5 Identifier)
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p (RSA-OAEP Identifier)

Tip: CA strongly recommends using RSA-OAEP whenever possible. Use RSA-1.5 only
when absolutely necessary for interoperability.

More information about RSA Identifiers

RSA 1.5 is the "RSAES-PKCS1-v1_5" algorithm specified in RFC 3447 (aka PKCS#1):

http://www.ietf.org/rfc/rfc3447.txt

RSA OAEP is the "RSAES-OAEP-ENCRYPT" algorithm, also specified in RFC
3447/PKCS#1. This is an implementation of OAEP, the "optimal asymmetric
encryption padding" scheme.

RSA OAEP is more resistant to certain cryptographic attacks than RSA 1.5 but may
be supported by less third-party software.

 l Key Reference: Choose a encryption key reference mechanism to use: IssuerSerial,
BinarySecurityToken, KeyName, or SubjectKeyIdentifier. The default
"<Unchanged>" setting uses the mechanism in the target message's pending
decoration requirements. (See the tip under "Using the Assertion" above for more
information.)

The encryption key reference can also be set in the "Encrypt Element Assertion" on
page 346.

314 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

http://www.ietf.org/rfc/rfc3447.txt

Configuring the [Advanced] Tab

 Figure 100: Configure WS-Security Decoration Properties - [Advanced] tab

The [Advanced] tab is used to configure derived keys and to optionally select a WS-
Secure Conversation Namespace.

 l Use Derived Keys Whenever Possible: Select this check box to request that
derived keys be created and used whenever possible (that is, derived from the
original signing or encryption token using a DerivedKeyToken). Derived keys can
be used for signing or encryption if the signing or encryption method is a WS-SC
session, an ephemeral EncryptedKey, a Kerberos token, or a SAML token that uses
EncryptedKey subject confirmation.

 l WS-Secure Conversation Namespace: If using derived keys, you can choose the
version or namespace of secure conversation that will be used with the derived
keys. The default value "<Unchanged>" will not configure any value, which results
in the default/current namespace being used.

Create SAML Token Assertion
The Create SAML Token Assertion can create and optionally sign a SAML token. Examples
of when this might be useful include:

 l You need to create ad-hoc token services (i.e., receive a WS-Trust request, validate
it, authenticate and authorize, and then issue a SAML token for the response)

 l You are currently using the "Attach SAML Sender-Vouches" option in the Route
via HTTP(S) assertion ([Security] tab), but you need a more configurable option.

 l You are using a transport like FTP that does not presently include an option to
add a SAML sender-vouches token.

Chapter 6: XML Security Assertions 315

Layer 7 Policy Authoring User Manual, v8.2

The SAML token that is created is stored in the ${issuedSamlAssertion} context variable.
This variable is made available to the "Build RSTR SOAP Response Assertion" on page 288
to create an RSTR response message. For more information, see Working with the
Security Token Service in the Layer 7 Policy Manager User Manual.

The following is an example of a SAML token in the ${issuedSamlAssertion} variable:

<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
MinorVersion="1" MajorVersion="1"
AssertionID="SamlAssertion-87a72d52cf2716824ccb036c03f17fca"
 Issuer="gateway.acmecorp.com"
IssueInstant="2010-08-17T23:01:10.215Z"><saml:Conditions
NotBefore="2010-08-17T22:56:10.000Z"
NotOnOrAfter="2010-08-17T23:06:10.216Z"><saml:AudienceRestrictionCondition>
 <saml:Audience>https://saml.salesforce.com</saml:Audience>
 </saml:AudienceRestrictionCondition></saml:Conditions><saml:AuthenticationStatement
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2010-08-17T23:01:10.215Z"><saml:Subject><saml:NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress"
NameQualifier="">jsmith@acmecorp.com.sso</saml:NameIdentifier>

<saml:SubjectConfirmation><saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:be
arer

</saml:ConfirmationMethod></saml:SubjectConfirmation></saml:Subject><saml:SubjectLoc
ality
IPAddress="10.0.12.345"/></saml:AuthenticationStatement></saml:Assertion>

To learn more about selecting a private key for this assertion, see Selecting a Custom
Private Key in the Layer 7 Policy Manager User Manual.

To learn more about changing the WSS Recipient for this assertion, see "Changing the
WSS Assertion Recipient" on page 146.

Context Variables Created by This Assertion

The Create SAML Token assertion sets the following context variables. Note: The default
<prefix> is "attrStatement" and can be changed in Step 6 of the "SAML Token Creation
Wizard" on page 317.

Context variable Type Notes

<prefix>
.missingAttrNames

String Stores a list of the missing attributes (comma separated).
This variable is empty when no attributes are missing.

<prefix>
.unknownAttrNames

String Stores a list of the unknown filter attributes (comma
separated). This variable is empty when no attributes are
unknown

<prefix>
.noAttributes

Boolean Returns "true" when all configured attributes were filtered,
otherwise returns "false".

 Table 84: Context variables created by Create SAML Token assertion

316 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Context variable Type Notes

<prefix>
filteredAttributes

String Stores a list of the filtered attributes (comma separated).
This variable is empty when no attributes were filtered.

<prefix>
.excludedAttributes

String Stores a list of the excluded attributes (comma separated).
This variable is empty when no attributes were excluded .

Note: This variable applies to SAML 2.0 only.

Adding and Configuring the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Create <token type> SAML Token in the policy window and select
SAML Token Creation Wizard or double-click the assertion in the policy window.

 3. Follow the wizard to complete the assertion. For details, see "SAML Token
Creation Wizard" on page 317.

SAML Token Creation Wizard

The SAML Token Creation Wizard automatically starts when you add or modify the Create
SAML Token assertion in a policy.

 Figure 101: SAML Token Creation Wizard

For more information about wizards, see "Wizard" under Interfaces in the Layer 7 Policy
Manager User Manual.

Chapter 6: XML Security Assertions 317

Layer 7 Policy Authoring User Manual, v8.2

Wizard Step Description

Step 1: Introduction Introduces the wizard.

Step 2: SAML
Version

Specify the version of the SAML token to be issued: 1.1 or 2.0.

Step 3: Issuer Configure the Issuer attribute value. The settings differ depending on
the SAML version.

SAML 1.1

 l Default: Select this to use the subject DN from public key that
corresponds to the configured private key.

 l From Template: Select this to customize the Issuer attribute.

You may reference context variables.

SAML 2.0

For a description of these settings, see "Configuring the [Issuer]
Tab" in "Build SAML Protocol Response Assertion" on page 299.

Step 4: SAML
Statement Type

Select at least one SAML statement to issue:

 l Authentication Statement: This statement asserts that the
subject authenticated with the identity provider at a particular
time, using a particular method of authentication.

 l Authorization Decision Statement: This statement asserts
that a subject is permitted to perform a specified action on a
specified resource.

 l Attribute Statement: This statement is used to populate the
SAML statement with specified attributes pertaining to the
subject.

 l Include Authentication Context Declaration (SAML 2.0
only): This statement will include an Authentication Context
Declaration, if possible. Specifically, this means the generated
AuthnStatement or AuthnContext will contain an
AuthnContextDecl child. If this check box is not selected, then
only a AuthnContextClassRef child is present.

Note: The AuthnContextDecl element may not be present for all
credential types, even if this option is enabled. This element
should be present for password or X.509 credentials.

The wizard will lead you through the appropriate steps based on the
statements selected.

Step 5: Authorization

Statement

Specify the details for the Authorization Statement:

 l Resource: Enter a value for the resource that the SAML
statement must describe (for example, "http://acme.org").

 l Action: Enter an action value for the resource (for example,
"GET").

 l Action Namespace: Optionally enter a corresponding action

 Table 85: Using the SAML Token Creation Wizard

318 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Wizard Step Description

namespace value (for example, "http://acme.org/ns/services").

Step 6: Attribute

Statement

Define one or more SAML attributes that will be included in the SAML
statement.

See "Configuring the Attribute Statement" below for details.

Step 7: Name

Identifier

Enter the details for the SAML Authentication Statement:

 l Name Identifier: Select the check box to include the Name
Identifier in the SAML token.

If you choose to not include the Name Identifier, clear the check
box and then click [Next] to proceed to the next step.

 l Format: Specify the format of the Name Identifier:

 l Automatic: The Name Identifier Format URI will be
selected based on the type of credentials used to
authenticate the user.

 l Unspecified: Indicates that the issuer of the assertion is
not warranting that the Name Identifier value meets any
particular format expectations.

 l Any other: The Name Identifier Format URI is selected
based on the option chosen.

 l Name Qualifier: Optionally enter a Name Qualifier template.
This value determines the security or administrative domain of
the subject. An example of a Name Qualifier might be the
Gateway hostname (e.g., gatewayhost.acmecorp.com). It is not
necessary to enter a fully-qualified hostname.

 l Name Identifier Value: Specify where the value of the Name
Identifier is to be retrieved:

 l From Credentials: The value is the user name from the
credentials used to authenticate the user.

 l From Authenticated User: The value is the most
appropriate attribute (matching the selected Format)
available from the user who was authenticated.

 l From Template: The value is the result of evaluating the
specified template. This will typically be a context variable,
perhaps one resulting from an XPath (Evaluate Request
XPath or Evaluate Response XPath) or from the Extract
Attributes for Authenticated User assertion.

Step 8: Subject
Confirmation

Configure the subject confirmation method in this step.

See "Configuring the Subject Confirmation" below for details.

Step 9: Conditions Select one of the following options to restrict the validity period of the
issued token to a limited time:

 l Use Default Validity Period Condition: Select this option to

Chapter 6: XML Security Assertions 319

Layer 7 Policy Authoring User Manual, v8.2

Wizard Step Description

use the validity period conditions defined in the following cluster
properties. This setting is the default:

samlAssertion.NotBeforeOffsetMinutes
samlAssertion.NotAfterOffsetMinutes

 l Customize Validity Period Condition: Select this option to
set a custom validity period for this assertion only:

 l Not Before seconds in past: The recipient should reject
the token if its current local time is earlier than the token's
NotBefore time. This value sets the NotBefore time to the
current time on the Gateway minus this number of seconds.

This is useful for deployments with known time synchronization
issues (for example, two machines that need to communicate
with SAML have different system clocks).

 l Not On Or After seconds in future: The recipient
should reject the token if its current local time is later than
the token's NotAfter time. This value sets the NotAfter time
to the current time on the Gateway plus this number of
seconds.

 l Audience Restriction: Optionally specify any restrictions on
the audience for the SAML token. You may specify one or more
constraints, separated by a space. The constraints may be static
strings or context variables (either single- or multi-valued). The
variable values may themselves contain a space-separated list of
strings.

All strings that resolve to a valid URI will be added as separate
saml:Audience elements in the SAML token.

Step 10: Digital
Signatures

In this step, you specify the digital signatures that the Gateway should
create (if any) after the SAML token is issued.

 l Sign Assertion with an Enveloped Signature: If selected,
the Gateway will include an XML Digital Signature within the
issued SAML token, allowing it to be used outside the context of
the current request or response. This option is mainly useful in
situations where the SAML token itself is the focus of the
interaction (for example, in token service policies).

 l Insert Assertion into Security header in
request/response: This option is mainly useful for Sender
Vouches. If selected, the issued SAML token will be added to the
SOAP Security Header in either the Request or Response. In
addition to the SAML token, selecting either of the following
options will cause a message-level Signature to be created and
added to the Security header as well:

 l If Include Assertion in Message-level Signature is selected,
the issued SAML token will be included in the Signature.

 l If Include SOAP Body in Message-level Signature is

320 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Wizard Step Description

selected, the SOAP Body element will be included in the
Signature.

Configuring the Attribute Statement

This wizard step defines one or more SAML attributes that will bePull included in the
SAML statement.

 Figure 102: SAML Token Creation Wizard - Step 6: Attribute Statement (SAML 2.x version shown)

 1. Configure the attributes for the Attribute Statement:

 l To add an attribute, click [Add] and then complete Figure 103.

 l To modify an attribute, select it from the list, click [Edit] and then complete
Figure 103.

 l To remove an attribute, select it from the list, and then click [Remove].

Chapter 6: XML Security Assertions 321

Layer 7 Policy Authoring User Manual, v8.2

 Figure 103: Edit SAML Attribute Properties dialog (SAML 2.x version shown)

Complete the settings as follows:

Setting Description

Attribute Name Enter the name of the attribute.

Attribute
Namespace

(SAML 1.x only)

Optionally enter a namespace for the attribute.

Attribute Name
Format

(SAML 2.x only)

Optionally specify a URI reference that describes the format of the
attribute name. Only attributes that declare this format will be accepted.

 l Unspecified: If no name format is provided, the default value
of urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified
is used.

 l URI Reference: This option uses the URI
urn:oasis:names:tc:SAML:2.0:attrname-format:uri.

 l Basic: This option uses the URI:
urn:oasis:names:tc:SAML:2.0:attrname-format:basic.

 Table 86: SAML Attribute Properties settings

322 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

 l Other: Select this option to define your own attribute name
format in the box below.

Attribute Value Optionally enter a value for the attribute.

If Message or
Element variable
referenced

Configure how to add the contents of the context variable to the
Attribute element:

 l Convert to string: The contents will be converted to a string.
This setting is the default.

 l Add as XML fragment: This adds the XML contents of the
variable to the saml:AttributeValue.

If variable not
found

Configure the behavior when a context variable is not found:

 l Replace variable with empty string: This uses an empty
string in place of the variable. This setting is the default.

 l Replace expression with empty string: This replaces the
entire expression with an empty string.

If value resolves to
empty string

Configure empty attribute value behaviour:

 l Add empty AttributeValue: This adds an empty
<saml:AttributeValue />. This setting is the default.

 l Do not add AttributeValue: This adds the Attribute without
any <AttributeValue> element.

 l Add null value AttributeValue: This adds a null
<saml:AttributeValue xsi:nil="true" />.

Attribute Value
Comparison

(SAML 2.x only)

The requestor of a SAML Protocol Attribute Query service may supply
values for a requested Attribute, in this case if the attribute is returned in
the response it must not contain any values not equal to the values
specified in the query. Configure how incoming AttributeValue elements
should be compared for an Attribute:

 l String comparison: The values are compared as strings; no
processing is done to the values before comparison.

 l Canonicalize: The values are canonicalized first. This option
should be selected if the values contain XML.

Note: When the runtime value for an attribute is multivalued, then only
values matching an incoming attribute value will be added.

Missing when
empty string

 l Select this check box to treat a resolved empty string as
“missing”. This allows the Attribute Statement configuration to
fail the assertion if an attribute’s value cannot be resolved
successfully.

 l Clear this check box to never interpret a resolved empty string
as missing.

Tip: If you need to ensure that a referenced variable is successfully
resolved at runtime, set “If variable not found” to Replace expression

Chapter 6: XML Security Assertions 323

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

with empty string, then select the Missing when empty string
check box is selected. This can be used to fail the assertion. For
example, you use LDAP to resolve context variables. However, a
variable was not set because either the LDAP attribute does not exist or
does not have a value. Using the settings outlined above, the
AttributeValue can be declared as “missing” and the Attribute
Statement configuration may choose to fail the assertion.

Repeat if
Multivalued

Select this check box to expand multivalued context variables into
multiple <saml:Attribute> values.

Example:

When [Repeat if Multivalued] is selected, a context variable
containing the values ["first", "second"] will result in the following
attributes:

<saml:Attribute AttributeName="myVar"
AttributeNamespace="urn:example.com:attributes">
<saml:AttributeValue>first</saml:AttributeValue>
</saml:Attribute>
<saml:Attribute AttributeName="myVar"
AttributeNamespace="urn:example.com:attributes">
<saml:AttributeValue>second</saml:AttributeValue>
</saml:Attribute>

Conversely, if the Repeat if Multivalued check box is not selected, the
values from the above context variable will be concatenated:

<saml:Attribute AttributeName="myVar"

AttributeNamespace="urn:example.com:attributes">

<saml:AttributeValue>first,

second</saml:AttributeValue>

</saml:Attribute>

Note: The Repeat if Multivalued check box is unavailable if more
than one variable reference is entered into the Attribute Value field or
if only a single element is referenced within a multivalued variable. The
following are some examples:

 l If a single context variable is entered, the check box can be
selected since the variable may be multivalued.

 l If there is any mixture of variable references and text or other
variables, the check box cannot be selected.

 2. Configure the Fail if any Attribute is missing check box as required:

 l Select this check box to fail the assertion if the value of an Attribute is missing.
If the assertion fails, this populates the context variable
<prefix>.missingAttrNames with a list (comma separated) of attribute names.

Exception: When attribute filtering is enabled, this option only fails the
assertion when the attribute requested has a missing value.

 l Clear this check box to allow missing Attributes without failing the assertion.

 3. Configure the Filter panel in the Attribute Statement as follows:

324 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Filter Attribute
Variables

Enter a context variable (single or multivalued) of type Element or
Message that will contain saml:Attribute value(s). Any other values
cause a warning audit but will not fail the assertion. If supplied then only
Attributes included in this variable from the list of configured Attributes
will be added to the Attribute Statement.

Note: For SAML 2.0, the variables must be of type saml:Attribute. For
SAML 1.1 they must be of type AttributeDesignator.

Fail if unknown
Attribute in filter

Select this check box to fail the assertion if the request contains an
unsupported attribute. If the assertion fails, this populates the context
variable <prefix>.unknownAttrNames with a list (comma separated) of
the unknown attribute names.

Clear this check box to allow a SAML Token to be issued when there is
an unknown attribute requested.

Fail if no Attributes
are added

Select this check box to fail the assertion if either the assertion is not
configured with any Attributes contained in the Filter Attribute
Variables or if the values of the incoming Attributes caused configured
Attributes to be filtered. This will populate the context variable
<prefix>.noAttributes with true. By default, this check box is selected to
comply with SAML core.

Clear this check box to allow an empty AttributeStatement to be
created.

Fail if
AttributeValue
excludes Attribute

(SAML 2.0 only)

Select this check box to fail the assertion if:

 l an Attribute in the context variable contains one or more
AttributeValue elements

AND

 l the resolved value(s) of the Attribute in this dialog at runtime
does not contain any of the incoming value(s)

This populates the context variable
<prefix>.excludedAttributes with a list (comma separated) of
the excluded attributes.

Clear this check box to not fail the assertion under the above
conditions.

Note: This setting does not apply to SAML v1.1, as an AttributeQuery
in v1.1 may not include AttributeValue elements.

 Table 87: Filter options in the Attribute StatementTable 87

 4. Enter a prefix that will be added to the <prefix>.missingAttrNames variable and to
the variables references in Table 87 above. This prefix will ensure uniqueness and
will prevent the variables from overwriting each other when multiple instances of
this assertion appear in a policy. The default prefix is attrStatement.

For an explanation of the validation messages displayed, see Context Variable
Validation in the Layer 7 Policy Manager User Manual.

Chapter 6: XML Security Assertions 325

Layer 7 Policy Authoring User Manual, v8.2

Configuring the Subject Confirmation

This wizard step configures the subject confirmation method to be used in the issued
SAML token.

 Figure 104: SAML Token Creation Wizard - Step 8: Subject Confirmation

 1. Choose the Subject Confirmation Method to be used for the issued SAML token:

Holder-of-Key

The SAML token will use the Holder-of-Key subject confirmation method (with the
standard URI urn:oasis:names:tc:SAML:1.0:cm:holder-of-key or
urn:oasis:names:tc:SAML:2.0:cm:holder-of-key, depending on the selected SAML
version in Step 2 of the wizard). For such assertions, the Gateway will require that
the subject demonstrate possession of the private key corresponding to the
public key in the Subject certificate.

The request Subject may use one of two methods to prove that they hold this key:

 l The request includes at least one element covered by a valid WSS message
signature. The signing certificate will be used as the Subject certificate. Or,

 l The request arrived over SSL/TLS with client certificate. The client certificate will
be used as the Subject certificate.

Sender Vouches

The SAML token will use the Sender Vouches subject confirmation method (with the
standard URI urn:oasis:names:tc:SAML:1.0:cm:sender-vouches or

326 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

urn:oasis:names:tc:SAML:2.0:cm:sender-vouches, depending on the selected SAML
version in Step 2 of the wizard). For such assertions, the Gateway vouches for the
verification of the subject.

Bearer

The SAML token will use the Bearer Token subject confirmation method (with the
standard URI urn:oasis:names:tc:SAML:1.0:cm:bearer or
urn:oasis:names:tc:SAML:2.0:cm:bearer, depending on the selected SAML version in
Step 2 of the wizard). Like HTTP cookies, such assertions will always be assumed to
belong to whatever message contains them, and the subject will be assumed to be
the sender of the message.

None

The SAML token does not have a subject confirmation method.

 2. Configure the [Include Subject Certificate as] check box as required. This is
available on when the Subject Confirmation Method is "Holder-of-Key".

Select this check box to specify that the subject's certificate (or a reference to it)
will be included in the SAML token. Choose the method by which it should be
included or referenced from the drop-down list:

 l Literal Certificate (X509Data): The entire subject certificate is inserted into
the SAML token. This increases the size of the assertion significantly, but will
mean that the recipient does not have to locate the subject certificates.

 l SecurityTokenReference using SKI: A Subject Key Identifier (SKI) from the
certificate is included in the SAML token. This may result in a smaller token, but
it requires that the recipient look up the subject certificate.

 l SecurityTokenReference using SHA1 Thumbprint: A SHA1 thumbprint from
the certificate is included in the SAML token. Like the SK1 option above, this
may result in a smaller token, but it requires that the recipient look up the
subject certificate.

Clear this check box to not include the subject's certificate (or reference to it) in
the SAML token.

 3. If SAML 2.0 is used and the Subject Confirmation Method is not set to "None",
optionally complete the Subject Confirmation Data section. These fields provide
additional information to be used by a specific confirmation method. You may
reference context variables in any of these fields.

 l Recipient: Enter a URI that specifies the entity or location to which an attesting
entity can present the token. For example, this attribute might indicate that
the token must be delivered to a particular network endpoint in order to
prevent an intermediary from redirecting it someplace else. You may reference

context variables.

Chapter 6: XML Security Assertions 327

Layer 7 Policy Authoring User Manual, v8.2

Note: This must be set if configuring a SAML Web SSO profile.

 l Address: Enter the network address or location from which an attesting entity
can present the token. For example, this attribute might be used to bind the
token to particular client addresses to prevent an attacker from stealing and
presenting the token from another location. You may reference context

variables.

 l In Response To: Enter the ID of a SAML protocol message in response to
which an attesting entity can present the token. For example, this attribute
might be used to correlate the token to a SAML request that resulted in its

presentation. You may reference context variables.

Note: This must be set if configuring a SAML Web SSO profile that was started
with an AuthnRequest.

 4. In the Add Validity Period section, you can optionally define a validity period for
the SAML token:

 l Not Before seconds in past: Select this check box and then enter the number
of seconds in the past before which the subject cannot be confirmed. The
default is 120 seconds.

 l Not On or After seconds in future: Select this check box and then enter the
number of seconds into the future after which the subject can no longer be
confirmed. The default is 300 seconds. Note: This must be set if configuring a
SAML Web SSO profile.

Create Security Context Token Assertion
The Create Security Context Token assertion is used to process an inbound message
containing a RequestSecurityToken (RST) request. It will issue a Security Context Token
(SCT), establish a secure conversation session, and then save the session. The secure
conversation session is mapped by the identifier defined in the SCT.

Context Variable Created by This Assertion

The generated Security Context Token is stored in the ${<prefix>.issuedSCT} context
variable. This variable is made available to the "Build RSTR SOAP Response Assertion" on
page 288 to create an RSTR response message. For more information, see Working with
the Security Token Service in the Layer 7 Policy Manager User Manual.

The following is an example of an SCT in the ${issuedSCT} context variable:

<sc:SecurityContextToken wsu:Id="uuid-86acfd31-dcaf-4b4f-9b45-8d79e3c63cba-64"
xmlns:sc="...">

<sc:Identifier>urn:uuid:...</sc:Identifier>
</sc:SecurityContextToken>

328 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

This assertion assumes that credentials have been provided and are authenticated in the
request.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153. The target message should contain a user's credentials for
request authorization and security context creation.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Create Security Context Token in the policy window and
select Security Context Token Creator Properties or double-click the assertion in
the policy window. The assertion properties are displayed.

 Figure 105: Security Context Token Creator Properties

 3. Configure the properties as follows:

Setting Description

Key Size Select the minimum key size to use. If set to "Automatic", then the key
size will be set to the same key size defined in the RST Request SOAP
message, which is the target message set by this assertion. If set to
"Automatic" and no key size is defined in the RST Request SOAP
message, then the default key size 256 is used.

If the request value is larger than the configured size, then the value
from the request will be used.

Token Lifetime Specify the length of time since issuing before the token expires. This
defines the lifetime of a security context session. This setting is available

 Table 88: Security Context Token Creator settings

Chapter 6: XML Security Assertions 329

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

only if you are not using the system default for token lifetime.

Use System Default For the token lifetime, use the value defined in the cluster property
wss.secureConversation.defaultSessionDuration. The default is 2
hours.

Variable Prefix Enter a prefix that will be added to the context variable created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

The default variable prefix is sctBuilder.

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

 4. Click [OK].

Create XACML Request Assertion
The Create XACML Request assertion is used to build a valid XACML request and then
place it in the specified target (request message, response message, or Message
variable). The XACML request can then be used in the Evaluate XACML Policy assertion or
it may be routed to any other PDP (Policy Decision Point) for a decision.

A XACML request is an XML fragment that conforms to the XACML (eXtensible Access
Control Markup Language) specification.

A Request contains Attributes in each of the following four categories. By default, the
Create XACML Request assertion will add each of these attributes under the root
<Request> node. You may remove any that are not needed, provided that it's applicable
to do so.

 l Subject: There can be one or more Subject elements, and each can be identified by
a category URI.

 l Resource: XACML 1.0/1.1 must have exactly one Resource element in a request;
XACML 2.0 may have more than one Resource element.

 l Action: There must be exactly one Action element in a request.

 l Environment: XACML 2.0 must have exactly one Environment element, while
earlier versions can have 0 or 1 Environment element.

Note: You should be familiar with the XACML specification before using this assertion to
construct a XACML request. For more information, see www.oasis-open.org.

330 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

http://www.oasis-open.org/

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the XACML Request Properties automatically appear;
when modifying the assertion, right-click Create XACML Request in the policy
window and select XACML Request Properties or double-click the assertion in
the policy window. The assertion properties are displayed.

 Figure 106: XACML Request Properties

 3. Complete the basic settings for the Request:

 l XACML Version: Choose the XACML version that the generated XACML
request will use. The options are: 1.0, 1.1, and 2.0. (Note: The chosen version
may affect the availability of certain options when building the request.)

 l SOAP Encapsulation: Choose the version of SOAP to use for encapsulation:

 l SOAP 1.1: The XACML <Request> element is contained in the Body
element of a SOAP 1.1 envelope.

 l SOAP 1.2: The XACML <Request> element is contained in the Body
element of a SOAP 1.2 envelope.

 l None: The XACML request is not enclosed in a SOAP envelope. The Evaluate
XACML Policy assertion will not need to remove the SOAP envelope in order
to use it.

Chapter 6: XML Security Assertions 331

Layer 7 Policy Authoring User Manual, v8.2

 l Message Output: Choose where to place the resulting XACML request: In the
Request, Response, or a Message Variable (context variable of type Message).
If you choose to place it in a Message Variable, the variable does not need to
exist beforehand—it will be created by this assertion. Do not enclose the

variable with the "${ }" characters.

 4. Configure each node as appropriate:

Subject
Resource
Action
Environment

Note: Context variables can be used in many settings when configuring a node. If during
policy execution a referenced variable does not exist, the service policy will fail and a
warning will be logged.

 5. Click [OK] when done.

Configuring the Subject Node

The Subject node corresponds to the <Subject> element in a XACML request. Every
XACML request must have at least one Subject node.

 l To add a new Subject node, right-click on the Request root node and then select
Add Subject.

 l To remove an existing Subject node, right-click on the Subject node and then
select Remove Subject. You cannot remove the last Subject node in a Request.

The Subject node has one setting:

 l Subject Category: This attribute describes the role that the Subject element plays
in making the access request. If more than one Subject has the same Subject
Category, then the Evaluate XACML Policy assertion will treat the contents of
those Subject elements as if they were contained in the same Subject element.

Select the Subject Category from the drop-down list of standard attributes (as
presented by OASIS). This field is optional.

The Subject node can contain the following nodes:

332 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Attribute

Multiple Attributes

Configuring the Resource Node

The Resource node corresponds to the <Resource> element in a XACML request. A
XACML 1.0 or 1.1 request has exactly one Resource node. A XACML 2.0 request may have
more than one Resource nodes.

 l To add a new Resource node, right-click on the Request root node and then select
Add Resource.

 l To remove an existing Resource node, right-click on the Resource node and then
select Remove Resource. You cannot remove the last Resource node in a Request.

The Resource node has no settings.

The Resource node can contain the following nodes:

Resource Content

Attribute

Multiple Attributes

Configuring the Action Node

The Action node corresponds to the <Action> element in a XACML request. Every
XACML request has exactly one Action node.

The Action node has no settings.

The Action node can contain the following nodes:

Attribute

Multiple Attributes

Chapter 6: XML Security Assertions 333

Layer 7 Policy Authoring User Manual, v8.2

Configuring the Environment Node

The Environment node corresponds to the <Environment> element in a XACML request.
In XACML 1.0 or 1.1 requests, the Environment node is optional and may be deleted if not
required. In a XACML 2.0 request, there must be exactly one Environment node.

 l To remove an Environment element from a XACML 1.0 or 1.1 request, right-click on
the Environment node and then select Remove Environment.

The Environment node has no settings.

The Environment node can contain the following nodes:

Attribute

Multiple Attributes

Configuring the Attribute Node

The Attribute node corresponds to the <Attribute> element in a XACML request. This
node can be created under all the major nodes:

Subject
Resource
Action
Environment

One or more Attribute nodes may be created under any of the major nodes.

 l To add an Attribute node, right-click a major node and then select Add Attribute.

 l To remove an Attribute node, right-click the node and then select Remove
Attribute.

The Attribute node has the following settings:

Tip: Context variables may be entered in all fields in the Attribute node.

334 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l AttributeID: The AttributeId. Enter the value for the AttributeId or select from the

drop-down list. This field is required.

 l DataType: The data type of the contents of the <AttributeValue> element. Enter

the Data Type or select from the drop-down list. This field is required.

 l Issuer: This attribute specifies the Issuer. This field is optional.

 l IssueInstant (XACML 1.0 and 1.1 only): The date and time at which the attribute

was issued. The Issue Instant must be one of the following:

 l blank

 l A context variable that resolves to a valid timestamp, either using one of the
built-in variables gateway.time.local, gateway.time.utc, request.time.local,
request.time.utc, or a user-defined variable that contains a timestamp.

 l A manually entered date/time in the format: yyyy-MM-dd'T'HH:mm:ss[Z],
where 'T' is a separator character and '[Z]' is the required time zone.

The Attribute node can contain the following number of AttributeValue nodes
depending on the version of XACML:

XACML 1.0: 0 or 1
XACML 1.1: exactly 1
XACML 2.0: 1 or more

Configuring the AttributeValues Node

The AttributeValue node corresponds to the <AttributeValue> element. This node can
only be created under the Attribute node.

There may be zero, one, or more AttributeValues for each Attribute node:

 l To add an AttributeValue node, right-click an Attribute node and then select Add
Attribute Value. Note that the number of Attribute nodes permitted depends on
the version of XACML used (see above).

 l To remove an AttributeValue from an Attribute, right-click the AttributeValue
node and then select Remove Attribute Value.

Chapter 6: XML Security Assertions 335

Layer 7 Policy Authoring User Manual, v8.2

 Figure 107: AttributeValue node

An AttributeValue node has the following settings:

Field Description

Name
This is the name of an attribute to be placed into the
<AttributeValue> Element, for example:

<AttributeValue ATTR1="value">.

You may enter a context variable (of type String) that contains the
name.

Value
This is the value of an attribute in the <AttributeValue> element; for
example:

<AttributeValue att1="VALUE1">

You may enter a context variable (of type String) that contains the
value.

AttributeValue

Content

This is the text content of the <AttributeValue> element; for example:

<AttributeValue>Sample Content</AttributeValue>

Type the content directly into the text box. You may enter a mixture of
static text and context variables of type String, Message, or Element.
(Variables of type Element are created by the Evaluate Request XPath
and Evaluate Response XPath assertions in the ".elements" context
variable.)

Note: Do not type XML code into the text box. If you do, the XML will
not appear correctly in the XACML request. If you wish to use XML in
the <AttributeValue>, add the XML fragment to a context variable first.

 Table 89: AttributeValue node settings

336 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Field Description

For information on how to do this, see the "Set Context Variable
Assertion" on page 656.

Repeat for
multivalued
variables

(XACML 2.0 only)

Select this check box to have the assertion automatically create
separate <AttributeValue> elements if multivalued context variables
are present. This feature is available only in XACML 2.0.

For a detailed description of how this works, see "Working with
Multivalued Context Variables in AttributeValues" below.

Editing actions To add an AttributeValue Attribute:

 1. Click [Add].

 2. Enter the Name and Value.

 3. Click [OK].

To edit an AttributeValue Attribute:

 1. Select the row to edit.

 2. Click [Edit].

 3. Modify the appropriate fields.

 4. Click [OK].

To remove an AttributeValue Attribute:

 1. Select the row to delete.

 2. Click [Remove].

Working with Multivalue Context Variables in the AttributeValues Node

Context variables can be used in any of the AttributeValue node settings: Name, Value,
Content. These variables may be either single-value or multivalued variables. How the
system responds depends on the XACML version and whether the Repeat for
multivalued variables check box is selected. The various outcomes are described in the
following table:

XACML
Version

"Repeat"
check
box

Context
variable
encountered

Result

1.0 or
1.1

<not
applicable>

Single-value Creates a single <AttributeValue> element

1.0 or
1.1

<not
applicable>

Multivalued Concatenates the multiple values into a single
value and then creates a single <AttributeValue>
element. See "Concatenated Values" below for
more details.

2.0 Not Single-value Creates a single <AttributeValue> element

 Table 90: Effects of multivalued variables in AttributeValues

Chapter 6: XML Security Assertions 337

Layer 7 Policy Authoring User Manual, v8.2

XACML
Version

"Repeat"
check
box

Context
variable
encountered

Result

selected

2.0 Not
selected

Multivalued Concatenates the multiple values into a single
value and then creates a single <AttributeValue>
element. See "Concatenated Values" below for
more details.

2.0 Selected Single-value Creates a single <AttributeValue> element

2.0 Selected Multivalued Creates a series of <AttributeValue> elements for
the XACML request. The number of elements
created is equal to the context variable with the
fewest values. See "Multiple <AttributeValue>
Elements" below for a detailed description.

Indexed Single Value

When indexing is used to reference a single value within a multivalued context variable
(for example, 'variable[0]' for the first value, 'variable[1]' for the second value, etc.), the
resulting single value is treated the same as a static value or a single-value context
variable (in other words, it will be repeated for each <AttributeValue> element
generated).

For more information on indexing, see Indexing Options under Working with Multivalued
Context Variables in the Layer 7 Policy Manager User Manual.

Concatenated Values

When concatenation occurs, the values from a multivalued context variable are combined
into a single value, separated by a comma and a space. For example, the variable
"${multiVar}" contains the values red, green, and blue. The concatenated value, which is
treated as a single value, will be:

red, green, blue

For more information, see Concatenation Options under Working with Multivalued Context
Variables in the Layer 7 Policy Manager User Manual.

Multiple <AttributeValue> Elements

When the Repeat for multivalued variables check box is selected and a multivalued
variable is encountered, a series of <AttributeValue> elements for the XACML request
will be created. The number of elements created is equal to the multivalued context
variable with the fewest values. For example, consider this example:

338 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Name: ${ATTR1} contains the values ID1, ID2, ID3
Value: ${VALUE1} contains the values VALUE1, VALUE2, VALUE3
Content: ${CONTENT} contains the values CONTENT1, CONTENT2

Based on this example, two <AttributeValue> elements will be created because
${CONTENT} only has two values and this becomes the limiting factor:

 <AttributeValue ID1="VALUE1">CONTENT1</AttributeValue>
 <AttributeValue ID2="VALUE2">CONTENT2</AttributeValue>

In this example, the values ID3 and VALUE3 will not appear in any <AttributeValue>
element. The audit log will record the fact that not all values were used in the building of
the XACML request.

Note: If the AttributeValue node's dialog references more than one multi valued context
variable, the context variable referenced with the fewest values from all the referenced
variables becomes the limiting factor. For example: ${name1} has 5 values, ${value1} has 4
values, and ${content} has 2 values. This will result in only two <AttributeValue> elements
being created.

Single-value variables vs. multivalued variables with one value

It is important to note the differences between a single-value context variable vs. a
multivalued context variable that contains only a single value.

 l A single-value variable will be treated the same as static text: it will be repeated for
each <AttributeValue> generated. For example:

Name: ${attr1} contains the values ID1, ID2, ID3
Value: STATIC_VALUE
Content: ${content} contains the values CONTENT1, CONTENT2

Based on this example, two <AttributeValue> elements will be created (note the
repetition of "STATIC_VALUE"):

 <AttributeValue ID1="STATIC_VALUE">CONTENT1</AttributeValue>
 <AttributeValue ID2="STATIC_VALUE">CONTENT2</AttributeValue>

Note that ID3 is unused in this example.

 l A multivalued context variable containing a single value will behave as expected: its
single value becomes the limiting factor in the number of <AttributeValue>
elements created.

For more information, see Working with Multivalued Context Variables in the Layer 7
Policy Manager User Manual.

Chapter 6: XML Security Assertions 339

Layer 7 Policy Authoring User Manual, v8.2

Configuring the Multiple Attributes Node

Multiple Attributes is a special node that is designed to generate multiple <Attribute>
elements in the XACML request, either by evaluating XPath expressions and/or
multivalued context variables. For details on how multiple <Attribute> elements are
dynamically generated, see "How <Attribute> Elements are Dynamically Generated"
below.

One or more Multiple Attributes nodes may be created under any of the major nodes.

 l To add an Multiple Attribute node, right-click a major node and then select Add
Multiple Attributes.

 l To remove an Multiple Attribute node, right-click the node and then select
Remove Multiple Attributes.

 Figure 108: Multiple Attributes node (XACML 2.0 screen)

The Multiple Attribute node has the following settings:

Field Description

Message Source Choose the message against which the XPath expressions will be
evaluated.

Namespace Prefix
/URI

These are the namespaces and prefixes that are used in any XPath
expression.

 Table 91: Multiple Attribute node settings

340 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Field Description

XPath Base If any text field is set to 'Relative XPath', enter the base XPath
expression here. When the XPath Base is referenced from a text field
set to 'Relative XPath', the expression is evaluated and the number of
results found is considered when determining how many <Attribute>
elements to create.

The Base XPath expression is executed if any field references it,
including the AttributeValue field (except this field cannot define
iteration).

Absolute XPaths are evaluated against the Document and are
independent of the base XPath.

[Input type drop-

down list]

The drop-down list next to the AttributeID, DataType, Issuer,
IssueInstant, and AttributeValue fields dictates how the input in
each field will be interpreted. It is important to select the correct option
so that your input is processed correctly:

 l Regular: The input is interpreted as regular text. Context
variables may be embedded within regular text and will be
processed correctly. These context variables may be single
value or multiple value. Fields of type 'Regular' will not be
considered part of the logic for determining how many
<Attribute> elements to create.

Notes: (1) For XPath expressions, be sure to select one of the
'XPath' settings. If left on the 'Regular' setting, an XPath
expression will be interpreted as text, not as an XPath
expression. (2) If you are attempting to access the main/root
MIME part of a message using ${variableName.mainpart}, be
sure to select the 'Regular' setting. Other settings will not
interpret the mainpart correctly. (3) Using ".mainpart" results in
the variable being evaluated as a String, which will then be
included as a text node in the XACML request. By comparison,
if the variable is evaluated as a Message or an Element, it will
be included as a XML fragment instead.

 l Absolute XPath: The input is interpreted as an absolute
XPath expression, which will be evaluated directly against the
Message Source document.

Notes: (1) When entering an absolute XPath expression in any
field other than AttributeValue, you must append "/text()" to
the end of the expression. (2) If the XPath expression
evaluates to more than one node, only the first one is used.
This event will be logged and audited at the INFO level.

 l Relative XPath: The input is interpreted as an XPath
expression that is relative to the XPath Base expression
specified above. If the XPath expression evaluates to more
than one node, only the first one is used.

Note: When entering a relative XPath expression in any field
other than AttributeValue, you must append "/text()" to the

Chapter 6: XML Security Assertions 341

Layer 7 Policy Authoring User Manual, v8.2

Field Description

end of the expression.

 l Context Variable: The input is a single context variable, with
no surrounding text. The context variable may be either a
single value or multivalued variable. If the variable is
multivalued, then it will become part of the logic for determining
how many <Attribute> elements are created. If the value is a
single-value variable then it is the same as selecting 'Regular'.
All fields accept context variables of type String. The
AttributeValue field also accepts variables of type Message
and Element. (Variables of type Element are created by the
Evaluate Request XPath and Evaluate Response XPath
assertions in the ".elements" context variable.)

Multivalued context variables will generate multiple
XACML elements.

Note: If you are attempting to access the main/root MIME part
of a message using ${variableName.mainpart}, do not use the
'Context Variable' setting. Use the 'Regular' setting instead.

AttributeID The expression to use to find the value for the AttributeID attribute of
the <Attribute> element. Either select an expression from the drop-
down list or enter an expression in the field.

DataType The expression to use to find the values for the DataType attribute of
the <Attribute> element. Either select a value from the drop-down list
or enter a value in the field.

Issuer Enter the expression to use to find the values for the Issuer attribute of
the <Attribute> element.

IssueInstant

(XACML 1.0 and 1.1
only)

Enter the expression to use to find the values for the IssueInstant
attribute of the <Attribute> element. This attribute specifies when the
issuer issued this attribute. The Issue Instant may be one of the
following:

 l blank

 l A context variable that resolves to a valid timestamp, either
using one of the built-in variables gateway.time.local,
gateway.time.utc, request.time.local, request.time.utc, or a
user-defined variable that contains a timestamp.

 l A manually entered date/time in the format: yyyy-MM-
dd'T'HH:mm:ss[Z], where 'T' is a separator character and '
[Z]' is the optional time zone.

 l An XPath expression that returns the date/time in the above
format.

Note: A context variable or XPath expression is not evaluated until run
time, thus the policy validator will not warn you during design time
about incorrect date formats. If a value for IssueInstant is provided and
it is invalid, it will cause the assertion to fail.

342 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Field Description

AttributeValue
Enter the expression to use to find the values for the <AttributeValue>
element. Unlike the preceding three fields, this field can also accept
context variables of type Message and Element.

Tip: Context variables of type Element are created by the XPath
assertion in the .elements variable.

For XACML 1.0 or 1.1, only one <AttributeValue> element will be
created. For XACML 2.0, multiple <AttributeValue> elements will be
generated under either of these conditions:

 l The 'AttributeValue' field is of type 'Context Variable' and a
multivalued variable is specified.

 l The 'AttributeValue' field is of type 'Absolute XPath' or 'Relative
XPath' that evaluates to a multi-node results.

If the AttributeValue could not be found, the <Attribute> element will be
created with an empty <AttributeValue> element.

Fail assertion if
evaluating any
required fields
results in not found

Select this check box if you want the assertion to fail if any of the
following required elements could not be found during policy
execution:

AttributeID
DataType
IssueInstant (if applicable and supplied)

Clear this check box to ignore required elements that could not be
found and continue generating <Attribute> elements. The assertion
does not fail and the unfound elements are logged and audited at the
INFO level and no <Attribute> element will be created for the current
iteration.

Editing actions To add a Namespace:

 1. Click [Add].

 2. Enter the Prefix and URI.

 3. Click [OK].

To edit a Namespace:

 1. Select the row to edit.

 2. Click [Modify].

 3. Modify the appropriate fields.

 4. Click [OK].

To remove a Namespace:

 1. Select the row to delete.

 2. Click [Remove]. The row is deleted without further
confirmation.

Chapter 6: XML Security Assertions 343

Layer 7 Policy Authoring User Manual, v8.2

How <Attribute> Elements are Dynamically Generated

The Multiple Attributes node will generate multiple <Attribute> elements under either of
these conditions:

 l If any of the AttributeID, DataType, IssueInstant, or Issuer fields is of type
'Context Variable' and a multivalued context variable is entered.

 l If any of the AttributeID, DataType, IssueInstant, Issuer, or AttributeValue fields
is of type 'Relative XPath' and the XPath Base evaluates to a multi-node result.

The number of <Attribute> elements created is based on the multivalued context
variable with the fewest values and the number of XPath multi-node results (whichever is
lower). To see an example of how multivalued context variables can be the constraining
factor, see "Multiple <AttributeValue> Elements" under "Working with Multivalued
Context Variables in the AttributeValues Node" above. Just remember that for the
<Attribute> element, the XPath node results is an additional constraining factor.

It is possible to reference a single value within a multivalued context variable. For more
information, see "Indexed Single Value" under "Working with Multivalued Context
Variables in the AttributeValues Node" above.

To learn more about the differences between a single-value context variable and a
multivalued variable that just happens to contain one value, see "Single-value variables
vs. multivalued variables with one value" under "Working with Multivalued Context
Variables in the AttributeValues Node" above.

Configuring the Resource Content Node

The Resource Content node corresponds to the <ResourceContent> element in the
XACML request. This node may be optionally created under the <Resource> node.

 l To add a ResourceContent node, right-click the Resource node and then select
Add Resource Content.

 l To remove the ResourceContent node, right-click the node and then select
Remove Resource Content.

344 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 109: Resource Content node

The Resource Content node has the following settings:

Field Description

Name This is the name of an attribute to be placed into the
<ResourceContent> Element, for example:

<ResourceContent att1="value">.

Value This is the value of an attribute in the <ResourceContent> element;
for example:

<ResourceContent att1="value1">

ResourceContent

Content

This is the text content of the <ResourceContent> element; for
example:

<ResourceContent>Sample text
content</ResourceContent>

Type the content directly into the text box. This text field supports
single or multi valued variables of type String, Message, or Element.

Editing actions To add a ResourceContent Attribute:

 1. Click [Add].

 2. Enter the Name and Value.

 3. Click [OK].

To edit a ResourceContent Attribute:

 1. Select the row to edit.

 2. Click [Modify].

 Table 92: Resource Content node settings

Chapter 6: XML Security Assertions 345

Layer 7 Policy Authoring User Manual, v8.2

Field Description

 3. Modify the appropriate fields.

 4. Click [OK].

To remove a ResourceContent Attribute:

 1. Select the row to delete.

 2. Click [Remove].

Encrypt Element Assertion
The Encrypt Element assertion is used to select message elements to be encrypted in the
target message.

 l If the target is the response message, encryption will occur automatically.

 l If the target is the request message or a message context variable, then the Add or
Remove WS-Security assertion must be added after the Encrypt Element assertion
in the policy to perform the encryption.

You can add an Encrypt Element assertion for each element of the target message that
you want encrypted. This assertion supports the W3C XML Signature 1.0 standard.

This assertion can only be used in a web service policy. It should be placed before the
routing assertion in a policy.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about selecting the target identity for this assertion, see "Selecting a
Target Identity" on page 152.

To learn more about changing the WSS Recipient for this assertion, see "Changing the
WSS Assertion Recipient" on page 146.

Note: When multiple signatures are used in a target message, it is mandatory to select a
target identity.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

346 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 2. Right-click the <target>: Encrypt Element in the policy window and select Encrypt
 Element Properties or double-click the assertion in the policy window. The
assertion properties are displayed. The title of the dialog will show "Request",
"Response", or "${variableName}", depending on the target message.

 Figure 110: Encrypt Request Element Properties dialog

 3. Specify the XPath and select the target element to be encrypted from the code
box. For detailed instructions on using the interface to build your XPath, see
"Selecting an XPath" on page 154.

The Policy Manager will not allow you to encrypt the /soapenv:Envelope element in
the Encrypt Request Element Properties dialog. You can, however, encrypt a child
element within the envelope such as /soapenv:Envelope/soapenv:Body.

Tip: A matching element's own opening and closing tags and tag attributes do not need to
be encrypted. To force the encryption of an entire element—including opening and closing
tags, attributes, and white space content—match the XPath expression to the parent
element of the message. Clicking, or highlighting, an element selects it (and any child
code) for the assertion encryption requirement.

 4. Choose the Encryption Method from the drop-down list:

AES 128 CBC (default)
AES 192 CBC

Chapter 6: XML Security Assertions 347

Layer 7 Policy Authoring User Manual, v8.2

AES 256 CBC
Triple DES
AES 128 GCM
AES 256 GCM

Note: The "AES-GCM" encryption options can be selected even if your security provider
does not support it. However, this will result in encryption/decryption attempts to fail at
runtime.

 5. For Encryption Key Reference, select the method to use to include the SSL
certificate for the Gateway:

 l BinarySecurityToken (BST): Use a SecurityTokenReference containing the
BinarySecurityToken (BST).

 l SubjectKeyIdentifier (SKI): Use a SecurityTokenReference containing the
SubjectKeyIdentifier (SKI).

 l Issuer Name/Serial Number: Use a SecurityTokenReference containing the
certificates issuer distinguished name and serial number.

 l Key Name: Use a SecurityTokenReference containing the Key Name.

Notes: (1) Using a "Key Name" reference violates the WS-I Basic Security Profile so this
reference type should be avoided whenever possible. (2) The "KeyName" element will be
added inside a "SecurityTokenReference", e.g.,
<dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
 <dsig:KeyName>CN=Bob,OU=OASIS Interop Test

Cert,O=OASIS</dsig:KeyName>
 </wsse:SecurityTokenReference>
</dsig:KeyInfo>

 6. Click [OK].

Establish Outbound Secure Conversation Assertion
The Establish Outbound Secure Conversation assertion creates a new secure outbound
conversation session using the security context identifier extracted from a Security
Context Token. This outbound session includes a shared secret to be used for message
decoration in future message exchanges.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

348 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Notes: (1) Outbound secure conversation sessions are stored for each distinct authenticated-
user and service URL. (2) An existing outbound session will be overwritten if a new session is
created for the same authenticated-user and service URL.

Context Variables Created by This Assertion

The Establish Outbound Secure Conversation assertion sets the following context
variable for the session:

outboundSC.session

Attributes of the secure conversation session can be retrieved by using the following
syntax:

outboundSC.session.<attribute>

For example, to access the session identifier, use ${outboundSC.session.id}.

The attributes are described in Table 93.

Attribute Description

id The session identifier

user The authenticated user

To access specific attributes about the user, use the syntax:

outboundSC.session.user.<user_attribute>

providerId The user's Identity Provider ID

id The user's identifier

login The user's login ID

firstName The user's first name

lastName The user's last name

email The user's email address

department The user's department

subjectDn The user's X.509 subject DN

creation The session creation time

expiration The session's expiration time

scNamespace The namespace of WS-Secure Conversation

 Table 93: Outbound secure conversation session attributes

Chapter 6: XML Security Assertions 349

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Establish Outbound Secure Conversation to <service
URL> in the policy window and select Outbound Secure Conversation Properties
or double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 111: Outbound Secure Conversation Properties

 3. Configure the properties as follows.

Tip: You may use context variables in every field except for "Maximum Expiry Period" and
"Security Context Token".

Setting Description

Service URL Enter the URL of the service that issued the Security Context Token.

The service URL will be used with the authenticated user information to
create a mapping key to map the outbound secure conversation

 Table 94: Outbound Secure Conversation settings

350 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

session that has been established.

This field is disabled when the This session is for use with
incoming request messages check box is selected (the service URL
is not required in this scenario).

Tip: If the authenticated user information is unavailable, the service
URL should be specified by a unique string in order to create a unique
session mapping key. (This string does not need to be a real URL, but it
must be unique per secure conversation session.) The following is a
sample string that creates a unique service URL:

<service_url>?sessionId=<session_identifier>

where <session_identifier> is the identifier of the outbound secure
conversation session that has been established.

Security Context
Token

Specify the name of the context variable from which to extract the
session identifier. Enter this without the "${ }" wrapper.

The default is rstrResponseProcess.token, which is defined in the
"Process RSTR Response Assertion" on page 395.

Note: This field requires that you specify the actual name of the context
variable (i.e.,the name without the "${ }" wrapper), not a name that is
resolved from another variable. For example, "${mySecurityToken}" is
not permitted even if it contains the value
"rstrResponseProcess.token".

Client Entropy Specify the context variable containing the client entropy for creating a
shared secret.

The default is ${requestBuilder.clientEntropy}, which is defined in
the "Build RST SOAP Request Assertion" on page 285.

Server Entropy Specify the context variable containing the server entropy, if the RSTR
response includes a server entropy.

The default is ${rstrResponseProcessor.serverEntropy}, which is
defined in the "Process RSTR Response Assertion" on page 395.

Key Size Specify the context variable containing the key size, in bits, from the
RSTR response. Enter "0" (zero) to use the default key size.

The default value for this field is ${rstrResponseProcessor.keySize},
which is defined in the "Process RSTR Response Assertion" on page
395.

Shared Secret Specify the context variable containing the shared secret, if the RSTR
response includes a shared secret.

The default is ${rstrResponseProcessor.fullKey}, which is defined
in the "Process RSTR Response Assertion" on page 395.

Session Lifetime Optionally set the lifetime of the secure conversation session.

 l Create Time: Specify the context variable containing the

Chapter 6: XML Security Assertions 351

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

creation time of the session in the server.

The default is ${rstrResponseProcessor.createTime},
which is defined in the "Process RSTR Response Assertion" on
page 395. If left blank, the current Gateway time is used.

l Expiry Time: Specify the context variable containing the expiry
time of the session.

The default is ${rstrResponseProcessor.expiryTime},
which is defined in the "Process RSTR Response Assertion" on
page 395.

If the expiry time is left blank, the Gateway will use the following:

Current time + Maximum Expiry Period

Tip: The cluster property
outbound.secureConversation.sessionPreExpiryAge can be used to
expire the assertion prior to the supplied expiry time; this offset can be
adjusted to help prevent use of an expired session. For example, if the
maximum expiry period is 20 minutes and the value of the cluster
property is 5 minutes, the Gateway will use 15 minutes (20-5) as the
final expiry period.

Maximum Expiry
Period

Enter the maximum length of time for the session lifetime. A value of "0"
(zero) means the original session expiry time is not limited.

Note: The original session expiry time is defined as:

Expiry Time - Create Time

Use System Default When specifying a token lifetime, select this check box to use the system
default, as defined by the
outbound.secureConversation.defaultSessionDuration cluster
property. The default value for this property is 2 hours.

[This session is for
use with incoming
request messages]

Select this check box if this secure conversation session will be used
with inbound request messages. This will allow the Security Token
Service (STS) to "impersonate" that session user. Select this check box
only if it is necessary to do so and only if the target STS is trusted.

WARNING: Sharing a secure conversation session
for inbound and outbound traffic is not secure and
is not recommended. Proceed only if you are an
advanced user or if you are directed by CA
Technical Support.

Clear this check box to not permit this session to be used with inbound
secure conversation request messages. This setting is the default and
the recommended setting.

Note: When this option is enabled, you will not be able to access the

352 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

session using the "Look Up Outbound Secure Conversation Session
Assertion" on page 370. To use this session with outbound messages,
use the "Require WS-Secure Conversation Assertion" on page 242 to
validate the inbound session, then use the token from the
inboundSC.session context variable with the "Add Security Token
Assertion" on page 277 for outbound decoration.

 4. Click [OK].

Evaluate SAML Protocol Response Assertion
The Evaluate SAML Protocol Response assertion is used to evaluate a SAML Protocol
response. To create a SAML Protocol response, use the Build SAML Protocol Response
assertion.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

The Evaluate SAML Protocol Response assertion is typically used as follows in a policy:

Build SAML Protocol Request
Route via HTTP(S)
Evaluate SAML Protocol Response

Tip: You can use context variables in many of the text fields in the wizard. These variables are

evaluated at runtime as the SAMLP response is being constructed.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Evaluate SAML Protocol Response in the policy window
and select SAML Protocol Response Wizard or double-click the assertion in the
policy window. The wizard appears.

 3. Follow the wizard to complete the assertion.

Chapter 6: XML Security Assertions 353

Layer 7 Policy Authoring User Manual, v8.2

 Figure 112: SAML Protocol Response Wizard

For more information about wizards, see "Wizard" under Interfaces in the Layer 7 Policy
Manager User Manual.

Wizard Step Descriptions

Step 1: Introduction Introduces the wizard.

Step 2: Target
Message

Specify the location of the SAMLP response message for the evaluator
to parse: Request, Response, or some Other Message Variable,
with the default being "${samlpResponse.message}". For more
information on message type variables, see Context Variables in the
Layer 7 Policy Manager User Manual. To learn how to change the
message target, see "Selecting a Target Message" on page 153.

Step 3: SAML
Version

Specify the version of the SAMLP response that will be evaluated by
this assertion.

Step 4: SAMLP
Response Type

Specify the type of SAMLP response being evaluated:

 l Authentication Request: The response contains
authentication statements. Note: The Authentication Request
option is available only when SAML 2.0 was selected in Step 3.

 l Authorization Decision Request: The response contains
statements that assert a subject is permitted to perform a
specified action on a specified resource.

 l Attribute Query Request: The response contains a list of
attributes for the subject.

Step 5: Response
Status

Indicate whether the Evaluate SAML Protocol Message assertion
should fail if the response status could not be successfully retrieved.

The system will always set the top level ResponseStatus onto the
context variable samlpResponse.status.

Step
6: Authorization

This step is displayed only if "Authorization Decision Request" was
selected in step 4.

 Table 95: SAML Protocol Response Wizard settings

354 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Wizard Step Descriptions

Validation Specify whether the assertion should fail based on the SAMLP
response:

 l To never fail the assertion based a retrieved response, clear
the Fail the assertion... check box.

 l To fail the assertion unless the response matches your
specified choice, select the Fail the assertion... check box
and then choose a response from the drop-down list. The
default is Permit, which means the assertion will fail unless the
SAMLP response is 'Permit'.

The Authorization Decision Statement is stored in the context variable
samlpResponse.authz.decision.

Step 7: Attribute

Statement

Specify the SAML attributes that the SAML statement must describe.

 1. Click [Add] and then complete the Edit SAML Attribute
Properties dialog:

 l Attribute Name: Enter the name of the attribute.

 l Attribute Namespace: Optionally enter a namespace
for the attribute. This applies only to SAML 1.x.

 l Attribute Name Format: Optionally specify a URI
reference that describes the format of the attribute name.
Only attributes that declare this format will be accepted.
This applies only to SAML 2.x.

Unspecified: If no name format is provided, the default value
of urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified
is used.

URI Reference: This option uses the URI
urn:oasis:names:tc:SAML:2.0:attrname-format:uri

Basic: This option uses the URI
urn:oasis:names:tc:SAML:2.0:attrname-format:uri.

Other: Select this option to define your own attribute name
format in the box below.

 l Attribute Friendly Name: Optionally enter a friendly
name for the attribute to be used for display purposes.
This applies only to SAML 2.x

 l Attribute Value: If defining your own attribute name
format, enter it here.

 2. Click [OK] to enter the attribute into the table. Repeat to
configure additional attributes.

To modify an existing Attribute Statement, select it from the list and
then click [Edit].

To remove an Attribute Statement, select it from the list and then click
[Remove].

Chapter 6: XML Security Assertions 355

Layer 7 Policy Authoring User Manual, v8.2

Evaluate XACML Policy Assertion
The Evaluate XACML Policy assertion evaluates a XACML policy and renders an
authorization decision for a resource, which will be granted based on the set of
attributes found in a XACML request. The XACML request can be created using the
"Create XACML Request Assertion" on page 330.

The Evaluate XACML Policy assertion can retrieve the XACML request from a request or
response message, or a context variable. After rendering the XACML request attributes
against the XACML policy, the resulting decision can be placed either into the response
message or a message context variable. The XACML policy can be configured in advance
or the assertion can monitor a URL and download a new policy periodically.

Tip: The "XACML request" is also known as the "XACML decision request".

XACML Policy Validation

The Evaluate XACML Policy assertion will attempt to validate any XACML policy entered
when the [OK] button is clicked. However, the assertion cannot validate a XACML policy
under these circumstances:

 l The invalid policy is retrieved from a monitored URL.

 l The invalid policy (or policy fragment) is in a context variable that has been set
prior to the Evaluate XACML Policy assertion.

In these cases, the invalid policy will be detected only during policy execution, with an
error being logged.

Be aware that the Evaluate XACML Policy assertion will fail if you attempt to import a
policy that contains an empty Description element, for example:

<Description/>

or

<Description></Description>

Note: You should be familiar with the XACML policy language and what constitutes a valid
policy before using this assertion to process a XACML request.

Using the Assertion

 1. Do one of the following:

356 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the XACML Policy Properties automatically appear;
when modifying the assertion, right-click Evaluate XACML Policy Properties in
the policy window and select XACML Policy Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

 Figure 113: XACML Policy Properties

 3. Configure the properties as follows:

Setting Description

Message

Source

Indicate where to get the XACML request: Default Request, Default
Response, or from a Context Variable that has been defined earlier in the
policy (for example, using the Set Context Variable assertion). If using a
context variable, it must be of type Message and its Content-Type should be
'text/xml'.

SOAP
Encapsulate
d?

Select this check box if the XACML request is encapsulated in the Body
element of a SOAP envelope.

Note: If this check box is selected, the XACML request must be a SOAP

 Table 96: XACML Policy settings

Chapter 6: XML Security Assertions 357

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

(for message) message, otherwise the assertion will fail.

Response

Target

Indicate where to place the XACML PDP response: in the Default
Response, Default Request, or in a Message Variable (context variable
of type Message). The variable does not need to exist beforehand—it will be
created by this assertion. The Message Variable field is enabled if 'Message
Variable' is selected.

SOAP
Encapsulate
d?
(for response)

Select this check box to encapsulate the XACML PDP response in the Body
element of a SOAP envelope.

Message

Variable

This field is used only if the Response Target is 'Message Variable'.

Enter the name of the variable to be created. You do not need to enclose the
variable with the "${ }" characters.

Policy
Location

From the drop-down list, specify the location of the XACML policy:

l Configure in advance: You are entering the policy in this assertion.

l Monitor URL for latest value: The Gateway will obtain a policy
from a URL that is monitored periodically for changes.

XACML Policy
- Configure in

advance

If you chose to configure the policy in advance, you have three different
options:

 1. Type or copy/paste the XACML policy code directly into the code
window. The policy code may contain context variables (see below).

 2. Click [Fetch from URL] to enter an URL for the Gateway to retrieve
the policy.

Tip: To configure options for the URL (for example, to specify the
credentials, SSL, or proxy options), click [HTTP Options] to open the
Manage HTTP Options dialog.

Note: Unlike the "Monitor URL" option, the "fetch" option does not
monitor the URL and the policy is only downloaded once at policy
design time.

 3. Click [Fetch from File] to insert the policy code from a text file that
you specify.

You may edit a policy entered using the "fetch" options if necessary.

Note: The XACML policy maximum size is controlled by the
xacml.pdp.maxDownloadSize cluster property.

Using context variables in XACML policy code

The XACML policy code may contain String values or context variables of
type Message that contain XACML policy fragments or the entire XACML
policy.

Examples:

l ${variableContainingPolicy} is entered into the code window, where

358 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

this previously defined context variable contains the entire XACML
policy to use

l A XACML policy is mostly configured in advance, with context
variables representing policy fragments to be resolved at run time:

<Policy...>
<Target> ... </Target>
<Rule...> ${stringVariable} </Rule>

</Policy>

Here is another example of simple text replacement:

<Rule RuleId="ReadRule" Effect="${permitDecision}
">

where "${permitDecision}" was previously defined with a value of
"Permit".

Note the following when using context variables in a XACML policy:

l If the context variable contains an entire SOAP envelope, you must
use an XPath expression to extract the policy itself (i.e., extract the
"<Policy>" element) to a second context variable. For more
information, see the "Evaluate Response XPath Assertion" on page
461.

l If a context variable of type Message contains the XACML policy as
XML (either full policy or fragment), you must use the
${variableName.mainpart} part of the context variable otherwise the
assertion will fail.

Note: For context variables of types other than Message, the
mainpart part is not required. For more information on the various
data types, see Context Variables in the Layer 7 Policy Manager User
Manual.

XACML Policy
- Monitor URL
for latest
value

If you chose to monitor a URL for the latest value, enter the URL here. The

URL may contain context variables that will be resolved at run time.

The time interval is set by the cluster property
xacml.pdp.policyCache.maxAge. The default value for this cluster property is
300000 milliseconds (5 minutes). When the Evaluate XACML Policy
assertion is processed within the policy, the policy is re-downloaded if the
cached policy is older than the value of this cluster property.

Tip: To configure options for the URL (for example, to specify the credentials,
SSL, or proxy options), click [HTTP Options] to open the Manage HTTP
Options dialog.

Note: The XACML policy maximum size is controlled by the
xacml.pdp.maxDownloadSize cluster property.

Fail Assertion
if decision is
not 'Permit'

A PDP response can be any of the following:

Permit
Deny

Chapter 6: XML Security Assertions 359

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Indeterminate (an error occurred or some required value was
missing, so a decision cannot be made)
Not Applicable (the request can't be answered by this service)

Select this check box to fail the assertion if the PDP response is anything
other than Permit. This is useful in scenarios where the policy acts as both a
PEP (Policy Enforcement Point) and the PDP (Policy Decision Point). If the
decision is not Permit, the policy can be configured to fail and you do not need
to use an XPath expression to extract the result.

Clear this check box to never fail the assertion, regardless of the PDP
response.

 4. Click [OK] when done.

Generate OAuth Signature Base String Assertion
The Generate OAuth Signature Base String assertion provides the ability to generate an
OAuth signature base string according to the OAuth 1.0 specifications.

This assertion can be used in two distinct use cases:

 l OAuth Client: An OAuth client policy contains the OAuth parameter values and
these need to be input into the assertion.

 l OAuth Server: An OAuth server policy receives a request that contains OAuth
parameters. In this scenario, the assertion can automatically extract the required
parameters from the message target.

This assertion is only used for OAuth 1.0.

Context Variables Created by This Assertion

The Generate OAuth Signature Base String assertion sets the following context variables.
Note: The default <prefix> is "oauth" and can be changed in the assertion properties
(Figure 114 and Figure 115).

Variable Description

<prefix>.sigBaseString The signature base string.

<prefix>.requestType Contains one of the following request types: request token,
authorized request token, or access token.

<prefix>.authHeader Contains the partially completed authorization header.

<prefix>.<oauthParameter> One variable will be created for each OAuth parameter.

 Table 97: Context variables created by Generate OAuth Signature Base String assertion

360 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Generate OAuth Signature Base String
Properties automatically appears; when modifying the assertion, right-click
[Client|Server] Generate OAuth Signature Base String in the policy window and
select Generate OAuth Signature Base String Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

Note: All text fields in the properties dialog support expressions, except for Variable
Prefix. This means a combination of text and context variables may be used and more
than one variable may be referenced.

Chapter 6: XML Security Assertions 361

Layer 7 Policy Authoring User Manual, v8.2

 Figure 114: Generate OAuth Signature Base String Properties - Client mode

362 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 115: Generate OAuth Signature Base String Properties - Server mode

 3. Configure the properties as follows.

Setting Description

Usage Select the mode for the assertion:

 l Client to send an OAuth request.

 l Server to receive an OAuth request. In this case the assertion
can be configured to automatically extract the required
parameters from the message target, authorization header,

 Table 98: Generate OAuth Signature Base String Properties settings

Chapter 6: XML Security Assertions 363

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

and request query string.

Endpoint
Configure the endpoint:

 l Request URL: Enter the endpoint URL to which the OAuth
request will be made.

The default value is ${request.url}.

 l HTTP Method: Choose the method from the drop-down list.
The default value is ${request.http.method}.

Parameter Sources

Query String
Enter the query string, formatted according to the query portion of a
valid URL. Name value pairs must be separated by the "&" character.
The default is ${request.url.query}.

Note: The value of ${request.url.query} is URL encoded. Any other
value entered here must be URL-encoded to ensure this value is
double-encoded when included in the generated signature base
string.

Allow non-protocol
query parameters
with oauth_ prefix

Select this check box to permit non-protocol query parameters that
are prefixed with "oauth_".

Clear this check box to cause the assertion to fail if it encounters non-
protocol query parameters prefixed with "oauth_". This setting is the
default.

Use message target
as parameter choice

(Server mode only)

Select this check box to allow the use of parameters extracted from a
message target with a content type of application/x-www-form-
urlencoded.

Authorization

Header

(Server mode only)

Select this check box to allow parameters to be extracted from an
Authorization Header. Default value is
${request.http.header.Authorization}.

oauth_consumer_

key

(Client mode only)

Enter the OAuth consumer key.

oauth_signature_
method

(Client mode only)

Choose the OAuth signature method from the drop-down list. The
default value is HMAC-SHA1.

oauth_timestamp

(Client mode only)

This value is set to <auto>, as it will be supplied at runtime.

oauth_nonce

(Client mode only)

This value is set to <auto>, as it will be supplied at runtime.

364 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

oauth_version

(Client mode only)

Select this check box to include the oauth_version in the generated
signature base string.

Clear this check box to exclude the version from the string.

oauth_token

(Client mode only)

Enter an OAuth token, if necessary.

oauth_callback

(Client mode only)

Enter an OAuth callback value, if necessary.

oauth_verifier

(Client mode only)

Enter an OAuth verifier, if necessary.

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix helps ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

The default prefix is oauth.

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

 4. Click [OK] when done.

Generate Security Hash Assertion
The Generate Security Hash assertion is used to generate a signature or hash with non-
binary data using a configurable hash algorithm .

This assertion is configurable for specific HMAC+SHA algorithms or simply an SHA or
MD5 algorithm.

Note: CA Technologies highly recommends using HMAC algorithms, as non-HMAC algorithms
produce weak hashing that can be exploited.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

Chapter 6: XML Security Assertions 365

Layer 7 Policy Authoring User Manual, v8.2

 2. This assertion contains default settings that are appropriate for most instances.
To change any of the settings, right-click Generate Security Hash in the policy
window and select Generate Security Hash or double-click the assertion in the
policy window. The assertion properties are displayed.

 Figure 116: Generate Security Hash Properties

 3. Configure the properties as follows:

Setting Description

Source Data
Enter the data that will have the Signature Algorithm applied to it. You
may enter text or specify a context variable that contains non-binary
data. You may also enter an expression that combines static text with
context variables.

Save line breaks as Select the line break option for the source data entered above: CR LF
(carriage return, line feed), LF (line feed), CR (carriage return). The
default is CR LF.

Output Variable Enter the name of the context variable that will hold the generated
signature.

Signature Algorithm Choose the algorithm to use from the drop-down list:

HMAC-SHA1
HMAC-SHA256
HMAC-SHA384
HMAC-SHA512
MD5
SHA-1

 Table 99: Generate Security Hash settings

366 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

SHA-256
SHA-384
SHA-512

Note the following:

 l Choosing a HMAC algorithm will cause the assertion to
produce a HMAC digest with the selected algorithm applied to
the Source Data and Key.

 l Choosing a non-HMAC algorithm will cause the assertion to
produce a generic digest with the selected algorithm applied to
the Source Data.

Note: Use of non-HMAC algorithms is not recommended, as they
produce weak hashing that can be exploited.

Key

(HMAC algorithms
only)

Enter the key that will be used to generate the hash when a HMAC
algorithm is selected. You may enter text or specify a context variable.
You may also enter an expression that combines static text with context
variables.

This field is disabled when a non-HMAC algorithm has been selected.

Observe the following tips about the key:

 l Keep the key in a secure location.

 l Never transmit the key over the network for any reason.

 l If you suspect the key has been compromised, regenerate a
new key and rebuild the policy.

 l Longer keys produce a stronger hash.

 4. Click [OK] when done.

Look Up Certificate Assertion
The Look Up Certificate assertion is used to look up a certificate by a variety of methods
and then store that certificate's value in a context variable for later use in the policy.

You can look up certificates by:

 l Name (trusted certificates only)
 l SHA1 Thumbprint
 l Subject Key ID
 l Subject DN
 l Issuer DN and Serial Number

The assertion can be configured to fail if more than one matching certificate is found.

Chapter 6: XML Security Assertions 367

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

This assertion can find the following types of certificates known to the Gateway:

 l Trusted Certificate
 l User certificate
 l LDAP User shadow certificate (for more information, see "Trusted Gateway

Accounts" in the SecureSpan XML VPN Client User Manual)
 l Certificate from LDAP certificate cache, if enabled
 l Subject certificate from any private key in the current Gateway keystore

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Certificate Lookup Properties automatically
appear. When modifying the assertion, right-click Look Up Certificate in the
policy window and select Certificate Lookup Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

 Figure 117: Certificate Lookup Properties

 3. Configure the dialog as follows:

368 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Look up Certificate

by Name

For this option, enter the name of the trusted certificate to be looked
up. This will be matched against the CN value of the trusted
certificate. You may specify a context variable.

Look up Certificate
by ThumbprintSHA1

For this option, enter the SHA-1 thumbprint (as a Base-64 string) of
the encoded certificate to be looked up. You may specify a context
variable.

Look up Certificate
by Subject Key ID

For this option, enter the Subject Key ID (SKI) of the certificate to be
looked up. You may specify a context variable.

Look up Certificate

by Subject DN

For this option, enter the name of the certificate subject's
Distinguished Name to be looked up. You may specify a context
variable.

Look up Certificate
by Issuer DN and

Serial Number

For this option, enter the certificate issuer's Distinguished Name, as
an RFC 2253 canonical string, and the certificate's Serial Number, as
a decimal number, to be looked up. You may specify a context
variable.

Fail if multiple
certificates are found

Select this check box to fail the assertion if multiple certificates with
the specified name are found.

Clear this check box to not fail the assertion if multiple certificates with
the specified name are found. This setting is the default.

Note: The context variable specified under "Output Variable Name"
below will not be populated if the assertion fails.

Output Variable Name For this option, enter the name of the context variable to be used to
store the results of the lookup upon successful completion of the
assertion. This variable will be of type X.509 Certificate.

Note the following:

 l When looking up a trusted certificate by name, the context
variable will be single-valued if one certificate is found or
multivalued if multiple matching certificates are found.

 l When looking up any other certificate type, the context
variable will always be single-valued and only the first
matching certificate will be stored.

The default variable name is certificate.

 Table 100: Certificate Lookup settings

 4. Click [OK].

Chapter 6: XML Security Assertions 369

Layer 7 Policy Authoring User Manual, v8.2

Look Up Outbound Secure Conversation Session
Assertion

The Look Up Outbound Secure Conversation Session assertion is used to look up an
outbound secure conversation session that has been mapped to the authenticated user
and the back-end service on which the secure conversation session is established.

This assertion succeeds if at least one unexpired session is found. This assertion fails if no
sessions are found or only expired sessions are found.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Context Variables Created by This Assertion

The Look Up Outbound Secure Conversation Session assertion sets the following context
variable that contains all information about the session:

<prefix>.session

Where:

 l <prefix> is defined in the assertion properties (default: scLookup)

 l specific attributes about the outbound secure conversation session can be
retrieved by using:

<prefix>.session.<attribute>

For example, to access the session identifier, use ${<prefix>.session.id}.

The attributes are described in Table 101.

Attribute Description

id The session identifier

user The authenticated user

To access specific attributes about the user, use the syntax:

<prefix>.session.user.<user_attribute>

providerId The user's Identity Provider ID

id The user's identifier

login The user's login ID

 Table 101: Outbound secure conversation session attributes

370 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Attribute Description

firstName The user's first name

lastName The user's last name

email The user's email address

department The user's department

subjectDn The user's X.509 subject DN

creation The session creation time

expiration The session's expiration time

scNamespace The namespace of WS-Secure Conversation

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Look Up Outbound Secure Conversation Session to
<service URL> in the policy window and select Outbound Secure Conversation
Session Lookup Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

 Figure 118: Outbound Secure Conversation Session Lookup Properties

 3. Enter the Service URL. This is the URL of the back-end service that will issue the

security context token.

 4. Enter a prefix that will be added to the context variables created by this assertion.
This prefix will ensure uniqueness and will prevent the variables from overwriting
each other when multiple instances of this assertion appear in a policy.

The default variable prefix is scLookup.

Chapter 6: XML Security Assertions 371

Layer 7 Policy Authoring User Manual, v8.2

For an explanation of the validation messages displayed, see Context Variable
Validation in the Layer 7 Policy Manager User Manual.

 5. Click [OK].

(Non-SOAP) Check Results from XML Verification
Assertion

The (Non-SOAP) Check Results from XML Verification assertion ("Check" assertion) provides
a quick way to check the contents of the context variables produced by the "(Non-SOAP)
Verify XML Element Assertion" on page 391.

The following is a more in depth description of what happens when you use the "Check"
assertion:

 1. First, you select the signed element(s) to verify.

 2. Next, you select the signature methods and digest methods that you are
permitting. Optionally indicate whether to gather the signing certificates as
credentials.

 3. The "Check" assertion then checks the <prefix>.elementsVerified variable for the
signed elements and notes the index position of any matches. (This is similar to
using the Look Up Item by Value assertion on the <prefix>.elementsVerified
variable.)

 4. If a match is found, the assertion then checks whether the corresponding index
position in the <prefix>.signatureMethodUris variable matches any of the "Permitted
signature methods". (This is similar to using the Look Up Item by Index Position
assertion on the <prefix>.signatureMethodUris variable, followed by an At Least One
Assertion Must Evaluate to True assertion containing one or more Compare
Expression assertion to check the value.)

 5. If a match is found, the same thing is repeated on the corresponding index
position in the <prefix>.digestMethodUris variable to see if it matches any of the
"Permitted digest methods". (This is similar to using the Look Up Item by Index
Position assertion on the <prefix>.digestMethodUris variable, followed by an At
Least One Assertion Must Evaluate to True assertion containing one or more
Compare Expression assertion to check the value.)

 6. If a match is found and you are gathering signing certificates, the assertion
retrieves the certificate from the corresponding index position in the
<prefix>.signingCertificates variable and gathers it as X.509 credentials.

372 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

This assertion will succeed only when all elements in the target message that match the
XPath are present in the specified verify results and were signed using one of the
specified signature and digest methods.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click<target>: (Non-SOAP) Check Results from XML Verification [XPath]
in the policy window and select (Non-SOAP) XML Verification Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 119: (Non-SOAP) Check Results from XML Verification Properties

Chapter 6: XML Security Assertions 373

Layer 7 Policy Authoring User Manual, v8.2

 3. Click [Edit XPath] to specify the signed element(s) to verify. For more information,
see "Selecting an XPath" on page 154.

 4. Enter the context variable prefix that was used in the (Non-SOAP) Verify XML
Element assertion. If no prefix was used, leave the field blank.

 5. Select the Gather signer certificate(s) as credentials check box if you want to use
the signing certificate as an X.509 credential for later authorization with a specific
User or Member of Group assertion."Retrieve Credentials from Context Variable
Assertion" on page 250

 6. Click [OK].

(Non-SOAP) Decrypt XML Element Assertion
The (Non-SOAP) Decrypt XML Element assertion is used to immediately decrypt one or
more EncryptedData elements in an XML message (either request, response, or a
message context variable). This assertion is intended only for messages not contained
within a SOAP envelope. (Advanced technical users may use it on SOAP messages, with
the knowledge that the resulting decorated message will almost certainly not be WS-
Security compliant.)

Note: The (Non-SOAP) Decrypt XML Element assertion is intended to decrypt elements that
were encrypted using the (Non-SOAP) Encrypt XML Element assertions.

Context Variables Created by This Assertion

The (Non-SOAP) Decrypt XML Element assertion sets the following context variables with
details of the decryption. Note: The <prefix> is set in the assertion properties (Figure 120)
and is optional. There is no default.

Variable Description

<prefix>.elementsDecrypted Lists the elements that were decrypted.

<prefix>
.encryptionMethodUris

Lists the encryption methods used.

<prefix>.recipientCertificates Lists the recipient certificates used in the encryption.

 Table 102: Context variables created by (Non-SOAP) Decrypt XML Element assertion

374 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Note: All three multivalued variables always have exactly the same number of values, with the
encryptionMethodUris and recipientCertificates variables containing duplicate values as
required to ensure that the encryption method and certificate for elementsDecrypted[N] can
always be found at encryptionMethodUris[N] and recipientCertificates[N], respectively (where
'N' is a nonnegative integer).

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: (Non-SOAP) Decrypt XML Element [XPath] in the policy
window and select (Non-SOAP) XML Element Decryption Properties or double-
click the assertion in the policy window. The assertion properties are displayed.

 Figure 120: (Non-SOAP) XML Element Decryption Properties

 3. Click [Edit XPath] to specify the xenc:EncryptedData element(s) to verify. For more
information, see "Selecting an XPath" on page 154.

 4. Optionally enter a prefix to be added to the context variables created by this
assertion (see Table 102). A prefix is required if this assertion appears more than
once in a policy to prevent variable values from being overwritten. Tip: The on-
screen validator will warn you if there are any issues with the prefix name.

 3. Click [OK].

Chapter 6: XML Security Assertions 375

Layer 7 Policy Authoring User Manual, v8.2

(Non-SOAP) Encrypt XML Element Assertion
The (Non-SOAP) Encrypt XML Element assertion is used to immediately encrypt one or
more elements in an XML message (either request, response, or a message context
variable). This assertion is designed only for messages not contained within a SOAP
envelope. It is also used by the "Working with Internal Use Policies" on page 33.

Note that when this assertion is used within an Audit Message Filer internal policy, the
recipient certificate should match the audit viewer key. For more information on defining
the audit viewer key, see Private Key Properties in the Layer 7 Policy Manager User Manual.

W A R N I N G

This assertion should be used only by advanced users who have a specific need to
encrypt XML elements outside of a SOAP envelope; otherwise, the "Encrypt Element
Assertion" on page 346 is normally used.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: (Non-SOAP) Encrypt XML Element [XPath] in the policy
window and select (Non-SOAP) XML Element Encryption Properties or double-
click the assertion in the policy window. The assertion properties are displayed.

376 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 121: (Non-SOAP) XML Element Encryption Properties

 3. Click [Edit XPath] to specify the element(s) to encrypt. For more information, see
"Selecting an XPath" on page 154.

 4. Configure the Encryption Settings. For more information, see Configuring
Encryption Settings in the Layer 7 Policy Manager User Manual.

Note: You must specify a recipient certificate, otherwise the assertion will always fail.

 5. Click [OK] when done.

(Non-SOAP) Sign XML Element Assertion
The (Non-SOAP) Sign XML Element assertion is used to immediately sign one or more
elements in an XML message (either request, response, or a message context variable).

This assertion is designed only for messages not contained within a SOAP envelope.

W A R N I N G

This assertion should be used only by advanced users who have a specific need to sign
XML elements outside of a SOAP envelope. If working with a SOAP document, use
the "Sign Element Assertion" on page 407 instead.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Chapter 6: XML Security Assertions 377

Layer 7 Policy Authoring User Manual, v8.2

To learn more about selecting a private key for this assertion, see Selecting a Custom
Private Key in the Layer 7 Policy Manager User Manual.

Sign Element vs. Immediate Sign XML Element

The (Non-SOAP) Sign XML Element assertion is designed to sign XML elements that are
not within a SOAP message. This signing occurs immediately and the signature is inserted
into the contents of the XML element.

By comparison, the "Sign Element Assertion" on page 407 is used to sign elements within
a SOAP message. This signing is scheduled in advance and conforms to WS-Security
standards. The signature is added to the message's security header; the element itself is
untouched.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: (Non-SOAP) Sign XML Element [XPath] in the policy
window and select (Non-SOAP) XML Element Signature Properties or double-
click the assertion in the policy window. The assertion properties are displayed.

 Figure 122: (Non-SOAP) XML Element Signature Properties

378 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 3. Configure the properties as follows:

Setting Description

Edit XPath Click [Edit XPath] to specify the element(s) to sign. For more
information, see "Selecting an XPath" on page 154.

Note that only elements can be signed. One Signature element is
created per element being signed. The Signature is added as the last
child of the element being signed; the Signature always uses the
Enveloped transform and always includes the entire signing certificate
in the KeyInfo as X509Data.

Target
URI Reference

The signature reference requires an ID for the target element.
Indicate how the Gateway should determine the ID:

 l Automatic: Select this to instruct the Gateway to look for an
existing ID based on a built-in list of possible attribute names. If
one is found, then its value is used. If one is not found, the
Gateway will add an 'Id' attribute to the element being signed,
with a randomly generated ID value, and references that.

Note: Having a new attribute 'Id' added may cause some
difficulties if the schema of the signed element does not allow
an 'Id' attribute. If this is the case, then enter a specific ID
attribute name instead.

 l Specify ID Attribute Name: Select this option to manually
specify the name of the ID attribute to use. If you choose this
option, the Gateway will no longer recognize the built-in list of
names. Instead, it will use the specified attribute value if it
already exists on the target element and will generate a new
one if it doesn't exist.

Enter the name as a string value in one of the following
formats:

 l NAME (e.g., abc)

 l PREFIX:NAME (e.g., abc:xyz)

 l {URI}NAME (e.g., {urn:issn:1535-3613}abc)

 l {URI}PREFIX:NAME
(e.g., {urn:issn:1535-3613}abc:xyz)

Note: If a URI is specified, they must be absolute. Relative
URIs cannot be used in signatures.

Tip: If a prefix is specified, it may not necessarily be used. The
Gateway will first attempt to reuse an existing namespace
declaration for the namespace URI, if one exists, regardless of
its prefix. If the Gateway needs to add a new namespace
declaration, it will attempt to use the requested prefix if it is
available. However if the requested prefix is already used in a
different namespace URI, the Gateway will substitute a
different prefix instead.

 Table 103: (Non-SOAP) XML Element Signature settings

Chapter 6: XML Security Assertions 379

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Signature Location Specify where the signature should be located:

 l Add one Signature to...: Select this option to add a
signature to each signed element. Choose where the
signature should be added using the drop-down list: as the
first or last child of the signed element.

 l Create detached signature and...: Select this option to
create a detached signature which can later be added to the
same or different document. A detached signature is a single
signature that covers all elements matching the XPath of the
elements to sign. It is placed in the context variable that you
specify here and is not added to the document.

 l Include Enveloped transform: When creating a detached
signature, select this check box to optionally include the
Enveloped transform. Do this if the detached signature will be
manually added to the document as a descendent of one of
the signed elements.

Signature Type

Specify the hash algorithm to use for the Signature Digest or
Reference Digest.

 l Signature Digest: By default, an appropriate signature
digest will be selected based on the signing key size and the
current value of the wss.decorator.digsig.messagedigest
cluster property. If you wish to use a specific digest, select it
from the drop-down list.

 l Reference Digest: By default, references will be created
using the same digest algorithm as the signature digest. If you
wish them to use a specific digest instead, select it from the
drop-down list.

 4. Click [OK] when done.

(Non-SOAP) Validate SAML Token Assertion
The (Non-SOAP) Validate SAML Token assertion is used to validate a SAML token that was
not delivered using WS-Security. This assertion will validate the Subject, Statements,
Conditions, and Signatures in a SAML token that is not contained in a SOAP header.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Adding and Configuring the Assertion

 1. Add the Require SAML Token Profile assertion to the policy development window
as described in Adding an Assertion. The SAML Token Properties appears.

380 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 2. Complete the properties as shown below.

Editing the Assertion
 1. In the policy development window, right-click on the assertion and then select

(Non-SOAP) Validate Assertion Properties. The assertion properties are
displayed.

 2. Modify the tabs as necessary. Refer to the corresponding step below for
information about each tab.

 3. Click [OK] when done.

Step 1: Introduction

 Figure 123: (Non-SOAP) Validate SAML Token Properties - Step 1

This step introduces the Non-SOAP Validate SAML Token properties.

Step 2: SAML Version

Chapter 6: XML Security Assertions 381

Layer 7 Policy Authoring User Manual, v8.2

 Figure 124: (Non-SOAP) Validate SAML Token Properties - Step 2

Specify which SAML versions will be accepted by the Gateway: version 1.1, version 2.0, or
any supported version.

Step 3: SAML Statement Type

 Figure 125: (Non-SOAP) Validate SAML Token Properties - Step 3

Select the type of SAML statement to configure:

 l Authentication Statement: Proceed to Step 4.
 l Authorization Decision Statement: Proceed to Step 5.
 l Attribute Statement: Proceed to Step 6.

382 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Step 4: Authentication Methods

 Figure 126: (Non-SOAP) Validate SAML Token Properties - Step 4

Select the authentication methods that will be enforced by the assertion. You must
choose at least one method.

Hints:

 l Hold down the [Ctrl] or [Shift] keys to select multiple items at once.

 l Click [All] to choose every available authentication method.

 l Click [None] to quickly clear the Selected list and start again.

 l Select the Unspecified method to allow authentication by an unspecified method.

 l The Available list only displays the methods that are applicable to the SAML
version chosen in Step 2 of the wizard.

In the Custom field, optionally enter any URI custom authentication methods, separated
by spaces. You may reference context variables (either single- or multi-valued variables
with space-separated URI values).

Chapter 6: XML Security Assertions 383

Layer 7 Policy Authoring User Manual, v8.2

Note: The SSL/TLS Certificate Based Client Authentication method is not related to the
Require SSL or TLS Transport assertion. This method refers to the original authentication, not
to the current request which may or may not have used SSL. The SAML-supported
authentication methods are outlined in the SAML 1.1 and 2.0 specification documents
provided at http://www.oasis-open.org

Proceed to Step 7: Subject Confirmation.

Step 5: Authorization Statement

 Figure 127: (Non-SOAP) Validate SAML Token Properties - Step 5

Specify the resource that the SAML statement must describe, the resource action, and
the action namespace.

 l Resource: Enter a value for the resource that the SAML statement must describe
(for example, "http://acme.org").

 l Action: Enter an action value for the resource (for example, "GET").

 l Action Namespace: Optionally enter a corresponding action namespace value (for
example, "acmeNamespace").

Proceed to Step 7: Subject Confirmation.

384 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

http://www.oasis-open.org/

Step 6: Attribute Statement

 Figure 128: (Non-SOAP) Validate SAML Token Properties - Step 6

Define one or more SAML attributes that must be described by the SAML statement.

 1. Click [Add] and then complete the Edit SAML Attribute Constraints dialog:

 l Attribute Name: Enter the name of the attribute.

 l Attribute Namespace: Optionally enter a namespace for the attribute. This
applies only to SAML 1.1.

 l Attribute Name Format: Optionally specify a URI reference that describes the
format of the attribute name. Only attributes that declare this format will be
accepted. This applies only to SAML 2.0.

 l Unspecified: If no name format is provided, the default value of
urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified is used.

 l URI Reference: This option uses the URI
urn:oasis:names:tc:SAML:2.0:attrname-format:uri.

 l Basic: This option uses the URI: urn:oasis:names:tc:SAML:2.0:attrname-
format:basic.

 l Other: Select this option to define your own attribute name format in the
box below.

 l Attribute Value: To require an exact variable match, select Specific Value and
then enter a set value. To require that a particular attribute be present, but

Chapter 6: XML Security Assertions 385

Layer 7 Policy Authoring User Manual, v8.2

allow it to have any non-empty value rather than requiring a specific match,
select the Allow any non-empty value option.

When a non-empty attribute value is required, you can separately validate the
attribute contents using XPath expressions, transient variables, and the Compare
Expression assertion.

To modify an attribute statement, select it and click [Edit]. To delete an attribute
statement, select it and click [Delete].

 2. Click [OK] to enter the attribute into the table. Repeat to configure additional
attributes.

To modify an existing Attribute Statement, select it from the list and then click [Edit].

To remove an Attribute Statement, select it from the list and then click [Remove].

Tip: The attribute values validated by the Attribute Statement are available in context
variables. For more information, see "Context Variables Created by This Assertion" in "Require
SAML Token Profile Assertion" on page 228.

Step 7: Subject Confirmation

 Figure 129: (Non-SOAP) Validate SAML Token Properties - Step 7

386 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Select one or more subject confirmation methods that should be accepted by the
Gateway and indicate whether the message signature is required as the proof material:

Holder-of-Key

This allows SAML tokens that use the Holder-of-Key subject confirmation method (with
the standard URI urn:oasis:names:tc:SAML:1.0:cm:holder-of-key or
urn:oasis:names:tc:SAML:2.0:cm:holder-of-key, depending on the selected SAML version in
Step 2 of the wizard). For such assertions, the Gateway will require that the subject
demonstrate possession of the private key corresponding to the public key in the Subject
 certificate.

The Holder-of-Key subject confirmation method currently requires that the request
ticket's "SubjectConfirmation" element contain a "KeyInfo" element that contains a
complete copy of the Subject's X.509 certificate. Any other form of Holder-of-Key ticket
will be rejected by the Gateway.

The request Subject may use one of two methods to prove that they hold this key:

 l The request includes at least one element covered by a valid WSS message signature, and the signing
certificate is the Subject certificate. Or,

 l The request arrived over SSL/TLS with client certificate authentication, and the client certificate exactly
matches the Subject certificate.

Sender Vouches

This allows SAML tokens that use the Sender Vouches subject confirmation method (with
the standard URI urn:oasis:names:tc:SAML:1.0:cm:sender-vouches or
urn:oasis:names:tc:SAML:2.0:cm:sender-vouches, depending on the selected SAML version in
Step 2 of the wizard). For such assertions, the Gateway will require that the sender,
presumably different from the subject, vouches for the verification of the subject.

The Sender Vouches subject confirmation method is typically used only in a SAML identity
bridging policy.

Three conditions must be met in order to use the Sender Vouches confirmation method:

 l An existing trust relationship with the sender ("Attesting Entity") must be
configured in the Gateway. To do this, import the sender's certificate, configured
as a "SAML Attesting Entity" certificate, into the Trust Store. For more information,
see Managing Certificates.

 l The SAML ticket used by the SAML token must be bound to the request message
by one of the following methods:

 l Send the request over SSL using the sender certificate as the SSL client
certificate, OR

Chapter 6: XML Security Assertions 387

Layer 7 Policy Authoring User Manual, v8.2

 l If SSL is not used, then the SAML ticket needs to be bound to the message with
a WSS signature. One complication here is that the SAML ticket does not
necessarily contain or refer to the sender certificate; it usually contains or refers
to the subject certificate and, assuming that the ticket is signed, contains or
refers to the certificate of the ticket issuer. In this method, therefore, the WSS
signature must cover both the SAML token and the relevant portions of the
rest of the message that use the sender certificate as the signing certificate.

 l The format of the request message must conform to the OASIS Web Services
Security standards: SAML Token Profile 1.0 (for SAML 1.1) or SAML Token Profile 1.1
(for SAML 2.0). The Gateway does not support references to SAML tokens that are
not included with the request message.

The OASIS Web Services Security: SAML Token Profile 1.0 standards document is
available online at: www.oasis-open.org/committees/download.php/1048/WSS-
SAML-06.pdf.

Bearer

This allows SAML tokens that use the Bearer Token subject confirmation method (with the
standard URI urn:oasis:names:tc:SAML:1.0:cm:bearer or
urn:oasis:names:tc:SAML:2.0:cm:bearer, depending on the selected SAML version in Step 2
of the wizard). Like HTTP cookies, such assertions will always be assumed to belong to
whatever message contains them, and the subject will be assumed to be the sender of
the message.

The Bearer Token subject confirmation method does not protect against an attacker
modifying the message or stealing a copy of the assertion and attaching it to an
unauthorized message. To protect the secrecy of the SAML token when using the Bearer
subject confirmation method, be sure to select the SSL-TLS Certificate Based Client
Authentication check box in Step 4 of the SAML Token Profile Wizard.

None

This allows SAML tokens that do not contain a subject confirmation method.

Not having a subject confirmation method exposes the system to various threats. To
protect the secrecy of the SAML token when a confirmation method is not used, be sure
to select the "SSL-TLS Certificate Based Client Authentication" option in Step 3 of the
SAML Token Profile Wizard.

If SAML version 2.0 is permitted, complete the Subject Confirmation Data fields:

 l Recipient: This property allows the expected recipient to be configured. You may
enter the name directly or enter a String context variables. Leave this field blank to

allow any recipient.

388 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

http://www.oasis-open.org/committees/download.php/1048/WSS-SAML-06.pdf
http://www.oasis-open.org/committees/download.php/1048/WSS-SAML-06.pdf

 l Check Address: Select this check box to validate the "Address" attribute. Currently,
the Gateway only supports IPv4 addresses.

 l Check Validity Period: Select this check box to check the time period validity
period in the request. The permissible clock skew for validation is defined by the
cluster properties samlAssertion.validate.notBeforeOffsetMin and
samlAssertion.validate.notOnOrAfterOffsetMin.

Note: If there are no validity period constraints in the request message, then there is
nothing to check and validation (of the time period constraints) will always succeed.

Note that if any of the Subject Confirmation Data fields fail validation, the assertion will
not fail.

Step 8: Name Identifier

 Figure 130: (Non-SOAP) Validate SAML Token Properties - Step 8

Specify the name formats that are acceptable to the Gateway; optionally enter a subject
name qualifier:

 l Name Qualifier: Optionally enter a subject name identifier (for example,

"www.example.com"). You may reference context variables.

 l Format: Select one or more subject name formats that should be accepted by the
Gateway. Select the Unspecified check box if the subject name format is not
known. This will cause the Gateway to attempt to match the subject name

Chapter 6: XML Security Assertions 389

Layer 7 Policy Authoring User Manual, v8.2

identifier specified in the Name Qualifier field against the user login property. If
the Name Qualifier field is blank, then the Gateway will not verify the Name
Qualifier attribute value.

You can only select name formats applicable to the SAML version chosen in Step 2 of the
wizard.

Step 9: Conditions

 Figure 131: (Non-SOAP)Validate SAML Token Properties - Step 9

In this step, you can specify any conditions to be observed.

 l Check Assertion Validity Period: Select this check box to verify that the
SAML token is still within its validity period, using the current Gateway time. Clear
this check box to not check the validity period within the token.

 l Maximum Expiry Time: Specify the maximum allowable expiry time period for the
SAML token. The Gateway will use the earlier of the expiry date or the specified
period. This allows you to restrict the token's expiry date with an earlier date. (If
the specified date is later than the token's expiry date, then the token's date takes
priority.) Tokens that exceed the expiry time will cause policy consumption to fail
and audit message code 6108 will be logged.
The default is 0 (zero), which indicates that token expiration is not checked. The
maximum allowable expiry time is 100 years.

 l Audience Restriction: Enter an audience restriction constraint into the field. You

may reference context variables.

390 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Step 10: Embedded Signature

 Figure 132: (Non-SOAP)Validate SAML Token Properties - Step 10

Select the Require Embedded Signature check box to require an embedded signature in
the SAML token. An invalid signature will cause the assertion to fail.

Clear the check box if an embedded signature is not required.

(Non-SOAP) Verify XML Element Assertion
The (Non-SOAP) Verify XML Element assertion is used to immediately verify one or more
Signature elements in an XML message (either request, response, or a message context
variable).

This assertion supports the special prefix "local:" in the ID attribute, for matching the
namespace URI against the owning element rather than the attribute.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Context Variables Created by This Assertion

The (Non-SOAP) Verify XML Element assertion sets the following context variables with
details of the verification. Note: The <prefix> is set in the assertion properties (Figure
133) and is optional. There is no default.

Chapter 6: XML Security Assertions 391

Layer 7 Policy Authoring User Manual, v8.2

Variable Description

<prefix>
.elementsVerified

Lists the elements that were verified.

Detailed technical view

The elementsVerified are the target elements covered by the signature. A
ds:Signature element created by third-party software (or by the Gateway or
the Securespan XML VPN Client, if using WSS) may cover many elements
with a single signature. Each covered element has its own row in this table,
though the signatureElements column will contain the same ds:Signature
element for each such row. Multiple levels of multi-matching are possible:

 l The XPath may match more than one ds:Signature element. Every
matching Signature will be verified.

 l Each ds:Signature may have references to more than one covered
element. Each covered element will be included in its own row in the
results table.

<prefix>
.signatureMethodUris

Lists the signature methods used.

<prefix>
.digestMethodUris

Lists the digest methods used.

<prefix>
.signingCertificates

Lists the X.509 certificates used to sign the elements.

<prefix>
.signatureValues

Lists the signature values in Base-64 format.

<prefix>
.signatureElements

Lists the ds:Signature elements for each signature.

 Table 104: Context variables created by (Non-SOAP) Verify XML Element assertion

Note: Similar to the "(Non-SOAP) Decrypt XML Element Assertion" on page 374, all these
context variables will always contain the same number of values. All (except for
elementsVerified) may contain duplicate values as needed to ensure that the indexes always
line up with the corresponding element.

Tip: Use the "(Non-SOAP) Check Results from XML Verification Assertion" on page 372 to
check that these results contain expected values.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

392 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 2. Right-click<target>: (Non-SOAP) Verify XML Element [XPath] in the policy
window and select XML Element Verification Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

 Figure 133: (Non-SOAP) XML Element Verification Properties

 3. Configure the properties as follows:

Setting Description

Edit XPath Click [Edit XPath] to specify the dsig:Signature element(s) to verify.
For more information, see "Selecting an XPath" on page 154.

Variable prefix Optionally, enter a prefix that will be added to the context variables
created by this assertion. This prefix will ensure uniqueness and will
prevent the variables from overwriting each other when multiple
instances of this assertion appear in a policy.

For an explanation of the validation messages displayed, see Context

 Table 105: (Non-SOAP) XML Element Verification settings

Chapter 6: XML Security Assertions 393

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Variable Validation in the Layer 7 Policy Manager User Manual.

Signature Settings

Expect KeyInfo in
signature element
(default)

Choose this option to use the certificate identified by the <ds:keyInfo>
element within the signature in the message. This setting is the
default.

Note: The certificate is for the default recipient. To override this
default recipient, see "Changing the WSS Assertion Recipient" on
page 146.

Use selected
certificate for
signature
validation

Choose this option to browse for the certificate to use. Click [Select]
and then locate the certificate. The certificate details will appear in the
Name, Subject, and Issued By fields. Examine the details to ensure
that it is the correct certificate.

Look up certificate
by name

Choose this option to manually specify the certificate to use for
validation.

Note: Ensure that the specified certificate exists, otherwise the
assertion will fail.

Use certificate
from context

variable

Choose this option to specify a context variable that will resolve to the
certificate name at run time. If more than one certificate matches the
name, then the first valid certificate is used.

Always override
KeyInfo in
signature element
with selected
certificate

Select this check box to always use the selected certificate, regardless
of whether the <ds:keyInfo> element specifies a certificate.

Clear this check box to use the selected certificate only if the
<ds:keyInfo> element does not specify a certificate. If it does, it will be
used instead of the selected certificate. This setting is the default.

This option is available only when a certificate has been manually
selected.

Recognize only
the following ID
attributes

Select this check box to specify the attribute names to recognize when
looking for the elements that a signature may reference.

To add an attribute:

 1. Click [Add].

 2. Enter the ID attribute either as a NAME (e.g., NewAttr)
or {URI}NAME (e.g.,
{urn:oasis:names:tc:SAML:2.0:assertion}NewAttr).

 3. Click [OK].

To remove an attribute:

 1. Select the line to remove.

 2. Click [Remove].

394 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Clear this check box to recognize only the default set of ID attributes:

{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd}Id

{http://schemas.xmlsoap.org/ws/2002/07/utility}Id

{http://schemas.xmlsoap.org/ws/2003/06/utility}Id

{urn:oasis:names:tc:SAML:1.0:assertion}AssertionID

{urn:oasis:names:tc:SAML:2.0:assertion}ID

Id

id

ID

Note: The special prefix "local:" in the ID attribute matches the
namespace URI against the owning element rather than the attribute.
All other prefixes are ignored.

 4. Click [OK].

Process RSTR Response Assertion
The Process RSTR Response assertion takes an RSTR response message as an input and
processes this message to get the security context.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Context Variables Created by This Assertion

The Process RSTR Response assertion sets the following context variables with details
about the security context. Note: The default <prefix> is "rstrResponseProcessor" and
can be changed in the assertion properties (Figure 134).

Variable Description

<prefix>.token Stores the token from the security context (either SAML or Security
Context Token).

<prefix>.createTime Stores the create time of the secure conversation session, in absolute
UTC time.

<prefix>.expiryTime Stores the expiry time of the secure conversation session, in absolute
UTC time.

<prefix>. Stores the server entropy, if the RSTR response message contains an

 Table 106: Context variables created by Process RSTR Response assertion

Chapter 6: XML Security Assertions 395

Layer 7 Policy Authoring User Manual, v8.2

Variable Description

serverEntropy entropy. This variable does not apply to SAML Tokens.

<prefix>.fullKey Stores the full key, if the RSTR response message contains an
encrypted key or a binary secret.

<prefix>.keySize Stores the size of the key, in bits, from the RSTR response. Contains
zero if the key size is not present.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Process RSTR Reponse in the policy window and select RSTR
Response Processor Properties or double-click the assertion in the policy window.
The assertion properties are displayed.

 Figure 134: RSTR Response Processor Properties

 3. Choose the token type to be requested: SAML or Security Context Token. If SAML,
select the SAML version (1.1 or 2.0).

 4. Optionally, enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the variables from
overwriting each other when multiple instances of this assertion appear in a policy.

The default prefix is rstrResponseProcessor.

For an explanation of the validation messages displayed, see Context Variable
Validation in the Layer 7 Policy Manager User Manual.

 5. Click [OK].

396 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Protect Against Message Replay Assertion
The Protect Against Message Replay assertion is used to protect the Gateway against
possible replay attacks. This replay protection can either be cluster-wide (default) or per
node, depending on the setting of the cluster property
cluster.replayProtection.multicast.enabled.

Note the following important issues when using this assertion:

 l Depending on the expiry period set in the assertion, using the Protect Against
Message Replay assertion in a Gateway cluster may increase request message
processing time and require more memory. To mitigate this, place this assertion
after a Authenticate User or Group or Authenticate Against Identity Provider
assertion to help confine the protection to successfully authenticated messages,
thereby reducing system processing and memory requirements.

 l This assertion should not be used in any policy that will process messages from
JMS destinations that are configured with the "On completion" acknowledgment
mode without a specified failure queue.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about selecting the target identity for this assertion, see "Selecting a
Target Identity" on page 152.

Details for Advanced Users

The Protect Against Message Replay assertion uses an internal replay ID. This ID is based
on either a WS-Addressing Message ID or the timestamp of the request combined with
other information that depends on how the message was signed:

 l For a request message signed with a WS-Security one-shot X.509 signature, the
replay ID is comprised of the following:

 l The SHA-1 of the WS-Addressing MessageID, if present, or the timestamp
creation date

 l The signing certificate's subject and issuer DNs

 l The signing certificate's subject key identifier

 l For a request message signed with a key derived from a WS-SecureConversation
security context, the replay ID is the MessageID or timestamp created date and the
security context identifier.

Chapter 6: XML Security Assertions 397

Layer 7 Policy Authoring User Manual, v8.2

 l For a request message signed with a key derived from an EncryptedKey, the replay
ID is the MessageID or timestamp created date and the EncryptedKeySHA1 value.

 l For a request message signed with a WS-Security Kerberos token, the replay ID is
the MessageID or timestamp created date and the SHA-1 of the Kerberos token.

In all cases, the granularity of the timestamps is determined by the message sender.
While the Securespan XML VPN Client always uses at least millisecond-granular
timestamps (with a random count of up to one million nanoseconds, to reduce the
chance of an ID collision), many tools will use second-granular timestamps by default,
resulting in spurious duplicate IDs if MessageIDs are not used and more than one
message is sent per second per signing identity.

The Protect Against Message Replay assertion offers two different modes: Default or
Custom.

Default Mode

The assertion first attempts to use a signed WS-Addressing Message ID in the message
as the basis for replay protection. If the Securespan XML VPN Client is deployed, you can
enforce the presence of Message IDs by using the "Require WS-Addressing Assertion" on
page 477.

Note: A Message ID that is present but not signed will not be used by the Protect Against
Message Replay assertion. The assertion will use a signed time stamp instead, if one is
available.

If no Message ID is present (and the policy is not configured to enforce the presence of
one), the message time stamp is used for replay protection. The Gateway will reject a
message as a possible replay if detects any of the following:

 l A duplicate creation time stamp in a message

 l An expired time stamp is present

 l The creation time stamp is more than 30 days old.

In the Default mode, the Protect Against Message Replay assertion behaves exactly the
same as the WSS Replay Protection assertion found in versions prior to 5.2.

Custom Mode

In this mode, you may specify a context variable that contains the identifier to check and
how long the identifier should be saved. This allows you to verify non-SOAP messages. It
will not perform signature verification or validate the timestamp.

398 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Note: The Custom mode only deals with checking for replay of the identifier. The policy
administrator is responsible for ensuring that the identifier can be trusted and that the current
time is within the time stamp created/expires times.

The custom mode allows you to create your own custom replay protection policy
fragment when combined with other assertions.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Protect Against Message Replay in the policy window and
select Message Replay Protection Properties or double-click the assertion in the
policy window. The assertion properties are displayed.

 Figure 135: Message Replay Protection Properties

 3. Configure the properties as follows:

Setting Description

Default

Custom

Choose the mode of operation: [Default] or [Custom]. Refer to the
introduction to this topic for a description of each mode.

The [Default] mode replicates the functionality in the WSS Replay
Protection assertion in versions prior to 5.2. This mode requires no
further configuration.

Scope
The replay scope lets you specify a scope for the uniqueness of the
message identifier. For example, a message identifier scheme may be
global, or per service, or could use some other granularity.

 Table 107: Message Replay Protection settings

Chapter 6: XML Security Assertions 399

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Specify a scope for the uniqueness; context variables are permitted.
Examples:

Service scoped: ${service.oid}

Customer scoped: Customer 7 (maximum 250 chars)

Global scope: <leave blank>

Tip: The scoping can be performed by the policy author (for example,
by specifying an identifier as ${service.oid}/${myId}) but such an
approach risks collisions if other services do not use service-scoped
identifiers.

Identifier Variable Specify a context variable containing the Message ID to be
processed.You can enter the variable in the format ${myVar} or
myVar.

Ensure that this Message ID has been signed and is unique.

Expiry Specify how long the identifier should be saved. This expiry time is the
lifetime of the message—that is, the amount of time the identifier will be
stored in the cache from the time it was received. The default is 5
minutes.

Tip: The expiry time should be greater than 0 and less than 25 days.

 4. Click [OK] when done.

Require Encrypted Element Assertion
The Require Encrypted Element assertion is used to require that specified message
elements are encrypted in the target message.

You can add a Require Encrypted Element assertion for each element of the target
message that you want to verify as encrypted. This assertion supports WS-Security 1.0
and 1.1.

To learn more about changing the WSS Recipient for this assertion, see "Changing the
WSS Assertion Recipient" on page 146.

Note: Setting the WSS recipient to one other than "Default" will cause the Require Encrypted
Element assertion to always succeed.

This assertion is intended for use in a web service policy. It should be placed before the
routing assertion in a policy when targeting the request message.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

400 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click the <target>: Require Encrypted Element in the policy window and
select Encrypted Element Properties or double-click the assertion in the policy
window. The assertion properties are displayed. The title of the dialog will show
"Request", "Response", or "${variableName}", depending on the target message.

 Figure 136: Encrypted Element Properties

 3. Specify the XPath and indicate which element from the target message must be
encrypted in the code box. For detailed instructions on using the interface to build
your XPath, see "Selecting an XPath" on page 154.

 4. Select the check box next to the Encryption Methods that may be used in the
target message:

AES 128 CBC (default)
AES 192 CBC
AES 256 CBC
Triple DES
AES 128 GCM
AES 256 GCM

Chapter 6: XML Security Assertions 401

Layer 7 Policy Authoring User Manual, v8.2

Note: If your security provider does not support the "AES-GCM" encryption options,
encryption/decryption attempts may fail at runtime if these options are selected.

 5. Click [OK].

Require Signed Element Assertion
The Require Signed Element assertion is used to enforce that specific message elements in
the target message have been signed by the specified identity.

You can add a Require Signed Element assertion for each element of the target message
that you want to verify as signed. This assertion supports WS-Security 1.0 and 1.1.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about selecting the target identity for this assertion, see "Selecting a
Target Identity" on page 152.

Note: Setting the WSS recipient to one other than "Default" will cause the Require Signed
Element assertion to always succeed. For more information, see "Changing the WSS Assertion
Recipient" on page 146.

Note: The Require Signed Element assertion is intended for use in web service policies. If the
target is the response message, ensure the assertion is placed after the routing assertion. If the
target is the request message, the assertion should be placed before the routing assertion and
that a credential assertion is present in the policy: Require WS-Security Signature
Credentials, Require WS-Secure Conversation, Require WS-Security Kerberos Token Profile
Credentials, Require SAML Token Profile, or Require Encrypted UsernameToken Profile
Credentials.

Context Variables Created by This Assertion

The Require Signed Element assertion sets the following context variables. Note: The
<prefix> is defined in the assertion properties (Figure 137).

IMPORTANT: There is no default prefix—if no prefix is specified in the properties, then no
context variables will be set by this assertion.

Variable Description

${<prefix>.element} Contains the signature element.

${<prefix>.token.type} Contains the token type, retrieved from the following sources for each

 Table 108: Context variables created by Require Signed Element assertion

402 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Variable Description

token type:

 l For Kerberos, from a WSS Kerberos assertion

 l For SAML, from a version 1.1 or 2.0 SAML token

 l For SymmetricKey, from an EncryptedUsernameToken or
Require WS-Secure Conversation assertion

 l For X.509, from a BinarySecurityToken, Issuer/Serial reference
or SubjectKeyIdentifier reference

${<prefix>.token.
element}

Contains the security token element, such as a binary security token.
May be empty for some token types.

${
<prefix>
.token.attributes.*}

Contains the token attributes; one variable will be created for each
attribute. Note that certain attributes may be empty depending on the
token type.

 l ${<prefix>.token.element}: .

 l ${<prefix>.token.attributes.*}:

 l For the X.509 token type, the available attributes are the
same as for a certificate.

 l For the SAML token type, the following attributes may be
present:

issuer.certificate: The certificate of the SAML issuer.
subject.certificate: The certificate of the SAML subject.
signing.certificate: The certificate used to sign the
message.

For each of these certificate attributes, the certificate
attributes are available.

To learn more about the certificate attributes, see
"Certificate Attributes Variables" under Context Variables
in the Layer 7 Policy Manager User Manual.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Require Signed Element in the policy window and select
Signed Element Properties or double-click the assertion in the policy window. The
assertion properties are displayed. The title of the dialog will show "Request",
"Response", or "${variableName}", depending on the target message.

Chapter 6: XML Security Assertions 403

Layer 7 Policy Authoring User Manual, v8.2

 Figure 137: Signed Element Properties

 3. Specify the XPath and indicate which element from the target message must be
signed in the code box. For detailed instructions on using the interface to build
your XPath, see "Selecting an XPath" on page 154.

 4. Under Accepted Signature Digests, select which digest algorithms are supported
in the signature. By default, all the following signature digests are accepted: SHA-
1, SHA-256, SHA-384, SHA-512.

 5. For Variable Prefix, enter a prefix that will be added to the context variables
created by this assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this assertion
appear in a policy.

For an explanation of the validation messages displayed, see Context Variable
Validation in the Layer 7 Policy Manager User Manual.

 6. Click [OK].

404 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Require Timestamp Assertion
The Require Timestamp assertion is used to enforce the presence of a timestamp in the
target message. When this assertion is added to a policy, the Gateway will check that the
timestamps adhere to all of the following conditions (all time comparisons are against the
 Gateway time):

 l The SOAP header in the target message contains a valid <wsu:Timestamp>
element.

 l If a created date is present in the timestamp, the date is no more than one minute
in the future.

 l An expiry date is present in the timestamp and that date is no more than one
minute in the past.

 l An expiry time is present in the timestamp and the current time of the Gateway is
no later than the <wsu:Created> time + the Maximum Expiry Time configured in
this assertion or the request SOAP <wsu:Expires> time, whichever occurs earlier.

You can optionally specify that a security signature be required for all timestamps.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about selecting the target identity for this assertion, see "Selecting a
Target Identity" on page 152.

To learn more about changing the WSS Recipient for this assertion, see "Changing the
WSS Assertion Recipient" on page 146.

Notes: (1) Timestamps in a request message, even if invalid or expired, are not checked unless
the Require Timestamp assertion is present in a policy. 2) This assertion does not override the
duration of the timestamp in the message—it simply allows a timestamp to be longer than the
default 5 minutes allowed by the Require WS-Security Signature Credentials assertion. If the
Securespan XML VPN Client is used to add WSS headers to the message, the timestamp
duration will always be 5 minutes, regardless of what other timestamp assertions are used.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

Chapter 6: XML Security Assertions 405

Layer 7 Policy Authoring User Manual, v8.2

This assertion can be used immediately. Further configuration is not necessary
unless you want to change the default settings. (Note the positioning of this
assertion in the policy if you use the default setting of "Require Signature"—see
Table 1.)

 2. To change the settings, right-click <target>: Require [Signed] Timestamp in the
policy window and select Timestamp Properties or double-click the assertion in
the policy window. The assertion properties are displayed.

 Figure 138: Timestamp Properties

 3. Configure the properties as follows:

Setting Description

Target Message Select the message to check for a timestamp:

 l Request: The request message will be checked.

 l Response: The response message will be checked.

 l Other Context Variable: A context variable will be checked.
This context variable must be of type "message" and must be
predefined or has been set in the policy prior to the Require
Timestamp assertion. For more information on Message
variables, see Context Variables in the Layer 7 Policy Manager
User Manual.

Maximum Expiry
Time

Select the unit of measure from the drop-down list (milliseconds,
seconds, minutes, hours), then enter the maximum permitted expiry
time. Fractional measurements are permitted. An expiry time of '0'
(zero) means the request expires immediately. The default is 60
minutes, with a one minute grace period.

Require Signature Select this check box to require that the timestamp be digitally signed.
This setting is the default.

 Table 109: Timestamp settings

406 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

If a signature is required, one of the following assertions must appear
before the Require Timestamp assertion in the policy:

 l Require WS-Security Signature Credentials

 l Require WS-Security Kerberos Token Profile Credentials

 l Require WS-Secure Conversation

 l Require Encrypted UsernameToken Profile Credentials

 l Require SAML Token Profile (using the "Holder-of-Key"
subject confirmation method, with Require Message Signature
 enabled, in step 6 of the SAML Token Profile Wizard).

 4. Click [OK] when done.

Sign Element Assertion
The Sign Element assertion is used to select message elements to be signed in the target
message.

 l If the target is the response message, signing will occur automatically.

 l If the target is the request message or a message context variable, then the Add or
Remove WS-Security assertion must be added after the Encrypt Element assertion
in the policy to perform the signing.

You can add a Sign Element assertion for each element of the target message that you
want signed. This assertion supports WS-Security 1.0 and 1.1.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about selecting a private key for this assertion, see Selecting a Custom
Private Key in the Layer 7 Policy Manager User Manual.

To learn more about changing the WSS Recipient for this assertion, see "Changing the
WSS Assertion Recipient" on page 146.

Notes: The Sign Element assertion is intended for use in web service policies. If the target is
the response message, ensure the assertion is placed after the routing assertion. If the target is
the request message, the assertion should be placed before the routing assertion.

Using the Assertion

 1. Do one of the following:

Chapter 6: XML Security Assertions 407

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Sign Element in the policy window and select Sign Element
Properties or double-click the assertion in the policy window. The assertion
properties are displayed. The title of the dialog will show "Request", "Response", or
"${variableName}", depending on the target message.

 Figure 139: Sign Element Properties

 3. Specify the XPath and select the target element to be sign from the code box. For
detailed instructions on using the interface to build your XPath, see "Selecting an
XPath" on page 154.

 4. For Signature Key Reference, select the method to use to include the SSL
certificate for the Gateway:

 l BinarySecurityToken (BST): The certificate is embedded within the message
and does not require the recipient to already possess a copy of the signing
certificate. This results in larger messages, but is more compatible. This setting
is the default.

408 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l Signed: Select the Signed check box if the BinarySecurityToken must be
digitally signed.

 l SubjectKeyIdentifier (SKI): Use SecurityTokenReference containing the
SubjectKeyIdentifier (SKI). This produces smaller messages, but at the risk of
decreased compatibility.

 l Issuer Name/Serial Number: Use a SecurityTokenReference containing the
certificates issuer distinguished name and serial number. This produces smaller
messages, but at the risk of decreased compatibility.

 5. For the Signature Digest Algorithm, select one of the following options:

 l Automatic: The algorithm used for signature digest is determined by the
wss.decorator.digsig.messagedigest cluster property.

 l Any setting other than 'Automatic': The selected digest algorithm is used,
overriding the setting in the wss.decorator.digsig.messagedigest cluster property.
The selected digest will be used for both the signature method and the digest
method.

Note: If the selected combination of signing key type and digest algorithm has no
corresponding signature method implementation (for example, signing with a DSA
private key with any digest algorithm other than SHA-1) then the signature will fail
when the decoration requirements are later applied to the message.

 6. Click [OK] when done.

Use WS-Security 1.1 Assertion
The Use WS-Security 1.1 assertion indicates that the policy is compliant with WS-Security
1.1. It ensures that if the policy is configured to perform WS-Security processing on the
response, the Gateway will apply SignatureConfirmation elements to the decorated
response.

A policy is WS-Security 1.1 compliant if it includes these elements:

 l the Use WS-Security 1.1 assertion

 l at least one WS-Security signing/encryption assertion enforced on the request (for
example, Require WS-Security Signature Credentials, Require WS-Secure
Conversation, Sign Element, Encrypt Element)

 l at least one WS-Security signing/encryption assertion acting on the response (for
example, Add Timestamp, Sign Element, Encrypt Element)

Chapter 6: XML Security Assertions 409

Layer 7 Policy Authoring User Manual, v8.2

This assertion has no impact on the Securespan XML VPN Client and it has no effect if
added to a policy that does not otherwise require WS-Security.

Note: A response message will likely be rejected if 1.1-style WS-Security is expected and the
Use WS-Security 1.1 assertion is not present in the policy.

Using the Assertion

 l Add the assertion as described in "Adding an Assertion" on page 112.

The assertion is added to the policy window; no further configuration is required.

410 Chapter 6: XML Security Assertions

Layer 7 Policy Authoring User Manual, v8.2

Chapter 7:
 Message Validation/

Transformation Assertions

Notes: (1) Depending on which Gateway product you have installed, not all the assertions
shown below may be available. See Features by Product in the Layer 7 Policy Manager User
Manual for a list of which features are available for each product. (2) This category may also
include custom-created encapsulated assertions. For more information, see "Working with
Encapsulated Assertions" on page 126.

In the Policy Manager, the following assertions are available in the Message
Validation/Transformation category of the [Assertions] tab:

Character Encoding 412

Add or Remove XML Element(s) Assertion 414

Add WS-Addressing Assertion 416

Context Variables Created by This Assertion 416
Applying the WS-Addressing Elements 416
Signing the WS-Addressing Elements 417

Apply JSON Transformation Assertion 419

Apply XSL Transformation Assertion 424

Context Variables Created by This Assertion 425
Compress Messages to/from SecureSpan XVC Assertion 429

Customize Error Response Assertion 430

Decode MTOM Message Assertion 432

Encode/Decode Data Assertion 435

Encode to MTOM Format Assertion 437

Enforce WS-Security Policy Compliance Assertion 441

Enforce WS-I BSP Compliance Assertion 441

Enforce WS-I SAML Compliance Assertion 443

Evaluate JSON Path Expression Assertion 445

Context Variables Created by This Assertion 445
Evaluate Regular Expression Assertion 449

Context Variables Created by This Assertion 450
Evaluate Request XPath Assertion 458

Context Variables Created by This Assertion 458
Evaluate Response XPath Assertion 461

Context Variables Created by This Assertion 462
Evaluate WSDL Operation Assertion 465

Process SAML Attribute Query Request Assertion 466

Chapter 7: Message Validation/ Transformation Assertions 411

Layer 7 Policy Authoring User Manual, v8.2

Context Variables Created by This Assertion 466
Process SAML Authentication Request Assertion 472

Context Variables Created by This Assertion 472
Replace Tag Content Assertion 475

Require WS-Addressing Assertion 477

Context Variables Created by This Assertion 477
Set SAML Response Status Code Assertion 480

Translate HTTP Form to MIME Assertion 482

Translate MIME to HTTP Form Assertion 484

Validate Certificate Assertion 486

Context Variables Created by This Assertion 486
Validate HTML Form Data Assertion 488

Validate JSON Schema Assertion 490

Validate MTOM Message Assertion 493

Validate or Change Content Type Assertion 495

Validate SOAP Attachments Assertion 497

Validate XML Schema Assertion 499

The Message Validation/Transformation assertions configure the XML transformations
and validation schemas applied to service messages.

Character Encoding
HTTP PUT and POST requests, as well as most HTTP responses, typically include a Content-
Type header that declares the kind of content being returned. For text documents like
XML and HTML, the Content-Type header can include an additional "encoding"
parameter declaring how the characters in the content were encoded into bytes for
transfer. For example, the most common Content-Type for XML documents is:

Content-Type: text/xml; charset="utf-8"

Web servers often infer the Content-Type for static files based on the file extension; some
may even read the first few bytes of the file to make a more informed deduction.
Occasionally, systems will send HTTP requests or responses with a Content-Type header
that doesn't match the contents, either because the system is unable to extrapolate the
actual type of the content, or because it has guessed incorrectly.

The Evaluate Regular Expression assertion works with characters rather than bytes, so it
needs to decode the content before it can evaluate a regular expression against it. In
order to decode the content, this assertion needs to know the encoding scheme that
was used originally.

412 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

If the Content-Type header is missing or has no "charset" parameter, the Gateway will
assume the content was encoded with ISO8859-1 (as per the RFC2616 HyperText Transfer
Protocol). For content that only contains 7-bit characters (i.e., code points between
U+0000 and U+007F), both UTF-8 and ISO8859-1 will encode identical bytes, so this class
of error will not cause problems. However, other encodings, such as UTF-16, will still have
issues.

Note: UTF-8 can encode any Unicode character, including those used in the vast majority of
the world's languages, whereas ISO8859-1 is restricted to a small subset of characters,
primarily ones that are relevant to Western European languages. There are many other non-
Unicode character sets, each designed for use in different locales, but ISO8859-1 is the most
common in North America and is the default for Microsoft Windows.

The following are examples of characters that cannot be encoded using 7 bits (ISO8859-1
encodes them using bytes with numeric values > 127, whereas UTF-8 encodes them using
multiple bytes):

 l "smart quotes" (also known as curly quotes)

 l en and em dashes (not dashes or hyphens)

 l copyright © and trademark ® ™ symbols

 l accented characters

 l currency symbols other than $

Summary

If the assumed or declared encoding is ISO8859-1, the Evaluate Regular Expression
assertion will never fail due to a character conversion error, because any byte can be
decoded into a valid ISO8859-1 character. However, if the content is assumed or declared
to be ISO8859-1 but the content was actually encoded with UTF-8 and contains non-7-bit
characters, the document may be silently corrupted.

In this case, enter "UTF-8" in the Override character encoding field to correctly decode the
content.

On the other hand, if the content is assumed or declared to have been encoded with
UTF-8, but the content actually contains 8-bit ISO8859-1 characters, the Gateway will
likely throw an exception during the decoding process and the Evaluate Regular
Expression assertion will fail, since UTF-8 has a prescribed syntax for non-7-bit characters
that few ISO8859-1 sequences will match accidentally.

In this case, enter "ISO8859-1" in the Override character encoding field to correctly decode
the content.

Chapter 7: Message Validation/ Transformation Assertions 413

Layer 7 Policy Authoring User Manual, v8.2

Add or Remove XML Element(s) Assertion
The Add or Remove XML Element(s) assertion is used to add or remove XML element to or
from a target message—for example, individual signatures. An example context variable
input might be "requestXpath.elements" from an XPath expression (note the trailing "s"
in elements is mandatory). You can also reference specific index positions of multi-valued
context variables (for example, "requestXpath.elements[0]" to reference the first entry in
the variable).

This assertion is intended to be used with context variables set by the following
assertions: Sign Element, Evaluate Request XPath, or Evaluate Response XPath.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Note: The Add or Remove XML Element(s) assertion will not work on messages that have been
modified by the "Apply XSL Transformation Assertion" on page 424. The audit "Message is not
XML" will be recorded if you try.

Using the assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Add or Remove XML Element Properties
automatically appear; when modifying the assertion, right-click <target>: Add or
Remove XML Elements in the policy window and select Add or Remove XML
Elements Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

414 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 140: Add or Remove XML Elements Properties

 3. Configure the properties as follows.

Setting Description

Variable Name of
Existing Element

If you are adding a new XML element, enter the name of the context
variable containing the existing XML element to which you are adding
the new element.

If you are removing an element, specify the context variable that
contains a reference to remove a specific signature or other element
(s). This variable must have been set by one of the assertions listed at
the beginning of this topic.

Remove Element
from Document

Select this option to remove the XML element specified in the Variable
Name of Existing Element field.

Add New Element as
_______ of Existing
Element

Select this option to add a new XML element, then select the position in
which the new element will appear:

First Child
Last Child
Previous Sibling
Next Sibling

Example:
 <Parent>
 <PreviousSibling/>
 <ExistingElement>
 <FirstChild/>
 <LastChild/>
 </ExistingElement>
 <NextSibling/>
 </Parent>

Variable Name of

New Element

When adding an element, enter the context variable containing the
element to be added. This variable can contain an element selected by
one of the listed assertions at the beginning of this topic, or it can
contain a text string (provided it is a valid XML document fragment).

 Table 110: Add or Remove XML Elements settings

Chapter 7: Message Validation/ Transformation Assertions 415

Layer 7 Policy Authoring User Manual, v8.2

Note: The ".element" variable is not compatible with the Add or Remove XML Element(s)
assertion when the XPath assertion (Evaluate Request XPath or Evaluate Response
XPath) is used to capture the DOM node value.

 4. Click [OK] when done.

Add WS-Addressing Assertion
The Add WS-Addressing assertion is used to add WS-Addressing elements to a target
message and optionally sign them.

The WS-Addressing elements configured in this assertion's properties are added to the
SOAP header of the target message. If any WS-Addressing element to be added to the
target message already exists, the existing element will be removed and a new element
will be added. Any existing WS-Addressing elements in the SOAP message header will not
be modified unless they are overwritten by an element configured in this assertion.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Context Variables Created by This Assertion

The Add WS Addressing assertion sets the following context variables. Note: The default
<prefix> is "wsa" and can be changed in the assertion properties (Figure 141).

<prefix>.action
<prefix>.messageId

Where:

 l <prefix>.action contains the value of the wsa:Action value resolved at runtime

 l <prefix>.messageId contains the message identifier resolved at runtime

Tip: The <prefix>.action context variable can be used in routing assertions to ensure that any
outgoing SOAPAction or Content-Type action parameter matches any WS-Addressing Action
property value in the message being routed.

Applying the WS-Addressing Elements

If the target message for this assertion is the request or a context variable, you need to
add the Add or Remove WS-Security assertion after the Add WS-Addressing assertion in
the policy for the WS-Addressing elements to be applied:

Request: Add WS-Addressing
Request: Apply WS-Security

416 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

The Add or Remove WS-Security assertion is not required if the target is the response
message.

Signing the WS-Addressing Elements

To sign the WS-Addressing elements, use either of the following assertions:

 l "Configure WS-Security Decoration Assertion" on page 309 , with [Sign WS-
Addressing Headers] selected in the [Signing] tab

 l "Sign Element Assertion" on page 407, which is designed to sign any element
present in a message

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Add WS-Addressing Properties automatically
appear; when modifying the assertion, right-click <target>: Add WS-Addressing
in the policy window and select Add WS-Addressing Properties or double-click
the assertion in the policy window. The assertion properties are displayed.

 Figure 141: Add WS-Addressing Properties

Chapter 7: Message Validation/ Transformation Assertions 417

Layer 7 Policy Authoring User Manual, v8.2

 3. Configure the properties as described in Table 111. Note the following tips:

 l You may enter context variables of type String in any of the fields.

 l For fields with a drop-down list, you are free to enter your own value if a
suitable value does not appear in the list. Note that any value you enter will not
appear in the drop-down list (i.e., you must manually enter that value again in
the future if you wish to use it).

Setting Description

WS-Addressing
Namespace

From the drop-down list, select the WS-Addressing namespace to use
or enter your own namespace.

Action Specify how to obtain the wsa:Action value by selecting a strategy from
the drop-down list. The wsa:Action value is placed in the context
variable ${<prefix>.action}.

 l Obtain from target message: Select this option to first check
the SOAPAction header for the Action value. If not, found, try
the action Content Type parameter next; for example: content-
type=*;action=...

 l Explicit from WSDL (Input): Select this option to first search
for a wsaw:Action attribute on the wsdl:input element (child of
wsdl:portType->wsdl:operation) from the WSDL. If not found,
try searching for a soap:operation SOAPAction attribute from
the WSDL next.

 l Explicit from WSDL (Output): Select this option to search
for a wsaw:Action attribute on the wsdl:output element (child of
wsdl:portType->wsdl:operation) from the WSDL. Unlike the
option above, this option does not fall back onto the
soap:operation SOAPAction.

Note: The wsa:Action is a required element. If no value for
SOAPAction is found, then the assertion will fail.

Tip: If you would like to employ more than one strategy to obtain the
wsa:Action value, then add multiple instances of the assertion to the
policy.

MessageID Optionally enter a message identifier or select "<auto>" to have the
system automatically generate a unique message ID. If left blank, the
message ID will not be included in the SOAP header.

The message ID is made available in the context variable
${<prefix>.messageId}.

To Optionally enter the URI of the endpoint of the message. If left blank,
the endpoint will not be included in the SOAP header

From Optionally enter the URI of the endpoint from which the message
originated. If left blank, the originating endpoint will not be included in

 Table 111: Add WS-Addressing settings

418 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

the SOAP header

ReplyTo Address Optionally enter the URI of the endpoint to which replies for the request
message should be sent. If left blank, the ReplyTo address will not be
included in the SOAP header

FaultTo Address Optionally enter the URI of the endpoint to which fault messages
should be sent. If left blank, the FaultTo address will not be included in
the SOAP header

RelatesTo
MessageID

Optionally specify the ID of a related message. The only relationship
type currently supported is "Reply", with the value being
http://www.w3.org/2005/08/addressing/reply. If left blank, the
RelatesTo Message ID will not be included in the SOAP header

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

The default prefix is wsa.

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

 4. Click [OK] when done.

Apply JSON Transformation Assertion
The Apply JSON Transformation assertion lets you transform messages from JSON to XML,
or from XML to JSON.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Tips: (1) If you need to transform XML to JSON, consider the "Apply XSL Transformation
Assertion" on page 424 instead for greater control. In most cases, a JSON to XML
transformation would be followed by an the "Apply XSL Transformation Assertion" on page 424
to produce more sophisticated results. (2) Place a "Protect Against JSON Document Structure
Threats Assertion" on page 678 before this assertion to protect against DOS attacks.

Using the Assertion

 1. Do one of the following:

Chapter 7: Message Validation/ Transformation Assertions 419

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the JSON Transformation Properties automatically
appear; when modifying the assertion, right-click <target>: Apply JSON
Transformation in the policy window and choose JSON Transformation
Properties or double-click the assertion in the policy window. The assertion
properties are displayed.

 Figure 142: JSON Transformation Properties

 3. Configure the properties as follows:

Setting Description

Transformation Choose the type of transformation:

 l JSON To XML: Transforms JSON to XML.

 l XML To JSON: Transforms XML to JSON.

Tip: For transforming XML to JSON, consider the Apply XSL
Transformation assertion for greater control.

 Table 112: JSON Transformation Settings

420 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Transformation Convention Choose the convention to use for the transformation to control
the appearance of the transformed JSON object:

 l Standard: This option should be used for one-way
conversions from JSON to XML or (basic) XML to
JSON. Be aware that more complex XML structures
(such as namespace, attributes) may not be
transformed correctly. Do not use this option if round-
tripping is required (that is, JSON>XML>JSON, or
XML>JSON>XML).

Tip: For greater flexibility in XML-to-JSON
transformations, consider the "Apply XSL
Transformation Assertion" on page 424.

 l JSONML: This option provides a more robust
conversion of XML to JSON and is recommended if
round-tripping is required (XML>JSON>XML). The
JSONML convention contains rules for mapping more
complex XML structures to simpler JSON structures
and can offer a lossless conversion.

Note: For more details on choosing a convention so use, see
"Choosing a Transformation Convention" below.

Root Tag
Enter the root tag for the transformation convention. The root
tag is the root element name of the output XML message. You
may reference context variables.

The root tag text field is only enabled when the operation is
"JSON to XML" and the transformation convention is
"Standard".

Format Output Select this check box to format the transformed data to be
human readable.

Clear this check box to retain the native formatting of the
transformed data for reduced payload size. This setting is the
default.

Convert as Array Select this check box to convert the XML document/fragment
(using the JSONML convention) into JSON in "array form".

Clear this check box to convert the XML document/fragment
in "object form".

For more information, see http://www.jsonml.org/syntax/.

Omit Quotes from Numbers Select this check box to not enclose numbers within quotes;
for example: {"test": 123} . This reproduces Gateway
behavior prior to version 7.1.

Clear this check box to enclose numbers within quotes; for
example: {"test": "123"}. This is the default.

Note: The Gateway will omit quotes only for values that will not

Chapter 7: Message Validation/ Transformation Assertions 421

Layer 7 Policy Authoring User Manual, v8.2

http://www.jsonml.org/syntax/

Setting Description

have their string representation modified by a round trip
conversion to a numeric type and back. For example, the
value 1234.5678 will be emitted without quotes, but the value
123456789.1234 will be quoted because if it were treated as a
number its string representation would change to
"1.234567891234E8".

Choosing a Transformation Convention
Be aware that the JSON file format differs depending on whether the Standard or
JSONML conventions are used. For example:

 l XML to JSON using "Standard" will create an output in the standard JSON
format. This output can be used in later applications where standard JSON is
expected, but it will fail if the later application expects JSONML format.

 l XML to JSON using "JSONML" will create an output in the JSONML format. This
output can be used in later applications where JSONML is expected, but it will
fail if the later application expects the standard JSON format.

 l JSON to XML using "Standard" will expect the input to be in standard JSON
format. If it is in JSONML format, the assertion will fail.

 l JSON to XML using "JSONML" will expect the input to be in the JSONML format.
If it is in standard JSON format, the assertion will fail.

Note that this has implications if you intend to do a round-trip conversion: the
output from the first conversion must match the expected input format of the
returning conversion in the round trip, otherwise the Apply JSON Transformation
assertion will produce unexpected results or will fail.

 4. Choose the targets for both the Source and the Destination of the
transformation.

 l Request: Transformation will be applied to the request message.

 l Response: Transformation will be applied to the response message.

 l Other Message Variable: Transformation will be applied to the specified
context variable. This context variable must be of type "message" and must be
predefined or has been set in the policy prior to the Apply JSON
Transformation assertion. For more information on Message variables, see
"Context Variable Data Types" under "Context Variables" in the Layer 7 Policy
Manager User Manual.

Tip: The message target can also be set outside of the assertion properties. For more
information, see "Selecting a Target Message" on page 153.

422 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 5. Choose the [Test] tab to test your transformation before executing the policy. This
will allow you to detect and correct any errors prior to runtime. If a transform fails,
the error is displayed in the Resulting Output area.

 Figure 143: JSON Transformation Properties - [Test] tab

 a. Choose the Transformation from the drop-down list.

 b. Choose the Transformation Convention to use. Refer to "Choosing a
Transformation Convention" above for a detailed explanation.

 c. If transforming from JSON to XML using the Standard format, enter a Root
Tag. This root tag is to ensure that well-formed XML is created.

Example:

Suppose this is the input JSON:
{

Firstname: "Bob",
Lastname: "Smith"

}

Without a root tag, the resulting XML code will be:
<?xml encoding=”UTF-8>
<firstname>Bob</firstname>
<lastname>Smith</lastname>

Adding a root tag ensures that the results are well-formed:

Chapter 7: Message Validation/ Transformation Assertions 423

Layer 7 Policy Authoring User Manual, v8.2

<?xml encoding=”UTF-8>
<rootTag>

<firstname>Bob</firstname>
<lastname>Smith</lastname>

</rootTag>

 d. Select the Format Output check box to improve the readability of the output.
Clear this check box to display the output in its internal representation.

 e. Paste the input code in the Test Input box.

 f. Click [Test]. Examine the results in the Resulting Output box to see if this is
what you intended.

Note: When using the "Standard" transformation convention for JSON to XML, a null value is
treated the same as the string "null".

 6. Click [OK] when done.

Apply XSL Transformation Assertion
The Apply XSL Transformation assertion lets you define or specify an XSL stylesheet using
the XSL Transformations (XSLT) language. You can define a stylesheet any of the
following ways:

 l Configured in advance: Hard code a stylesheet in this assertion; this is embedded
within the policy and is always used for transformations

 l Monitor a URL:Policy Manager will monitor a specific URL and download the
latest stylesheet

 l Fetch URL during process: The stylesheet will be fetched from a URL within a
message.

The XSLT stylesheet specified in this assertion is applied to the message when the policy
is run. The transformed message is the one that is processed by subsequent policy
assertions and is eventually forwarded to the requestor (response) or service (request).

A policy can contain an Apply XSL Transformation assertion for both request and
response messages. If the assertion is for a Request, position it before the routing
assertion; if it is for a Response, position it after the routing assertion.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

424 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Notes: (1) For security reasons, the Apply XSL Transformation assertion does not support XSL
stylesheets or documents originating from external URIs (it ignores calls using the import or
include elements or the document() function). For more information about these elements,
please refer to http://www.w3.org/TR/xslt. (2) The Apply XSL Transformation assertion will
use the encoding of the current message for transformations; the XSL output encoding is
ignored. (3) To reference a context variable from this assertion, that variable must be defined
in an <xsl:param> element near the top of the stylesheet, within the <XSL:stylesheet>
element.

Context Variables Created by This Assertion

The Apply XSL Transformation assertion sets information about the <xsl:message>
element in the following context variables:

<prefix>.messages
<prefix>.messages.first
<prefix>.messages.last

Where:

 l <prefix> is defined in the assertion properties (default: xslt)

 l messages returns all the message elements in a multivalued context variable;
individual elements are available using indexing

 l messages.first returns the first message element (this is a "shortcut" variable that
is equivalent to ${<prefix>.messages[0]})

 l messages.last returns the last message element (this is a shortcut variable that is
equivalent to ${<prefix>.messages[n]}, where 'n' is the index of the last item, if
known ahead of time}

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the XSL Transformation Properties automatically
appear; when modifying the assertion, right-click <target>: Apply XSL
Transformation in the policy window and choose XSL Transformation Properties
or double-click the assertion in the policy window. The assertion properties are
displayed.

Chapter 7: Message Validation/ Transformation Assertions 425

Layer 7 Policy Authoring User Manual, v8.2

http://www.w3.org/TR/xslt

 Figure 144: XSL Transformation Properties

 3. Choose the target of the transformation:

 l Request: Transformation will be applied to the request message.

 l Response: Transformation will be applied to the response message.

 l Other Context Variable: Transformation will be applied to the specified
context variable. This context variable must be of type "message" and must be
predefined or has been set in the policy prior to the Apply XSL Transformation
assertion. For more information on Message variables, see "Context Variable
Data Types" under "Context Variables" in the Layer 7 Policy Manager User
Manual.

Tip: The message target can also be set outside of the assertion properties. For more
information, see "Selecting a Target Message" on page 153.

 4. Indicate which part of the request will be affected by the transformation under the
Apply to MIME part setting:

426 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l Enter 0 to transform the SOAP message only

 l Enter 1 to transform the first attachment to the message only

 l Enter higher values to transform the Nth attachment to a message (2 =
transform second attachment, 3 = transform third attachment, etc.)

Note: The Apply XSL Transformation assertion transforms only one MIME part at a
time. You can add multiple assertions to the policy if there are several MIME parts to
transform.

 5. From the Stylesheet Location drop-down list, specify where the stylesheet is
coming from:

Stylesheet Location Description

Configured in
advance

Choose this option to define an XSLT stylesheet that will be embedded
in the policy and used for all transformations.

 1. Specify the transformation using any of the following methods:

 l Manually type the code into the XSLT Stylesheet box or copy
and paste the code from another source.

 l Load the transformation from a URL by clicking [Fetch URL]
and then typing in the URL.

Tip: To configure options for the URL (for example, to specify
the credentials, SSL, or proxy options), click [HTTP Options]
to open the Manage HTTP Options dialog.

 l Load the transformation from a local file by clicking [Read File]
and then browsing to the appropriate file.

Note: The XSLT stylesheet maximum size is controlled by the
xslDownload.maxSize cluster property.

 2. Review the content of the XSL Stylesheet box and edit if
necessary. You can right-click within the box for some useful tools
to help you edit. For more information, see "Using the XML Editor"
on page 159.

Tip: You can use context variables in this assertion by inserting
xsl:param statements into the XSL Stylesheet box. The values of
the matching context variables will be passed to the compiled
stylesheet. For example, to use the variable ${foo} inside a
stylesheet, use this syntax:

<xsl:param name="foo" select="''"/>

…
 <xsl:variable name="bar" select="$foo"/>

 3. Optionally enter a name for the transformation in the Stylesheet
Name field. This name will appear next to the assertion name in
the policy development window. This will help you recognize the

 Table 113: Transformation stylesheet locations

Chapter 7: Message Validation/ Transformation Assertions 427

Layer 7 Policy Authoring User Manual, v8.2

Stylesheet Location Description

transformations more easily.

Monitor URL for
latest value

Choose this option to continuously monitor a location to ensure the
latest stylesheet is used. Type the address in the URL to monitor
field. The URL may contain context variables that will be resolved at run
time. By default, Gateway will download the stylesheet from this
address every 5 minutes.

Tip: To configure options for the URL (for example, to specify the
credentials, SSL, or proxy options), click [HTTP Options] to open the
Manage HTTP Options dialog.

Note: The XSLT stylesheet maximum size is controlled by the
xslDownload.maxSize cluster property.

Fetch from URL in
processing
instruction

(applicable only to
non-SOAP messages)

Choose this option to have Gateway retrieve the stylesheet from a
recognizable URL within a non-SOAP message.

 1. Define a list of regular expressions ("Regex") to ensure that
stylesheets are retrieved from only legitimate URLs:

 l To add an expression, click [Add] and then enter a regular
expression

 l To modify an expression, choose the expression and then click
[Edit]

 l To remove an expression, choose the expression and then click
[Remove].

You can add multiple expressions if necessary. You must define
at least one expression.

Example

You can enter an explicit URL, such as

http://somedomain.com/xsl/stylesheet.xsl or you can enter a
regex expression such as http[s]?://.*?/.*t\.xsl

This expression will allow:

http://hugh.l7tech.com/xsl/OrderProduct-request.xsl

But it will disallow:

http://hugh.l7tech.com/xsl/harmless.xsl

To learn about regular expressions, visit http://www.regular-
expressions.info/

 2. In the Allow messages with no stylesheet declaration check
box, indicate whether stylesheet references are mandatory.

 l Select this check box to permit SOAP messages to have no
stylesheet declarations

 l Clear this check box to enforce that every SOAP message must
have a URL pointing to an XSLT stylesheet to transform the
message. If none if found, a SOAP fault is generated.

428 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

http://www.regular-expressions.info/
http://www.regular-expressions.info/

 6. Select the appropriate XSLT version from the drop down.

 7. Enter a prefix that will be added to the context variables created by this assertion.
This prefix will ensure uniqueness and will prevent the variables from overwriting
each other when multiple instances of this assertion appear in a policy.

The default variable prefix is xslt.

For an explanation of the validation messages displayed, see Context Variable
Validation in the Layer 7 Policy Manager User Manual.

 8. Click [OK].

Compress Messages to/from SecureSpan XVC
Assertion

The Compress Messages to/from SecureSpan XVC assertion is used to indicate that
messages going to or coming from the Securespan XML VPN Client should be
compressed using the gzip algorithm. Compressing XML/SOAP messages can decrease
the transfer times and improve performance, especially for large HTTP payloads.

Message routing will proceed as normal when compression is in effect. The Gateway will
decompress the payload upon reception, then compress the response payload before
returning the message to the Securespan XML VPN Client.

When compression is in effect, the Gateway uses the uncompressed message size to
validate against the set limit (as defined by the io.xmlPartMaxBytes cluster property).

The Compress Messages to/from SecureSpan XVC assertion will always succeed, unless it
is configured to fail if it receives an uncompressed request. If you do not want your
Gateway to accept compressed messages, modify the request.compress.gzip.allow cluster
property.

Note: Messages are compressed only when submitted by the Securespan XML VPN Client, or if
the service endpoint is another Gateway. For more information, see the [Request HTTP Rules]
tab of the "Route via HTTP(S) Assertion" on page 529.

For more information, see Configuring HTTP Compression in the Securespan XML VPN
Client documentation.

Using the Assertion

 1. Do one of the following:

Chapter 7: Message Validation/ Transformation Assertions 429

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Compress Messages to/from SecureSpan XVC in the policy window
and select Compression Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

 Figure 145: Compression Properties

 3. Select the check box to cause the assertion to fail if the request could not be
compressed for whatever reason (this will be noted in the audit logs). Clear the
check box to always have the assertion succeed.

 4. Click [OK] when done.

Customize Error Response Assertion
The Customize Error Response assertion lets you configure the error response for a service.
You can select the following responses when an error is encountered:

 l Template response: Lets you define your own message to be returned. This is the
default.

 l Drop connection: When the policy fails, simply drop the connection without
providing any response.

Tip: For SOAP services, consider using the "Customize SOAP Fault Response Assertion" on
page 607 as well, as it contains SOAP-specific settings.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

430 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 2. Right-click Customize Error Response in the policy window and select Error
Response Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

 Figure 146: Error Response Properties

 3. Configure the error response:

Setting Description

Error Level Select the response to use for an error:

 l Template Response: The assertion will return the response
in the Response Body.

 l Drop Connection: The connection is simply dropped, with
no response ("stealth" mode).

Response HTTP

Status

Enter the HTTP status code to return. Alternatively, you may enter a
context variable that contains the status code.

Response Content-

Type

Enter the valid Content-Type header to return. Alternatively, you may
enter a context variable that contains the Content-Type.

 Table 114: Error Response settings

Chapter 7: Message Validation/ Transformation Assertions 431

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Extra Response

Headers

Optionally specify one or more custom HTTP headers to be inserted
into the custom error response (for example, to transmit application-
specific metadata).

Note: Be sure you are aware of the consequences of adding headers
to a message. If in doubt, please contact your system administrator.

To add a header:

 1. Click [Add].

 2. Enter the Name and Value of the header. You may reference
context variables in both fields.

 3. Click [OK]. The header is added to the list.

To modify a header:

 1. Select the header to modify and then click [Edit].

 2. Modify the Name or Value as required.

 3. Click [OK].

To remove a header:

 l Select the header to remove and then click [Remove].

Response Body Enter the text to be returned in the response. This text will be returned
as entered; the assertion performs no validation. You may include
context variables in the response body to provide additional
informational information about the error.

Note: The Response Body does not support use of a Document Type
Definition (DTD) for XML content.

[Include the policy
download URL as an
HTTP header]

Select this check box to indicate that the policy download URL is
included as an HTTP header in the response if it is required.

Clear this check box to not include the policy download URL in the
HTTP header in a response.

 4. Click [OK] when done.

Decode MTOM Message Assertion
The Decode MTOM Message assertion is used to process MTOM-optimized messages and
change them to regular SOAP messages. MTOM-optimized messages are based on the
Message Transmission Optimization Mechanism (MTOM) specification.

The target message for this assertion can be selected from within the assertion
properties or by right-clicking the assertion in the policy window and choosing "Select
Message Target". For more information on the latter, see "Selecting a Target Message"
on page 153.

432 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Tip: The "target message" in this assertion is the message that is being decoded. In the
assertion properties, this is the "Source Message". The "Target Message" in the properties is
simply the destination to hold the decoded message.

MIME Multipart Messages

A SOAP service normally does not permit MIME multipart messages unless it is explicitly
specified in the service's WSDL document or the policy contains an assertion that
processes MIME multipart. Adding a Decode MTOM Message assertion that targets a
request message in a policy will mean that the service(s) for that policy will permit MIME
multipart messages.

MTOM Messages and WS-Security

By default, the Gateway will automatically decode MTOM-encoded messages if the
message contains a WS-Security header that will be processed by the Gateway. The
decoder will remove the packaging, leaving a regular SOAP message for WS-Security
processing. The decoded MTOM message must be smaller than the permitted size for the
XML part of a message.

For more information on the cluster properties involved, refer to the following properties
in Gateway Cluster Properties in the Layer 7 Policy Manager User Manual:

mtom.decodeSecuredMessages
io.xmlPartMaxBytes

Note: Attachments to an decoded MTOM message will be approximately 1/3 larger after
decoding due to its Base64-encoding. This may cause the overall message size to exceed the
limit specified by the io.xmlPartMaxBytes cluster property.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Decode MTOM Message in the policy window and select
MTOM Decode Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

Chapter 7: Message Validation/ Transformation Assertions 433

Layer 7 Policy Authoring User Manual, v8.2

 Figure 147: MTOM Decode Properties

 3. Configure the properties as follows:

Setting Description

Input/Output

Source Message Specify which message should be decoded: Request, Response, or
a message context variable, if one has been defined by this point in the
policy. Message variables will appear as "${variable_name}" in the
drop-down list.

Tip: The Source Message can also be changed by right-clicking the
assertion in the policy window and choosing "Select Target
Message". For more information, see "Selecting a Target Message"
on page 153.

Target Message Specify the output message to hold the results of the decoding.
Choose from:

 l Default: Place the result back into the source message.

 l Request: Place the result into the request message.

 l Response: Place the result into the request message.

 l Message Variable: Place the result into the message context
variable specified below.

Message Variable If the Target Message is "Message Variable", enter the name of the
message context variable here, in the format: ${variable_name}. If the
variable does not already exist, it will be created.

Decode Settings

Require encoded Select this check box to require that the source message be MTOM-
encoded, otherwise the assertion will fail.

Clear this check box to not fail the assertion if the source message is

 Table 115: MTOM Decode Settings

434 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

not MTOM-encoded.

Remove
packaging

Select this check box to turn the message into a regular SOAP format.

Clear this check box to place any attachment into the message but
leave the message in MTOM format.

This option is useful if you want to route a message in MTOM format
but want to (for example) perform an XSL transformation or XML
Schema validation on the message (including the attachment data).

Tip: When a message is decoded, the XML message size is restricted
by the io.xmlPartMaxBytes cluster property. If the message is too large
to be converted, then the assertion will fail.

 4. Click [OK] when done.

Encode/Decode Data Assertion
The Encode/Decode Data assertion is used to encode data to and from Base64 and URL
Encoded formats.

 l For Base64: This assertion can encode variables of type String, Message, or X.509
Certificate into a String or Message Base64-encoded variable. It can decode a
String or Message variable into a String, Message, or X.509 Certificate variable.

 l For URL Encoding: This assertion supports encoding/decoding to/from a String
or Message variable.

To see the results of the encoding or decoding, audit the output variable using the "Add
Audit Detail Assertion" on page 600.

Note: Encoding and decoding will only be performed on the main (first) part of a Message
variable. Other MIME parts can be decoded using the 'parts' variables, but cannot be the target
of decoding. For example, use ${message.parts.2.body} to decode the body from the second
MIME part of the message. For more information on the 'parts' variables, see "Transport Layer
Variables" under Context Variables in the Layer 7 Policy Manager User Manual.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

Chapter 7: Message Validation/ Transformation Assertions 435

Layer 7 Policy Authoring User Manual, v8.2

 2. Right-click the assertion in the policy window and select Encode/Decode Data
Properties or double-click the assertion in the policy window. The assertion
properties are displayed. (Note that depending on how the assertion is
configured, it may appear in the policy as "Base64 Encode...", "Base64 Decode...",
"URL Encode...", or "URL Decode...".)

 Figure 148: Encode/Decode Properties

 3. Configure the properties as follows:

Setting Description

Encode/Decode From the drop-down list, select the operation you wish to perform:

 l Base64 Encode: Select this to encode any supported
variable type (String, Message, X.509 Certificate) into a String
or Message Base64 encoded variable.

 l Base64 Decode: Select this to decode a String or Message
variable into a String, Message of any supported Content-
Type, or X509 Certificate.

 l Base16 (hex) Encode: Select this to use hex (Base16)
encoding.

 l Base16 (hex) Decode: Select this to use hex (Base16)
decoding.

 l URL Encode: Select this to encode to a text variable (String
or Message).

 Table 116: Encode/Decode Data settings

436 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

 l URL Decode: Select this to decode from a text variable to a
text variable.

Source Variable Specify the context variable that contains the input value. You may
enter the variable with or without the "${ }" wrapper.

Note: Multivalued context variables are not supported.

Target Variable Specify the context variable that will hold the output. If this variable
does not already exist, it will be created. As with the Source Variable,
you may include the "${ }" wrapper but this is not necessary.

Target Options

Data Type Select whether the target variable is of type String, Message, or
X.509 Certificate. For more information about variable data types,
see "Set Context Variable Assertion" on page 656.

Content-Type Specify the Content-Type for the target variable. Available only when
the data type is 'Message'.

Encode/Decode Options

Character
Encoding

Enter the character encoding to use during encode/decode.

Strict Select this option to scan the Base64 data for illegal Base64
characters. If any are found, the assertion will fail.

Clear this option to prevent the assertion from failing due to illegal
Base64 characters.

This option is available only when performing a 'Base64 Decode'.

Multiple lines Select this option to break the output into multiple lines during
encoding.

Clear this check box to render the output in a single line.

Line break every X
characters

If the output is being broken into separate lines, specify where the line
break should occur in the encoded Base64 data. The default is after
every 76 characters.

 4. Click [OK] when done.

Encode to MTOM Format Assertion
The Encode to MTOM Format assertion is used to create optimized messages. It will
convert a regular SOAP message to an optimized MIME multipart/related serialization
format based on the Message Transmission Optimization Mechanism (MTOM)
specification.

Chapter 7: Message Validation/ Transformation Assertions 437

Layer 7 Policy Authoring User Manual, v8.2

The target message for this assertion can be selected from within the assertion
properties or by right-clicking the assertion in the policy window and choosing "Select
Message Target". For more information on the latter, see "Selecting a Target Message"
on page 153.

Tip: The "target message" in this assertion is the message that is being encoded. In the
assertion properties, this is the "Source Message". The "Target Message" in the properties is
simply the destination to hold the encoded message.

SOAP 1.2 is required for standard MTOM encoding. If a SOAP 1.1 message is encoded, it
will result in a non-standard optimized message. MTOM encoding will not change the
SOAP version.

Auditing MTOM Messages

When an MTOM-encoded message is audited, only the XML part is recorded. Any
attachments are not included in the audited data.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Encode to MTOM Format in the policy window and select
MTOM Encode Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

438 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 149: MTOM Encode Properties

 3. Configure the properties as follows:

Setting Description

Input/Output

Source Message Specify which message should be encoded: Request, Response, or
a message context variable, if one has been defined by this point in the
policy. Message variables will appear as "${variable_name}" in the
drop-down list.

Tip: The Source Message can also be changed by right-clicking the
assertion in the policy window and choosing "Select Target
Message". For more information, see "Selecting a Target Message"
on page 153.

Target Message Specify the output message to hold the results of the encoding.
Choose from:

 l Default: Place the result back into the source message.

 l Request: Place the result into the request message.

 l Response: Place the result into the request message.

 l Message Variable: Place the result into the message context
variable specified below.

 Table 117: MTOM Encode Settings

Chapter 7: Message Validation/ Transformation Assertions 439

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Message Variable If the Target Message is "Message Variable", enter the name of the
message context variable here, in the format: ${variable_name}. If the
variable does not already exist, it will be created.

Encode Settings

Always encode Select this check box to always encode the message, even if no
attachments will be created. This setting is the default.

Clear this check box to skip encoding if no elements were found or if
elements were found but were below the "Optimization threshold".

Optimization
threshold

Optionally enter a threshold size for encoding. The MTOM encoding
will not occur if each individual selected element content is smaller than
this threshold and "Always encode" is not selected. When selected
element content is larger than the threshold size, it will be optimized.
When the threshold is not met, the element's content is not optimized.

Optimization

XPaths

This section lets you enter specific XPaths to select the elements
containing content for optimization.

 l To add an XPath, click [Add]. See "Selecting an XPath" on
page 154 for more details.

 l To modify an XPath on the list, select it and then click [Edit].
See "Selecting an XPath" on page 154 for more details.

 l To remove an XPath from the list, select it and then click
[Remove].

Fail if element not
found

Select this check box to have the assertion fail if any of the optimization
XPaths do not match any elements.

Clear this check box to not fail the assertion if no elements are found.

 4. Click [OK] when done.

440 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Enforce WS-Security Policy Compliance Assertion
The Enforce WS-Security Policy Compliance assertion helps you construct a policy that is
compliant with the WS-Security Policy specifications. When this assertion is present, the
policy validation window will warn you of any WS Security Policy errors when any of the
following assertions are present in the policy:

Encrypt Element (header, body only)
Require Timestamp
Require WS-Security Signature Credentials
Require WS-Security UsernameToken Profile Credentials
Require SSL or TLS Transport
Require SSL or TLS Transport with Client Authentication
Sign Element (header, body only)

Note: When you download a WSDL of a policy containing the Enforce WS-Security Policy
Compliance assertion, the WS-Security Policy is attached. If the original WSDL contains an
attached policy, that policy is replaced by the Gateway's WS-Security Policy for the service.
For more information on downloading a WSDL, see WSDL Proxy & Policy Downloads in the
Layer 7 Installation and Maintenance Manual.

The Enforce WS-Security Policy Compliance assertion supports WS-Security Policy version
1.1. For more information, refer to
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf.

Using the Assertion

 l Add the assertion to the policy development window. For more information, see
Adding an Assertion.

The assertion is added to the policy window; no further configuration is required.

Enforce WS-I BSP Compliance Assertion
The Enforce WS-I BSP Compliance assertion checks incoming and/or outgoing requests
for compliance with the WS-I Basic Security Profile 1.0 specifications.

Use this assertion to:

 l Restrict encryption, signature, algorithms, etc., to those permitted

 l Ensure strict adherence to namespaces

 l Enforce adherence for required/restricted elements, attributes, and attribute
values

Chapter 7: Message Validation/ Transformation Assertions 441

Layer 7 Policy Authoring User Manual, v8.2

http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf

 l Enforce referencing constraints (for example, reference by ID for local security
tokens).

This assertion implements the rules contained in the Basic Security Profile Version 1.0
specifications located at: http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html.

To view the audit records generated by this assertion, see Gateway Audit Events in the
Layer 7 Policy Manager User Manual.

Note: When the Enforce WS-I BSP Compliance assertion is present in a policy path, it performs
validations to help ensure compliance. For example, you will receive a validation error if an
Encrypt Element assertion used AES 192 bit encryption.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Enforce WS-I BSP Compliance in the policy window and select WS-I
BSP Compliance Properties or double-click the assertion in the policy window.
The assertion properties are displayed.

 Figure 150: WS-I BSP Compliance Properties

 3. Configure the properties as follows:

442 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

Setting Description

Check Request
Message

Select this check box to check request messages for conformance to
WS-I BSP specifications. Clear this check box to not check requests for
WS-I BSP conformance.

This setting is selected by default if the assertion is placed before the
routing assertion in the policy.

Check Response
Message

Select this check box to check response messages for conformance to
WS-I BSP specifications. Clear this check box to not check responses
for WS-I BSP conformance.

This setting is selected by default if the assertion is placed after the
routing assertion in the policy.

Audit only Select Audit only to generate an audit record when non-
conformance in the request or response is detected. No SOAP fault
occurs and the assertion does not fail.

Audit and Fail Select Audit and Fail to generate both an audit record and a SOAP
fault when non-conformance in the request or response is detected;
the assertion also fails.

Fail assertion Select Fail assertion to generate a SOAP fault and fail the assertion
when non-conformance in the request or response is detected. No
audit record is generated.

 Table 118: WS-I BSP Compliance Properties settings

Tip: The audit record indicates the rule that was broken (Rxxxx). You can look up the
rule on www.ws-i.org/Profiles/BasicSecurityProfile-1.0.htmlto see more information.
No audit record is created when a request or response conforms to the specifications.

 4. Click [OK] when done.

Enforce WS-I SAML Compliance Assertion
The Enforce WS-I SAML Compliance assertion checks incoming and/or outgoing requests
for compliance with the SAML Token specifications.

Use this assertion to:

 l Ensure strict adherence to namespaces

 l Enforce adherence for required/restricted elements, attributes, and attribute
values

 l Enforce referencing constraints (for example, reference by ID for local security
tokens).

Chapter 7: Message Validation/ Transformation Assertions 443

Layer 7 Policy Authoring User Manual, v8.2

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

This assertion implements the rules contained in the SAML Token section of the Basic
Security Profile Version 1.0 specifications located at http://www.ws-
i.org/Profiles/BasicSecurityProfile-1.0.html.

To view the audit records generated by this assertion, see Gateway Audit Events in the
Layer 7 Policy Manager User Manual.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Enforce WS-I SAML Compliance in the policy window and select WS-I
SAML Compliance Properties or double-click the assertion in the policy window.
The assertion properties are displayed.

 Figure 151: WS-I SAML Compliance Properties

 3. Configure the properties as follows:

Setting Description

Check Request
Message

Select this check box to check request messages for conformance to
the SAML Token section of the WS-I BSP specifications. Clear this
check box to not check requests for conformance.

This setting is selected by default if the assertion is placed before the
routing assertion in the policy.

 Table 119: WS-I SAML Compliance Properties settings

444 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

Setting Description

Check Response
Message

Select this check box to check response messages for conformance to
the SAML Token section of the WS-I BSP specifications. Clear this
check box to not check responses for conformance.

This setting is selected by default if the assertion is placed after the
routing assertion in the policy.

Audit only Select Audit only to generate an audit record when non-
conformance in the request or response is detected. No SOAP fault
occurs and the assertion does not fail.

Audit and Fail Select Audit and Fail to generate both an audit record and a SOAP
fault when non-conformance in the request or response is detected;
the assertion also fails.

Fail assertion Select Fail assertion to generate a SOAP fault and fail the assertion
when non-conformance in the request or response is detected. No
audit record is generated.

Tip: The audit record indicates the rule that was broken (Rxxxx). You can look up the
rule on www.ws-i.org/Profiles/SAMLTokenProfile-1.0.htmlto see more information.
No audit record is created when a request or response conforms to the specifications.

 4. Click [OK] when done.

Evaluate JSON Path Expression Assertion
The Evaluate JSON Path Expression assertion is used to query JSON objects, similar to
querying XPaths. You enter a JSON expression and this assertion will parse the target
message and place the results in context variables.

Tip: Place a "Protect Against JSON Document Structure Threats Assertion" on page 678
before this assertion to protect against DOS attacks.

Context Variables Created by This Assertion

The Evaluate JSON Path Expression assertion sets the following context variables. Note:
The default <prefix> is "jsonPath" and can be changed in the assertion properties (Figure
152).

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Chapter 7: Message Validation/ Transformation Assertions 445

Layer 7 Policy Authoring User Manual, v8.2

http://www.ws-i.org/Profiles/SAMLTokenProfile-1.0.html

Variable Description

<prefix>.found Indicates whether a match was found for the expression:

 l true = Match found

 l false = No match found

<prefix>.count Returns the number of matches.

<prefix>.result Returns the result of the match, if a single match was made.

<prefix>.results Returns the results of the match, if multiple matches were made.

 Table 120: Context variables created by Evaluate JSON Path Expression assertion

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the optional assertion, the Evaluate JSON Path Expression
Properties automatically appear; when modifying the assertion, right-click
<target>: Evaluate JSON Path Expression in the policy window and select
Evaluate JSON Path Expression Properties or double-click the assertion in the
policy window. The assertion properties are displayed.

446 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 152: Evaluate JSON Path Expression Properties - [Source and Destination] tab

 3. Configure the optional evaluator and expression:

Setting Description

Evaluator Currently, the only supported evaluator is JsonPath.

Expression
Enter the expression to be matched against a message. You may
reference context variables.

Note: The Expression field can only contain a single expression. To
evaluate multiple expressions, configure multiple Evaluate JSON
Expression assertions within a policy.

 Table 121: Evaluate JSON Path Expression Properties - basic settings

 4. Configure [Source and Destination] tab as follows:

Setting Description

Target Message Specify whether to match against the Request, Response, or Other
Message Variable that contains the value to analyze. If other
variable, specify the variable name is the box. (You do not need to
enclose the variable name within the "${ }" characters.)

Tip: The message target can also be set outside of the assertion
properties. For more information, see "Selecting a Target Message"
on page 153.

 Table 122: Evaluate JSON Path Expression Properties - [Source and Destination] tab

Chapter 7: Message Validation/ Transformation Assertions 447

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy. For an explanation of the validation
messages displayed, see Context Variable Validation in the Layer 7
Policy Manager User Manual.

 5. Select the [Test] tab to test your JSON expression against sample test input.

 l In the Test Input box, paste some JSON code that might be found in the target
message. When you click the [Test] button, the assertion attempts to the
specified expression against the test input.

 l The Test Output box shows the results of the match (see Figure 153). Examine
the results carefully to see if this is what you intended. Figure 153 illustrates
how the assertion interprets the test input given the sample expression
shown:

 l For the test input shown in Figure 2, the test results are found = true and
count = 2. This means that there were two inputs that fulfilled the criteria:
Nigel Rees and 2: Evelyn Waugh. The assertion was able to locate the author
but not the category, title, or price, because they were not specified.

 l If you used the test input "bicycle", no test results will appear because it
does not fulfill the expression criteria ".author".

448 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 153: Evaluate JSON Path Expression Properties - [Test] tab

 6. Click [OK] when done.

Evaluate Regular Expression Assertion
The Evaluate Regular Expression assertion is a powerful tool for detecting, filtering, and/or
changing service messages. The assertion allows you to define one or more values that,
when present in an incoming request message, will yield a specific processing outcome,
change the content of the matched message, or detect particular patterns.

The Evaluate Regular Expression assertion has a wide range of uses. For example, it can
be configured to enforce a consistent telephone number format in request and response
messages. The assertion will then scan messages for telephone numbers—any number
that does not conform to the format specified in the assertion will be altered prior to
processing the message. The assertion can also be used for message mediation: using its
match and replace functionality, the assertion can convert small item changes, such as
adding a special tag after a particular keyword is detected.

Pattern matching and replacement are also useful for protecting service applications
from various web service and XML application threats.

Chapter 7: Message Validation/ Transformation Assertions 449

Layer 7 Policy Authoring User Manual, v8.2

A policy can contain multiple Evaluate Regular Expression assertions, placed anywhere
before or after the routing assertion.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about regular expressions, consider a web tutorial such as this site:
http://www.regular-expressions.info/.

Context Variables Created by This Assertion

The Evaluate Regular Expression assertion can optionally populate a multivalued context
variable with the values from designated capture groups in the expression.

Example:

 l Multivalued context variable name: phone

 l Regular expression containing three capture groups:
\((\d{3})\)(\d{3})-(\d{4})

 l Input string: (800) 555-1234

Using the default settings for the assertion, the multivalued variable phone will contain
the following values:

 l ${phone[0]} is set to the entire string matched by the regular expression – "(800)
555-1234"

 l ${phone[1]} is set to the first capture group – "800"

 l ${phone[2]} is set to the second capture group – "555"

 l ${phone[3]} is set to the third capture group – "1234"

Note that the variable phone is created even if the Do not proceed if pattern matches
option was selected.

Note: Capture groups always exist if any parentheses are present in the expression. However,
they are saved only when a context variable is specified.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

450 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

http://www.regular-expressions.info/

 2. When adding the assertion, the Regular Expression Properties automatically
appear; when modifying the assertion, right-click <target>: Evaluate Regular
Expression in the policy window and select Regular Expression Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 154: Regular Expression Properties - [Source and Destination] tab

 3. Configure the display name and regular expressions:

Setting Description

Display Name Optionally enter a "friendly name" for this regular expression. This
name is for display purposes only in the policy window.

Tip: A friendly name should briefly describe the purpose of the
assertion. This name helps you distinguish between several Evaluate
Regular Expression assertions in a policy.

Regular Expression Enter the regular expression value to be matched. You may reference
context variables within the expression. Note that any context variable
will be treated as literals when the syntax is checked during design
time, but will be resolved to their actual values during runtime. For
details, see "Example: Context variables in the regular expression"
below.

Note: The Regular Expression field can only contain a single
expression. To evaluate multiple expressions, configure multiple
Evaluate Regular Expression assertions within a policy.

 Table 123: Regular Expression Properties - basic settings

Chapter 7: Message Validation/ Transformation Assertions 451

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Ignore Case Select this check box to ignore the case of any matching values in the
incoming request message. Clear this check box to enforce case
matching.

Save in context
variable

Optionally reference a context variable that will hold the regular
expression pattern in effect at runtime.

This is most useful if context variables were used in the regular
expression pattern, as the exact pattern will depend on the resolved
variables during runtime. If no context variables were used, then this
variable will contain the exact string entered in the Regular
Expression field.

Replacement
(only used with "Match
and Replace" option)

Enter the replacement value or format that will replace the value or
format specified in the Regular expression field. You may reference
context variables.

Tip: Use the [Test] tab to verify that the replacement is working
correctly.

Example: Context variables in the regular expression

Suppose you enter the following regular expression:

hi${there}bob

When you test this expression during design time, the assertion will match all the
characters literally: h, i, $, {, t, h, e, r, e, }, b, o, b.

At runtime, the assertion will match the characters h, i, followed by whatever is
currently in the variable ${there}, followed by the characters b, o, b.

If at runtime ${there} contains regular expression metacharacters such as [,], |, ̂ , $,
etc., they will be matched as literals (in other words, they lose their metacharacter
interpretation). For example, consider this policy fragment:

Set variable ${there} to [a-z]
Request: match regex hi${there}bob

This fragment will match this request:

We all scream hi[a-z]bobbies again!

But it will not match this request:

We all scream hipbobbies again!

If you modify the fragment to replace the context variable with its actual content,
the metacharacters will be interpreted as expected:

Request: match regex hi[a-z]bob

This will result in the second example above being matched, but not the first.

 4. In the [Source and Destination] tab, configure the assertion as follows:

452 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Source Specify whether to match against the Request, Response, or Other
Context Variable that contains the value to analyze. If other variable,
specify the variable name is the box. (You do not need to enclose the
variable name within the "${ }" characters.)

Tip: The message target can also be set outside of the assertion
properties. For more information, see "Selecting a Target Message"
on page 153.

Destination Specify how to proceed based on the results of the pattern matching:

 l Proceed if pattern matches: Causes the assertion to return
success if the pattern matches. Whether the message is
permitted to proceed ultimately depends on the outcome of
the policy.

 l Do not proceed if pattern matches: Causes the assertion
to return failure if the pattern matches. Whether the message
is blocked ultimately depends on the outcome of the policy.
This option is particularly useful for protecting against specific
service threats.

 l Stop searching after first successful match: This check
box is available when either Proceed if pattern matches or
Do not proceed if pattern matches is selected.

 l Select this check box to instruct the assertion to stop after
a successful match. This setting is the default.

 l Clear this check box to instruct the assertion to find (and
capture, if applicable) all matches in the target string, not
stopping after the first match.

 l Match and Replace (always proceed): If the content
matches the regular expression, replace it with the content
from the Replacement field. Tip: If multiple replacements are
required, use several Evaluate Regular Expression assertions
in the policy.

 l Repeat successful replacements up to x times:

 l Select this check box to repeat any "replace all" step
that made at least one replacement. This will
continue until either there is no more item to
replace, or the 'x' iteration limit has been reached.
See "Example: 'Repeat successful replacements'
option" below for an example of how this option
works.

 l Clear this check box to not repeat any successful
replacement step. This setting is the default.

 l Context Variable: Optionally enter the name of a context
variable if you wish to record capture groups. For more
information, see "Context Variables Created by Assertion" in

 Table 124: Regular Expression Properties - Source & Destination settings

Chapter 7: Message Validation/ Transformation Assertions 453

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

the introduction to this assertion. For information on naming
rules, see "Context Variable Naming Rules" under Context
Variables in the Layer 7 Policy Manager User Manual.

 l Include matched substring in capture: This check box
has an effect only when a Context Variable has been specified.
It controls whether the matched substring should be included
in the capture. For a detailed explanation of this option, see
"Example: Including matched substring" below. This option is
enabled by default to replicate the functionality of the assertion
prior to version 6.2.

MIME/Multipart
Messages

Specify how to handle MIME/multipart messages:

 l MIME Part: For multipart messages, specify which part of the
message should be matched against the regular expression
value, where '0' is the first part, '1' is the second part, etc. The
default is '0'.

This setting is not used for messages that have only a single
part.

 l Character Encoding: Select Default to use the default
character encoding or Override to override how the Gateway
decodes the message. For example, if a UTF-8 encoded
message arrives with a Content-Type incorrectly declaring its
character encoding as ISO8859-1, then enter "UTF-8" to
override. For more information, see "Character Encoding" on
page 412.

Example: "Repeat successful replacements"

The following example illustrates the functionality of the Repeat successful
replacements check box: adding commas to a large number.

Say you have a large integer and you wish to add commas for improved readability.
The length of this integer is unknown ahead of time. You can accomplish this
using the following settings in the Evaluate Regular Expression assertion:

Regular expression: ̂ (-?\d+)(\d{3})
Replacement: $1,$2
[X] Repeat successful replacements up to 9999 times

Before processing, the target message contains this integer:
92349854732933493424982745249587
After processing, it will contain: 92,349,854,732,933,493,424,982,745,249,587

How this works behind the scene:

454 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

The assertion examines the integer and will attempt to match all the leading digits
that lack commas, followed by three more digits that lack commas. It then replaces
this with the same string, but with a comma before the last three digits. This is
repeated until the assertion cannot find four consecutive digits. Here is a sample
of the assertion in progress:

Repeat up to 0 times: 92349854732933493424982745249,587
Repeat up to 1 times: 92349854732933493424982745,249,587
Repeat up to 2 times: 92349854732933493424982,745,249,587
Repeat up to 7 times: 92349854,732,933,493,424,982,745,249,587
Repeat up to 9999 times: 92,349,854,732,933,493,424,982,745,249,587

If the Repeat successful replacements check box is not selected, the assertion will
stop after one pass and the resulting output would be
"92349854732933493424982745249,587".

Example: "Including matched substring"

As described under "Context Variables Created by This Assertion", you can
optionally save the "capture groups" that are automatically created by this
assertion by entering a variable name in the assertion properties. You indicate the
part of the pattern to be captured by enclosing them within parentheses. When
the assertion is run, the matching part of the pattern is then captured and saved
to the context variable when matched successfully.

For example, suppose you have the following data:

name="John Smith", phone=604-555-1234
name="Sue Smith", phone=604-555-5678

You wish to extract the phone number (which for this example we will assume that
it is always in the xxx-xxx-xxxx format). This can be accomplished with the following
regular expression:

phone=(\d\d\d-\d\d\d-\d\d\d\d)

Scenario 1: Run the assertion with the following settings:

Stop searching after first successful match = enabled
Include matched substring in capture = enabled
Context variable = p

This will be the result:

${p[0]} = "phone=604-555-1234"
${p[1]} = "604-555-1234"

A few points to note about these results:

Chapter 7: Message Validation/ Transformation Assertions 455

Layer 7 Policy Authoring User Manual, v8.2

 l The variable "p" that is created is a multivalued context variable.

 l The first value in "p" (${p[0]}) contains the entire substring matched by the
regular expression.

 l The second value in "p" (${p[1]}) contains the first capture group, which is as
indicated in the regular expression.

 l The phone number for Sue Smith is not captured, because you've instructed
the assertion to stop search after a successful match is made.

 l Prior to version 6.2, the Evaluate Regular Expression assertion always stopped
after the first match.

Scenario 2: Run the assertion with the following settings:

Stop searching after first successful match = disabled
Include matched substring in capture = enabled
Context variable = p

This will be the result:

${p[0]} = "phone=604-555-1234" (entire substring matched by the regex, for
the 1st successful match)
${p[1]} = "604-555-1234" (1st group, for the 1st successful match)
${p[2]} = "phone=604-555-4332" (entire substring matched by the regex, for
the 2nd successful match)
${p[3]} = "604-555-4332" (1st capture group, for the 2nd successful match)

Note that when the "Stop searching..." option is disabled, Sue Smith's phone
number is captured.

Scenario 3: Run the assertion with the following settings:

Stop searching after first successful match = disabled
Include matched substring in capture = disabled
Context variable = p

This will be the result:

${p[0]} = "604-555-1234" (1st capture group, for the 1st successful match)
${p[1]} = "604-555-4332" (1st capture group, for the 2nd successful match)

Notice that when you disable "Include matched substring", the matched
substrings are no longer saved.

Scenario 4: Use the same settings as Scenario 3, but introduce a new capture
group by enclosing the entire regular expression within parentheses (remember,
capture groups are indicated by parentheses):

(phone=(\d\d\d-\d\d\d-\d\d\d\d))

This will be the result:

456 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

${p[0]} = "phone=604-555-1234" (1st capture group, for the 1st successful
match)
${p[1]} = "604-555-1234" (2nd capture group, for the 1st successful match)
${p[2]} = "phone=604-555-4332" (1st capture group, for the 2nd successful
match)
${p[3]} = "604-555-4332" (2nd capture group, for the 2nd successful match)

Notice that this is identical to the output from Scenario 2. Thus, the "Include
matched substring" option is the same as disabling the option and enclosing the
entire expression within parentheses. Note: Prior to version 6.2, matched
substrings were always included and could not be disabled.

 5. Select the [Test] tab to test your regular expression and to determine whether the
replacement string was entered correctly.

 l In the Test Input box, type some sample text that includes the value or format
from the Regular Expression field. As you type, the assertion attempts to
match your input against the Regular Expression that was entered.

 l The Test Result box shows the results of the match (see Figure 155). Examine
the results carefully to see if this is what you intended. Figure 155 illustrates
how the assertion interprets the test input given the sample regular
expression and replacement string shown:

 l For test input "888-555-1234", the test result is "<phone country=""
area="888" num="555-1234"/>". This means the assertion was able to locate
the area code and phone number, but not the country code because it was
not specified.

 l For test input "1-888-687-2234", the test result was able to match all three
groups successfully.

 l For test input "some test", no replacement was made because this is not a
phone number.

 l For test input "879-1234", no replacement was made because the phone
number is missing the area code, which is a required element.

 l For test input, "604-681-9387", the area code and phone number was
matched.

Chapter 7: Message Validation/ Transformation Assertions 457

Layer 7 Policy Authoring User Manual, v8.2

 Figure 155: Evaluate Regular Expression assertion - [Test] tab

 6. Click [OK] when done.

Evaluate Request XPath Assertion
The Evaluate Request XPath assertion is used to configure a specific XPath query pattern
for incoming XML request messages. This assertion can be used, for example, to break a
policy into different paths for different types of operations and/or to provide preferential
routing to special customers or high dollar value transactions.

Note: Ensure that you are familiar with XPath patterns and specifications before you configure
the Evaluate Request XPath assertion.

Context Variables Created by This Assertion

The XPath query targets specific parts of the message, evaluating its document structure
and/or XML data. When the assertion executes, it runs the XPath pattern against the
request, setting six context variables according to the processing result of the query. The
following table describes the default context variables set by the Evaluate Request XPath
assertion.

458 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Tip: When the Evaluate Request XPath assertion is used in a policy fragment and you need
the context variables in Table 125 available to the parent policy, be sure to include the Export
Variables from Fragment assertion within the policy fragment to ensure that the variables are
available to the parent policy.

Variable Description

requestXpath.result The content of this variable depends on the match found:

 l If the XPath expression matches an element, this
variable contains the contents of the first element that
matched the XPath expression.

 l If the XPath expression locates any other match, this
variable contains the first match.

 l If the XPath expression does not locate a match, the
assertion fails and this variable is not set.

Example:

Consider the following sample XML document:

<test>
<data>hello</data>
<data>world</data>

</test>

The requestXpath.result variable will be set as follows:

 l The XPath expression "/test/data" matches both
elements "<data>hello</data>" and
"<data>world</data>". In this case, the variable will
contain "hello", which is the contents of the first element
that was found.

 l The XPath expression "/test/data[2]/text()" does not
match any element but does match "world". In this case,
the variable will contain "world", which is the first match
found.

requestXpath.results Similar to requestXpath.result except that it contains all values
matched rather than just the first one. Using the above example,
the XPath expression "/test/data" will yield "hello" and "world" in
the variable.

requestXpath.element Contains the resulting text of the query. Similar to the
requestXpath.result variable, except this includes the entire
element (including start and end tags).

This variable contains values of type String.

requestXpath.elements Similar to requestXpath.element except that it contains all values
matched rather than just the first one.

This variable contains values of type Element.

Note: You cannot use requestXpath.element where

 Table 125: Context variables created by Evaluate Request XPath assertion

Chapter 7: Message Validation/ Transformation Assertions 459

Layer 7 Policy Authoring User Manual, v8.2

Variable Description

requestXpath.elements is required, as assertions that expect an
'Element' value will not work with a "String" value.

requestXpath.count Contains the number of nodes found, which will be >= 1 if the
expression matched.

requestXpath.found Either "true" or "false", depending on whether the XPath
expression matches the request.

The values stored in the context variables can be used in subsequent Evaluate Regular
Expression or Compare Expression assertions using the special
${assertionPrefix.variableName}syntax. If the Audit Messages in Policy assertion is
encountered during message processing, then the XPath query results can be viewed in
the Gateway Audit Events window.

If the variables from several Evaluate Request XPath assertions need to be available
simultaneously (for example, an upcoming Compare Expression assertion will be used to
compare the results), then each assertion must use a different prefix. For example, you
define the new variable prefix newPrefix in the Evaluate Request XPath assertion. Now
instead of the default names shown in Table 125, this assertion will create variables
named newPrefix.result, newPrefix.count,newPrefix.found, and newPrefix.element.

Note: Since a single variable namespace is shared during the entire processing of a message,
the prefixes used in both the Evaluate Request XPath and Evaluate Response XPath assertions
must be unique. If the same variable prefix is used in both, then one assertion will overwrite the
other's variables.

If the XPath is a Boolean expression, the assertion succeeds only if the Boolean
expression evaluates to "true". If the XPath selects nodes, the assertion succeeds only if
the list of matching nodes is non-empty. In any other case, including an XPath error, the
assertion fails.

The Evaluate Request XPath assertion supports the XPath 1.0 standard.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Follow the appropriate section below to complete the properties dialog.

460 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Web Service Policy

When using the Evaluate Request XPath assertion in a web service policy:

 a. Specify the XPath and select the target element to be evaluated from the code
box. For detailed instructions on using the interface to build your XPath, see
"Selecting an XPath" on page 154.

 b. Select the appropriate XPATH version from the drop down.

 c. For an explanation of the validation messages displayed, see Context Variable
Validation in the Layer 7 Policy Manager User Manual.

 d. Make sure that the variable prefix entered here is different from those used in
other Evaluate Request XPath and Evaluate Response XPath assertions. See
the description at the beginning of this topic for more information about
variable prefixes.

 e. Click [OK].

XML Application Policy

When using the Evaluate Request XPath assertion in an XML application policy:

 a. Enter an XPath expression corresponding to the target request element in the
field.

 b. Optionally add namespaces to the namespace map.

 c. Click [OK].

Evaluate Response XPath Assertion
The Evaluate Response XPath assertion is used to configure a specific XPath query
pattern for outgoing XML response messages. This assertion can be used, for example, to
break a policy into different paths for different types of operations and/or to provide
preferential routing to special customers or high dollar value transactions.

Note: Ensure that you are familiar with XPath patterns and specifications before you configure
the Evaluate Response XPath assertion. The Evaluate Response XPath assertion must be
placed anywhere after the routing assertion in a policy.

Chapter 7: Message Validation/ Transformation Assertions 461

Layer 7 Policy Authoring User Manual, v8.2

Context Variables Created by This Assertion

The XPath query targets specific parts of the message, evaluating its document structure
and/or XML data. When the assertion executes, it runs the XPath pattern against the
response, setting six context variables according to the processing result of the query.
The following table describes the default context variables sset by the Evaluate Response
XPath assertion.

Tip: When the Evaluate Response XPath assertion is used in a policy fragment and you need
the context variables in Table 126 available to the parent policy, be sure to include the Export
Variables from Fragment assertion within the policy fragment to ensure that the variables are
available to the parent policy.

Variable Description

responseXpath.result The content of this variable depends on the match found:

 l If the XPath expression matches an element, this variable
contains the contents of the first element that matched the
XPath expression.

 l If the XPath expression locates any other match, this variable
contains the first match.

 l if the XPath expression does not locate a match, the
assertion fails and this variable is not set.

Example:

Consider the following sample XML document:

<test>
<data>hello</data>
<data>world</data>

</test>

The responseXpath.result variable will be set as follows:

 l The XPath expression "/test/data" matches both elements
"<data>hello</data>" and "<data>world</data>". In this
case, the variable will contain "hello", which is the contents of
the first element that was found.

 l The XPath expression "/test/data[2]/text()" does not match
any element but does match "world". In this case, the
variable will contain "world", which is the first match found.

responseXpath.results Similar to responseXpath.result except that it contains all values
matched rather than just the first one. Using the above example, the
XPath expression "/test/data" will yield "hello" and "world" in the
variable.

responseXpath.element Contains the resulting text of the query. Similar to the
responseXpath.result variable, except this includes the entire

 Table 126: Context variables created by Evaluate Response XPath assertion

462 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Variable Description

element (including start and end tags).

This variable contains values of type String.

responseXpath.elements Similar to responseXpath.element except that it contains all values
matched rather than just the first one.

This variable contains values of type Element.

Note: You cannot use requestXpath.element where
requestXpath.elements is required, as assertions that expect an
'Element' value will not work with a 'String' value.

responseXpath.count Contains the number of nodes found, which will be >= 1 if the
expression matched.

responseXpath.found Either "true" or "false", depending on whether the XPath expression
matches the response.

The values stored in context variables can be used in subsequent Evaluate Regular
Expression or Compare Expression assertions using the special
${assertionPrefix.variableName}syntax. If the Audit Messages in Policy assertion is
encountered during message processing, then XPath query results can be viewed in the
Gateway Audit Events window.

If the variables from several Evaluate Response XPath assertions need to be available
simultaneously (for example, an upcoming Compare Expression assertion will be used to
compare the results), then each assertion must use a different prefix. For example: You
define the new variable prefix newPrefix in the Evaluate Response XPath assertion. Now
instead of the default names shown in Table 126, this assertion will create variables
named newPrefix.result, newPrefix.count,newPrefix.found, and newPrefix.element.

Note: Since a single variable namespace is shared during the entire processing of a message,
the prefixes used in both the Evaluate Response XPath and Evaluate Request XPath assertions
must be unique. If the same variable prefix is used in both, then one assertion will overwrite the
other's variables.

If the XPath is a Boolean expression, the assertion succeeds only if the Boolean
expression evaluates to "true". If the XPath selects nodes, the assertion succeeds only if
the list of matching nodes is non-empty. In any other case, including an XPath error, the
assertion fails.

The Evaluate Response XPath assertion supports the XPath 1.0 standard.

Using the Assertion

 1. Do one of the following:

Chapter 7: Message Validation/ Transformation Assertions 463

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

Follow the appropriate section below to complete the properties dialog.

Web Service Policy

When using the Evaluate Response XPath assertion in a web service policy:

 a. Select the XML message source from the drop-down list. The default is
to use the Default Response message source, but you can also retrieve the
message from an eligible context variable. An eligible context variable is one
that meets either of the following conditions:

 l The context variable was created using the Set Context Variable assertion
and is of type Message.

 l The context variable was created from the [Response HTTP Rules] tab of the
"Route via HTTP(S) Assertion" on page 529.

 b. Specify the XPath and select the target element to be evaluated from the code
box. For detailed instructions on using the interface to build your XPath, see
"Selecting an XPath" on page 154.

 c. Select the appropriate XPATH version from the drop down.

 d. Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the variables from
overwriting each other when multiple instances of this assertion appear in a
policy.

For an explanation of the validation messages displayed, see Context Variable
Validation in the Layer 7 Policy Manager User Manual.

 e. Make sure that the variable prefix entered here is different from those used in
other Evaluate Response XPath and Evaluate Request XPath assertions. See
the description at the beginning of this topic for more information about
variable prefixes.

 f. Click [OK].

XML Application Policy

When using the Evaluate Response XPath assertion in an XML application policy:

464 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 1. Optionally set the XML message source, if necessary.

 2. Enter an XPath expression corresponding to the target response element in
the field.

 3. Optionally add namespaces to the namespace map.

 4. Click [OK].

Evaluate WSDL Operation Assertion
The Evaluate WSDL Operation assertion determines which operation is being invoked
based on the information in the service's WSDL and matches it against a pre-selected
one. This assertion succeeds if the operation matches the one set in the assertion,
otherwise it fails. For example, a user can be granted rights to view a product list but that
same user cannot view the product details nor place an order.

Example:

Consider the following sample policy:

"At least one assertion must evaluate to true"

"All assertions must evaluate to true"

"At least one assertion must evaluate to true"

Evaluate WSDL Operation 'listProducts'
Evaluate WSDL Operation 'getProductDetails'

Authenticate User: 'Bob'

"All assertions must evaluate to true"

Evaluate WSDL Operation 'listProducts'
Authenticate User: 'Sue'

The results will be as follows:

 l If Bob attempts to either list products or get product details, the assertion will
succeed because these are included in his of legal operations.

 l If Sue attempts to get product details, the assertion will fail because her operation
only allows 'list products'.

For more information about organizing policies, see "Policy Organization" on page 2.

Using the Assertion

 1. Do one of the following:

Chapter 7: Message Validation/ Transformation Assertions 465

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Evaluate WSDL Operation in the policy window and select WSDL
Operation Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

 Figure 156: WSDL Operation Properties

 3. From the drop-down list, select the WSDL operation to be verified at run time. The
Gateway will compare the WSDL's requested operation against this selection to
determine whether the assertion passes or fails.

 4. Click [OK] when done.

Process SAML Attribute Query Request Assertion
The Process SAML Attribute Query Request assertion validates AttributeQuery requests
based on user configuration. It also makes values and elements from an AttributeQuery
available as context variables.

This assertion only supports SAML 2.0.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Context Variables Created by This Assertion

The Process SAML Attribute Query Request assertion sets the following context variables.
Note: The default <prefix> is "attrQuery" and can be changed in the assertion properties
(Figure 157).

Note: The 'subject' context variables in Table 127 below (except for subject.format) will not be
set if the NameID was encrypted and decryption was not configured.

466 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Context variable Type Notes

<prefix>.attributes Element

(multivalued)

All Attribute elements contained in the AttributeQuery.

<prefix>.subject String Value of the Subject's NameID.

<prefix>
.subject.nameQualifier

String Subject's NameID's NameQualifier attribute value, if
provided.

<prefix>
.subject.spNameQualifier

String Subject's NameID's SPNameQualifier attribute value,
if provided.

<prefix>.subject.format String Subject's NameID's Format attribute value, if
provided. Never empty; if not supplied, value will be
urn:oasis:names:tc:SAML:1.1:nameid-
format:unspecified.

<prefix>
.subject.spProvidedId

String Subject's NameID's SPProvidedID attribute value, if
present.

<prefix>.Id String AttributeQuery's ID attribute, if present.

<prefix>.version String AttributeQuery's Version attribute, if present.

<prefix>.issueInstant String AttributeQuery's IssueInstant attribute, if present.

<prefix>.destination String AttributeQuery's Destination attribute, if present.

<prefix>.consent String AttributeQuery's Consent attribute. If not supplied, the
value will be
urn:oasis:names:tc:SAML:2.0:consent:unspecified.

<prefix>.issuer String AttributeQuery's Issuer element's value, if present.

<prefix>
.issuer.nameQualifier

String Issuer's NameQualifier attribute value, if present.

<prefix>
.issuer.spNameQualifier

String Issuer's SPNameQualifier attribute value, if present.

<prefix>.issuer.format String Issuer's Format attribute value, if present.

<prefix>
.issuer.spProvidedId

String Issuer's SPProvidedID attribute value, if present.

 Table 127: Context variables created by Process SAML Attribute Query Request assertion

The following variables may also be set:

 l If decryption is configured and was performed (Decrypt EncryptedID check box in
Figure 157), then all the context variables from the (Non-SOAP) Decrypt XML
Element assertion will also be set. These variables include:

Chapter 7: Message Validation/ Transformation Assertions 467

Layer 7 Policy Authoring User Manual, v8.2

<prefix>.elementsDecrypted
<prefix>.encryptionMethodUris
<prefix>.recipientCertificates

The prefix used for those variables is the prefix specified in Figure 157 For more
information, see "(Non-SOAP) Decrypt XML Element Assertion" on page 374.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Process SAML Attribute Query Request in the policy window and
select SAML Attribute Query Request Properties or double-click the assertion in
the policy window. The assertion properties are displayed.

468 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 157: SAML Attribute Query Request Properties

 3. Configure the dialog as follows:

Chapter 7: Message Validation/ Transformation Assertions 469

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

AttributeQuery
Validation

 l SAML Version: Only SAML 2.0 is supported.

 l SOAP Encapsulated: Select this check box if the
AttributeQuery is encapsulated within a SOAP envelope.

Request Validation Select the appropriate check boxes to indicate which attribute or
element must be present in an AttributeQuery request:

Issuer
Signature*
ID
Version
IssueInstant
Consent

Destination**

*This assertion does not validate or verify the signature. To validate the
signature, use the (Non-SOAP) Verify XML Element assertion. To
remove the signature, use the Add or Remove XML Element(s)
assertion.

**Select the Destination check box to indicate that a destination
attribute is required. If the destination attribute must have an allowed
value, enter all allowed values in the adjacent text box. Enter in as
many values as needed separated by a space. You may specify URIs
or context variables of type String (variables that resolve to an empty
string or non-string are ignored and will not cause assertion failure, but
a 'Warning' audit is logged). Context variables may contain space-
separated URI strings.

Note: If an attribute/element has been configured but is missing, the
assertion will fail.

Subject Validation l Allow: Select the supported Subject identifiers:

NameID
EncryptedID

If [EncryptedID] is permitted, select the Decrypt
EncryptedID check box to decrypt the EncryptedID and
update the message with the result of the decryption.

Tip: The "Require Format" and "Allowed NameID Format"
validation are applied only when either a NameID was included
in the AttributeQuery or if an EncryptedID was received and
decrypted. If decryption was not selected, then this validation
cannot be performed. Additionally, context variables related to
the NameID will not be set.

 l Require format: Select this check box to require the Format
attribute to be present on the NameID, otherwise the assertion
will fail. Clear this check box if the Format attribute is not

 Table 128: SAML Attribute Query Request settings

470 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

required. If no format attribute is supplied, it will have the
following default value:
urn:oasis:names:tc:SAML:1.1:nameid-
format:unspecified.

 l Allowed NameID formats: Select the supported NameID
formats from the list. By default,
urn:oasis:names:tc:SAML:1.1:nameid-
format:unspecified is selected as this is the default value of
this attribute when no value is supplied.

 l Custom: If the NameID format you need is not listed, enter a

set of custom Format URI values here.

Enter in as many values as needed separated by a space. You
may specify URIs or context variables of type String (variables
that resolve to an empty string are ignored and will not cause
assertion failure, but a "Warning" audit is logged). Context
variables may be single or multivalued. Single-valued variables
may contain space-separated URI strings.

SAML Attribute
Validation

This section configures the rules for the saml:Attributes contained in
the Attribute Query.

 l Require Attributes: Select this check box to fail the assertion
if an empty AttributeQuery is received. Clear the check box if
attributes are not required.

 l Verify unique Name + NameFormat: Select this check box
to fail the assertion if there are any logical duplicate attributes.
Note that the AttributeValue (if any) is not considered in this
check.

 l Require NameFormat: Select this check box to fail the
assertion if the NameFormat attribute is not present. Clear this
check box if the NameFormat attribute is not required.

 l Allowed NameFormats: Select the supported
NameFormats from the list. By default,
urn:oasis:names:tc:SAML:2.0:attrname-
format:unspecified is selected as this is the default value of
this attribute when no value is supplied.

 l Custom: If the NameFormat you need is not listed, enter a set

of custom NameFormat URI values here.

Enter in as many values as needed separated by a space. You
may specify URIs or context variables of type String (variables
that resolve to an empty string are ignored and will not cause
assertion failure, but a 'Warning' audit is logged). Context
variables may be single or multivalued. Single-valued variables
may contain space-separated URI strings.

Variable Prefix Enter a prefix that will be added to the context variables created by this

Chapter 7: Message Validation/ Transformation Assertions 471

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

The default variable prefix is attrQuery.

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

 4. Click [OK] when done.

Process SAML Authentication Request Assertion
The Process SAML Authentication Request assertion helps to simplify policies used to create
a single sign-on service. This assertion can perform the following:

 l (Optional) Extract the SAML Request from a form or URL parameter and then
decode it.

 l Validate that the incoming Authentication Request is valid, according to the
SAML profile specifications.

Validation Details

The assertion will validate the following and will fail if these rules are not met:

 l <Issuer> is present; if <Format> is supplied, it must be
urn:oasis:names:tc:SAML:2.0:nameid-format:entity

 l No SubjectConfirmation elements should be present

 l Extract key information from the Authentication Request and place them into
context variables.

This assertion only supports SAML 2.0.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Context Variables Created by This Assertion

The Process Authentication Request assertion sets the following context variables. Note:
The default <prefix> is "authnRequest" and can be changed in the assertion properties
(Figure 158).

472 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Context variable Description

<prefix>.subject Returns the Subject of the AuthnRequest.

<prefix>
.subject.nameQualifier

Returns the domain to qualify the Subject name.

<prefix>.
subject.spNameQualifier

Returns the name of a Subject SP, which is used to qualify a name.

<prefix>.subject.format Returns the URI of the Subject format.

<prefix>
.subject.spProvidedId

Returns the identifier of the Subject SP.

<prefix>.x509CertBase64 Returns the Base64-encoded X.509 Certificate, if present in the
AuthnRequest.

<prefix>.x509Cert Returns the X.509 Certificate, if present in the AuthnRequest, and if it
is convertable into an X.509 Certificate.

This variable can be input into the Retrieve Credentials from
Context Variable assertion.

<prefix>.acsUrl Returns the URL of the Assertion Consumer Service.

<prefix>.Id Returns the ID of the AuthnRequest.

<prefix>.version Returns the version of the request.

<prefix>.issueInstant Returns the time the request was issued.

<prefix>.destination Returns the destination to which this AuthnRequest was sent .

<prefix>.consent Returns the consent of the AuthnRequest. If one is not available, the
following value will be used:

urn:oasis:names:tc:SAML:2.0:consent:unspecified

<prefix>.issuer Returns the entity which issued the AuthnRequest.

<prefix>
.issuer.nameQualifier

Returns the domain used to qualify the Issuer name.

<prefix>
.issuer.spNameQualifier

Returns the name of an IssuerSP, which is used to qualify a name.

<prefix>.issuer.format Returns the URI of the Issuer format.

<prefix>
.issuer.spProvidedId

Returns the identifier of the Issuer SP.

<prefix>.request Returns the contents of the AuthnRequest. This is only set for HTTP
bindings to allow XPath of extensions or other values.

Tip: To access the main part of this context variable as text, you must

 Table 129: Context variables created by Process Authentication Request assertion

Chapter 7: Message Validation/ Transformation Assertions 473

Layer 7 Policy Authoring User Manual, v8.2

Context variable Description

append the ".mainpart" suffix; for example:
${authnRequest.request.mainpart}. For more information about the
".mainpart" suffix, see Transport Layer Variables in the Layer 7
Policy Manager User Manual.

Notes:

The variables <prefix>.x509CertBase64 and <prefix>.x509Cert may contain values if the
<AuthnRequest> is signed. If this is the case then:

 l <prefix>.x509CertBase64 will contain the Base64 encoded certificate from the
request (if any)

 l <prefix>.x509Cert will contain the X.509 Certificate used to validate the request
signature

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Process SAML Authentication Request in the policy window and
select SAML Authentication Request Properties or double-click the assertion in
the policy window. The assertion properties are displayed.

 Figure 158: SAML Authentication Request Properties

 3. Configure the dialog as follows:

474 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Extract
SAML Request from
binding

Select this check box to have the assertion extract the SAML Request
from the incoming HTTP URL or Form parameters, based on the
chosen binding (HTTP Post or HTTP Redirect).

Clear this check box to use the SAML Request from the body of the
target message selected for this assertion. For more information, see
"Selecting a Target Message" on page 153.

Verify Signature Select this check box to have the assertion validate any signature that
is present. Signature validation may use an enclosed X.509 Certificate
and may attempt to look up the certificate in the Gateway's trust store.

This check box is unavailable if HTTP Redirect is selected for Extract
SAML Request from binding.

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

The default variable prefix is authnRequest.

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

 Table 130: SAML Authentication Request settings

 4. Click [OK] when done.

Replace Tag Content Assertion
The Replace Tag Content assertion provides search-and-replace functionality for content
within tags, in HTML or XML files (even where the HTML/XML is not properly formed).

This assertion is especially useful in reverse web proxy scenarios, where the Gateway
needs to manipulate HTML content in a route response before it is returned to the client.
Tip: The "Evaluate Regular Expression Assertion" on page 449 can also be used to search
and replace content in the response, but it is difficult to create regular expressions that
search and modify only select areas of the HTML code.

Example use case: Some HTML tags (anchor, script, etc.) may contain content or attributes
that references the web application host which is unknown to the client. Use the Replace
Tag Content assertion to change the references to the Gateway host, which is serving as
a reverse proxy to the web application.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Chapter 7: Message Validation/ Transformation Assertions 475

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Replace Tag Content Properties automatically
appear; when modifying the assertion, right-click <target>: Replace... in the
policy window and select Replace Tag Content Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

 Figure 159: Replace Tag Content Properties

 3. Configure the properties as follows:

Setting Description

Search For
Enter the string to search for. You may reference context variables.

By default, the search is case sensitive. To make it case insensitive,
select the Ignore Case check box.

Replace With
Enter the replacement text. You may reference context variables.

Within Tags
Specify the tag(s) to search (case insensitive). Separate multiple tags
with commas. You may reference context variables.

 Table 131: Replace Tag Content settings

 4. Click [OK] when done.

476 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Require WS-Addressing Assertion
The Require WS-Addressing assertion lets you specify which versions of WS-Addressing
should be present in the message and whether the addressing headers must be signed.
The Gateway uses the WS-Addressing version to select the namespace.

This assertion can use namespaces from the following versions:

WS-Addressing 1.0
WS-Addressing 08/2004

In addition, you can enter any other configurable namespace URI in the assertion
properties.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about selecting the target identity for this assertion, see "Selecting a
Target Identity" on page 152.

Sample WS-Addressing Message

The following is a sample message with WS-Addressing headers:

 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <S:Header>
 <wsa:MessageID>http://example.com/6B29FC40-CA47-1067-B31D-

 00DD010662DA</wsa:MessageID>
 <wsa:ReplyTo>
 <wsa:Address>http://example.com/business/client1</wsa:Address>
 </wsa:ReplyTo>
 <wsa:To>http://example.com/fabrikam/Purchasing</wsa:To>
 <wsa:Action>http://example.com/fabrikam/SubmitPO</wsa:Action>
 </S:Header>
 <S:Body>
 ...
 </S:Body>
 </S:Envelope>

Context Variables Created by This Assertion

The Require WS-Addressing assertion sets the following context variables based on the
WS-Addressing headers. Note: The <prefix> is set in the assertion properties (Figure 160)
and is optional. There is no default.

Variable Description

$(<prefix>.to} Contains the value from the "to" addressing header.

 Table 132: Context variables created by Require WS-Addressing assertion

Chapter 7: Message Validation/ Transformation Assertions 477

Layer 7 Policy Authoring User Manual, v8.2

Variable Description

Value from sample message: http://example.com/fabrikam/Purchasing.

$(<prefix>.action} Contains the value from the "action" addressing header.

Value from sample message: http://example.com/fabrikam/SubmitPO.

${<prefix>.elements} Contains all the addressing headers, as a multivalued context variable.
From the sample message, these are all the lines with "<wsa>", except
for "<wsa:Address>".

$(<prefix>.messageid} Contains the value from the "messageid" addressing header.

Value from sample message: http://example.com/6B29FC40-CA47-
1067-B31D-00DD010662DA.

$(<prefix>.from} Contains the value from the "from" addressing header. Relates to
endpoints and will contain the address of the endpoint reference.

This header is not present in the sample message.

$(<prefix>.replyto} Contains the value from the "replyto" addressing header. Relates to
endpoints and will contain the address of the endpoint reference.

Value from sample message: http://example.com/business/client1.

$(<prefix>.faultto} Contains the value from the "faulto" addressing header. Relates to
endpoints and will contain the address of the endpoint reference.

This header is not present in the sample message.

$(<prefix>.namespace Contains the value from the "namespace" addressing header. Will be set
to the namespace of the processed WS-Addressing header(s).

Value from sample message: http://www.w3.org/2005/08/addressing.

Note: Not every addressing property will be present in all messages. If a property is not present,
the context variable will contain an empty string. If a message contains repeated addressing
headers, the first acceptable set of headers is used (note that this may be the first referenced
by a signature, not necessarily the first in document order).

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the WS-Addressing Properties automatically appear;
when modifying the assertion, right-click <target>: Require WS-Addressing in

478 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

the policy window and select WS-Addressing Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

 Figure 160: WS-Addressing Properties

 3. Configure the properties as follows:

Setting Description

Target Message Select the message to check for WS-Addressing:

 l Request: The request message will be checked.

 l Response: The response message will be checked.

 l Other Context Variable: A context variable will be checked.
This context variable must be of type Message and must be
predefined or has been set in the policy prior to the Require
WS-Addressing assertion. For more information on Message
variables, see Context Variables in the Layer 7 Policy Manager
User Manual.

Tip: The message target can also be set outside of the assertion
properties. For more information, see "Selecting a Target Message"
on page 153.

 Table 133: WS-Addressing settings

Chapter 7: Message Validation/ Transformation Assertions 479

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Permitted Versions Specify which versions of WS-Addressing are permitted in the
message. The Gateway will use the namespace associated with the
selected version.

If any another WS-Addressing namespace URI should be permitted,
select Other and enter the additional permitted URI in the adjacent
text field.

The assertion will fail if a supported version of WS-Addressing is not
found in the message.

Variable Prefix Optionally, enter a prefix that will be added to the context variables
created by this assertion. This prefix will ensure uniqueness and will
prevent the variables from overwriting each other when multiple
instances of this assertion appear in a policy.

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

Require Signature Select this check box if the addressing headers must be signed. The
assertion will fail if a signature is not present or is invalid.

 4. Click [OK] when done.

Set SAML Response Status Code Assertion
The Set SAML Response Status Code assertion lets you choose a SAML response status and
place it into in a context variable. This variable can be used in the "Customize Error
Response Assertion" on page 430 to help you troubleshoot possible errors.

Tip: The first four codes in the lists below are top-level codes. The rest are second-
level/subordinate codes that can be used to provide more information on an error.

For SAML 2.0, the following response statuses are available:

urn:oasis:names:tc:SAML:2.0:status:Success
urn:oasis:names:tc:SAML:2.0:status:Requester
urn:oasis:names:tc:SAML:2.0:status:Responder
urn:oasis:names:tc:SAML:2.0:status:VersionMismatch
urn:oasis:names:tc:SAML:2.0:status:AuthnFailed
urn:oasis:names:tc:SAML:2.0:status:InvalidAttrNameOrValue
urn:oasis:names:tc:SAML:2.0:status:InvalidNameIDPolicy
urn:oasis:names:tc:SAML:2.0:status:NoAuthnContext
urn:oasis:names:tc:SAML:2.0:status:NoAvailableIDP
urn:oasis:names:tc:SAML:2.0:status:NoPassive
urn:oasis:names:tc:SAML:2.0:status:NoSupportedIDP
urn:oasis:names:tc:SAML:2.0:status:PartialLogout
urn:oasis:names:tc:SAML:2.0:status:ProxyCountExceeded
urn:oasis:names:tc:SAML:2.0:status:RequestDenied
urn:oasis:names:tc:SAML:2.0:status:RequestUnsupported

480 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

urn:oasis:names:tc:SAML:2.0:status:RequestVersionDeprecated
urn:oasis:names:tc:SAML:2.0:status:RequestVersionTooHigh
urn:oasis:names:tc:SAML:2.0:status:RequestVersionTooLow
urn:oasis:names:tc:SAML:2.0:status:ResourceNotRecognized
urn:oasis:names:tc:SAML:2.0:status:TooManyResponses
urn:oasis:names:tc:SAML:2.0:status:UnknownAttrProfile
urn:oasis:names:tc:SAML:2.0:status:UnknownPrincipal
urn:oasis:names:tc:SAML:2.0:status:UnsupportedBinding

For SAML 1.1, the following response statuses are available:

Success
VersionMismatch
Requester
Responder
RequestVersionTooHigh
RequestVersionTooLow
RequestVersionDeprecated
TooManyResponses
RequestDenied
ResourceNotRecognized

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Set SAML Response Status Code in the policy window and select
SAML Response Status Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

 Figure 161: SAML Response Status Properties dialog

 3. Configure the dialog as follows:

Chapter 7: Message Validation/ Transformation Assertions 481

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

SAML Version Choose the SAML version from the drop-down list: 1.1 or 2.0.

SAML Response Status Choose the SAML response status from the drop-down list.

Output Variable Specify a context variable to hold the SAML response status.

Default: responseStatus

 Table 134: SAML Response Status settings

Note: For SAML 1.1, the response status values are QNames associated with the
namespace of the SAML protocol, where the output variable holds the local part of a
QName. The local parts of these QNames are: Success, VersionMismatch, Requester, and
Responder. For more information, see http://saml.xml.org/saml-specifications.

 4. Click [OK] when done.

Translate HTTP Form to MIME Assertion
The Translate HTTP Form to MIME assertion allows you to parse the content submitted in
HTTP form format by a browser-like client and turn it into a more standards-compliant
multi-part MIME message. The Gateway converts incoming content to MIME in
accordance with an ordered list of configured field names and Content-Types. If an
incoming message does not contain a field configured for conversion in the Translate
HTTP Form to MIME assertion, then the assertion will fail.

For information on parsing and converting a standard multi-part MIME message into
HTTP form submission format, see the "Translate MIME to HTTP Form Assertion" on page
484.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the HTTP Form to MIME Translation Properties
automatically appear; when modifying the assertion, right-click Translate HTTP
Form to MIME in the policy window and select HTTP Form to MIME Translation
Properties or double-click the assertion in the policy window. The assertion
properties are displayed.

482 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 162: HTTP Form to MIME Translation Properties

 3. Select an action to perform.

Action Description

Add Click [Add] to configure a new HTTP form field.

Modify Select an existing form field and then click [Modify] to edit the field
information.

Remove Select a form field to remove and then click [Remove] to delete it. The
field is removed without further confirmation.

Move Up
Move Down

The order of the form fields in the table must reflect the order of the
MIME parts in the resulting MIME message. To change the order of
the entries in the table, select an entry to be moved and then click
[Move Up] or [Move Down].

 Table 135: HTTP Form to MIME Translation settings

 4. When adding or modifying a field, the Configure Field Information form appears.

 Figure 163: Configure Field Information form

Chapter 7: Message Validation/ Transformation Assertions 483

Layer 7 Policy Authoring User Manual, v8.2

Configure the form as follows:

Setting Description

Field Name Enter the name of the HTTP form field. The field name must exactly
match the name and case of the element in the incoming message; for
example, xml

MIME Content-Type Enter the MIME type for the form field, including a character set if the
field contains textual data; for example, text/xml; charset='utf-8'

In accordance with the SOAP with Attachments standard, the first
MIME part should always be the SOAP message.

 Table 136: Configure Field Information

 5. Click [OK] to close each form when done.

Translate MIME to HTTP Form Assertion
The Translate MIME to HTTP Form assertion allows you to parse and convert an incoming
multi-part MIME message into an HTTP form submission such as would be submitted by a
browser-like client. The Gateway converts incoming MIME content to HTTP form format in
accordance with an ordered list of configured field names. If an incoming message does
not contain sufficient MIME parts for the field names configured for conversion in the
Translate MIME to HTTP Form assertion, then the assertion will fail.

For information on parsing and converting incoming HTML form content into a multi-
part MIME message, see the "Translate HTTP Form to MIME Assertion" on page 482.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the MIME to HTTP Form Translation Properties
automatically appear; when modifying the assertion, right-click Translate MIME
to HTTP Form in the policy window and select MIME to HTTP Form Translation
Properties or double-click the assertion in the policy window. The assertion
properties are displayed.

484 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 164: MIME to HTTP Form Translation Properties

 3. Select an action to perform.

Action Description

Add Click [Add] to add an HTTP form field name.

Modify Select an existing form field and then click [Modify] to edit the name.

Remove Select a form field name to remove and then click [Remove] to delete
it. The name is removed without further confirmation.

Move Up
Move Down

Since the Gateway converts the parts of each MIME message
sequentially, the order of the form fields in the HTTP Form Field
Names table must reflect the order of the MIME parts in the message.
To change the order of the entries in the table, select an entry to be
moved and then click [Move Up] or [Move Down].

 Table 137: MIME to HTTP Form Translation actions

 4. When adding or modifying a field, the Configure Field Name dialog appears.

 Figure 165: Configure Field Name form

Chapter 7: Message Validation/ Transformation Assertions 485

Layer 7 Policy Authoring User Manual, v8.2

Enter or modify the HTTP form field name. When the MIME message is transformed
into an HTTP form post, the MIME part matching this field name's position will be
rendered as "fieldname=<data>...".

 5. Click [OK] to close each dialog when done.

Validate Certificate Assertion
The Validate Certificate assertion is used to validate an X.509 certificate context variable.
Specifically, this assertion can validate that a certificate is not expired nor revoked, and
that it has a valid chain.

IMPORTANT: A valid certificate does not ensure authentication. In other words, the Gateway
does not check to ensure that the user possesses a private key.

Context Variables Created by This Assertion

The Validate Certificate assertion sets the following context variables with details of the
validation. Note: The default <prefix> is "certificateValidation" and can be changed in the
assertion properties (Figure 166).

Variable Description

${<prefix>.passed} Returns either True or False.

${<prefix>.error} Returns error message if validation fails.

 Table 138: Context variables created by the Validate Certificate assertion

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Validate Certificate in the policy window and select Validate
Certificate Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

486 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 166: Validate Certificate Properties

 3. Configure the properties as follows.

Setting Description

Source Variable Enter the name of the context variable containing the X.509 certificate.

Validation Type Choose the level of validation from the Validation Type drop-down
list

 l Validate: Select this option to validate the expiration and
format of the given certificate only.

 l Validate Certificate Path: Select this option to validate the
certificate and build a path to a trust anchor.

 l Revocation Checking: Select this option to validate the
certificate, build a path to a trust anchor, and perform a
revocation check.

Output Variable
Prefix

Specify a prefix that will be added to the context variables created by
this assertion. The prefix will prevent the context variable from being
overwritten if the assertion appears more than once in a policy.

Default: certificateValidation

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

Fail on invalid
certificate

Select this check box to cause the assertion to fail and log an error
when an invalid certificate is entered.

Clear this check box to log an error but not fail the assertion upon an
invalid certificate.

 Table 139: Validate Certificate settings

 4. Click [OK] when done.

Chapter 7: Message Validation/ Transformation Assertions 487

Layer 7 Policy Authoring User Manual, v8.2

Validate HTML Form Data Assertion
The Validate HTML Form Data assertion is used to validate the data set within an HTML
form—for example, to require that a certain field must appear a minimum number of
times or cannot appear more than once. You can specify which fields (i.e., form controls)
are allowed, their data types, and their location in the request.

This assertion only works on HTTP requests; it is skipped if the request is not HTTP.

Ensure that this assertion appears before the routing assertion in the policy.

Tip: To further refine the allowable fields, include the Compare Expression assertion in the
policy. For example, you are permitting only fields named "widget" with values over 100. To do
this, define field widget with data type number in the Validate HTML Form Data assertion. In
the Compare Expression assertion, add "widget > 100". The Compare Expression assertion can
precede or follow the Validate HTML Form Data assertion. If you need to access the HTTP form
parameters, use the ${request.http.parameter}context variable.

Using the Assertions

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the HTML Form Data Properties automatically
appear; when modifying the assertion, right-click Validate HTML Form Data in
the policy window and select HTML Form Data Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

488 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 167: HTML Form Data Properties

 3. Configure the properties as follows:

Setting Description

Submission method
allowed

Select which submission methods are allowed: GET, POST. Requests
made using other HTTP methods will cause the assertion to fail.

You must select at least one method .

Request must
contain the
following fields:

Define the fields that are permitted in the request. The assertion
succeeds only when a message contains all the listed fields, with the
appropriate details.

 l To add a field, click [Add] and then enter the field information
as described below.

 l To remove a field, click anywhere in the row to select it, then
click [Remove]. The field is removed immediately.

Complete the field details as follows:

 l Name: Type the name of the field. All names must be unique.
The name is case sensitive.

 l Data Type: Double-click and select which data type to allow:
number, file, string, or <any>. (Note: The data type file
requires the submission method POST.)

 l Min Occurs: Enter the minimum number of times the field
must appear in the request. To indicate that the field is optional
(i.e., may or may not be present), enter a value of 0 (zero).

 Table 140: HTML Form Data settings

Chapter 7: Message Validation/ Transformation Assertions 489

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

 l Max Occurs: Enter the maximum number of times the field is
allowed to appear in the request. The maximum may be the
same as the minimum if you wish to enforce a specific number
of occurrences.

 l Location: Double-click and specify where the field must be
located in the request: within the request URL, request
body, or anywhere in the request. (Note: The location
request body requires the submission method POST.) .

 l Allow Empty: Select this check box to allow the field to have
an empty value. (Note: By default, when a policy using the
Number data type is imported from a previous version, this
check box will be deselected by default.)

Disallow other fields Indicate how you want to treat all other fields not specified in the table:

 l Select this check box to allow only the listed fields in the
request. The presence of any other fields will cause the
assertion to fail. This makes the assertion more restrictive.

 l Clear this check box to allow any other field in the request in
addition to the fields listed in the table. This makes the
assertion more broad .

 4. Click [OK] when done.

Validate JSON Schema Assertion
The Validate JSON Schema assertion is used to validate JSON (JavaScript Object Notation)
data against a JSON schema. Specifically it will:

 l validate JSON data structure

 l validate JSON data property types

 l validate JSON data property values

The JSON schema can either be defined within the assertion, or the assertion can
monitor a URL or extracted the URL from a Content-Type or Link header.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To adjust how JSON schemas are cached, refer to these cluster properties:

json.schemaCache.maxAge
json.schemaCache.maxDownloadSize
json.schemaCache.maxEntries

490 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Tips: (1) If the JSON schema validation fails, the reason is stored in the ${jsonschema.failure}
context variable. (2) Place a "Protect Against JSON Document Structure Threats Assertion" on
page 678 before this assertion to protect against DOS attacks

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the JSON Schema Validation Properties automatically
appear; when modifying the assertion, right-click <target>: Validate JSON
Schema in the policy window and select JSON Schema Validation Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 168: JSON Schema Validation Properties

 3. Specify the target message to be validated:

Chapter 7: Message Validation/ Transformation Assertions 491

Layer 7 Policy Authoring User Manual, v8.2

 l Request: Select this to validate the request message. This is the default setting
if the assertion is positioned before the routing assertion in the policy.

 l Response: Select this to validate the response message. This is the default
setting if the assertion is positioned after the routing assertion in the policy.

 l Other Variable: Select this to validate JSON content stored in a context
variable. This variable will normally be either a String or a Message variable with
Content-Type 'application/json' or another Content-Type that allows text. This
variable must be predefined or has been set in the policy prior to the Validate
JSON Schema assertion. For more information on Message variables, see
Context Variables in the Layer 7 Policy Manager User Manual.

Tip: The message target can also be set outside of the assertion properties. For more
information, see "Selecting a Target Message" on page 153.

 4. From the Schema location drop-down list, specify where the schema is coming
from:

Setting Description

Configure in
advance

Select this option to define a JSON schema directly.

 1. Specify the JSON schema using any of the following methods:

 l Manually type the code into the Validation Schema box or
copy and paste the code from another source. Variables may
be used. The assertion will check the input for correct
JSON structure, but it will not validate any variables entered.

Tip: You can use the ".mainpart" suffix on variables of type
Message and with Content-Type 'application/json'. For more
information about this suffix, see "Context Variable Data
Types" under Context Variables in the Layer 7 Policy Manager
User Manual.

 l Load the schema from a URL by clicking [Read URL] and then
specifying the URL.

Tip: To configure options for the URL (for example, to specify
the credentials, SSL, or proxy options), click [HTTP Options]
to open the Manage HTTP Options dialog.

 l Load the schema from a local file by clicking [Read File] and
then browsing to the appropriate file.

Tip: The schema maximum size is controlled by the
schemacache.maxSchemaSize cluster property.

 2. Review the content of the Validation Schema box and edit if
necessary.

 Table 141: Configuring the JSON schema based on location

492 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Monitor URL for

latest value

Select this option to specify a URL for the JSON schema. The
Gateway monitors the external resources for changes over time.

Type the address in the URL to monitor field. The URL may contain
context variables that will be resolved at run time. By default, Gateway
will issue an If-Modified-Since: HTTP request for this URL
approximately every 5 minutes while the schema is in use.

Tip: To configure options for the URL (for example, to specify the
credentials, SSL, or proxy options), click [HTTP Options] to open the
Manage HTTP Options dialog.

Tip: The monitor time interval is controlled by the
json.schemaCache.maxAge cluster property.

Retrieve Schema
URL from Content-
Type or Link Header

Select this option to retrieve the JSON schema URL from either a
Content-Type profile parameter in the header or from a Link header.

Example of a MIME type parameter: 'profile':

Content-Type: application/json; profile=http://json.com/my-hyper-
schema

Example of a "describedby" HTTP header:

Link: <http://json.com/my-hyper-schema>; rel="describedby"

 l Use [Add] to add as many regular expressions as necessary
to determine if a URL belongs to the set of white-listed URLs.

 l Use [Edit] to modify any of the regular expressions.

 l Use [Delete] to remove a regular expression from the list.

 l Select the Skip validation... check box to allow the assertion
to succeed if there is no schema URL in the message. Clear
this check box to always check for a schema URL (the
assertion will fail if not found).

Note: The Content-Type parameter is checked first; if a URL is not
found, then the header values are checked next.

 5. Click [OK] when done.

Validate MTOM Message Assertion
The Validate MTOM Message assertion is used to validate MTOM-optimized messages.
MTOM-optimized messages are based on the Message Transmission Optimization
Mechanism (MTOM) specification.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Chapter 7: Message Validation/ Transformation Assertions 493

Layer 7 Policy Authoring User Manual, v8.2

MIME Multipart Messages

A SOAP service normally does not permit MIME multipart messages unless it is explicitly
specified in the service's WSDL document or the policy contains an that processes MIME
multipart. Adding a Validate MTOM Message assertion that targets a request message in
a policy will mean that the service(s) for that policy will permit MIME multipart messages.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Validate MTOM Message in the policy window and select
MTOM Validate Properties or double-click the assertion in the policy window.
The assertion properties are displayed.

 Figure 169: MTOM Validate Properties

 3. Configure the properties as follows:

Setting Description

Require encoded Select this check box to require that the source message be MTOM-
encoded, otherwise the assertion will fail.

Clear this check box to not fail the assertion if the source message is
not MTOM-encoded.

Validation Rules The Validation Rules table is used to control which element's content

 Table 142: MTOM Validate Settings

494 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

will be validated. For each XPath, you can specify a maximum Item
Count and maximum Item Size.

 l To add a validation rule, click [Add].

 l To modify a validation rule on the list, select it and then click
[Edit].

 l To remove a validation rule from the list, select it and then click
[Remove].

 4. When adding or modifying a validation rule, the MTOM Validate Properties - Rule
dialog appears:

 Figure 170: MTOM Validate Properties - Rule

Complete the fields as follows:

 l XPath: Click [Edit] to select the XPath containing the elements to validate. For
more information, see "Selecting an XPath" on page 154.

 l Item Count: Enter the maximum number of items permitted at the XPath. A
count of '0' (zero) means an unlimited number of items.

 l Item Size: Enter the maximum size permitted for an item, in kilobytes.

 5. Click [OK] when done.

Validate or Change Content Type Assertion
The Validate or Change Content Type assertion can be used to validate or change the
Content-Type of any target message. You can target specific parts of a multi-part MIME
message.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Using the Assertion

 1. Do one of the following:

Chapter 7: Message Validation/ Transformation Assertions 495

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Validate Content Type or <target>: Change Content Type
to <ContentType> in the policy window and select Content Type Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 171: Content Type Properties

 3. Configure the properties as follows:

Setting Description

Message part index Select this check box to target the Content-Type in a specific MIME
part in the message.

Clear this check box to target the Content-Type in the main/root MIME
part of the message (i.e., MIME part '1').

Validate syntax of
content type

Select this option to validate the syntax of the value of the Content-
Type of the targeted message or message part.

 l If the validation succeeds, the assertion succeeds.

 l If the validation fails, the assertion fails and returns the
assertion status code 601 ("Error in assertion processing.")

Change content
type

Select this option to modify the Content-Type value of the targeted
message or message part.

Note: The modification takes effect immediately, but any previous
message processing based on the old Content-Type will not be
undone.

New value
When changing the Content-Type, enter the new value here. You can
also enter a context variable to set the value at the time of policy
execution.

 Table 143: Rate Limit settings

496 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Note: The value must be a valid and complete MIME type as defined
by RFC 2045 and 2046.

 4. Click [OK] when done.

Validate SOAP Attachments Assertion
The Validate SOAP Attachments assertion allows you to validate the size and MIME type of
incoming SOAP attachments. The assertion will fail under any of the following conditions:

 l the request message does not contain an attachment

 l the request message contains an attachment that was not declared in the WSDL

 l the attachment is too large

 l the attachment is declared an MIME Content-Type different from the expected
type

 l a signature is required but not present for the attachment.

You can optionally require that the attachment be signed (not available in the XML
Datascreen version of the Gateway).

The Validate SOAP Attachments assertion supports the W3C SOAP Messages with
Attachment standard as outlined in www.w3.org/TR/2000/NOTE-SOAP-attachments-
20001211, and the OASIS Web Services Security SOAP Messages with Attachment (SwA)
Profile 1.0 (Committee Draft) for signed attachments.

Notes: (1) You cannot use the Validate SOAP Attachments assertion with XML applications.
(2) If a signature is required for an attachment, one of the following assertions must precede
the SOAP Request with Attachment assertion: Require WS-Security Signature Credentials,
Require WS-Secure Conversation, Require SAML Token Profile, Require Encrypted
UsernameToken Profile Credentials, or Require WS-Security Kerberos Token Profile
Credentials.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

Chapter 7: Message Validation/ Transformation Assertions 497

Layer 7 Policy Authoring User Manual, v8.2

http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211

 2. Right-click Validate SOAP Attachments in the policy window and select SOAP
Attachment Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

 Figure 172: SOAP Attachment Properties

The Binding, Operations, and Input Parameters corresponding to one or more
attachments are automatically populated from the web service WSDL document.

Note: If no attachments are present or your service is not capable of supporting
attachments, then nothing will appear in the properties dialog.

 3. From the Binding drop-down list, select the binding that contains the
attachment. The operation(s) belonging to the binding appear under Operations.

 4. From the Operations list, select the operation that contains the attachment(s).
The following information is displayed in the Input Parameters grid.

Column Description

Parameter Name Name of the input parameter for the attachment.

MIME Part Content
Type

The Content-Type is retrieved from the WSDL document. If it is not
correct, click [...] to change it.

MIME Part Length
Max.

Set to default size of 1000 KB by the Gateway. Modify as necessary.

Require Signature Select this check box to require that the attachments be signed. This
option does not apply to the XML Datascreen version of the Gateway.

WARNING: Signatures with attachments cannot be verified when
the message is save as part of auditing, as the signed attachment is not
saved. Modifying an attachment will most likely break the signature of
the attachment.

 Table 144: SOAP Attachment Properties settings

498 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Multiple attachments per input parameter are also supported. In this case, the
total size of the attachments being referred to by the input parameter cannot
exceed the value of the MIME Part Length Max column value corresponding to the
input parameter.

 5. Click [OK] when done.

Validate XML Schema Assertion
The Validate XML Schema assertion allows you to specify a schema for validating a web
service or XML application request or response messages. This assertion can be used to
protect backend web services against the following threats:

 l XML Parameter Tampering: All XML parameters in the request are validated to
ensure conformance with the XML schema specifications. This is to prevent
injection of malicious scripts or content into the request parameters.

 l XDoS Attacks: The message structure and content are examined to ensure that
they are correct.

A message schema is provided by the Gateway administrator. If the service's WSDL
contains a schema, then that schema can be extracted to serve as the starting point for
the schema used in the Validate XML Schema assertion. This WSDL schema can be
extracted in whole or in request or response message-specific parts.

If the schema contains import statements that refer to external schemas, the Policy
Manager will attempt to fetch all unresolved schemas in an import tree (for example, a
schema referencing another schema) and add them to the global schema table. You can
view these imported schemas using the Manage Global Resources task. If the Policy
Manager is unable to resolve a schema (for example, because of a bad URL or URI), you
will be prompted to manually add the schema.

Tip: The format of the import statement can affect how it is received by the Gateway. A full
URL path is most preferable and is always resolvable (e.g.,
"http://schema.example.com/test.xsd"). Just the file name is acceptable, provided that the
exact name can be located in the Global Schemas stored in the Gateway (e.g., "test.xsd"). Not
acceptable are paths containing a specific drive letter (e.g., "f:\test.xsd"), or relative paths
such as "../test.xsd".

A policy can contain multiple Validate XML Schema assertions. The runtime application of
a schema is determined by its placement in the policy path. If routing has already
occurred when the Validate XML Schema assertion initiates, then the schema will be
applied to the response message. If routing has not yet occurred, then the schema will be
applied to the request message.

Chapter 7: Message Validation/ Transformation Assertions 499

Layer 7 Policy Authoring User Manual, v8.2

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Schema Failure in Context Variable

When a schema validation fails, an audit record is created and the reason for failure is
placed in the context variable ${schema.failure}. This makes it possible to reference the
failure later in the policy (for example, inclusion in the Return Template Response to
Requestor assertion).

Schemas with Circular References

A "circular reference" occurs when a schema references other schemas that ultimately
point back to the original schema. The Policy Manager will fetch all schemas from a
destination, circular or not, and add them to the global schemas table.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Schema Validation Properties automatically
appear; when modifying the assertion, right-click <target>: Validate XML
Schema in the policy window and select XML Schema Validation Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

500 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 173: XML Schema Validation Properties

 3. Specify the target message to be validated:

 l Request: Select this to validate the request message. This is the default setting
if the assertion is positioned before the routing assertion in the policy.

 l Response: Select this to validate the response message. This is the default
setting if the assertion is positioned after the routing assertion in the policy.

 l Other Message Variable: Select this to validate a message stored in a context
variable of type 'Message'. This variable must be predefined or has been set in
the policy prior to the Validate XML Schema assertion. For more information on
Message variables, see Context Variables in the Layer 7 Policy Manager User
Manual.

Chapter 7: Message Validation/ Transformation Assertions 501

Layer 7 Policy Authoring User Manual, v8.2

Tip: The message target can also be set outside of the assertion properties. For more
information, see "Selecting a Target Message" on page 153.

 4. For SOAP messages, specify the portion of the message that will be validated by
the schema. For non-SOAP messages, the schema will be applied to the entire
message.

 l Entire SOAP Message

Schema validation is performed on the entire SOAP envelope.

The schema configured by the policy author in this case should be based on
the SOAP envelope schema. It may optionally include definitions that cover the
payload of the SOAP headers and/or the SOAP body.

If you need to validate a schema against the SOAP message including any
security elements in the header (for example, signature element), you should
additionally import the WS-Security schema in your custom schema (for
example, htp://schemas.xmlsoap.org/ws/2002/04/secext/secext.xsd).

 l SOAP Message Body

Apply the schema to each element under the soap:Body element in a SOAP
message. This setting is the default.

Note: When importing an RPC/literal-style WSDL using this option, the system will
prompt you with: "The WSDL style seems to indicate that the schema validation
should be applied to the body 'arguments' rather than the entire body. Would you like
to change the setting accordingly?" Answer 'Yes' only if you are certain that the web
service is RPC/literal-style.

 l SOAP Message Arguments

Apply the schema to the children elements under the first child element under
the soap:Body. This is typically used in RPC/literal-style web services where the
argument elements themselves are not declared in the schema.

 5. From the Schema location drop-down list, specify where the schema is coming
from:

Setting Description

Configure in
advance

Select this option to define a root schema and all dependencies
directly.

 1. Specify the schema using any of the following methods:

 l Manually type the code into the Validation Schema box
or copy and paste the code from another source.

 Table 145: Configuring the schema based on location

502 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

 l If the Gateway can detect a schema in the WSDL
document, you can click [Extract Schema from WSDL]
to import the schema from the WSDL document. A
WSDL-based schema is typically only included in
document-style web services. Complete the Extract
Schema from WSDL dialog in step 6 below.

 l Load the schema from a URL by clicking [Read URL] and

then specifying the URL.

Tip: To configure options for the URL (for example, to specify
the credentials, SSL, or proxy options), click [HTTP Options]
to open the Manage HTTP Options dialog.

 l Load the schema from a local file by clicking [Read File]
and then browsing to the appropriate file.

The System ID field is automatically populated when opening
a resource (from the WSDL, a URL, or a file).

Notes: (1) The schema maximum size is controlled by the
schemacache.maxSchemaSize cluster property. (2) If the
cluster property schema.allowDoctype is set to "true", then the
"Configure in advance" XML schema may contain a document
type definition (DTD); otherwise, DTDs are not permitted
(default).

 2. Review the content of the Validation Schema box and edit if
necessary. You can right-click within the box for some useful
tools to help you edit. For more information, see Using the
XML Editor in the Layer 7 Policy Manager User Manual.

Monitor URL for

latest value

Select this option to specify a URL for the root schema. The Gateway
loads all the dependencies and then monitors the external resources
for changes over time.

Type the address in the URL to monitor field. The URL may contain
context variables that will be resolved at run time. By default, Gateway
will issue an If-Modified-Since: HTTP request for this URL
approximately every minute while the schema is in use.

Tip: To configure options for the URL (for example, to specify the
credentials, SSL, or proxy options), click [HTTP Options] to open the
Manage HTTP Options dialog.

Note: The schema maximum size is controlled by the
schemacache.maxSchemaSize cluster property.

Pick XML Schema
from global
resources

Select this option to pick the validation schema from the global
resources table. Choose the global schema to use from the Selected
schema drop-down list. If the schema you require is not listed, click
[Manage Global Resources] to define it, or to modify or remove
other global resources defined in the system. For more information,
see "Managing Global Resources" on page 72.

Chapter 7: Message Validation/ Transformation Assertions 503

Layer 7 Policy Authoring User Manual, v8.2

 6. If you chose to extract the schema from a WSDL document, the following dialog
appears:

 Figure 174: Extract Schema from WSDL dialog

Configure the dialog as follows and then click [OK] when done:

Setting Description

Select the WSDL
Schema to Extract

If the WSDL document contains more than one schema, select the
schema to use from the drop-down list. The schema code is displayed
in the box below.

Note: The Validate XML Schema assertion only takes a single schema
as input. If the WSDL contains multiple schemas, it may be necessary
to reorganize those schemas into one root schema that references
other schemas through import statements. The Policy Manager
attempts to retrieve the schemas referenced by the import statements
and add them to the global schema table. To view these schemas, see
"Managing Global Resources" on page 72.

Import Entire
Schema

Extract the entire schema. This setting is the default.

Import Request-
Specific Elements
Only

Extract only the schema elements particular to request messages.

Import Response-
Specific Elements
Only

Extract only the schema elements particular to response messages.

 Table 146: Extract Schema from WSDL settings

504 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

 7. When a resource with dependencies is opened, you are prompted to confirm
whether to import the schema's dependencies as global resources. Select [Import]
to import the dependencies or [Skip] to exclude the dependencies. Select [Cancel]
to cancel the loading of the resource (whether from the WSDL, a URL, or a file).

 8. If you chose [Import] in the previous step, all the schema dependencies that will be
processed and potentially added as global resources (Figure 175) are listed. Review
the list carefully and note the Action column for each resource:

 l Ignore: The resource will not be imported.

 l Update: The resource will update an existing global resource.

 l Create: A new global resource will be created for the resource.

Select [Import] to update the global resources or [Skip] to not update the global
resources. Select [Cancel] to cancel the import.

 Figure 175: Confirming importing schema dependencies

 9. During import, if there are issues that require manual intervention, you will be
prompted with a dialog similar to Figure 176

Chapter 7: Message Validation/ Transformation Assertions 505

Layer 7 Policy Authoring User Manual, v8.2

 Figure 176: Select Import Option dialog

Select a resolution from the drop-down list, then specify whether:

 l [This Time Only]: Use the selected action only for this occurrence of the
conflict. When another similar conflict occurs, you will be asked again how to
resolve it.

 l [Always]: Use the selected action for all the conflicts of this type. You will not be
prompted for a resolution if another similar conflict occurs during this import.

 10. On the XML Schema Validate Properties, click [OK] when done. If the dependencies
of a configured in advance XML Schema are found then the assertion is added to
the policy development window. If the Policy Manager is unable to validate the
dependencies, you are prompted to manually add the unresolved schema(s).

506 Chapter 7: Message Validation/ Transformation Assertions

Layer 7 Policy Authoring User Manual, v8.2

Chapter 8:
 Message Routing Assertions

Notes: (1) Depending on which Gateway product you have installed, not all the assertions
shown below may be available. See Features by Product in the Layer 7 Policy Manager User
Manual for a list of which features are available for each product. (2) This category may also
include custom-created encapsulated assertions. For more information, see "Working with
Encapsulated Assertions" on page 126.

In the Policy Manager, the following assertions are available in the Message Routing
category of the [Assertions] tab:

Configure Message Streaming Assertion 508

Copy Request Message to Response Assertion 510

Manage Cookie Assertion 512

Manage Transport Properties/Headers Assertion 515

Return Template Response to Requestor Assertion 518

Route via FTP(S) Assertion 520

FTP Cluster Properties for This Assertion 522
Configuring the [Connection] Tab 523
Configuring the [Authentication] Tab 526
Configuring the [Advanced] Tab 528

Route via HTTP(S) Assertion 529

Configuring the [Authentication] Tab 531
Configuring the [Headers] Tab 533
Configuring the [Connection] Tab 536
Configuring the [HTTP] Tab 538
Configuring the [Proxy] Tab 539
Configuring the [Other] Tab 539

Route via JMS Assertion 541

Context Variables Created by This Assertion 542
Configuring the [Target] Tab 544
Configuring the [Security] Tab 546
Configuring the [Request] Tab 548
Configuring the [Response] Tab 550

Route via MQ Native Assertion 551

Context Variables Created by This Assertion 552
Defined MQ Header Prefixes 553
Configuring the [Target] Tab 554
Configuring the [Request] Tab 556
Configuring the [Response] Tab 558

Chapter 8: Message Routing Assertions 507

Layer 7 Policy Authoring User Manual, v8.2

Route via Raw TCP Assertion 560

Route via SSH2 Assertion 563

Performing SFTP Partial Downloads/Uploads 563

The Message Routing assertions define where service messages are sent and what access
credentials are required by the back-end service. The Message Routing assertions are not
concerned with the credential requirements of the Gateway. Use them to define the
credential requirements of the target back-end system that will receive Gateway-routed
service messages.

Configure Message Streaming Assertion
The Configure Message Streaming assertion allows large message requests to stream
without being read and buffered by the Gateway. This assertion can reduce the latency of
requests passing through the Gateway, but note that this will limit the types of validation
and processing the Gateway is able to perform on these requests. An example of such a
limitation is illustrated by the following policy:

Request: Configure Message Streaming: buffer immediately
Request: route to <URL of external validation or other service>
Request: route to <URL of protected service>

If this policy is changed to "enable streaming (no buffering)", the request body is
streamed by the first routing assertion and will not be available to the second routing
assertion.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Configure Message Streaming in the policy window and select
Configure Message Streaming or double-click the assertion in the policy window.

508 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

The assertion properties are displayed.

 Figure 177: Configure Message Streaming Properties

 3. Configure the properties as follows.

Setting Description

Buffer immediately
(no streaming)

Select this option to have the entire message read immediately and
saved to the Gateway's internal buffer. If the total size exceeds the
value of the attachment.diskThreshold cluster property, it will be
buffered to disk. The target message will be buffered by the Gateway
and will be available for repeated inspection or modification by
subsequent operations.

The assertion will fail if the target message has not yet been initialized
(${<message variable>.buffer.status} ="uninitialized"), or, if the
target message has already been streamed without being buffered
(${<message variable>.buffer.status} = "gone").

For more information about the ${<target>.buffer.status} variable,
see "Message Layer Variables" in Context Variables.

Enable streaming
(no buffering)

Select this option to prevent this target message from being buffered
by the Gateway.

Note: Routine use of this option is recommended only if it is necessary
to stream large requests through the Gateway without buffering.

 1. The assertion will fail if the target message has not yet been
initialized (${<message variable>.buffer.status} =
"uninitialized"),or, if it has already been buffered (${<message
variable>.buffer.status} = "buffered").

The next operation that accesses the body of the target
message will consume it in streaming mode. Any further
attempt to access the body of this message will result in an
error because it has already been streamed away.

 2. When enabling streaming in a SOAP service, the following
settings must be used in the Service Properties to ensure that

 Table 147: Configure Message Streaming settings

Chapter 8: Message Routing Assertions 509

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

streaming occurs correctly:

 l In the [General] tab, clear the Perform WS-
Security processing for this service check box.

 l In the [WSDL] tab, select the Allow requests
intended for operations not supported by the
WSDL check box.

 4. Click [OK] when done.

Copy Request Message to Response Assertion
The Copy Request Message to Response assertion copies the inbound request exactly as it
appears at the current point in the policy, to the response. It provides a convenient
method to review the results of a request without requiring a web service or an http
destination.

The following are some examples on how you can use this assertion:

 l When added after the Apply XSL Transformation or Evaluate Regular Expression
assertions, the Copy Request Message to Response assertion will send the
resulting message back to the client.

 l When added after any of the Threat Protection assertions, the Copy Request
Message to Response assertion will return the message to the client if the request
passes all the threat protection assertions. If the request fails any assertion, a
SOAP fault is generated and no message is returned.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Request to Response Properties automatically
appear; when modifying the assertion, right-click Copy Request Message to
Response in the policy window and select Request to Response Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

510 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 178: Request to Response Properties

 3. Specify how to handle WSS Security headers in the request messages:

Option Description

Don't modify the
request Security
header

Instructs the Gateway to leave the security header in the outgoing
SOAP request message as-is. The security header in the request
may still have been modified if the Gateway needed to decrypt any
encrypted material during message processing.

Use this setting if the protected service needs to do its own checking of
the request's original security header, or if the protected service does
not care whether its request messages have a security header.

For best performance, use this setting whenever possible to minimize
the amount of per-request message modification.

Note: Do not modify the Security header if the policy uses WS-
Security. For more information, see the "Add or Remove WS-
Security Assertion" on page 273.

Remove Layer 7
actor and
mustUnderstand
attributes from
processed Security
header

Instructs the Gateway to remove the 'mustUnderstand' attribute and
'Layer 7' actor from the security header in the outgoing SOAP
message.

Use this setting if the presence of the Layer 7 actor causes issues with
the backend service. In certain cases, this actor may cause the
backend service to ignore the Security headers because it believes it
is addressed to someone else. You will also use this setting if the
backend service does not support Security and would reject a request
with 'mustUnderstand' asserted on the Security header.

An alternative might be to remove the Security header completely,
however this will incur a performance penalty for the extra processing
required to remove these from the messages. You may want to keep
the Security headers intact for logging purposes.

Remove processed
Security header from
request before
routing

Instructs the Gateway to remove any security header that was
processed by the gateway before forwarding the request to the
protected service.

Use this setting when the protected service is not expecting security
headers in the forwarded SOAP requests.

 Table 148: Request to Response Properties settings

Chapter 8: Message Routing Assertions 511

Layer 7 Policy Authoring User Manual, v8.2

 4. Click [OK] when done.

Manage Cookie Assertion
The Manage Cookie assertion is used to manipulate the cookies in a policy. This assertion
is designed specifically for cookie configuration and provides more flexibility than the
basic cookie handling capabilities offered in the Manage Transport Properties/Headers or
the Route via HTTP(S) assertions.

This assertion supports the original Netscape cookie specifications
(http://curl.haxx.se/rfc/cookie_spec.html), as well as RFC 2109
(http://tools.ietf.org/html/rfc2109).

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Note: The Gateway may rewrite cookie attributes in order to track cookies origins or to ensure
that the cookies will be sent back to the Gateway in subsequent requests. It is recommended
that this automatic rewriting be maintained, but advanced users may disable the rewriting for
troubleshooting purposes by setting the following context variables to 'false':
${response.cookie.overwritePath} and ${response.cookie.overwriteDomain}.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Cookie Properties automatically appear; when
modifying the assertion, right-click the assertion in the policy window (the name
differs according to the assertion configuration) and select Cookie Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

512 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

http://curl.haxx.se/rfc/cookie_spec.html
http://tools.ietf.org/html/rfc2109

 Figure 179: Cookie Properties, with "Update" operation example

 3. Select a task to perform:

To... Do this...

Add a new cookie 1. Choose the appropriate add operation:

 l Add: Add a new cookie. Note: The assertion will fail if the
cookie already exists.

 l Add or Replace: Add a new cookie, replacing any existing
cook with the same name, domain, and path.

 2. Enter as many attributes about the cookie as necessary. You may
reference context variables in any of the attribute fields.

 l Name and Value are required at a minimum.

 l Version: Enter a value that specifies to which version the state
management specification the cookie conforms.

 l Domain: Enter a value that specifies the domain for which the

 Table 149: Cookie tasks

Chapter 8: Message Routing Assertions 513

Layer 7 Policy Authoring User Manual, v8.2

To... Do this...

cookie is valid. Domains that are explicitly specified must always
begin with a period.

 l Path: Enter a value that specifies the subset of URLs to which
this cookie applies.

 l Max Age: Enter the lifetime of the cookie, in seconds. When
the Max Age is reached, the cookie is discarded by the client. A
value of "0" (zero) indicates that the cookie will be discarded
immediately, effectively ending the session.

Notes: (1) The agent may not retain the cookie for the specified
duration; the cookie may be evicted due to memory pressure or
privacy concerns. (2) Some agents do not support the Max Age
attribute and will ignore it.

 l Expires: Use the calendar control to choose an expiration date
for the cookie. Tips: (1) If you choose an invalid date (for
example, a date in the past), the date is highlighted in red but
you will still be able to close the dialog box. (2) If you manually
change the date, be sure to update the day of the week as well,
otherwise the date will be flagged as erroneous.

 l Comment: Use this field to document the intended use of the
cookie.

 3. Optionally select these attributes:

 l Secure: The cookie can only be used in secure/encrypted
connections.

 l HttpOnly: The cookie is not exposed through channels other
than HTTP or HTTPS requests. These cookies are not
accessible via non-HTTP methods, such as calls via JavaScript.

Remove cookies 1. Choose the Remove operation.

 2. Under "Match by", enter one or more attributes to locate the
cookie(s) you wish to remove. You may also a specify context
variable or regular expression to delete several cookies at once. If
regular expression is entered, select the regular expression
check box.

Update the
attributes of
existing cookies

 1. Choose the Update operation.

 2. Clear the original value check box for any attribute that you wish
to update, then enter the updated value in the adjacent text box.
As with adding, you may reference context variables. Note: The
"original value" check boxes mean to leave the original value of the
attribute unchanged.

 3. Under "Match by", specify one or more attributes to locate the
cookie(s) you wish to update. You may also specify a context
variable or regular expression to update multiple cookies at once.
If a regular expression is entered, select the regular expression
check box.

514 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

 4. Click [OK] when done.

Manage Transport Properties/Headers Assertion
The Manage Transport Properties/Headers assertion allows you to add, replace, or remove
custom HTTP header or JMS property in a message.

This assertion will always succeed provided that the target message exists.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Notes: (1) Use this assertion carefully. The Gateway does not validate the headers in a
message. Conflicting or malformed headers may produce unexpected results. (2) If two or more
JMS properties are added with the same name, only the last one added will be used by the
Route via JMS assertion and the incoming JMS request listener.

Modifying Content-Type Headers

If you need to modify Content-Type headers, use the "Validate or Change Content Type
Assertion" on page 694. Attempting to change these headers via the Manage Transport
Properties/Headers assertion may result in duplicate Content-Type headers and incorrect
interpretation of the message Content-Type.

Note that when removing Content-Type headers using this assertion, there is no effect
on the actual Content-Type header coming out of the Gateway. Context variables
(http.allheadervalues, http.header/headervalues.Content-Type) are affected as follows:

 l For request messages, these context variables are removed.
 l For response messages, these variables will remain.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Manage Transport Properties/Headers Properties
automatically appear; when modifying the assertion, right-click <target>:
[Add|Remove] [HTTP Header|JMS Property]... in the policy window and select

Chapter 8: Message Routing Assertions 515

Layer 7 Policy Authoring User Manual, v8.2

Transport Properties/Headers Properties or double-click the assertion in the
policy window. The assertion properties are displayed.

 Figure 180: Transport Properties/Headers Properties

 3. Configure the dialog as follows:

To... Do this...

Add a new HTTP
header or JMS
property

(possibly duplicating
an existing item with
the same name)

 1. Choose the type of metadata to add: HTTP Header or JMS
Property.

 2. Choose the Add or Add or Replace operation:

 l "Add" may possibly duplicate an existing item with the same
name.

 l "Add or Replace" replaces any existing header or property with
the same name.

 3. Enter the name of the header or property to add. You may
reference context variables.

 4. Optionally enter the value of the header or property. You may
reference context variables. Tip: To use special characters,
enclose them within double quotes.

A new HTTP header or JMS property with the specified information is
added to the target message.

Remove one or
more HTTP header
or JMS property

 1. Choose the type of metadata to remove: HTTP Header or JMS
Property.

 2. Choose the Remove operation.

 3. Specify the Header/Property Name to remove using any of the
following methods (case insensitive unless a Regular Expression is
specified):

 l Enter the exact name of the header or property to
remove.

 l Specify a context variable that will resolve to the name of
the header(s) or property(ies) to remove.

 Table 150: Transport Properties/Headers tasks

516 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

To... Do this...

 l Specify a regular expression that matches the header(s)
or property(ies) to remove, and then select the Regular
Expression check box.

Tips: (1) To remove all headers names with a matching
value, use a regular expression that matches all header
names (for example, ".*"). (2) You cannot use context
variables when the Regular Expression check box is
selected. If you require this functionality, use the Evaluate
Regular Expression assertion inside of a Run Assertions
for Each Item assertion.

 4. Optionally, specify a corresponding Header Value using any of
the following methods (case insensitive unless a Regular
Expression is specified):

 l Enter the exact value to match.

 l Specify a context variable that will resolve to the value to
match.

 l Specify a regular expression that matches the value(s)
that you want to remove, and then select the Regular
Expression check box. Note: The Policy Manager does
not validate the regular expression pattern.

If you do not specify a value, then all matching HTTP header
names or JMS properties are removed, regardless of value.
However if you specify a context variable that resolves to empty,
then only the matching items that have an empty value are
removed.

Note: The assertion does not fail if no header matches the given name
and/or value. However, the assertion fails if the context variable for the
header/property name does not exist or if it resolves to empty.

 Table 150: Transport Properties/Headers tasks

 4. Click [OK] when done.

Chapter 8: Message Routing Assertions 517

Layer 7 Policy Authoring User Manual, v8.2

Return Template Response to Requestor Assertion
The Return Template Response to Requestor assertion lets you define a message to be
returned to the requestor. This allows you (for example) to create a more descriptive
message for a SOAP fault or to elaborate an error condition to aid troubleshooting. For
example, you place this assertion in an "At least one assertion must evaluate to true"
assertion folder after an Evaluate Response XPath assertion. If the Evaluate Response
XPath assertion fails, then the template response message will be sent back to the
requestor.

Example:

A Return Template Response to Requestor assertion is configured as follows:

Response HTTP Status: 200
Response Content Type: text/plain
Response Body: Hello

This will return the following message to the client:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/plain
Content-Length: 5
Date: Mon, 17 Apr 2006 17:38:28 GMT
Hello

Notes: (1) The template response is always sent at the end of the policy processing, regardless
of its actual position within the policy. (2) Use of increasing number of context variables in a
policy may impact the Return Template Response to Requestor assertion and cause an overall
decrease in policy performance.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Template Response Properties automatically
appear; when modifying the assertion, right-click Return Template Response to
Requestor in the policy window and select Template Response Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

518 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 181: Template Response Properties

 3. Configure the response as follows:

Setting Description

Response HTTP
Status

Enter a valid numeric HTTP status code (for example, 200, 401, etc.).

You may reference context variables.

Send Response
immediately

Select this check box to send the template response message
immediately, with or without a payload. The transmission of a payload
depends on the status code (for example, a '204 (No Content)
response status indicates to skip payload transmission).

Clear this check box to send the template response at the completion
of the policy.

Note: If the response is sent immediately, no WS-Security decoration
is applied to the response message and the connection is closed (there
 is no persistent connections/keep-alive).

Response Content

Type

Enter any Content-Type in the format "first/last". A sample response
Content-Type might be:

text/xml; charset=utf-8

Response Body Type the message for the template response. You may include context
variables within the message body, if necessary. However note the
following if context variables are used:

 l When a context variable is used in the template response, the
Gateway does not check whether the XML response is well
formed. This may result in invalid body content.

 Table 151: Template Response settings

Chapter 8: Message Routing Assertions 519

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

 l If the context variable is of type Message, you may need to
refer to the ${variableName.mainpart} part of the context
variable to avoid problems. Using “.mainpart” turns the
contents into a String.

Note: For context variables of types other than Message, the
mainpart part is not required. For more information about the
data types, see Context Variables in the Layer 7 Policy
Manager User Manual.

 4. Click [OK] when done.

Route via FTP(S) Assertion
The Route via FTP(S) assertion is used to route requests from the Gateway to a backend
FTP(S) server, using passive mode FTP. You can configure the port number to use and
which directory to use on the remote FTP server.

Notes: (1) The Gateway can be configured as an FTP(S) server in order to support FTP
proxying. For more information, see Working with FTP Requests in the Layer 7 Policy Manager
User Manual. (2) The Gateway does not support the use of elliptic curve certificates (ECC) as
the client certificate for an outbound TLS connection.

If the routing is successful, the response message will contain the reply from the remote
FTP server. For uploads, the response body will be empty; for lists or download requests,
the body will contain the listing/file contents. The reply code and message from the
remote FTP server will be set in the target message and made available in these context
variables:

${<prefix>.ftp.replycode}
${<prefix>.ftp.replytext}

Where "<prefix>" is:

 l "response" if the Message Target is "Response"

 l the name of the target message variable if the Message Target is "Message
Variable"

The Message Target is set in the [Connection] tab of the FTP(S) Routing Properties.

Example: Requesting the last modified time of a file

520 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

This simple example shows how you can use the Route via FTP(S) assertion to retrieve the
modified timestamp of a file on a remote server using a HTTP GET Request and how the
reply code and message are populated into context variables.

Precondition:

 l There is a remote FTP server "ftp.example.com" hosting the file /log_files/log.txt.

 To request the modified timestamp from a remote server:

 1. Create the following simple policy fragment (properties settings to follow):

Route via FTPS Server ftp.example.com

Return Template Response to Requestor

 2. Configure the [Connection] tab in the FTP(S) Routing Properties as follows:

 l Protocol: FTPS with Explicit SSL (AUTH TLS/SSL)

 l Host name: ftp.example.com

 l Select "Verify server certificate"

 l Command: MDTM

 l Message Target: Message Variable

 l Target Message Variable: output

 l Directory: /log_files

 l Arguments: log.txt

 l Assertion Outcome: Fail on Transient or Permanent Negative Completion
reply code

 3. Configure the Template Response Properties as follows:

 l Response HTTP Status: 200

 l Response Content Type: text/html; charset=UTF-8

 l Response Body:
<html><body>

 RESPONSE: ${output.ftp.replycode} ${output.ftp.replytext}

 </body></html>

This is the example in action:

 1. The service policy receives and processes an HTTP GET request.

 2. The Route via FTP(S) assertion retrieves the last modified date (MDTM command)
of the file of specified file ('Directory' and 'Arguments') from the remote FTP server
('Host name').

Chapter 8: Message Routing Assertions 521

Layer 7 Policy Authoring User Manual, v8.2

 3. The success reply code and last modified date of the file are made available
through the context variables ${output.ftp.replycode} and ${output.ftp.replytext}.

 4. The "Return Template Response to Requestor Assertion" on page 518 returns an
HTML message with the reply details to the client; for example:

<html><body>

RESPONSE: 213 20140224231131.616
</body></html>

For a list of the supported FTP commands, see Table 5 in Listen Port Properties on page 1.
For an example of how this assertion can be used with the listen ports to configure an
extended FTP command support proxy, see Configuring the [FTP Settings] Tab on page 1.

FTP Cluster Properties for This Assertion

The cluster properties described in FTP Cluster PropertiesLayer 7 Policy Manager User
Manual define the default FTP(S) listen port behavior. The following cluster properties are
specific to the Route via FTP(S) assertion and have no effect on any listen ports.

Property Description

ftp.globalMaxDownloadConcurrency The maximum number of FTP downloads that may be
executed concurrently by Route via FTP(S) assertions. This is
a global limit across all such assertions.

Default: 64

ftp.globalMinDownloadConcurrency The core number of FTP downloads that may be executed
concurrently by Route via FTP(S) assertions. This is a global
limit across all such assertions.

Note: This is the number of threads in the pool under normal
circumstances. Higher workloads will cause more threads to
be created, up to the maximum defined by
ftp.globalMaxDownloadConcurrency.

Default: 32

ftp.globalMaxDownloadQueue The maximum number of FTP downloads that may be
waiting to execute concurrently by Route via FTP(S)
assertions. This is a global limit across all such assertions.

Default: 64

 Table 152: FTP Cluster Properties that only affect the Route via FTP(S) assertion

Using the Assertion

 1. Do one of the following:

522 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the FTP(S) Routing Properties automatically appear;
when modifying the assertion, right-click Route via FTP(S) Server in the policy
window and select FTP(S) Routing Properties or double-click the assertion in the
policy window. The assertion properties are displayed. These properties are
organized across the following tabs:

Connection
Authentication
Advanced

 3. Configure each tab as necessary. Refer to the appropriate section below for a
complete description of each tab. Tip: If you are unsure of the settings to use,
consult with the FTP server administrator.

 4. Click [OK] when done.

Configuring the [Connection] Tab

 Figure 182: FTP(S) Routing Properties - [Connection] tab

The [Connection] tab is used to configure the FTP connection.

Chapter 8: Message Routing Assertions 523

Layer 7 Policy Authoring User Manual, v8.2

 1. Configure the Connection Settings section as follows:

Setting Description

Protocol
Choose the protocol to use:

 l FTP (unsecured): Information is submitted unencrypted.

 l FTPS with Explicit SSL (AUTH TLS/SSL): Information is
encrypted using explicit SSL (RFC2228).

 l FTPS with Implicit SSL: Information is encrypted using
implicit SSL.

Host name
Enter the hostname of the FTP(S) server machine or a context
variable that will contain the hostname. This name is verified against
the X.509 certificate

Port number
Specify the port number or a context variable to use for the security
method chosen. These defaults are used:

 l FTP (unsecured) and FTPS with Explicit SSL: port 21

 l FTPS with Implicit SSL: port 990

Connect timeout Specify the connection timeout period. The default is 10 seconds.

Verify server
certificate

If encryption is used, select this check box to verify the server's
certificate against the trust store in the Gateway. For more
information, see Managing Certificates in the Layer 7 Policy Manager
User Manual

Test Connection Click this button to test your FTP connection. This button is available
only when all required information is entered in the properties dialog.

Note: The [Test Connection] button cannot properly verify the
connection if a context variable was used in the password, directory, or
command.

 Table 153: FTP(S) connection settings

 2. Configure the Command Settings section as follows:

Setting Description

Command Choose an FTP command to send to the FTP server, or choose From
Variable to retrieve the command from the "Command Variable" field.
For a list of the supported FTP commands, see Table 5 in Listen Port
Properties on page 1.

Note: The FTP command handling setting in the associated FTP listen
port may impact how the command is interpreted. For more
information, see Listen Port Properties in the Layer 7 Policy Manager
User Manual.

Command Variable If the raw FTP command is being retrieved from a context variable,

 Table 154: FTP(S) command settings

524 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

enter the variable here.

Message Source From the drop-down list, select the source message of any data that is
expected to accompany the selected command. Choose from
Request, Response, or any Message context variables that have
been defined so far.

Message Target Specify the target message where reply data from the FTP server
should be stored, including the reply code, reply text, and any file or list
data. Choose from Response or any Message context variables that
will receive this information.

Target Message
Variable

If the message target is a variable, enter the variable name. If this
variable does not exist, it will be created.

Directory Specify the remote directory on the FTP server to use or a context
variable that will contain the directory name. You will be warned if the
context variable specified does not exist at that particular point in the
policy.

Leave blank to use the default root directory defined by the FTP
server.

Arguments Enter any arguments or parameters required by the FTP command.
For most common commands, the argument will be a file or directory
name, but other commands may support other arguments.

Note: The Arguments field replaces both the "Auto-generate file
name" and "Specify pattern" options found in the Route via FTP(S)
assertion prior to version 8.2.0.

Examples of arguments:

 l To ensure a unique file name for an upload request, you can
use the context variable ${requestID} as the argument. This is
the behavior of the "Auto-generate file name" option available
in versions prior to 8.2.0.

 l To define a specific custom file name, enter the file name here.
For example if you are using an upload-type command,
entering myFile.txt will cause a file named "myFile.txt" to be
created on the remote FTP server that contains the contents of
the message body. This is the same as selecting the "Specify
pattern" option prior to version 8.2.0.

The arguments can be created dynamically by including
context variables within the pattern. For example, the pattern
"fromGateway-${requestId}" will name all the uploaded files
"fromGateway-" followed by the request ID. You will be
warned if the context variable specified does not exist at that

Chapter 8: Message Routing Assertions 525

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

particular point in the policy.

 l To list the contents of a specific directory (other than the
current working directory), enter the name of that directory as
the argument. For example, the Directory field contains
"/users/jsmith". To list the contents of the "downloads"
directory (assuming "/users/jsmith/downloads"), enter
"downloads" in the Argument field.

 3. Indicate how the assertion will respond to error reply codes from the target FTP
server. Choose the appropriate Assertion Outcome from the drop-down list:

 l Fail on all Permanent Negative Completion reply codes (result: fail on all codes
>=500)

 l Fail on Transient OR Permanent Negative Completion reply codes (result: fail on
all codes >=400)

 l Never fail as long as target replies. This option allows FTP clients in a proxy
scenario to receive useful responses that will, in most cases, reveal the reasons
for failures (for example, insufficient privileges, incorrectly formatted
arguments, etc.).

For more details on the FTP reply codes, see https://en.wikipedia.org/wiki/List_of_
FTP_server_return_codes.

Configuring the [Authentication] Tab

 Figure 183: FTP(S) Routing Properties - [Authentication] tab

The [Authentication] tab is used to configure authentication to the remote FTP server.

526 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes
https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes

 1. Choose Pass through credentials in request to use the credentials contained in
the request.

Choose Specify user credentials to manually enter the credentials to use, and
then enter the user name and password:

 l User name

 l Stored password: Use a password from the secure password store on the
Gateway. Choose the password to use from the drop-down list. Note: Only
stored passwords may be used here—you cannot type in a password (to do
this, use the "Password expression" option instead). To define a stored
password, click [Managed Stored Passwords]. For more information, see
Managing Stored Passwords in the Layer 7 Policy Manager User Manual.

 l Password expression: Use the password in the specified expression. You may
specify context variables or embed context variables within the expression.
Note: Entering a password expression is not recommended, as it is stored in
plaintext form and is less secure. For maximum security, use the "Stored
password" option instead.

 l Context variable in password: Select this check box to allow the assertion
to correctly recognize context variables used in the Password expression
field; for example, you will be using the ${secpass.*} context variables. For
more information, see Stored Password Properties in the Layer 7 Policy
Manager User Manual.

Tip: For security purposes, the user name and password are automatically deleted when
you close the properties and "Specify" is not selected. You do not need to manually clear
these fields.

 2. Supply digital certificate for client authentication: Select this check box to use a
client certificate from a private keystore for FTPS authentication, then choose the
certificate from the dropdown list. Note: This option is available only if a private
keystore has been defined.

Chapter 8: Message Routing Assertions 527

Layer 7 Policy Authoring User Manual, v8.2

Configuring the [Advanced] Tab

 Figure 184: FTP(S) Routing Properties - [Advanced] tab

The [Advanced] tab is used to configure additional properties for the FTP routing.

 l Override maximum message size: By default, the maximum response message
size is 2GB. Select this check box to download messages larger than this limit or to
impose a specific limit. You can also allow message of unlimited size, however this
is not recommended as this may adversely affect Gateway performance.

 l Current WSS header handling: Specify how to handle the security header.

Option Description

Don't modify the
request Security
header

Instructs the Gateway to leave the security header in the outgoing
SOAP request message as-is. The security header in the request may
still have been modified if the Gateway needed to decrypt any
encrypted material during message processing.

Use this setting if the protected service needs to do its own checking of
the request's original security header, or if the protected service does
not care whether its request messages have a security header.

For best performance, use this setting whenever possible to minimize
the amount of per-request message modification.

Note: Do not modify the Security header if the policy uses WS-
Security. For more information, see the "Add or Remove WS-Security
Assertion" on page 273.

Remove Layer 7
actor and
mustUnderstand

Instructs the Gateway to remove the 'mustUnderstand' attribute and
'Layer 7' actor from the security header in the outgoing SOAP
message.

 Table 155: WSS header handling

528 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Option Description

attributes from
processed Security
header

Use this setting if the presence of the Layer 7 actor causes issues with
the backend service. In certain cases, this actor may cause the
backend service to ignore the Security headers because it believes it is
addressed to someone else. You will also use this setting if the
backend service does not support Security and would reject a request
with 'mustUnderstand' asserted on the Security header.

An alternative might be to remove the Security header completely,
however this will incur a performance penalty for the extra processing
required to remove these from the messages. You may want to keep
the Security headers intact for logging purposes.

Remove processed
Security header from
request before
routing

Instructs the Gateway to remove any security header that was
processed by the gateway before forwarding the request to the
protected service.

Use this setting when the protected service is not expecting security
headers in the forwarded SOAP requests.

Route via HTTP(S) Assertion
The Route via HTTP(S) assertion defines where a Web service or XML application message
is sent and what authentication credentials it uses. If the service requests client
authentication, the Gateway can be configured to respond in any number of ways:

 l By default, it will use the subject certificate from the default SSL to respond to the
SSL-TLS handshake.

 l You can specify a custom private key to use. The Gateway will use the subject
certificate from this private key to respond to outbound TLS client certificate
challenges from the server.

 l You can configure the Gateway to decline all certificate challenges by selecting the
"Use no private key" option when selecting a private key in this assertion. Tip: This
option is unique to the Route via HTTP(S) assertion.

Chapter 8: Message Routing Assertions 529

Layer 7 Policy Authoring User Manual, v8.2

To learn more about selecting a private key for this assertion, see Selecting a Custom
Private Key in the Layer 7 Policy Manager User Manual.

A message routing assertion is an essential policy element. When you publish a service
using the Publish SOAP Web Service Wizard, Create WSDL Wizard, or Publish Web API
Wizard (with a target URL), the Policy Manager automatically adds the service URL
specified during the publication process as a Route via HTTP(S) assertion in the published
service's initial policy.

Notes: (1) Be default, the outbound HTTP method is passed through from the inbound request
HTTP method. Where there is no inbound request method (for example, a context variable is
used), then the POST action is used. (2) The Gateway does not support the use of elliptic curve
certificates (ECC) as the client certificate for an outbound TLS connection.

The Route via HTTP(S) assertion supports the HTTP 1.0 and 1.1 standards. It should be
present in policies that consume an external REST or HTTP-SOAP based API.

Using the Assertion

By default, the Policy Manager automatically adds a Route via HTTP(S) assertion to a new
service policy created by one of the Publish Service wizards. If the assertion was removed
or you need to add another one, refer to Adding an Assertion for instructions on adding
this assertion.

 1. Right-click "Route via HTTP(S) to..." in the policy window and then select HTTP
(S) Routing Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

 2. Review the address in the URL box to ensure that it is the correct URL for the
service; make any changes if necessary. The Policy Manager will verify that the URL
is well formed and that the hostname is valid in the DNS. Tip: For SOAP services

published from a WSDL, you can click to reset the URL to the one specified

during the service publication process.

Note: If the URL contains a valid host but invalid path, routing attempts will be recorded
as a Policy Violation in the service statistics. However if the host is unknown, the routing
attempts will be recorded as Routing Failures. For more information about service
statistics, see Dashboard - Service Metrics in the Layer 7 Policy Manager User Manual.

For greater flexibility in specifying the path, you can embed context variables
within the URL. Be sure the context variables resolve to a valid URL.

530 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

 3. Choose the HTTP Method to use from the drop-down list. The list includes the
well known methods, but you can enter your own method if necessary (including
specifying a context variable). The default setting of <Automatic> uses the HTTP
method from the request (if present), otherwise is uses the POST method. Tip: If a
custom HTTP method is present in the message being routed, it will be passed

through.

For more information about HTTP Methods, refer to the "HTTP/FTP" tab of the
Service Properties.

 4. Choose the Request Source from the drop-down list. You may use the default
request message or any other Message context variable that has been defined.

 5. Specify the Response Destination. You may choose a destination from the drop-
down list or type the name of a Message variable that will hold the response. Tip:
The default variable name of "httpResponse" is just a suggestion; ensure this
name is unique if you opt to use it. Refer to the context variable naming rules if you
receive syntax errors.

Note: When saving the route response to a Message context variable, the response body
and headers are saved to the variable, not the default response. The response returned
back to the client is the default response, not the Message variable. The routing header
rules should affect the headers saved to the Message variable in this case, not the
headers returned to the client.

 6. Configure each tab as necessary. Refer to the appropriate section below for a
complete description of each tab.

 7. Click [OK] when done.

Note: As of version 8.2.00, a gzip request or response with zero content-length will be treated
the same as a non-gzipped request/response; the Route via HTTP(S) assertion no longer fails.
As a result, previously "invalid" empty gzipped requests/responses that caused an error will no
longer trigger an error, unless the policy is specifically constructed to fail if an empty gzip
request/response is received.

Configuring the [Authentication] Tab

In the [Authentication] tab, select an authentication method.

Authentication Description

None (Anonymous) Select this option for anonymous services. No credentials are required.

 Table 156: Route via HTTP(S): Authentication methods

Chapter 8: Message Routing Assertions 531

Layer 7 Policy Authoring User Manual, v8.2

Authentication Description

Use OAuth
Authorization

Select this option to use OAuth Authorization for credentials. Choose the
OAuth Version and then specify the Token Variable.

The OAuth version determines what is prepended to the contents of the
token variable in the Authorization header value.

 l For OAuth 1.0, this is the equivalent of adding an Authorization
header with the value "OAuth ${var}".

 l Otherwise, it is equivalent to adding an Authorization header with
the value "Bearer ${var}".

Note: Ensure that the OAuth token has already been obtained and is
present in the specified context variable.

Specify HTTP

Credentials

Select this option for basic HTTP authentication. You are prompted to
enter your User Name, Password, NTLM Domain, and NTLM Host.

You may specify context variables in the User Name and Password
fields.

Notes: (1) If no credentials are entered, the authentication option will
revert to "None (Anonymous)" the next time the [Authentication] tab is
opened. (2) NTLM authentication is not supported when a proxy server
is configured (see "Configuring the [Proxy] Tab" on page 539). (3) Both
NTLM v1 and v2 authentication are supported.

Use HTTP
Credentials from
Request

Select this option to use the HTTP basic or NTLM authentication
headers in the request.

Attach SAML
Sender-Vouches

Select this option to attach a SAML sender-vouches ticket to each
outgoing back-end request that was authenticated by the Gateway. This
ticket contains the user name of the authenticated user along with an
expiration time, and is signed by the Gateway using the SSL certificate.
You are prompted to specify the SAML Version and Ticket expiry
time, in minutes (whole number only).

Note: The "Attach SAML Sender-Vouches" option is enabled only for
SOAP Web service policies. It differs from the "Require SAML Token
Profile Assertion" on page 228 as follows:

 l The Attach SAML Sender-Vouches option is being added to
the outgoing message from the Gateway to the protected
service.

 l The Require SAML Token Profile Assertion requires that
SAML security already be present in an incoming message from
a client application to the Gateway.

Send TAI Header Select this option to require a Trust Association Interceptor (TAI) third-
party authentication pass. TAI credential chaining can be used with or
without a static user name and password. With TAI, if the Gateway
authenticated a user, then the user name of that authenticated user will
be included in the IV_USER HTTP header in the outgoing request.

532 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Authentication Description

Use Windows
Integrated

Select this option to enable outbound Kerberos Delegation via Windows
Integrated Authentication. Specify how to proceed:

 l Use Delegated Credentials: Select this option to use the
credentials extracted from the request Kerberos token to
request a service ticket for routing. If using this option, one of the
following assertions must be present in the policy: Require
Windows Integrated Authentication Credentials or Require
WS-Security Kerberos Token Profile Credentials.

 l Use Gateway Keytab: Select this option to use the
kerberos.keytab file on the Gateway. For more information
about this file, see "Using Windows Domain Login" in the Layer 7
Installation and Maintenance Manual.

 l Use Configured Credentials: Select this option to have the
assertion use the specified account to authenticate with the KDC
and obtain a service ticket for routing.

Notes: (1) The "Use Gateway Keytab" and "Use Configured
Credentials" options do not require Kerberos access control (in other
words, the Require Windows Integrated Authentication Credentials or
WSS Kerberos assertions are not required). Using the Require HTTP
Basic Credentials assertion is sufficient. (2) Kerberos authentication is
not supported when a proxy server is configured (see "Configuring the
[Proxy] Tab" on page 539).

Configuring the [Headers] Tab

The [Headers] tab is used to define which HTTP headers should be passed through. It
contains separate sections for request and response headers.

By default, all request and response headers are passed through in their original form.

IMPORTANT: There may be potential security ramifications to allowing all applications header
to be passed through. If in doubt, restrict the pass-through to only specific headers.

When passing through only specific headers, define these headers in their respective
tables. You can choose to pass the original value of the header or a custom value (context
variables acceptable).

Some tips for constructing a list of headers to be passed through:

 l You may repeat header names if you are constructing multiple rules on handling a
particular header. See "Working with Multiple Headers" below for more details.

Chapter 8: Message Routing Assertions 533

Layer 7 Policy Authoring User Manual, v8.2

 l When passing the original value, if the header is present multiple times in the
incoming request, then it is passed multiple times as they are in the original
request.

 l When passing through only specific request or response headers, if no headers
are specified in the accompanying table, then the Gateway will revert to passing
through all headers.

Note that the following request headers are not automatically passed through even if
you deselect the check box:

connection
content-encoding
content-length
content-type
date
keep-alive
server
transfer-encoding

Note: Header customizations made here may be overridden by changes made through the
"Manage Transport Properties/Headers Assertion" on page 515 (or vice versa), depending on
which assertion appears later in the policy.

Header Handling with Kerberos

Prior to version 8.2, an Authorization header set by the Add Header assertion (now
renamed to "Manage Transport Properties/Headers Assertion") would override the
Kerberos Authorization header set by the Route via HTTP(S) assertion. In version 8.2, the
Kerberos Authorization header set by the Route via HTTP(S) assertion will not be
overridden.

The practical implications of this change:

 l Policies created prior to version 8.2 that are configured to pass through only
specific headers are not affected by this change.

 l Policies created in version 8.2 that have the "Pass through only certain request
headers" check box selected are also not affected by this change.

 l If you need to pass through all headers, you can now use the "Manage Transport
Properties/Headers Assertion" on page 515 to remove unnecessary Authorization
headers from the request.

534 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Working with Multiple Headers

It may be necessary to construct multiple rules to describe how you want to handle a
particular header. For example, you wish to forward several custom values for a particular
request or response header.

The following table summarizes the possible scenarios when you are passing through
only certain headers.

Scenario What will happen

Define a header "ABC" with value =
<original value>

All headers with the name "ABC" will be forwarded,
with their original values intact.

Define a header "ABC" with value =
"XYZ"

A new header with name "ABC" with value "XYZ" is
inserted.

Define the headers "ABC" = "123"
and "ABC" = '456'.

Two headers with name "ABC" are inserted: One
with value "123" and another one with value "456".

Define the headers "ABC" =
<original value> and "ABC" =
"123".

All headers with the name "ABC" will be forwarded,
with their original values intact. An additional
header with the custom value "123" is inserted.

 Table 157: Scenarios for header rules

Working with HTTP Host Headers

The HTTP Host Header can be set a number of different ways. By default, this header is set
to the URL hostname specified at the top of the properties dialog. You can enhance the
flexibility of the Host Header by doing the following:

 1. Ensure you are passing through only certain request headers.

 2. Add a new request header with the name "Host".

 3. Select Customize value, and then choose one of the following depending on how
you wish to populate the Host Header:

 l leave the value blank: The HOST header in the HTTP request will be populated
with the Host name from the target URL.

 l enter a context variable: The HOST header in the HTTP request will be populated
with the value contained in the context variable.

 l any other non-blank value: The HOST header in the HTTP request will be
populated with the value entered here.

Chapter 8: Message Routing Assertions 535

Layer 7 Policy Authoring User Manual, v8.2

Configuring the [Connection] Tab

The [Connection] tab is used to configure failover strategies, timeouts, and TLS settings.

 1. Specify how IP addresses should be retrieved:

IP address option Description

Look Up IP
Addresses in DNS

Select this option to have the Gateway retrieve the IP addresses from
the Domain Name Server (DNS). This setting is the default and it does
not use a failover strategy.

Use the following IP
addresses

Select this option to have the Gateway only use IP addresses from the
list that follows.

Use multiple URLs Select this option to have the Gateway sequentially use URLs from the
list that follows. This option is useful if, for example, multiple instances
of a service reside at different URLs rather than just different IP
addresses.

 Table 158: Retrieving IP addresses during HTTP routing

Tip: You may specify context variables when constructing a list of IP addresses or URLs.

 2. Choose a Failover strategy to use in case an IP address or URL fails to respond:

Failover Strategy Description

Ordered Sticky with
Failover

The Gateway sends service messages to the first IP/URL in the list until
that IP/URL does not respond (fails). When this occurs, the next
IP/URL in the list is used.

Tip: The cluster propertyio.failoverServerRetryDelay controls the
delay before the Gateway retries a failed server. The default is to wait
15 minutes when using the "Ordered Sticky with Failover" strategy.

Random Sticky with
Failover

The Gateway chooses an IP/URL randomly at the beginning of each
session and uses it for the duration of the session. If the chosen IP/URL
address fails, another IP/URL is chosen at random.

Round Robin The Gateway rotates through the IP/URL list on a request-by-request
basis (round-robin) from the first, to the second, and so on. When the
end of the list is reached, the cycle continues from the top of the list.

Tip: The cluster propertyio.failoverServerRetryDelay controls the
delay before the Gateway retries a failed server. The default is to wait 5
minutes when using the "Round Robin" strategy.

 Table 159: Failover Strategies during HTTP routing

 3. If you wish to override any of the following timeout values for this routing
assertion only, do the following:

536 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l The Connection Timeout defines the maximum time (in milliseconds) the
Gateway will attempt to establish a TCP connection. If exceeded, the routing
will fail (or failover). To override the system default, clear the Use System
Default check box and then enter a different value. You may reference context

variables.

Tip: The system default for this timeout is defined by the io.outConnectTimeout
cluster property, which defaults to 30 seconds if the property is not explicitly
set.

 l The Read Timeout defines the maximum time (in milliseconds) allowed for
response data (not necessarily the complete response) to be read for the
outbound request. If exceeded, the routing will fail (or failover). To override the
system default, clear the Use System Default] check box and enter a value. You

may reference context variables.

Tip: The system default for this timeout is defined by the io.outTimeout cluster
property, which defaults to 60 seconds if the property is not explicitly set.

 l The Maximum Retries defines the maximum number of attempts, in addition
to the initial attempt, to establish a TCP connection. For example, Maximum
Retries = 3 means there will be 4 attempts: the initial attempt and 3 retry
attempts. To override the system default, clear the Use System Default check
box and enter a value between 0 and 100 (where "0" will prevent retries). The
default is 3 retries.

 4. Choose which TLS Version to allow when connecting via HTTPS.

To use a specific set of TLS cipher suites for this HTTP connection, click [Cipher
Suites]. For more information, see Selecting Cipher Suites in the Layer 7 Policy
Manager User Manual.

To allow a subset of trusted certificates during the outbound TLS handshake, click
[Trusted Server Certificates] and then select:

 l Trust all Trusted Certificate: Trust all trusted certificates presently in the
Gateway trust store. For more information, see Managing Certificates in the
Layer 7 Policy Manager User Manual.

 l Trust only the specified Trusted Certificates: Trust only the trusted certificates
in the table below. Only the certificates that you define here will be trusted
during the outbound TLS handshake from this routing assertion

Note: As with all trusted certificates, the certificates in this list will be trusted only if
their settings are compatible (for example, if it has been configured to be "trusted for
outbound SSL").

Chapter 8: Message Routing Assertions 537

Layer 7 Policy Authoring User Manual, v8.2

Configuring the [HTTP] Tab

The [HTTP] tab is used to further refine the settings for your HTTP protocol.

 1. Choose the Version from the drop-down list. The Default setting will use the
version defined by the io.httpVersion cluster property. The other settings will
override the cluster property.

 2. Select the Compress Output check box if you want to compress the request
payload. This can improve performance and transfer times, especially if the
payloads are large.

Note: The compression option is valid only when the service endpoint is another Gateway.

 3. Select the Use Keep-Alive check box to use persistent connections. These
connections are more efficient, as they allow reuse of TCP connections for multiple
messages. Clear this check box to not use persistent connections on this routing.

Note: You can enable "keep-alive" only when the io.httpDisableKeepAlive cluster property
is at its default "false" setting. If that property was set to "true", then "keep-alives" are
disabled globally and cannot be enabled for an individual HTTP routing.

 4. Select the Follow Redirects check box to instruct the assertion to follow HTTP
redirect responses from the downstream target. Otherwise, redirect responses are
sent back to the requestor.

 5. Select the Transmit body regardless of request method check box to include the
request body with the outbound request, even if the HTTP request method is one
that normally would not include a body (for example, GET, HEAD, DELETE, or
OPTIONS). Note: The following of redirects is disabled for the request when a
request body is forcibly included, even if the request method (such as GET) would
otherwise have followed them

Clear the check box to not forcibly include the request body with the outbound
request. In this case, the request body is include only with HTTP request methods
(such as POST, PUT) that normally include them.

 6. Click Customize Request Form POST Parameters if you need to change how
these parameters work. You will be able to:

 l Specify whether all request form Post parameters received from the requestor
are passed through, or only certain ones.

538 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l Define a list of specific parameters to pass through. Tips: (1) You may repeat
parameter names if you are constructing multiple rules on handling a particular
parameter. See "Working with Multiple Headers " on page 535 for more details.
(2) If the parameter is present multiple times in the incoming request, then it is
passed multiple times as they are in the original request.

Configuring the [Proxy] Tab

The [Proxy] tab is used to configure an HTTP proxy host, if required.

When configuring a proxy host, enter the following:

Proxy Host
Proxy Port
Proxy Username
Proxy Password

Note: When a proxy server is configured, the following authentication methods cannot be used:
Specify HTTP Credentials, Use Windows Integrated.

Configuring the [Other] Tab

The [Other] tab is used to configure miscellaneous HTTP routing settings.

 1. In the Request WSS Header Handling section, specify how to handle the security
header:

Option Description

Don't modify the
request Security
header

Instructs the Gateway to leave the security header in the outgoing
request message as-is. The security header in the request may still
have been modified if the Gateway needed to decrypt any encrypted
material during message processing.

Use this setting if the protected service needs to do its own checking of
the request's original security header, or if the protected service does
not care whether its request messages have a security header.

For best performance, use this setting whenever possible to minimize
the amount of per-request message modification.

Note: Do not modify the Security header if the policy uses WS-
Security. For more information, see the "Add or Remove WS-Security
Assertion" on page 273.

Remove Layer 7
actor and
mustUnderstand

Instructs the Gateway to remove the "mustUnderstand" attribute and
'Layer 7' actor from the security header in the outgoing message.

Use this setting if the presence of the Layer 7 actor causes issues with

 Table 160: WSS Header Handling during HTTP routing

Chapter 8: Message Routing Assertions 539

Layer 7 Policy Authoring User Manual, v8.2

Option Description

attributes from
processed Security
header

the backend service. In certain cases, this actor may cause the
backend service to ignore the Security headers because it believes it is
addressed to someone else. You will also use this setting if the
backend service does not support Security and would reject a request
with "mustUnderstand" asserted on the Security header.

An alternative might be to remove the Security header completely,
however this will incur a performance penalty for the extra processing
required to remove these from the messages. You may want to keep
the Security headers intact for logging purposes.

Remove processed
Security header from
request before
routing

Instructs the Gateway to remove any security header that was
processed by the gateway before forwarding the request to the
protected service.

Use this setting when the protected service is not expecting security
headers in the forwarded requests.

Promote other
security header as
default before
routing

Instructs the Gateway to promote one of the downstream WSS
recipients as the next default WSS header. Select the recipient from
the drop-down list.

This option is used primarily when the intended recipient of a WSS
assertion does not accept or recognize security headers that contain
Actor attributes.

For more information about changing the recipient of the available
WSS (WS-Security) message-level assertions, see "Changing the
WSS Assertion Recipient" on page 146.

 2. Under Response Size Limit, you may override the permitted maximum size of the
routing message if necessary. By default, the maximum size is defined by the
io.xmlPartMaxBytes cluster property. You may reference a context variable when
restricting to a specific size. Note that allowing response messages of unlimited
size is not recommended and should be used only under the direction of CA
Technical Support.

Note: This setting only limits the size of the message when it is processed by the
Gateway; to limit the size of the message sent to the client, use the Limit Message Size
assertion. Also note that this setting (as well as the io.xmlPartMaxBytes cluster property)
is not used when responses are streamed back to the client with no processing required
by the Gateway. (Response streaming is controlled by the io.HttpResponseStreaming
cluster property.)

 3. Choose an Assertion Outcome based on the response from the downstream
endpoint:

540 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Option Description

Fail if target returns
error status (>=400)

The assertion will fail when the response read from the target contains
an error status (>= 400).

There is an exception to this rule: If the service for which the policy is
associated with is published as a Web Service (not an XML application)
and the target returns a response with the status 500 and the content
is a SOAP fault, then the SOAP fault is accepted as a valid response to
be propagated to the requestor.

Note: If an error occurs while getting a response from the target, the
assertion will fail.

Pass through SOAP
faults with error
status 500

When failing on an error status, you can give special attention to error
status 500 (internal error).

 l Select this check box to allow a status 500 error to be returned
from the backend server as a response, complete with the 500
HTTP error code.

 l Clear this check box to treat the 500 error as a SOAP fault,
which may trigger a customized fault response.

Never fail as long as
target returns an
answer

The assertion will succeed if the endpoint returns any response read
from the target. With this option, the assertion can fail only if it is not
possible to read a response from the target.

Exception: The assertion may still fail if both of the following conditions
are true:

 l In the [Authentication] tab, the Service Authentication is "Use
HTTP Credentials from Request".

 l The backend services returns a 401 HTTP error.

To prevent assertion failure in this scenario, use "Specify HTTP
Credentials" as the Service Authentication method instead. Specify the
username and password as context variables from the request (i.e.,
${request.username}, ${request.password}).

 Table 161: Assertion Outcome during HTTP routing

Route via JMS Assertion
The Route via JMS assertion allows you to configure the JMS transportation of outbound
service messages from the Gateway. In order to use this assertion in a policy, ensure that
the JMS destinations have been:

 1. Configured in the appropriate server (TIBCO EMS, IBM WebSphere over LDAP, or
any other custom server).

 2. Referenced in the JNDI directory.

 3. Registered in the Policy Manager.

Chapter 8: Message Routing Assertions 541

Layer 7 Policy Authoring User Manual, v8.2

For more information, see Managing JMS Destinations in the Layer 7 Policy Manager User
Manual.

Note: If multiple JMS properties with the same name exist in the message, only the last one
added will be used by the Route via JMS assertion and the incoming request listener.

The Administrator is responsible for installing and configuring the items required for JMS
routing. If you encounter errors during the execution of a JMS policy, contact your
Administrator.

The Route via JMS assertion and destinations support the JMS 1.0 standard.

Context Variables Created by This Assertion

The Route via JMS assertion sets the following context variables with the header
information from the JMS response message.

Note: The response context variables are not set if the JMS Destination is configured for “No
replies (one-way)” (JMS Destination Properties > [Outbound Options] tab > Outbound Reply
Behavior). For more information , see Managing JMS Destinations in the Layer 7 Policy
Manager User Manual.

Variable Description

${response.jms.header.<name>} Returns the value of the JMS response header, where
<name> is the header name.

${response.jms.headernames} This is a multivalued context variable that returns the
names of all headers that are present.

${response.jms.allheadervalues} This is a multivalued context variable that returns all the
header names and values that are present, in the
format headername:headervalue..

The following are possible headers:

JMSDestination
JMSDeliveryMode
JMSExpiration
JMSPriority
JMSMessageID
JMSTimestamp
JMSCorrelationID
JMSReplyTo
JMSType
JMSRedelivered

 Table 162: Context variables created by the Route via JMS assertion

542 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Tip: For a list of the context variables created when the Gateway receives a JMS request, see
Managing JMS Destinations in the Layer 7 Policy Manager User Manual.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the JMS Routing Properties automatically appear;
when modifying the assertion, right-click Route via JMS in the policy window and
select JMS Routing Properties or double-click the assertion in the policy window.
The assertion properties are displayed. These properties are organized across the
following tabs:

Target
Security
Request
Response

 3. Configure each tab as necessary. Refer to the appropriate section below for a
complete description of each tab.

 4. Click [OK] when done.

Chapter 8: Message Routing Assertions 543

Layer 7 Policy Authoring User Manual, v8.2

Configuring the [Target] Tab

 Figure 185: JMS Routing Properties - [Target] tab

The [Target] tab is used to select the JMS queue or topic, and configure dynamic
properties and timeout.

 1. Select the target outbound destination to use from the JMS Destination drop-
down list. If the target destination you need doesn't exist, click [New Destination]
to create a new JMS destination. See Managing JMS Destinations in the Layer 7
Policy Manager User Manual for information on defining this destination.

 2. If you selected a template outbound destination in the previous step, complete
the destination configuration in the Dynamic Properties section. Dynamic
properties are those properties that are set at runtime, rather than at design time.

For more information about template destination, see "Template Outbound
Destinations" in Managing JMS Destinations in the Layer 7 Policy Manager User
Manual.

544 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Tips: (1) If a value was entered during destination definition then it is displayed here, but
cannot be modified. (2) If many destinations are in use, you can improve performance by
reducing the idle time and increasing the cache size. These are controlled using the
io.jmsConnectionCacheMaxIdleTime and io.jmsConnectionCacheMaxSize cluster
properties, respectively.

Dynamic Property For information on this property, see...

Initial Context Factory class
name

JMS Destination Properties, [JNDI] tab

JNDI URL JMS Destination Properties, [JNDI] tab

JNDI User Name
JMS Destination Properties, [JNDI] tab

Tip: You may reference a context variable for the JNDI User
Name in JMS Routing Properties.

JNDI Password
JMS Destination Properties, [JNDI] tab

Tip: You may reference a context variable for the
JNDI Password in JMS Routing Properties.

Connection Factory Name JMS Destination Properties, [Destination] tab

Tip: You may reference a context variable for the Connection
Factory Name in JMS Routing Properties.

Destination Name JMS Destination Properties, [Destination] tab

Tip: You may reference a context variable for the Destination
Name in JMS Routing Properties.

Destination User Name JMS Destination Properties, [Destination] tab

Tip: You may reference a context variable for the Destination
User Name in JMS Routing Properties.

Destination Password
JMS Destination Properties, [Destination] tab

Tip: You may reference a context variable for the Destination
Password in JMS Routing Properties.

Wait for Reply on specified
queue

JMS Destination Properties, [Outbound Options] tab

Note: If the Outbound Reply Behavior in the template queue
is not "Wait for Reply", then this field is blank and uneditable.

 Table 163: Dynamic properties for template outbound destinations

 3. Optionally enter a JMS response timeout value if you wish to override the global
default (defined in the jms.ResponseTimeout cluster property) for this one
destination. The value must be greater than 0 (zero). Enter a value in milliseconds
or enter a context variable that will contain the timeout value. The assertion will

wait for this period of time for a response before timing out.

Chapter 8: Message Routing Assertions 545

Layer 7 Policy Authoring User Manual, v8.2

Tip: The global default is specified by the jms.ResponseTimeout cluster property.

IMPORTANT: Ensure that the JMS response timeout is not greater than the HTTP
response timeout on the client, otherwise data may be lost. (The client response timeout
may vary, but for web browsers it is usually two minutes.)

Configuring the [Security] Tab

 Figure 186: JMS Routing Properties - [Security] tab

The [Security] tab is used to set the service authentication and WSS header handling.

1. In the Service Authentication section, indicate whether authentication should be
used:

Option Description

None (Anonymous) Select this option if the identity of the requestor is not being
authenticated (requests anonymous).

Attach SAML
Sender-Vouches

Select this option to attach a SAML sender-vouches ticket to each
outgoing back-end request that was authenticated by the Gateway.
This ticket contains the user name of the authenticated user along with
an expiration time, and is signed by the Gateway using the SSL
certificate.

When using SAML Sender-Vouches, indicate:

l SAML Version: Specify whether SAML 1.1 or 2.0 is being
used.

l Ticket expiry: Enter the expiry period for the ticket, in number
of minutes (whole number only). The default is 5 minutes.

Note: This option is enabled only for SOAP web service policies. It

 Table 164: Service Authentication during JMS routing

546 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Option Description

differs from the Require SAML Token Profile assertion as follows:

 l The Attach SAML Sender-Vouches option is being added
to the outgoing message from the Gateway to the protected
service.

 l The Require SAML Token Profile Assertion requires that
SAML security already be present in an incoming message
from a client application to the Gateway.

 2. In the Current WSS header handling section, specify how to handle the security
header:

Option Description

Don't modify the
request Security
header

Instructs the Gateway to leave the security header in the outgoing
SOAP request message as-is. The security header in the request may
still have been modified if the Gateway needed to decrypt any
encrypted material during message processing.

Use this setting if the protected service needs to do its own checking of
the request's original security header, or if the protected service does
not care whether its request messages have a security header.

For best performance, use this setting whenever possible to minimize
the amount of per-request message modification.

Note: Do not modify the Security header if the policy uses WS-
Security. For more information, see the "Add or Remove WS-Security
Assertion" on page 273.

Remove Layer 7
actor and
mustUnderstand
attributes from
processed Security
header

Instructs the Gateway to remove the "mustUnderstand" attribute and
"Layer 7" actor from the security header in the outgoing SOAP
message.

Use this setting if the presence of the Layer 7 actor causes issues with
the backend service. In certain cases, this actor may cause the
backend service to ignore the Security headers because it believes it is
addressed to someone else. You will also use this setting if the
backend service does not support Security and would reject a request
with "mustUnderstand" asserted on the Security header.

An alternative might be to remove the Security header completely,
however this will incur a performance penalty for the extra processing
required to remove these from the messages. You may want to keep
the Security headers intact for logging purposes.

Remove processed
Security header from
request before
routing

Instructs the Gateway to remove any security header that was
processed by the gateway before forwarding the request to the
protected service.

Use this setting when the protected service is not expecting security
headers in the forwarded SOAP requests.

 Table 165: WSS Header Handling during JMS routing

Chapter 8: Message Routing Assertions 547

Layer 7 Policy Authoring User Manual, v8.2

Configuring the [Request] Tab

 Figure 187: JMS Routing Properties - [Request] tab

The [Request] tab is used to select the message source for the request message and to
configure property forwarding.

 1. Specify the Message Source for the request message: from the drop-down list,
choose from Request, Response, or any Message context variables that have been
defined so far. These variables may have been created by the Set Context Variable
assertion or in the Response message properties section of a previous Route via
JMS assertion.

 2. Select the Use request settings check box if you need to change any of the
following default JMS request settings:

 l Delivery Mode: Choose the JMS delivery mode to use: Persistent or Non-
Persistent.

 l Priority: Specify a priority mode for the JMS request by entering a value
between 0 and 9, where "0" is lowest priority and "9" is highest priority. The

default is 4. You may reference context variables.

548 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Time To Live: Enter the length of time before the JMS message expires, in

milliseconds. The default value of 0 (zero) means the message never expires. You

may reference context variables.

 3. Indicate how the properties from the JMS request message are handled:

 l Select Pass through all JMS message properties if you are allowing all JMS
message properties to pass through. (Note that there will be JMS message
properties to pass through only if the original request is a JMS message.)

 l Select Customize JMS message properties to forward if you want to do any of
the following:

 l customize which or how JMS message properties are passed through

 l customize the values of the JMS message properties

 l create properties that did not exist in the original request (such as when
the original request is not a JMS message).

If you are customizing the JMS message properties to pass through, define which
names and values can pass through in the table below.

To... Do this

Add a property to
the list

 1. Click [Add]. The JMS Message Property Setting dialog
appears.

 2. Enter the Property Name. (Note: Property names must obey
the rules specified in the JMS Specification).

 3. Specify what to do for this property:

 l Pass through original value: If the property is present
in the incoming request, then pass it downstream as is.

 l Customize value: Insert a property with a custom string
value. Enter the custom value in the adjacent box. You
can either enter a fixed value or a string that contains
context variables that resolves to the appropriate value
during run time. For example, "Hello, my ID is
${requestId} and the time is ${gateway.time}. Have a nice
day."

Note: The Policy Manager checks that the custom value
entered is appropriate for the specified property.
However note that if a context variable is specified, it is not
possible to validate the data type at design time and an
incorrect data type will cause an error during runtime. The
following data types are enforced for each property:

JMSXUserID: String
JMSXAppID: String
JMSXDeliveryCount: int

 Table 166: Defining the JMS properties for forwarding

Chapter 8: Message Routing Assertions 549

Layer 7 Policy Authoring User Manual, v8.2

To... Do this

JMSXGroupID: String
JMSXGroupSeq: int
JMSXProducerTXID: String
JMSXConsumerTXID: String
JMSXRcvTimestamp: long
JMSXState: int

 4. Click [OK]. The new property is added to the table.

Modify a property
in the list

 1. Select the property to modify and then click [Edit], or double-
click a row. The JMS Message Property Setting dialog appears.

 2. Modify the information as necessary. See "Add a property to
the list" above for details.

 3. Click [OK]. The modified property appears on the table.

Remove a property
from the list

 1. Select the row to delete.

 2. Click [Remove]. The property is removed immediately.

Configuring the [Response] Tab

 Figure 188: JMS Routing Properties - [Response] tab

550 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

The [Response] tab is used to configure the message destination and property
forwarding.

 1. Select the Message Destination:

 l Select Default Response to send the message to the default response
destination.

 l Select Save as context variable to save the response message to a context
variable that you specify here. You can define a new variable or an existing one.
A validation message provides instant feedback on the context variable name
entered. For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

 2. Specify the response message size limit:

 l Override maximum message size: Select this check box to override the
permitted maximum size of the routing message. Clear this check box to use
the value set in the io.jmsMessageMaxBytes cluster property.

 l Restrict messages to: Enter the maximum permitted size of the response

message, in bytes. You may specify a context variable.

 l Allow unlimited message size (not recommended): Select this option to allow
response messages of unlimited size. This is not recommended and should
be used only under the direction of CA Technical Support.

 3. Indicate how the properties from the JMS response message are handled:

 l Pass through all JMS message properties

 l Customize JMS message properties to forward

Please see "Configuring the [Request] Tab" above for the descriptions of these
settings.

Route via MQ Native Assertion
The Route via MQ Native assertion allows you to configure the MQ Native transportation
of outbound service messages from the CA API Gateway.

Note: MQ Native will not be operational until the appropriate .jar files have been installed.

Chapter 8: Message Routing Assertions 551

Layer 7 Policy Authoring User Manual, v8.2

Context Variables Created by This Assertion

The Route via MQ Native assertion sets the following context variables. Note: The
<prefix> is the target of the message. For example, if the message target is a request,
then the prefix is "request"; if the message target is a response, then the prefix is
"response".

Context Variable Description

${<prefix>.mqnative.md.<field>} Returns the value of the case sensitive message
descriptor field.

Example: ${request.mqnative.md.expiry}

Note: The value for byte[] type descriptors must be
entered as a Base64-encoded string. The date must be
in the format yyyy-MM-dd-HH.mm.ss.SSSSSS.

${
<prefix>.mqnative.additionalheader.
<folder name>.<name>}

Returns the value of the message header. Specifying
the folder name is optional.

Example:
${request.mqnative.additionalheader.folder.rfh2Field
2}

${
<prefix>.mqnative.property.<name>}

Returns the value of the message property.

Example:
${request.mqnative.property.folder.testStringPropert
y}

${<prefix>.
mqnative.additionalheadernames}

A a multivalued context variable that retrieves all
message header names. The suffix .length can be
applied.

Example: ${request.mqnative.additionalheadernames}

${<prefix>.

mqnative.alladditionalheadervalue
s}

A multivalued context variable that retrieves all message
header values.The suffix .length can be applied.

Example:
${request.mqnative.alladditionalheadervalues}

${<prefix>.
mqnative.propertynames}

A multivalued context variable that retrieves all message
property names.The suffix .length can be applied.

Example: ${request.mqnative.propertynames}

${<prefix>.
mqnative.allpropertyvalues}

A multi-valued context variable that retrieves all
message property values.The suffix .length can be
applied.

Example: ${request.mqnative.allpropertyvalues}

 Table 167: Context variables created by the Route via MQ Native assertion

552 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Defined MQ Header Prefixes

Header name prefixes for MQ Message Descriptor, Property, and Header are listed in
Table 2.

Header Name Prefix Description

mqnative.md This is the header name prefix for MQ Message Descriptor.

Example: mqnative.md.expiry

mqnative.property This is the header name prefix for MQ Message Property.

Example: mqnative.property.folder.propertyname

mqnative.additionalheader This is the header name prefix for MQ Message Header.

Example: mqnative.header.folder.headername

 Table 168: Defined MQ Headers Prefixes

To customize the Message Descriptors, Properties, and Additional Headers, use the
"Manage Transport Properties/Headers Assertion" on page 515. Leave the Header Value
empty to remove an attribute from the MQ Message Descriptor, MQ Message Property
and MQ Additional Header.

Note: If a header contains the wrong prefix, it will be ignored.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Native MQ Routing Properties automatically
appear; when modifying the assertion, right-click Route via MQ Native in the
policy window and select MQ Native Routing Properties or double-click the
assertion in the policy window. The assertion properties are displayed. These
properties are organized across the following tabs:

Target
Request
Response

 3. Configure each tab as necessary. Refer to the appropriate section below for a
complete description of each tab.

Chapter 8: Message Routing Assertions 553

Layer 7 Policy Authoring User Manual, v8.2

 4. Click [OK] when done.

Configuring the [Target] Tab

 Figure 189: MQ Native Routing Properties - [Target] tab

The [Target] tab is used to select the MQ Native Queue to use.

 1. Choose the connection to use from the MQ Native Queues drop-down list. If the
connection you need doesn't exist, click [New Queue] to create a new connection.
See Managing MQ Native Queues in the Layer 7 Policy Manager User Manual for
more information on defining the queue.

 2. If a template outbound queue was chosen as the MQ Native Queue in the
previous step, complete the Dynamic Properties section. Dynamic properties are
those properties that are set at runtime, rather than at design time.

 l Queue Name: Enter a dynamic queue name. You may reference a context

variable.

The dynamic queue name setting is enabled for outbound queues that have
been designated as a template, and the queue name has been left empty. For
details, see "Configuring the MQ Connections Properties" under Managing
MQ Native Queues in the Layer 7 Policy Manager User Manual.

554 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l Wait for Reply on specified queue: Enter a dynamic reply queue name. You

may reference a context variable.

The dynamic reply queue name is enabled for outbound queues that have
been designated as a template, has the "Wait for Reply on specified queue"
option selected, and the reply queue name is empty. For details, see
"Configuring the MQ Connections Properties" and "Configuring the Outbound
Options" under Managing MQ Native Queues in the Layer 7 Policy Manager
User Manual.

 3. Specify the direction for the message: Put to Queue (default) or Get from Queue.

Note: To specify the queue name dynamically, be sure to enter a context variable for the
Queue Name under "Dynamic Properties" above.

 4. In the Current WSS header handling section, specify how to handle the security
header:

Option Description

Don't modify the
request Security
header

Instructs the Gateway to leave the security header in the outgoing
SOAP request message as-is. The security header in the request may
still have been modified if the Gateway needed to decrypt any
encrypted material during message processing.

Use this setting if the protected service needs to do its own checking of
the request's original security header, or if the protected service does
not care whether its request messages have a security header.

For best performance, use this setting whenever possible to minimize
the amount of per-request message modification.

Note: Do not modify the Security header if the policy uses WS-
Security. For more information, see the "Add or Remove WS-Security
Assertion" on page 273.

Remove Layer 7
actor and
mustUnderstand
attributes from
processed Security
header

Instructs the Gateway to remove the "mustUnderstand" attribute and
"Layer 7" actor from the security header in the outgoing SOAP
message.

Use this setting if the presence of the Layer 7 actor causes issues with
the back end service. In certain cases, this actor may cause the back
end service to ignore the Security headers because it believes it is
addressed to someone else. You will also use this setting if the back
end service does not support Security and would reject a request with
"mustUnderstand" asserted on the Security header.

An alternative might be to remove the Security header completely,
however this will incur a performance penalty for the extra processing
required to remove these from the messages. You may want to keep
the Security headers intact for logging purposes.

 Table 169: WSS Header Handling during MQ Native routing

Chapter 8: Message Routing Assertions 555

Layer 7 Policy Authoring User Manual, v8.2

Option Description

Remove processed
Security header from
request before
routing

Instructs the Gateway to remove any security header that was
processed by the gateway before forwarding the request to the
protected service.

Use this setting when the protected service is not expecting security
headers in the forwarded SOAP requests.

 5. Enter an MQ response timeout value if you wish to override the global default
(defined in the io.mqResponseTimeout cluster property) for this one queue. The
value must be greater than 0 (zero). Enter a value in milliseconds. The assertion will
wait for this period of time for a response before timing out.

Configuring the [Request] Tab

 Figure 190: MQ Native Routing Properties - [Request] tab

The [Request] tab is used to select the message source and to configure any
MQ messages properties that may be required. This tab is available only when the
message direction in the [Target] tab is Put to Queue.

556 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

 1. Choose the message source from the drop-down list: Request (default) or
Response.

 2. Configure the properties of the [Request] tab as follows.

Setting Description

MQ Message Descriptors

Pass through MQ
message
descriptors

Select this check box to allow all MQ descriptors in the source message
to pass through. (Note that there will be MQ message properties to
pass through only if the original request is an MQ message.)

Clear this check box to pass through the default values of the
descriptor to the result message.

Customize
message
descriptors

To customize message descriptors that existed prior to version 8.0,
see Customizing MQ Messages in the Layer 7 Policy Manager User
Manual. For message descriptors created in version 8.0, it is
recommended to use the "Manage Transport Properties/Headers
Assertion" on page 515 to add customized values.

Properties

Pass through Select this check box to pass all message properties from the message
source.

Clear this box if you do not want the MQ message properties to pass
through.

Copy to
Additional
Headers

Select this check box to copy the MQ Message properties to the
message additional headers.

Clear this check box to not perform the copy action.

Additional Headers

Pass through Select this check box to pass all MQ additional headers from the
message source.

Clear this box if you do not want the customized MQ additional headers
to pass through.

Copy to
Properties

Select this check box to copy the additional header name-value pair to
the message properties.

Clear this check box to not perform the copy action.

Set Additional
Header as

Choose the additional header format from the drop-down list:

 l Original: This option retains the original primary header
format (MQRFH or MQRFH2). The header is automatically
populated with the values from the original primary header.

 l MQRFH: All additional headers in the message are replaced
with a MQRFH header. The MQRFH header is automatically

 Table 170: MQ Native Route Properties - [Request]

Chapter 8: Message Routing Assertions 557

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

populated with the values from the original primary header.

 l MQRFH2: The primary additional header is replaced with a
MQRFH2 header in the message. The MQRFH2 header is
automatically populated with the values from the original
primary header.

 Table 170: MQ Native Route Properties - [Request]

Configuring the [Response] Tab

 Figure 191: MQ Native Routing Properties - [Response] tab

The [Response] tab is used to configure the response message properties and to
configure any advanced properties that may be required.

 1. Configure the properties of the [Response] tab as follows.

558 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Message Target Choose the message target from the drop-down list: Request,
Response (default), or a Message Variable.

Target Variable If the target is a context variable, specify the Message variable in the
Target Variable field. You can define a new variable or use an
existing one. A validation message provides instant feedback on the
context variable name entered. For an explanation of the validation
messages displayed, see Context Variable Validation in the Layer 7
Policy Manager User Manual.

MQ Message Descriptors

Pass through all
message
descriptors

Select this check box to allow all MQ descriptors in the source message
to pass through. (Note that there will be MQ message properties to
pass through only if the original request is an MQ message.)

Clear this check box to pass through the default values of the
descriptor to the result message.

Customize
message
descriptors

To customize message descriptors that existed prior to version 8.0,
see Customizing MQ Messages in the Layer 7 Policy Manager User
Manual. For message descriptors created in version 8.0, it is
recommended to use the "Manage Transport Properties/Headers
Assertion" on page 515 to add customized values to its properties and
headers.

Properties

Pass through Select this check box to pass all message properties from the message
source.

Clear this box if you do not want the customized message properties to
pass through.

Copy to
Additional
Headers

Select this check box to copy the primary header name-value pair to
the message headers.

Clear this check box to not perform the copy action.

Additional Headers

Pass through Select this check box to pass all message properties from the message
source.

Clear this box if you do not want the customized message properties to
pass through.

Copy to
Properties

Select this check box to copy the primary header name-value pair to
the message properties.

Clear this check box to not perform the copy action.

Set Additional Choose the additional header from the drop-down list:

 Table 171: MQ Native Route Properties - [Response]

Chapter 8: Message Routing Assertions 559

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Header as l Original: This option retains the original primary header
format in MQRFH or MQRFH2. The header is automatically
populated with the values from the original primary header.

 l MQRFH: All additional headers in the message are replaced
with a MQRFH header. The MQRFH header is automatically
populated with the values from the original primary header.

 l MQRFH2: This primary additional header is replaced with a
MQRFH2 header in the message. The MQRFH2 header is
automatically populated with the values from the original
primary header.

Override maximum
message size

Select this check box to override the permitted maximum size of the
message. Clear this check box to use the value set in the
io.mqMessageMaxBytes cluster property.

 l Restrict messages to: Enter the maximum permitted size of
the message, in bytes.

 l Allow unlimited message size (not recommended):
Select this option to allow response messages of unlimited size.
Note: This is not recommended and should be used only under
the direction of CA Technical Support.

 Table 171: MQ Native Route Properties - [Response]

Route via Raw TCP Assertion
The Route via Raw TCP assertion is used if the custom transport protocol "l7.raw.tcp" has
been configured for a listen port. This assertion acts as a client of the server-side
transport: it will transmit the request, close the sending side, read the response (if
possible), and then initialize the response message with a pre-configured Content-Type.

This assertion will succeed if the raw TCP routing is successful.

Note: The Route via Raw TCP assertion can also be used as part of dynamic routing. See
Working with Dynamic Routing for more information.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

560 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

 2. When adding the assertion, the Raw TCP Routing Properties automatically
appear; when modifying the assertion, right-click Route via Raw TCP in the policy
window and select Raw TCP Routing Properties or double-click the assertion in
the policy window. The assertion properties are displayed.

 Figure 192: Raw TCP Routing Properties

 3. Configure the properties as follows.

Setting Description

Destination
hostname or
address

Enter the hostname or IP address to which the Gateway should
connect to send the request message.

Port
Enter the port number to use. Alternatively, enter a context variable.

 Table 172: Raw TCP Routing settings

Chapter 8: Message Routing Assertions 561

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Request message

source

Use the drop-down list to select the source for the request message:

 l from the default Request

 l from a context variable of type Message (this variable must
already be defined in the policy before it will appear in the list)

Custom transmit
timeout

The amount of time the Gateway should wait for acknowledgment of
writes to the server before giving up (also known as socket write
timeout).

 l Select the check box to enable the timeout and then enter the
timeout period, in milliseconds. The default is 2000
milliseconds.

 l Clear the check box to not use a timeout. The Gateway will wait
indefinitely.

Note: This is just the socket timeout, so it applies per read or write
operation. It does not apply to the entire transaction.

Response content

type

Enter the MIME Content-Type to assume for the response (for
example, "text/xml").

Response message
destination

Indicate where to store the response:

 l Default response: Store the response in the default
response.

 l Save as context variable: Store the response in the
specified Message context variable. If this variable does not

already exist, it will be created.

Custom receive
timeout

How long the Gateway should wait for reads from the server to result
in additional data before giving up (also known as socket read
timeout).

 l Select the check box to enable the timeout and then enter the
timeout period, in milliseconds. The default is 2000
milliseconds.

 l Clear the check box to not use a timeout. The Gateway will wait
indefinitely.

Note: This is just the socket timeout, so it applies per read or write
operation. It does not apply to the entire transaction.

Override maximum
message size

Select this check box to override the permitted maximum size of the
routing message. Clear this check box to use the value set in the
io.xmlPartMaxBytes cluster property.

 l Restrict messages to: Enter the maximum permitted size of the
response message, in bytes. You may specify a context

variable.

562 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

 l Allow unlimited message size (not recommended): Select this
option to allow response messages of unlimited size. This is not
recommended and should be used only under the direction of
CA Technical Support.

 4. Click [OK] when done.

Route via SSH2 Assertion
The Route via SSH2 assertion is used to secure requests from the Gateway to backend
services to provide SCP and SFTP (SSH File Transfer Protocol) support for the Gateway, so
that SCP and SFTP outbound requests can be made to an external SSH server.

To view or modify the list of enabled ciphers for SSH2 routing, see the
ssh.routingEnabledCiphers cluster property.

This assertion supports SSH2 only; SSH1 is not supported.

Performing SFTP Partial Downloads/Uploads

Note: This section is intended for advanced users who need to deal with a specific use case
involving SFTP and partial downloads/uploads. This procedure should not be required as part of
a normal workflow.

Specific policy configuration is necessary when attempting to download or upload a file
from a listen port that has been configured to use partial upload/uploads for SFTP
GET/PUT. Ensure the following policy fragment (or equivalent) is present in the SFTP
policy:

 Figure 193: Sample policy for SFTP partial downloads

The following table describes each line in the policy fragment in more detail.

Line Description

4 Insert the "Configure Message Streaming Assertion" on page 508. Ensure the target is
"Request" and that "Enable streaming (no buffering)" is selected.

5 Insert the Route via SSH2 assertion and configure it as follows:

[Connection] Tab

 1. Choose SFTP for the protocol.

 Table 173: Assertions in SFTP partial downloads fragment

Chapter 8: Message Routing Assertions 563

Layer 7 Policy Authoring User Manual, v8.2

Line Description

 2. Enter the Host name and Port number of the SFTP server.

 3. Choose From Variable as the command type and then enter
request.command.type as the variable.

 4. Enter ${request.ssh.path} as the directory name.

 5. Enter ${request.ssh.file} as the file name.

 6. Enter ${request.command.parameter.newPath}
/${request.command.parameter.newFile} as the new file name.

[Authentication] Tab

Specify the credentials for the SFTP server.

[Advanced] Tab

 1. Select the Set File Size to Context Variable check box and enter ssh.file.size as
the context variable.

 2. Select the Override maximum message size check box and choose [Allow
unlimited message size].

 3. Enter the following context variables in these fields:

 l File Offset: ${request.command.parameter.offset}

 l File Length: ${request.command.parameter.length}

 Table 173: Assertions in SFTP partial downloads fragment

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the SSH2 Routing Properties automatically appear;
when modifying the assertion, right-click Route via SSH2 in the policy window
and select SSH2 Routing Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

564 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 194: SSH2 Routing Properties - [Connection] tab

 3. Configure the properties of the [Connection] tab as follows. If you are unsure of
the settings to use, consult with the SSH server administrator.

Setting Description

Connection settings

Protocol Select the protocol to use. Choose from SCP or SFTP.

Host name
Enter the hostname of the remote server machine or a context variable
that will contain the hostname. This name is verified against the X.509
certificate.

Port number Specify the port number or a context variable to use for the security
method chosen. This default port number is 22.

Connect timeout Specify the number of seconds before the SSH connection times out.

Read Timeout Specify the SSH read timeout in seconds. This timeout applies to
downloads only.

Validate Server's Select this check box to validate the server's SSH public key against a

 Table 174: SSH2 Routing Settings [Connection] tab

Chapter 8: Message Routing Assertions 565

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Host Key fingerprint that you will specify using the [Manage Host Key] button.
This setting is the default.

Clear this check box to not validate the server's host key.

Manage Host
Key

This button is available only when you are validating the server's host
key. It is used to enter the fingerprint against which the host key is
validated. Complete the following:

 l SSH Public Key Fingerprint: Paste the SSH public key
fingerprint as retrieved from the remote server's public key
location.

 l Load From File: Click this to load the fingerprint from a text file.

About Host Key Fingerprints

The fingerprint should be a colon-delimited series of two-digit
hexadecimal values; for example:
b9:ac:0c:3d:bb:07:a8:a3:cc:eb:d7:f8:c4:89:b1:27. This fingerprint can
be determined using the ssh-keygen command on the server:

ssh-keygen -l -f

/etc/ssh/ssh_host_rsa_key

2048 b9:ac:0c:3d:bb:07:a8:a3:cc:

eb:d7:f8:c4:89:b1:27

/etc/ssh/ssh_host_rsa_key.pub

#

Additionally, when most SSH clients (for example, ssh, PuTTY) first
connect to a server, the server's fingerprint will be displayed.

Command Selection

Command Type Choose the command type from the drop-down list:

From Variable

Upload To (PUT)

Download From (GET)

Get Directory Listing (LIST)

Get File Attributes (STAT)

Delete File (DELETE)

Move File (MOVE)

Create Directory (MKDIR)

Delete Directory (RMDIR)

For more information on each type, see "Description of Command
Types" in Table 175.

Command Type

Variable

Alternatively, you can specify a context variable instead of choosing a
command type from the drop-down list..

Note: Ensure that the variable resolves to one of the command types

 Table 174: SSH2 Routing Settings [Connection] tab

566 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

shown above, otherwise the assertion will fail.

Tip: When using an SFTP inbound listener, use a value such as
${request.command.type}

Message Source Choose the source message to upload from the drop-down list:
Request, or Response. This field is available only when you select
Upload To as the Command Type in the [Connection] tab.

Message Target Choose the message target from the drop-down list: Request,
Response, or Message Variable, (which will be created if it does not
exist). This field is available only when you select Download From as
the Command Type in the [Connection] tab.

Message Variable If you are targeting the message to a variable, enter the context variable
in this field.

Directory Specify the directory to upload to or download from. The user must have
read permission on the directory to download and write permission to
upload.

The following is an example of a directory for an SFTP inbound listener.

/my/root/directory${request.ssh.path}

Note: When uploading, the specified directory must exist already. This
assertion will not create a directory.

File name Enter the name of the file. The user must have read permission to
download or write permission to upload.

The following is an example of a file name.

${request.ssh.file}

New File Name Enter the new file name of the file.This option is only applicable to SFTP
MOVE.

The following is an example of a new file name (all one line):

 /my/root/dir${request.command.parameter.newPath
/${request.command.parameter.newFile}

 Table 174: SSH2 Routing Settings [Connection] tab

Descriptions of Command Types

Setting Description

From Variable Select this option to allow the command type to be determined from the
specified context variable. If you select this option, you must specify a
valid context variable in the "Command Type Variable" field.

Upload to (PUT) Select this option to do the following.

 l Fail if File Exists

 Table 175: Command Types for the Command Selection drop down list

Chapter 8: Message Routing Assertions 567

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

The upload will fail if the file already exists.

 l Overwrite

Uncheck this if partial file uploads are allowed. If there is an
existing file with the same name, the file will be overwritten or
truncated before the upload starts.

 l File Offset

Specify the file offset point from which to start writing the file.
Default: 0

Download from
(GET)

Select this option to do the following.

 l File Offset
Specify the file offset point from which to start retrieving the file
data. Default: 0

 l File Length

Specify the length of the file data to retrieve. If the EOF ("end of
file") is reached, the returned length can be less than the input
length.

The default will be reading the entire file until EOF, which is -1.

Get Directory
Listing (LIST)

Select this option to retrieve the directory listing of the folder specified.
It will return the list in an xml format.

Get File Attributes
(STAT)

Select this option to retrieve the file attributes for the file specified, by
using the file name and directory. It will return a single file element, or, if
the file does not exist, it will return 0.

Delete File
(DELETE)

Select this option to delete the file by specifying the file name and
directory.

Move File (MOVE) Select this option to move the file or directory to the new location
specified. A new file name must be specified, which can either be a
relative file name or absolute file path.

Create Directory
(MKDIR)

Select this option to create a directory to the location specified.

Delete Directory
(RMDIR)

Select this option to delete a directory from the location specified.

 4. Select the [Authentication] tab.

568 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 195: SSH2 Routing Properties - [Authentication] tab

 5. Configure the properties of the [Authentication] tab as follows. If you are unsure
of the settings to use, consult with the SSH server administrator.

Setting Description

Authentication Select the protocol to use:

 l Pass through user name and password credentials in
the request: Select this option to use the credentials already
present in the request.

 l Specify user credentials: Select this option to enter specific
credentials in the fields below.

Username Enter the user name to connect to the server.

Password If authenticating via password, choose the password from the drop-
down list.

If the password you require is not listed, click [Manage Stored
Passwords] to add it to the Gateway's password storage. For more
information, see Managing Stored Passwords in the Layer 7 Policy
Manager User Manual.

Tip: You cannot type the password directly here; it must be defined in
the Gateway's secure password storage.

Private Key If authenticating via private key, choose the key to use.

If the private key you require is not listed, click [Manage Stored
Passwords] to add it to the Gateway's password storage. For more
information, see Managing Stored Passwords in the Layer 7 Policy
Manager User Manual.

 Table 176: SSH2 Routing Settings [Authentication] tab

Chapter 8: Message Routing Assertions 569

Layer 7 Policy Authoring User Manual, v8.2

 6. Select the [Advanced] tab.

 Figure 196: SSH2 Routing Properties - [Advanced] tab

 7. Configure the properties of the [Advanced] tab as follows. If you are unsure of the
settings to use, consult with the SSH server administrator.

Setting Description

Advanced Command Settings

Content type Specify the MIME Content-Type header. This header only applies
to downloads, and the content type is used for files being uploaded
to the Gateway.

File Offset Enter a number that represents the point from which to start
reading or writing the file. Specifying a number other than "0"
allows for partial reads or writes. This option applies for only SFTP
GET/PUT.

Default: 0

Note: If the file offset is "0", the file will automatically be truncated
(emptied) before being written to. For values other than "0", the
original file contents will be overwritten without truncation

 Table 177: SSH2 Routing Settings [Advanced] tab

570 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

occurring.

File Length Enter the length of the file being uploaded, if for SCP PUT. If it is
for SFTP GET/PUT enter the length of the file to download or
upload.

If the file length is -1, the entire input stream will be read and
stashed in order to calculate the length if it is needed. It is only
needed for SCP PUT.

Default: -1 (for the entire file)

Set File Size to
Context Variable

Select the check box to save the file size to the specified context
variable. This only applies to SFTP GET/STAT. Clear this check
box if you do not want to save the file size to a context variable. This
setting is the default.

Preserve File
Mode
(Permission)

Select this check box to preserve the file mode (permission) if
available for SFTP.

Clear this check box if you do not want to preserve the file mode
(permission). This is the default, and means that every user will
have read and write permission.

Note: It is recommended to initiate SFTP with "-p" and check the
"Preserve File Mode (Permission)" box to ensure that the file
permissions are preserved. Only the file mode is preserved. Other
metadata such as the access modification times are not
preserved. This check box is only available for the "SFTP" protocol
and copy method "Upload To". It will also only work with an SFTP
inbound listener.

Fail if File Exists Select this check box to abort the file upload if the file already
exists. Clear this check box to upload and overwirte any existing
file. This only applies to SFTP Upload commands.

Override
maximum
message size

Select this check box to override the permitted maximum size of
the routing message. Clear this check box to use the value set in
the io.xmlPartMaxBytes cluster property. This check box is
available only when you select Download From as the
Command Type in the [Connection] tab.

 l Restrict messages to: Enter the maximum permitted
size of the response message, in bytes. You may specify a

context variable.

 l Allow unlimited message size (not recommended):
Select this option to allow response messages of unlimited
size. This is not recommended and should be used only
under the direction of CA Technical Support.

Chapter 8: Message Routing Assertions 571

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Current WSS header handling: Specify how to handle the security header. This section is
available only when you select Upload To as the Command Type in the [Connection] tab.

Don't modify the
request Security
header

Instructs the Gateway to leave the security header in the outgoing
SOAP request message as-is. The security header in the request
may still have been modified if the Gateway needed to decrypt any
encrypted material during message processing.

Use this setting if the protected service needs to do its own
checking of the request's original security header, or if the
protected service does not care whether its request messages
have a security header.

For best performance, use this setting whenever possible to
minimize the amount of per-request message modification.

Note: Do not modify the Security header if the policy uses WS-
Security. For more information, see the "Add or Remove WS-
Security Assertion" on page 273.

Remove Layer 7
actor and
mustUnderstand
attributes from
processed
Security header

Instructs the Gateway to remove the "mustUnderstand" attribute
and 'Layer 7' actor from the security header in the outgoing SOAP
message.

Use this setting if the presence of the Layer 7 actor causes issues
with the back-end service. In certain cases, this actor may cause
the back-end service to ignore the Security headers because it
believes it is addressed to someone else. You will also use this
setting if the back-end service does not support Security and
would reject a request with "mustUnderstand" asserted on the
Security header.

An alternative might be to remove the Security header completely,
however this will incur a performance penalty for the extra
processing required to remove these from the messages. You
may want to keep the Security headers intact for logging
purposes.

Remove
processed
Security header
from request
before routing

Instructs the Gateway to remove any security header that was
processed by the gateway before forwarding the request to the
protected service.

Use this setting when the protected service is not expecting
security headers in the forwarded SOAP requests.

 8. Click [OK] when done.

572 Chapter 8: Message Routing Assertions

Layer 7 Policy Authoring User Manual, v8.2

Chapter 9:
 Service Availability Assertions

Notes: (1) Depending on which Gateway product you have installed, not all the assertions
shown below may be available. See Features by Product in the Layer 7 Policy Manager User
Manual for a list of which features are available for each product. (2) This category may also
include custom-created encapsulated assertions. For more information, see "Working with
Encapsulated Assertions" on page 126.

In the Policy Manager, the following assertions are available in the Service Availability
category of the [Assertions] tab:

Apply Rate Limit Assertion 573

Apply Throughput Quota Assertion 578

Context Variables Created by This Assertion 579
Limit Availability to Time/Days Assertion 584

Look Up in Cache Assertion 585

Query Rate Limit Assertion 587

Context Variables Created by This Assertion 587
Query Throughput Quota Assertion 589

Context Variables Created by This Assertion 589
Resolve Service Assertion 590

Restrict Access to IP Address Range Assertion 592

Store to Cache Assertion 594

The Service Availability assertions define the access, availability, and throughput
inclusions or restrictions for the service.

Apply Rate Limit Assertion
The Apply Rate Limit assertion allows you to limit the rate of transactions passing through
the Gateway for a given user, client IP address, or other identifier. When this limit is
reached, the Gateway can either begin throttling requests or it can attempt to delay the
requests until the rate falls below the limit. You can also set a maximum concurrency level
to prevent a user from monopolizing Gateway resources.

Use this assertion only if you need to limit the flow of transactions entering the Gateway.
If you have a cluster of gateways, the limits entered in this assertion are divided among
the number of "up" nodes in the cluster. A node is considered “up” if it has posted its
status within the past 8 seconds (configurable via the ratelimit.clusterStatusInterval cluster

Chapter 9: Service Availability Assertions 573

Layer 7 Policy Authoring User Manual, v8.2

property). The Apply Rate Limit assertion will check the status of cluster nodes every 43
seconds (configurable via the ratelimit.clusterPollInterval cluster property).

Notes: (1) The Gateway will automatically adjust the rates internally should nodes be added
or removed from a cluster. There is no need to modify the values in this assertion. (2) If no
authenticated user is established in the policy, then the IP address of the requestor is used
instead in the Apply Rate Limit assertion.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Apply Rate Limit... in the policy window and choose Rate Limit
Properties or double-click the assertion in the policy window. The assertion
properties are displayed.

 Figure 197: Rate Limit Properties

 3. Configure the properties as follows:

Setting Description

Maximum requests

per second

Specify how many requests per second should be processed by the
Gateway or cluster. You can enter a context variable that resolves to
the maximum requests value. Note: The context variable must either
be single-value or multivalued with a specific index reference.

Cluster wide If the Gateway cluster comprises more than one node, this setting
determines whether the value entered in the Maximum requests per

 Table 178: Rate Limit settings

574 Chapter 9: Service Availability Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

second field is split among the nodes or applied to each node.

 l Select this check box to split the value cross all the nodes in the
cluster. For example, if the maximum is 100, each node in a 4-
node cluster will be limited to 25 requests per second. If a node
drops out of the cluster, the 100 limit is redistributed across the
remaining three nodes.

This setting is the default and it replicates the functionality of the
assertion prior to version 6.2.

 l Clear this check box to allow the maximum requests value on
each node. For example, if the maximum is 100, each node in a
4-node cluster will be allowed 100 requests per second,
resulting in an effective maximum of 400 requests per second. If
one node drops out of the cluster, the effective maximum drops
to 300 requests per second (3 x 100) .

Spread limit over X

sec window

Determines whether to allow a burst of requests to be spread across a
window of time or whether to enforce a hard cap.

 l Select the check box to allow requests to arrive in arbitrary
bursts that exceed the Max requests per second rate over
an X second window. This can avoid throttling of traffic over
prolonged traffic bursts.You may enter a context variable
containing the X second window value. This variable can be
either single-value or multivalued with a specific index
reference.

Tip: Setting the burst spread limit to 1 second replicates the
"Allow burst traffic" functionality found in versions of the Apply
Rate Limit assertion prior to version 6.1.

 l Clear the check box to disallow bursts. In this scenario, the
Gateway will only accept requests arriving no sooner than
1/limit of a second. For example, if the Max requests per
second is 100, at least 1/100 second must have elapsed
between requests. Requests that arrive sooner are either
throttled or shaped (based on the "When limit exceeded"
setting). Disallowing burst traffic is recommended only for
advanced users.

Note: It is not recommended to disable burst traffic on a counter
that will be servicing multiple concurrent requests, particularly at
high rates. Doing so can lead to unintended throttling or
delaying of multiple requests that arrive at exactly the same
time.

The following graph illustrates how spreading the limit will allow more
traffic and throttle fewer requests.

Chapter 9: Service Availability Assertions 575

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Tip: The effect is akin to a gas tank that slowly refills when not being
used. Each request "consumes" some gas and the request fails if there
is no more gas. The "Spread limit over" setting lets you control the size
of the gas tank.

Limit each Use the drop-down list to indicate how limiting should occur:

 l by the User or client IP address

 l by the Authenticated user name

 l by the Client IP address

 l by the SOAP operation within the request

 l by the SOAP namespace within the request

 l by the Gateway node

 l by a Custom value (enables a limit per value of a context
variable); enter the node identifier followed by a context
variable that will resolve to the correct entity during run time.

This limit breakdown impacts both the maximum number of requests
per second as well as the maximum concurrency.

For example, if you choose “by client IP address” and set the maximum
concurrency to 10 and maximum number of requests per second to
100, the assertion will fail if any incoming IP address exceeds either the
concurrency of 10 or the 100 requests per second; all IP addresses
combined are permitted to exceed these limits however. You can
combine multiple instances of this assertion to impose difference limits
by different breakdown factors, such as “maximum 10 per IP and
maximum 100 for all combined”.

Tip: To help you construct a custom format, the entry box will display
the actual node identifier and context variable associated with each of
the other limit options once you've selected the Custom option. For
example, when you first open the Rate Limit Properties, User or client
IP is selected by default. Now, choose Custom and then reselect User
or client IP. You will see that the actual coding behind this is <node
identifier>-${request.clientid}.

When limit
exceeded

Specify what should happen if the rate limit is exceeded:

 l Throttle: Excess requests will cause this assertion to fail and

576 Chapter 9: Service Availability Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

send audit code 6950 (Rate limit exceeded on rate limiter
XXXX) to the audit log.

 l Shape: The assertion will attempt to delay requests to avoid
exceeding the limit. If the Gateway is unable to spare sufficient
resources to hold a request any further, a 503 (Service
Unavailable) error may still occur.

 l Log Only: The assertion will log that the rate limit has been
exceeded, but the assertion will not fail. Note: The audit
message 6950 will be logged.

 l Blackout for X sec: Select this check box to fail all requests
for the next X minutes after the limit is exceeded, even if the rate
of requests falls below the limits defined in this assertion.

Note: The number of threads that can be queued within a node is
defined by the ratelimit.maxQueuedThreads cluster property. For
more information, see "Rate Limit Settings" under Gateway Cluster
Properties in the Layer 7 Policy Manager User Manual.

Maximum
concurrent

requests

Indicate whether to enforce concurrency limits for a given named rate
limiter (as specified by the Limit each setting).

 l Unlimited: Concurrency is not enforced. A named rate limiter
can have an unlimited number of active requests
simultaneously in the Gateway or cluster. This may result in
someone consuming a disproportionately high amount of
system resources.

 l Limited to: Ensure that no named rate limiter can have more
than the specified number of concurrent requests passing
through this assertion. Requests that exceed the concurrency
limit will cause the assertion to fail, with the audit event 6953
(Concurrency exceeded on rate limiter XXXX).

You can enter a context variable that contains the maximum
concurrent requests value. This variable can be either single-
value or multivalued with a specific index reference.

 l Cluster wide: If the Gateway cluster comprises more than one
node, this setting determines whether to the value entered in
the Limited to field is split among nodes or to be applied to
each node. This setting is the default and it replicates the
functionality of the assertion prior to version 6.2.

 l Select this check box to split the value across all the nodes
in the cluster. For example, if the maximum is 10, each
node in a 5-node cluster will result in a concurrency limit of
2 requests per node.

 l Clear this check box to allow the maximum requests value
on each node. For example, if the maximum is 10, every
node in the cluster will be allowed 10 concurrent requests.

Additional note about how the concurrency limit works:

Chapter 9: Service Availability Assertions 577

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

 l The concurrency counter is incremented when a request
passes through the Apply Rate Limit assertion (even if the
assertion ends up failing). The counter is decremented once
the request is completely finished.

 4. Click [OK] when done.

Apply Throughput Quota Assertion
The Apply Throughput Quota assertion allows you to limit the number of service requests
permitted within a pre-determined time period. At runtime, the CA API Gateway utilizes a
counter to enforce a defined quota. The Apply Throughput Quota assertion will fail
should the quota limit be exceeded.

Since counters are global to the Gateway, different services can contain Apply
Throughput Quota assertions that use the same counter. Similarly, using a single counter
across different users or groups facilitates Service Level Agreement (SLA) migration in a
policy that must enforce different SLAs for different identities.

Tips: (1) The counters used in this assertion are time-based and not based on the first request.
For example, if the throughput quota is configured for "once per hour", the counter starts at
the top of the hour, not when the first increment on the counter occurs. (2) There are several
system properties that help you adjust the behavior of this assertion. To learn more, refer to
the com.l7tech.hacounter.* properties in the "System Properties" appendix in the Layer 7
Installation and Maintenance Manual for your Gateway. Note that changing system properties
should only be attempted by advanced users or while under the direction of CA Technical
Support.

The Apply Throughput Quota assertion is typically used as follows in a policy:

Simple SLA:

Authentication assertion

Group membership assertion

Throughput quota: maximum "x" per "y"

Routing assertion

Two different SLAs for two different groups of users:

Authentication assertion

At least one assertion must evaluate to true

All assertions must evaluate to true

578 Chapter 9: Service Availability Assertions

Layer 7 Policy Authoring User Manual, v8.2

Group membership A

Throughput quota: maximum "x" per "y"

All assertions must evaluate to true

Group membership B

Throughput quota: maximum "z" per "k"

Routing assertion

Note: If no authenticated user is established in the policy, then the IP address of the requestor
is used instead in the Apply Throughput Quota assertion.

Context Variables Created by This Assertion

The Apply Throughput Quota assertion sets the following context variables. Note: The
<prefix> is set in the assertion properties (Figure 198).

 Table 179: Context variables created by Apply Throughput Quota assertion

Variable Description

${<prefix>.id} Returns the name of the counter used in the assertion.

${<prefix>.value} Returns the current value of the counter.

${<prefix>.period} Returns the period used for the counter (second, hour, day, month).

${<prefix>.user} Returns the user name associated with the last instance.

${<prefix>.max} Returns the maximum quota value.

Note: If a prefix is not specified, then the default prefix counter is used.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Throughput Quota Properties automatically
appear; when modifying the assertion, right-click Apply Throughput Quota in the
policy window and choose Throughput Quota Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

Chapter 9: Service Availability Assertions 579

Layer 7 Policy Authoring User Manual, v8.2

 Figure 198: Throughput Quota Properties

 3. Configure the properties as follows.

Setting Description

Quota

Max
Enter a request limit. The value can be any integer between 1 and
(2^31)-1. You can also enter a context variable that contains the
request limit.

Tip:If a value larger than (2^31)-1 is required, then a context variable
must be specified.

per Choose the unit of time from the drop-down list. The units represent
closed time periods.

For example, if a quota of 1000 requests per hour is configured, then

 Table 180: Throughput Quota settings

580 Chapter 9: Service Availability Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

the Gateway will enforce a limit of 1000 requests between the start and
end of each hour of the day.

Limit each Choose the method for limiting the quota from one of the following:

 l Authenticated user: Choose this enforcement option to apply
the assertion to each individual identity, or authenticated user, in
the policy. An authenticated user is an individual user who has
been authenticated to an identity provider.

For example, if a quota of 1000 requests per hour is configured
for a policy, then each individual requester will be permitted
1000 requests per hour.

This setting is the default setting.

Tip: This option corresponds to the "Quota per requestor"
setting found in previous releases.

 l Client IP: Choose this option to apply the assertion to the client
IP address.

 l SOAP operation: Choose this option to apply the assertion to
the SOAP operation within the request.

 l SOAP namespace: Choose this option to apply the assertion to
the SOAP namespace within the request.

 l Gateway cluster: Choose this enforcement option to apply the
assertion to the Gateway cluster.

For example, if a quota of 1000 requests per hour is configured
for a policy, then the combined requests per hour for all
requesters in the policy cannot exceed 1000.

Tip: This option corresponds to the "Global quota" setting found
in previous releases.

 l Custom: Choose this option to monitor throughput using a
custom counter entered in the Counter ID field. You will use this
option if none of the predefined counters meet your needs.

Log Only This check box controls what the assertion does when the quota is
exceeded.

 l Select this check box to have the assertion to generate a log
entry when the throughput quota is exceeded; the assertion
does not fail.

 l Clear this check box to have the assertion fail if the quota is
exceeded.

Note: The Log Only check box is not available when the Decrement
option is selected below .

Counter

Chapter 9: Service Availability Assertions 581

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Counter ID
The Counter ID is automatically populated based on the counter
chosen in the Limit each field. If a Custom counter was selected,
define the counter here.

The following identifiers are set for each counter selected:

 l Authenticated user: <uuid>-
${request.authenticateduser.id}-
${request.authenticateduser.providerid}

 l Client IP: <uuid>-${request.tcp.remoteAddress}

 l SOAP operation: <uuid>-${request.soap.operation}

 l SOAP namespace: <uuid>-${request.soap.namespace}

 l Gateway cluster: <uuid>

 l Custom: Any string, which must be entered directly into
the Counter ID field. This can be anything, including
context variables.

Tip: If you need to modify one of the present Counter IDs, choose the
"Custom" option under Limit each to make the Counter ID field
editable. Modifying an existing Counter ID is also a quick way to create a
custom counter.

Example: You wish to limit the number of requests per hour to 1000 per
client IP. To do this, enter "1000" for "Max" and then choose "Client IP"
for Limit each. When this assertion is run, a counter is created for each
requester coming from a different IP address. If more than 1000
requests per hour are sent from the same IP address, the Throughput
Quota assertion blocks that requester.

Since a counter can only be incremented once within a single request
context, the same counter can be used for different Throughput Quota
assertions within the same policy. In other words, regardless of the
number of Throughput Quota assertions in a policy, the Gateway will
only count each request once towards the quota when the assertions
use the same counter.

counter increment/
decrement options

 l Always increment: Always increment the counter before
determining whether the quota limit has been reached. By
default, the increment value is 1 unless overridden in the "by
value" field.

If the resulting counter value exceeds the quota, the assertion
may fail, depending on the "Scalability" setting below.

 l Increment only when still within quota: Only increment the
counter if the resulting value will not exceed the quota. By
default, the increment value is 1 unless overridden in the "by
value" field.

If the quota limit has not been reached, then the request is
counted and the assertion succeeds. If the quota limit has been
reached, the assertion may fail, depending on the "Scalability"

582 Chapter 9: Service Availability Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

setting below, and the initiating request is not counted towards
the quota.

 l Decrement: Decrement the counter by a single count. By
default, the decrement value is 1 unless overridden in the "by
value" field

Use this option in a policy to ensure that service processing
errors or incomplete transactions are not counted towards the
quota.

 l Reset: Reset all counter values to zero. The "Quota" and
"Scalability" settings will be disabled.

 l By value: Allows you to specify the increment/decrement

behavior:

 l Select this check box to increment or decrement the
counter by a specific integer value. You may reference
context variables.

 l Clear this check box to increment or decrement by 1.

Tip: One good use of the "By value" setting is when bandwidth
quotas must be observed. Simply set the "By value" increment to
${response.size}. This will increment the counter by the actual
size of each response message, giving you an accurate
indication of the bandwidth being used.

Scalability Set the slider to your preferred mix of consistency vs. scalability:

 l Move the slider to Consistency have the Gateway enforce the
quota restrictions, without exception. This may not provide
optimal performance in situations where brief bursts of
messages occur.

Note: This setting replicates the behavior of the Apply
Throughput Quota assertion prior to version 7.1 and is not
recommended unless it is critical that the quota never be
exceeded.

 l Move the slider to the midpoint to improve scalability and
performance, permitting brief quota overflows under rare
conditions.

 l Move the slider to Scalability for maximum performance and
scalability, permitting quota overflows more frequently.

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

 4. Click [OK] when done.

Chapter 9: Service Availability Assertions 583

Layer 7 Policy Authoring User Manual, v8.2

Limit Availability to Time/Days Assertion
The Limit Availability to Time/Days assertion allows you to restrict service access by a
Gateway time and/or day interval. When the Gateway receives a request for the service, it
will check the time and/or day restrictions before allowing the message to proceed.

Note: All time and/or day restrictions are based on the time zone of the Gateway.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Time/Day Availability Properties automatically
appear; when modifying the assertion, right-click Limit Availability to... in the
policy window and select Time/Day Availability Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

 Figure 199: Time/Day Availability Properties

 3. Configure the properties as follows:

584 Chapter 9: Service Availability Assertions

Layer 7 Policy Authoring User Manual, v8.2

Restriction Description

Restrict access by
time

Select the Restrict Time of Day check box and then specify the time
period when access is permitted. The time period entered is
automatically converted to UTC (Coordinated Universal Time) and
displayed on the dialog.

Restrict access by
day

Select the Restrict Day of Week check box and then specify the day
range when access is permitted. Selecting the same day in both fields
will allow access only for that day.

Tip: The Gateway uses UTC so take that into account when
implementing day restrictions. For example, using the sample screen
in Figure 199, access after 17:00 local time on Friday will be disallowed
because it will already be Saturday UTC time.

 Table 181: Time/Day Availability settings

You can restrict access by time and/or day.

 4. Click [OK] when done.

Look Up in Cache Assertion
The Look Up in Cache assertion is used to look up an item in a cache store that was placed
by the "Store to Cache Assertion" on page 594. If the lookup is successful, the item is
placed into the message target of your choice (request, response, or context variable). If
the lookup is unsuccessful, the assertion returns status code 600 ("Assertion Falsified")
for cache misses or 601 ("Error in Assertion Processing") on processing errors.

You can optionally override the Content-Type of the cached item during lookup.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Policy Example

The Look Up in Cache assertion is normally paired with the Store to Cache assertion. The
"Look up" assertion should be placed before the routing assertion inside of an "At least
one..." folder. The "Store" assertion should follow immediately afterward:

[Not shown: XPath to extract clientCountry and SKU from request]
Set variable "cachekey" to "Cache01-${request.url}-${request.soap.operation}-
${clientCountry}-${SKU}"
At Least One Assertion Must Evaluate to True

Response: Look Up in Cache with key "${cachekey}"
All Assertions Must Evaluate to True

Chapter 9: Service Availability Assertions 585

Layer 7 Policy Authoring User Manual, v8.2

Route via HTTP to URL http://backend/anydestination
Response: Store to Cache with key "${cachekey}"

In this example, the Gateway will attempt look up "${cachekey}" in the cache first. If it is
successful, the entry retrieved from the cache is used for subsequent processing, sparing
the backend service from needing to respond to the request. If "${cachekey}" is not found
in the cache, the request is then routed to the back-end service and the response is
stored into cache.

Note that the "Store to Cache Assertion" on page 594 should follow the routing
assertion.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Look Up in Cache in the policy window and select Cache Lookup
Properties or double-click the assertion in the policy window. The assertion
properties are displayed.

 Figure 200: Cache Lookup Properties

 3. Configure the dialog as follows:

Setting Description

Cache ID
Specify the identifier for the cache to be searched. This identifier was
defined in the Store to Cache assertion.

Cache entry key Specify the key to be looked up in the cache. This key should normally
match the one configured in the Store to Cache assertion.

 Table 182: Cache Lookup settings

586 Chapter 9: Service Availability Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Maximum
acceptable age

Specify the maximum acceptable age (in seconds) of a cached item. If
an item is below this age, it will be retrieved from the cache and
returned in the response. If the cached item exceeds this age, it will not
be retrieved. You may reference context variables.

The default is 300 seconds.

Content-type
override

The original Content-Type is cached and will be used in the "Look Up"
message. You may override the original Content-Type if necessary,
otherwise leave this field blank.

 4. Click [OK].

Query Rate Limit Assertion
The Query Rate Limit assertion is used to query the status of a custom rate limit counter
from the Apply Rate Limit assertion. The results are then placed into context variables.

Tip: The Query Rate Limit assertion is most useful when a custom counter ID has been used in
the Apply Rate Limit assertion.

Context Variables Created by This Assertion

The Query Rate Limit assertion sets the following context variables with the query results.
Note: The <prefix> is set in the assertion properties (Figure 201) and is optional. There is
no default.

Variable Description

$<prefix>.counter.name The full name of the matching counter.

$<prefix>.
counter.requestsremaining

The number of requests the counter would allow at this
moment (neglecting concurrency).

$<prefix>.counter.concurrency The number of requests currently using the counter.

$<prefix>.
counter.blackoutmillisremaining

The number of milliseconds of blackout time remaining if the
counter is blacked out. Otherwise, this value is 0 (zero).

 Table 183: Context variables created by Query Rate Limit assertion

Using the Assertion

 1. Do one of the following:

Chapter 9: Service Availability Assertions 587

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Query Rate Limit for limit per <counter name> in the policy window
and select Rate Limit Query Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

 Figure 201: Rate Limit Query Properties

 3. Configure the dialog as follows:

Field Description

Existing Counter
Name

Enter the name of the rate limit counter being queried.

The counter name entered here should be the actual resolved counter
ID from the Apply Rate Limit assertion. If you simply repeat the
context variable from the other assertion, you must ensure that the
query uses matching information, otherwise the results will be
incorrect.

For example, the Apply Rate Limit assertion uses the counter ID:
"QA-${request.authenticateduser}" and you wish to query for user
"jsmith". In this case, you would enter the counter name "QA-jsmith" in
the Query Rate Limit assertion. If you simply repeated "QA-
${request.authenticateduser}" as the counter name, the results will be
correct only if the user performing the query is "jsmith".

Variable Prefix Optionally, enter a prefix that will be added to the context variables
created by this assertion. This prefix will ensure uniqueness and will
prevent the variables from overwriting each other when multiple
instances of this assertion appear in a policy. If set, the format
${<prefix>.counter.name} is used instead of ${counter.name}.

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

 Table 184: Rate Limit Query settings

 4. Click [OK].

588 Chapter 9: Service Availability Assertions

Layer 7 Policy Authoring User Manual, v8.2

Query Throughput Quota Assertion
The Query Throughput Quota assertion is used to query the status of a custom
throughput quota counter from the Apply Throughput Quota assertion. The results are
then placed into context variables.

Tip: The Query Throughput Quota assertion is most useful when a custom counter ID has been
used in the Apply Throughput Quota assertion.

Context Variables Created by This Assertion

The Query Throughput Quota assertion sets the following context variables. Note: The
<prefix> is set in the assertion properties (Figure 202) and is optional. There is no default.

Variable Description

$<prefix>.counter.name The full name of the matching counter.

$<prefix>.counter.sec The count for the previous second.

$<prefix>.counter.min The count for the previous minute.

$<prefix>.counter.hr The count for the previous hour.

$<prefix>.counter.day The count for the previous day.

$<prefix>.counter.mnt The count for the previous month.

$<prefix>.
counter.lastupdate

The date the counter was last updated, in the format yyyy-mm-
dd.

 Table 185: Context variables created by Query Throughput Quota assertion

The "<prefix>" is optional.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Query Throughput Quota for <counter name> in the policy window
and select Throughput Quota Query Properties or double-click the assertion in
the policy window. The assertion properties are displayed.

Chapter 9: Service Availability Assertions 589

Layer 7 Policy Authoring User Manual, v8.2

 Figure 202: Throughput Quota Query Properties

 3. Configure the dialog as follows:

Field Description

Existing Counter
Name

Enter the name of the throughput quota counter being queried.

The counter name entered here should be the actual resolved counter
ID from the Apply Throughput Quota assertion. If you simply repeat
the context variable from the other assertion, you must ensure that the
query uses matching information, otherwise the results will be
incorrect.

For example, the Apply Throughput Quota assertion uses the counter
ID: "QA-${request.authenticateduser}" and you wish to query for user
"jsmith". In this case, you would enter the counter name "QA-jsmith" in
the Query Throughput Quota assertion. If you simply repeated "QA-
${request.authenticateduser}" as the counter name, the results will be
correct only if the user performing the query is "jsmith".

Variable Prefix Optionally, enter a prefix that will be added to the context variables
created by this assertion. This prefix will ensure uniqueness and will
prevent the variables from overwriting each other when multiple
instances of this assertion appear in a policy.If set, the format
${<prefix>.counter.name} is used instead of ${counter.name}.

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

 Table 186: Throughput Quota Query settings

 4. Click [OK].

Resolve Service Assertion
The Resolve Service assertion allows you to perform manual service resolution (by URI).
When this assertion is encountered in a policy, the normal service resolution logic of the
Gateway is bypassed. (This resolution logic is described in Understanding the Service
Resolution Process in the Layer 7 Installation and Maintenance Manual.)

590 Chapter 9: Service Availability Assertions

Layer 7 Policy Authoring User Manual, v8.2

One useful application of this assertion would be to use an Evaluate Request XPath
assertion to seek a particular element (for example, "//ns:SpecialElement"). If this element is
present, the Resolve Service assertion is used to route the request to a particular URI (for
example, "/specialElementHandler"). If this element is not present, then the normal service
resolution process is used.

Note: The Resolve Service assertion must placed in a message-received global policy
fragment (or in a policy fragment that is imported into this global policy fragment) in order for
it to execute prior to service resolution. In all other scenarios, this assertion will fail because
the service will have already been resolved by the time the service policy executes.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Resolve Service Properties automatically appear;
when modifying the assertion, right-click Resolve Service with URI...in the policy
window and select Resolve Service Properties or double-click the assertion in the
policy window. The assertion properties are displayed.

 Figure 203: Resolve Service Properties

 3. Enter or edit the URI path to be used for service resolution.

Tip: You can use the ${request.url.path} context variable to specify the URI path. This
variable returns the path of the Gateway URL where the message was received.

 4. Click [OK] when done.

Chapter 9: Service Availability Assertions 591

Layer 7 Policy Authoring User Manual, v8.2

Restrict Access to IP Address Range Assertion
The Restrict Access to IP Address Range assertion allows you to restrict or allow service
access based on the IP address of the web service or XML application requestor.

The IP address of the requestor considered when this assertion is run can either be the
actual remote IP address available at the TCP level or a string extracted from the message.
The latter case can be used, for example, when requests are first forwarded through
multiple network components before arriving at the Gateway. If such network
components are configured to pass down the original IP address through an HTTP or
SOAP header, that information source can then be configured in the Restrict Access to IP
Address Range assertion using context variables.

Note: When using a context variable as the source for the IP address, that source is first
filtered using the following Regular Expression: \d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}
This will filter out any extraneous information, such as a client port number. The accepted
formats are "ipv4_literal", "ipv4_literal:port", "ipv6_literal", "[ipv6_literal]:port".

Using the assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the IP Address Range Properties automatically
appear; when modifying the assertion, right-click [Allow|Forbid] IP Address
Range in the policy window and select IP Address Range Properties or double-
click the assertion in the policy window. The assertion properties are displayed.

592 Chapter 9: Service Availability Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 204: IP Address Range Properties

 3. Configure the properties as follows:

Setting Description

Authorize/Forbid From the drop-down list, select Authorize if you are permitting access
to the IP range listed. Select Forbid if you are restricting access to the
IP range listed.

IP range Enter the allowable or forbidden IP address and/or "bits" in
accordance with the CIDR (Classless Inter-Domain Routing)
standard. Both IPv4 and IPv6 addresses are supported.

Requestor IP
address source

Specify how the Gateway should determine the source IP address:

 l Select TCP to use the IP address associated with the TCP
request.

 l Select Context variable and then enter any context variable
that resolves to a valid IP address. The default is
request.tcp.remoteAddress, which will return the remote
address of the TCP connection through which the message
arrived.

To learn more about context variables, see Context Variables
in the Layer 7 Policy Manager User Manual.

 Table 187: IP Address Range settings

 4. Click [OK] when done.

Chapter 9: Service Availability Assertions 593

Layer 7 Policy Authoring User Manual, v8.2

Store to Cache Assertion
The Store to Cache assertion is used to store messages or a string from a target message
to a cache store of your choice. You can then use the "Look Up in Cache Assertion" on
page 585 to retrieve the cached contents. This will reduce the load on back-end services
and potentially improve response times.

This assertion will always succeed. If the assertion encounters problems creating or
updating a cache, it is reported in the system audit log, but the assertion will not fail.

All cache entries are deleted when a Gateway node shuts down.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Policy Example

The Store to Cache assertion is normally paired with the Look Up in Cache assertion. The
"Look Up" assertion should be placed before the routing assertion inside of an "At least
one..." folder. The "Store" assertion should follow immediately afterward. The following
policy fragment is an example:

[Not shown: XPath to extract clientCountry and SKU from request]
Set variable "cachekey" to "Cache01-${request.url}-${request.soap.operation}-
${clientCountry}-${SKU}"
At Least One Assertion Must Evaluate to True

Response: Look Up in Cache with key "${cachekey}"
All Assertions Must Evaluate to True

Route via HTTP to URL http://backend/anydestination
Response: Store to Cache with key "${cachekey}"

In this example, the Gateway will attempt look up "${cachekey}" in the cache first. If it is
successful, the entry retrieved from the cache is used for subsequent processing, sparing
the backend service from needing to respond to the request. If "${cachekey}" is not found
in the cache, the request is then routed to the back-end service and the response is
stored into cache.

Note that the Store to Cache assertion should follow the routing assertion.

Using the Assertion

 1. Do one of the following:

594 Chapter 9: Service Availability Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Store to Cache in the policy window and select Cache Storage
Properties or double-click the assertion in the policy window. The assertion
properties are displayed.

 Figure 205: Cache Storage Properties

 3. Configure the dialog as follows:

Field Description

Cache ID
Enter a label to identify the cache store to use. If no cache store exists
with that label, a new cache store is created.

The cache identifier is used in the Look Up in Cache assertion to look
up entries in the corresponding cache store.

Cache entry key Cached entries are identified within a cache store by a unique cache
entry key. This key is used by the Look Up in Cache assertion to look up
entries and retrieve them from a cache store.

Specify the key or reference a context variable that will contain the key.
You may reference context variables.

Note: The cache entry key is configured for a group of related cache
"store" and "lookup" assertions and should normally be the same
expression.

Maximum entries Enter the maximum number of cached entries that the store can hold.
When this maximum is reached, each new item will replace the oldest
one in the store. You may reference context variables.

The default is 10.

Maximum entry age Enter the maximum age (in seconds) of items in the cache before they
are discarded. You may reference context variables.

The default is 300 seconds.

 Table 188: Cache Storage settings

Chapter 9: Service Availability Assertions 595

Layer 7 Policy Authoring User Manual, v8.2

Field Description

Maximum entry size Enter the maximum size (in bytes) of the items to cache. The default is
10000 bytes.

Do not cache SOAP
faults

This check box determines whether SOAP fault responses are cached:

 l Select this check box to exclude SOAP faults from being
cached. This may help prevent the cache from being filled too
quickly, especially if many SOAP faults are generated.

 l Clear this check box to include SOAP faults in the cache. Note
that this will cause a SOAP fault to always be returned until the
cached entry expires, even when the SOAP fault condition no
longer occurs.

 4. Click [OK].

596 Chapter 9: Service Availability Assertions

Layer 7 Policy Authoring User Manual, v8.2

Chapter 10:
 Logging, Auditing, and Alerts

Assertions

In the Policy Manager, the following assertions are available in the Logging, Auditing, and
Alerts category of the [Assertions] tab:

Message Auditing 597

System Audits 598
Administrative Audits 598
Policy Message Audits 598

Add Audit Detail Assertion 600

Audit Messages in Policy Assertion 602

Capture Identity of Requestor Assertion 604

Customize SOAP Fault Response Assertion 607

SOAP Faults 611
Send Email Alert Assertion 612

Send SNMP Trap Assertion 615

The Logging, Auditing, and Alerts assertions set the threshold for the Gateway audit
messages in the Gateway Audit Events window and configure the properties for SNMP
trap alerts and email alerts.

Note: This category may also include custom-created encapsulated assertions. For more
information, see "Working with Encapsulated Assertions" on page 126.

Message Auditing
The CA API Gateway generates three types of audit messages:

 l System audits, which you cannot control

 l Administrative audits, which you can control using the cluster property
audit.adminThreshold

 l Policy message audits, which allows you a high degree of control

Chapter 10: Logging, Auditing, and Alerts Assertions 597

Layer 7 Policy Authoring User Manual, v8.2

The following sections provide more details about each audit type.

System Audits

These are internal messages that are constantly generated in the background by the
Gateway. These messages typically describe "housekeeping" tasks such as: server starting
, license updated, connecting to a JMS endpoint, etc.

System audit events are normally rated Fine, Finer, or Finest in the severity scale, although
some may be rated Info. System audit events are always available in the audit event log
(you will need to set the filter slider to "All" to see all these events).

You have no control over system audits: they happen automatically, without requiring
any assertions.

Administrative Audits

These are messages that occur when an administrative action is performed via the Policy
Manager , via an administrative API, or through the Enterprise Service Manager. Examples
of such actions include: publishing or updating a policy, creating a user, etc.

You can control which of these messages you want to save by using the
audit.adminThreshold cluster property. By default, all messages at level Info or higher are
logged.

Policy Message Audits

These are messages generated during the processing of a policy. The bulk of these are
simply informational messages that have the severity level Info. The more important
messages are rated Warning or Severe. By default, the Gateway is set to save only Warning
or Severe messages; Info messages are eventually discarded. This behavior is by design, to
prevent your audit log from being cluttered with a mass of informational messages. In
most instances, you are only interested in knowing when something goes wrong.

There are several cluster properties that can be used by advanced users to more precisely
control policy message audits during the auditing process. Of particular importance are
the following two properties:

audit.messageThrehold
audit.detailThreshold

The values of these properties, plus the levels selected in the Audit Messages in Policy
and Add Audit Detail assertions, will determine whether a message is logged and at what
level.

598 Chapter 10: Logging, Auditing, and Alerts Assertions

Layer 7 Policy Authoring User Manual, v8.2

Additional resources:

 l To learn more about the auditing cluster properties, see Audit Cluster Properties
in the Layer 7 Policy Manager User Manual. To learn about the interaction between
the threshold cluster properties and the auditing-related assertions, see Table 189
below.

 l To learn how to use context variables to extract a wide variety of details from an
audit event, see Working with the Audit Sink Policy in the Layer 7 Policy Manager
User Manual.

Expanding the Scope of Policy Message Audits for Troubleshooting

If you are troubleshooting an elusive problem or if you want to see all the informational
messages, add an Audit Messages in Policy assertion in the policy and set its "trigger"
severity level to Warning. What this does is elevate all informational messages to a
Warning severity level as they pass through the assertion. In other words:

"Info" messages become --> "Warning" messages
"Warning" messages remain --> "Warning" messages
"Severe" messages remain --> "Severe" messages

This results in everything being recorded to the audit event log, as all messages now
meet the preset threshold of Warning. This is illustrated in the following diagram:

 Figure 206: Audit message path

Chapter 10: Logging, Auditing, and Alerts Assertions 599

Layer 7 Policy Authoring User Manual, v8.2

Note: A message is elevated only if an Audit Messages in Policy assertion is present and the
level in that assertion is set to Warning. Without elevation, only the more important messages
are saved to the audit events log. The Audit Messages in Policy assertion can only boost a level
or leave it unchanged. Subsequent invocations of this assertion in a policy cannot lower a
severity level. See Table 189 below for a summary of the interactions.

Incoming Mes-
sage Type

"Audit Messages in
Policy Assertion" in

policy

Cluster-wide properties
audit.

message
Thres
hold

audit.
detailThreshold

Result

Audit
'Message' @
'INFO'

'Info' or not present 'WARNING' 'INFO' Not Logged

'INFO' 'INFO' Logged at
'INFO' level

'WARNING' 'WARNING' 'INFO' Logged at
'WARNING'

Audit 'Detail' @
'INFO'

'Info' or not present 'WARNING' 'INFO' Logged at
'INFO' level

'WARNING' 'WARNING' Not Logged

'WARNING' 'WARNING' 'INFO' Logged at
'WARNING'

Audit
'Message' @
'WARNING'

'Info' or not present 'WARNING' 'INFO' Logged at
'WARNING'

'INFO' 'INFO'

'WARNING' 'WARNING' 'INFO'

Audit 'Detail' @
'WARNING'

'Info' or not present 'WARNING' 'INFO' Logged at
'WARNING'

'WARNING' 'WARNING'

'WARNING' 'WARNING' 'INFO'

 Table 189: Interaction between cluster properties and auditing assertions

Add Audit Detail Assertion
The Add Audit Detail assertion lets you define a custom message that can enhance the
context of an audit message. These messages are then recorded either in the audit
records or a Gateway log, depending on how the assertion is configured. The custom
message will also appear the "Associated Logs" tab in the Event Details Pane of the
Gateway Audit Events window if audit details are directed to the audit log.

For more information about defining logs, see Managing Log Sinks in the Layer 7 Policy
Manager User Manual.

600 Chapter 10: Logging, Auditing, and Alerts Assertions

Layer 7 Policy Authoring User Manual, v8.2

To learn more about how this assertion interacts with the Audit Messages in Policy
assertion and with pertinent cluster properties, see "Message Auditing" on page 597.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Audit Detail Properties automatically appear;
when modifying the assertion, right-click Add Audit Details... in the policy
window and select Audit Detail Properties or double-click the assertion in the
policy window. The assertion properties are displayed.

 Figure 207: Audit Detail Properties

 3. Configure the properties as follows:

Setting Description

Message
Type a message in the box. This message will be displayed when the
audit appears in the Gateway Audit Events window.

Tip: Include context variables within the message to reveal additional
information about the audit condition, if necessary.

Audit Select this option to direct the audit detail message to the Audit log sink.
This option replicates the default behavior of this assertion prior to
version 5.4.

Tip: Audit logs are the log sinks with the category "Audits". For more
information, see Managing Log Sinks in the Layer 7 Policy Manager
User Manual.

Log Select this option to direct the audit detail message to the Gateway log
sink. This is useful for situations where (for example) the logged
information is too large to be comfortably stored in the audit database
for extended periods of time. For example, storing trace information

 Table 190: Audit Detail settings

Chapter 10: Logging, Auditing, and Alerts Assertions 601

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

from a policy debug tracing.

Tip: Gateway logs are the log sinks with the category "Gateway Log".
For more information, see Managing Log Sinks in the Layer 7 Policy
Manager User Manual.

Custom logger

name

Select this check box if you want the logged information to be identified
by a custom logger name, rather than the default logger name
com.l7tech.server.policy.assertion.ServerAuditDetailAssertion.

If you choose to use a custom logger name, enter a suffix to be added to
the custom logger name, to ensure uniqueness. You may reference
context variables.

Note: If a specified context variable cannot be resolved during run time,
the default logger name shown above is used.

Level Select a severity level for your message from the drop-down list. This
level, along with the level set in the Audit Messages in Policy assertion,
determines whether your message appears in the Gateway Audit
Events window.

 4. Click [OK] when done.

Audit Messages in Policy Assertion
The Audit Messages in Policy assertion is used to enable auditing of messages within a
policy. It records events pertaining to the processing of a policy—for example, assertion
violations, authentication failures, routing errors, etc. You can view these events later in
the Gateway Audit Events window.

For example, when used in an At least one assertion must evaluate to true assertion
folder after an Evaluate Request XPath assertion, the Audit Messages in Policy assertion
will execute and audit the request message only if the XPath assertion fails. When this
happens, XPath query results are reported in the Gateway Audit Events window. If the
XPath assertion in this scenario succeeds, then the Audit Messages in Policy assertion
does not execute.

Tip: To learn more about the auditing process, including how the Audit Messages in Policy
assertion interacts with the Add Audit Detail assertion and the various cluster properties, see
"Message Auditing" on page 597.

Using the Assertion

 1. Do one of the following:

602 Chapter 10: Logging, Auditing, and Alerts Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Audit Messages in Policy in the policy window and choose Audit
Properties or double-click the assertion in the policy window. The assertion
properties are displayed.

 Figure 208: Audit Properties

 3. Configure the properties as follows:

Setting Description

Record audit events
at the following
level beyond this
point

This setting changes the severity of the logged messages to either
"Info" or "Warning". Whether the message is ultimately saved to the
database depends on the audit.messageThreshold cluster property .

Choose WARNING to set the severity of all messages to "Warning".
This will cause all messages to be logged, regardless of whether the
audit.messageThreshold cluster property is set to INFO or
WARNING.

Choose INFO to set the severity of all messages to "Info". Whether the
messages are then logged depends on the audit.messageThreshold
cluster property:

 l If the cluster property is set to INFO, all messages will be
logged.

 l If the cluster property is set to WARNING, no messages will be
logged.

For a detailed description of the effects of the "trigger" threshold on
auditing, see "Message Auditing" on page 597.

Save request

Save response

Indicate whether to save the code of the request or response:

 l Always: Save the code.

 Table 191: Audit settings

Chapter 10: Logging, Auditing, and Alerts Assertions 603

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

 l Never: Do not save the code.

 l No change: If used in a service policy, this is the same as
'Never'. If used in a debug trace policy, this setting will
preserve the setting of any Audit Messages in Policy assertion
in the service policy (if no such assertion appears in the service
policy, then the code is not saved).

Saving the code for the request/response will allow you to view them
later in the Event Details Pane of the Gateway Audit Events window.

Special note for Trace Policy

When the Audit Messages in Policy assertion appears in a debug trace
policy, the "Always" and "Never" settings here will override the
equivalent settings in the target service policy. If there is no Audit
Messages in Policy assertion in the service policy but one in the trace
policy and it is set to "Always", then the code will be saved.

Note: Recording all message events or saving request/response code will increase the
size of your log substantially

 4. Click [OK] when done.

Capture Identity of Requestor Assertion
The Capture Identity of Requestor assertion is used to determine the identity of a requestor
(that is, the customer) for auditing or reporting using any of the following methods:

 l By capturing the requestor's IP address

 l By capturing the requestor's authenticated User ID (where available)

 l By capturing the value from a context variable that contains identifying
information about the requestor (for example, from a context variable created by
the Evaluate Request XPath, Evaluate Response XPath, or Evaluate Regular
Expression assertions, or a context variable that extracts information from the
HTTP header)

You can define up to five mappings in a Capture Identity of Requestor assertion, however
there can only be a maximum of five distinct mappings per policy, regardless of how many
assertions are present. A "distinct mapping" is defined as follows:

 l Each context message mapping consists of three parts: Type, Key, Value

 l Mappings are distinct if their Types differ OR if the Type is the same, the Keys differ

604 Chapter 10: Logging, Auditing, and Alerts Assertions

Layer 7 Policy Authoring User Manual, v8.2

Example 1: These mappings are distinct:

Mapping 1: IP Address, IP_ADDRESS (SYSTEM DEFINED)
Mapping 2: Custom Mapping, My_Value, Gold_Medal

Example 2: These mappings are also distinct:

Mapping 1: Custom Mapping, Value_A, Gold_Medal
Mapping 2: Custom Mapping, Value_B, Gold_Medal

The information that is captured can be viewed in the [Details] tab of the Gateway Audit
Events window:

 Figure 209: Viewing message context mappings in the Gateway Audit Events window

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Capture Identity of Requestor in the policy window and select
Requestor Identity Properties or double-click the assertion in the policy window.
The assertion properties are displayed.

Chapter 10: Logging, Auditing, and Alerts Assertions 605

Layer 7 Policy Authoring User Manual, v8.2

 Figure 210: Requestor Identity Properties

 3. Configure the properties as follows:

To... Do this...

Add a message
context mapping

 1. Click [Add]. The Configure Message Context Mapping dialog
appears. You can add a maximum of five mappings per
Capture Identity of Requestor assertion.

 2. Select the mapping Type:

 l IP Address: Obtain the identity from the customer's IP
address.

 l Authenticated User: Obtain the identity from the
customer's authenticated User ID.

 l Custom Mapping: Obtain the identity using a custom
mapping defined in the Key and Value fields.

 3. In the Key field, enter a string of text (no spaces) to identity
your custom mapping. The key cannot be changed when using
the IP Address or Authenticated User types.

 4. In the Value field, specify a context variable that holds

identifying information about the requestor.

The following are examples of context variables that you can
use:

 l ${request.username}

 l ${request.authenticateduser}

 l a context variable created by an XPath assertion
(Evaluate Request XPath or Evaluate Response XPath)

 l a context variable created by the Evaluate Regular
Expression assertion

 l a context variable that returns information from the
HTTP header

Tip: You can add descriptive text to the variable name to make

 Table 192: Requestor Identity settings

606 Chapter 10: Logging, Auditing, and Alerts Assertions

Layer 7 Policy Authoring User Manual, v8.2

To... Do this...

it easier to read. For example, "High Value Customer:
${request.username}".

The value cannot be changed when using the IP Address or
Authenticated User types.

Remove a message
context mapping

 1. Select the mapping to be removed. The last mapping cannot
be removed.

 2. Click [Remove].

Edit a message
context mapping

 1. Select the mapping to be edited.

 2. Click [Properties]. The Configure Message Context Mapping
dialog appears.

 3. Edit the fields as necessary. The Key and Value fields cannot
be edited for system defined types.

 4. Click [OK] when done.

 4. Click [OK] when done.

Customize SOAP Fault Response Assertion
The default behavior of the Gateway is to return a generic fault message within a SOAP
envelope ("SOAP fault") when a problem occurs in a policy—for example, an assertion
failure, authentication failure, routing failure, etc. The Customize SOAP Fault Response
assertion lets you configure the SOAP fault response on a policy-by-policy basis. You can
configure the level of detail returned and whether the SOAP faults are digitally signed.
The following options are available for the SOAP fault detail level:

 l Drop connection: When the policy fails, simply drop the connection without
providing any response.

 l Generic SOAP fault: Return a brief SOAP fault message.

 l Medium detail: Return a SOAP message with more details.

 l Full detail: Return a comprehensive SOAP fault message.

 l Template: Lets you define your own message to be returned.

Tip: The Customize SOAP Fault Response assertion is intended to override the general
Gateway SOAP fault response for a particular policy—it does not control whether a SOAP fault
is returned but rather how the SOAP fault will appear if a SOAP fault should occur. If you do
not need to override the general response, then this assertion is not required. For more
information about the general SOAP fault response, see "SOAP Faults" on page 611.

Chapter 10: Logging, Auditing, and Alerts Assertions 607

Layer 7 Policy Authoring User Manual, v8.2

To learn more about selecting a private key for this assertion, see Selecting a Custom
Private Key in the Layer 7 Policy Manager User Manual.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Customize SOAP Fault Response as... in the policy window and select
Fault Response Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

608 Chapter 10: Logging, Auditing, and Alerts Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 211: Fault Response Properties

 3. Select a SOAP fault level to use:

Setting Description

Drop Connection Simply drops the connection when a SOAP fault or any other policy
error is encountered; no error is returned.

Generic SOAP Fault Returns a simple SOAP fault which states that a policy violation has
occurred.

 Table 193: Fault Response settings

Chapter 10: Logging, Auditing, and Alerts Assertions 609

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Medium Detail Takes the "Generic SOAP Fault" setting and adds policy violation
details for each assertion violated. Includes any audit detail messages
generated by the failed assertions.

At this setting, all messages of severity level "Info" or higher are
included. For more information, see "Message Auditing" on page 597.

Note: Avoid using this setting if you do not want to reveal the reasons
for rejection to the requestor.

Full Detail Takes the "Medium Detail" setting and adds information for each
assertion that was evaluated during the request (regardless of
whether it succeeded for failed).

At this setting, messages of all severity levels are included. For more
information, see "Message Auditing" on page 597.

Note: Avoid using this setting if you do not want to reveal the reasons
for rejection to the requestor.

Template Fault Allows you to define your own template response. This is the same as
using the Return Template Response to Requestor assertion, except
the "Response HTTP Status" is hard coded to '500' and the
"Response Content Type" is always 'text/xml'. You may reference
context variables within the template.

[Include the policy
download URL...]

For all settings except for Drop Connection, you can specify whether
the policy download URL should be included with the SOAP fault in an
HTTP header, if it is required. For example, a failure of an XPath
assertion would not cause the policy URL to be included, while a
credential assertion such as Require HTTP Basic Credentials would
include the URL.

The default is to include this URL.

[Sign SOAP Fault] For all settings except for Drop Connection, you can specify that the
SOAP fault be digitally signed. This setting overrides the soapfault.sign
cluster property.

When the SOAP fault is signed, the Gateway chooses the signing key in
the following order of preference (this overrides the
soapfault.privateKeyAlias cluster property):

 1. Custom Private key: If a custom private key has been
selected for the assertion, it is used for signing. For more
information, see Selecting a Custom Private Key in the Layer 7
Policy Manager User Manual.

 2. Session key: If a custom private key has not been selected or
if the [Use default private key] option was selected on the
Private Key Alias dialog, then the session key will be used. A
session key exists if the policy uses a security method that relies
on a session key (for example, Kerberos token profile, secure
conversation, encrypted key).

610 Chapter 10: Logging, Auditing, and Alerts Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

 3. Default SSL key: If no session key exists and no custom
private key was selected, then the default SSL key is used. To
learn more about the default SSL key, see Private Key
Properties in the Layer 7 Policy Manager User Manual.

IMPORTANT: If a custom private key was selected and that key is
subsequently destroyed or becomes unavailable, then the SOAP faults
will not be signed, regardless of the Sign SOAP Fault check box. The
default SSL key will not be used.

Use SOAP Fault for
all errors

Select this check box to return a SOAP fault regardless of the error.
This will display the complete set of audit detail messages, including
messages that are not associated with an assertion. For example, this
option can help you diagnose errors such as:

 l Non-SOAP and malformed XML errors for SOAP services

 l Errors during WS-Security processing, such as digital
signature validation errors

IMPORTANT: The Customize SOAP Fault assertion must be placed
within a "message received" or "pre security" global policy fragment in
order for the [Use SOAP Fault for all errors] option to have any
effect. For more information on these policies, see "Working with
Global Policy Fragments" on page 106.

Use Client Fault
code for all errors

Select this check box to override the fault code with the client's fault
code. This will result in "<faultcode>soapenv:Client</faultcode>" being
returned.

Clear this check box to use the server's fault code. This will result in
"<faultcode>soapenv:Server</faultcode>" being returned. This setting
is the default.

 4. Click [OK] when done.

The fault response selected is added to the assertion name in the policy window,
along with any custom private key selected. For example: "Customize SOAP Fault
Response as Full Detail (Key: XYZ)".

SOAP Faults

The Gateway provides two different ways to handle SOAP faults: general SOAP fault
response and customized SOAP fault response.

Chapter 10: Logging, Auditing, and Alerts Assertions 611

Layer 7 Policy Authoring User Manual, v8.2

General SOAP Fault Response

The default behaviour for the Gateway is to return a standard unsigned SOAP fault when
an exception occurs in a policy. You can configure the default behaviour using the "Fault
Level" cluster properties. This default behaviour is used unless the SOAP fault response
has been customized for a particular policy.

Customized SOAP Fault Response

If you need to override the default SOAP fault behaviour in a particular policy, use the
Customize SOAP Fault Response assertion. This assertion allows you to customize the
following for that policy:

 l The level of detail to include in the response (overrides the soapfault.level cluster
property)

 l Whether SOAP faults should be digitally signed (overrides the soapfault.sign cluster
property)

 l If the faults are to be signed, the signing key is determined in the following order
of preference (overrides the soapfault.privateKeyAlias cluster property):

 a. Custom Private key: If a custom private key has been selected for the
assertion, then that is used. For more information, see Selecting a Custom
Private Key in the Layer 7 Policy Manager User Manual.

 b. Session key: If a custom private key has not been selected or if the [Use
default private key] option was selected on the Private Key Alias dialog, then
the Gateway will attempt to use the session key.

 c. Default key: If no session key exists and no custom private key was selected,
then the default SSL key is used. To learn more about the default SSL key, see
Private Key Properties in the Layer 7 Policy Manager User Manual.

Send Email Alert Assertion
The Send Email Alert assertion allows you to instruct the Gateway to deliver a pre-
configured email message whenever the assertion is encountered in a policy.

The placement of the assertion in the policy path determines when and why an email is
sent. For example, the assertion could be placed in an "At least one assertion must
evaluate to true" assertion folder after an Evaluate Response XPath assertion. If the
required response message element is not found and the Evaluate Response XPath
assertion fails, then the Send Email Alert assertion assertion will execute.

612 Chapter 10: Logging, Auditing, and Alerts Assertions

Layer 7 Policy Authoring User Manual, v8.2

Tip: The Send Email Alert assertion will fail if the outgoing email account is improperly
configured. To configure the policy so that a failure of the Send Email Alert assertion does not
cause a total policy failure, place the assertion in an "At least one assertion must evaluate to
true" assertion folder with a Continue Processing assertion.

If you are encountering email timeouts while using this assertion, try adjusting the
mail.outConnectTimeout and mail.outTimeout cluster properties.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Email Alert Properties automatically appear; when
modifying the assertion, right-click Send Email Alert in the policy window and
select Email Alert Properties or double-click the assertion in the policy window.
The assertion properties are displayed.

 Figure 212: Email Alert Properties

 3. Configure the properties as follows:

Tip: Context variables may be used in the following fields for greater flexibility: Host,
Port, Username, Password, From, To, CC, BCC, Subject.

Chapter 10: Logging, Auditing, and Alerts Assertions 613

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Host
The name of the outgoing mail server displayed as the default. Modify
if necessary.

Protocol Select the email protocol to use: Plain SMTP (default), SMTP over
SSL, or SMTP with STARTTLS. The default setting should be
appropriate in most instances. Consult your system administrator if
you are unsure of the protocol.

Note: You may need to configure trust for the SMTP server if using the
"SMTP over SSL" or "SMTP with STARTTLS" protocols. For more
information, see Managing Certificates in the Layer 7 Policy Manager
User Manual.

Port
The port used by the default mail server is displayed. Modify if
necessary.

Server Requires
Authentication

Select this check box if a name and password is required to log onto
the email server.

Username
Password

If authentication is required, enter the user name and password.

Context variable in
password

Select this check box to allow the assertion to correctly recognize
context variables used in the Password field; for example, you will be
using the ${secpass.*} context variables. For more information, see
Stored Password Properties in the Layer 7 Policy Manager User
Manual.

From
Optionally enter a response email address.

To
Enter the email addresses of the recipients who will receive the alert.
Separate multiple addresses with a comma.

CC
Optionally enter email addresses for CC (carbon copy) recipients.
Separate multiple addresses with a comma.

BCC
Optionally enter email addresses for BCC (blind carbon copy)
recipients. Separate multiple addresses with a comma. Recipients in
the 'To' and 'CC' lists will not see the recipients in the 'BCC' list.

Subject
Enter a subject line describing the alert email.

Message Body Enter the body of the alert email. You may include context variables
within the message, if necessary.

Send Test Email Sends a test email to the recipients. Use this to verify that the settings
are correct.

Note: The [Send Test Email] button will not work if context variables
have been used in the Email Alert Properties.

 Table 194: Email Alert settings

614 Chapter 10: Logging, Auditing, and Alerts Assertions

Layer 7 Policy Authoring User Manual, v8.2

 4. Click [OK] when done.

Send SNMP Trap Assertion
The Send SNMP Trap assertion allows you to instruct the Gateway to broadcast a Simple
Network Management Protocol (SNMP) trap. When the Send SNMP Trap assertion is
encountered in a policy execution path, an SNMP trap event will be broadcast to a
predefined network address. The assertion is typically used to trigger an alert based on
the result of a previous assertion.

For example, two assertions can be combined into a logical "At least one assertion must
evaluate to true" assertion folder, the first assertion requiring validation, the later being
the Send SNMP Trap assertion. If the assertion requiring validation fails, then the Send
SNMP Trap assertion will execute, hence broadcasting the alert.

Note: There are two types of SNMP traps: v1 and v2. The Send SNMP Trap assertion sends a
"v2" trap.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the SNMP Properties automatically appear; when
modifying the assertion, right-click Send SNMP Trap to...in the policy window
and select SNMP Trap Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

 Figure 213: SNMP Trap Properties

Chapter 10: Logging, Auditing, and Alerts Assertions 615

Layer 7 Policy Authoring User Manual, v8.2

 3. Configure the properties as follows:

Setting Description

SNMP Hostname
Enter the network address that should receive the SNMP alert.
You may reference context variables.

SNMP Port The default SNMP trap destination port is set to "162". This is the
IANA (Internet Assigned Numbers Authority) standard SNMP
trap port. To configure a different port, select the Custom option
and enter an alternate port number.

SNMP Community
Optionally enter the SNMP community that should be used by
the SNMP trap. You may reference context variables.

Text to Send
Optionally enter some text to send in the SNMP trap. You may
reference context variables within the trap message, if
necessary.

OID to Send
Complete the OID of the SNMP trap. This is used for
identification purposes on a network. You may reference context
variables.

Note: If the OID entered is invalid, a value of '1' will be used
instead.

 Table 195: SNMP Trap settings

 4. Click [OK] when done.

616 Chapter 10: Logging, Auditing, and Alerts Assertions

Layer 7 Policy Authoring User Manual, v8.2

Chapter 11:
 Policy Logic Assertions

Notes: (1) Depending on which Gateway product you have installed, not all the assertions
shown below may be available. See Features by Product in the Layer 7 Policy Manager User
Manual for a list of which features are available for each product. (2) This category may also
include custom-created encapsulated assertions. For more information, see "Working with
Encapsulated Assertions" on page 126.

In the Policy Manager, the following assertions are available in the Policy Logic category
of the [Assertions] tab:

Add Comment to Policy Assertion 618

All Assertions Must Evaluate to True Assertion 619

At Least One Assertion Must Evaluate to True Assertion 619

Compare Expression Assertion 621

Continue Processing Assertion 625

Create Routing Strategy Assertion 626

Context Variables Created by This Assertion 626
Execute Routing Strategy Assertion 630

Context Variables Created by This Assertion 630
Export Variables from Fragment Assertion 632

When Used in a Global Policy Fragment 632
Generate UUID Assertion 634

Include Policy Fragment Assertion 635

Join Variable Assertion 636

Look Up Context Variable 637

Context Variables Created by This Assertion 638
Look Up Item by Index Position Assertion 640

Look Up Item by Value Assertion 641

Manipulate Multivalued Variable Assertion 642

Map Value Assertion 644

Process Routing Strategy Result Assertion 648

Run All Assertions Concurrently Assertion 651

Technical Issues to Consider 651
Configuring the Assertion 652

Run Assertions for Each Item Assertion 653

Context Variables Created by this Assertion 654
Set Context Variable Assertion 656

Split Variable Assertion 661

Stop Processing Assertion 664

Chapter 11: Policy Logic Assertions 617

Layer 7 Policy Authoring User Manual, v8.2

The Policy Logic assertions organize and define the structure, logic, and processing
conditions for the policy.

Add Comment to Policy Assertion
The Add Comment to Policy assertion allows you to insert a comment at any point in a
policy path or within a policy folder in the policy development window. The Add Comment
to Policy assertion is useful for self-documenting complex polices, especially those with
nested assertions and policy folders.

The Add Comment to Policy assertion has no effect on the runtime processing of a policy
(in other words, it returns neither a "true" nor "false" when processed).

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Comment Properties automatically appear; when
modifying the assertion, right-click Comment: ...in the policy window and select
Comment Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

 Figure 214: Comment Properties

 3. Enter or edit the comment . You do not need to include the normal XML comment
delimiter characters (e.g., "<!--comment text-->"), as the Policy Manager will add
these for you.

 4. Click [OK] when done.

618 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

All Assertions Must Evaluate to True Assertion
The "All assertions must evaluate to true" assertion is a folder that organizes and defines
the processing conditions for the assertions that it contains and for the overall policy.
When assertions are grouped into one of these folders, each successive child assertion is
processed until all assertions succeed, yielding a success outcome for the folder.
Processing in this assertion folder will stop when the first child assertion fails, yielding a
fail outcome for the folder—and possibly the entire policy. For more information about
parent and child assertions in a policy, see "Policy Organization" on page 2.

Tip: The "All assertions must evaluate to true" assertion will always succeed if there are no
child assertions contained within it, or if all the child assertions have been disabled.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the policy development window, see "Adding an
Assertion" on page 112. You can also right-click anywhere in the policy
development window and then select Add 'All' Folder. This creates an
assertion folder in the policy window.

 l To change the configuration of an existing assertion, proceed to step 2 below

 2. Populate the folder with child assertions using any of the following methods:

 l Add an assertion by dragging and dropping if from policy window or the
[Assertions] tab.

 l Remove an assertion by dragging and dropping it back into the policy window
or by deleting the assertion.

 3. Repeat to add additional assertion folders, if necessary.

At Least One Assertion Must Evaluate to True
Assertion

The "At least one assertion must evaluate to true" assertion is a folder that organizes and
defines the processing conditions for the assertions that it contains and for the overall
policy. When assertions are grouped into one of these folders in the policy window, each

Chapter 11: Policy Logic Assertions 619

Layer 7 Policy Authoring User Manual, v8.2

successive child assertion is processed until a single assertion succeeds, yielding a
success outcome for the folder. If all child assertions in the folder fail, then the overall
folder—and possibly the entire policy—fails. For more information about parent and child
assertions in a policy, see "Policy Organization" on page 2.

Tip: If you do not want the failure of this assertion to fail the entire policy, then add a
Continue Processing assertion into the assertion folder. The Continuing Processing assertion
will always evaluate to true, preventing the failure of a policy due to the failure of a non-
essential or conditional assertion in an "At least one assertion must evaluate to true" folder.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the policy development window, see "Adding an
Assertion" on page 112. You can also right-click anywhere in the policy
development window and then choose Add "At least one" Folder. This
creates an assertion folder in the policy window.

 l To change the configuration of an existing assertion, proceed to step 2
below

 2. Move the assertion folder to the appropriate position within the policy.

 3. Populate the folder with child assertions using any of the following methods:

 l Add an assertion by dragging and dropping if from policy window or the
[Assertions] tab.

 l Remove an assertion by dragging and dropping it back into the policy
window or by deleting the assertion.

At least one child assertion is required, otherwise the "At least one..." assertion will
fail.

 4. Repeat to add additional assertion folders, if necessary. Be sure to validate the
policy when done.

Tip: To add a new identity into the assertion folder, right-click the assertion folder in the policy
development window and then choose Add User or Group. This adds a Authenticate User or
Group assertion to the policy. Refer to "Policy Organization" on page 2 for more information.

620 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

Compare Expression Assertion
The Compare Expression assertion is used to compare the result of evaluating of a single
context variable or an expression against a series of rules during the runtime processing
of a policy. This assertion succeeds only if all the rules are satisfied.

Note: For brevity, the term "result" is used throughout the rest of this topic to denote the
result of evaluating an expression.

The Compare Expression assertion can do the following:

 l Ensure that the result is, or can be converted to, a specific data type.

 l Perform simple comparisons against the result of another expression using
standard operators such as "equals", "less than", and "contains".

 l Verify that the number of values in the result falls between a designated minimum
and maximum.

 l Verify that the result matches a Regular Expression.

 l Verify that the length of the result, expressed as a string, falls between a
designated minimum and maximum number of characters.

Example 1:

The Compare Expression assertion is used with two XPath assertions (for example, the
Evaluate Request XPath and/or the Evaluate Response XPath assertions) to evaluate the
result of a particular attribute in a Require SAML Token Profile assertion attribute
statement matches a value found in the message body. In this scenario, at least one of
the XPath assertions may have a non-default variable prefix so that the second XPath
assertion does not overwrite the variables set by the first.

Example 2:

The Compare Expression assertion is used to verify that exactly one node has been found
by a previous Evaluate Request XPath assertion by testing that ${requestXpath.count} = 1
(use a Simple Comparison rule with the "equals" operator).

Tips: (1) If you have difficulties getting the comparisons to work, ensure that the variable
names are entered correctly—for example, verify that the curly braces "{ }" are used, not
parenthesis "()". To reference a variable that variable syntax ${} must be used. (2) If your
policy logic requires determining whether a context variable exists, see "Checking Existence of
Context Variables" under "Context Variables" in the Layer 7 Policy Authoring User Manual.

Chapter 11: Policy Logic Assertions 621

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Compare Expression Properties automatically
appear; when modifying the assertion, right-click Compare Expression in the
policy window and select Compare Expression Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

 Figure 215: Compare Expression Properties

 3. Select either Variable or Expression from the drop-down list.

 l If you select Variable, enter a single variable to be evaluated. If you enter a
multivalued variable, then all values of the variable will be tested against the
"Rules" list and depending on what was selected for the "If Multivalued" drop-
down list.

 l If you select Expression, enter the expression to be evaluated. The expression
can contain either a string, a single variable, multiple variables, or a string
containing one or more variables. It can reference context variables, in the
format ${contextVariable.name}. This expression will be tested against the

"Rules" list.

622 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

You can include constant values in the expression. For example, the variable
${requestXpath.result} contains the value "B". If you enter the expression
"A${requestXpath.result}C", the resulting value that will be compared is "ABC".
However, if the Expression field contains anything but a single context variable
reference (such as ${var}), selecting a data type other than String is unlikely to yield
useful results.

Note: Each Comparison Expression assertion in a policy can evaluate only one
expression at a time, however multiple rules may be created for that expression. If you
wish to evaluate several expressions, add more than one Comparison Expression
assertion to the policy.

 4. Select the Data Type for the expression. This verifies that the result is, or can be
converted to a value of the selected type.

Data Type Description

Unknown/Other The result can be in any data type. The assertion will not attempt to
convert. For comparison purposes, "Unknown/Other" data types are
treated as strings.

String The result can be any string of characters.

Note: If the result is an integer, decimal, or Boolean value, it will be
converted to a character string for the purposes of comparison.

Integer The result must contain only numeric characters. The assertion will fail
if non-numeric characters appear in the result.

Decimal The result must contain only numeric characters, optionally with a
decimal point. The assertion will fail if non-numeric characters other
than a decimal point appear in the result.

Boolean The result must be equal to "true" (not case sensitive by default) when
the rule is equal to True for the assertion to succeed. If the result
contains anything else—or is empty—then the assertion is falsified.

Examples

If the assertion is configured: "Proceed if ${var.result} is equal to
false":

 l The assertion will succeed if the result for ${var.result} is false,
123, abc, etc.

 l The assertion will fail if the result for ${var.result} is true.

If the assertion is configured: "Proceed if ${var.result} is equal to true":

 l The assertion will succeed if the result for ${var.result} is true.

 l The assertion will fail if the result for ${var.result} is anything
but true.

 Table 196: Compare Expression assertion: Data type

Chapter 11: Policy Logic Assertions 623

Layer 7 Policy Authoring User Manual, v8.2

Data Type Description

Date/Time The expression must either be a date/time variable or the result is a
timestamp or a string that can be recognized by the Gateway. If the
expression cannot be converted, this assertion will fail.

Note: If a date/time variable is specified in the expression and
Date/Time is not selected as the Data Type, the Policy Manager will
convert the variable into a string for comparison purposes.

The variable will contain date/time information. These variables will
behave similar to the built-in variables described in "Date/Time
Variables".

 5. If using a multivalued context variable, select how you would like the variable
handled.

Rule Description

All values must
pass

The Comparison assertion will succeed only if every value in the
multivalued variable satisfies the conditions defined in the assertion.
This setting is the default.

Any value must
pass

The assertion will be successful if any of the multiple values meets the
condition(s).

Compare first value
only

The assertion will be successful if the first value meets the condition(s).

Compare last value
only

The assertion will be successful if the last value meets the condition(s).

Fail assertion The assertion will fail if a multivalued context variable is encountered.
This setting should be used when multiple values are not expected.

 Table 197: Compare Expression assertion: Handling multivalued context variables

 6. Click [Add] to add a new rule. You are prompted to select the type of rule:

Rule Description

Simple Comparison Compares the result against another value using basic operators
(such as "less than", "greater than"). The value being compared to
can be a number, string, or another context variable. If it is a string,
you can enforce an exact case match by selecting the [Case
Sensitive] check box. If the expression contains multiple values, then

every value must satisfy the comparison.

Tip: When using the Integer data type, it is best to perform the simple
comparison against other integers. If comparing against a decimal
value, be aware that the decimal value will be truncated into an integer

 Table 198: Compare Expression assertion: Comparison rules

624 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

Rule Description

for comparison purposes. For example, consider the following
configurations for the assertion:

 l "Proceed if ${var.result} is a Decimal Number and is less than
45.7", and ${var.result} returns 45. The assertion succeeds
because 45 is less than 45.7.

 l "Proceed if ${var.result} is an Integer and is less than 45.7",
and ${var.result} returns 45. The assertion fails because 45 is
not less than 45 (the decimal '45.7' is truncated to '45' as the
data type is Integer and the comparison is between integers).

Number of Values Verifies that the number of values in the result falls between the stated
minimum and maximum. For expressions containing a single value,
you can use Min=1, Max=1 to indicate that a value is "required", or
Min=0, Max=1 to indicate that a value is "optional". Check the
"Unlimited" box to set no limit to the maximum value.

Regular Expression Matches the result against a constant regular expression. If the
expression contains multiple values, then every value must match the
regular expression.

Tip: For a more powerful application of regular expressions in a policy,
use the "Evaluate Regular Expression Assertion" on page 449.

String Length Verifies that the length of the result, expressed as a string, falls
between the stated minimum and maximum. If the expression
contains multiple values, then every value must satisfy the length
constraint.

For example, if the expression result is "abcd" and a String Length rule
stipulates that the minimum length is 5, then the assertion is falsified.

 7. Click [OK] when done.

Continue Processing Assertion
The Continue Processing assertion is a placeholder assertion that will always yield a
successful or true processing result. When used in an "At least one assertion must
evaluate to true" assertion folder, the Continue Processing assertion will ensure that the
incidental failure of a non-essential assertion within the same folder will not cause an
overall policy failure.

Note: The Continue Processing assertion is intended for use within an "At least one assertion
must evaluate to true" assertion folder. It serves no purpose if used elsewhere.

Chapter 11: Policy Logic Assertions 625

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

 l Add the assertion to an "At least one assertion must evaluate to true" assertion
folder the policy development window. For more information, see "Adding an
Assertion" on page 112.

The assertion is added to the policy window; no further configuration is required.

Create Routing Strategy Assertion
The Create Routing Strategy assertion is used to create routing strategies that form the
foundation of the Gateway's dynamic routing capabilities.

In this assertion, you configure a route list that contains a list of route destinations.
These destinations are usually multivalued variables that store a list of the possible
servers at the back end. The assertion then parses the destination servers and creates a
route list that is stored in another variable that is used by the Execute Routing Strategy
and Process Routing Strategy Result assertions.

Note: The Create Routing Strategy assertion must precede Execute Routing Strategy and
Process Routing Strategy Result assertions. Before creating a route, see Working with
Dynamic Routing Strategy.

Context Variables Created by This Assertion

The Create Routing Strategy assertion sets the following context variables with the query
results.

Variable Description

$<strategy>.routeList This returns the list of routes from the Route List table in a
multivalued context variable, where <strategy>is the value
entered in the Routing Strategy Prefix field. You can access
items within this multivalued variable using the
${<strategy>.routeList.<index>} syntax. This variable is set
only for outbound messages.

Example: Using the sample route data in Figure 1, assume
that the route specified by the variable ${jdbcQuery.servers}
resolves to: server 1, server 2. Based on the default Routing
Strategy Prefix strategy, the multivalued variable
${strategy.routeList} will be created that contains the
following values.

invalid
server1

 Table 199: Context variables created by the Create Routing Strategy assertion

626 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

Variable Description

server2

${<strategy>} This context variable is created using the value entered in the

Routing Strategy Prefix field. For example, based on the

default value strategy, the context variable that is created is

named ${strategy}. This context variable returns the chosen

routing strategy and is used by the Execute Routing Strategy

and Process Routing Strategy Result assertions. This variable

is set only for outbound messages.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click "Create Routing Strategy..." in the policy window and then select
Create Routing Strategy Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

 Figure 216: Create Routing Strategy Properties

 3. Choose a task to perform.

Chapter 11: Policy Logic Assertions 627

Layer 7 Policy Authoring User Manual, v8.2

To... Do this...

Add a new Route 1. Click [Add]. The New Route dialog is displayed.

 2. Enter a route name.

 3. Configure the route properties. For more information, see
Table 3.

 4. Click [OK].

Clone an existing
Route

 1. Select route to clone.

 2. Click [Clone]. The Clone Route dialog is displayed.

 3. Modify the route name and properties as required. For more
information, see Table 3.

 4. Click [OK].

Edit an existing
Route

 1. Select route to edit.

 2. Click [Edit]. The Edit Route dialog is displayed.

 3. Modify the route name and properties as required.For more
information, see Table 3.

 4. Click [OK].

Remove a Route 1. Select route to remove.

 2. Click [Remove]. You are prompted to confirm.

 3. Click [Remove] to confirm.

Move Up Move the selected route up one line.

Move Down Move the selected route down one line.

Failover Choose a failover from the drop-down list.

 l Ordered Sticky with Failover: The Gateway sends service
messages to the first route in the list until the route does not
respond (fails). When this occurs, the next route in the list is
used.

Tip: The cluster property io.failoverServerRetryDelay controls
the delay before the Gateway retries a failed server. The
default is to wait 15 minutes when using the "Ordered Sticky
with Failover" strategy.

 l Random Sticky with Failover: The Gateway chooses a
route at random in the beginning of each session and uses it for
the duration of the session. If the chosen route fails, another
route is randomly selected.

 l Round-Robin: The Gateway rotates through the route list
sequentially on a request-by-request basis (round-robin), until
a valid route is found. If a valid route is not found, and the end of
the route list is reached, the cycle stops. See "Execute Routing
Strategy Assertion" on page 630 for more information.

 Table 200: Configuring the Route List

628 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

To... Do this...

Tip: The cluster property io.failoverServerRetryDelay controls
the delay before the Gateway retries a failed server. The
default is to wait 5 minutes when using the "Round Robin"
strategy.

Configure Failover This option is only available with a custom failover.

Routing Strategy
Prefix

Enter a prefix that will serve two purposes:

 l The value entered here will be added as a prefix to the
${<strategy>.routelist} (shorthand for
“${<routingStrategyPrefix>.routelist}”) variable that is
created by this assertion.

 l The value entered here will also be used to create its own
context variable that will be used to store the chosen
strategy.

The default is strategy.

For more information these two variables, see “Context Variables
Created by This Assertion”.

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

To... Do this...

Add a route property 1. Enter a name in the Route field.

 2. Click [Add]. The New Property dialog
appears.

 3. Complete the New Property dialog box as
follows.

 l Property Name: Enter the Property
Name.

 l Value: Enter the value associated with
the Property Name.

Edit a route property value 1. Highlight the route in the Route Property and
click [Edit]. The Edit Property dialog appears.

 2. Edit the value in the Value field of the Edit
Property dialog. This value will appear in the
Properties column of the Route List.

Delete a route property 1. Highlight the route to delete in the Route
Property and then click [Delete]. The route
disappears from the Route Properties list in

 Table 201: Configuring route properties

Chapter 11: Policy Logic Assertions 629

Layer 7 Policy Authoring User Manual, v8.2

To... Do this...

the New Route dialog as well as from the
Properties column in the Route List.

 4. Click [OK] when done.

Execute Routing Strategy Assertion
The Execute Routing Strategy assertion is the second part of the Gateway's dynamic
routing capability. It takes the chosen routing strategy from the ${<strategyPrefix>}
variable populated by the Create Routing Strategy assertion, acquires a route destination
and places it in a new route variable.

Note: Before you can execute a routing strategy, create a route first, through the Create
Routing Strategy Assertion. See Working with Dynamic Routing Strategy before creating a
route. The Create Routing Strategy assertion must precede Execute Routing Strategy.

Context Variables Created by This Assertion

The Execute Routing Strategy assertion sets the following context variables:

Variable Description

${<route>} Returns the chosen route from the strategy.

${<feedbackList>} Returns feedback information for the routing.

 Table 202: Context variables created by the Execute Routing Strategy assertion

Tip: Even though both the ${<route>} and ${<feedbackList>.<index>.route} variables return
the selected route from the strategy, they serve different purposes. The <feedbackList>
variable may be referenced outside the loop and stored elsewhere externally, while the <route>
variable is set each time the Execute Routing Strategy assertion is run. The <feedback>
variable serves as an audit that can be analyzed later for decision-making purposes on routes.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click "Execute Routing Strategy..." in the policy window and then select
Execute Routing Strategy Properties or double-click the assertion in the policy

630 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

window. The assertion properties are displayed.

 Figure 217: Execute Routing Strategy Properties

 3. Configure the properties as follows.

Setting Description

Routing Strategy

Prefix

Specify the context variable that is storing the chosen routing strategy.
This should match the “Routing Strategy Prefix” entered in the Create
Routing Strategy assertion.

Default: strategy

Route Variable

Name

Specify the context variable that will store the chosen route from the
strategy.

Default: route

The default results in the variable ${route} that can be used to retrieve
the route destination. This variable is set only for outbound messages.

Feedback List
Specify the context variable that will store the feedback from the
routing. This feedback includes the Current Route information for both
successful or failed routing attempts.

Feedback is collected after each routing attempt and added to the
Feedback List context variable only when the Process Routing
Strategy Result assertion is run.

Default: feedback

The default results in the multivalued variable ${feedback}. This
variable is set by both inbound and outbound messages.

 Table 203: Execute Routing Strategy assertion settings

 4. Click [OK] when done.

Chapter 11: Policy Logic Assertions 631

Layer 7 Policy Authoring User Manual, v8.2

Export Variables from Fragment Assertion
The Export Variable from Fragment assertion is used to flag context variables created
within a policy fragment as being "in use". This will make the variables available to
whichever policy includes the fragment. For example, if XPath-based assertions (Evaluate
Request XPath or Evaluate Response XPath) are used in a fragment and the XPath
context variables are referenced in the including policy, the Export Variables from
Fragment assertion ensures that the variables are created and made available.

Why do the context variables need to be "made available"? For maximum
performance, the Gateway creates custom context variables only when it detects that the
variables will be used by another assertion. In a policy fragment, it is not possible to determine
ahead of time whether the variables within the fragment will be used in a policy that includes
the fragment, so they are not created. The Export Variables from Fragment assertion allows you
to flag specific variables as being "in use".

Add this assertion to a policy fragment, after the assertion that creates the context
variables.

Tip: The Export Variable from Fragment assertion is only used in a policy fragment and only
when an XPath-based assertion is also present. It provides no additional functionality if used
outside of a fragment because XPath context variables are available automatically in that
scenario.

When Used in a Global Policy Fragment

When the Export Variables from Fragment assertion is used in a global policy fragment, it
will automatically copy the values of the designated variable(s) up to the parent policy,
prefixed with "request.shared". This will make it easier to use the values in (for example)
the audit sink policy.

Using Figure 218 below as an example, the values from the two selected variables would
be copied over to these new context variables if this assertion was used in a global policy
fragment:

${request.shared.requestXpath.element}
${request.shared.requestXpath.result}

Example: Accessing variables from global policy fragment in audit sink policy

The following example illustrates how to access the "message-received" variable from the
audit sink policy:

632 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

 1. Create a "message-received" global policy fragment containing these assertions:

Audit Messages in Policy (WARNING)
Set Context Variable varMessageReceived as String to: Hello from message-received
global policy
Export Variables from Fragment: varMessageReceived

 2. Create a custom audit sink policy with this assertion:

Add Audit Details: log, custom logger "audit":
"varMessageReceived=${request.shared.varMessageReceived}"

 3. Consume any service.

 4. The Gateway log will contain this line:

varMessageReceived=Hello from message-received global policy

Using the Assertion

 1. Do one of the following:

 l To add the assertion, create a policy fragment or edit an existing policy
fragment and then add the assertion to the policy development window.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Export Variables from Fragment in the policy window and select
Export Variables from Fragment Properties. The assertion properties are
displayed.

 Figure 218: Export Variables from Fragment Properties

Chapter 11: Policy Logic Assertions 633

Layer 7 Policy Authoring User Manual, v8.2

 3. Select each variable to be made available to policies outside of the fragment.

For more information about the variables, see "Evaluate Request XPath Assertion"
on page 458 or "Evaluate Response XPath Assertion" on page 461.

Tip: If the variable prefix is modified in the XPath assertions, the new names are
reflected in Figure 218. However, variables that were previously selected will still appear
under the old variable names. This will cause validation warnings about variables not being
defined. Should this happen, return to the Export Variables from Fragment Properties and
re-select the correct updated variables.

 4. Click [OK] when done.

Generate UUID Assertion
The Generate UUID assertion creates any number of universally unique identifiers (UUIDs)
and stores them in a context variable. If a single UUID is generated, it is stored in a single-
value context variable, if multiple UUIDs are generated, then they are stored in a
multivalued context variable. For more information, see Working with Multivalued
Context Variables in the Layer 7 Policy Manager User Manual.

The UUIDs generated are RFC4122 compliant.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. This assertion contains default settings that are appropriate for most instances.
To change any of the settings, right-click Generate UUID in the policy window
and select Generate UUID or double-click the assertion in the policy window. The
assertion properties are displayed.

634 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 219: Generate UUID Properties

 3. Configure the properties as follows:

Setting Description

Store In Variable Enter the name of the variable to store the UUID in.

Tip: You do not need to enclose the variable name with the wrapper
characters "${}".

Quantity
Enter the number of UUIDs to generate. The minimum value is 1, the
maximum value is the amount listed in the Max Quantity field, below.
You may specify a context variable.

Max Quantity Enter the maximum number of UUIDs to generate for the variable.
The default value is 100.

 Table 204: Generate UUID settings

 4. Click [OK] when done.

Include Policy Fragment Assertion
The Include Policy Fragment assertion is used to add a policy fragment to a service policy.

To learn more about how policy fragments can benefit you, see Policy Fragments. To learn
how to create policy fragments, see "Creating a Policy" on page 21.

Using the Assertion

 1. Add the assertion to the policy development window. For more information, see
Adding an Assertion.

 2. Select the fragment to be inserted from the Select Policy Fragment to Include
dialog that appears.

Chapter 11: Policy Logic Assertions 635

Layer 7 Policy Authoring User Manual, v8.2

 Figure 220: Selecting a policy fragment to include

 3. Click [OK] to add the fragment to the policy. Use the Assertions Tool Bar to
reposition the fragment if necessary

Join Variable Assertion
The Join Variable assertion combines the values in a multivalued context variable into a
single-value context variable by concatenating each value with a user-defined string.

Example:

The input variable "${varIn}" is a multivalued context variable that contains the values
"one", "two", "three". After joining this variable into "${varOut}" with a delimiter of '+', you
now have a single-value context variable with the value "one+two+three".

Tip: The join effect can also be achieved by using the syntax "${variable|;}", where the value
after the '|' character is the delimiter string. For example, "${varIn|+}" will also result in
"one+two+three" using the example above. For more information, see "Concatenation Options
during Interpolation" under Working with Multivalued Context Variables in the Layer 7 Policy
Manager User Manual.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Split Variable Properties automatically appear;
when modifying the assertion, right-click Join variable <source> into <target>...
 in the policy window and select Join Variable Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

636 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 221: Join Variable Properties

 3. Configure the properties as follows:

Setting Description

Source Variable Enter the context variable containing the source values to be joined.
This must be a multivalued context variable.

Target Variable Enter the context variable that will hold the results of the join. If this
variable does not already exist, it will be created.

Join Value Enter any string to be used as a delimiter for the joined values. The
default is a comma (',').

 Table 205: Join Variable settings

 4. Click [OK] when done.

Look Up Context Variable
The Look Up Context Variable assertion is used to dynamically look up the value of a
context variable and then store the value in another context variable. You specify an
expression, which can contain one or more context variables plus static text. During
runtime, this expression is resolved and its value is placed in another context variable,
which can then be used later in the policy.

Example:

Consider the following variables and their values:

 l foo = bar
 l ingredient = chocolate
 l chocolate.bar = goodness

In the Look Up Context Variable assertion, enter the following expression:

${ingredient}.${foo}

And keep the default prefix: lookup

Chapter 11: Policy Logic Assertions 637

Layer 7 Policy Authoring User Manual, v8.2

The expression will resolve to chocolate.bar, which becomes the variable to be looked up
by the assertion. The variable chocolate.bar contains the value "goodness", so this is
placed in the assertion variable lookup.output. You can then reference ${lookup.output}
elsewhere in the policy to retrieve the value "goodness".

Context Variables Created by This Assertion

The Look Up Context Variable assertion sets the following context variables. Note: The
default <prefix> is "lookup" and can be changed in the assertion properties (Figure 1).

Variable Description

<prefix>.found Contains true if the expression was found, otherwise contains false.

<prefix>.multivalued Contains true if the value found in the expression is multivalued.
Contains false if the value is not multivalued or if the expression is not
found.

<prefix>.output Contains the value of the expression. For more information on what is
populated into this variable, see the example in the topic introduction.

 Table 206: Context variables created by the Look Up Context Variable assertion

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Look Up Context Variable Properties
automatically appears. When modifying the assertion, right-click <target>: Look
Up Context Variable in the policy window and select Look Up Context Variable
Properties or double-click the assertion in the policy window. The assertion
properties are displayed.

638 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 222: Look Up Context Variable Properties

 3. Configure the properties as follows:

Setting Description

Expression
Specify the source context variables to evaluate. You can enter
more than one variable but note the following limitations:

 l Nested context variables are not supported (for example,
${foo.${bar}}).

 l All variables must be on the same level (for example,
${foo}.${bar}).

When referencing multivalued context variables, you can use
indexing to extract a single value. For more information, see
"Indexing Options during Interpolation" in Working with Multivalued
Context Variables in the Layer 7 Policy Manager User Manual.

Fail if not found Select this check box to fail the assertion if the variable in the
Expression does not exist. This setting is the default.

Clear this check box to not fail the assertion if the variable is not
found.

Target Data Type Choose the data type for the target value returned: String,
Date/Time, X.509 Certificate, XML Element, or Message.

Target Variable Prefix Enter a prefix that will be added to the context variables created
by this assertion. This prefix will ensure uniqueness and will
prevent the variables from overwriting each other when multiple
instances of this assertion appear in a policy.

The default variable prefix is lookup.

For an explanation of the validation messages displayed, see
Context Variable Validation in the Layer 7 Policy Manager User
Manual.

 Table 207: Look Up Context Variable settings

 4. Click [OK] when done.

Chapter 11: Policy Logic Assertions 639

Layer 7 Policy Authoring User Manual, v8.2

Look Up Item by Index Position Assertion
The Look Up Item by Index Position assertion looks up an item based on index position in a
multivalued context variable and then stores the value in another context variable.

This assertion is designed to work with the "Look Up Item by Value Assertion" on page
641, which creates a context variable containing the index position.

Example:

The (Non-SOAP) Verify XML Element assertion creates several context variables. Using the
Look Up Item by Value assertion, you find that a particular element is in the third position
in the elementsVerified context variable. With this knowledge, you can use the Look Up
Item by Index Position assertion to look up the signature method that was used (in the
signatureMethodUris variable), as well as the digest method employed (in the
digestMethodUris variable).

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Look Up Item by Index Position in the policy window and select Look
Up Item by Index Position Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

 Figure 223: Look Up Item by Index Position Properties

 3. Enter the index position to interpolate a previously-set variable that contains the
index, such as ${index}. To extract the first item in the variable, enter 0, to extract

the second item, enter 1, etc.

640 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

 4. Enter the name of the context variable from which to extract.

 5. Enter the name of the context variable that will hold the extracted value. The
default name "output" is offered. Tip: You do not need to enclose the variable

name within the wrapper characters "${ }".

 6. Click [OK].

Look Up Item by Value Assertion
The Look Up Item by Value assertion scans a multivalued context variable to find a
specified value. If the value is found, its index position is returned.

Example:

{$Variable1} contains the value you are searching for: {"book"}

{$Variable2} contains the strings: {"magazine", "book", "newspaper"}

{$Variable3} will contain the lookup result, which is {1}

Tip: Remember, multivalued context variables use zero-based positioning. Thus, the first
item in the list is always item "0".

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Look Up Item by Value in the policy window and select Look Up Item
by Value Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

Chapter 11: Policy Logic Assertions 641

Layer 7 Policy Authoring User Manual, v8.2

 Figure 224: Look Up Item by Value Properties

 3. Enter a context variable containing the value you are seeking.

 4. Enter the multivalued context variable that will be scanned.

 5. Enter the name of the context variable that will hold the results of the lookup. If

this variable does not already exist, it will be created.

 6. Click [OK].

Manipulate Multivalued Variable Assertion
The Manipulate Multivalued Variable assertion is used to both create new Multivalued
Variables and to append new values to existing Multivalued Variables.

Multivalued variables can hold values of different types. This assertion does not support
all available types which may exist at runtime. From the Set Context Variable assertion,
only the String, Integer and Date/Time are supported.

The following Java types are supported if you are writing custom Java code via custom
assertions:

java.lang.String
java.lang.Integer
java.lang.Double
java.lang.Float
java.lang.Boolean
java.util.Date (and any subclass; for example, Timestamp.)

Assertions may also set variables that do not belong to any of the types listed above. If
the value being appended is not one of the supported Java types, then the assertion will
fail.

642 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click "Manipulate Multivalued Variable..." in the policy window and then
select Manipulate Multivalued Variable Properties or double-click the assertion
in the policy window. The assertion properties are displayed.

 Figure 225: Manipulate Multivalued Variable Properties

 3. Configure the properties as follows:

Setting Description

Target Multivalued

Variable

Specify the name of the multivalued context variable. If the variable
does not already exist, it will be created.

Notes: (1) The target variable may be an existing multivalued variable.
However, not all existing multivalued variables can be modified after
they are created. If an attempt is made to update such a variable the
assertion will fail. Any variables created by this assertion can be
modified by this assertion. (2) Be sure to observe the naming rules
described under "Context Variable Naming Rules" in the Layer 7
Policy Manager User Manual).

Variable to append Specify the name of the variable to append to the multivalued variable.
Only a single variable can be referenced. The reference can include a
variable syntax such as "${myvar}" or "myvar", or an array syntax such
as ${myVar[0]} or "myVar[0]". The variable itself can be a multivalued
variable.

 Table 208: Manipulate Multivalued Variable settings

 4. Click [OK] when done.

Chapter 11: Policy Logic Assertions 643

Layer 7 Policy Authoring User Manual, v8.2

Map Value Assertion
The Map Value assertion is used to map values in a policy. It matches a value against a
number of regular expressions to produce an output value that is stored in a context
variable. The result is taken from the first line that matches the value.

This assertion is particularly useful in a "message-received" global policy fragment for
mapping URLs to published services, when the mapping is more complex than can be
conveniently expressed using the built-in mapping support.

Tip: You can view the Map Value assertion as providing the functionality of a switch statement,
or as a means of defining a table with input and output values.

Policy Example

The Map Value assertion can be used in a "message-received" global policy fragment to
override the CA API Gateway's service resolution logic with your own. Assume the
following settings in the assertion properties:

 l Value to Map: ${request.url.query}

 l Mappings:

Pattern: east; Result: /east_uri
Pattern: west; Result: /west_uri

 l Output variable: uri

The assertion will be interpreted as follows:

 1. Examine the value: ${request.url.query}.

 2. If this value matches the regular expression "east", then set the output variable
"url" to "east_url".

 3. Otherwise, if this value matches the regular expression "west", then set the output
variable "url" to "west_url".

 4. If neither regular expression is matched, then the assertion fails and the output
variable "url" is not set.

When used in a "message-received" global policy fragment, the fragment might resemble
the following:

At least one assertion must evaluate to true

All assertions must evaluate to true

644 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

Map value from ${request.url.query}, using map { "east" => "/east_uri", "west" =>
"/west_uri" }, output to ${uri}

Resolve service with URI ${uri}

Continue processing

At runtime, this is how various values will be interpreted:

?east -> /east_uri

?direction=west -> /west_uri (substring match)

?beast -> /east_uri (substring match; example regex does not distinguish word
boundaries)

?direction=west&otherdirection=east -> /east_uri (first match wins--the matches
are attempted from top row in table to bottom until one succeeds)

?direction=north -> assertion FAILED (no matching row)

Capture Group Pseudo-Variables

The "pseudo variables" ${0}, ${1}, {2}, etc., are available while the output value is being set
after a successful match. These variables contain the capture groups from the matching
regular expression. One use for these variables would be to translate a REST-style call
(where the target object name is encoded into the URL path) into a SOAP-style call
(where the target object name is identified in an XML payload).

Example #1:

The following is a simple example of pseudo-variables extracted from a phone number.
The value to map: ${request.url.path}.

 l Value to map: ${phone}

 l Pattern: (\d{3})-(\d{3})-(\d{4})

Note that for this example, the result and output variable does not matter because the
intent is to describe the capture group pseudo-variables.

During run time, ${phone} contains the value 800-555-1234 and is successfully matched
against the pattern above. This will set the following pseudo-variables:

${0} is set to the entire string matched by the regular expression – "800-555-1234"
${1} is set to the first capture group – "800"
${2} is set to the second capture group – "555"
${3} is set to the third capture group – "1234"

Chapter 11: Policy Logic Assertions 645

Layer 7 Policy Authoring User Manual, v8.2

Note: The ${0} to ${3} pseudo-variables only exist while the mapping result is being set. They
are not available for use in subsequent assertions in the policy.

Example #2:

The following is a more complex example showing pseudo-variables in use in a mapping:

 l Pattern: ̂ /users/(\w+)/paystub/(\d+)

 l Result (on one line):

<info><action>getPaystub</action><user>${1}</user>

<stubid>${2}<stubid></info>

 l Pattern: ̂ /users/(\w+)/vacations/(\d+)/(\d+)

 l Result (on one line):

<info><action>getVacation<action><user>${1}</user><year>${2}

</year><month>${3}</month></info>

During runtime, if a request arrives at a URL similar to:

/users/bob/paystub/123

The output variable will be set to :

<info><action>getPaystub</action><user>bob</user><stubid>123</stubid></inf
o>

The pseudo-variables used here are:

${1} is set to the first capture group - "bob"
${2} is set to the second capture group - "123"

Similarly, if a request arrives at a URL similar to:

/users/sue/vacations/2012/3

The output variable will be set to:

<info><action>getVacation</action><user>sue</user><year>2012</year><month
>3</month></info>

The pseudo-variables used here are:

${1} is set to the first capture group - "sue"
${2} is set to the second capture group - "2012"
${3} is set to the third capture group - "3"

646 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Map Value in the policy window and select Map Value Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 226: Map Value Properties

 3. Configure the dialog as follows:

Setting Description

Value to Map
Enter an expression to be compared against the mappings defined
below. You may enter a literal expression or a context variable.

Mappings
Define the list of regular expressions to be mapped:

To add a mapping:

 1. Click [Add Mapping].

 2. Enter a regular expression Pattern to be compared against

 Table 209: Map Value settings

Chapter 11: Policy Logic Assertions 647

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

the value specified above. You may reference context
variables.

Note: If a referenced context variable does not exist (for
example, due to a misspelling), it will by default be treated as an
empty string, which could result in a pattern that matches any
input. To catch such issues during policy development, set the
cluster property template.strictMode to true.

 3. Enter a Result that will be placed in the output variable if the
mapping is successful. You may reference context variables,
as well as special regex capture group pseudo-variables. For
details, see "Capture Group Pseudo-Variables" above.

 4. Click [OK].

To edit a mapping:

 1. Select the mapping to edit.

 2. Click [Edit Mapping].

 3. Modify the pattern or result as required.

 4. Click [OK].

To remove a mapping:

 1. Select the mapping to remove.

 2. Click [Remove Mapping]. The line is removed immediately.

To change the order of the mappings:

 1. Select a mapping.

 2. Click [Move Up] or [Move Down] as required. The result from
the first matching line is placed in the output variable.

Output Variable Specify a single context variable that will contain the result from a
successful match.

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

 4. Click [OK].

Process Routing Strategy Result Assertion
The Process Routing Strategy Result assertion is used to process the results of a route and
generate feedback status of the strategy. This assertion is part of the Gateway's dynamic
routing capabilities.

Use of this assertion is optional, as some strategies do not require feedback and may
ignore the Feedback List context variable set by this assertion. However, feedback may
still be useful elsewhere in the policy.

648 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

Note: Before you can process the result of a routing strategy, create a route first, through the
Create Routing Strategy Assertion. See Working with Dynamic Routing Strategy before
creating a route. The Create Routing Strategy assertion must precede Execute Routing Strategy
and Process Routing Strategy Result assertions.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click "Process Routing Strategy..." in the policy window and then select
Process Routing Strategy Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

 Figure 227: Process Routing Strategy Result Properties

 3. Configure the properties as follows.

Variable Description

Routing Strategy
Prefix

Specify the context variable that is storing the chosen routing strategy.

This should match the “Routing Strategy Prefix” entered in the Create
Routing Strategy and Execute Routing Strategy assertions.

Default: strategy

Feedback List Specify the context variable that will store the feedback list. This should
match the “Feedback List” entered in the Execute Routing Strategy
assertion. The Feedback List variable will contain feedback data,
including the selected route, reason code returned, latency of the
assertion, and status.

 Table 210: Process Routing Strategy Result Properties

Chapter 11: Policy Logic Assertions 649

Layer 7 Policy Authoring User Manual, v8.2

Variable Description

Default: feedback

Example: Based on the default value, you can retrieve the first
feedback data with these variables:

 l ${feedback.1.route} – returns the first route on the Feedback
List.

 l ${feedback.1.reasonCode} – returns the reason code sent
back by the routing assertion.

 l ${feedback.1.latency} – returns the latency of the assertion.

 l ${feedback.1.status} – returns the status of the route (“-1” =
fail; "0" = success).

Based on the Feedback List variable, the Process Routing Strategy Result assertion
will also populate the following context variables.

Variable Direction Description

${<feedbackList>
.current.reasonCode}

Inbound Returns the reason code of the current route. This
value is sent back by the routing assertion.

Tip: This currently returns the same value as
${httpRouting.reasonCode}, which is created by the
Route via HTTP(S) assertion.

${
<feedbackList>
.current.status}

Inbound Returns the status of the current route as an integer.

Note: This variable is initially created by the Set
Context Variable assertion. For more information,
see Working with Dynamic Routing.

${
<feedbackList>
.current.latency}

Inbound Returns the latency for routing.

Note: This variable is initially created by the Set
Context Variable assertion. For more information,
see Working with Dynamic Routing.

${
<feedbackList>
.current.route}

Inbound Returns the current route in the loop that is being
monitored for feedback by the Process Routing
Strategy Result assertion.

Note: This variable is initially created by the Execute
Routing Strategy assertion. This variable returns the
same route as ${route}, but can be reset and
overwritten if necessary.

 Table 211: Feedback information for the current route

Note: The variables in Table 211 contain feedback for the current route. This differs from
using indexing on the ${<feedback>} multivalued context variable, which can access
feedback information on routes other than the current route (for example, for the first
feedback data based on the example shown earlier).

650 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

 4. Click [OK] when done.

Run All Assertions Concurrently Assertion
The Run All Assertions Concurrently assertion is a folder that organizes one or more child
assertions that must all evaluate to true. It is similar to the "All assertions must evaluate
to true" composite assertion in that the assertion succeeds only when all the child
assertions succeed. The major difference is that the Run All Assertions Concurrently
assertion runs all its immediate child assertions concurrently, without waiting for earlier
children to finish before beginning to evaluate subsequent children, helping reduce
overall latency. This is useful when a response must be assembled from the results of a
number of HTTP requests to various back-end services and you don't want all of the calls
to be issued serially.

For more information about parent and child assertions in a policy, see "Policy
Organization" on page 2.

Tip: The Run All Assertions Concurrently assertion will always succeed if there are no child
assertions contained within it, or if all the child assertions have been disabled.

Technical Issues to Consider

The Run All Assertions Concurrently assertion must be used with care, as running many
concurrent threads may cause issues that would not otherwise appear if the standard
"All assertions..." folder is used. In particular, note the following:

 l Running assertions concurrently may cause the Gateway to run out of memory
more quickly. The effect is similar to increasing the values for the
io.httpMaxConcurrency and io.httpCoreConcurrency cluster properties.

 l Messages larger than 200KB in size are not recommended.

 l When too many assertions are being processed concurrently, new concurrent
assertions will be delayed.

 l If the number of assertions queued up to run concurrently exceeds the limit set in
the concall.globalMaxConcurrency cluster property, there could be a large delay if
there are slow jobs in the queue (for example, HTTP routing to a slow back-end
web service). Should this occur, try the following:

 l reduce the number of concurrent assertions

 l increase the concall.globalMaxConcurrency cluster property

 l decrease the io.httpMaxConcurrency cluster property

Chapter 11: Policy Logic Assertions 651

Layer 7 Policy Authoring User Manual, v8.2

 l Unlike the "All assertions..." folder where processing stops at the first child
assertion that fails, the Run All Assertions Concurrently assertion evaluates all
child assertions, even those below one that fails. When a failure occurs, the
assertion status code returned is for the first child assertion that failed.

 l Only context variables of type String or Message that are used by a child assertion
will be available when a child assertion is executing.

 l The original request and response message, including any transport-specific
message, will be unavailable unless they were copied into String variables before
concurrent execution or copied as Message variables using the Set Context
Variable assertion, with a source expression similar to ${request.mainpart}.

 l If an assertion inside a Run All Assertions Concurrently assertion writes to the
default request or response, that information is ignored and lost.

 l Gathered credentials and authenticated user information is not available during
concurrent execution.

 l A Run All Assertions Concurrently assertion may be nested within another Run All
Assertions Concurrently assertion, but this will cause the Gateway to run out of
concurrency more quickly.

Configuring the Assertion

You can configure the concurrency behaviour using these cluster properties:

concall.globalMaxConcurrency
concall.globalCoreConcurrency
concall.globalMaxWorkQueue

For more information, see "Input/Output Settings" in Gateway Cluster Properties in the
Layer 7 Policy Manager User Manual.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the policy development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below

 2. Populate the folder with child assertions using any of the following methods:

 l Add an assertion by dragging and dropping if from policy window or the
[Assertions] tab.

652 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l Remove an assertion by dragging and dropping it back into the policy window
or by deleting the assertion.

Run Assertions for Each Item Assertion
The Run Assertions for Each Item assertion is a composite assertion that behaves similarly
to the All Assertions Must Evaluate to True assertion, with the exception that it may
evaluate its child assertions more than once (as a loop) or possibly not at all, depending
on the context variable it is configured to use.

This assertion evaluates its child assertions once for each member of the specified
multivalued context variable. If the multivalued variable is empty or does not exist, the
assertion will always succeed and will not evaluate any of its child assertions. For more
information about parent and child assertions in a policy, see "Policy Organization" on
page 2.

W A R N I N G

Avoid using a debug trace policy when the Run Assertions for Each Item assertion is
present in a policy, especially if the assertion is nested beneath another
Run Assertions for Each Item assertion. Doing so can cause the trace policy to be
invoked a very large number of times, potentially impacting system performance and
generating excessively large trace logs.

The following example illustrates how the Run Assertions for Each Item assertion might
be used. In the sample policy fragment below, you will send a list of greetings to a pair of
URLs:

 Figure 228: Sample Policy Fragment for Run Assertions for Each Item assertion

The following table explains each line in the policy example:

1 The Set Context Variable assertion creates a new variable named messages, with the
content “Hi there|How are you doing|Greetings”.

2 The Split Variable assertion breaks up the value in messages into a new multivalued context
variable name splitMessages. The break occurs at the “|” character.

 Table 212: Explanation of Policy Fragment for Run Assertions for Each Item assertion

Chapter 11: Policy Logic Assertions 653

Layer 7 Policy Authoring User Manual, v8.2

3 The Run Assertions for Each Item assertion, using splitMessages as the input and “sample” as
the variable prefix. When you point at this with the mouse, a tooltip displays the context
variables that will be created by this assertion, using the variable prefix entered.

4 The first child assertion. This uses the Set Context Variable assertion to create a new variable
named message2. Set this variable to whatever is in splitMessages for that iteration. This is
specified by the context variable ${sample.current}. Thus, for the first iteration, message2=Hi
there; for the 2nd iteration, message2= How are you doing, etc.

5 The Route via HTTP(S) assertions are configured to use the context variable ${message2} as
a request message source. The message contained in the variable message2 is updated on
each iteration and sent to the two URLs. This will result in the following POST commands:

POST "Hi there" to firsturl

POST "Hi there" to secondurl

POST "How are you doing" to firsturl

POST "How are you doing" to secondurl

POST "Greetings" to firsturl

POST "Greetings" to secondurl

If any of the POST requests fail to reach the target server, the Run Assertions for Each Item
assertion will fail and the remaining POSTS will not be attempted.

When the Run Assertions for Each Item assertion is finished, the ${sample.iterations} variable
will contain “3”, while the ${sample.exceededlimit} variable will contain “false”.

For more information on multivalued context variables and how they work, see Working
with Multivalued Context Variables in the Layer 7 Policy Manager User Manual.

Terminating the Execution of Child Assertions

It is possible to terminate the execution of the child assertions prior to the completion of
the loop. To do this, set the following context variable, either inside or outside of the
loop:

Variable name: ${<prefix>.break} (where "<prefix>" is from Table 214)
Variable value: true

When set outside of the loop, the loop will be terminated immediately. When set inside
the loop, the loop will complete its iteration before terminating.

Tip: Use the "Set Context Variable Assertion" on page 656 to create the variable and set
the value to true.

Context Variables Created by this Assertion

The Run Assertions for Each Item assertion sets the following context variables. Note:
The <prefix> is set in the assertion properties (Figure 229). There is no default.

654 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

Variable Description

${<prefix>}.current The current member of the multivalued variable. During iteration,
the ${<prefix>}.current variable will take on the value of each
member of the multivalued variable. After iteration, it remains set to
the last value it had. If the multivalued variable existed but was zero-
length, then the .current variable will not exist after iteration has
finished.

${<prefix>}.iterations The number of iterations that have been completed successfully.

${<prefix>}.exceededlimit This variable contains "true" if the assertion ended because the
iteration limit was reached, otherwise it contains "false". While
processing is in progress, this variable always contains "false".

 Table 213: Context variables created by Run Assertions for Each Item assertion

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Run Assertions for Each Item Properties
automatically appear; when modifying the assertion, right-click Run Assertions
for Each Item in the policy window and select Run Assertions for Each Item
Properties or double-click the assertion in the policy window. The assertion
properties are displayed.

 Figure 229: Run Assertions for Each Item Properties

 3. Configure the properties as follows:

Chapter 11: Policy Logic Assertions 655

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Name of Existing
Multivalued Variable

Specify the name of the variable to iterate over.

Note: If this variable is empty, the assertion always succeeds and none
of the child assertions are evaluated.

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

Limit Maximum
Iterations

Optionally, you may limit the number of iterations by selecting this check
box and entering the maximum number of iterations in the
corresponding field. If a maximum is not specified, then the assertion
will attempt to process all members in the multivalued context variable.

If specified, iteration will halt after the child policy has invoked this many
times, regardless of whether it has been invoked for all members in the
multivalued variable.

Tip: After the iterations are complete, the context variable
${<prefix>.exceededlimit} will be set to "true" if this limit was hit.
Otherwise, it will be set to "false".

 Table 214: Run Assertions for Each Item settings

Set Context Variable Assertion
The Set Context Variable assertion allows you create custom context variables. These user-
defined variables behave the same as the system predefined ones, except that you can
control the contents of the variables. You can even define complete messages with a
custom context variable. These messages can be used later in the policy by the Route via
HTTP(S) assertion as the request message source, and by the Evaluate Response XPath
assertion as the XML message source.

Tip: This assertion can be used to map one of the predefined context variables to a different
name. This is necessary in instances where the predefined context variable name is
incompatible with a specific subsystem.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

656 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

 2. When adding the assertion, the Context Variable Properties automatically
appear; when modifying the assertion, right-click Set Context Variable... in the
policy window and select Context Variable Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

 Figure 230: Context Variable Properties - data type "Message"

Chapter 11: Policy Logic Assertions 657

Layer 7 Policy Authoring User Manual, v8.2

 Figure 231: Context Variable Properties - data type "Date/Time"

 3. Configure the properties as follows:

Setting Description

Variable Name Enter a name for the context variable. This name can include letters or
number, but it should not be enclosed by the ${ } delimiter characters.
For example, use "gatewayTime" and not "${gatewayTime}".

You can also enter request or response to set the request message
or response message, respectively. A validation message provides
instant feedback on the context variable name entered. For an
explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

Data Type If the variable name is not built-in, specify the data type from the drop-
down list:

 l String: The variable will contain a string of characters.

 l Integer: The variable will contain integers.

 l Message: The variable will contain a message. Enter the
message body into the Expression box below. Message type
variables can be used for later routing or XPath assertions.

 l Date/Time: The variable will contain date/time information.
For more information, see “Context Variable Data Types” in
Context Variables in the Layer 7 Policy Manager User Manual.

Tip: Creating a new variable of type "Date/Time" and
accepting the defaults in all the other fields will produce a

 Table 215: Context Variable settings

658 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

variable that is identical to the built-in variable ${gateway.time}.
The default value is an UTC formatted ISO-8601 string of
${gateway.time}. For more information,
see "Date/Time Variables" in Context Variables in the Layer 7
Policy Manager User Manual.

You must select "Message" if setting a request or response variable.

Format
(Date/Time only)

Choose a format from the drop-down list. The assertion will use this
format to interpret the value in the Expression field. The default is
"<auto>", which means the assertion will try to determine the format
automatically. You may reference a context variable, which will be
evaluated as part of an expression and must resolve to a single format
string.

Tip: The formats <Timestamp>, <Millisecond Timestamp> (13
digits), and <Second Timestamp> (10 digits) can be used for finer
control in parsing the Expression field:

 l A timestamp entered in the Expression field will successfully
match the formats: <auto> and <Timestamp> and <Millisecond
Timestamp> if it is a millisecond timestamp and <Second
Timestamp> if it is a seconds timestamp.

 l A timestamp in milliseconds entered will successfully match the
formats: <auto>, <Timestamp>, and <Milliseconds
Timestamp>.

 l A timestamp in seconds entered will successfully match the
formats: <auto>, <Timestamp>, and <Seconds Timestamp>.

Note: You can customize the options shown in the drop-down list by
editing the cluster property datetime.customFormats. You can
customize the formats attempted by the "<auto>" selection by editing
the cluster property datetime.autoFormats.

Time Offset
(Date/Time only)

Enter a time offset. The value can be negative or positive and can
reference variables. The unit of time applied is determined by the drop
down beside the field.

Default: seconds

Choose the offset unit from the drop-down list if necessary.

You may reference context variables.

Preview
(Date/Time only)

Displays a preview of the date format based on date expression
entered. The preview includes any time offset entered, except when a
context variable has been specified.

The preview of the parsed date expression can be used to
troubleshoot formats based on sample inputs.

Notes: (1) The format used for the preview is ISO 8601, in the W3C
format yyyy-MM-dd'T'HH:mm:ss.SSS'Z'. The date format is shown in
GMT. (2) A preview is displayed only when it is possible to parse the

Chapter 11: Policy Logic Assertions 659

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

format entered. If a preview is not possible, "No preview is available" is
displayed.

Content-Type
(Message only)

If the Data Type is "Message", use the drop-down list to select a
Content-Type for the message (for example, "text/xmll; charset=utf-
8). The Content-Types listed have a characterencoding that is
compatible with the default XML encoding.

A custom value for content-type can be entered. Variables are not
supported for this field.

The instant validator will check for correct syntax.

Expression
Enter the string value or message body here, or leave empty. You can
use existing context variables within the expression by enclosing them
within the standard "${ }" variable reference syntax. For example:
"${gateway.time}".

The expression for variables of type Message can be a simple text
document, an XML document, a MIME multi-part document, or other
valid textual data for the content type entered. For example, the
expression can be a SOAP request message. You can modify the
Route via HTTP(S) assertion to use this expression referencing its
variable as the "request message source", rather than using the
default request.

Syntax Highlighting

The Expression box displays syntax highlighting for Message variables
of Content -Type "text/xml" or "application/json". This helps you
identify errors more easily.

XML Highlighting:

 l non-XML values are not highlighted

 l for invalid XML values, only the correctly formatted
XML elements are highlighted

 l for valid XML elements, the opening and closing tags are
highlighted

Tip: Closing tag for an XML element are auto-completed for your
convenience. For example, typing "<xml> test </" will result in the
closing tag "</xml>" being auto completed.

JSON Highlighting:

 l non-JSON values are not highlighted

 l characters that surround JSON elements (whether valid or
invalid) are highlighted

 l placing the cursor after one of the JSON characters will
highlight its paired character

See Figure 230 for examples of the JSON highlighting.

660 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

 4. Click [OK] when done. The new variable name is available to subsequent
assertions in the policy. The [OK] button is unavailable if there are errors identified
by any of the instant validators.

Split Variable Assertion
The Split Variable assertion splits a single-value context variable into multiple values,
creating a multivalued context variable as a result.

Example:

The input variable "${varIn}" contains the value "one,two,three". After splitting this variable
into "${varOut}", you now have a multivalued context variable where:

${varOut[0]} = one
${varOut[1]} = two
${varOut[2]} = three

Example 2:

If the specified split pattern cannot be found in the source value, then entire source value
is simply copied over to the target: input variable "${varIn}" contains the value
"one,two,three" but the split pattern is ';':

${varOut} = one,two,three
${varOut[0]} = one,two,three

Note that if you attempt to use ${varOut[1]} and ${varOut[2]} in this case, no values will be
returned.

Example 3:

The following is an advanced example that shows the power of using a regular
expression in the Split Pattern of the Split Variable assertion. In this example, the full XML
syntax is omitted for simplicity; a list of node names is the output:

The input variable "${varIn}" contains this fragment:

<xml>
<node>entry 1</node>
<node>entry 2</node>

</xml>

The Split Pattern is this regular expression: ((\s)*\<.+?\>[\n]*)

After splitting this variable into "${varOut}", you now have a multivalued context variable
where:

Chapter 11: Policy Logic Assertions 661

Layer 7 Policy Authoring User Manual, v8.2

${varOut[0]} = entry 1
${varOut[1]} = entry 2

For more information about using the indexing feature ([0], [1], etc.) in context variables,
see "Indexing Options during Interpolation" under Working with Multivalued Context
Variables in the Layer 7 Policy Manager User Manual.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Split Variable Properties automatically appear;
when modifying the assertion, right-click Split variable <source> into <target>...
 in the policy window and select Split Variable Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

 Figure 232: Split Variable Properties

Tip: The '${ }' wrapper shown in Figure 232 is for illustrative purposes only. It is not
necessary to use this wrapper in either variable name. If entered, it will be removed after
the assertion is saved.

 3. Configure the properties as follows:

Setting Description

Source Variable Enter the context variable containing the source value to be split.

 Table 216: Split Variable settings

662 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Target Variable Enter the multivalued context variable that will hold the results of the
split. If this variable does not already exist, it will be created.

Split Pattern Enter the pattern that will be used to split the source variable. The Split
Pattern will be interpreted as either a regular expression or as a string
literal depending on the Regular Expression check box. The default
is a comma (','), which indicates splits will occur after each comma
found in the source variable.

Note the following:

 l If the Split Pattern results in no matches on the source variable
string, then the target variable's value will be the same as the
input string. As a result, "${varOut}" and "${varOut[0]}" will be
the same.

 l If the Regular Expression check box is selected and the Split
Pattern cannot be parsed, a validator warning is displayed and
a WARNING message will be logged when the policy is saved.
This may result in the policy failing each time it is run, as this
assertion will fail each time it executes.

Regular Expression Select this check box to interpret the Split Pattern as a regular
expression. This setting is the default.

Clear this check box to interpret the Split Pattern as a literal value.

Ignore Empty Values Select this check box to discard all empty values in the resulting
variables, regardless of where they occur.

Clear this check box to discard only trailing empty values. This setting is
the default and it preserves the behaviour of this assertion prior to
version 6.1.5.

Example:

Source string = ",,3,,,"

Split on ","

Target = ${target}

If "Ignore Empty Values" = SELECTED, the following value is
populated into the variable ${target}:

${target} = 3

If "Ignore Empty Values" = UNSELECTED, the following values are
populated into the multivalued variable ${target}:

${target[0]} = <empty>

${target[1]} = <empty>

${target[2]} = 3

Chapter 11: Policy Logic Assertions 663

Layer 7 Policy Authoring User Manual, v8.2

 4. Click [OK] when done. If the [OK] button is not activated, check that the Target
Variable is able to accept a value.

Stop Processing Assertion
The Stop Processing assertion halts the processing of a policy when it is encountered. It is
useful in the following scenarios when you need to stop and report on a message
condition:

 l A particular Evaluate Request or Response XPath assertion is successful. However,
this success indicates a backend failure.

 l Processing of a message needs to stop as soon as it is reported to the audit
subsystem (via the Audit Messages in Policy assertion)

You can resume processing by using the "Continue Processing Assertion" on page 625.

Note: When a policy is halted and not resumed, it will cause the client application to return an
error. This sudden termination of the policy may also result in misleading error messages from
the client (for example, that an assertion has been falsified).

Using the Assertion

 l Add the assertion as described in Adding an Assertion.

The assertion is added to the policy window; no further configuration is required.

664 Chapter 11: Policy Logic Assertions

Layer 7 Policy Authoring User Manual, v8.2

Chapter 12:
 Threat Protection Assertions

Notes: (1) Depending on which Gateway product you have installed, not all the assertions
shown below may be available. See Features by Product in the Layer 7 Policy Manager User
Manual for a list of which features are available for each product. (2) This category may also
include custom-created encapsulated assertions. For more information, see "Working with
Encapsulated Assertions" on page 126.

In the Policy Manager, the following assertions are available in the Threat Protection
category of the [Assertions] tab:

Automatic Threat Protection 666

TCP/IP-Based Attacks 666
Coercive Parsing and XML Bomb 666
External Entity Attack 667
Schema Poisoning 667
WSDL Scanning 667
XML Routing Detours 668

Limit Message Size Assertion 668

Protect Against Code Injection Assertion 670

Protect Against Cross-Site Request Forgery Assertion 672

Context Variable Created by This Assertion 673
Protect Against Document Structure Threats Assertion 675

Protect Against JSON Document Structure Threats Assertion 678

Protect Against Message Replay Assertion 680

Protect Against SQL Attack Assertion 684

SQL Injections Detected 684
Scan Using ICAP-Enabled Antivirus Assertion 687

Context Variables Created by This Assertion 688
Scan Using Sophos Antivirus Assertion 692

Context Variables Created by This Assertion 692
Validate or Change Content Type Assertion 694

Validate JSON Schema Assertion 696

Validate OData Request Assertion 699

Retrieving the Service Metadata Document 700
Notes and Limitations 700
Context Variables Created by This Assertion 700

Validate XML Schema Assertion 703

Chapter 12: Threat Protection Assertions 665

Layer 7 Policy Authoring User Manual, v8.2

The Threat Protection assertions help protect against common web service and XML
threats.

Automatic Threat Protection
The CA API Gateway comes with a variety of built-in threat protection, including those
for:

TCP/IP-based attacks
Coercive parsing and XML bomb attacks
External entity attacks
Schema poisoning
WSDL scanning
XML routing detours

Note: To ensure that the built-in protections are applied to the request, the service policy must
include at least one assertion that accesses the request body—the "Protect Against Document
Structure Threats Assertion" on page 675 is most commonly used.

TCP/IP-Based Attacks

The Gateway protects against all the common TCP/IP-based attacks, such as ICMP flood,
SYN flooding, "ping of death", and various routing redirect style attacks.

Packet-level attacks are handled by the Gateway's default OS-level configuration (in
particular, by the default firewall configuration).

Packet-level attacks are not logged.

Coercive Parsing and XML Bomb

A coercive parsing attack attempts to exploit the "bolt-on" interfaces used to link legacy
systems with XML components in an existing infrastructure. The attack tries to
overwhelm a system's processing capabilities or install malicious mobile code.

This attack is also known as a "DTD Entity Expansion Attack". According to the SOAP
specifications, a SOAP message must not contain a DTD declaration. The Gateway can
prevent messages containing DTD declarations from passing through, by terminating
them before any policy processing begins. To block DTD declarations, ensure that the
"Protect Against Document Structure Threats Assertion" on page 675 is present in the
service policy or in a global policy fragment.

666 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

From a technical perspective, the XML parser will not allow DOCTYPE declarations. When
the parser encounters a message containing a DOCTYPE, it terminates parsing without
expanding the entity or entities. The Gateway then logs and audits a warning that a
message was badly formed. This allows administrators to monitor potential intrusion
attempts, while keeping the protected services safe.

External Entity Attack

XML can be used to build documents dynamically by pointing to a URI where the actual
data exists. These external entities may not be trustworthy, as an attacker could replace
the data being retrieved with malicious code.

By default, the Gateway does not resolve external entities and the Gateway can be
configured using the Evaluate Request XPath and Evaluate Response XPath assertions to
block all messages containing references to external entities.

Schema Poisoning

A schema describes the constraints and structure of a message, as well as optional
processing instructions. Parsers use schemas to interpret web service messages. Since
schemas describe the necessary preprocessing instructions, they are vulnerable to
tampering if not stored securely.

Schema poisoning involves an attacker attempting to compromise a system by replacing
or tampering with the schema. To protect against this, the Gateway does not load
schemas from unauthorized locations. All schemas must be loaded by the administrator;
dynamic loading is not permitted.

WSDL Scanning

A WSDL document describes a web service, including what operations are supported. In
addition to this information, a WSDL may expose details about the implementation that
could be used by an attacker. An attacker might cycle through the various command and
string combinations to discover unintentionally related or unpublished application
program interfaces.

The Gateway selectively proxies all internal WSLDs, shielding access to the original WSDLs
on the application servers. The Gateway will deny direct access to all WSDLs even when an
attacker guesses a related unpublished WSDL. By preventing unauthorized access to a
web service (and its WSDL), this type of information scanning is blocked.

Chapter 12: Threat Protection Assertions 667

Layer 7 Policy Authoring User Manual, v8.2

XML Routing Detours

XML routing detours can occur if an attacker sends a message to a Web service
containing bogus routing information to override the normal routing. The detoured
message can then pass through unknown or untrusted hosts, making it possible for the
attacker to view or modify the contents of the message. This rerouting is prevented when
any of the Policy Manager routing assertions are used. These assertions explicitly define
the route of the message and overriding the route is not possible. For more information,
see "Chapter 8: Message Routing Assertions" on page 507.

XML routing may also occur if WS-Routing (Web Services Routing) is used by the
sender/receiver of the message, because this specification permits the source to define
the route of a message.

Although the Gateway enforces strict, explicit routing of messages, intermediates can
also be prevented from viewing and or changing sensitive content by using the extensive
encryption and signature facilities within the Gateway.

Limit Message Size Assertion
The Limit Request Size assertion allows you to specify a size limit for an entire message
(including attachments) or just the XML portion of a message (not including
attachments). When the request size exceeds the designated limit, the Gateway will reject
the message and terminate policy execution.

This assertion should be placed before the routing assertion in the policy.

Note: The Limit Request Size assertion was designed to prevent Denial of Service attacks,
hence the immediate cessation of the policy upon failure. If you wish to continue processing
the policy even after the request size has exceeded a certain value, you could use the Compare
Expression assertion with the ${request.http.header.content-length} context variable. However
be aware that this method is not foolproof as the declared content-length is easily forged or it
may not be present in the request. For added protection, also include a Limit Message Size
assertion later in the policy to enforce a hard cap should the policy logic be mislead by the
content-length header. Also, keep in mind that the ${request.http.header.content-length} will
be smaller than the message if compression is used.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153. Note that you can also select the target message in the assertion
properties.

Using the Assertion

 1. Do one of the following:

668 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Message Size Limit Properties automatically
appear; when modifying the assertion, right-click <target>: Limit Message Size
in the policy window and select Message Size Limit Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

 Figure 233: Message Size Limit Properties

 3. Configure the properties as follows:

Setting Description

Specify size limit for Select the target message to be controlled by the size limit: Request,
Response, or a context variable of type Message.

Tip: The target message can also be changed by using the Message
Target dialog. For more information, see "Selecting a Target
Message" on page 153.

Maximum Size Limit Enter the maximum message size that should be accepted by the
Gateway in kilobytes (KB). The value must be a whole number or a
context variable that resolves to the limit.

Exempt MIME
attachments from the
size limit

By default, the size limit applies to the entire message. To apply the
limit to only the XML portion of the message and exempt any MIME
attachments, select the check box.

Note: Messages with more than 32K of headers in the MIME
attachment portion of a message will always be rejected, regardless
of the setting of this check box.

 Table 217: Request Size Limit settings

 4. Click [OK] when done.

Chapter 12: Threat Protection Assertions 669

Layer 7 Policy Authoring User Manual, v8.2

Protect Against Code Injection Assertion
The Protect Against Code Injection assertion provides threat protection against code
injection attacks targeting web services and Web applications, including AJAX
applications. Use this assertion to protect against the following threats:

HTML/JavaScript Injection (Cross-site Scripting)
PHP Code Injection—Eval injection
Shell Injection
LDAP DN Injection
LDAP Search Injection
XPath Injection

This assertion can help protect vulnerable parameters in the path (or URI) of the URL, in
addition to the URL query string and message body.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Code Injection Protection Properties
automatically appear; when modifying the assertion, right-click <target>: Protect
against Code Injection in the policy window and select Code Injection Protection
Properties or double-click the assertion in the policy window. The assertion
properties are displayed.

670 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 234: Code Injection Protection Properties

 3. Configure the properties as follows.

Setting Description

Apply protection to: Specify where to apply the protection:

 l URL Path: Select this to protect the URL Path.

 l URL Query String: Select this to protect the query
parameters in the URL.

 l Body: Select this to protect the body of the message. These
will be scanned depending on the Content-Type header:

 l application/x-www-form-urlencoded: Scans Form Post
parameters

 l multipart/form-data: Scans each MIME part; depends on
Content-Type of MIME part

 l text/xml: Scans attribute values and character-data

 l anything else: Scans the entire message body

Available
Protections

Select one or more injection threats to protect against. Point at each
option to see a description of the protection offered. The assertion will

 Table 218: Code Injection Protection settings

Chapter 12: Threat Protection Assertions 671

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

fail upon the first protection violation detected.

IMPORTANT: This assertion checks for injection of any executable
code, not just malicious code. This is because it is not always possible
to determine which code is malicious or benevolent. Be especially
careful when using this protection on responses, because returned
HTML often contains legitimate uses of the restricted tags.

 4. Click [OK] when done.

Protect Against Cross-Site Request Forgery Assertion
The Protect Against Cross-Site Request Forgery assertion helps detect and prevent against
CSRF (Cross-Site Request Forgery) attacks.

This assertion provides two mechanisms to help detect a CSRF attack:

 l Double Submit Cookie Validation: This can be used to validate the contents of a
cookie that contains some session identifier, to see if it matches the same session
identifier contained in a request parameter.

 l HTTP Referer validation: This can be used to ensure that the referer value belongs
to a whitelist of domains. Although the referer domain is easily spoofed, this
validation reduces the attack vectors for a CSRF attack.

This assertion can only work with HTTP requests and will fail if the request is not HTTP.

Double Submit Cookie Validation

If enabled, any of the following conditions will cause the assertion to fail:

 l Required cookie is not present.

 l Required cookie has a name that contains non-ASCII characters.

 l Required parameter is not found or does not contain a single value.

 l The parameter does not match the cookie's value.

For more information about double submit cookies, visit the OWASP site at:
http://www.owasp.org and search for "CSRF double submit cookies".

HTTP-Referer Header Validation

If enabled, the following conditions will cause the assertion to fail:

672 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

http://www.owasp.org/

 l If the HTTP-Referer header is empty and the Allow empty values check box is not
selected.

 l The value of HTTP-Referer is not a valid URL.

 l The domain of the HTTP-Referer does not belong to the whitelist.

Context Variable Created by This Assertion

The Protect Against Cross-Site Request Forgery assertion will set the context variable
csrf.valid.token to the value of the cookie. You can use this variable later in the policy to
validate the value.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Protect Against CSRF Forgery in the policy window and select CSRF
Protection Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

Chapter 12: Threat Protection Assertions 673

Layer 7 Policy Authoring User Manual, v8.2

 Figure 235: CSRF Protection Properties

 3. Configure the dialog as follows:

Setting Description

Enable
Double
Submit
Cookie
Validation

Select this check box to enable double submit cookie validation.

Clear this check box to not check for double cookie submissions. This will
deactivate the other settings in this section.

Cookie Name Enter the name of the cookie that the HTTP parameter name will be checked
against.

HTTP
Parameter
Name

Enter the name of the HTTP parameter to be checked against the cookie
name.

Allowable
HTTP
Methods

Choose the HTTP methods allowed: GET, POST, or GET and POST.

 Table 219: CSRF Protection settings

674 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Enable HTTP-
Referer
Header
Validation

Select this check box to enable validation of the HTTP-Referer header value.

Clear this check box to not validate the HTTP-Referer header value. This will
deactivate the other settings in this section.

Skip
validation if
header is
missing or
empty

Select this check box to omit the validation step if the HTTP-Referer is missing
or empty.

Clear this check box to always validate the HTTP-Referer header.

Valid
Domains

From the drop-down list, choose the valid domains:

 l Current Domain: Use the current domain of the Gateway. This will
match the header against the domain value associated with the
request, which may be the domain of the cluster or the individual
Gateway host.

 l List of Trusted Domains: Enter your own list of trusted domains in
the box below.

 l Click [Add] to add a new domain.

 l Click [Edit] to modify the selected domain.

 l Click [Remove] to remove the selected domain from the list.

 4. Click [OK].

Protect Against Document Structure Threats Assertion
The Protect Against Document Structure Threats assertion allows you to specify size limits for
incoming XML requests to protect against XDoS (XML Denial of Service) attacks using
oversized files. When the text or attributes of an incoming request exceed the specified
limits, the Gateway rejects the message and blocks further processing of the policy.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Document Structure Threat Protection
Properties automatically appear; when modifying the assertion, right-click

Chapter 12: Threat Protection Assertions 675

Layer 7 Policy Authoring User Manual, v8.2

<target>: Protect against Document Structure Threats in the policy window and
select Document Structure Threat Protection Properties or double-click the
assertion in the policy window. The assertion properties are displayed.

 Figure 236: Document Structure Threat Protection Properties

 3. Configure the properties as follows:

Setting Description

Reject if any XML
contiguous text has
length exceeding

Select this check box to reject any incoming request with a text node
(or CDATA section) containing more than the specified number of
contiguous characters. Clear this check box to accept any contiguous
length.

"Contiguous" in this context refers to the characters between XML
tags. For example: <tag>this is a string of contiguous
characters</tag>. This check does not differentiate between start and
end tags, so the following text is also considered contiguous
characters: </endTag>blank spaces and return characters between
tags are also contiguous text<startTag>.

Note: The length of attribute names are excluded from this setting. To
manage requests based on the attribute name, use the "Reject if any
XML attribute name has length exceeding" setting.

Reject if any XML
attribute value has
length exceeding

Select this check box to reject any incoming request with an attribute
value longer than the specified number of characters. Clear this check
box to accept attribute values of any length.

The length of an attribute value is the number of characters between
the quotes of any attribute, not including the attribute name itself. For

 Table 220: Document Structure Threat Protection settings

676 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

example, the length of this attribute value is 12: <img
src="computer.gif">.

Reject if any XML
attribute name has
length exceeding

Select this check box to reject any incoming request with an attribute
name longer than the specified number of characters. Clear this check
box to accept attribute names of any length.

Note: XML attribute name lengths are independent of the "Reject if
any XML contiguous text has length exceeding" setting.

Reject if XML
element nesting
depth exceeds

Select this check box to reject any incoming request that contains more
than the specified number of nested levels. Clear this check box to
accept requests with any number of nested levels.

The nesting count begins at the top of the XML document. If it is a
SOAP message, the envelope is level 1, the body is level 2, etc.

Reject if distinct
namespace
declarations
exceeds

Select this check box reject any incoming requests that contains more
than the specified number of distinct namespace URI declarations.
Clear this check box to accept requests with any number of
namespace declarations.

Note: A value of '0' (zero) means unlimited, which is the same as
clearing the check box.

Reject if distinct
namespace prefix
declarations
exceeds

Select this check box reject any incoming requests that contains more
than the specified number of distinct namespace prefix declarations.
Clear this check box to accept requests with any number of
namespace prefix declarations.

Note: A value of '0' (zero) means unlimited, which is the same as
clearing the check box.

Reject SOAP
request that contain
more than

Select this check box to reject any SOAP requests with more than the
specified number of payload elements. Clear this check box to ignore
the number of payload elements in a request.

A SOAP envelope requires one body section but may contain multiple
payload elements (header is optional):

Envelope
Header (optional)
Body

Payload
Payload
Payload

Multiple payloads are uncommon and an attack may be launched
using multiple payload elements to evade simplistic validity checks. For
example, the XPath might match against payload #2, but the
application ignores payload #2 and uses payload #1 instead.

Require a valid
SOAP envelope
(one Body, no

Select this check box to reject any requests that do not contain a valid
SOAP envelope. Clear this check box to not check the validity of a
SOAP envelope.

Chapter 12: Threat Protection Assertions 677

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

trailers) A valid envelope contains exactly one Body section, optionally
preceded by exactly one Header section, with no SOAP trailers.

This setting guards against invalid SOAP envelopes that contain
multiple body sections or trailers, which may be caused either by an
attack or an error in the client application.

 4. Click [OK] when done.

Protect Against JSON Document Structure Threats
Assertion

The Protect Against JSON Document Structure Threats assertion validates and enforces
constraints on the structure of JSON documents. When the structure of an incoming
JSON document exceeds a specified constraint, the Gateway rejects the JSON document
and blocks further processing of the policy.

The following example JSON documents are referenced in the property descriptions
below:

 l Example 1: Single typed value document:
“one simple value”

 l Example 2: Typical document:
{

 "msg":"Hello",

 "color":[0,0,255],

 "options":{

 "underline":false,

 "bold":true

 }

}

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Tips: (1) This assertion should be placed before any other JSON-related assertions (Apply
JSON Transformation, Evaluate JSON Path, Validate JSON Schema) in order to protect them
against DOS attacks. (2) This assertion will always evaluate the document for valid
JSON structure, even if no limits are enabled.

Using the Assertion

 1. Do one of the following:

678 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

l To change the configuration of an existing assertion, proceed to step 2 below.

2. When adding the assertion, the JSON Document Structure Threat Protection
Properties automatically appear; when modifying the assertion, right-click
<target>: Protect against JSON Document Structure Threats in the policy
window and select JSON Document Structure Threat Protection Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 237: JSON Document Structure Threat Protection Properties

3. Configure the properties as follows:

Setting Description

Container Depth This is the most nested containers within a JSON document. Example
1 above contains a string, which is the only type of document with a
container depth of 0. Every open object or array increases the
container depth by one. In Example 2, the “msg” entry has a container
depth of 1, and the values in the “color” array have a depth of 2.

Select this check box to reject any JSON document with a container
depth that exceeds the value entered here. The container depth can
be from 0 to 30. Default: 4

Note: A value of '0' is valid only for a single typed value document.

Object Entry Count This is the maximum number of entries (comma delimited string:value
pairs) in a single object. Example 1 has a maximum object entry count
of 0 (as it is a single typed value, it does not contain an object).
Example 2 has a maximum entry count of 3 (the top level entries:
"msg", "color", "options").

Select this check box to reject any JSON document with an object entry
count that exceeds the value entered here.

Array Entry Count This is the maximum number of entries (comma delimited values) in an
array. The array in Example 2 has an entry count of 3. As with the

 Table 221: JSON Document Structure Threat Protection settings

Chapter 12: Threat Protection Assertions 679

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

object entry count, the count is done for each array, not all arrays in the
document.

Select this check box to reject any JSON document with an array entry
count that exceeds the value entered here.

Entry Name Length This is the maximum number of characters in the name of an entry. A
setting of 7 would be violated by the string “underline” (which contains
9 characters), but not by “msg”, “bold”, “color”, or “options”.

Select this check box to reject any JSON document with a name length
that exceeds the value entered here.

String Value Length This is the maximum number of characters in a string value. In
Example, 2, the longest string value is 5 (“Hello”).

Select this check box to reject any JSON document with a string value
that exceeds the value entered here.

 4. Click [OK] when done.

Protect Against Message Replay Assertion
The Protect Against Message Replay assertion is used to protect the Gateway against
possible replay attacks. This replay protection can either be cluster-wide (default) or per
node, depending on the setting of the cluster property
cluster.replayProtection.multicast.enabled.

Note the following important issues when using this assertion:

 l Depending on the expiry period set in the assertion, using the Protect Against
Message Replay assertion in a Gateway cluster may increase request message
processing time and require more memory. To mitigate this, place this assertion
after a Authenticate User or Group or Authenticate Against Identity Provider
assertion to help confine the protection to successfully authenticated messages,
thereby reducing system processing and memory requirements.

 l This assertion should not be used in any policy that will process messages from
JMS destinations that are configured with the "On completion" acknowledgment
mode without a specified failure queue.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To learn more about selecting the target identity for this assertion, see "Selecting a
Target Identity" on page 152.

680 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

Details for Advanced Users

The Protect Against Message Replay assertion uses an internal replay ID. This ID is based
on either a WS-Addressing Message ID or the timestamp of the request combined with
other information that depends on how the message was signed:

 l For a request message signed with a WS-Security one-shot X.509 signature, the
replay ID is comprised of the following:

 l The SHA-1 of the WS-Addressing MessageID, if present, or the timestamp
creation date

 l The signing certificate's subject and issuer DNs

 l The signing certificate's subject key identifier

 l For a request message signed with a key derived from a WS-SecureConversation
security context, the replay ID is the MessageID or timestamp created date and the
security context identifier.

 l For a request message signed with a key derived from an EncryptedKey, the replay
ID is the MessageID or timestamp created date and the EncryptedKeySHA1 value.

 l For a request message signed with a WS-Security Kerberos token, the replay ID is
the MessageID or timestamp created date and the SHA-1 of the Kerberos token.

In all cases, the granularity of the timestamps is determined by the message sender.
While the Securespan XML VPN Client always uses at least millisecond-granular
timestamps (with a random count of up to one million nanoseconds, to reduce the
chance of an ID collision), many tools will use second-granular timestamps by default,
resulting in spurious duplicate IDs if MessageIDs are not used and more than one
message is sent per second per signing identity.

The Protect Against Message Replay assertion offers two different modes: Default or
Custom.

Default Mode

The assertion first attempts to use a signed WS-Addressing Message ID in the message
as the basis for replay protection. If the Securespan XML VPN Client is deployed, you can
enforce the presence of Message IDs by using the "Require WS-Addressing Assertion" on
page 477.

Note: A Message ID that is present but not signed will not be used by the Protect Against
Message Replay assertion. The assertion will use a signed time stamp instead, if one is
available.

Chapter 12: Threat Protection Assertions 681

Layer 7 Policy Authoring User Manual, v8.2

If no Message ID is present (and the policy is not configured to enforce the presence of
one), the message time stamp is used for replay protection. The Gateway will reject a
message as a possible replay if detects any of the following:

 l A duplicate creation time stamp in a message

 l An expired time stamp is present

 l The creation time stamp is more than 30 days old.

In the Default mode, the Protect Against Message Replay assertion behaves exactly the
same as the WSS Replay Protection assertion found in versions prior to 5.2.

Custom Mode

In this mode, you may specify a context variable that contains the identifier to check and
how long the identifier should be saved. This allows you to verify non-SOAP messages. It
will not perform signature verification or validate the timestamp.

Note: The Custom mode only deals with checking for replay of the identifier. The policy
administrator is responsible for ensuring that the identifier can be trusted and that the current
time is within the time stamp created/expires times.

The custom mode allows you to create your own custom replay protection policy
fragment when combined with other assertions.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Protect Against Message Replay in the policy window and
select Message Replay Protection Properties or double-click the assertion in the
policy window. The assertion properties are displayed.

682 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 238: Message Replay Protection Properties

 3. Configure the properties as follows:

Setting Description

Default

Custom

Choose the mode of operation: [Default] or [Custom]. Refer to the
introduction to this topic for a description of each mode.

The [Default] mode replicates the functionality in the WSS Replay
Protection assertion in versions prior to 5.2. This mode requires no
further configuration.

Scope
The replay scope lets you specify a scope for the uniqueness of the
message identifier. For example, a message identifier scheme may be
global, or per service, or could use some other granularity.

Specify a scope for the uniqueness; context variables are permitted.
Examples:

Service scoped: ${service.oid}

Customer scoped: Customer 7 (maximum 250 chars)

Global scope: <leave blank>

Tip: The scoping can be performed by the policy author (for example,
by specifying an identifier as ${service.oid}/${myId}) but such an
approach risks collisions if other services do not use service-scoped
identifiers.

Identifier Variable Specify a context variable containing the Message ID to be
processed.You can enter the variable in the format ${myVar} or
myVar.

Ensure that this Message ID has been signed and is unique.

Expiry Specify how long the identifier should be saved. This expiry time is the
lifetime of the message—that is, the amount of time the identifier will be
stored in the cache from the time it was received. The default is 5
minutes.

Tip: The expiry time should be greater than 0 and less than 25 days.

 Table 222: Message Replay Protection settings

Chapter 12: Threat Protection Assertions 683

Layer 7 Policy Authoring User Manual, v8.2

 4. Click [OK] when done.

Protect Against SQL Attack Assertion
The Protect Against SQL Attack assertion allows you to configure the Gateway to help
protect a web service against specific, common SQL injection threats. When added to a
policy, this assertion inspects the request message for the specific patterns of characters
or keywords that are associated with these potential SQL injection attacks. If a match is
found in the message, then the request is blocked from further processing.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Note: When scanning a message element (for example, with the Evaluate Request XPath or
Evaluate Response XPath assertions), select the "Invasive SQL Attack Protection" option (the
"standard" protection is not sufficient). (3) The assertion does not examine attachments to
messages. Protection for attachments is provided by the optional "Scan Using Symantec
Antivirus Assertion" on page 749.

SQL Injections Detected

The Protect Against SQL Attack assertion will respond as follows to these SQL injections:

Injection
Type

Desired Response Assertion Response

Single Tick
Only

Detect a parameter value in requests and
inbound HTTP headers that consists of
only one single tick ('); this can be used to
initiate an injection attack.

Select the Invasive SQL Injection
Attack Protection check box to
check the entire message body
(excluding HTTP headers) for these
meta characters:

' # --

If any of the non-Invasive protection
options are selected, only the text and
CDATA portions of a message will be
checked for the above characters.

Single Tick
Start

Detect a parameter value in requests and
inbound HTTP headers that start with a
single tick ('); this can be used to initiate an
injection attack.

Same as above.

SQL
Commands

Detect and block any request message
containing standard SQL commands,
including ALTER DATABASE, ALTER

The assertion does not search for any
of the listed commands.

 Table 223: SQL Attack Protection - response to injections

684 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

Injection
Type

Desired Response Assertion Response

TABLE, ALTER VIEW, CREATE
DATABASE, CREATE PROCEDURE,
CREATE SCHEMA, CREATE TABLE,
CREATE VIEW, DELETE FROM, DROP
DATABASE, DROP PROCEDURE,
DROP TABLE, DROP VIEW.

SQLServer
2000

Detect and block any request message
containing the default stored procedures
included with SQLServer 2000.

The assertion searches for EXEC
procedure when MS SQL Server is
enabled.

SQLTABLE Detect SQL Server 2000 Master database
default table names in request messages.

The assertion does not search for any
specific table names.

Oracle Detect and block any request message
containing the system tables, default
stored procedures, or factory passwords
included with Oracle.

In the Oracle case, the assertion
searches for the strings 'to_
timestamp_tz', 'tz_offset', 'bfilename'.
No search for other table names and
or default stored procedures.

XML Entity
Expansion
(encoded)

Detect and block any request message
containing the "<!ENTITY" XML entity
expansion sequence.

SOAP services scan for and deny any
DOCTYPE declaration, so the
ENTITY item will not pass. However,
XML/REST services will let this pass.

XML Entity
Expansion
(unencoded)

Detects and blocks any message
containing an XML "<!ENTITY" element.

Run this rule on requests. When a match is
found, log an event and reject the message

Same response as above — encoding
'<' as '<' does not change the
Gateway response.

SQLTABLE_
Updated

Allow commonly used words in request
messages such as: VIEWS, TABLES,
ROUTINES, DOMAINS, PARAMETERS
and COLUMNS.

No checking is done for any of these
SQL keywords.

Using the Assertion

1. Do one of the following:

l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

l To change the configuration of an existing assertion, proceed to step 2 below.

2. When adding the assertion, the SQL Attack Protection Properties automatically
appear; when modifying the assertion, right-click <target>: Protect against SQL

Chapter 12: Threat Protection Assertions 685

Layer 7 Policy Authoring User Manual, v8.2

Attack in the policy window and select SQL Attack Protection Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 239: SQL Attack Protection Properties

3. Select the protection.

W A R N I N G

The following options are a minimal starting point for protecting against common SQL
attacks. More effective protection with fewer false positives can be obtained by
customizing the policy to the specific vulnerabilities of the service being protected.
For example, the Validate XML Schema assertion can be used to block SQL
metacharacters from only those elements that are known to be at risk of being
misused by the backend service. Each threat protection option requires a separate
inspection of the request message; thus, selecting multiple options may increase the
message processing time. Do not select the product-specific protections—MS SQL
Server or Oracle exploit protection—unless the associated product is used by the
protected service.

686 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Apply Protection
to:

Specify where to apply the protection:

 l URL Path: Select this to protect the URL Path.

 l URL Query String: Select this to protect the query
parameters in the URL.

 l Body: Select this to protect the body of the message.

Known MS SQL
Server Exploits
Protection

Block messages that contain patterns recognized as potential MS SQL
Server exploits.

Known Oracle
Exploit Protection

Block messages that contain patterns recognized as potential Oracle
SQL exploits

Standard SQL
Attack Protection

Block messages that contain a single-quote ('), hash mark (#), or string
(--) inside the element text or CDATA section (the characters are
permitted in message attributes).

This option effectively protects against many SQL injection attacks but
may result in a small number of false positives. For example, a
message containing the name "O'Reilly" will be rejected as a possible
attack due to the " ' " character.

IMPORTANT: If the service being protected is potentially vulnerable
to altered XML attributes (for example, it uses XML attributes in SQL
statements), then the Standard SQL Attack Protection may not be
sufficient.

Invasive SQL Attack
Protection

Block messages that contain a single-quote ('), hash mark (#), or string
(--) anywhere within the message.

This option effectively protects against many SQL injection attacks, but
will result in a large number of false positives that cause messages to
be incorrectly rejected. For example, any message containing a
shorthand XPointer reference will be rejected, as will most messages
containing signed XML (e.g., WSS Signature).

IMPORTANT: The Invasive SQL Attack Protection option is a "catch
all" approach that should only be used when a potentially vulnerable
service must be well-protected and where lower performance and a
higher false positive rate are acceptable.

 Table 224: SQL Attack Protection settings

 4. Click [OK] when done.

Scan Using ICAP-Enabled Antivirus Assertion
The Scan Using ICAP-Enabled Antivirus assertion lets the Gateway connect to an antivirus
server that supports the ICAP protocol, such as McAfee®, Sophos®, or Symantec™.

Chapter 12: Threat Protection Assertions 687

Layer 7 Policy Authoring User Manual, v8.2

Ensure your antivirus server is enabled for the ICAP protocol in order to use this
assertion. Please consult the documentation for your antivirus server for more
information.

Tips: (1) The cluster properties icap.channelIdleTimeout and icap.threadPoolSize can be used
to further adjust the assertion behaviour, if necessary. (2) You can monitor the number of
connections to the antivirus server by using this “netstat” command on the Gateway machine:
netstat -an -t 1 | grep ":1344". If it is necessary to further limit the number of requests, use
the "Apply Rate Limit Assertion" on page 573.

Note for McAfee Users: When using the Scan Using ICAP Antivirus assertion with McAfee
VirusScan, the McAfee server must be configured to add virus information to the ICAP response
headers. Please contact your McAfee administrator or CA Technical Support if you require
assistance.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Context Variables Created by This Assertion

The Scan Using ICAP-Enabled Antivirus assertion sets the following context variables with
information about a detected virus. Note: The context variables are not set if no viruses
are found.

Variable Description

icap.response.infected Lists the infected part ID, content ID, filename or
context variable name.

icap.reponse.header.names.X Header names as returned by the ICAP server,
where 'X' is an index that corresponds to the
index of the infected part.

icap.reponse.header.values.X Header values as returned by the ICAP server,
where 'X' is an index that corresponds to the
index of the infected part.

icap.reponse.header.value.X.headerName The value of the specified header name for the
infection part 'X'.

 Table 225: Context variables created by the ICAP-Enabled Antivirus assertion

All the ICAP-Enabled context variables are multivalued, to accommodate multiple viruses
found.

Using the Assertion

 1. Do one of the following:

688 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Scan Using ICAP-Enabled Antivirus in the policy window
and select ICAP Antivirus Scanner Properties or double-click the assertion in the
policy window. The assertion properties are displayed.

 Figure 240: ICAP Antivirus Scanner Properties

 3. Configure the Server List as follows:

To... Do this...

Add a server
At least one server must be defined.

 1. Click [Add Server].

 2. Enter the URL of the ICAP Server. You may also reference
context variables.

 3. Optionally, click [Test Connection] to test the connection to

 Table 226: Configuring the ICAP Antivirus server list

Chapter 12: Threat Protection Assertions 689

Layer 7 Policy Authoring User Manual, v8.2

To... Do this...

the specified server.

Note: If context variables are used, the connection cannot be
tested and the URL cannot be validated.

 4. Click [OK].

Edit a server
 1. In the Server List, select the server you wish to modify.

 2. Click [Edit Server].

 3. Modify the fields as required. See Add a server, above, for
more information.

 4. Click [OK].

Remove a server 1. In the Server List, select the server you wish to remove.

 2. Click [Remove Server].

 4. Configure the timeout settings:

 l Connection Timeout (in seconds): Enter the number of seconds (between 1
and 3600) before the connection times out. You may reference context
variables.

 l Read Timeout (in seconds): Enter the number of seconds (between 1 and
3600) for the read timeout. You may reference context variables.

 5. Optionally, configure any Service Parameters required by the antivirus server:

To... Do this...

Add a parameter 1. Click [Add Parameter].

 2. Configure the dialog as follows:

 l Parameter Name: Enter the name of the parameter as
per the antivirus server documentation. You may
reference context variables.

 l Parameter Value: Enter a value for the parameter as
per the antivirus server documentation. You may
reference context variables.

 l Parameter Type: Specify whether the parameter is a
Header or a Query.

 3. Click [OK].

Edit a parameter 1. Select the parameter to modify.

 2. Click [Edit Parameter].

 3. Configure the dialog as required. See Add a parameter,
above, for more information.

 Table 227: Configure the ICAP antivirus service parameters

690 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

To... Do this...

 4. Click [OK].

Remove a parameter 1. Select the parameter to remove.

 2. Click [Remove Parameter].

6. Specify how the assertion should behave when a virus is found:

l Select the Continue processing if virus found check box to allow the assertion
to continue when a virus is detected.

l Clear the Continue processing if virus found check box to fail the assertion
when a virus is found. This setting is the default.

7. In the Maximum MIME Depth field, specify how deep the assertion should
traverse in the event of nested multiparts.

8. Choose the failover strategy:

Failover Strategy Description

Ordered Sticky with
Failover

The Gateway sends service messages to the first server in the list until
that server does not respond (fails). When this occurs, the next server
in the list is used.

Tip: The cluster property io.failoverServerRetryDelay controls the
delay before the Gateway retries a failed server. The default is to wait
15 minutes when using the "Ordered Sticky with Failover" strategy.

Random Sticky with
Failover

The Gateway chooses a server randomly at the beginning of each
session and uses it for the duration of the session. If the chosen server
fails, another server is chosen at random.

Round Robin The Gateway rotates through the server list on a request-by-request
basis (round-robin) from the first server, to the second server, and so
on. When the end of the server list is reached, the cycle continues from
the top of the list.

Tip: The cluster property io.failoverServerRetryDelay controls the
delay before the Gateway retries a failed server. The default is to wait 5
minutes when using the "Round Robin" strategy.

 Table 228: Failover Strategies for ICAP antivirus

9. Click [OK].

Chapter 12: Threat Protection Assertions 691

Layer 7 Policy Authoring User Manual, v8.2

Scan Using Sophos Antivirus Assertion
The Scan Using Sophos Antivirus assertion is an optional assertion that can be added to
the Gateway. When installed, this assertion enables the Gateway scan all message
attachments in the request using Sophos Antivirus running on another machine. This
assertion has multiple failover strategies to support installations with multiple machines
running Sophos Antivirus.

When this custom assertion package is installed, the Scan Using Sophos Antivirus
assertion appears in the Policy Manager.

The Administrator is responsible for installing and configuring the Sophos Custom
Assertion package on the Gateway. For more information, refer to the Custom Assertion
Installation Manual.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Tip: Consider using the Scan Using ICAP-Enabled Antivirus assetion for greater flexibility in
checking messages for viruses.

Context Variables Created by This Assertion

The Scan Using Sophos Antivirus assertion sets the following context variables with
information from the Sophos response.

Variable Description

sophos.scan.virus.name Name of the virus detected

sophos.scan.virus.type Type of virus detected

sophos.scan.virus.location Location where virus was detected

sophos.scan.virus.disinfectable Indicates whether the virus can be disinfected

sophos.scan.virus.count Number of viruses detected

 Table 229: Context variables created by the Sophos Antivirus assertion

All the Sophos context variables (with the exception of sophos.scan.virus.count) are
multivalued, to accommodate multiple viruses found.

Using the Assertion

 1. Do one of the following:

692 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click <target>: Scan using Sophos Antivirus in the policy window and
select Sophos Antivirus Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

 Figure 241: Sophos Antivirus Properties

 3. Configure the dialog as follows:

Setting Description

Sophos server(s) The list of Sophos servers and their associated port numbers.

 l Click [Add] to add a new server to the list. In the Add Host/Port
dialog that appears, enter the Host name or IP address.
Specify a Port number, between 0 and 65535. The default port
is 4010.

 l Click [Edit] to modify the details for the selected server.

 l Click [Delete] to remove a server from the list.

Failover Strategy When there are multiple Sophos servers, choose a failover strategy to
use in case a server fails to respond:

 l Ordered Sticky with Failover: The assertion uses the first
Sophos server in the list until that server does not respond
(fails). When this occurs, the next server in the list is used. This
setting is the default.

 Table 230: Sophos Antivirus settings

Chapter 12: Threat Protection Assertions 693

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

l Random Sticky with Failover: The assertion chooses a
Sophos server randomly at the beginning of each session and
uses it for the duration of the session. If the chosen server fails,
another server is chosen at random.

l Round Robin: The assertion rotates through the list of
Sophos servers beginning with the first server, to the second
server, and so on. When the end of the server list is reached,
the cycle continues from the top of the list.

Fail assertion if
virus found

Select this check box to fail the assertion if a virus is found. Clear this
check box to not fail the assertion if a virus is found.

IMPORTANT: If you choose not to fail the assertion, ensure there is
policy logic to check the context variables created by this assertion.
Otherwise, viruses will be detected but not stopped.

4. Click [OK].

Validate or Change Content Type Assertion
The Validate or Change Content Type assertion can be used to validate or change the
Content-Type of any target message. You can target specific parts of a multi-part MIME
message.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Using the Assertion

1. Do one of the following:

l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

l To change the configuration of an existing assertion, proceed to step 2 below.

2. Right-click <target>: Validate Content Type or <target>: Change Content Type
to <ContentType> in the policy window and select Content Type Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

694 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 242: Content Type Properties

 3. Configure the properties as follows:

Setting Description

Message part index Select this check box to target the Content-Type in a specific MIME
part in the message.

Clear this check box to target the Content-Type in the main/root MIME
part of the message (i.e., MIME part '1').

Validate syntax of
content type

Select this option to validate the syntax of the value of the Content-
Type of the targeted message or message part.

 l If the validation succeeds, the assertion succeeds.

 l If the validation fails, the assertion fails and returns the
assertion status code 601 ("Error in assertion processing.")

Change content
type

Select this option to modify the Content-Type value of the targeted
message or message part.

Note: The modification takes effect immediately, but any previous
message processing based on the old Content-Type will not be
undone.

New value
When changing the Content-Type, enter the new value here. You can
also enter a context variable to set the value at the time of policy
execution.

Note: The value must be a valid and complete MIME type as defined
by RFC 2045 and 2046.

 Table 231: Rate Limit settings

 4. Click [OK] when done.

Chapter 12: Threat Protection Assertions 695

Layer 7 Policy Authoring User Manual, v8.2

Validate JSON Schema Assertion
The Validate JSON Schema assertion is used to validate JSON (JavaScript Object Notation)
data against a JSON schema. Specifically it will:

 l validate JSON data structure

 l validate JSON data property types

 l validate JSON data property values

The JSON schema can either be defined within the assertion, or the assertion can
monitor a URL or extracted the URL from a Content-Type or Link header.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

To adjust how JSON schemas are cached, refer to these cluster properties:

json.schemaCache.maxAge
json.schemaCache.maxDownloadSize
json.schemaCache.maxEntries

Tips: (1) If the JSON schema validation fails, the reason is stored in the ${jsonschema.failure}
context variable. (2) Place a "Protect Against JSON Document Structure Threats Assertion" on
page 678 before this assertion to protect against DOS attacks

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the JSON Schema Validation Properties automatically
appear; when modifying the assertion, right-click <target>: Validate JSON
Schema in the policy window and select JSON Schema Validation Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

696 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 243: JSON Schema Validation Properties

 3. Specify the target message to be validated:

 l Request: Select this to validate the request message. This is the default setting
if the assertion is positioned before the routing assertion in the policy.

 l Response: Select this to validate the response message. This is the default
setting if the assertion is positioned after the routing assertion in the policy.

 l Other Variable: Select this to validate JSON content stored in a context
variable. This variable will normally be either a String or a Message variable with
Content-Type 'application/json' or another Content-Type that allows text. This
variable must be predefined or has been set in the policy prior to the Validate
JSON Schema assertion. For more information on Message variables, see
Context Variables in the Layer 7 Policy Manager User Manual.

Tip: The message target can also be set outside of the assertion properties. For more
information, see "Selecting a Target Message" on page 153.

Chapter 12: Threat Protection Assertions 697

Layer 7 Policy Authoring User Manual, v8.2

 4. From the Schema location drop-down list, specify where the schema is coming
from:

Setting Description

Configure in
advance

Select this option to define a JSON schema directly.

 1. Specify the JSON schema using any of the following methods:

 l Manually type the code into the Validation Schema box or
copy and paste the code from another source. Variables may
be used. The assertion will check the input for correct
JSON structure, but it will not validate any variables entered.

Tip: You can use the ".mainpart" suffix on variables of type
Message and with Content-Type 'application/json'. For more
information about this suffix, see "Context Variable Data
Types" under Context Variables in the Layer 7 Policy Manager
User Manual.

 l Load the schema from a URL by clicking [Read URL] and then
specifying the URL.

Tip: To configure options for the URL (for example, to specify
the credentials, SSL, or proxy options), click [HTTP Options]
to open the Manage HTTP Options dialog.

 l Load the schema from a local file by clicking [Read File] and
then browsing to the appropriate file.

Tip: The schema maximum size is controlled by the
schemacache.maxSchemaSize cluster property.

 2. Review the content of the Validation Schema box and edit if
necessary.

Monitor URL for

latest value

Select this option to specify a URL for the JSON schema. The
Gateway monitors the external resources for changes over time.

Type the address in the URL to monitor field. The URL may contain
context variables that will be resolved at run time. By default, Gateway
will issue an If-Modified-Since: HTTP request for this URL
approximately every 5 minutes while the schema is in use.

Tip: To configure options for the URL (for example, to specify the
credentials, SSL, or proxy options), click [HTTP Options] to open the
Manage HTTP Options dialog.

Tip: The monitor time interval is controlled by the
json.schemaCache.maxAge cluster property.

Retrieve Schema
URL from Content-
Type or Link Header

Select this option to retrieve the JSON schema URL from either a
Content-Type profile parameter in the header or from a Link header.

Example of a MIME type parameter: 'profile':

 Table 232: Configuring the JSON schema based on location

698 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Content-Type: application/json; profile=http://json.com/my-hyper-
schema

Example of a "describedby" HTTP header:

Link: <http://json.com/my-hyper-schema>; rel="describedby"

l Use [Add] to add as many regular expressions as necessary
to determine if a URL belongs to the set of white-listed URLs.

l Use [Edit] to modify any of the regular expressions.

l Use [Delete] to remove a regular expression from the list.

l Select the Skip validation... check box to allow the assertion
to succeed if there is no schema URL in the message. Clear
this check box to always check for a schema URL (the
assertion will fail if not found).

Note: The Content-Type parameter is checked first; if a URL is not
found, then the header values are checked next.

5. Click [OK] when done.

Validate OData Request Assertion
The Validate OData Request assertion is used to validate OData (Open Data Protocol)
request messages using the Service Metadata Document (SMD) exposed by an OData
service. The resource URI, query string, and (optionally) the payload of the request are
analyzed to ensure they are well-formed, adhere to the OData v2.0 specifications, and
apply to the target service.

The Validate OData Request assertion supports OData version 2.0.

The OData request may be stored in the default Gateway request, response, or in a
custom context variable. To learn about selecting the target message for this assertion,
see "Selecting a Target Message" on page 153.

Chapter 12: Threat Protection Assertions 699

Layer 7 Policy Authoring User Manual, v8.2

Retrieving the Service Metadata Document

The following sample policy provides an example on how to retrieve and cache the Service
Metadata Document:

Notes and Limitations

Observe the following notes about this assertion:

l The assertion will test JSON payloads to ensure their content is suitable for the
request type (for example, the request resource URI for a create entry operation
points to collection "X", but the entry type described in the message payload is of
type "Y") and will fail if it is not suitable. This test is not performed for Atom
payloads.

l JSON payloads containing open type entries will fail to validate. This validation
failure does not occur with Atom payloads.

l Batch request payloads cannot be validated. Attempting to validate a batch
request will cause the assertion to fail.

l Payloads for function import requests cannot be validated.

l All HTTP methods are considered valid for function import requests.

l The Service Metadata Document must be made available in a context variable.

l Matrix parameters in request URIs is not supported and will fail to validate.

l OData versions 3.0 and 4.0 are not supported.

l Validation of requests using method tunnelling is not supported.

Context Variables Created by This Assertion

The Validate OData Request assertion sets the following context variables. Note: The
default <prefix> is "odata" and can be changed in the assertion properties (Figure 244).

700 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

Context variable Description

<prefix>.query.count Returns a Boolean value indicating the presence of the count
option; example: "true"

<prefix>.query.top Returns the top option value; example, "10"

<prefix>.query.filter Returns the filter expression in a multivalued variable; example:
"length, CompanyName, 19, eq"

<prefix>.query.skip Returns the skip option value; example: "10"

<prefix>.query.orderby Returns the Orderby expression in a multivalued context
variable; example: "Rating, Category, Name, desc"

<prefix>.query.expand Returns the Expand expression; example:
"Category,Suppliers"

<prefix>.query.format Returns the format media type; example: "json"

<prefix>.query.inlinecount Returns the Inlinecount setting; example: "allpages"

<prefix>.query.select Returns the Select expression; exmaple:
"Rating,Category,Name"

<prefix>
.query.customoptions

Returns the custom query options in a multivalued variable;
example: ["x=y", "a=b", "f=g"]

<prefix>.query.pathsegments Returns the resource path segments in a multivalued variable;
example: ["Categories(1)", "$links", "Products"]

 Table 233: Context variables created by Validate OData Request assertion

Using the Assertion

1. Do one of the following:

l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

l To change the configuration of an existing assertion, proceed to step 2 below.

2. Right-click <target>: Validate OData Request in the policy window and select
OData Request Validation Properties or double-click the assertion in the policy
window. The assertion properties are displayed.

Chapter 12: Threat Protection Assertions 701

Layer 7 Policy Authoring User Manual, v8.2

 Figure 244: OData Validate Request Properties

3. Configure the properties as follows:

Setting Description

Service Metadata Specify a context variable that contains the Service Metadata
Document to use for validating the OData request.

For more information, see "Retrieving and Caching the Service
Metadata Document" on page 700

Resource Specify the resource URI to validate against the Service Metadata
Document, including the query string. You may reference context
variables.

Note: Ensure the resource URI is correctly encoded from the client.

HTTP Method Choose the HTTP method to use during payload validation. The
"<Automatic>" option attempts to locate the method in the
HttpRequestKnob in the target message. You may reference a
context variable.

Actions For improved security, following request types are disallowed by
default:

 Table 234: Odata Validate Settings

702 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

l Allow $metadata request: Select this check box to allow the
client to retrieve the metadata document from the service by
requesting the $metadata URI.

l Allow $value requests: Select this check box to allow the
client to retrieve the raw value of the request target by calling
the $value operation.

Tip: When the assertion will return "falsified" if it encounters a request
type that has been disallowed (see Assertion Status Codes in the
Layer 7 Policy Manager User Manual.)

Allowed Operations Select which OData operations are permitted:

 l GET: Allow or deny the OData retrieve operation.

 l POST: Allow or deny the OData create operation.

 l PUT: Allow or deny the OData update operation.

 l DELETE: Allow or deny the OData delete operation.

 l MERGE: Allow or deny the OData partial update operation.

 l PATCH: Allow or deny the OData partial update operation.
This method is synonymous with MERGE.

Validate Payload Select this check box to validate the message payload against the
request URI and the Service Metadata Document.

Clear this check box to not validate the message payload.

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

Default: odata

4. Click [OK] when done.

Validate XML Schema Assertion
The Validate XML Schema assertion allows you to specify a schema for validating a web
service or XML application request or response messages. This assertion can be used to
protect backend web services against the following threats:

l XML Parameter Tampering: All XML parameters in the request are validated to
ensure conformance with the XML schema specifications. This is to prevent
injection of malicious scripts or content into the request parameters.

l XDoS Attacks: The message structure and content are examined to ensure that
they are correct.

Chapter 12: Threat Protection Assertions 703

Layer 7 Policy Authoring User Manual, v8.2

A message schema is provided by the Gateway administrator. If the service's WSDL
contains a schema, then that schema can be extracted to serve as the starting point for
the schema used in the Validate XML Schema assertion. This WSDL schema can be
extracted in whole or in request or response message-specific parts.

If the schema contains import statements that refer to external schemas, the Policy
Manager will attempt to fetch all unresolved schemas in an import tree (for example, a
schema referencing another schema) and add them to the global schema table. You can
view these imported schemas using the Manage Global Resources task. If the Policy
Manager is unable to resolve a schema (for example, because of a bad URL or URI), you
will be prompted to manually add the schema.

Tip: The format of the import statement can affect how it is received by the Gateway. A full
URL path is most preferable and is always resolvable (e.g.,
"http://schema.example.com/test.xsd"). Just the file name is acceptable, provided that the
exact name can be located in the Global Schemas stored in the Gateway (e.g., "test.xsd"). Not
acceptable are paths containing a specific drive letter (e.g., "f:\test.xsd"), or relative paths
such as "../test.xsd".

A policy can contain multiple Validate XML Schema assertions. The runtime application of
a schema is determined by its placement in the policy path. If routing has already
occurred when the Validate XML Schema assertion initiates, then the schema will be
applied to the response message. If routing has not yet occurred, then the schema will be
applied to the request message.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Schema Failure in Context Variable

When a schema validation fails, an audit record is created and the reason for failure is
placed in the context variable ${schema.failure}. This makes it possible to reference the
failure later in the policy (for example, inclusion in the Return Template Response to
Requestor assertion).

Schemas with Circular References

A "circular reference" occurs when a schema references other schemas that ultimately
point back to the original schema. The Policy Manager will fetch all schemas from a
destination, circular or not, and add them to the global schemas table.

704 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. When adding the assertion, the Schema Validation Properties automatically
appear; when modifying the assertion, right-click <target>: Validate XML
Schema in the policy window and select XML Schema Validation Properties or
double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 245: XML Schema Validation Properties

Chapter 12: Threat Protection Assertions 705

Layer 7 Policy Authoring User Manual, v8.2

 3. Specify the target message to be validated:

 l Request: Select this to validate the request message. This is the default setting
if the assertion is positioned before the routing assertion in the policy.

 l Response: Select this to validate the response message. This is the default
setting if the assertion is positioned after the routing assertion in the policy.

 l Other Message Variable: Select this to validate a message stored in a context
variable of type 'Message'. This variable must be predefined or has been set in
the policy prior to the Validate XML Schema assertion. For more information on
Message variables, see Context Variables in the Layer 7 Policy Manager User
Manual.

Tip: The message target can also be set outside of the assertion properties. For more
information, see "Selecting a Target Message" on page 153.

 4. For SOAP messages, specify the portion of the message that will be validated by
the schema. For non-SOAP messages, the schema will be applied to the entire
message.

 l Entire SOAP Message

Schema validation is performed on the entire SOAP envelope.

The schema configured by the policy author in this case should be based on
the SOAP envelope schema. It may optionally include definitions that cover the
payload of the SOAP headers and/or the SOAP body.

If you need to validate a schema against the SOAP message including any
security elements in the header (for example, signature element), you should
additionally import the WS-Security schema in your custom schema (for
example, htp://schemas.xmlsoap.org/ws/2002/04/secext/secext.xsd).

 l SOAP Message Body

Apply the schema to each element under the soap:Body element in a SOAP
message. This setting is the default.

Note: When importing an RPC/literal-style WSDL using this option, the system will
prompt you with: "The WSDL style seems to indicate that the schema validation
should be applied to the body 'arguments' rather than the entire body. Would you like
to change the setting accordingly?" Answer 'Yes' only if you are certain that the web
service is RPC/literal-style.

 l SOAP Message Arguments

706 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

Apply the schema to the children elements under the first child element under
the soap:Body. This is typically used in RPC/literal-style web services where the
argument elements themselves are not declared in the schema.

 5. From the Schema location drop-down list, specify where the schema is coming
from:

Setting Description

Configure in
advance

Select this option to define a root schema and all dependencies
directly.

 1. Specify the schema using any of the following methods:

 l Manually type the code into the Validation Schema box
or copy and paste the code from another source.

 l If the Gateway can detect a schema in the WSDL
document, you can click [Extract Schema from WSDL]
to import the schema from the WSDL document. A
WSDL-based schema is typically only included in
document-style web services. Complete the Extract
Schema from WSDL dialog in step 6 below.

 l Load the schema from a URL by clicking [Read URL] and

then specifying the URL.

Tip: To configure options for the URL (for example, to specify
the credentials, SSL, or proxy options), click [HTTP Options]
to open the Manage HTTP Options dialog.

 l Load the schema from a local file by clicking [Read File]
and then browsing to the appropriate file.

The System ID field is automatically populated when opening
a resource (from the WSDL, a URL, or a file).

Notes: (1) The schema maximum size is controlled by the
schemacache.maxSchemaSize cluster property. (2) If the
cluster property schema.allowDoctype is set to "true", then the
"Configure in advance" XML schema may contain a document
type definition (DTD); otherwise, DTDs are not permitted
(default).

 2. Review the content of the Validation Schema box and edit if
necessary. You can right-click within the box for some useful
tools to help you edit. For more information, see Using the
XML Editor in the Layer 7 Policy Manager User Manual.

Monitor URL for

latest value

Select this option to specify a URL for the root schema. The Gateway
loads all the dependencies and then monitors the external resources
for changes over time.

Type the address in the URL to monitor field. The URL may contain
context variables that will be resolved at run time. By default, Gateway

 Table 235: Configuring the schema based on location

Chapter 12: Threat Protection Assertions 707

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

will issue an If-Modified-Since: HTTP request for this URL
approximately every minute while the schema is in use.

Tip: To configure options for the URL (for example, to specify the
credentials, SSL, or proxy options), click [HTTP Options] to open the
Manage HTTP Options dialog.

Note: The schema maximum size is controlled by the
schemacache.maxSchemaSize cluster property.

Pick XML Schema
from global
resources

Select this option to pick the validation schema from the global
resources table. Choose the global schema to use from the Selected
schema drop-down list. If the schema you require is not listed, click
[Manage Global Resources] to define it, or to modify or remove
other global resources defined in the system. For more information,
see "Managing Global Resources" on page 72.

6. If you chose to extract the schema from a WSDL document, the following dialog
appears:

 Figure 246: Extract Schema from WSDL dialog

Configure the dialog as follows and then click [OK] when done:

Setting Description

Select the WSDL
Schema to Extract

If the WSDL document contains more than one schema, select the
schema to use from the drop-down list. The schema code is displayed
in the box below.

Note: The Validate XML Schema assertion only takes a single schema

 Table 236: Extract Schema from WSDL settings

708 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

as input. If the WSDL contains multiple schemas, it may be necessary
to reorganize those schemas into one root schema that references
other schemas through import statements. The Policy Manager
attempts to retrieve the schemas referenced by the import statements
and add them to the global schema table. To view these schemas, see
"Managing Global Resources" on page 72.

Import Entire
Schema

Extract the entire schema. This setting is the default.

Import Request-
Specific Elements
Only

Extract only the schema elements particular to request messages.

Import Response-
Specific Elements
Only

Extract only the schema elements particular to response messages.

 7. When a resource with dependencies is opened, you are prompted to confirm
whether to import the schema's dependencies as global resources. Select [Import]
to import the dependencies or [Skip] to exclude the dependencies. Select [Cancel]
to cancel the loading of the resource (whether from the WSDL, a URL, or a file).

 8. If you chose [Import] in the previous step, all the schema dependencies that will be
processed and potentially added as global resources (Figure 247) are listed. Review
the list carefully and note the Action column for each resource:

 l Ignore: The resource will not be imported.

 l Update: The resource will update an existing global resource.

 l Create: A new global resource will be created for the resource.

Select [Import] to update the global resources or [Skip] to not update the global
resources. Select [Cancel] to cancel the import.

Chapter 12: Threat Protection Assertions 709

Layer 7 Policy Authoring User Manual, v8.2

 Figure 247: Confirming importing schema dependencies

 9. During import, if there are issues that require manual intervention, you will be
prompted with a dialog similar to Figure 248

 Figure 248: Select Import Option dialog

Select a resolution from the drop-down list, then specify whether:

 l [This Time Only]: Use the selected action only for this occurrence of the
conflict. When another similar conflict occurs, you will be asked again how to
resolve it.

 l [Always]: Use the selected action for all the conflicts of this type. You will not be
prompted for a resolution if another similar conflict occurs during this import.

 10. On the XML Schema Validate Properties, click [OK] when done. If the dependencies
of a configured in advance XML Schema are found then the assertion is added to
the policy development window. If the Policy Manager is unable to validate the
dependencies, you are prompted to manually add the unresolved schema(s).

710 Chapter 12: Threat Protection Assertions

Layer 7 Policy Authoring User Manual, v8.2

Chapter 13:
 Internal Assertions

In the Policy Manager, the following assertions are available in the Internal Assertions
category of the [Assertions] tab:

Collect WSDM Metrics Assertion 711

Convert Audit Record to XML Assertion 713

Handle UDDI Subscription Notification Assertion 714

Manage Gateway Assertion 715

Context Variables Created by Assertion 715
REST Manage Gateway Assertion 716

Context Variables Used by Assertion 717
Subscribe to WSDM Resource Assertion 717

The Internal Assertions are used in Internal Services. For more information, see Working
with Internal Services in the Layer 7 Policy Manager User Manual.

Collect WSDM Metrics Assertion
The Collect WSDM Metrics assertion collects metrics for a specified resource that is
interoperable with the Web Services Distributed Management (WSDM) specification. This
assertion is automatically added to a policy when the WSDM QosMetrics internal service
is published. This assertion forwards GetMultipleResourceProperties requests to the CA
implementation of the WSDM service.

Note: The Collect WSDM Metrics assertion requires that the cluster property
serviceMetrics.enabled be set to true (default setting).

Using the Assertion

 l This assertion is automatically added to a policy when you publish an WSDM
QosMetric internal service. You can also manually add it to a policy if it has been
deleted. For more information, see "Adding an Assertion" on page 112.

There are no properties or user-definable settings for this assertion. When the Collect
WSDM Metrics assertion detects a request directed at a specific WSDM QosMetrics
resource, it will collect the information requested and return it to the caller.

Chapter 13: Internal Assertions 711

Layer 7 Policy Authoring User Manual, v8.2

Supported Metrics

The following table summarizes the QosMetrics supported by the Gateway.

Property Description

muws2:OperationalStatus This relates to the published service’s enabled state. If
you disable a published service using the Policy
Manager for example, the corresponding managed
resource will have a value of Unavailable for this
property.

mows:NumberOfRequests

The total number of requests classified for the
published service corresponding to the managed
resource for the period in question.

mows:NumberOfFailedRequests

The number of requests which resulted in a policy
violation for the published service corresponding to the
managed resource for the period in question.

mows:NumberOfSuccessfulRequests

The number of requests which resulted in a policy
success for the published service corresponding to the
managed resource for the period in question.

mows:ServiceTime

This is sum of all the total response times (whether or
not a request was successful) for a service, across all
cluster nodes in a gateway cluster during the period in
question.

mows:MaxResponseTime

The maximum value recorded for the corresponding
published service to respond to a requestor. If the
policy being enforced includes routing the message to
one or more backend services, the routing time will be
included in this response time.

mows:LastResponseTime

The last value recorded for the corresponding
published service to respond to a requestor. If the
policy being enforced includes routing the message to
one or more backend services, the routing time will be
included in this response time.

qosm:Throughput

The number of requests processed for a specific time
unit. The time unit is chosen depending on the traffic
being handled. For example, instead of indicating
0.0833 req/sec, the Gateway will indicate 5 req/min.
The time unit is indicated by the Duration attribute.

qosm:AvgResponseTime

The average value recorded for the corresponding
published service to respond to a requestor. If the
policy being enforced includes routing the message to

 Table 237: QosMetrics properties supported in Gateway

712 Chapter 13: Internal Assertions

Layer 7 Policy Authoring User Manual, v8.2

Property Description

one or more backend services, the routing time will be
included in this response time.

Convert Audit Record to XML Assertion
The Convert Audit Record to XML assertion converts the current audit record into XML
code as an in-memory DOM tree, overwriting the targeted message.

This assertion is designed to populate the request in an audit sink policy with some XML.
The resulting XML is not enclosed in a SOAP envelope.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Note: The Convert Audit Record to XML assertion works only within an audit sink policy. It has
no effect when placed in any other policy.

The following are examples of XML code that will be created for each type of audit record:

System Audits

<audit action="Checking" componentId="1290010" id="0" level="800"
levelStr="INFO" name="Trusted Certificate Store" sequenceNumber="4"
type="system" xmlns="http://l7tech.com/audit/rec">
<nodeId>node1</nodeId>
<time>1253670817171</time>
<message>One or more trusted certificates has expired or is expiring
soon</message>
<ipAddress>192.168.1.42</ipAddress>
<thrown>java.lang.RuntimeException: main record throwable (rest of stack
trace)</thrown>

</audit>

Message Summary Audits

<audit type="message" id="0" level="800" levelStr="INFO" name="ACMEWarehouse"
sequenceNumber="2" xmlns="http://l7tech.com/audit/rec">
<nodeId>node1</nodeId>
<requestId>req4545</requestId>
<time>1253669933078</time>
<message>Message processed successfully</message>
<ipAddress>3.2.1.1</ipAddress>
<user id="41123" identityProviderGoid="-2" name="alice"/>
<details>

<detail componentId="0" messageId="6" ordinal="0" time="1253669933078">
<params>

<param>foomp</param>
</params>
<exception>java.lang.IllegalArgumentException: Exception for foomp
detail
 (rest of stack trace)</exception>

</detail>
</details>
<thrown>java.lang.RuntimeException: main record throwable (rest of stack
trace)</thrown>

Chapter 13: Internal Assertions 713

Layer 7 Policy Authoring User Manual, v8.2

<authType>HTTP Basic</authType>
<mappingValuesOid>49585</mappingValuesOid>
<operationName>listProducts</operationName>
<requestContentLength>4833</requestContentLength>
<requestSavedFlag>false</requestSavedFlag>
<responseContentLength>9483</responseContentLength>
<responseSavedFlag>false</responseSavedFlag>
<responseHttpStatus>200</responseHttpStatus>
<routingLatency>232</routingLatency>
<serviceOid>8859</serviceOid>
<status>0</status>

</audit>

Administrative Audits

<audit type="admin" action="U" id="0" level="800" levelStr="INFO" name="testuser"

sequenceNumber="0" xmlns="http://l7tech.com/audit/rec">
<nodeId>node1</nodeId>
<requestId>0000000000000003-22b</requestId>
<time>1253669933046</time>
<message>updated</message>
<ipAddress>2.3.4.5</ipAddress>
<user id="1111" identityProviderGoid="-1" name="admin"/>
<details>

<detail componentId="0" messageId="6" ordinal="0" time="1253669933046">
<params>

<param>foomp</param>
</params>
<exception>java.lang.IllegalArgumentException: Exception for foomp
detail
 (rest of stack trace)</exception>

</detail>
</details>
<thrown>java.lang.RuntimeException: main record throwable (rest of stack
trace)</thrown>
<entity class="com.l7tech.identity.User" oid="1234"/>

</audit>

Using the Assertion

 l Add the assertion to an audit sink policy as described in "Adding an Assertion" on
page 112.

The assertion is added to the policy window; no further configuration is required.

Handle UDDI Subscription Notification Assertion
The Handle UDDI Subscription Notification assertion processes subscription results
messages from a UDDI registry. If successful, the assertion will initialize an empty SOAP
response message. Gateway services can be updated when the related UDDI Business
Service changes. For more information , see the [UDDI] tab under Service Properties in the
Layer 7 Policy Manager User Manual for the UDDI control options.

Note: The Handle UDDI Subscription Notification assertion works only within an internal UDDI
notification policy. You will be warned if you attempt to use it in any other policy.

714 Chapter 13: Internal Assertions

Layer 7 Policy Authoring User Manual, v8.2

Using the Assertion

Do one of the following:

 l Publish a UDDI Notification Service. For more information, see Publish Internal
Service Wizard in the Layer 7 Policy Manager User Manual.

The assertion is added to the policy window; no further configuration is required.

Manage Gateway Assertion
The Manage Gateway assertion processes the request as a management SOAP message
and will populate the response message. This assertion is automatically added to a policy
when the "Gateway Management" internal service is published. For more information, see
Working with Internal Services in the Layer 7 Policy Manager User Manual.

This assertion is similar to the "REST Manage Gateway Assertion" on page 716, except it
calls the SOAP API service instead of processing the request as a REST message.

Note: The Manage Gateway assertion is only intended for use with the Gateway Management
internal service. CA does not support its use in any other scenario.

Context Variables Created by Assertion

The Manage Gateway assertion can optionally set the following context variables. Note:
The <prefix> is defined in the assertion properties.

IMPORTANT: There is no default prefix—if no prefix is specified in the properties, then no
context variables will be set by this assertion.

Variable Description

<prefix>.action Contains the action that was performed on the entity: Create, Read,
Update, Delete, Enumerate

<prefix>.entityType The type of entity receiving the action: Identity Provider, Published
Service, Trusted Certificate, etc

<prefix>.entityId The identifier for the entity (if applicable for the operation).

<prefix>.message A message describing the outcome of the operation.

 Table 238: Context variables created by Manage Gateway assertion

Using the Assertion

 1. Do one of the following:

Chapter 13: Internal Assertions 715

Layer 7 Policy Authoring User Manual, v8.2

 l To add the assertion to the policy development window, publish the internal
Gateway Management Service.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Manage Gateway in the policy window and select Gateway
Management Properties or double-click the assertion in the policy window. The
assertion properties are displayed.

 Figure 249: Gateway Management Properties

 3. If you want to create the context variables in Table 1, enter a prefix. Leave the field
blank if you do not want to set the context variables. You may enter a new prefix or
one that has been used before to overwrite existing content. Enter a prefix that
will be added to the context variables created by this assertion. This prefix will
ensure uniqueness and will prevent the variables from overwriting each other
when multiple instances of this assertion appear in a policy.

For an explanation of the validation messages displayed, see Context Variable
Validation in the Layer 7 Policy Manager User Manual.

 4. Click [OK].

REST Manage Gateway Assertion
The REST Manage Gateway assertion can let you use REST-style inputs to manage the
Gateway. This assertion is automatically added to a policy when the "REST Gateway
Management" internal service is published. For more information, see Working with
Internal Services in the Layer 7 Policy Manager User Manual.

This assertion is similar to the "Manage Gateway Assertion" on page 715, except it calls
the REST API service instead of processing the request as a SOAP message.

To learn about selecting the target message for this assertion, see "Selecting a Target
Message" on page 153.

Note: The REST Manage Gateway assertion is only intended for use with the REST Gateway
Management internal service. CA does not support its use in any other scenario.

716 Chapter 13: Internal Assertions

Layer 7 Policy Authoring User Manual, v8.2

Context Variables Used by Assertion

The REST Manage Gateway assertion uses the following context variables only if a
Message variable is specified as the target. These variables are not used if the target
message is Request or Response.

Variable Description

restGatewayMan.action Contains the HTTP method that the assertion will process (for
example, "POST").

restGatewayMan.uri Contains the URI of the entity, including query parameters (for
example, "/1.0/storedPasswords?name=MyPassword").

 Table 239: Context variables used by REST Manage Gateway assertion

Using the Assertion

l Publish the "REST Gateway Management" internal service.

Complete documentation on how to use the REST Management API can be found
online at this location:

https://
<GatewayHostName>:<port>/<GatewayRESTRoutingURI>/1.0/doc/home.html

Log in with your Gateway credentials when prompted.

Subscribe to WSDM Resource Assertion
The Subscribe to WSDM Resource assertion allows you to send subscription requests to a
specified resource that is interoperable with the Department of Defence Joint Web
Services Distributed Management (WSDM) Specification. This assertion is automatically
added to a policy when the WSDM Subscription internal service is published. This
assertion recognizes the methods: Subscribe, Renew, Unsubscribe.

You can optionally specify an outbound policy if you wish to apply a security policy and/or
provide access to the trust store for outbound messages. Eligible outbound policies are
those of type "Internal Use Policy", with the tag "WSDM-notification". For more
information, see "Creating a Policy" on page 21.

Tip: WSDM subscription notifications can be enabled or disabled using the
WSDM.notification.enabled cluster property.

The following are some technical limitations to subscribing to an WSDM resource:

Chapter 13: Internal Assertions 717

Layer 7 Policy Authoring User Manual, v8.2

 l IRIs are not specifically supported and validations are not performed.

 l SOAP and WSA namespaces are not accepted in endpoint reference parameters.

 l Endpoint reference parameters are limited to 16KB.

Using the Assertion

 1. This assertion is automatically added to a policy when you publish an WSDM
Subscription internal service. You can also manually add it to a policy if it has been
deleted; see "Adding an Assertion" on page 112.

 2. When manually adding the assertion, the WSDM Subscription Properties
automatically appear. You can also access the properties by right-clicking the
assertion in the policy window and selecting WSDM Subscription Properties or
double-click the assertion in the policy window.

 Figure 250: WSDM Subscription Properties

 3. Select an outbound policy to be applied to notification messages. If an outbound
policy is not required, select "<no notification policy>" and the notification will be
routed to the subscriber without further processing. To add policies to this list,
create a policy of type "Internal Use Policy", with the tag "WSDM-notification".

Notes: If you change notification policies, this will be applied only to new subscriptions.
To update existing subscriptions to use the new policy, you must send a "Renew" message
to renew the existing subscriptions. If a policy used by the Subscribe to WSDM Resource
assertion is deleted, you must select another policy to use, otherwise the assertion will
fail at runtime. Be sure to send a "Renew" message to existing subscriptions after
selecting a new policy.

 4. Click [OK] when done.

718 Chapter 13: Internal Assertions

Layer 7 Policy Authoring User Manual, v8.2

Chapter 14:
 Custom Assertions

The Custom Assertions category lists any supplemental custom assertions that have
been purchased from CA. It also lists any custom assertions that were created by third
parties.

Tip: Please contact CA Technologies if you are interested in acquiring a custom assertion or to
obtain the Custom Assertion SDK that you can use to create your own custom assertions.

The following custom assertions are available as optional add-ons to the Policy Manager:

Access Resource Protected by JSAM Assertion 720

Context Variables Created by This Assertion 720
Access Resource Protected by Oracle Access Manager Assertion 722

Context Variables Created by This Assertion 722
Authenticate using Tivoli Access Manager Assertion 727

Usage Rules 727
Using the Assertion 728
Troubleshooting 730

Authenticate with SiteMinder R12 Protected Resource Assertion 730

Context Variables Created by This Assertion 731
Execute Salesforce Operation Assertion 734

Context Variables Created by This Assertion 735
Using the Assertion 737
Creating Objects 738
Updating Objects 740
Retrieving Objects 742
Retrieving Modified Objects 744
Retrieving Deleted Objects 745
Executing Queries 747
Searching Objects 748
Exporting/Importing Policies 749

Scan Using Symantec Antivirus Assertion 749

Each custom assertion is purchased separately and must be installed on the Gateway
before they are available from the Policy Manager. Detailed instructions for installing and
configuring the custom assertions are provided in the Custom Assertions Installation
Manual.

For information on purchasing a custom assertion, please contact CA Technologies.

Chapter 14: Custom Assertions 719

Layer 7 Policy Authoring User Manual, v8.2

Access Resource Protected by JSAM Assertion
Installing and configuring the Sun Java System Access Manager Custom Assertion
package in the Gateway enables the Access Resource Protected by JSAM assertion in the
Policy Manager. This assertion allows a policy to use the Single Sign-On (SSO) and Policy
Service from an existing Sun® Java™ System Access Manager 7.0 or 7.1 deployment.

The Administrator is responsible for installing and configuring the Sun Java System
Access Manager Custom Assertion package on the Gateway. For more information, refer
to the Custom Assertion Installation Manual.

Notes: (1) You may receive an HTTP Basic authentication warning when the Access Resource
Protected by JSAM assertion is used with these assertions: Require XPath Credentials, Require
FTP Credentials, or Require WS-Security UsernameToken Profile Credentials. You may ignore
this policy validation warning. (2) If the incoming request is coming through a Securespan XML
VPN Client, be sure the Pass Through HTTP Cookies check box has been set on the [XML VPN
Client Policy] tab of the Gateway Account properties.

Note: When running this assertion in the browser client, a triangular warning icon () may

appear next to the dialog box when the assertion properties is displayed. You may ignore this
icon.

Context Variables Created by This Assertion

The user attributes for a successfully authenticated user are available through the
following context variables:

Attribute Context Variable

UID ${jsam.attributes.uid}

User Password ${jsam.attributes.userpassword}

DN ${jsam.attributes.dn}

CN ${jsam.attributes.cn}

SN ${jsam.attributes.sn}

Inet User Status ${jsam.attributes.inetuserstatus}

Given Name ${jsam.attributes.givenname}

Object Class ${jsam.attributes.objectclass}

 Table 240: Context variables created by Access Resource Protected by JSAM assertion

720 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

Policy Example

The following illustrates how this custom assertion might be used in a policy:

"At least one assertion must evaluate to true"

Require HTTP Basic Credentials
Require HTTP Cookie: iPlanetDirectoryPro

Access Resource Protected by JSAM

Route via HTTP(S) to URL

Using the Assertion

1. Do one of the following:

l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

l To change the configuration of an existing assertion, proceed to step 2 below.

2. Right-click Access Resource Protected by JSAM in the policy window and select
JSAM: Access Resource Protected by JSAM or double-click the assertion in the
policy window. The assertion properties are displayed.

 Figure 251: Access Resource Protected by JSAM Properties

3. Configure the dialog as follows:

Setting Description

Realm Enter the name of the realm defined on the Java System Access
Manager Server.

Resource Enter the protected resource URL defined in a JSAM policy. Be sure to
include the port number. For example:
http://server:80/WebApp/Service1.asmx

 Table 241: Access Resource Protected by JSAM settings

Chapter 14: Custom Assertions 721

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Action Enter the allowed action, as defined in a JSAM policy. For example,
POST or GET. The default is POST.

4. Click [OK] when done.

Access Resource Protected by Oracle Access Manager
Assertion

The Access Resource Protected by Oracle Access Manager assertion is used to delegate
authentication and authorization to an Oracle Access Manager 10g or 11g server.

This assertion will also populate context variables with the values and attributes set for
the action on Authorization Rules (on the OAM server).

You can control whether the obSSO cookie is excluded in the outbound request and set
its contents in a custom context variable.

The Administrator is responsible for installing and configuring the Access Resource
Protected by Oracle Access Manager Assertion on the Gateway. For more information,
refer to the Layer 7 Custom Assertion Installation Manual.

Context Variables Created by This Assertion

The Access Resource Protected by Oracle Access Manager assertion sets the following
context variables with details of the verification.

Variable Description

${<prefix>.actions.type} A multivalued context variable that returns all
action types.

${<prefix>.actions.<type>.names} A multivalued context variable that returns all
names related to a certain type, specified by
"<type>".

${<prefix>.actions.<type>.<name>} Returns a values or attribute related to a
certain type and name, specified by "<type>"
and "<name>".

oam.ssoCookie Returns the session cookie.

Note: This is only the default name. The
actual name is specified in the assertion
properties.

 Table 242: Context variables created by the Access Resources Protected by OAM assertion

722 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

Variable Description

oam.ssoCookie.name Returns the name of the OAM cookie.

oam.ssoCookie.value Returns full information of the session cookie,
such as name, value, and attributes.

The default variable prefix is oamResponse. This can be changed in the assertion
properties.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the policy development window, drag and drop the
assertion from the Access Control category in the Assertion tab into the policy
window.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Access Resource Protected By Oracle Access Manager in the policy
window and select Oracle Access Manager Protected Resource. The properties
dialog appears.

Chapter 14: Custom Assertions 723

Layer 7 Policy Authoring User Manual, v8.2

 Figure 252: Oracle Access Manager Protected Resource Properties

 3. Configure the properties as follows:

Setting Description

Protected Resource Enter the full name of the resource being protected. This should be in
the format:

//<host>:<port><resource_URL>

Where:

 l <host> is the hostname of the server that is servicing
<resource_URL>

 l <port> is the port number on the server (optional)

 l <resource_URL> is the resource being serviced; this resource
definition should follow the guidelines set by Oracle Access
Manager

You can also specify a context variable that contains the
resource.

Note the following:

 Table 243: Oracle Access Manager Protected Resource settings

724 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

 l The <host> and <port> must be defined in one of the host
identifiers via the OAM Admin Console.

 l The <resource_URL> must be defined in one of the Resources
in the Application Domains via OAM Admin Console.

 l The <host> does not need to be an actual hostname, as long as
it is defined in a host identifier via the OAM Admin Console.

Type
Enter the type of the resource. This can be a built-in type, such as
HTTP or EJB, or a custom type defined through the Access System
Console. For custom resource types, custom operations are defined
using the Oracle Access Manager system console when the resource
type is defined.

You can also specify a context variable that contains the type.

Default: HTTP

Method
Enter the action to be performed against the protected resource, as
dictated by the resource type. Examples are GET and POST for HTTP
resources, and EXECUTE for EJB resources. For custom resources,
operations are defined through the Access System Console when the
resource type is defined.

You can also specify a context variable that contains the method.

Response Variable
Prefix

Enter a prefix that will be added to the context variables created by
this assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

Default prefix: oamResponse

For an explanation of the validation messages displayed, see Context
Variable Validation in the Layer 7 Policy Manager User Manual.

Set SSO cookie in
context variable:

Specify a context variable to save the SSO cookie and value, including
all specified cookie attributes.

Default: oam.ssoCookie

You can access specific cookie information using these suffixes:

 l <variable>.name: Returns the name of the OAM SSO cookie.

 l <variable>.value: Returns the value of the OAM SSO cookie.

Omit SSO cookie in
Outbound Request

Select this check box to exclude the ObSSOCookie from the outbound
request.

Tip: You can exclude the cookie to avoid certain problems. For
example, this assertion is used to authenticate and authorize
consumer access to a service, but the CA API Gateway needs to
identify itself with a different set of credentials to an OAM-protected
service endpoint.

Clear this check box to not exclude the cookie in the outbound request.

Chapter 14: Custom Assertions 725

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Note: Clearing the check box does not guarantee that the outbound
request will contain an SSO Cookie or an updated SSO cookie.

Tip: To ensure that the outbound request contains an SSO Cookie, use
either the Manage Transport Properties/Headers or Route via HTTP
(S) assertions to add the cookie using the oam.ssoCookie context
variable.

Set cookie
attributes

Select this check box to set the cookie attributes.

 l Domain: Enter the domain for which the cookie is valid
(optional).

 l Path: Type the full path that specifies the subset of URLs to
which this cookie applies (optional).

 l Expiry: Enter the lifetime of the cookie, in seconds (optional). A
negative value indicates that the cookie is not stored
persistently and will be deleted when the browser is closed.
The default is -1,which the cookie will persist until the browser is
closed.

 l Version: Enter the required version of the state management
specifications to which the cookie conforms. The default is 0,
which means the cookie is using the Netscape cookie format.
Any other versions (for example, 1+) mean that the cookie is
using the RFC 2109 cookie format.

 l Comment: Enter any comments (optional). Note: As cookies
can contain private information about a user, the Cookie
attribute allows an origin server to document its intended use of
a cookie. You can then inspect the information to decide
whether to initiate or continue a session with this cookie.

HTTP only Select this check box to direct browsers to use cookies via the HTTP or
HTTP(S) protocols. This setting is the default.

Clear this check box to allow browsers to use cookies via other
protocols.

Secure Select this check box to direct browsers to use cookies only via
encrypted/secure connections.

Clear this check box to allow browsers to use cookies in unsecured
connections.

Note: The values used will be determined by the configuration of the Oracle Access
Manager System. For more information, refer to the Oracle® Access Manager User
Guide.

 4. Click [OK].

726 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

When a successful authorization call is made to Oracle Access Manager using this
assertion, the obSSOCookie is added to the response HTTP header (unless suppressed). If
the cookie is available in the request HTTP header on subsequent calls to the CA
API Gateway policy using the Access Resource Protected by Oracle Access Manager
assertion, the cookie will be used as the authorization credentials for the user.

When a user is authenticated by the Access Resource Protected by Oracle Access
Manager assertion, the authorization action information is made available in the policy
using the context variable described under "Context Variables Created by This Assertion".

Note: Failed authorization action information still requires a user to be authenticated, but not
authorized to access the specified resource.

Authenticate using Tivoli Access Manager Assertion
Installing and configuring the TAM (Tivoli Access Manager) Custom Assertion package in
the Gateway installs and enables the Authenticate using Tivoli Access Manager assertion in
the Policy Manager. This assertion instructs the Gateway to delegate the authentication
and authorization tasks required to gain access to a protected service to the IBM®
Tivoli® Access Manager (version 6.0) server.

The Administrator is responsible for installing and configuring the TAM Custom
Assertion package on the Gateway. For more information, refer to the Custom Assertion
Installation Manual. If you encounter authentication errors during the execution of a
policy, refer to the Troubleshoot Errors section below.

Notes: (1) You may receive an HTTP Basic authentication warning when the Tivoli Access
Manager assertion is used with these assertions: Require XPath Credentials, Require FTP
Credentials, or Require WS-Security UsernameToken Profile Credentials. You may ignore this
policy validation warning. (2) When running this assertion in the browser client, a triangular

warning icon () may appear next to the dialog box when the assertion properties is

displayed. You may ignore this icon.

Usage Rules

Note the following rules when using the Authenticate using Tivoli Access Manager
assertion:

 l You cannot use this assertion with:

 l Authentication assertions that encrypt passwords, such as the Require SSL
or TLS Transport with Client Authentication assertion (a clear text password
 is required)

Chapter 14: Custom Assertions 727

Layer 7 Policy Authoring User Manual, v8.2

 l The Sign Element and Encrypt Element assertions

 l The Authenticate User or Group assertion .

 l You can use this assertion with:

 l The Require HTTP Basic Credentials assertion

 l Username Token (including the Require Encrypted UsernameToken Profile
Credentials assertion)

 l The Require XPath Credentials assertion

 l The Require SSL or TLS Transport assertion

 l Any other assertion not listed in the exclusion list above.

 l A policy can only contain a single Authenticate using Tivoli Access Manager
assertion per authentication scheme. For complex policies that contain more than
one authentication scheme, multiple instances of this assertion may be used.

 l In a policy, the Authenticate using Tivoli Access Manager assertion must appear
before the routing assertion and after the Require SSL or TLS Transport assertions.

Note: You can use XML encryption/signing if the Require Encrypted UsernameToken Profile
Credentials assertion is also present in the policy.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Authenticate using Tivoli Access Manager in the policy window and
choose Authenticate using Tivoli Access Manager or double-click the assertion
in the policy window. The properties are displayed.

728 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 253: Tivoli Access Manager Authentication Properties

 3. Configure the dialog as follows:

Setting Description

TAM Instance Specify the TAM instance to use:

 l Leave this field blank to use the default setting, which sets the
TAM instance to the same value as tam.pd.config.file.name in
the tam_agent.properties file on the Gateway.

 l Enter the TAM instance name, as configured in the tam_
agent.properties file on the Gateway. Specifically, this value is
the "<instanceName>" part of the tam.pd.config.file. name
property.

You can also reference a context variable containing the
instance name.

For more information on TAM instances, see Installing the Tivoli
Access Manager Assertion in the Custom Assertions Installation
Manual.

Resource
Enter the protected resource defined in the Tivoli Access Manager.
You may reference context variables.

Action Enter the requested action (such as “T” or “B”) to be applied to
resource for the given user.

Mode Choose how user credentials are passed to the Tivoli Access
Manager: password or iv-creds.

 Table 244: Tivoli Access Manager assertion settings

Chapter 14: Custom Assertions 729

Layer 7 Policy Authoring User Manual, v8.2

Note: The action and resource values are determined by the TAM (Tivoli Access
Manager) settings used by the Gateway. The action value is taken from a list of
allowable actions defined in the permission setting of the TAM Access Control List, and
the resource value is the resource specified in the path in the configured TAM object
space. Consult your TAM Administrator for information about the action and resource
properties.

 4. Click [OK] when done.

Troubleshooting

If configuration errors exist in the Tivoli Access Manager server or the CA API Gateway,
the following error messages may appear in the Policy Manager Gateway Audit Events
window when the Tivoli Access Manager assertion is used in a policy. For information
about the Gateway Audit Events window, see Gateway Audit Events in the Layer 7 Policy
Manager User Manual.

Contact your Administrator if you encounter authentication errors. If you require
additional assistance, contact CA Technical Support.

Error Message Description

SEVERE: Not init or
failed

This error message appears in the Gateway Audit Events window when:

 l The TAM server is down

 l The TAM process is not running

 l The Gateway is not properly configured to connect to the TAM
server.

Verify the Gateway and TAM server connection settings.

WARNING:
Authorization
(access control)
failed

This error message appears in the Gateway Audit Events window when
the Gateway connection credentials are not authenticated or authorized
by the TAM server. A Log on to Gateway dialog prompts you to re-enter
your user name and/or password. Ensure that the user name and
password entered in Securespan XML VPN Client match those
configured in the user database used by the TAM server to authenticate
and authorize users.

 Table 245: Tivoli Access Manager errors

Authenticate with SiteMinder R12 Protected Resource
Assertion

Installing and configuring the SiteMinder R12 Custom Assertion package in the Gateway
installs and enables the Authenticate with SiteMinder R12 Protected Resource assertion in
the Policy Manager. This assertion instructs the Gateway to delegate the authentication
and authorization tasks required to gain access to a protected service on the CA

730 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

SiteMinder Policy Server version 12.0 running in FIPS-only mode.

The Administrator is responsible for installing and configuring the SiteMinder R12
Custom Assertion package on the Gateway. For more information, refer to the Custom
Assertion Installation Manual. If you encounter authentication errors during the execution
of a policy, refer to "Troubleshooting" below.

Notes: (1) You may receive an HTTP Basic authentication warning when the SiteMinder R12
Protected Resource assertion is used with these assertions: Require XPath Credentials,
Require FTP Credentials, or Require WS-Security UsernameToken Profile Credentials. You
may ignore this policy validation warning. (2) When used in a policy that includes the Require
HTTP Basic Credentials and Require HTTP Cookie assertions, ensure that the "HTTP Basic"
assertion comes after the "HTTP Cookies" assertion. (3) When running this assertion in the

browser client, a triangular warning icon () may appear next to the dialog box when the

assertion properties is displayed. You may ignore this icon.

Context Variables Created by This Assertion

See "Authenticate with SiteMinder R12 Assertion" under Context Variables for SiteMinder
in the Layer 7 Policy Manager User Manual.

Usage Rules

Note the following rules when using the SiteMinder R12 Protected Resource assertion:

 l The Authenticate with SiteMinder R12 Protected Resource assertion cannot be
used with:

 l Authentication assertions that encrypt passwords, such as the Require SSL
or TLS Transport with Client Authentication assertion

 l The Sign Element and Encrypt Element assertions

 l The Authenticate User or Group assertion

 l The Authenticate with SiteMinder R12 Protected Resource assertion can be used
with:

 l The Require HTTP Basic Credentials assertion

 l Require SSL or TLS Transport assertion

 l Any other assertion not listed in the above list.

 l A policy should contain only a single Authenticate with SiteMinder R12 Protected
Resource assertion per authentication scheme. However, multiple occurrences of
this assertion is possible in complex policies that contain multiple authentication
schemes.

Chapter 14: Custom Assertions 731

Layer 7 Policy Authoring User Manual, v8.2

Note: You may receive a Siteminder R12 Protected Resource warning when the
assertion is used multiple times on one policy path ("Warning: You already have an access
control Custom Assertion in this path.") You may ignore this policy validation warning.

 l In a policy, the Authenticate with SiteMinder Protected Resource R12 assertion
should appear before the routing assertion and after the "Require SSL or TLS
Transport Assertion" on page 267 and authentication method assertions.

Using the assertion

 1. Do one of the following:

 l To add the assertion to the Policy Development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to step 2 below.

 2. Right-click Authenticate with SiteMinder R12 Protected Resource in the policy
window and choose Authenticate with SiteMinder R12 Protected Resource or
double-click the assertion in the policy window. The assertion properties are
displayed.

 Figure 254: SiteMinder R12 Custom Assertion Properties

 3. Configure the dialog as follows:

Setting Description

Agent ID Enter the name of the CA SiteMinder Agent to use. The name may be
omitted when only one agent is configured.

Protected Resource Enter the name of the resource being protected by the CA SiteMinder
Policy Server.

 Table 246: SiteMinder R12 Custom Assertion settings

732 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Action Enter the action (such as “POST” or “GET”) for the protected
resource. The default action is POST.

Authorize via
SiteMinder Cookie

Specify how authorization should occur:

 l Select this check box to have the assertion attempt to gather a
valid SiteMinder cookie and place it in the HTTP Response.

 l Clear this check box to not add a SiteMinder cookie to the
HTTP Response.

If authorizing via SiteMinder Cookie, specify how to obtain the cookie:

 l Use cookie from request: Choose this option to have the
assertion attempt to gather the SiteMinder cookie from the
HTTP Request and add it to the HTTP Response with the
name specified in the adjacent field.

Default SiteMinder cookie name: SMSESSION

 l Use cookie from variable: Choose this option to have the
assertion attempt to gather a valid SiteMinder cookie from the
context variable specified in the adjacent field (in the format
"${cookieName}".

Note: The Gateway will log audit message code 8001 if a valid cookie
could not be found.

Note: The action and resource values are determined by the settings in the realm that
is used by the Gateway custom agent in the CA SiteMinder Policy Server. Consult your
Administrator for information about the action and resource properties.

 4. Click [OK] when done.

Troubleshooting

If configuration errors exist in the CA SiteMinder Policy Server or the Gateway, then one
of the following error messages will appear in the Gateway Audit Events window when
the SiteMinder R12 Protected Resource assertion is used in a policy.

Contact your Administrator if you encounter authentication errors.

Error Message Description

SEVERE: Unable to
connect to the
SiteMinder Policy
Server

This error message appears when:

 l The CA SiteMinder Policy Server is down

 l The Gateway is not properly configured to connect to the CA
SiteMinder Policy Server

 l The connection credentials cannot be read properly because

 Table 247: SiteMinder R12 errors

Chapter 14: Custom Assertions 733

Layer 7 Policy Authoring User Manual, v8.2

Error Message Description

the hashed cookie that is presented to the CA SiteMinder Policy
Server cannot be decrypted.

An error message indicating a SiteMinder Agent initialization failure is
also displayed. Verify the CA API Gateway and CA SiteMinder Policy
Server connection settings.

SEVERE: The
SiteMinder Agent
name and/or the
secret is incorrect

This error message appears when the agent name and/or the secret is
not configured correctly.

WARNING:
Authorization (access
control) failed

This error message appears when the Gateway connection credentials
are not authenticated or authorized by the CA SiteMinder Policy Server.
You will be prompted to re-enter your user name and/or password.
Ensure that the user name and password entered in Securespan XML
VPN Client match those configured in the user database used by the CA
SiteMinder Policy Server to authenticate and authorize users.

The following error messages relate to port numbers defined in the siteminder12.agent.configuration
cluster property. For detailed information about this cluster property, see "Installing the SiteMinder
Assertion" in the Custom Assertions Installation Manual.

SEVERE: Siteminder
configuration error:
authentication port
not defined

This error message appears when the authentication port is not defined

properly.

SEVERE: Siteminder
configuration error:
authorization port
not defined

This error message appears when the authorization port is not defined
properly

SEVERE: Siteminder
configuration error:
accounting port not
defined

This error message appears when the accounting port is not defined
properly

Execute Salesforce Operation Assertion
The custom Execute Salesforce Operation assertion allows CA API Gateways to integrate
with the SaaS data APIs provided by Salesforce.com.

The assertion supports the following Salesforce operations:

Create Objects
Update Objects
Retrieve Objects

734 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

Retrieve Modified Objects
Retrieve Deleted Objects
Execute Query
Search Objects

Note: This is an extra-cost assertion that requires separate licensing. For more information,
please contact CA Technologies.

Context Variables Created by This Assertion

The Execute Salesforce Operation assertion sets the following context variables for each
action. Note: The default <prefix> is "sfdc" and can be changed in the wizard.

Action & Variable Description

Action: Create Objects

${<prefix>.
sessionURL}

Returns the session URL used for the call.

${<prefix>.
sessionID}

Returns the session ID used for the call.

$<prefix>.count} Returns the number of records processed.

${<prefix>. objectID} On success, returns the object IDs.

${<prefix>.error} Returns error messages, if any.

${<prefix>. warning} Returns warning messages for specific records, if any (for example,
“Unknown picklist” or “Field truncated”).

Action: Update Objects

${<prefix>.
sessionURL}

Returns the session URL used for the call.

${<prefix>.
sessionID}

Returns the session ID used for the call.

${<prefix>.count} Returns the number of records processed.

${<prefix>. objectID} On success, returns the object IDs; multivalued.

${<prefix>.error} Returns error messages, if any; multivalued.

${<prefix>. warning} Returns warning messages, if any; multivalued.

Action: Retrieve Objects

${<prefix>. Returns the session URL used for the call.

 Table 248: Context variables created by the Execute Salesforce Operation assertion

Chapter 14: Custom Assertions 735

Layer 7 Policy Authoring User Manual, v8.2

Action & Variable Description

sessionURL}

${<prefix>.
sessionID}

Returns the session ID used for the call.

${<prefix>.
sObjectIDs}

On success, returns the object IDs; multivalued.

${<prefix>. sObjects.
<fieldName>}

On success, returns multivalued context variables; (optional).

Action: Retrieve Modified Objects

${<prefix>.
sessionURL}

Returns the session URL used for the call.

${<prefix>.
sessionID}

Returns the session ID used for the call.

${<prefix>. ObjectID} On success, returns the object IDs; multivalued.

${<prefix>.
lastDateCovered}

On success, returns the last date covered.

${<prefix>. sObjects.
<fieldName>}

On success, returns multivalued context variables; (optional).

${<prefix>. sObjects} On success, returns XML representing the objects (optional);
multivalued.

Action: Retrieve Deleted Objects

${<prefix>.
sessionURL}

Returns the session URL used for the call.

${<prefix>.
sessionID}

Returns the session ID used for the call.

${<prefix>. sObjects} On success, returns list of objects.

${<prefix>.
lastDateCovered}

On success, returns the last date covered.

Action: Execute Query

${<prefix>.
sessionURL}

Returns the session URL used for the call.

${<prefix>.
sessionID}

Returns the session ID used for the call.

${<prefix>.
queryLocator}

On success, returns the query locator of the query executed.

736 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

Action & Variable Description

${<prefix>.count} Returns the number of records processed.

${<prefix>.done} Returns true or false based on the number of records processed.

${<prefix> .sObjects.
<fieldName>}

On success, returns multivalued context variables; (optional).

${<prefix>.
sObjectXML}

On success, returns XML representing the objects (optional);
multivalued.

Action: Search Objects

${<prefix>.
sessionURL}

Returns the session URL used for the call.

${<prefix>.
sessionID}

Returns the session ID used for the call.

${<prefix>.count} Returns the number of records processed.

${<prefix>. sObjects} On success, returns multivalued context variables.

Installing and configuring the Salesforce Custom Assertion package in the Gateway
installs and enables the Execute Salesforce Operation assertion in the Policy Manager.
The Administrator is responsible for installing and configuring the Salesforce Custom
Assertion package on the Gateway. For more information, refer to the Custom Assertion
Installation Manual.

Note: When running this assertion in the browser client, a triangular warning icon () may

appear next to the dialog box when the assertion properties is displayed. You may ignore this
icon.

Using the Assertion

 1. Do one of the following:

 l To add the assertion to the policy development window, see "Adding an
Assertion" on page 112.

 l To change the configuration of an existing assertion, proceed to the next step.

 2. In the Policy Manager’s policy window, right-click Executive Salesforce Operation
and click Execute Salesforce Operation Properties. Alternatively, double-click the
assertion in the policy window. The Execute Salesforce Operation Wizard is
displayed.

Chapter 14: Custom Assertions 737

Layer 7 Policy Authoring User Manual, v8.2

 Figure 255: Execute Salesforce Operation Wizard: Configure Connection

 3. In the list, choose a Salesforce connection to use and then click [Reconnect]. Tip:
The Salesforce connections are defined using the Manage Salesforce Operation
Service Connections task.

 4. Select a Salesforce Action (operation) to perform and then click [Next].

 5. Configure the Salesforce action. See the appropriate section below for details.

 6. Click [Finish] to close the wizard when done.

Creating Objects

To create objects in Salesforce, choose the Create Objects action in the Execute
Salesforce Operation wizard (see Figure 255). Table 249 below describes the operation's
settings.

738 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 256: Execute Salesforce Operation Wizard: Configure Action - Create Objects

Configure the settings as follows:

Setting Description

Select Object Type Choose the object type to be created from the drop-down list. The object
type determines which other fields require population.

Rollback On Error Select this check box so that, if the assertion fails to create an object, the
assertion removes (rolls back) the objects it previously created during
the call and does not try to create more. This setting is the default.

Clear this check box so that, if the assertion fails to create an object, the
assertion will continue to create objects and it will not remove any
objects. You will have to look at the returned success/failure status for
each object and create policy logic to handle the failures.

IMPORTANT: Salesforce.com only supports batches up to 200 objects,
and the assertion automatically issues multiple calls if required. This
means that, if the assertion fails to create the 205th object, then the
assertion only rolls back objects 201-204. It will not roll back objects 1-
200 because they were part of the previous call.

 Table 249: Configure Action - Create Objects

Chapter 14: Custom Assertions 739

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Select Assignment
Rule

For objects of type “Case” or “Lead”, choose the assignment rule to use
from the drop-down list.

Select Object Fields Select the fields to populate when the object is created. Then enter a
value for each selected field. You may specify context variables.
Mandatory fields are preselected and must be completed.

Tip: You can create more than one object at a time by specifying
multivalued context variables for each field. Ensure that all the
multivalued variables have the same number of values, otherwise the
assertion will fail.

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

Truncate values if
too long

Select this check box to truncate input values if their length is greater
than the maximum length for the given field.

Clear this check box to leave long input values at their full length.

Note: Records with truncated fields will still be successfully created. The
truncation will be noted in the ${<prefix>.warning} context variable.

Updating Objects

To update objects in Salesforce, choose the Update Objects action in the Execute
Salesforce Operation wizard (see Figure 255). Table 250 below describes the operation's
settings.

740 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 257: Execute Salesforce Operation Wizard: Configure Action - Update Objects

Configure the settings as follows:

Setting Description

Select Object Type Choose the object type to be updated. The object type determines which
other fields require population.

Rollback On Error Select this check box so that, if the assertion fails to create an object, the
assertion removes (rolls back) the objects it previously created during
the call and does not try to create more. This setting is the default.

Clear this check box so that, if the assertion fails to create an object, the
assertion will continue to create objects and it will not remove any
objects. You will have to look at the returned success/failure status for
each object and create policy logic to handle the failures.

IMPORTANT: Salesforce.com only supports batches up to 200 objects,
and the assertion automatically issues multiple calls if required. This

 Table 250: Configure Action - Update Objects

Chapter 14: Custom Assertions 741

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

means that, if the assertion fails to create the 205th object, then the
assertion only rolls back objects 201-204. It will not roll back objects 1-
200 because they were part of the previous call.

Select Assignment
Rule

This drop-down is enabled only when you are updating an object of type
Case or Lead. Select the Assignment Rule from the drop-down list.

Select Object Fields Select the fields you want to populate when updating the object. The “Id”
field is mandatory. Provide values for the object you are updating by
entering text directly or leveraging context variables.

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

Truncate values if
too long

Select this check box to truncate input values if their length is greater
than the maximum length for the given field.

Clear this check box to leave long input values at their full length.

Note: Records with truncated fields will still be successfully created. The
truncation will be noted in the ${<prefix>.warning} context variable.

Retrieving Objects

To retrieve objects in Salesforce, choose the Retrieve Objects action in the Execute
Salesforce Operation wizard (see Figure 255). Table 251 below describes the operation's
settings.

742 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

 Figure 258: Execute Salesforce Operation Wizard: Configure Action - Retrieve Objects

Configure the settings as follows:

Setting Description

Select Object Type Choose the object type to be retrieved. The object type determines
which other fields require population.

Object ID(s)
You can specify one or more Object IDs to retrieve. This field accepts
context variables.

Select Fields to be
Retrieved

Select the fields to be included in the retrieved object information. By
default, the “Id” field will be selected.

Generate XML
Output

Select this check box to return the object information in XML format.

Clear this check box to return the object information in a multi-valued
context variable.

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

 Table 251: Configure Action - Retrieve Objects

Chapter 14: Custom Assertions 743

Layer 7 Policy Authoring User Manual, v8.2

Retrieving Modified Objects

To retrieve modified objects in Salesforce, choose the Retrieve Modified Objects action in
the Execute Salesforce Operation wizard (see Figure 255). Table 252 below describes the
operation's settings.

 Figure 259: Execute Salesforce Operation Wizard: Configure Action - Retrieve Modified Objects

Configure the settings as follows:

Setting Description

Select Object Type Choose the object type to be retrieved. The object type determines
which other fields require population.

Timeframe Choose a time frame from the drop-down list: Past Hour, Past Day,
Past Week, or Custom.

 Table 252: Configure Action - Retrieve Modified Objects

744 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

The “Custom” option displays two additional text fields with which you
can specify context variables for the custom period:

 l From UTC Time: From UTC Time is mandatory. It cannot be
more than 15 days in the past. The required format of custom
time frames is: “YYYY-MM-DD HH:MM:SS”.

 l To UTC Time: If To UTC Time is left blank, it will default to the
current time and always be greater than the From UTC Time.

Tip: The <prefix>.lastDateCovered value from a previous assertion
execution can be leveraged here to ensure full coverage.

Retrieve Object
Information

Select this check box to retrieve the GUID of matching objects and the
object information for each those objects. Selecting this check box also
enables the Select Fields to Be Retrieved setting and the Generate XML
Output setting.

Clear this check box to retrieve only the GUID of matching objects.

Select Fields to Be
Retrieved

Select the fields to be included in the retrieved object information. By
default, the “Id” field will be selected.

Generate XML
Output

Select this check box to return the object information in XML format.

Clear this check box to return the object information in a multi-valued
context variable.

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

Retrieving Deleted Objects

To retrieve deleted objects in Salesforce, choose the Retrieve Deleted Objects action in
the Execute Salesforce Operation wizard (see Figure 255). Table 253 below describes the
operation's settings.

The assertion will return the GUIDs for any objects that meet the criteria specified. Field
values cannot be retrieved for deleted objects.

Chapter 14: Custom Assertions 745

Layer 7 Policy Authoring User Manual, v8.2

 Figure 260: Execute Salesforce Operation Wizard: Configure Action - Retrieve Deleted Objects

Configure the settings as follows:

Setting Description

Select Object Type Choose the object type to be retrieved. The object type determines
which other fields require population.

Enter Timeframe Choose a timeframe from the drop-down list: Past Hour, Past Day,
Past Week, or Custom.

The “Custom” option displays two additional text fields with which you
can specify context variables for the custom period:

 l From UTC Time: From UTC Time is mandatory. It cannot be
more than 15 days in the past. The required format of custom
time frames is: “YYYY-MM-DD HH:MM:SS”.

 l To UTC Time: If To UTC Time is left blank, it will default to the
current time and always be greater than the From UTC Time.

Tip: The <prefix>.lastDateCovered value from a previous assertion
execution can be leveraged here to ensure full coverage.

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

 Table 253: Configure Action - Retrieve Deleted Objects

746 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

Executing Queries

To execute queries in Salesforce, choose the Execute Query action in the Execute
Salesforce Operation wizard (see Figure 255). Table 254 below describes the operation's
settings.

 Figure 261: Execute Salesforce Operation Wizard: Configure Action - Execute Query

Configure the settings as follows:

Setting Description

Execute New Query Select this option to begin a new query. Enter the SOQL query by typing
or pasting text or specifying a context variable.

Validate Query
button

Click this button to validate the query entered in the box above.

Include archived and
deleted records in
result

Select this check box to include archived and deleted records in the
results.

Clear this check box to exclude archived and deleted records from the
results.

 Table 254: Configure Action - Execute Query

Chapter 14: Custom Assertions 747

Layer 7 Policy Authoring User Manual, v8.2

Setting Description

Continue From
Previous Query

Select this option to begin the result set after the previously returned
result set. Enter either a static query locator or a context variable query
locator that is resolved at run time

Return first 500
records only

Select this check box to return only the first 500 records.

Clear this check box to return all the records.

Generate XML
Output

Select this check box to return the object information in XML format.

Clear this check box to return the object information in a multi-valued
context variable.

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

Searching Objects

To search objects in Salesforce, choose the Search Objects action in the Execute
Salesforce Operation wizard (see Figure 255). Table 255 below describes the operation's
settings.

 Figure 262: Execute Salesforce Operation Wizard: Configure Action - Search Objects

748 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

Configure the settings as follows:

Setting Description

Enter Search Query
(SOSL)

Enter the SOSL query by typing or pasting text or specifying a context
variable.

Note: Only a maximum of 200 records can be retrieved with each SOSL
query.

Validate button Click this button to validate the SOSL query.

Variable Prefix Enter a prefix that will be added to the context variables created by this
assertion. This prefix will ensure uniqueness and will prevent the
variables from overwriting each other when multiple instances of this
assertion appear in a policy.

 Table 255: Configure Action - Search Objects

Exporting/Importing Policies

After importing a policy that uses the custom Execute Salesforce Operation
assertion,open the assertion and do one of the following before using the policy:

 l If the assertion has a selected connection, no action is needed.

 l If the assertion has connections but none is selected, then select a connection and
save the assertion.

 l If the assertion does not have any connections, use the Manage Salesforce
Operation Service Connection task to create a connection. Then open the assertion,
select the new connection, and save the assertion. For information about creating
connections, see Managing Salesforce Operation Service Connections in the Layer
7 Policy Manager User Manual.

Scan Using Symantec Antivirus Assertion
The Symantec® Custom Assertion package is an optional assertion package that can be
added to the Gateway. When installed, this assertion allows the Gateway to direct all
messages (and attachments) to the Symantec AntiVirus Engine, where they can be
examined for viruses or other potentially malicious code in the message that could
compromise the web service or other back end systems.

If the antivirus engine determines that the message is clean, the assertion passes and the
Gateway continues to process the policy. If the antivirus engine detects a potential
threat, then the assertion fails.

When this custom assertion package is installed, the Scan Using Symantec Antivirus
assertion appears in the Policy Manager.

Chapter 14: Custom Assertions 749

Layer 7 Policy Authoring User Manual, v8.2

The Administrator is responsible for installing and configuring the Symantec Custom
Assertion package on the Gateway. For more information, refer to the Custom Assertion
Installation Manual.

Note: When running this assertion in the browser client, a triangular warning icon () may

appear next to the dialog box when the assertion properties is displayed. You may ignore this
icon.

Tip: Consider using the Scan Using ICAP-Enabled Antivirus assetion for greater flexibility in
checking messages for viruses.

Using the Assertion

 1. Add the assertion to the policy development window as described in "Adding an
Assertion" on page 112.

The assertion is added to the policy window.

 2. Position the assertion before the routing assertion to scan the request message;
after the routing assertion to scan the response message.

750 Chapter 14: Custom Assertions

Layer 7 Policy Authoring User Manual, v8.2

Index

A

Access control
assertions 161

Access Resource Protected by JSAM Assertion 720
Accesss Resource Protected by Oracle Access Man-

ager Assertion 722
Add

assertion to policy 112
fragments to policy 103
global schemas 75
listen port 133
UDDI registry 88
user or group to policy 170

Add "All" Assertion 619
Add "One or More" Assertion 619
Add Audit Detail Assertion 600
Add Comment to Policy Assertion 618
Add or Remove WS-Security Assertion 273
Add or Remove XML Element(s) Assertion 414
Add Security Token Assertion 277
Add Timestamp Assertion 283
Add WS-Addressing Assertion 416
Adding a Comment 40
Adding a New Global Resource 75
Adding a Policy Fragment to a Service Policy 103
Adding an Assertion 112
Administrative audits 598
Aliases 15

changing security zone 17
All Assertions Must Evaluate to True 2, 619
AMF policy 34
Annotating a policy 40
Antivirus

Sophos 687, 692
Symantec 749

Apply JSON Transformation Assertion 419
Apply Rate Limit Assertion 573
Apply Throughput Quota Assertion 578
Apply to each member of a context variable 653
Apply XSL Transformation Assertion 424
Assertion

adding 112
deleting 119
differences 30
disabling 119
enabling 121
evaluate to true 619
latency 122
properties 30
repositioning in policy 18
runnning concurrently 651
selecting target identity 152
selecting target message 153

Assertions Must Evaluate to True 619
Assertions tab 112
At Least One Assertion Must Evaluate to

True 2, 619, 625
Audit Assertion 602, See also Message Auditing
Audit details 600
Audit message

administrative 598
message summary 598
system 598

Audit Message Filter policy 34
Audit Messages in Policy Assertion 602
Audit records 713

converting to XML 713
Audit Viewer policy 36
Auditing 597, 602
Authenticate Against Identity Provider Assertion 163
Authenticate Against Radius Server Assertion 164
Authenticate Against SiteMinder Assertion 167
Authenticate Users or Group Assertion 170
Authenticate using Tivoli Access Manager 727
Authenticate with SiteMinder Protected Resource 730
Authenticating a Client via Kerberos 145
Authentication credentials 251
Authentication Credentials 217
Authentication in a Policy 14
Authentication method 231
Authorize via SiteMinder Assertion 173
Automatic Threat Protection 666
Automatic WS-Security 275
AV policy 36

B

Base64 encoding 435
Basic Security Profile 1.0 441, 443
BSP compliance 441
Build RST SOAP Request Assertion 285
Build RSTR SOAP Response Assertion 288
Build SAML Protocol Request Assertion 291
Build SAML Protocol Response Assertion 299
Builder, SAMLP 291

C

CA eTrust SiteMinder Policy Server 733
Cache

JDBC metadata 206
look up in 585
storing to 594

Cancel Security Context Assertion 306
Capture Identity of Requestor Assertion 604
Certificates

extracting attributes 180
Validation 486

Change
content type 495, 694
WSS assertion recipient 146

Layer 7 Policy Authoring User Manual, v8.2

Index 751

Change WSS Assertion Recipient 146
Character encoding 412
Check Protected Resource Against SiteMinder 175
Check Results from XML Verification Assertion 372
Circular References 500, 704
Client

authenticating via Kerberos 145
Client certificate 246

authenticating 238, 267
Clone

listen port 133
UDDI registry 88

Code editor 159
Code injection protection 670
Coercive parsing attack 666
Collect WSDM Metrics Assertion 711
Comment 618

adding 40, 618
deleting 42
editing 41

Compare
Expression 621
Expressions 621
Variable 621
Variables 621

Compare Expression Assertion 621
Comparing Policies 28
Compress Messages to/from XVC Assertion 429
Compression 429
Configure

internal use policy 21
policies 18
policy fragment 21

Configure Authentication form 262
Configure SAML Browser/Artifact form 259
Configure WS-Security Decoration Assertion 309
Configure WS-Trust Credential Exchange form 177
Configuring a Policy 18
Configuring Message Buffering Assertion 508
Constrained Delegation 252
Content type

validate or change 495, 694
Context Variables

Comparing 621
data types 656
debug trace policy 71
joining 636
making available in fragments 632
retrieve credentials 250
splitting 661

Continue Processing Assertion 625
Convert Audit Record to XML Assertion 713
Cookies 215, 512
Copy Request Message to Response Assertion 510
Create

internal use policy 21
policy fragment 21, 102

Create Include Fragment 102

Create routing strategy
adding 626
cloning 626
deleting 628-629
editing 626

Create Routing Strategy
cloning 628
editing 628

Create Routing Strategy Assertion 626
Create SAML Token Assertion 315
Create Security Context Token Assertion 328
Create XACML Request Assertion 330
Creating a Computer Account for NTLM Authentic-

ation 221
Creating a Policy or Policy Fragment 9, 21
Credentials

authenticating 14, 163
FTP 214
HTTP basic 215
SSH 237
WS-Federation 263
WS-Trust 177
XPath 248

Credentials from Context Variable 250
Cross-site request forgery 672
Custom Assertions

SiteMinder R12 Protected Resource 730
Sun Java System Access Manager 720
Tivoli Access Manager 727

Customer identity 604
Customize Error Response Assertion 430
Customize SOAP Fault Response Assertion+ 607
Customized SOAP faults 612

D

Debug trace policy 66-67
context variables 71
deleting 68
permissions 71

Debugger 56
Debugging a Policy 56
Decode 432, 435
Decrypt XML Element Assertion 374
Delete

debug trace policy 68
global schemas 77
policy fragment 23, 105
policy template 142

Deleting a Comment 42
Deleting a Global Resources 77
Deleting a Policy Fragment 23, 105
Deleting an Assertion 119
Disable

assertion 119
Disabling a Policy 24
Disabling an Assertion 119
Document structure threats 675, 678

Layer 7 Policy Authoring User Manual, v8.2

752 Index

Domain identity injection 226

E

Echo routing 510
Edit

encapsulated assertion 133-134
global schemas 77
policies 22
policy fragment 104
policy template 142

Editing a Comment 41
Editing a Global Resource 77
Editing a Policy 22
Editing a Policy Fragment 104
Email alert 612
Email Alert Properties form 613
Enabling

assertion 121
Enabling a Policy 24
Encapsulated assertion

adding 133
cloning 133
editing 133-134
exporting 133
properties 134
removing 133
role 130

Encapsulated Assertion Configuration Properties 134
Encode 412, 435, 437
Encode to MTOM Format Assertion 437
Encode/Decode Data Assertion 435
Encrypt Element Assertion 346
Encrypt XML Element Assertion 376
Encrypted Username Token Assertion 213
Enforce WS-I BSP Compliance Assertion 441
Enforce WS-I SAML Compliance Assertion 443
Enforce WS-Security Policy Compliance Assertion 441
Error messages 26
Error response 430
ESM

metrics See WSDM metrics
subscription See WSDM subscription

Establish Outbound Secure Conversation Assertion 348
Evaluate JSON Path Expression 445
Evaluate Regular Expression Assertion 449
Evaluate Request XPath Assertion 458
Evaluate Response XPath Assertion 461
Evaluate SAML Protocol Response Assertion 353
Evaluate WSDL Operation Assertion 465
Evaluate XACML Policy Assertion 356
Exchange Credentials using WS-Trust Assertion 177
Execute Routing Strategy Assertion 630
Execute Salesforce Operation Assertion 734
Explicit SSL 524
Export

policies 42
Export Variables from Fragment Assertion 632

Exporting a Policy 42
Exporting/Importing a Policy 42
External entity attack 667
Extract Attributes for Authenticated User Assertion 185
Extract Attributes from Certificate Assertion 180
Extract schema from WSDL 503, 707

F

Failover strategy 626
Fault level 607
Feedback List 630, 648
Folders 12
Forgery protection 672
Form data 488
Fragments 21, 23, 104, 106, 635

Export variables 632
FTP credentials 214
FTP(S) Routing 520, 563

G

Generate OAuth Signature Base String Assertion 360
Generate Security Hash Assertion 365
Generate UUID Assertion 634
GIF publishing 94, 99
Global policies 106
Global resources 72

adding 75
analyzing 84
deleting 77
editing 77
importing 77

Global schemas 72
adding 75
deleting 77
editing 77

Groups
authenticating 163, 170

H

Handle UDDI Subscription Notification Assertion 714
Hash, generating 365
Header

adding 515
host headers 535
HTML Form Data Assertion 488
HTTP basic credentials 215
HTTP compression 429
HTTP cookies 215
HTTP form 482, 484
HTTP header

adding 515
removing 515
replacing 515

HTTP host headers 535
HTTP(S) Routing Properties 529

Layer 7 Policy Authoring User Manual, v8.2

Index 753

I

Identity attributes 185
Implicit SSL 524
Import WS-Policy from URL in UDDI Registry 47
Importing a Policy from a File 44, 51
Importing a Policy via UDDI Registry 46
Include Policy Fragment Assertion 635
Index lookup 640
Inject domain identity 226
Injection protection 670
Internal

assertion 711
Internal Services

publish 91
WSDM QosMetric 711
WSDM Subscription 717

Internal use policies 33
Internal use policy

creating 21
IP address range 592
ISO8859-1 413
Items by index position, looking up 640
Items by value, looking up 641

J

Java System Access Manager 720
JDBC connection

editing 628
JDBC metadata, caching 206
JDBC query 187
JMS property

adding 515
removing 515
replacing 515

JMS routing 541
Join Variable Assertion 636
JSON

schema 490, 696
JSON document threats 678
JSON Path Expression

evaluating 445
JSON transformation 419

K

KDC 144
Kerberos 143, 243

authenticating client 145
authentication credentials 251

Kerberos Configuration dialog 143
keyedReference meta data 99
Keytab 143

L

Latency, assertion 122

LDAP query 209
Limit Availability to Time/Days Assertion 584
Limit Request Size Assertion 668
Limits 573, 668
Look Up Certificate Assertion 367
Look Up Context Variables 637
Look Up in Cache Assertion 585
Look Up Item by Index Position Assertion 640
Look Up Item by Value Assertion 641
Look Up Secure Conversation Assertion 370

M

Malicious code injection 684
Manage Cookie Assertion 512
Manage Gateway Assertion 715
Manage Gateway via REST 716
Manage Transport Headers/Properties Assertion 515
Management SOAP messages 715
Managing Global XML Schemas 72
Managing JMS Queues 544
Managing Kerberos Configuration 143
Managing Meta Data 99
Managing UDDI Registries 87
Manipulate Multivalued Variable 642

Target Multivalued Variable 643
Variable to append 643

Map 156
Map Value Assertion 644
Message Auditing 597
Message Buffering 508
Message Context 604
Message encoding 412
Message size 669
Message Summary audits 598
Messages

audit 600
non-XML 37
template response 518

Meta data 99
Migrating Namespaces 158
MIME 482, 484
MIME multipart messages 433, 454, 494, 671
MQ Native

routing 551
MS SQL server exploits protection 687
MTOM Message

encoding 437
validating 493

Multiple identities in message 17
Multiple signatures

enabling 17
Multivalued Context Variables

create by joining 636
splitting 661

Layer 7 Policy Authoring User Manual, v8.2

754 Index

N

Namespace
map 156
migrating 158

Netegrity SiteMinder Policy Server 733
New WSS Recipient Wizard 146, 151
Non-SOAP Check Results from XML Verification 372
Non-SOAP Decrypt XML Element Assertion 374
Non-SOAP Encrypt XML Element Assertion 376
Non-SOAP Sign XML Element Assertion 377
Non-SOAP Validate SAML Token 380
Non-SOAP Verify XML Element Assertion 391
Non-XML messages 37
Non SOAP Sign XML Element Assertion 377
Non SOAP Verify XML Element Assertion 391
Note

adding to policy 40
NTLM 217, 241, 532
NTLM Authentication 217

O

OAM 722
OAuth

Client 360
Server 360

OAuth Signature Base String
generate 360

OData message
validating 699

Oracle Access Manager Assertion 722
Oracle exploit protection 686
Organizing Services and Policies into Folders 12

P

Partial download, SFTP 563
Password

digest credentials 244
Payloads 37
PDP 356
Perform JDBC Query Assertion 187
PHP eval injection 670
Policy

alias 15
authenticating 14
comparing 28
configuring 18
creating 21
debugging 56
differences 28
disabling 24
editing 22, 32
enabling 24
error 26, 609
exporting 42
global 106

importing 44, 46
internal use 33
multiple 32
organizing 2
overview 1
revision 6
rolling back 6
validating 25

Policy Debug Trace 66
Policy Debugger 56
Policy Decision Point 356
Policy folders 12
Policy fragments 104

adding 103, 635
creating 21, 102
deleting 23, 105

Policy Organization 2
hints and tips 3

Policy Properties 9
Policy tag 10
Policy Templates 142

deleting 142
editing 142
exporting 42
importing 44, 46, 52
renaming 142

Policy Type 10
Preemptive compression 429
Prefix 156, 460
Private key

selecting custom 530
Process Routing Strategy Result Assertion 648
Process RSTR Response Assertion 395
Process SAML Attribute Query Assertion 466
Process SAML Authentication Request Assertion 472
Protect Against Code Injection Assertion 670
Protect Against Cross-Site Request Forgery 672
Protect Against Document Structure Threats 675
Protect Against JSON Document Structure Threats

Assertion 678
Protect Against SQL Attack Assertion 684
Protect Against WS-Security Replay Assertion 397, 680
Protected Resource 722
Protocol Transition 251
Publish to UDDI Settings 92

Q

QosMetrics 711
Query JDBC 187
Query LDAP Assertion 209
QueryThroughput Quota Assertion 587, 589
Queue

JMS 541
Quota 578

Layer 7 Policy Authoring User Manual, v8.2

Index 755

R

Radius Server 164
Rate limit 573
Raw TCP 560
Recipient (WSS Assertion) 146
Regex 449
Regular Expression 412, 449
Reject

based on nesting depth 675
based on SOAP request 675
based on XML length 675

Remove
encapsulated assertion 133
UDDI registry 88

Renaming
policy template 142

Replace Tag Content Assertion 475
Replay protection 397, 680
Request

size limit 668
XACML 330

Request element 461, 668
Request forgery 672
Request Security Token (RST) 285, 288, 395
Requestor identity 604
Require Encrypted Element Assertion 400
Require FTP Credentials Assertion 214
Require HTTP Basic Credentials Assertion 215
Require HTTP Cookie Assertion 215
Require NTLM Authentication Credentials 217
Require Remote Domain Identity Assertion 226
Require Signed Element Assertion 402
Require SSH Credentials Assertion 237
Require SSL or TLS Transport Assertion 238, 267
Require Timestamp in Request Assertion 405
Require Windows Integrated Auth Credentials 241
Require WS-Addressing Assertion 477
Require WS-Secure Conversation Assertion 242
Require WS-Security Kerberos Token Profile Creds 243
Require WS-Security Password Digest Credentials

Assertion 244
Require WS-Security Signature Credentials 246
Require WS-Security UsernameToken Profile Creds 248
Require XPath Credentials Assertion 248
Resolve External Dependencies Wizard 51
Resolve Service Assertion 590
Response element 465
REST Manage Gateway Assertion 716
Restrict

day 584
IP addresses 592
time 584

Restrict Access to IP Address Range Assertion 592
Retrieve Credentials from Context Variable 250
Retrieve Kerberos Authentication Credentials Asser-

tion 251
Retrieve SAML Browser Artifact Assertion 258

Return message to requestor 518
Return Template Response to Requestor Assertion 518
Revision

policy 6
Route Strategy

Execute 630
Route Variable Name 630
Route via FTP(S) Assertion 520

Advanced Tab 528
Authentication Tab 526
Connection Tab 523

Route via HTTP(S) Assertion 529
Authentication tab 531
Connection tab 536
Headers tab 533
HTTP tab 538
Other tab 539
Proxy tab 539

Route via JMS Assertion 541
Request tab 548
Response tab 550
Security tab 546
Target tab 544

Route via MQ Native Assertion 551
Route via Raw TCP Assertion 560
Route via SSH2 Assertion 563
Routing 510, 520, 529, 541, 563
Routing Strategy

Create 626
RST SOAP request 285
RSTR response message 395
RSTR SOAP response 288
Run All Assertions Concurrently Assertion 651
Run Assertions for Each Item Assertion 653

S

Salesforce operation 734
SAML

attribute query 466
authentication 472
compliance 443
endpoint 258
issuer 316
protocol 291, 299, 353
response status code 480
token 228, 315, 380
wizard 231

SAML authentication 472
SAML browser artifact 258
SAML Constraints Wizard 230-231
SAML Token Creation 317
SAML Token Creation Wizard 315, 317
SAML Token Profile Wizard 231
SAMLP

builder 291, 299
evaluator 354

Scan Using Sophos Antivirus Assertion 687, 692

Layer 7 Policy Authoring User Manual, v8.2

756 Index

Scan using Symantec Antivirus Assertion 749
Schema 72

adding 75
circular references 500, 704
deleting 77
editing 77
poisoning 667
validating 499, 703

Searching
UDDI Registry 48

Secure conversation
cancelling 306
establishing 348
looking up 370
requiring 242

Security context 306
Security context token 328
Security hash 365
Security token 277, 328
Selecting

target identity 152
target message 153
WSS recipient 147
XPath 154

Send Email Alert Assertion 612
Send SNMP Trap Assertion 615
Service

alias 15
folders 12

Service Debugger 56
Service resolution 590
Services

tab 112
Set Context Variable Assertion 656
Set SAML Response Status Code Assertion 480
SFTP partial downloads 563
Sign Element Assertion 407
Sign XML Element Assertion 377
Signature 246

multiple 17
SignatureConfirmation elements 409
Signed element 402
Signed Timestamp to Response 283
SiteMinder

authenticate 167
authorize 173
check protected resource 175

SiteMinder policy server 733
SiteMinder R12 Protected Resource Assertion 730
SNMP Trap 615
SOAP attachment 497
SOAP fault 607, 611
SOAP management messages 715
SOAP request with attachment 497
Sophos Antivirus Assertion 687, 692
Split Variable Assertion 661
SQL attack protection 684

SQL code injection 684
SSH credentials 237
SSH Routing 563
SSL transport 238, 267
SSL with Client Certificate Authentication 238, 267
SSO Cookie 722
Stop Processing Assertion 664
Store to Cache Assertion 594
Structure threats 675
Stylesheets 425
Subfolders 12
Subscribe to WSDM Resource Assertion 717
Subscription notification

UDDI 714
Sun Java System Access Manager Assertion 720
Symantec Virus Scanning Assertion 749
System audits 598
Systinet UDDI Registry 48

T

Tabs
policy 32

Tag content 475
TAM Assertion 727
Target identity

selecting 152
Target message 153
TCP/IP attacks 666
Template response 518
Threat protection 666, 678
Throughput quota 578

Query 587, 589
Time/Day availability 584
Timestamp 283, 397, 405, 681
Tivoli Access Manager Assertion 727
TLS transport 238, 267
Trace policy 66-67
Transaction limits 573
Transformation 419, 424
Translate HTTP Form to MIME Assertion 482
Translate MIME to HTTP Form Assertion 484
Trusted Certificates

looking up 367

U

UDDI Notification Service 91
UDDI registry 46-48, 89, 92

adding 88
cloning 88
configuring 87
properties 89
removing 88
viewing 88

UDDI subscription notification 714
Understanding Assertion Latency 122
URL/URI encoding 435

Layer 7 Policy Authoring User Manual, v8.2

Index 757

Use WS-Federation Credential Assertion 263
Use WS-Security version 1.1 Assertion 409
UsernameToken 213, 248
Users

authenticating 163, 170
context variable from 185

Using the XML Editor 159
UTF-8 412
UUID 634

V

Validate
content type 495, 694
HTML form data 488
JSON schema 490, 696
MIME type 497
MTOM message 493, 699
policy 25
SAML 380
SOAP attachments 497
XML schemas 499, 704

Validate Certificate 486
Validate Certificate Assertion 486
Validate HTML Form Data Assertion 488
Validate JSON Schema Assertion 490, 696
Validate MTOM Message Assertion 493
Validate OData Messages Assertion 699
Validate or Change Content Type Assertion 495, 694
Validate SOAP Attachments Assertion 497
Validate XML Schema Assertion 499, 703
Value lookup 641
Value, mapping 644
Variables

Comparing 621
Verify XML Element Assertion 391
Version

policy 6

W

Warning messages 25
Web SSO 480
WebSphere MQ 551
Windows integrated authentication 241
Wizards 47, 52, 151, 231, 292, 315, 317
Working with Aliases 15
Working with Comments 40
Working with Global Policies 106
Working with Internal Use Policies 33
Working with Multiple Policy Tabs 32
Working with Multiple Signatures 17
Working with Non-XML Messages 37
Working with the Debug Trace Policy 67
Working with the Service Debugger 56
WS-Addressing 416, 477
WS-Federation passive credentials 263
WS-Secure Conversation 242

WS-Security 149, 309, 409
adding 273
automatic 275
clearing automatic 273
enforcing compliance 441
pasword digest credentials 244
removing 273

WS-Trust credential exchange 177
WSDL

scanning 667
WSDL Operation 465
wsdm-notifications 34
WSDM metrics 711
WSDM subscription 717
WSI-BSP compliance 441
WSI-SAML compliance 443
WSS

header handling 539
Kerberos 243
password digest credentials 244
recipient 146, 151
replay protection 397, 680
signature 246

WSS UsernameToken 248

X

X.509 BinarySecurityToken 246
X.509 certificate

attributes 180
XACML PDP 356
XACML Request Builder 330
XDoS attack 499, 703
XML

assertion 31
bomb attack 666
editor 159
namespace 156
parameter tampering 499, 703
routing detour 668

XML Element
adding 414
decrypting 374
encrypting 376
removing 414
signing 377
verifying 391

XML verification
check results 372

XPath 458, 461
acceleration 346
credentials 248
expressions 248
selecting 154
stylesheet 419, 424

XSL transformation 424

Layer 7 Policy Authoring User Manual, v8.2

758 Index

	Chapter 1: Working with Service Policies
	Policy Organization
	Special Assertions
	Hints and Tips

	Policy Revisions
	Configuring Policy Revisions
	Creating a New Policy Revision
	Working with Policy Revisions

	Policy Properties
	Organizing Services and Policies into Folders
	Controlling Access Using Folders
	Refining Access with Security Zones

	Authentication in a Policy
	Working with Aliases
	Security Zones for Aliases

	Working with Multiple Signatures
	How to Permit Multiple Signatures

	Configuring a Policy
	Creating a Policy
	Editing a Service Policy
	Deleting a Policy
	Disabling a Policy
	Enabling a Policy
	Validating a Policy
	Instant Feedback Messages
	Final Policy Validation Messages
	Invalid Users or Groups
	Invalid JMS Queue

	Comparing Policies
	Using the Policy Comparison Window
	Viewing Assertion Differences

	Working with Multiple Policy Tabs
	Working with Internal Use Policies
	wsdm-notifications
	Audit Message Filter (AMF) Policy
	Audit Viewer (AV) Policy

	Working with Non-XML Messages
	Assertions that Require XML
	Assertions that Require SOAP
	Example of a Branching Policy

	Working with Comments
	Adding a Comment
	Editing a Comment
	Deleting a Comment

	Exporting/Importing a Policy
	Exporting a Policy
	Importing a Policy from a File
	Importing a Policy via UDDI Registry
	Import WS-Policy from URL in UDDI Registry Wizard
	Searching the UDDI Registry
	Resolve External Dependencies Wizard

	Debugging a Policy
	Working with the Service Debugger
	Policy Debug Tracing
	Working with the Debug Trace Policy

	Managing Global Resources
	Default Global Resources
	Adding a New Global Resource
	Editing a Global Resource
	Deleting a Global Resource
	Importing a Global Resource
	Analyzing a Global Resource

	Managing UDDI Registries
	UDDI Registry Properties
	Publish to UDDI Settings
	Managing Meta Data

	Chapter 2: Working with Policy Fragments
	Types of Fragments
	Adding a Policy Fragment to a Service Policy
	Editing a Policy Fragment
	Deleting a Policy
	Working with Global Policy Fragments
	Types of Global Policies
	How Global Policies are Evaluated
	How a Global Policy Relates to the Service Policy
	Supported Assertions
	Limitations to Global Policies

	Chapter 3: Working with Policy Assertions
	Adding an Assertion
	Deleting an Assertion
	Disabling an Assertion
	Enabling an Assertion
	Understanding Assertion Latency
	How to Use the Assertion Latency Variables
	When the Assertion Latency is Calculated

	Working with Encapsulated Assertions
	Encapsulated Assertions vs. Policy Fragments
	Visibility of Context Variables
	Understanding How Values are Passed to the Parent Policy
	Making Encapsulated Assertions Available in a Role
	Using Encapsulated Assertions
	Managing Encapsulated Assertions
	Encapsulated Assertion Configuration Properties

	Policy Templates
	Managing Kerberos Configuration
	Authenticating a Client via Kerberos
	Changing the WSS Assertion Recipient
	New WSS Recipient Wizard
	Selecting a Target Identity
	Selecting a Target Message
	Selecting an XPath
	Namespace Map
	Editing the Namespace Map

	Migrating Namespaces
	Using the XML Editor

	Chapter 4: Access Control Assertions
	Authenticate Against Identity Provider Assertion
	Authenticate Against Radius Server Assertion
	Context Variables Created by This Assertion

	Authenticate Against SiteMinder Assertion
	Authenticate User or Group Assertion
	Authenticating Against a Simple LDAP Identity Provider

	Authorize via SiteMinder Assertion
	Check Protected Resource Against SiteMinder Assertion
	Exchange Credentials using WS-Trust Assertion
	Extract Attributes from Certificate Assertion
	Context Variables for Subject/Issuer DN
	Context Variables for Extended Attributes

	Extract Attributes for Authenticated User Assertion
	Perform JDBC Query Assertion
	Unsupported Functionality
	Context Variables Created by This Assertion
	SQL Query Tips
	Caching Metadata

	Query LDAP Assertion
	Require Encrypted UsernameToken Profile Credentials Assertion
	Require FTP Credentials Assertion
	Require HTTP Basic Credentials Assertion
	Require HTTP Cookie Assertion
	Context Variables Created by This Assertion

	Require NTLM Authentication Credentials Assertion
	Context Variables Created by This Assertion
	Creating a Computer Account for NTLM Authentication

	Require Remote Domain Identity Assertion
	Context Variables Created by This Assertion

	Require SAML Token Profile Assertion
	Context Variables Created by This Assertion
	SAML Token Profile Wizard

	Require SSH Credentials Assertion
	Require SSL or TLS Transport Assertion
	Require Windows Integrated Authentication Credentials Assertion
	Require WS-Secure Conversation Assertion
	Context Variable Created by This Assertion

	Require WS-Security Kerberos Token Profile Credentials Assertion
	Require WS-Security Password Digest Credentials Assertion
	Require WS-Security Signature Credentials Assertion
	Require WS-Security UsernameToken Profile Credentials Assertion
	Require XPath Credentials Assertion
	Retrieve Credentials from Context Variable Assertion
	Retrieve Kerberos Authentication Credentials Assertion
	Using the Protocol Transition Delegation Method
	Using the Constrained Proxy Delegation Method
	Kerberos Service Ticket/Session Caching

	Retrieve SAML Browser Artifact Assertion
	Use WS-Federation Credential Assertion

	Chapter 5: Transport Layer Security Assertions
	Require SSL or TLS Transport Assertion

	Chapter 6: XML Security Assertions
	Add or Remove WS-Security Assertion
	Add Security Token Assertion
	Configuring the Private Key for SAML Assertions
	Applying WS-Security
	Adding a WS-S UsernameToken
	Adding a WS-SC SecurityContextToken
	Adding a SAML Assertion
	Adding a WS-S EncryptedKey

	Add Timestamp Assertion
	Build RST SOAP Request Assertion
	Context Variables Created by This Assertion

	Build RSTR SOAP Response Assertion
	Context Variables Created by This Assertion

	Build SAML Protocol Request Assertion
	SAML Protocol Request Wizard

	Build SAML Protocol Response Assertion
	Configuring the [General] Tab
	Configuring the [Issuer] Tab (SAML 2.0 only)
	Configuring the [Advanced] tab

	Cancel Security Context Assertion
	Configure WS-Security Decoration Assertion
	Applying WS-Security
	Configuring the [General] Tab
	Configuring the [Signing] Tab
	Configuring the [Encryption] Tab
	Configuring the [Advanced] Tab

	Create SAML Token Assertion
	Context Variables Created by This Assertion
	SAML Token Creation Wizard

	Create Security Context Token Assertion
	Context Variable Created by This Assertion

	Create XACML Request Assertion
	Configuring the Subject Node
	Configuring the Resource Node
	Configuring the Action Node
	Configuring the Environment Node
	Configuring the Attribute Node
	Configuring the Multiple Attributes Node
	Configuring the Resource Content Node

	Encrypt Element Assertion
	Establish Outbound Secure Conversation Assertion
	Context Variables Created by This Assertion

	Evaluate SAML Protocol Response Assertion
	Evaluate XACML Policy Assertion
	Generate OAuth Signature Base String Assertion
	Context Variables Created by This Assertion

	Generate Security Hash Assertion
	Look Up Certificate Assertion
	Look Up Outbound Secure Conversation Session Assertion
	Context Variables Created by This Assertion

	(Non-SOAP) Check Results from XML Verification Assertion
	(Non-SOAP) Decrypt XML Element Assertion
	Context Variables Created by This Assertion

	(Non-SOAP) Encrypt XML Element Assertion
	(Non-SOAP) Sign XML Element Assertion
	(Non-SOAP) Validate SAML Token Assertion
	Step 1: Introduction
	Step 2: SAML Version
	Step 3: SAML Statement Type
	Step 4: Authentication Methods
	Step 5: Authorization Statement
	Step 6: Attribute Statement
	Step 7: Subject Confirmation
	Step 8: Name Identifier
	Step 9: Conditions
	Step 10: Embedded Signature

	(Non-SOAP) Verify XML Element Assertion
	Context Variables Created by This Assertion

	Process RSTR Response Assertion
	Context Variables Created by This Assertion

	Protect Against Message Replay Assertion
	Require Encrypted Element Assertion
	Require Signed Element Assertion
	Context Variables Created by This Assertion

	Require Timestamp Assertion
	Sign Element Assertion
	Use WS-Security 1.1 Assertion

	Chapter 7: Message Validation/ Transformation Assertions
	Character Encoding
	Add or Remove XML Element(s) Assertion
	Add WS-Addressing Assertion
	Context Variables Created by This Assertion
	Applying the WS-Addressing Elements
	Signing the WS-Addressing Elements

	Apply JSON Transformation Assertion
	Apply XSL Transformation Assertion
	Context Variables Created by This Assertion

	Compress Messages to/from SecureSpan XVC Assertion
	Customize Error Response Assertion
	Decode MTOM Message Assertion
	Encode/Decode Data Assertion
	Encode to MTOM Format Assertion
	Enforce WS-Security Policy Compliance Assertion
	Enforce WS-I BSP Compliance Assertion
	Enforce WS-I SAML Compliance Assertion
	Evaluate JSON Path Expression Assertion
	Context Variables Created by This Assertion

	Evaluate Regular Expression Assertion
	Context Variables Created by This Assertion

	Evaluate Request XPath Assertion
	Context Variables Created by This Assertion

	Evaluate Response XPath Assertion
	Context Variables Created by This Assertion

	Evaluate WSDL Operation Assertion
	Process SAML Attribute Query Request Assertion
	Context Variables Created by This Assertion

	Process SAML Authentication Request Assertion
	Context Variables Created by This Assertion

	Replace Tag Content Assertion
	Require WS-Addressing Assertion
	Context Variables Created by This Assertion

	Set SAML Response Status Code Assertion
	Translate HTTP Form to MIME Assertion
	Translate MIME to HTTP Form Assertion
	Validate Certificate Assertion
	Context Variables Created by This Assertion

	Validate HTML Form Data Assertion
	Validate JSON Schema Assertion
	Validate MTOM Message Assertion
	Validate or Change Content Type Assertion
	Validate SOAP Attachments Assertion
	Validate XML Schema Assertion

	Chapter 8: Message Routing Assertions
	Configure Message Streaming Assertion
	Copy Request Message to Response Assertion
	Manage Cookie Assertion
	Manage Transport Properties/Headers Assertion
	Return Template Response to Requestor Assertion
	Route via FTP(S) Assertion
	FTP Cluster Properties for This Assertion
	Configuring the [Connection] Tab
	Configuring the [Authentication] Tab
	Configuring the [Advanced] Tab

	Route via HTTP(S) Assertion
	Configuring the [Authentication] Tab
	Configuring the [Headers] Tab
	Configuring the [Connection] Tab
	Configuring the [HTTP] Tab
	Configuring the [Proxy] Tab
	Configuring the [Other] Tab

	Route via JMS Assertion
	Context Variables Created by This Assertion
	Configuring the [Target] Tab
	Configuring the [Security] Tab
	Configuring the [Request] Tab
	Configuring the [Response] Tab

	Route via MQ Native Assertion
	Context Variables Created by This Assertion
	Defined MQ Header Prefixes
	Configuring the [Target] Tab
	Configuring the [Request] Tab
	Configuring the [Response] Tab

	Route via Raw TCP Assertion
	Route via SSH2 Assertion
	Performing SFTP Partial Downloads/Uploads

	Chapter 9: Service Availability Assertions
	Apply Rate Limit Assertion
	Apply Throughput Quota Assertion
	Context Variables Created by This Assertion

	Limit Availability to Time/Days Assertion
	Look Up in Cache Assertion
	Query Rate Limit Assertion
	Context Variables Created by This Assertion

	Query Throughput Quota Assertion
	Context Variables Created by This Assertion

	Resolve Service Assertion
	Restrict Access to IP Address Range Assertion
	Store to Cache Assertion

	Chapter 10: Logging, Auditing, and Alerts Assertions
	Message Auditing
	System Audits
	Administrative Audits
	Policy Message Audits

	Add Audit Detail Assertion
	Audit Messages in Policy Assertion
	Capture Identity of Requestor Assertion
	Customize SOAP Fault Response Assertion
	SOAP Faults

	Send Email Alert Assertion
	Send SNMP Trap Assertion

	Chapter 11: Policy Logic Assertions
	Add Comment to Policy Assertion
	All Assertions Must Evaluate to True Assertion
	At Least One Assertion Must Evaluate to True Assertion
	Compare Expression Assertion
	Continue Processing Assertion
	Create Routing Strategy Assertion
	Context Variables Created by This Assertion

	Execute Routing Strategy Assertion
	Context Variables Created by This Assertion

	Export Variables from Fragment Assertion
	When Used in a Global Policy Fragment

	Generate UUID Assertion
	Include Policy Fragment Assertion
	Join Variable Assertion
	Look Up Context Variable
	Context Variables Created by This Assertion

	Look Up Item by Index Position Assertion
	Look Up Item by Value Assertion
	Manipulate Multivalued Variable Assertion
	Map Value Assertion
	Process Routing Strategy Result Assertion
	Run All Assertions Concurrently Assertion
	Technical Issues to Consider
	Configuring the Assertion

	Run Assertions for Each Item Assertion
	Context Variables Created by this Assertion

	Set Context Variable Assertion
	Split Variable Assertion
	Stop Processing Assertion

	Chapter 12: Threat Protection Assertions
	Automatic Threat Protection
	TCP/IP-Based Attacks
	Coercive Parsing and XML Bomb
	External Entity Attack
	Schema Poisoning
	WSDL Scanning
	XML Routing Detours

	Limit Message Size Assertion
	Protect Against Code Injection Assertion
	Protect Against Cross-Site Request Forgery Assertion
	Context Variable Created by This Assertion

	Protect Against Document Structure Threats Assertion
	Protect Against JSON Document Structure Threats Assertion
	Protect Against Message Replay Assertion
	Protect Against SQL Attack Assertion
	SQL Injections Detected

	Scan Using ICAP-Enabled Antivirus Assertion
	Context Variables Created by This Assertion

	Scan Using Sophos Antivirus Assertion
	Context Variables Created by This Assertion

	Validate or Change Content Type Assertion
	Validate JSON Schema Assertion
	Validate OData Request Assertion
	Retrieving the Service Metadata Document
	Notes and Limitations
	Context Variables Created by This Assertion

	Validate XML Schema Assertion

	Chapter 13: Internal Assertions
	Collect WSDM Metrics Assertion
	Convert Audit Record to XML Assertion
	Handle UDDI Subscription Notification Assertion
	Manage Gateway Assertion
	Context Variables Created by Assertion

	REST Manage Gateway Assertion
	Context Variables Used by Assertion

	Subscribe to WSDM Resource Assertion

	Chapter 14: Custom Assertions
	Access Resource Protected by JSAM Assertion
	Context Variables Created by This Assertion

	Access Resource Protected by Oracle Access Manager Assertion
	Context Variables Created by This Assertion

	Authenticate using Tivoli Access Manager Assertion
	Usage Rules
	Using the Assertion
	Troubleshooting

	Authenticate with SiteMinder R12 Protected Resource Assertion
	Context Variables Created by This Assertion

	Execute Salesforce Operation Assertion
	Context Variables Created by This Assertion
	Using the Assertion
	Creating Objects
	Updating Objects
	Retrieving Objects
	Retrieving Modified Objects
	Retrieving Deleted Objects
	Executing Queries
	Searching Objects
	Exporting/Importing Policies

	Scan Using Symantec Antivirus Assertion

	Index

