

Introduction to the Language Guide

Advantage CA-Easytrieve

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2002 Computer Associates International, Inc. (CA)

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1: Overview
Introduction ... 1-1

Program Examples ... 1-1
About This Guide .. 1-2

Reading The Guide... 1-2
Reading One ... 1-2
Reading Two... 1-3
Reading Three.. 1-3

Organization .. 1-4
Other CA-Easytrieve Publications.. 1-5
Related Publications.. 1-6
Documentation Conventions .. 1-6
Capabilities.. 1-7

File Access... 1-7
Field Definition .. 1-7
Logic Processing ... 1-7
File Output .. 1-8
SQL Processing .. 1-8
Report Output ... 1-8
Screen Processing .. 1-9
Graph Processing... 1-9
Virtual File Manager... 1-10
Debugging Capabilities .. 1-10
Current Technology ... 1-11

Structure of a CA-Easytrieve Program ... 1-11
Environment Section... 1-11
Library Definition Section .. 1-11
Activity Section ... 1-12
Sample Program .. 1-13

Contents iii

Chapter 2: Programming with CA-Easytrieve
Introduction ... 2-1

Reading This Tutorial... 2-1
Tutorial Lessons .. 2-1

Lesson 1... 2-2
The Report Your Program Creates.. 2-2
One Statement at a Time .. 2-3

The FILE Statement ... 2-3
The DEFINE Statement.. 2-4

Reviewing the Library Section ... 2-6
For More Information ... 2-6

Lesson 2 ... 2-6
The JOB Statement .. 2-6
Input to a JOB Activity .. 2-7
Naming a JOB Activity .. 2-7

A Look at Logic .. 2-8
A New Condition ... 2-8

CA-Easytrieve Working Storage.. 2-9
Review of Job Activities ..2-10

For More Information ..2-10
Lesson 3 ..2-11

CA-Easytrieve LINE Statement..2-11
Editing Your Report Output ..2-12

Edit Masks ..2-13
Field Headings ..2-14

Reviewing PRINT, LINE, MASK, and HEADING ...2-15
For More Information ..2-15

Lesson 4 ..2-16
The REPORT Statement ..2-16
Report Definition Statements..2-16

The SEQUENCE Statement ...2-17
The CONTROL Statement ..2-18
The SUM Statement ..2-19
The TITLE Statement ...2-19
The HEADING Statement ..2-20
The LINE Statement..2-21

Reviewing Report Declarations..2-21
For More Information ..2-22

Lesson 5 ..2-22
Basic Structure ..2-22
Screen Format ...2-23

iv Introduction to the Language

Title Area... 2-23
Work Area.. 2-23
Message Area ... 2-24
Function Key Area... 2-24

Sample Screen Program.. 2-24
The Screen Your Program Creates... 2-24
Review of Screen Activities... 2-27

For More Information.. 2-28
Lesson 6 ... 2-28

Changing Attributes (ATTR Parameter) ... 2-28
Edit Masks.. 2-29

Review of Changing Attributes ... 2-30
For More Information.. 2-30

Lesson 7 ... 2-31
Creating Error Messages... 2-32
Reviewing Error Messages ... 2-33

For More Information.. 2-33
Lesson 8 ... 2-33

Basic Structure .. 2-33
Graph Format... 2-34

Title Area... 2-34
Work Area.. 2-34
Function Key Area... 2-34

Sample Graph Program .. 2-35
The Graph Your Program Creates... 2-35

GRAPH Statement... 2-35
Graph Definition Statements.. 2-36

DRAW Statement Processing ... 2-37
Review of Graph Declarations .. 2-37

For More Information.. 2-37
Summing Things Up .. 2-37

For More Information.. 2-38

Chapter 3: Library Section - Describing and Defining Data
Introduction... 3-1
CA-Easytrieve Syntax Rules .. 3-2

Statement Area .. 3-2
Multiple Statements .. 3-2
Comments .. 3-2
Continuations ... 3-2

Contents v

Words and Delimiters... 3-3
Keywords ... 3-4
Multiple Parameters .. 3-4
Field Names ... 3-4
Labels ... 3-5
Identifiers.. 3-5
Arithmetic Operators ... 3-5
Alphanumeric Literals .. 3-5
Numeric Literals ... 3-5
Hexadecimal Literals ... 3-6

Describing Files and Fields .. 3-6
Defining Data .. 3-6

Defining File Attributes ... 3-6
Defining Field Data ... 3-7

FILE Statement ... 3-7
DEFINE Statement ... 3-8

Defining Edit Masks..3-11
Default Edit Masks...3-12
Defining Working Storage ..3-13
DEFINE within an Activity ...3-13
Defining Static Working Storage ..3-14
Initializing Working Storage Fields ..3-16
Redefining a Field ...3-16
Implicit Start-location ..3-17

FILE Statement Revisited...3-18
Virtual File Manager (VFM) ..3-18
EXIT Parameter ...3-19
COPY Statement ..3-19

Chapter 4: Activity Section - Processing and Logic
Introduction ... 4-1
JOB Activities .. 4-2

JOB Statement.. 4-2
Conditional Expressions .. 4-3

IF Statement.. 4-3
Special IF Statements.. 4-5
Combining Conditional Expressions.. 4-6

Calculations ... 4-7
Parentheses in Calculations .. 4-7

Assignment Statement .. 4-8

vi Introduction to the Language

MOVE Statement .. 4-8
MOVE Format 1.. 4-9
MOVE Format 2.. 4-9

MOVE LIKE .. 4-10
DO/END-DO Statements.. 4-10
CASE and END-CASE Statements .. 4-12

Nesting CASE Statements .. 4-13
GOTO Statement.. 4-14
STOP Statement .. 4-14
User Procedures (PROCs).. 4-15

Nesting PROCs ... 4-16
START/FINISH Procedures.. 4-17
Processing Tables ... 4-17

Creation of Table Files ... 4-18
Accessing Table Files .. 4-19

SORT Activities... 4-20
SORT Statement .. 4-20

SORT Procedures ... 4-21
PROGRAM Activities ... 4-23

Controlling Other Activities.. 4-23
EXECUTE Statement .. 4-23

Chapter 5: Activity Section - Input and Output
Introduction... 5-1
Automatic Input and Output ... 5-1

Automatic Input with the JOB Statement ... 5-2
Printing Reports ... 5-2

User Controlled Input and Output .. 5-4
Sequential File Processing .. 5-4

DISPLAY Statement .. 5-5
DISPLAY Format 1 ... 5-5
DISPLAY Format 2 ... 5-6
GET Statement ... 5-6
PUT Statement ... 5-7
POINT Statement .. 5-8

Random Access Processing ... 5-9
READ Statement ... 5-9
WRITE Statement ... 5-10
WRITE Format 1 .. 5-10
WRITE Format 2 .. 5-11

Contents vii

Chapter 6: Activity Section - Reporting
Introduction ... 6-1
Standard Reports... 6-2

Titles .. 6-2
Headings .. 6-3
Line Group .. 6-4

Report Processing .. 6-5
REPORT Statement ... 6-5

Spacing Control Parameters ... 6-6
Report Definition Statements .. 6-7

SEQUENCE Statement .. 6-7
CONTROL Statement ... 6-8
SUM Statement... 6-9
TITLE Statement.. 6-9
HEADING Statement ..6-11
LINE Statement..6-11

Label Reports ...6-12
Label Format..6-13

Format Determination Parameters...6-13
Testing Aid Parameters ..6-14
Format Determination Parameters ..6-15

DTLCTL Parameter..6-16
SUMCTL Parameter ...6-16
SUMMARY Reports ...6-17
DTLCOPY Subparameter...6-17
Summary Files ..6-18

Multiple Reports ..6-18
Multiple Reports to a Single Printer ...6-18
Multiple Reports to More Than One Printer ..6-19

FILE Directing Parameters..6-19
Report Procedures (PROCs) ..6-20

REPORT-INPUT. PROC ..6-20
BEFORE-BREAK. PROC..6-21
AFTER-BREAK. PROC ...6-23
ENDPAGE. PROC ...6-24
TERMINATION. PROC ..6-24
BEFORE-LINE. PROC and AFTER-LINE. PROC ..6-25

Chapter 7: Activity Section - Screens

viii Introduction to the Language

Introduction... 7-1
Basic Screen Format.. 7-2

Title Area.. 7-2
Work Area... 7-2
Message Area.. 7-2
Function Key Area ... 7-3

SCREEN Activity .. 7-3
SCREEN Statement .. 7-3

SCREEN Activity Example .. 7-4
Screen Items ... 7-4

Screen Item Attributes .. 7-5
Screen Title Area .. 7-6

TITLE Statement ... 7-6
Title Examples ... 7-7

Default Centering and Attributes .. 7-7
Explicit Locations and Attributes .. 7-7

Screen Work Area ... 7-8
ROW Statement.. 7-8

Location Example .. 7-9
Attribute Example... 7-10
Mask Example .. 7-10
Hexadecimal Mask Example ... 7-10

Screen Message Area.. 7-11
MESSAGE Statement .. 7-11
Message Area Location .. 7-12
Message Attributes.. 7-12
Message Text ... 7-12

Screen Function Key Area ... 7-13
KEY Statement.. 7-13
Location ... 7-14
Attributes .. 7-14

Special-Named Screen Procedures.. 7-15
INITIATION.. 7-16
BEFORE-SCREEN... 7-16
AFTER-SCREEN .. 7-16
TERMINATION .. 7-16

Programmer-Defined Procedures... 7-16
Formatting a Screen Item for Display ... 7-17

Justifying a Field's Contents.. 7-17
Filling an Item for Display ... 7-18

Automatic Editing of Input .. 7-19

Contents ix

UPPERCASE ..7-19
VALUE ...7-19

Cursor Positioning on a Screen ...7-20
CURSOR Statement..7-20
Cursor Placement Hierarchy..7-21

KEY Statement - Branch Actions and IMMEDIATE Processing...................................7-21
Branch Actions ..7-21
KEY IMMEDIATE Processing ..7-22

Screen Procedures - Branch Actions ...7-22
GOTO SCREEN ...7-23
REFRESH ...7-23
RESHOW ...7-24
EXIT..7-24

Determining the Cursor Location ...7-24
Testing for Field Modification ..7-25
Overriding System-Defined Attributes and Message Locations7-26

DEFAULT Statement ..7-27
Overriding Standard Screen Sizes...7-28

Chapter 8: Activity Section - Graphs
Introduction ... 8-1
Basic Structure of a Graph Program .. 8-2
Graph Display Format .. 8-2

Title Area .. 8-3
Work Area ... 8-3
Function Key Area .. 8-3

GRAPH Activity ... 8-3
GRAPH Statement.. 8-3
Graph Definition Statements... 8-4

Graph Title Area ... 8-5
TITLE Statement ... 8-5

Graph Work Area .. 8-5
VALUE Statement .. 8-5

DRAW Statement Processing .. 8-6
Graph Headings ... 8-7

Inhibiting Graph Headings .. 8-7
Defining Alternate Headings .. 8-7

Summing Graph Values .. 8-8
Sequencing a Graph .. 8-9
Graph Display Resolution... 8-9

x Introduction to the Language

Chapter 9: System-Defined Fields
Introduction... 9-1
General Purpose Fields... 9-1

SYSDATE ... 9-1
SYSDATE-LONG .. 9-2
SYSTIME .. 9-2
RETURN-CODE ... 9-2
UIBFCTR .. 9-2
UIBDLTR.. 9-2
UIB-ADDRESS... 9-2

File Processing Fields .. 9-3
RECORD-LENGTH .. 9-3
RECORD-COUNT.. 9-3
FILE-STATUS.. 9-3
PATH-ID .. 9-5
IDMSCOM .. 9-5
SLC ... 9-6
SQLCA.. 9-6

Report Processing Fields ... 9-6
LINE-COUNT ... 9-6
LINE-NUMBER.. 9-6
PAGE-COUNT... 9-6
PAGE-NUMBER ... 9-6
TALLY .. 9-6
LEVEL .. 9-7
BREAK-LEVEL .. 9-7

Screen Processing Fields.. 9-7
KEY-PRESSED ... 9-7
TERM-COLUMNS ... 9-8
TERM-ROWS .. 9-8
TERM-NAME.. 9-8
SYSUSERID ... 9-9

Index

Contents xi

Chapter

1 Overview

Introduction
CA-Easytrieve is an information retrieval and data management system
designed to simplify computer programming. Its English-like language and
simple declarative statements provide the new user with the tools needed to
produce comprehensive reports, screens, and graphs with ease, while its
enhanced facilities provide the experienced data processor with the capabilities
to perform complex programming tasks.

CA-Easytrieve operates in batch and online modes on the IBM 370, 30xx, 43xx,
and compatible processors in the VM, MVS, and VSE environments. Under TSO,
CMS, and CICS, CA-Easytrieve runs interactively for data inquiry, analysis, and
reporting. The output can be either returned to your terminal or routed to a
printer.

CA-Easytrieve/Workstation operates on the IBM/PC (or 100 percent
compatible) in the PC/DOS or OS/2 environment.

CA-Easytrieve also operates on the HP-9000 Series 700/800 in the HP-UX
environment.

Program Examples

Most program examples in this guide use an input file named PERSNL. This file
is made available when CA-Easytrieve is installed so that new users can type in
and execute program examples exhibited in the documentation. Some program
example output, such as reports, have been edited or shortened for illustrative
purposes. Reports you produce from the PERSNL file can be much longer than
the ones shown in this guide.

Overview 1–1

About This Guide

About This Guide
The purpose of this guide is to teach new programmers of CA-Easytrieve how to
write CA-Easytrieve programs. It is not intended as a reference guide. Not all
features of CA-Easytrieve are described here, nor are all features described
available in all implementations of CA-Easytrieve.

This guide assumes that you have some familiarity with data processing
concepts and that you have used a computer before. It is not required that you
have programmed before in other languages. This guide also assumes you are
either familiar with the operating environment at your site or you have access to
people who can help you. Once you know how to type in and execute programs
at your site, this guide teaches you what you need to know about CA-Easytrieve.

By the time you finish the “Programming with CA-Easytrieve” chapter, you will
be able to write standard reports, screen transactions, and simple graphs with
CA-Easytrieve. For many of you, this may be all you want to do. For the rest of
you, there is much, much more.

Because CA-Easytrieve is a compiled language that runs in a multitude of data
processing environments, the examples in this guide are generic and do not take
into account variations between different installations. It would be impossible to
address the specifics of all the operating environments CA-Easytrieve can run
under.

 Reading The Guide

This guide is designed to be read in three passes or readings. Each successive
reading takes you through slightly more advanced and/or specialized material.
This helps less experienced users of CA-Easytrieve stay interested while
gradually building up their knowledge of the topics presented.

Reading One

This chapter and the tutorial in the “Programming with CA-Easytrieve” chapter
are meant to be read in their entirety by all users. The tutorial permits those of
you who have an interest in more detail to branch off to first level readings of
appropriate chapters at various intervals. You are always directed to return to
the tutorial after you have completed the material at the end of such a branch.
The goal for the first pass through the guide is to read this chapter and the
“Programming with CA-Easytrieve” chapters and the first level readings of all
the rest of the chapters. This gives you a good understanding of CA-Easytrieve
basics and enables you to perform the following tasks:

■ Write a complete CA-Easytrieve program using automatic input and output
features.

1–2 Introduction to the Language

About This Guide

■ Generate standard reports, screens, and graphs.

■ Perform calculations and use conditional expressions.

■ Be familiar with the system-defined fields provided with CA-Easytrieve.

Reading Two

The second reading begins at level 2 of Chapter 3 and continues with level 2 of
Chapters 4 through 8. After completing this second reading, you should be able
to perform these tasks:

■ Write slightly more complex CA-Easytrieve reports using programmer
controlled input and output commands.

■ Generate label reports.

■ Perform data assignments and moves as well as use loops and branching in
program logic.

■ Perform basic debugging techniques.

■ Write slightly more complex screen activities for your online applications
using branch actions and SCREEN procedures.

■ Write slightly more complex graph activities, including specifying graph
headings and summing graph values.

Reading Three

The third and final reading continues your journey through Chapters 3 through
8. It teaches you more sophisticated commands and techniques available with
CA-Easytrieve. After this reading you should be able to perform these tasks:

■ Use advanced FILE statement parameters including VIRTUAL and EXIT.

■ Perform sorts.

■ Use procedures and tables.

■ Perform programmer controlled input and output of randomly accessed files
including VSAM.

■ Use REPORT procedures.

■ Override system-defined options for your screen activities.

■ Determine cursor location and test for field modification on a screen.

■ Sequence a graph and determine the display resolution of a graph.

Overview 1–3

About This Guide

Organization

This guide is divided into nine chapters:

Chapter 1, Overview Introduces you to CA-Easytrieve and its capabilities. It also
describes the basic structure of a CA-Easytrieve program.

Chapter 2, Programming with CA-Easytrieve Takes you, tutorial style, through
the process of creating a CA-Easytrieve report, a SCREEN activity, and a
GRAPH subactivity.

Chapter 3, Library Section - Describing and Defining Data Tells you how to
describe the files you use for processing. It includes special features that
CA-Easytrieve provides to make this job easier.

Chapter 4, Activity Section - Processing and Logic Teaches you the basics of
writing an application program with CA-Easytrieve. Everything from IF
statements to table processing.

Chapter 5, Activity Section - Input and Output Teaches you how to handle (or let
CA-Easytrieve handle) input and output files, from automatic I/O to random
access of indexed files.

Chapter 6, Activity Section - Reporting Shows you all the things you did not learn
about reporting in Chapter 2, “Programming with CA-Easytrieve”.

Chapter 7, Activity Section - Screens Shows you all the things you did not learn
about screen transactions in Chapter 2, “Programming with CA-Easytrieve”.

Chapter 8, Activity Section - Graphs Shows you all the things you did not learn
about graph processing in Chapter 2, “Programming with CA-Easytrieve”.

Chapter 9, System-Defined Fields Discusses the four types of system-defined
fields available in CA-Easytrieve, “Programming with CA-Easytrieve”.

Index Provides a quick way to find references to terms and procedures.

1–4 Introduction to the Language

Other CA-Easytrieve Publications

Other CA-Easytrieve Publications
In addition to this guide, Computer Associates provides the following
CA-Easytrieve documentation:

Name Contents

CA-Easytrieve/Online User
Guide

How to compile, link-edit, and execute
CA-Easytrieve programs on the mainframe. Also,
how to compile and execute interactively, using an
editor, and how to use the CA-Easytrieve/Online
Screen and Report Painters.

CA-Easytrieve/Online
Installation Guide

Describes installation of CA-Easytrieve/Online in all
environments. The most current step-by-step
procedures for installing CA-Easytrieve/Online in
your environment(s) can be found on the product
tape.

CA-Easytrieve/Online
CA-Activator Supplement

How to install and maintain CA-Easytrieve/Online
on your MVS system, using the Computer Associates
SMP/E software interface called CA-Activator.

CA-Easytrieve/Online
Administrator Guide

Provides system administrators with the information
needed to set up, customize, and administer a
CA-Easytrieve/Online system.

CA-Easytrieve UNIX User
Guide

Helps compile, link-edit, and execute CA-Easytrieve
programs in the UNIX environment from the
operating system command line.

CA-Easytrieve Programmer
Guide

How to create efficient CA-Easytrieve programs and
how to analyze and modify existing CA-Easytrieve
programs. How to apply these programs to various
application tasks.

Continued

Continued

Name Contents

Ca-Easytrieve Language
Reference Guide

Describes the complete syntax of each CA-Easytrieve
statement, organized in easy-to-find alphabetical
order. Also provides lists of system-defined fields,
symbols, and reserved words, as well as information
for those sites converting to this version of
CA-Easytrieve.

Overview 1–5

Related Publications

Related Publications
The following publications, produced by Computer Associates, are either
referenced in this publication or are recommended reading:

■ CA-Easytrieve/Workstation User Guide

■ CA-Pan/SQL SQL Interface Installation Guide

Documentation Conventions
The following conventions are used throughout this guide for illustrative
purposes.

Notation Meaning

{braces} Mandatory choice of one of these entries.

[brackets] Optional entry or choice of one of these entries.

| (OR bar) Choice of one of these entries.

(parentheses) Multiple parameters must be enclosed in parentheses.

... Ellipses indicate you can code the immediately preceding
parameters multiple times.

Continued

Continued

Notation Meaning

BOLD Bold text in program code is used to highlight an example of
the use of a statement.

CAPS All capital letters indicate a CA-Easytrieve keyword, or
within text descriptions, indicate a name or field used in a
program example.

lowercase italics Lowercase italics represent variable information in statement
syntax.

1–6 Introduction to the Language

Capabilities

Capabilities
CA-Easytrieve has the capabilities of a retrieval system as well as the
comprehensiveness and flexibility required for complex reports, data extraction,
and file maintenance requirements.

File Access

The file access features of CA-Easytrieve provide all standard retrieval system
capabilities, plus the following:

■ Accepts any number of input or output files (constrained by memory).

■ Both forward and backward browses of files.

■ Synchronizes file processing (based on keys) of an unlimited number of files,
including matched conditions and duplicate checking. This reduces complex
matching logic to a single statement.

■ Tests for file availability and current record count.

■ Provides in-core binary search of external or instream table files.

■ Prints a file status and error analysis report at point of error during
abnormal termination.

■ Provides an easy method for establishing temporary work files without
special job control or file allocation statements.

Field Definition

The methods CA-Easytrieve uses to define all types of record structures and field
formats are consistent and easy to use, including:

■ Defining all field formats, including binary and unsigned packed fields.

■ Providing flexible edit masks for report formats or displaying data,
including blank-when-zero and hexadecimal display.

■ Establishing initial values for working storage fields.

■ Providing default report headings to enhance standards.

■ Allowing multiple use of field definitions with the COPY keyword, reducing
coding and maintenance.

Logic Processing

The purpose of any information retrieval and application development system is
to provide complete conditional logic. CA-Easytrieve provides this logic, plus
the following:

Overview 1–7

Capabilities

■ Provides standard programming constructions such as nested IF, DO, and
PERFORM statements.

■ Provides powerful calculation capabilities, including bit manipulation.

■ Performs special tests useful in editing, including alphabetic, numeric,
spaces, zero, null, and test under mask.

■ Allows string manipulation.

■ Supports move for corresponding fields.

■ Includes special one-time procedures for start of processing and termination
of processing.

■ Sorts on any number of keys.

File Output

Routine file maintenance is faster and simpler because of the enhanced
capabilities of CA-Easytrieve, including:

■ Loading and updating files, including VSAM, SQL, and other popular
database management systems.

■ Saving report extract work files for subsequent use.

■ Providing a selective hexadecimal dump of a file or specific fields.

SQL Processing

CA-Easytrieve provides complete facilities for processing SQL databases,
including:

■ A full set of native SQL statements.

■ Comprehensive language extensions that provide full management of SQL
cursors.

Report Output

The reporting features of CA-Easytrieve make producing reports a simple,
uncomplicated process. The flexibility built into the system through specialized
report procedures makes it easy to produce customized reports without
compromise. CA-Easytrieve:

■ Produces unlimited reports from a single pass of the data.

■ Automatically formats reports.

■ Provides customizing alternatives to all report format features.

1–8 Introduction to the Language

Capabilities

■ Provides mailing labels of any size.

■ Provides control breaks on any number of keys.

■ Automatically creates a summary file containing subtotals.

■ Processes only those fields that are required by your REPORT statements.

■ Generates reports to separate logical printers or other output media. You
can also send reports to the Report Display Facility so they can be browsed
and, optionally, printed.

■ Provides control break level access for special logic processing, which is
useful when only certain report lines are to be generated for certain specific
levels of control breaks.

■ Provides specialized report procedures for user flexibility (BEFORE/AFTER-
LINE, ENDPAGE, TERMINATION, BEFORE/AFTER-BREAK, REPORT-
INPUT).

■ Permits explicit positioning of print layout for pre-printed forms.

Screen Processing

CA-Easytrieve also provides the ability to create screen transaction programs
with ease. Just as CA-Easytrieve removes the tedious details from report
writing, its declarative structure removes the mundane tasks associated with
screen processing. CA-Easytrieve provides the following:

■ Ability to produce multiple screens from a single program.

■ Automatically centered screen titles.

■ Automatically validated terminal keys.

■ An automatically created IBM SAA function key display area.

■ Automatically edited screen data.

■ Ability to send programmer-issued messages using one of three SAA
severity levels.

■ Special-named screen procedures for user flexibility, such as:
BEFORE-SCREEN, AFTER-SCREEN, INITIATION, and TERMINATION.

■ Ability to test for field modifications and cursor placement.

■ Support for pop-up window screens.

Graph Processing

Additionally, CA-Easytrieve provides the ability to produce bit-mapped
presentation graphs with a non-procedural technique very similar to reporting.
Graph processing includes the following:

Overview 1–9

Capabilities

■ Ability to produce multiple graphs from a single program.

■ Ability to produce pie charts, bar charts, line graphs, and scatter diagrams.

■ Automatically centered graph titles.

■ System-defined function key assignments to request help, exit, or print.

■ Ability to optionally summarize y-axis data points and categorize by x-axis
data points.

■ Ability to optionally sequence the graph values.

Virtual File Manager

VFM provides an easy method for establishing temporary work files without
special job control or file allocation statements. By using VFM, you can establish
your own extract or temporary files using only CA-Easytrieve keywords. VFM’s
own data management techniques ensure its operating efficiency standards,
including:

■ Maintaining more information in memory. If the memory area is exhausted,
VFM writes the excess data to a single spill area.

■ Defining only one physical file.

■ Determining the best blocking factor based on device type, providing a 90
percent disk utilization.

■ Releasing and recovering occupied space as the virtual file is read back into
your program.

■ Automatically spooling files created as a result of sequenced reports or
multiple reports in the same activity.

Debugging Capabilities

The debugging aids provided by CA-Easytrieve ensure that all information
necessary to identify the cause of an abnormal termination is easily readable by:

■ Providing an error analysis report which pinpoints most errors immediately
including the source statement number in error and/or a FLOW table of
what statements were executed in what series.

■ Providing optional data processing oriented displays such as DMAPs and
PMAPs.

■ Trapping invalid file references and checking field boundaries during
execution to prevent a system dump.

1–10 Introduction to the Language

Structure of a CA-Easytrieve Program

Current Technology

CA-Easytrieve represents the maximum in efficiency because it has been
developed with the latest in programming technology, including:

■ Mapping programs in 4K segments whenever possible.

■ Mapping working storage on double word boundaries.

■ Providing a one-pass compiler.

■ Directly generating the object code.

■ Providing security on VSAM and SQL usage.

Structure of a CA-Easytrieve Program
Before beginning the tutorial in Chapter 2, “Programming with CA-Easytrieve,”
it is helpful to have a basic understanding of how a CA-Easytrieve program is
structured.

Each CA-Easytrieve program can contain an environment section, a library
definition section, and one or more activity sections. The environment and library
definition sections are optional but at least one activity section is required.
 
  Environment section (optional)
CA-Easytrieve 
 PROGRAM  Library section (optional)
 
  Activity section(s) (one required)
 

Environment Section

The environment section establishes parameters for the program. This section
permits you to override standard CA-Easytrieve options and to choose a mode
of operation. The environment section is not required for most of the examples in
this guide. For a complete discussion of the environment section, see the PARM
Statement in the CA-Easytrieve Language Reference Guide.

Library Definition Section

The library definition section describes the data to be processed by the program.
It describes data files and their associated fields, as well as any working storage
requirements of the program. The library definition section is said to be optional
because on rare occasions, a program might not be doing any input or output of
files. However, in most cases use of the library definition section is required.

Overview 1–11

Structure of a CA-Easytrieve Program

Activity Section

The activity section is the only mandatory section of your program. There are
four types of activities: PROGRAM, SCREEN, JOB, and SORT.

■ A PROGRAM activity is a simple top-down sequence of instructions. A
PROGRAM activity can be used to conditionally execute the other types of
activities using the EXECUTE statement.

■ SCREEN activities define a screen-oriented transaction. Data can be
displayed to a terminal operator and received back into the program. Files
can be read and updated. A SCREEN activity can EXECUTE a JOB or SORT
activity to perform a special process, such as printing a report.

■ JOB activities read information from files, examine and manipulate data,
write information to files, and initiate printed reports.

■ SORT activities create sequenced or ordered files.

You can code one or more procedures (PROCs) at the end of each activity.
Procedures are separate modules of program code you use to perform specific
tasks and are discussed in Chapter 4, “Activity Section - Processing and Logic.”

REPORT subactivities are areas in a JOB activity where reports are described.
You can code one or more REPORT subactivities after the PROCs (if any) at the
end of each JOB activity. You must code any PROCs used within a REPORT
subactivity (REPORT PROCs) immediately after the REPORT subactivity in
which you use them.

GRAPH subactivities are areas in a JOB activity where graphs are described.
One or more GRAPH subactivities can be coded after JOB procedures. You
cannot code procedures for a GRAPH subactivity.

The following shows some CA-Easytrieve keywords and other items in the
sections where they are usually located. It gives the general order of
CA-Easytrieve statements in a program.

1–12 Introduction to the Language

Structure of a CA-Easytrieve Program

Environment Section PARM ...

Library Section FILE ...
 DEFINE ...
...

Activity Section PROGRAM ...
 (statements)
 (program procedures)
JOB ...
 (statements)
 (job procedures)
 REPORT ...
 (report procedures)
 GRAPH
SORT ...
 (sort procedures)
SCREEN ...
 (screen procedures)
...

Sample Program

The following shows an example of a simple CA-Easytrieve program. This
program produces a standard report that is used in the next section as a starting
point for the tutorial. We show it here to further illustrate the basic structure of a
CA-Easytrieve program. (The environment section is omitted.)
FILE PERSNL FB(150 1800) 
 EMPNAME 17 8 A 
 EMP# 9 5 N  Library Section
 DEPT 98 3 N 
 GROSS 94 4 P 2 

JOB INPUT PERSNL NAME FIRST-PROGRAM 
 PRINT PAY-RPT 
REPORT PAY-RPT LINESIZE 80  Activity Section
 TITLE 01 'PERSONNEL REPORT EXAMPLE-1' 
 LINE 01 DEPT EMPNAME EMP# GROSS 

The above program produces the following output. As is the case in many of the
output examples in this guide, it has been edited for illustrative purposes.
01/31/91 PERSONNEL REPORT EXAMPLE-1 PAGE 1

 DEPT EMPNAME EMP# GROSS

 903 WIMN 12267 373.60
 943 BERG 11473 759.20
 915 CORNING 02688 146.16
 935 NAGLE 00370 554.40
 911 ARNOLD 01963 445.50
 914 MANHART 11602 344.80
 917 TALL 11931 492.26
 918 BRANDOW 02200 804.64
 911 LARSON 11357 283.92
 932 BYER 11467 396.68
 921 HUSS 11376 360.80
 911 POWELL 11710 243.20
 943 MCMAHON 04234 386.40

Overview 1–13

Structure of a CA-Easytrieve Program

If you are familiar with other programming languages or report generators, you
realize that CA-Easytrieve takes care of a lot of details for you; details that you
would otherwise spend countless hours controlling and typing in yourself. In
the next chapter, you are given a chance to jump right in and start creating your
own CA-Easytrieve programs.

We hope you enjoy programming with CA-Easytrieve.

1–14 Introduction to the Language

Chapter

2 Programming with CA-Easytrieve

Introduction
You need information and you need it now. The data processing department is
backlogged two weeks. You know where your data is and you have been given
access to a programming language called CA-Easytrieve. What do you do?
That’s what this tutorial is about. In this tutorial, you learn:

■ How to create a report quickly using CA-Easytrieve

■ How to redefine your report to suit your needs

■ How to create a simple SCREEN activity

■ How to create a simple GRAPH subactivity.

Reading This Tutorial

This tutorial is divided into eight lessons. At the end of each lesson, you are
given an opportunity to branch off and explore further details of the material just
covered. Or, you can read the tutorial straight through, catching up on the
details later. Either way you do it, when you are finished you’ll be able to write
a CA-Easytrieve program.

Tutorial Lessons

The eight lessons in this chapter correspond (generally) to Chapters 3 through 8
of this guide. The topics covered are:

Lesson 1: CA-Easytrieve library section including FILE and DEFINE statements.

Lesson 2: CA-Easytrieve activity section including JOB and IF statements. Also a
look at working storage fields defined in the library section.

Lesson 3: CA-Easytrieve activity section including report output with the PRINT
Statement. Also, a return to the library section for a look at the HEADING and
MASK parameters of the DEFINE statement.

Programming with CA-Easytrieve 2–1

Lesson 1

Lesson 4: CA-Easytrieve activity section including the REPORT statement and
report definition statements.

Lesson 5: Using a CA-Easytrieve SCREEN activity to create an online adding
machine.

Lesson 6: Improving the readability of your screen with the ROW statement.

Lesson 7: Adding error trapping to your SCREEN activity.

Lesson 8: Using a CA-Easytrieve GRAPH subactivity to create a simple scatter
diagram.

Lesson 1
To start out, we’re going to show you a CA-Easytrieve program. This program is
completely executable; so if you are at a terminal, feel free to type it in and run it.
However, you are not required to have access to a terminal to follow the lessons
presented in this tutorial.
FILE PERSNL FB(150 1800)
 EMPNAME 17 8 A
 EMP# 9 5 N
 DEPT 98 3 N
 GROSS 94 4 P 2

JOB INPUT PERSNL NAME FIRST-PROGRAM
 PRINT PAY-RPT
REPORT PAY-RPT LINESIZE 80
 TITLE 01 'PERSONNEL REPORT EXAMPLE-1'
 LINE 01 DEPT EMPNAME EMP# GROSS

This sample program is very short, only 11 lines long. But, packed into the
program is the power to produce a completely formatted report including: date,
page number, title, column headings, properly spaced detailed lines, and more.
In other languages, you might expect to write 20 or more times this much code to
produce the same report.

The Report Your Program Creates

The sample program produces a report similar to the following:
01/31/91 PERSONNEL REPORT EXAMPLE-1 PAGE 1

 DEPT EMPNAME EMP# GROSS

 903 WIMN 12267 373.60
 943 BERG 11473 759.20
 915 CORNING 02688 146.16
 935 NAGLE 00370 554.40

2–2 Introduction to the Language

Lesson 1

 911 ARNOLD 01963 445.50
 914 MANHART 11602 344.80
 917 TALL 11931 492.26
 918 BRANDOW 02200 804.64
 911 LARSON 11357 283.92
 932 BYER 11467 396.68
 921 HUSS 11376 360.80
 911 POWELL 11710 243.20
 943 MCMAHON 04234 386.40

This report is simply an edited display of fields from an employee file named
PERSNL. (As we mentioned in the previous chapter, this sample file is provided
with CA-Easytrieve. Ask your system administrator where it is stored at your
site.) It’s a good starting point for describing some of the most important
CA-Easytrieve keywords.

One Statement at a Time

Let’s go on by examining the cause and effect relationship between our program
and its report, one statement at a time. We’ll start out with the CA-Easytrieve
library definition section (described in Chapter 1, “Overview”).

We’re going to keep it simple; if you become impatient and feel you want more,
remember you’ll be directed to more detailed information at the end of this
lesson.

The FILE Statement

The first line of our program looks like this:
FILE PERSNL FB(150 1800)

This line contains the CA-Easytrieve FILE statement. A FILE statement must be
included for every file you use as input to or output from your program. It tells
CA-Easytrieve where to get the data you want processed and can also tell it
some things about how that data is stored. To do this, it must include a file
name, and in our example, that name is PERSNL.

The rest of line 1 is optional. It tells CA-Easytrieve some information about how
the PERSNL file is stored, which makes accessing it more economical. The
PERSNL file contains records of a fixed length of 150 characters stored in 1800
character blocks. This is indicated as one parameter, FB(150 1800). (FB stands
for Fixed, Blocked.) Multiple subparameters are always enclosed by parentheses
in CA-Easytrieve. Since record length (150) and blocksize (1800) are mandatory
subparameters of FB, we included them in parentheses.

Programming with CA-Easytrieve 2–3

Lesson 1

The DEFINE Statement

There are four DEFINE statements in our program:
EMPNAME 17 8 A
EMP# 9 5 N
DEPT 98 3 N
GROSS 94 4 P 2

These four lines describe fields in a record of the PERSNL file. You don’t see the
word DEFINE in the above lines, but it is implied. If we wanted, we could have
written these lines as:
DEFINE EMPNAME 17 8 A
DEFINE EMP# 9 5 N
DEFINE DEPT 98 3 N
DEFINE GROSS 94 4 P 2

The DEFINE statement can also be used right in the middle of your program
logic if you need a quick working storage field. Used there, the DEFINE
keyword is required; it cannot be implied. We’ll cover this more thoroughly in
Chapter 3, “Library Section - Describing and Defining. Data.”

The DEFINE statements just shown describe four of the fields in a record of the
PERSNL file. They don’t have to describe all the fields in the record, or the
spaces between fields, because in CA-Easytrieve that isn’t necessary. You
describe only what you need to use.

The basic components of a field definition are fairly easy to understand; let’s
label them for you.

Field Name Starting Position in
Record

Length of
Field

Data
Type

Number of
Decimal Positions

EMPNAME 17 8 A

EMP# 9 5 N

DEPT 98 3 N

GROSS 94 4 P 2

When describing a field, you need to identify its name, give its location in the
record (starting position), its length, its type, and number of digits to the right of
the decimal point if any.

These items must be identified in the order shown above (left to right) and must
be separated by spaces. In our example, we line them up in columns (top to
bottom) for readability but that’s not required.

Field Name The field name identifies the field as a unique storage location
and is what you use later to refer to your data.

2–4 Introduction to the Language

Lesson 1

Starting Position The starting position, or location, is where (in the record) the
first character of the field begins.

Beginning at the first character of data in a record of the PERSNL file, you count
nine characters to the right to land on the first character of the EMP# field:

 EMP# field EMPNAME field
 ┌─────┴────────┐ ┌───────────┴───────────┐
│ │ │ │ │ │ │ │ │9 │9 │9 │9 │9 │ │ │ │ X│ X│ X│ X│ X│ X│ X│ X│ ...
└───┘──
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . .

 A Physical record in the PERSNL File

By counting 17 characters to the right from position 1, you land on the first
character of the EMPNAME field and so on.

Fields do not have to be described in your program in the same order that they
occur in the record. In our example, we define EMPNAME before EMP# even
though it physically comes after EMP# in the record.

Field Length The length of the field is simply the number of characters of
storage space (bytes) the field takes up in the record. As
illustrated above, you can see that EMP#, which has a field
length of 5, takes up 5 character positions, or bytes, in the
PERSNL record.

Data Type Data type describes the kind of data stored in a field. In the
example we are following, the fields consist of three different
data types.

Field Data Type Purpose

EMPNAME A - Alphanumeric Stores non-numeric data

EMP# N - Numeric Stores numbers in zoned decimal
format

DEPT N - Numeric Stores numbers in zoned decimal
format

GROSS P - Packed decimal Stores numbers in internal packed
decimal format

Decimal Positions In our example, the field GROSS is the only field that contains
numbers to the right of a decimal point:
 Decimal
 Positions

Programming with CA-Easytrieve 2–5

Lesson 2

GROSS 94 4 P 2

When this field is printed on your report, it shows up with two numbers to the
right of a decimal point (for example: 999.99).

Reviewing the Library Section

The statements you have covered so far (FILE and DEFINE) comprise the bulk of
the CA-Easytrieve library section. These two statements define the library of data
CA-Easytrieve uses as input to any processing activities.

■ FILE tells CA-Easytrieve about the data file you are accessing (or creating).

■ DEFINE tells CA-Easytrieve which fields you’ll be using from the file.

Once you have defined your data, you can go on to processing activities.

For More Information

To add detail to your understanding of the library section, turn to Chapter 3,
“Library Section - Describing and Defining Data”.

If you are content with what you have learned so far, proceed to the next lesson.

Lesson 2
In the previous lesson of this tutorial, we showed you a complete CA-Easytrieve
program and discussed part of it called the library definition chapter. Yet, we
haven’t explained how your data is processed to produce a report.

In this lesson, we’ll discuss the JOB activity, which defines and initiates all
processing activities in our sample program. Also, we’re going to add conditional
statements and a calculation for salary deductions.

First, let’s talk about the JOB statement.

The JOB Statement

The first line after the library section in our sample program is prefixed by the
word JOB:
JOB INPUT PERSNL NAME FIRST-PROGRAM

2–6 Introduction to the Language

Lesson 2

When CA-Easytrieve encounters a JOB statement, it knows that it is about to
begin some form of processing. The JOB statement can also automatically provide
input (if input is available) to the processing statements that follow it.

In the line shown above, taken from our sample program, everything but the
word JOB is optional. Let’s explain.

Input to a JOB Activity

The word JOB, in CA-Easytrieve, is like a sign that reads “Work in Progress.” It
indicates that processing is to follow. Typically, processing requires some kind of
file input.

Most programming languages require you, the user, to control the availability of
input files. Usually, files are opened and then some sort of input statement is
executed in a loop, checking for an end-of-file condition each time it is executed.

Although CA-Easytrieve gives you the flexibility to control input, it also has the
power to do all the “dirty work” for you. This is called Automatic Input.

Automatic Input By using the INPUT parameter of the JOB statement, you indicate
that the named file (in this case PERSNL) be made automatically
available to your program. It’s like saying, “I want to use this file,
please.” And letting CA-Easytrieve do the rest.

CA-Easytrieve is smart; if you don’t specify INPUT, it looks for input and uses the
first file described in the library section. (Unless the JOB activity is preceded by a
SORT activity, in which case CA-Easytrieve uses the output from that SORT. See
Chapter 5, “Activity Section - Input and Output” for more information on SORT.)
Since our sample program has only one input file (PERSNL), the INPUT
parameter on the JOB statement is completely optional. Without it, CA-Easytrieve
looks for input and uses the first file (the only file) in our library section, PERSNL.

Naming a JOB Activity

The next thing after the INPUT parameter in our sample program is the word
NAME. This simply tells CA-Easytrieve that a job name follows.

You normally name a JOB activity for documentation purposes only. It helps to
give JOB activities a descriptive name especially when you have more than one in
your program. In our example, we named the JOB activity FIRST-PROGRAM.
We did this by typing the parameter NAME followed by a name of our choice.

Programming with CA-Easytrieve 2–7

Lesson 2

A Look at Logic

The program we have discussed so far is capable of producing a complete report.
All that this program requires is a description of the data we want to print and a
few other lines of code we’ll discuss in the following pages of this tutorial.

In the mean time, to make things a little more interesting, we’re going to add a
few things to our program.

A New Condition

We’ve been talking a lot about a report program that simply extracts some data
from a file and prints it out. Granted, CA-Easytrieve makes doing this very easy
and automatic, but it is capable of doing so much more!

If This, Then That Let’s assume your boss just came in and said that the report
you’re working on has to include net pay and deductions. Let’s
look again at the program we’ve been working on so far.
FILE PERSNL FB(150 1800)
 EMPNAME 17 8 A
 EMP# 9 5 N
 DEPT 98 3 N
 GROSS 94 4 P 2

JOB INPUT PERSNL NAME FIRST-PROGRAM
 PRINT PAY-RPT
REPORT PAY-RPT LINESIZE 80
 TITLE 01 'PERSONNEL REPORT EXAMPLE-1'
 LINE 01 DEPT EMPNAME EMP# GROSS

The program accesses a field called GROSS which contains employee gross pay.
Since net pay (take home pay) is the gross pay minus any deductions, you quickly
realize that you need to figure out what to deduct. As it happens, you’re a payroll
expert, and you know that employees who make $500 or more get a 28 percent
deduction; the rest don’t get any deduction.

The condition we’ve just described can be stated with a simple conditional
expression:
IF GROSS GE 500
 DEDUCTIONS = .28 * GROSS
 NET-PAY = GROSS - DEDUCTIONS
ELSE
 NET-PAY = GROSS
 DEDUCTIONS = 0
END-IF

In this expression, we say, “If the gross pay is greater than or equal to 500, deduct
28 percent to give the net pay. Otherwise, if the gross is less than 500, there are no
deductions and net pay is the same as gross.” CA-Easytrieve requires an END-IF
to complete the expression.

2–8 Introduction to the Language

Lesson 2

Adding Logic to the
JOB Activity

Now that we have a logical statement to describe our condition,
we simply type it into our program, placing it in the JOB activity
after the JOB statement.
FILE PERSNL FB(150 1800)
 EMPNAME 17 8 A
 EMP# 9 5 N
 DEPT 98 3 N
 GROSS 94 4 P 2

JOB INPUT PERSNL NAME FIRST-PROGRAM

 IF GROSS GE 500
 DEDUCTIONS = .28 * GROSS
 NET-PAY = GROSS - DEDUCTIONS New
 ELSE Logic
 NET-PAY = GROSS
 DEDUCTIONS = 0
 END-IF

 PRINT PAY-RPT
REPORT PAY-RPT LINESIZE 80
 TITLE 01 'PERSONNEL REPORT EXAMPLE-1'
 LINE 01 DEPT EMPNAME EMP# GROSS

There are several details we still need to take care of. We need a place to store the
results for our two new variables, DEDUCTIONS and NET-PAY. They can be
stored in a place known as working storage.

CA-Easytrieve Working Storage

Unlike many other languages, CA-Easytrieve makes the definition of working
storage fields a breeze. You can place them in the library section of your
program, or even right in the activity section before the logic that requires them.

To define a working storage field, you use the same type of attributes used to
describe other fields. But, you replace the numeric value which normally
describes the start location with the letter W.
DEDUCTIONS W 4 P 2
NET-PAY W 4 P 2

The above fields can be described in words as: working storage fields, 4 characters
long, in packed decimal format with 2 decimal places. Let’s place these fields in
the library section of our program (this enables them to be more easily seen than if
they were placed in the activity section).
FILE PERSNL FB(150 1800)
 EMPNAME 17 8 A
 EMP# 9 5 N
 DEPT 98 3 N
 GROSS 94 4 P 2
 DEDUCTIONS W 4 P 2 Working
 NET-PAY W 4 P 2 Storage
 Fields
JOB INPUT PERSNL NAME FIRST-PROGRAM

Programming with CA-Easytrieve 2–9

Lesson 2

 IF GROSS GE 500
 DEDUCTIONS = .28 * GROSS
 NET-PAY = GROSS - DEDUCTIONS
 ELSE
 NET-PAY = GROSS
 DEDUCTIONS = 0
 END-IF

 PRINT PAY-RPT
REPORT PAY-RPT LINESIZE 80
 TITLE 01 'PERSONNEL REPORT EXAMPLE-1'
 LINE 01 DEPT EMPNAME EMP# GROSS

So far, we’ve used some elementary logic, calculated some values, and created a
place to store those values.

Review of Job Activities

In this lesson of the tutorial, you’ve learned how to add conditional logic and
calculations to your program in order to compute new information. You’ve also
learned how to store the new information. You know that:

■ JOB initiates program processing activities and can also provide automatic
file input.

■ IF is a conditional expression used to make decisions, based on certain
criteria.

■ W designates a working storage field on the DEFINE statement.

In the next lesson, we’ll talk a little about the LINE statement and the statement
that is responsible for initiating the printing of your report, the PRINT statement.
We’ll also be discussing a couple of parameters that allow you to edit and label
your data to make it more meaningful, MASK and HEADING.

For More Information

To add detail to your understanding of the JOB activity section, turn to Chapter 4,
“Activity Section - Processing and Logic.”

If you want to continue with the tutorial to learn how to print a CA-Easytrieve
report, proceed to the next lesson.

If you want to continue the tutorial to learn how to create a CA-Easytrieve
SCREEN activity, move on to Lesson 5, “Your First Screen Program.”

2–10 Introduction to the Language

Lesson 3

Lesson 3
The CA-Easytrieve PRINT statement is responsible for activating report
statements which result in a printed report.

As we’ll discuss in this lesson, a report declaration consists of a series of
statements that define the format and content of a report. These statements
consist of the REPORT statement, report definition statements, and report
procedures. So far, we have seen three such statements in our sample program.
■ REPORT
■ TITLE
■ LINE

In our sample program, the PRINT statement occurs directly after the conditional
statements we created in the last lesson of this tutorial.
 END-IF

 PRINT PAY-RPT
REPORT PAY-RPT LINESIZE 80

Once the conditional statements have been executed against a record of the
PERSNL file, the PRINT statement tells CA-Easytrieve to execute the report
definition statements. In the previous PRINT statement example, these
statements are identified by a user-supplied name, PAY-RPT. This name ties the
PRINT statement to a specific report of the same name as indicated on the
REPORT statement. If the report name is not included, CA-Easytrieve executes
the first report in the JOB activity section whether or not it has a name.

Once the report statements are executed, control is returned to the beginning of
the JOB activity section where the next record is processed, or end-of-file
processing is performed. All output routines, line counts, and page advances, are
handled automatically. You simply say PRINT and CA-Easytrieve does the rest.

CA-Easytrieve LINE Statement

The last line in the program we’ve been showing looks like this:
LINE 01 DEPT EMPNAME EMP# GROSS

This line of code is responsible for the printing of detail lines on the report. It tells
CA-Easytrieve what fields to print and the order in which to print them.

To add DEDUCTIONS and NET-PAY to the report output, all we have to do is
make the LINE statement look like this:
LINE 01 DEPT EMPNAME EMP# GROSS NET-PAY DEDUCTIONS

Programming with CA-Easytrieve 2–11

Lesson 3

We simply add the names of our two new fields in whatever order we want them
to appear.

With this last change we can run our new and improved program to generate a
report. Here is the program with all the changes we’ve made.
FILE PERSNL FB(150 1800)
 EMPNAME 17 8 A
 EMP# 9 5 N
 DEPT 98 3 N
 GROSS 94 4 P 2
 DEDUCTIONS W 4 P 2
 NET-PAY W 4 P 2

JOB INPUT PERSNL NAME FIRST-PROGRAM

 IF GROSS GE 500
 DEDUCTIONS = .28 * GROSS
 NET-PAY = GROSS - DEDUCTIONS
 ELSE
 NET-PAY = GROSS
 DEDUCTIONS = 0
 END-IF

 PRINT PAY-RPT
REPORT PAY-RPT LINESIZE 80
 TITLE 01 'PERSONNEL REPORT EXAMPLE-1'
 LINE 01 DEPT EMPNAME EMP# GROSS NET-PAY DEDUCTIONS

Next is the sample output from the program just shown. As you can see, two new
columns of information have been added for NET-PAY and DEDUCTIONS:

01/31/91 PERSONNEL REPORT EXAMPLE-1 PAGE 1

 DEPT EMPNAME EMP# GROSS NET-PAY DEDUCTIONS

 903 WIMN 12267 373.60 373.60 .00
 943 BERG 11473 759.20 546.63 212.57
 915 CORNING 02688 146.16 146.16 .00
 935 NAGLE 00370 554.40 399.17 155.23
 911 ARNOLD 01963 445.50 445.50 .00
 914 MANHART 11602 344.80 344.80 .00
 917 TALL 11931 492.26 492.26 .00
 918 BRANDOW 02200 804.64 579.35 225.29
 911 LARSON 11357 283.92 283.92 .00
 932 BYER 11467 396.68 396.68 .00
 921 HUSS 11376 360.80 360.80 .00
 911 POWELL 11710 243.20 243.20 .00
 943 MCMAHON 04234 386.40 386.40 .00

Editing Your Report Output

In the previous lesson of this tutorial, we added two new values to our report,
NET-PAY and DEDUCTIONS. Both of these, along with GROSS, are dollar
values. Up until now, dollar values have only printed as ordinary numbers with
decimal places. We can edit these values so they print with dollar signs by
adding an edit mask to the DEFINE statement.

2–12 Introduction to the Language

Lesson 3

Edit Masks

An edit mask is a pattern of characters that specifies how numeric data be printed.
(Alphanumeric fields cannot be edited.) For example, let’s add edit masks to the
three currency fields in our example program so they print with dollar signs.
GROSS 94 4 P 2 MASK (A '$$,$$9.99')
NET-PAY W 4 P 2 MASK A
DEDUCTIONS W 4 P 2 MASK (A BWZ)

The first thing you’ll notice is a new keyword, MASK. MASK is a parameter of
the DEFINE statement that designates an edit mask follows. In the above
example, the actual mask consists of the characters: ‘$$,$$9.99’. Masks are always
enclosed in single quotes.

The effect on our report of adding the above masks is as follows:
01/31/91 PERSONNEL REPORT EXAMPLE-1 PAGE 1

 DEPT EMPNAME EMP# GROSS NET-PAY DEDUCTIONS

 903 WIMN 12267 $373.60 $373.60
 943 BERG 11473 $759.20 $546.63 $212.57
 915 CORNING 02688 $146.16 $146.16
 935 NAGLE 00370 $554.40 $399.17 $155.23
 911 ARNOLD 01963 $445.50 $445.50
 914 MANHART 11602 $344.80 $344.80
 917 TALL 11931 $492.26 $492.26
 918 BRANDOW 02200 $804.64 $579.35 $225.29
 911 LARSON 11357 $283.92 $283.92
 932 BYER 11467 $396.68 $396.68
 921 HUSS 11376 $360.80 $360.80
 911 POWELL 11710 $243.20 $243.20
 943 MCMAHON 04234 $386.40 $386.40

Note: Any leading zeros are suppressed and each value has one dollar sign.
Any all-zero values in the DEDUCTIONS column are printed as blanks.

The following explanations and rules apply to the edit masks in our example:

■ Each digit in a field must be designated in the edit mask. Since a four-byte
packed decimal field is capable of containing seven digits, we need to
designate seven digits in the mask. This is done with $$$$999.

■ Dollar signs ($) in the edit mask indicate that a dollar sign is to be printed
prior to the first non-zero digit of the printed field. This is called a floating
dollar sign. It means that if one or more high-order zeros are stored in the
positions where a dollar sign appears in the mask, they are suppressed and
replaced with a single dollar sign. For example:

Mask Field Value Resulting Output
'$$,$$9.99' 1234567 $12,345.67

 0123456 $1,234.56

 0012345 $123.45

Programming with CA-Easytrieve 2–13

Lesson 3

Mask Field Value Resulting Output
 0001234 $12.34

 0000123 $1.23

 0000012 $0.12

 As the number of leading zeros increases, the dollar sign automatically floats
to the right.

■ The digit 9, indicates that any value occurring in that position is printed as a
digit. In the above example, all values in the ones column or to the right of
the decimal are printed as digits, even zeros.

■ Commas and decimal points are printed just as indicated. In the above
example, you can see that commas are suppressed along with high-order
zeros for numbers less than 1000.

■ When the same mask is to be used on more than one field, you can avoid
coding the mask more than once by naming it, and then specifying only the
name on subsequent fields. Names can be any letter from A through Y.

 In our example we named the mask used on the GROSS field A. Then, we
specified the letter A on the NET-PAY and DEDUCTIONS fields instead of
coding the mask again. Remember, multiple parameters and subparameters
are enclosed in parentheses.

■ To suppress all-zero values from printing (if you find that desirable) simply
code BWZ (blank when zero) after the mask or mask name. Because some
employees in our report can have zero deductions, we included BWZ.

Field Headings

So far in our example program, field (or column) headings have come directly
from the field names themselves. Automatically, CA-Easytrieve uses field names
(specified on the DEFINE statement) as column headings, unless column
headings are described separately.

One way to describe alternative column headings is with the HEADING
parameter of the DEFINE statement. For example, you can replace the somewhat
cryptic heading EMP# with the more readable heading EMPLOYEE NUMBER as
follows:
EMPNAME 17 8 A
EMP# 9 5 N HEADING ('EMPLOYEE' 'NUMBER')
DEPT 98 3 N

By placing each word in single quotes, you indicate that the heading should be
stacked, one word over the other.

The following shows how the new heading prints, once the program is run.
01/31/91 PERSONNEL REPORT EXAMPLE-1 PAGE 1

2–14 Introduction to the Language

Lesson 3

 EMPLOYEE
 DEPT EMPNAME NUMBER GROSS NET-PAY DEDUCTIONS

You can include headings on the DEFINE statement for any fields you feel need
better identification.

Reviewing PRINT, LINE, MASK, and HEADING

In this lesson of the tutorial, we have discussed the workings of the PRINT
statement and also how to use the MASK and HEADING parameters to make
your reports more readable. You have learned that:

■ PRINT activates a report declaration resulting in a printed report.

■ LINE determines which fields are printed on your report and in what order
they are printed.

■ MASK enables you to change the look of fields on your report.

■ HEADING enables you to customize column headings on your report.

In this lesson, we have made some minor changes to our on-going program
example. Here is how our program looks:
FILE PERSNL FB(150 1800)
 EMPNAME 17 8 A
 EMP# 9 5 N (HEADING ('EMPLOYEE' 'NUMBER')
 DEPT 98 3 N
 GROSS 94 4 P 2 MASK (A '$$,$$9.99')
 NET-PAY W 4 P 2 MASK A
 DEDUCTIONS W 4 P 2 MASK (A BWZ)

JOB INPUT PERSNL NAME FIRST-PROGRAM

 IF GROSS GE 500
 DEDUCTIONS = .28 * GROSS
 NET-PAY = GROSS - DEDUCTIONS
 ELSE
 NET-PAY = GROSS
 DEDUCTIONS = 0
 END-IF

 PRINT PAY-RPT
REPORT PAY-RPT LINESIZE 80
 TITLE 01 'PERSONNEL REPORT EXAMPLE-1'
 LINE 01 DEPT EMPNAME EMP# GROSS NET-PAY DEDUCTIONS

For More Information

If you’d like to learn more about the PRINT statement, you can turn now to
Chapter 5, “Activity Section - Input and Output.”

To continue the tutorial and learn about report declarations, proceed to the next
lesson.

Programming with CA-Easytrieve 2–15

Lesson 4

Lesson 4
The example program we have been discussing currently has only three
statements in its report declaration. These statements are REPORT, TITLE, and
LINE.
REPORT PAY-RPT LINESIZE 80
 TITLE 01 'PERSONNEL REPORT EXAMPLE-1'
 LINE 01 DEPT EMPNAME EMP# GROSS NET-PAY DEDUCTIONS

In this lesson, we discuss these three statements and are also adding four more
statements to our program:

■ SEQUENCE

■ CONTROL

■ SUM

■ HEADING

The REPORT Statement

The REPORT Statement must be the first statement in your report declaration. It
tells CA-Easytrieve that a report is about to be described and is also used to
identify the type of report and its various physical characteristics.

In our sample program we identify the report by name (PAY-RPT) and also
specify a LINESIZE of 80; both of these are optional. Since our program has only
one report, we could have left the report name off of both the PRINT and the
REPORT statements. A linesize of 80 restricts report output to 80 characters per
printed line. If you are entering programs as we move along and are reviewing
output at your terminal, then 80 characters per line is appropriate. (Since most
terminals only display 80 characters on a screen.)

Report Definition Statements

Report definition statements define the contents of a report. We’ll discuss these
statements in the order they must occur in your report declaration. We’ll add
new statements to our example program as we go, showing the effects on report
output.

There are six report definition statements in CA-Easytrieve. When used, they
must occur after the REPORT statement and in a specified order, as follows:

■ SEQUENCE
■ CONTROL
■ SUM
■ TITLE

2–16 Introduction to the Language

Lesson 4

■ HEADING
■ LINE

A clever CA-Easytrieve user came up with a useful mnemonic device for
remembering these statements and their order:
 Siblings Can Sometimes Tell Horrible Lies
 E O U I E I
 Q N M T A N
 U T L D E
 E R E I
 N O N
 C L G
 E

The mnemonic may sound silly, but it’s effective. All these statements are
discussed briefly on the remaining pages of this lesson. After you understand
what each of these statements do, you’ll see that the order of these statements is
very logical.

The SEQUENCE Statement

The SEQUENCE statement causes your report to be sorted on a specified key in
ascending or descending order. Let’s sequence our current report example on
department in ascending order. That is, let’s tell CA-Easytrieve to print out all of
our employees in order by department number starting with the lowest
department number. (The department number is in the field called DEPT.) All
we have to do is place the SEQUENCE statement and the field name DEPT after
the REPORT statement:
REPORT PAY-RPT LINESIZE 80
 SEQUENCE DEPT
 TITLE 01 'PERSONNEL REPORT EXAMPLE-1'
 LINE 01 DEPT EMPNAME EMP# GROSS NET-PAY DEDUCTIONS

Ascending order is the default for the SEQUENCE statement. For descending
order, enter D after the field name, separated by a space.

When we run our program, here’s what we get:
01/31/91 PERSONNEL REPORT EXAMPLE-1 PAGE 1

 EMPLOYEE
 DEPT EMPNAME NUMBER GROSS NET-PAY DEDUCTIONS

 901 WALTERS 11211 $424.00 $424.00
 903 WIMN 12267 $373.60 $373.60
 912 LOYAL 04225 $295.20 $295.20
 914 MANHART 11602 $344.80 $344.80
 914 VETTER 01895 $279.36 $279.36
 914 GRECO 07231 $1,004.00 $722.88 $281.12
 914 CROCI 08262 $376.00 $376.00
 914 RYAN 10961 $399.20 $399.20
 915 CORNING 02688 $146.16 $146.16
 917 TALL 11931 $492.26 $492.26
 918 BRANDOW 02200 $804.64 $579.35 $225.29
 918 EPERT 07781 $310.40 $310.40

Programming with CA-Easytrieve 2–17

Lesson 4

 919 DENNING 02765 $135.85 $135.85
 920 MILLER 05914 $313.60 $313.60

Note that the records are now in order by department number. When you use
SEQUENCE, you don’t need to define any extra files or additional input/output
commands in your program; CA-Easytrieve takes care of that for you.

The CONTROL Statement

The CONTROL statement defines a control break on a specified field (called the
control field). It causes all quantitative fields (fields with decimal positions) to be
totaled at the time of the control break and to be grand totaled at the end of the
report.

Since we’ve sequenced our report by the DEPT field, we can also request a control
break on the same field. This gives us totals of GROSS, NET-PAY, and
DEDUCTIONS for each department. All we must do is add the CONTROL
statement and the field name DEPT right after the SEQUENCE statement:
REPORT PAY-RPT LINESIZE 80
 SEQUENCE DEPT
 CONTROL DEPT
 TITLE 01 'PERSONNEL REPORT EXAMPLE-1'
 LINE 01 DEPT EMPNAME EMP# GROSS NET-PAY DEDUCTIONS

Now at the end of each department (and end-of-report) we’ll get our totals:
01/31/91 PERSONNEL REPORT EXAMPLE-1 PAGE 1

 EMPLOYEE
 DEPT EMPNAME NUMBER GROSS NET-PAY DEDUCTIONS

 901 WALTERS 11211 $424.00 $424.00
 901 $424.00 $424.00

 903 WIMN 12267 $373.60 $373.60
 903 $373.60 $373.60

 912 LOYAL 04225 $295.20 $295.20
 912 $295.20 $295.20

 914 MANHART 11602 $344.80 $344.80
 VETTER 01895 $279.36 $279.36
 GRECO 07231 $1,004.00 $722.88 $281.12
 CROCI 08262 $376.00 $376.00
 RYAN 10961 $399.20 $399.20
 914 $2,403.36 $2,122.24 $281.12

 $3,496.16 $3,215.04

2–18 Introduction to the Language

Lesson 4

The SUM Statement

Let’s say you’ve decided you do not want totals for all three fields GROSS,
NET-PAY, and DEDUCTIONS at each control break. All you really need is a total
for GROSS so you can get an idea of what the salary expense is. You can override
the CONTROL statement (which normally totals all quantitative fields) with the
SUM statement.

The SUM statement specifies the quantitative fields you want totaled on a control
break. When used, any fields not specified on the SUM statement are not totaled.
Let’s change our program so that it totals only the gross pay.
REPORT PAY-RPT LINESIZE 80
 SEQUENCE DEPT
 CONTROL DEPT
 SUM GROSS
 TITLE 01 'PERSONNEL REPORT EXAMPLE-1'
 LINE 01 DEPT EMPNAME EMP# GROSS NET-PAY DEDUCTIONS

Now, GROSS is the only field totaled:
01/31/91 PERSONNEL REPORT EXAMPLE-1 PAGE 1

 EMPLOYEE
 DEPT EMPNAME NUMBER GROSS NET-PAY DEDUCTIONS

 901 WALTERS 11211 $424.00 $424.00
 901 $424.00

 903 WIMN 12267 $373.60 $373.60
 903 $373.60

 912 LOYAL 04225 $295.20 $295.20
 912 $295.20

 914 MANHART 11602 $344.80 $344.80
 VETTER 01895 $279.36 $279.36
 GRECO 07231 $1,004.00 $722.88 $281.12
 CROCI 08262 $376.00 $376.00
 RYAN 10961 $399.20 $399.20
 914 $2,403.36

The TITLE Statement

The TITLE statement gives us the title of our report. We’ve been calling our
report ‘PERSONNEL REPORT EXAMPLE-1’ all the way through the tutorial.
REPORT PAY-RPT LINESIZE 80
 SEQUENCE DEPT
 CONTROL DEPT
 SUM GROSS
 TITLE 01 'PERSONNEL REPORT EXAMPLE-1'
 LINE 01 DEPT EMPNAME EMP# GROSS NET-PAY DEDUCTIONS

Programming with CA-Easytrieve 2–19

Lesson 4

You can change this to any title you think appropriate. All you must do is include
the word TITLE, followed by a title number, followed by your title in single
quotes. The title number can be omitted when you have only one title; it simply
defaults to 01. When you have more than one title (and TITLE statement) you
need to number them in ascending order.

You’ve seen what this statement does on our example report, but we’ll show you
again in case you’ve forgotten. As shown above, the TITLE statement is
responsible for the title shown on the following report:

01/31/91 PERSONNEL REPORT EXAMPLE-1 PAGE 1

 EMPLOYEE
 DEPT EMPNAME NUMBER GROSS NET-PAY DEDUCTIONS

 901 WALTERS 11211 $424.00 $424.00
 901 $424.00

 903 WIMN 12267 $373.60 $373.60
 903 $373.60

The system date and the page number are automatically printed on the same line.
We’ll show you how to override this later in Chapter 6, “Activity Section -
Reporting.”

The HEADING Statement

The HEADING statement like the HEADING parameter of the DEFINE statement
(discussed in Lesson 3) prints user defined column headings for specified fields.
(It overrides the HEADING parameter of the DEFINE statement if one already
exists for the field you are describing.)

We can show you how this statement works by adding it to our program. Let’s
say we’ve decided that the field name, EMPNAME is not really a good column
heading since what we really mean is EMPLOYEE NAME. Much like we did
with the EMP# field, we can change our existing column heading.

All we do is type the word HEADING followed by the field name EMPNAME,
followed by the new column heading:
REPORT PAY-RPT LINESIZE 80
 SEQUENCE DEPT
 CONTROL DEPT
 SUM GROSS
 TITLE 01 'PERSONNEL REPORT EXAMPLE-1'
 HEADING EMPNAME ('EMPLOYEE' 'NAME')
 LINE 01 DEPT EMPNAME EMP# GROSS NET-PAY DEDUCTIONS

To be consistent with our other heading, EMPLOYEE NUMBER, we’ve described
our new heading so that it stacks EMPLOYEE on top of NAME. This is done by
putting single quotes around each word in the heading. The parentheses are
required because the two words, each in single quotes, are treated the same as any
other multiple parameters. Here’s how it prints:

2–20 Introduction to the Language

Lesson 4

01/31/91 PERSONNEL REPORT EXAMPLE-1 PAGE 1

 EMPLOYEE EMPLOYEE
 DEPT NAME NUMBER GROSS NET-PAY DEDUCTIONS

 901 WALTERS 11211 $424.00 $424.00
 901 $424.00

 903 WIMN 12267 $373.60 $373.60
 903 $373.60

 912 LOYAL 04225 $295.20 $295.20
 912 $295.20

 914 MANHART 11602 $344.80 $344.80
 VETTER 01895 $279.36 $279.36
 GRECO 07231 $1,004.00 $722.88 $281.12
 CROCI 08262 $376.00 $376.00
 RYAN 10961 $399.20 $399.20
 914 $2,403.36

The LINE Statement

The last report definition statement is one you’ve seen, along with TITLE, since
the beginning of this chapter. We discussed it briefly in Lesson 3.

The LINE statement defines the contents of a printed line (detail line) in your
report. In our example program, it defines which fields we want printed on a line
and the order we want them printed in:
REPORT PAY-RPT LINESIZE 80
 SEQUENCE DEPT
 CONTROL DEPT
 SUM GROSS
 TITLE 01 'PERSONNEL REPORT EXAMPLE-1'
 HEADING EMPNAME ('EMPLOYEE' 'NAME')
 LINE DEPT EMPNAME EMP# GROSS NET-PAY DEDUCTIONS

The LINE statement is the only report definition statement you are required to
include in your report declaration. Without it, CA-Easytrieve has no idea what
detail information you want printed on your report or in what order you want it
printed.

Reviewing Report Declarations

With the completion of this lesson you have now seen what roles the REPORT,
SEQUENCE, CONTROL, SUM, TITLE, HEADING, and LINE statements play in
the creation of a CA-Easytrieve Report. In fact, you now have all the information
you need to write your own standard reports by customizing what you’ve
learned so far in this tutorial. You now know that:

■ REPORT designates the beginning of a report declaration and can specify the
type of report and report characteristics.

Programming with CA-Easytrieve 2–21

Lesson 5

■ SEQUENCE puts your report in alphabetical or numerical order, based on
the contents of a field or fields.

■ CONTROL causes a control break, based on the contents of a field. It causes
the printing of control totals and grand totals for all quantitative fields.

■ SUM overrides control totals and causes totals only for specified fields.

■ TITLE causes the printing of major report titles.

■ HEADING causes the printing of customized column headings.

■ LINE tells CA-Easytrieve what fields to put on detail lines and in what
order.

For More Information

To add more detail to your understanding of CA-Easytrieve report declarations,
turn to Chapter 6, “Activity Section - Reporting.”

The next three lessons in this tutorial introduce you to CA-Easytrieve SCREEN
activities. To continue, proceed to the next lesson.

Lesson 5
CA-Easytrieve provides all the facilities necessary to display and receive
information from an online terminal. As with other features, CA-Easytrieve
non-procedural nature provides relief from having to deal with many of the
complexities of online programming.

Note: In the following discussion of screen processing, the term you refers to the
programmer of the application. Terminal user refers to the person executing the
application program.

Basic Structure

A SCREEN activity defines the method you use to describe and process an online
screen display. The CA-Easytrieve screen processing facility is basically
declarative; you need only define the format and content of the screen and
CA-Easytrieve creates the necessary instructions to send and receive the screen.

There are two sections in a SCREEN activity:

■ The screen declaration statements that define the contents of the screen.

■ The optional screen procedures that provide the opportunity to code
procedural logic to perform file I/O or complex editing.

2–22 Introduction to the Language

Lesson 5

The following illustrates the basic structure of a CA-Easytrieve program with
screen processing. You can define one or more screens for each program.
FILE
 (library section)

SCREEN NAME SCREEN1
 Screen Declaration
 Screen Procedures

SCREEN NAME SCREEN2
 Screen Declaration
 Screen Procedures

Screen Format

CA-Easytrieve screen format is illustrated below.

 Title Area

 Work Area

 Message Area
 Function Key Area

Title Area

This optional area consists of screen rows designated as titles by TITLE statements
in the screen declaration. Titles normally identify the screen to the user and are
located at the top of the screen and automatically centered. The title area cannot
be updated by the terminal user.

Work Area

The work area contains the items to be displayed to or received from the terminal
user. The items are specified by ROW statements in the screen declaration.

Programming with CA-Easytrieve 2–23

Lesson 5

Message Area

The message area is used to display system and programmer-issued messages to
the terminal user. The message area default location is the bottom of the screen
and just above the function key display area.

Function Key Area

The optional function key area is used to tell the terminal user which function
keys are active and the action they perform. If used, this area is always located at
the bottom of the screen. The display is determined from the KEY statements in
the screen declaration.

Sample Screen Program

For the purposes of this tutorial, you start with a very simple screen program.
The program shows the types of CA-Easytrieve statements used to produce an
online screen application.
DEFINE FIELD1 W 8 N 2 
DEFINE FIELD2 W 8 N 2  Library
DEFINE RESULT W 8 N 2 

SCREEN NAME ADDING-MACHINE } SCREEN Statement

 TITLE 'ADDING MACHINE' 
 ROW 5 'FIELD 1. . . .' FIELD1 
 ROW 7 'FIELD 2. . . .' FIELD2  Screen Declaration
 ROW 9 'RESULT' RESULT 
 KEY ENTER 
 KEY F3 EXIT NAME 'Exit' 

 AFTER-SCREEN. PROC 
 RESULT = FIELD1 + FIELD2  Screen Procedure
 END-PROC 

This is all the code you need to display a formatted screen that allows you to enter
two numbers into Field 1 and Field 2. Press Enter and display the results of the
addition of the two numbers.

The Screen Your Program Creates

Note: The title of your screen is automatically centered at the top of the screen
and the function keys are shown on the bottom line of the screen.

 ADDING MACHINE

 FIELD 1.00

 FIELD 2.00

 RESULT00

2–24 Introduction to the Language

Lesson 5

 F3=Exit

Throughout this lesson and Lessons 6 and 7, we expand on this simple sample
program to demonstrate the ease of creating your own screen applications with
CA-Easytrieve.

The first three lines of the sample program are DEFINE statements. You recall
from Lesson 1 that all fields used in any CA-Easytrieve program must be defined
to the system. A SCREEN activity is no different in that requirement.

This particular program does not need a FILE statement because the numbers you
enter, and the results, are never permanently stored in a file. Most screen
applications do require some kind of FILE statement.

The SCREEN statement is the start of the SCREEN activity. This statement signals
to CA-Easytrieve that it is creating a screen to be displayed on a terminal.

The TITLE, ROW, and KEY statements declare what screen items appear on the
screen. A screen item is any literal or field you want to display on the screen. The
KEY statement also defines valid terminal keys for the screen.

The AFTER-SCREEN procedure identifies the processing that occurs after the
Enter key is pressed. The lessons in this tutorial deal primarily with the screen
declaration section of the SCREEN activity. For more information on screen
procedures refer to Chapter 7, “Activity Section - Screens.”

The following discussion details the workings of the TITLE, ROW, KEY, and
AFTER-SCREEN in the program.
 DEFINE FIELD1 W 8 N 2
 DEFINE FIELD2 W 8 N 2
 DEFINE RESULT W 8 N 2
 SCREEN NAME ADDING-MACHINE
 TITLE 'ADDING MACHINE'
 ROW 5 'FIELD 1. . . .' FIELD1
 ROW 7 'FIELD 2. . . .' FIELD2
 ROW 9 'RESULT' RESULT
 KEY ENTER
 KEY F3 EXIT NAME 'Exit'
 AFTER-SCREEN. PROC
 RESULT = FIELD1 + FIELD2
 END-PROC

TITLE Statement The title of the screen you are creating is ADDING MACHINE.

Programming with CA-Easytrieve 2–25

Lesson 5

This title is created with the CA-Easytrieve TITLE statement
shown below.
TITLE 'ADDING MACHINE'

Note: The words ADDING MACHINE are enclosed in single quotes because you
are using a literal and CA-Easytrieve requires that literals be enclosed in single
quotes. CA-Easytrieve displays literals on the screen exactly as you typed them.

The fields and literals on a TITLE statement are automatically protected from user
changes. CA-Easytrieve also automatically centers the title on the top line of the
terminal screen unless you specify a different location.

ROW Statement The ROW statement defines the items that appear on the screen
after the title.
ROW 5 'FIELD 1. . . .' FIELD1
ROW 7 'FIELD 2. . . .' FIELD2
ROW 9 'RESULT' RESULT

The numbers appearing after the ROW keyword identify in which row (or line) of
the terminal screen the item is displayed. If you do not specify a row number,
CA-Easytrieve places the item on the first line following the title and continues to
place items in subsequent ROW statements one line down.

You can code a literal on the ROW statement to provide information on the screen
to guide the user as to what the contents of the following field should be, or to
provide directions on what to do on the screen. Like literals on TITLE statements,
these literals cannot be altered by your application users.

FIELD1 and FIELD2 in the library section of your program are working storage
fields that temporarily store data the application user enters in the field. When
you code a field name on a ROW statement, CA-Easytrieve leaves a space on the
screen the same length as the length specified on the DEFINE statement for that
field (with a MASK, if applicable). Data can then be entered or displayed in this
space.

KEY Statement The KEY statement defines which programmable keys you want
to be valid in your screen applications. Programmable keys are
the keys on your keyboard that can be programmed to perform a
function, such as F1, to bring up a help screen or Enter to begin
processing. For example:
KEY ENTER
KEY F3 EXIT NAME 'Exit'

Only two keys are valid on the Sample Program screen, F3 and Enter. Because of
the NAME parameter, only F3=Exit is displayed on the screen.

2–26 Introduction to the Language

Lesson 5

The NAME parameter of the KEY statement tells CA-Easytrieve to display the key
name with an equal (=) sign and a literal after it in the function key area of the
screen. The following statement shows the change you must make to the first
KEY statement to have CA-Easytrieve add the Enter key to the screen display:
KEY ENTER NAME 'Compute'

The literal ‘Compute’ is displayed after the equal sign to inform application users
what happens when they press the Enter key. In this case, pressing Enter invokes
the AFTER-SCREEN procedure that calculates the addition of the two fields. The
new screen is shown below.

 ADDING MACHINE

 FIELD 1.00

 FIELD 2.00

 RESULT00

 ENTER=Compute F3=Exit

Note: ENTER=Compute is now displayed in the function key area on the
terminal screen. CA-Easytrieve automatically displays the keys in the order they
were coded on the KEY statements. Since the first KEY statement was for the
Enter key, it appears as the first key displayed in the function key area.

The second KEY statement:
KEY F3 EXIT NAME 'Exit'

shows one of the automatic functions available in CA-Easytrieve. When you use
the EXIT parameter of the KEY statement for a particular key, you tell
CA-Easytrieve to terminate the screen activity whenever the designated key is
pressed. The data in the screen fields are edited and moved into the program
fields.

Review of Screen Activities

In this lesson of the tutorial, we have discussed the TITLE, ROW, and KEY
statements to process an online screen display. You know that:

■ TITLE causes the display of a descriptive screen title.

Programming with CA-Easytrieve 2–27

Lesson 6

■ ROW determines where the items specified appear in the screen work area.

■ KEY designates the function keys to be programmed to perform a specific
action in your screen application.

For More Information

For more information about SCREEN activities, turn to Chapter 7, “Activity
Section - Screens.”

To continue the tutorial, proceed to the next lesson.

Lesson 6
Your screen program is fully functional, but now, let’s make it easier to use by
adding parameters to the ROW statement to:

■ Change the color of the RESULT field.

■ Apply an edit mask to the data fields.

Changing Attributes (ATTR Parameter)

CA-Easytrieve assigns default attributes to all the screen items. An attribute
refers to the way an item is displayed on the screen. Some of the attributes are
color, underlining, and intensity. You can override these default attributes with
the ATTR parameter of the TITLE and ROW statements.

To make the RESULT field on your screen more obvious when the computation is
completed, we assign an attribute of WHITE to the ROW 9 statement.
 DEFINE FIELD1 W 8 N 2
 DEFINE FIELD2 W 8 N 2
 DEFINE RESULT W 8 N 2
 SCREEN NAME ADDING-MACHINE
 TITLE 'ADDING MACHINE'
 ROW 5 'FIELD 1. . . .' FIELD1
 ROW 7 'FIELD 2. . . .' FIELD2
 ROW 9 'RESULT' RESULT ATTR WHITE
 KEY ENTER NAME 'Compute'
 KEY F3 EXIT NAME 'Exit'
 AFTER-SCREEN. PROC
 RESULT = FIELD1 + FIELD2
 END-PROC

All other fields and literals are displayed in the default colors specified in your
Site Options for screens. See your system administrator for more information on
the screen attribute defaults at your site.

2–28 Introduction to the Language

Lesson 6

Edit Masks

An edit mask is a pattern of characters specifing how numeric data is displayed
on the terminal screen. (Alphanumeric fields cannot be edited.)

To give an example, let’s add an edit mask to the three fields in our example
program so that they display with a leading digit before the decimal point.

 DEFINE FIELD1 W 8 N 2
 DEFINE FIELD2 W 8 N 2
 DEFINE RESULT W 8 N 2
 SCREEN NAME ADDING-MACHINE
 TITLE 'ADDING MACHINE'
 ROW 5 'FIELD 1. . . .' FIELD1 MASK (A 'ZZZ,ZZ9.99')
 ROW 7 'FIELD 2. . . .' FIELD2 MASK A
 ROW 9 'RESULT' RESULT ATTR WHITE MASK A
 KEY ENTER NAME 'Compute'
 KEY F3 EXIT NAME 'Exit'
 AFTER-SCREEN. PROC
 RESULT = FIELD1 + FIELD2
 END-PROC

The new keyword, MASK, is a parameter of the ROW statement and designates
that an edit mask is to follow. In the above example, the actual edit mask consists
of the characters ‘ZZZ,ZZ9.99’. Masks are always enclosed in single quotes.

The effect of adding the masks is as follows:

 ADDING MACHINE

 FIELD 1. . . . 0.00

 FIELD 2. . . . 0.00

 RESULT 0.00

 ENTER=Compute F3=Exit

Note: The leading zero is before the decimal point.

The following explanations and rules apply to the edit masks in our example:

■ Each digit in a field must be designated in the edit mask. Since all three
fields are eight digits in length with two decimal places, we must designate
eight digits in the mask. This is done with ZZZ,ZZ9.99.

Programming with CA-Easytrieve 2–29

Lesson 6

■ The Zs in the edit mask indicate that leading zeros in the field should not be
displayed on the screen. For example:

Mask Field Value Resulting Output

’ZZZ,ZZ9.99’ 1234567 12,345.67

 0123456 1,234.56

 0012345 123.45

 0001234 12.34

 0000123 1.23

 0000012 0.12

■ The digit 9 indicates that any value occurring in that position is printed as a
digit. In the above example, all values in the ones column or to the right of
the decimal are printed as digits, even zeros. Since CA-Easytrieve initialized
these fields to zero, a zero is displayed to the left of the decimal point and
two zeros are displayed to the right of the decimal point. All other positions
in the field are blank because we specified that leading zeros be suppressed
with the Z character.

■ Commas and decimal points are displayed just as indicated in the mask.

■ When the same mask is to be used on more than one field, you can avoid
coding the mask more than once by naming it, and then specifying only the
name on subsequent fields. Names can be any letter from A through Y. As
shown in the program code, all fields have the same mask, so the mask on
the first ROW statement was given the name A. Then, the name A was
coded on the remaining ROW statements to use the same mask.

Review of Changing Attributes

In this lesson of the tutorial, we discussed improving the readability of your
screen by adding the ATTR and MASK parameters to the ROW statement. You
learned that:

■ ATTR enables you to change the color of the field.

■ MASK enables you to specify how data is to be displayed on the screen.

For More Information

For more information on the ROW statement refer to Chapter 7, “Activity Section
- Screens.”

2–30 Introduction to the Language

Lesson 7

Lesson 7
The field defined to hold the numbers for the calculation and the results of the
addition are only eight bytes in length. This length limits the size of the result
that can be calculated to a maximum of 99,999.99. Rather than have the result
truncate when entered numbers exceed this limit, CA-Easytrieve lets you specify
a range of values on the ROW statement.

 DEFINE FIELD1 W 8 N 2
 DEFINE FIELD2 W 8 N 2
 DEFINE RESULT W 8 N 2
 SCREEN NAME ADDING-MACHINE
 TITLE 'ADDING MACHINE'
 ROW 5 'FIELD 1. . . .' FIELD1 MASK (A 'ZZZ,ZZ9.99') +
 VALUE (0 THRU 99999.99)
 ROW 7 'FIELD 2. . . .' FIELD2 MASK A +
 VALUE (0 THRU 99999.99)
 ROW 9 'RESULT' RESULT ATTR WHITE MASK A
 KEY ENTER NAME 'Compute'
 KEY F3 EXIT NAME 'Exit'
 AFTER-SCREEN. PROC
 RESULT FIELD1 + FIELD2
 END-PROC

You can use the VALUE parameter of the ROW statement to specify a single
value, a series of values, or a range of values. In this case, we have specified a
range of values, 0 through 99999.99. Now, the user is prevented from specifying
any number outside this range.

The following example shows how the screen looks when a user exceeds the
range of values specified on the ROW statement.

 ADDING MACHINE

 FIELD 1. . . . 1.00

 FIELD 2. . . . 100,000.00

 RESULT 0.00

 EZPRS008 Value entered is not allowed. Type an acceptable value.
 ENTER=Compute F3=Exit

Programming with CA-Easytrieve 2–31

Lesson 7

When the VALUE parameter is used, you have the option of permitting
CA-Easytrieve to generate an error message, or you can code your own message.
Here, we are showing the message CA-Easytrieve provides. Since this message
only conveys that the range has been exceeded, let’s code our own message that
identifies the error and gives the range required. We do this by adding an
ERROR parameter to the ROW statement.

Creating Error Messages

Using the ERROR parameter enables you to specify one or more fields or
alphanumeric literals to be used as an error message to be issued by
CA-Easytrieve, in case of an automatically detected error condition. These
messages replace the more generic messages issued by CA-Easytrieve if ERROR is
not coded.

 DEFINE FIELD1 W 8 N 2
 DEFINE FIELD2 W 8 N 2
 DEFINE RESULT W 8 N 2
 SCREEN NAME ADDING-MACHINE
 TITLE 'ADDING MACHINE'
 ROW 5 'FIELD 1. . . .' FIELD1 MASK (A 'ZZZ,ZZ9.99') +
 VALUE (0 THRU 99999.99) ERROR 'MUST BE LESS THAN OR EQUAL +
 TO 99,999.99'
 ROW 7 'FIELD 2. . . .' FIELD2 MASK A +
 VALUE (0 THRU 99999.99) ERROR 'MUST BE LESS THAN OR EQUAL +
 TO 99,999.99'
 ROW 9 'RESULT' RESULT ATTR WHITE MASK A
 KEY ENTER NAME 'Compute'
 KEY F3 EXIT NAME 'Exit'
 AFTER-SCREEN. PROC
 RESULT FIELD1 + FIELD2
 END-PROC

Our example uses the literal:
ERROR 'MUST BE LESS THAN OR EQUAL TO 99,999.99'

to inform the user of the limits of the program fields when an incorrect value is
entered in either field.

The following example shows how the final screen looks when you code your
own error message.

 ADDING MACHINE

 FIELD 1. . . . 1.23

 FIELD 2. . . . 100,000.00

 RESULT 0.00

2–32 Introduction to the Language

Lesson 8

 MUST BE LESS THAN OR EQUAL TO 99,999.99
 ENTER=Compute F3=Exit

As you can see, it is very simple to create screen applications using
CA-Easytrieve.

Reviewing Error Messages

In this lesson of the tutorial, we have discussed how to use VALUE and ERROR
parameters of the ROW statement. You have learned that:

■ VALUE lets you specify a range of values and prevents the user from
specifying any number outside this range.

■ ERROR enables you to customize your own error message.

For More Information

For more information on the use of the VALUE and ERROR parameters of the
ROW statement, refer to Chapter 7, “Activity Section - Screens.”

Lesson 8
CA-Easytrieve provides all the facilities necessary for producing bit-mapped
presentation graphs with a non-procedural technique very similar to reporting.
The styles of graphs available include pie charts, bar charts, line graphs, and
scatter diagrams. The graph facility controls the format of the graph making
assumptions based on best-fit.

Note: Graph processing is available only when using
CA-Easytrieve/Workstation.

Basic Structure

The CA-Easytrieve graph facility is fully declarative; you need only define the
style and content of the graph and CA-Easytrieve creates the instructions to
produce it. The following illustrates the basic structure of a CA-Easytrieve JOB
with graph processing. You can define one or more graphs for each JOB activity.

Programming with CA-Easytrieve 2–33

Lesson 8

 FILE
 (library)
INPUT
DATA JOB
 (job activity)
 DRAW GRAPH1
 DRAW GRAPH2

 GRAPH GRAPH1

 GRAPH GRAPH2

Graph Format

The CA-Easytrieve graph display format is illustrated below:

 Title Area

 Work Area

 Function Key Area

Title Area

The optional title area consists of a single line designated as the title by a TITLE
statement in the graph declaration.

Work Area

The work area contains the display of data points specified on the VALUE
statement. The y-value data points are optionally summarized and categorized
by x-value. The work area also displays a legend identifying the data.

Function Key Area

The function key area shows the system-defined function key assignments for the
graph view facility. Using these keys you can receive help, exit the view, or print
the graph to the default print device.

2–34 Introduction to the Language

Lesson 8

Sample Graph Program

The following program produces a scatter diagram showing the correlation
between gross pay and salary code.

FILE PERSNL FB(150 1800)
 PAY-GROSS 94 4 P 2 HEADING ('GROSS' 'PAY')
 SALARY-CODE 134 2 N 2 HEADING ('SALARY' 'CODE')

JOB INPUT PERSNL NAME DISPLAY-GRAPH
 DRAW GROSS-VS-SALARY-CODE } DRAW Statement

GRAPH GROSS-VS-SALARY-CODE STYLE 'SCATTER' } GRAPH Statement

 TITLE 'Correlation of Gross Pay and Salary Code' 
 VALUE SALARY-CODE PAY-GROSS  GRAPH Definition
  Statements

The Graph Your Program Creates

Note: The title of your graph is automatically centered at the top of the graph
and function keys are shown at the bottom of the graph.

GRAPH Statement

You define a graph in CA-Easytrieve by coding a GRAPH statement followed by
a series of graph definition statements (for example TITLE and VALUE). You
must code the GRAPH statement first in a GRAPH declaration. The GRAPH
statement establishes the style and characteristics of the graph. In this example,
we specified that we wanted to create a scatter diagram. Other types of graphs
you can create are:

■ Pie charts

■ Bar charts (vertical and horizontal)

■ Line graphs

Programming with CA-Easytrieve 2–35

Lesson 8

If you do not specify the type of graph you want to create, CA-Easytrieve
automatically creates a pie chart.

Graph Definition Statements

A set of graph definition statements defines every CA-Easytrieve graph. The
statements define the format and data content. We are using the following graph
definition statements in our sample program:

TITLE Statement The title of the graph you are creating is Correlation of Gross Pay
and Salary Code. This title is created with the CA-Easytrieve
TITLE statement shown below.
TITLE 'Correlation of Gross Pay and Salary Code'

Note: The title is enclosed in single quotes on the TITLE statement. This is
because you are using a literal and CA-Easytrieve requires that literals be
enclosed in single quotes. CA-Easytrieve displays the literal on the screen exactly
as you have typed it.

The fields and literals on a TITLE statement are automatically protected from user
changes. CA-Easytrieve also automatically centers the title on the top line of the
graph unless you specify a different location.

VALUE Statement The VALUE statement specifies the fields to be used to draw the
graph.

First, you must specify the field or literal to be used for drawing the horizontal
(x-value) axis of the graph. Because we are drawing a scatter graph, the x-value
must be a numeric field or literal. This value determines the position of the data
point on the x-axis. We are using the SALARY-CODE field for the x-axis of our
graph.

Next, you specify the field or literal to be used for drawing the vertical (y-value)
axis of the graph. Each field or literal must be numeric. This value determines
the position of the data point on the y-axis. We are using the PAY-GROSS field
for the y-axis of our graph.

The x- and y-axis of the scatter graph are created with the VALUE statement
shown below:
VALUE SALARY-CODE PAY-GROSS

2–36 Introduction to the Language

Summing Things Up

DRAW Statement Processing

The DRAW statement produces graphic output by invoking the graph
declaration. CA-Easytrieve extracts the data required for the requested graph. At
the end of the job, CA-Easytrieve formats the data in the specified manner, and
sends it to the terminal for display and, optionally, printing.

The name of the graph, as specified on the GRAPH statement, is specified on the
DRAW statement. The name of the graph you are creating is
GROSS-VS-SALARY-CODE. This graph is created with the CA-Easytrieve
DRAW statement, shown below:
DRAW GROSS-VS-SALARY-CODE

You do not have to specify the name of the graph on the DRAW statement. If not
specified, CA-Easytrieve assumes that the name of the graph you want to draw is
the first graph in the JOB activity.

Review of Graph Declarations

In this lesson of the tutorial, we have discussed the GRAPH, TITLE, VALUE, and
DRAW statements to draw a scatter diagram. You know that:

■ GRAPH specifies the name and style of the graph.

■ TITLE causes the display of a descriptive graph title.

■ VALUE defines the fields to be used to draw the graph.

■ DRAW produces the graphic output by drawing the values on the graph.

For More Information

For more information about graph activities, turn to Chapter 8, “Activity Section -
Graphs.”

Summing Things Up
In this tutorial, you have followed the development of two moderately complex
CA-Easytrieve programs. We started with a very simple report and built on it
until we used all of the basic report writing features. Then, we walked through a
simple screen program and a simple graph program.

You should now have a good understanding of CA-Easytrieve program structure
as well as how to use most of the basic tools CA-Easytrieve has to offer.

Programming with CA-Easytrieve 2–37

Summing Things Up

There are many parameters of various statements we chose not to illustrate in the
tutorial. Our goal was to get you through the basic programming process. These
other parameters and statements are covered in other portions of this guide or in
the CA-Easytrieve Language Reference Guide.

For More Information

Read any first level readings in Chapter 3 through Chapter 9 that you have
skipped. Or, start the second reading in Chapter 3, “Library Section - Describing
and Defining Data.”

2–38 Introduction to the Language

Chapter

3
Library Section - Describing and
Defining Data

Introduction
Describing and defining data is essential to creating CA-Easytrieve programs
that use input or output files. CA-Easytrieve must know how data is stored
before processing can occur. Data definition is accomplished through the FILE
and DEFINE statements.

Before going into discussions of specific CA-Easytrieve statements, this chapter
illustrates some general rules of syntax. In this chapter, you’ll find:

⇒ Reading 1
■ CA-Easytrieve general syntax rules
■ Describing files with the FILE and DEFINE statements
■ Editing fields and adding headings
■ Defining working storage fields (type W)

⇒ Reading 2
■ Defining working storage fields (type S)
■ Initializing working storage fields with the VALUE clause
■ Redefining fields
■ Defining fields with a relative start location
■ Redefining fields using relative start locations

⇒ Reading 3
■ Using advanced FILE statement parameters including VFM
■ Copying field definitions with the COPY statement

Library Section - Describing and Defining Data 3–1

CA-Easytrieve Syntax Rules

⇒ Reading 1 of Chapter 3 starts here.

CA-Easytrieve Syntax Rules
CA-Easytrieve free-form English language structure makes it easy for you to
develop an efficient, flexible programming style. To avoid programming errors,
follow these simple syntax rules.

Statement Area

All CA-Easytrieve source statements are records of 80 characters each. The
default statement area is in columns 1 through 72. This means you can place
your CA-Easytrieve code anywhere within columns 1 through 72. You’ll
probably want to indent or line up certain statements for readability, but it’s not
required.

Multiple Statements

The statement area normally contains a single statement. However, you can
enter multiple statements on a single line. A period followed by a space
indicates the end of a statement. The next CA-Easytrieve statement can start at
the next available position of the statement area (after the space). For example,
the following two CA-Easytrieve statements are on one line:
COST = FIXED + VARIABLE. PRICE = COST + PROFIT

Comments

When the first non-blank character of a statement is an asterisk (*), the remainder
of that line is considered to be a comment. (It is ignored by the CA-Easytrieve
compiler.) You can use comment statements any place within a program, except
within a continued statement. A statement containing all blanks is also treated
as a comment.

To place a comment on the same line as a statement, code a period (.), one or
more spaces, an asterisk (*), then the comment.

Continuations

The last non-blank character of a statement terminates the statement unless that
character is a minus (-) or a plus sign (+).

3–2 Introduction to the Language

CA-Easytrieve Syntax Rules

■ The - indicates that the statement continues at the start of the next statement
area.

■ The + indicates that the statement continues with the first non-blank
character in the next statement area.

The difference between - and + is important only when continuing a line in the
middle of a word. Continuation of a line between words is the same for both.
The following continued statements produce identical results:
FIELD-NAME W 6 A +
 VALUE 'ABC -
DEF'

FIELD-NAME W 6 A +
 VALUE 'ABC +
 DEF'

Words and Delimiters

One or more words make up each CA-Easytrieve statement. A word can be a
keyword, field name, literal, or symbol. All words begin with a non-blank
character. A delimiter or the end of the statement area terminates these words.
Delimiters make statements readable but are not considered part of the attached
word. CA-Easytrieve delimiters are shown in the following table.

Delimiter Description

 space The basic delimiter within each statement.

‘ single quote Encloses literals which are alphanumeric.

. period Terminates a statement.

, comma Used optionally for readability.

() parentheses Enclose multiple parameters and portions of arithmetic
expressions (the left parenthesis acts as a basic delimiter).

: colon Used as a delimiter for file, record, and field
qualifications.

At least one space must follow all delimiters except for the ‘(‘ (left parenthesis)
and ‘:’ (colon). The word RECORD-COUNT is shown below with various
delimiters:
RECORD-COUNT
FILEONE:RECORD-COUNT
(RECORD-COUNT)
'RECORD-COUNT'
RECORD-COUNT,
RECORD-COUNT.

Library Section - Describing and Defining Data 3–3

CA-Easytrieve Syntax Rules

Keywords

Keywords are words having specific meaning to CA-Easytrieve. Some
keywords are reserved words. You can use non-reserved keywords in the
appropriate context as field names, whereas reserved words cannot be used as
field names. See Appendix B in the CA-Easytrieve Language Reference Guide for a
list of all reserved keywords.

Multiple Parameters

You must enclose multiple parameters within parentheses to indicate group
relationships. If parentheses are not used, only one parameter is assumed. The
following example is a CA-Easytrieve statement with multiple parameters:
MASK (A BWZ '$$,$$9.99')

Field Names

Field names are composed of a combination of not more than 128 characters
chosen from the following:

■ Alphabetic characters, A through Z, lower and upper case

■ Decimal digits 0 through 9

■ All special characters, except delimiters.

The first character of a field name must be an alphabetic character, a decimal
digit, or a national character (#, @, $). In addition, a field name must contain at
least one alphabetic or special character to distinguish the field name from a
number. All working storage field names must be unique, as well as all field
names within a single file. If you use the same field name in more than one file,
or in a file and in working storage, you must qualify the field name with the file
name or the word WORK. A qualified field name consists of the qualifying
word followed by a colon and the field name. You can use any number of
spaces, or no spaces, to separate the colon from either the qualifying word or the
field name.

Assume FLD1 occurs in both working storage and the file FILEA. FLD1 can be
qualified in the following ways:
FILEA: FLD1
FILEA:FLD1
FILEA : FLD1
WORK:FLD1

3–4 Introduction to the Language

CA-Easytrieve Syntax Rules

Labels

Labels identify specific PROGRAMs, JOBs, PROCedures, REPORTs, SCREENs,
and statements. Labels can be 128 characters long, can contain any character
other than a delimiter, and can begin with A through Z or 0 through 9, or a
national character (#, @, $); they cannot consist of all numeric characters.

Identifiers

Identifiers are words that name things (field name, statement labels, etc.) in
CA-Easytrieve. Identifiers cannot contain these delimiters:
, comma
' single quote
(left parenthesis
) right parenthesis
: colon

Arithmetic Operators

CA-Easytrieve arithmetic expressions (see Chapter 4, “Activity Section -
Processing and Logic”) use the following arithmetic operators:
* multiplication
/ division
+ addition
- subtraction

The arithmetic operator must lie between two spaces.

Alphanumeric Literals

Alphanumeric literals are words meant to be taken literally. They are enclosed
within single quotes, and can be 254 characters long. An alphanumeric literal
can contain alphabetic characters A through Z and numeric characters 0 through
9. Whenever an alphanumeric literal contains an embedded single quote, you
must code two single quotes. For example, the literal O’KELLY is coded as:
'O''KELLY'

Numeric Literals

Numeric literals can contain 18 numeric digits (characters 0 to 9). You can
indicate the algebraic sign of a numeric literal by attaching a plus (+) or a minus
(-) prefix to the numeral. Also, you can use a single decimal point to indicate a
maximum precision up to 18 decimal positions. The following examples are
valid numeric literals:
123

Library Section - Describing and Defining Data 3–5

Describing Files and Fields

+123
-123.4321

Hexadecimal Literals

Hexadecimal literals are words used to code values that contain characters not
available on standard data entry keyboards. Prefix a hexadecimal literal with the
letter X and a single quote (X’), and terminate it with a single quote.
CA-Easytrieve compresses each pair of digits that you code within the single
quotes into one character. CA-Easytrieve permits only the digits 0 to 9 and the
letters A to F. The following hexadecimal literal defines two bytes of binary
zeros:
X'0000'

Describing Files and Fields
All of the files and their associated fields (as well as working storage fields)
referenced in your CA-Easytrieve program must be described before they are
referenced.

Defining Data

You normally define data fields in the section of your program called the library.
The library defines the data in terms of fields, records, and files. A typical file
layout is shown below:

 NAME FIELD ADDRESS FIELD
 ┌────────┴───────┐┌────────────┴─────────────┐
 RECORD { Jones, John J. 16822 Evergreen Chicago ... 
 
 Hammond, Martha 422 Ash Ave. Evanston .. 
 
 Gray, Frederick 16 Apple St. Lockport .. 
 
 Freud, William G. 754 Lake St. Peotone ..  F
  I
 __  L
  E
 __ 
 
 __ 
 . 
 . 
 . 

Defining File Attributes

The FILE statement is used to describe a file or a database.

3–6 Introduction to the Language

Describing Files and Fields

Defining Field Data

Fields are defined in the library following the FILE statement, or later in the job
activity, by using the DEFINE statement. Two categories of data can be defined:

■ File data (fields defined within a record).

■ Working storage data (fields defined in working storage).

FILE Statement

The FILE statement describes the files you are using as input to your program
and any files your program creates (output) other than reports. You code the
FILE statement(s) at the beginning of the library section.

Syntax
FILE file-name [file attributes]

FILE is the keyword which designates that a file name and description are to
follow. File-name and file attributes describe the file you are using and are
normally supplied by your data processing department.

Parameters

file-name This is a one-to 128-character name used to define your file to
CA-Easytrieve. All statements that operate on the file refer to this name.
File-name is also normally used on your JCL, CLIST, or EXEC statements to
reference the file. Every FILE statement must have a file-name immediately
following the FILE keyword and it must be unique within your program.

file attributes The CA-Easytrieve FILE statement has a host of parameters
which describe file attributes. File attributes are as varied as the methods and
environments available for storing data. Most of them are beyond the scope of
this guide. In general, they include parameters for describing file type, storage
device type, and record format. They are all optional and depend on the
particular environment in which you are operating. See the CA-Easytrieve
Language Reference Guide or Pocket Language Reference Guide for complete FILE
statement syntax.

Library Section - Describing and Defining Data 3–7

Describing Files and Fields

DEFINE Statement

The DEFINE statement specifies data fields within a record on a file or within
working storage.

■ Four parameters are always required: field-name, start-location, field-length,
and data-type.

■ Additional parameters include the number of decimal positions for
quantitative fields, HEADING, and MASK.

Syntax
DEFINE field-name start-location field-length +

data-type [decimal-positions] [HEADING 'heading-literal'] +

  
MASK [mask-identifier] [BWZ] ['mask-literal']
  

Parameters

field-name You create your own field-names or use already existing field names
(provided to you in a record layout).

■ Field-names must be unique within a file.

■ The name cannot be all numeric characters.

■ The name can be one to 128 alphanumeric characters in length.

■ The name must begin with A-Z, 0-9, or a national character (#, @, $).

■ Special characters, such as dollar sign and hyphen, can be used, but not
delimiters.

start-location The start location is the beginning location of a field in a
record relative to the first position (position 1) of the record. Start location can be
explicitly defined based on its distance from position 1 of the record:
NAME 17 starts in position 17
ADDRESS 37 starts in position 37
PAY-NET 90 starts in position 90

Here is an example of where the NAME field would appear in the record just
described:

 NAME field
 ┌─────────────┴───────────┐
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ X│ X│ X│ X│ X│ X│ X│ X│ ...
└───┘───
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...

field-length You specify the length of a field in bytes (characters and/or
spaces). The length of the NAME field, in the above example, is eight characters.
NAME 17 8

3–8 Introduction to the Language

Describing Files and Fields

data-type You describe the type of data a field contains by coding the letter
abbreviation for that type after the field-length. There are seven data-types.

Type Maximum Field Length

A Alphanumeric 32,767

N Numeric 18

P Packed 10

U Unsigned Packed 9

B Binary 4

I Integer (Workstation only) 4

F Fixed Point ASCII (Workstation only) 19

The data type of the NAME field (which probably contains only alphabetic
characters) is A for alphanumeric.
NAME 17 8 A

decimal-positions This is an option that specifies the desired number of
decimal positions for a field name. By specifying decimal positions in your field
description, you:

■ Identify a field to CA-Easytrieve as being quantitative. (A field that contains
a quantity, as opposed to a numeric identifier or code.)

■ Identify the field to be automatically totaled when specified in a CONTROL
report.

■ Allow for proper placement of commas and decimals with leading
(high-order) zeros suppressed when the field is printed.

Five types of data can have decimal positions:

N (Numeric)
P (Packed)
B (Binary)
U (Unsigned Packed)
F (Fixed Point ASCII - Workstation only)

Specify the decimal-positions by coding an integer (0 through 18) after the data-type.
For example:
AMOUNT 40 5 N 2

is a five-byte numeric field with two decimal positions.

Library Section - Describing and Defining Data 3–9

Describing Files and Fields

HEADING You use the HEADING parameter to specify an alternative column
heading for a field. (The default column heading is the field-name.) The column
heading you specify is automatically used on report output unless overridden by
a HEADING statement in the activity section.

Place the alternate column heading within single quotes. For example:
CL-NAME 5 20 A HEADING 'CLIENT NAME'

produces the column heading:
CLIENT NAME

To “stack” a column heading, place each word in single quotes. You now must
enclose the words in parentheses. For example:
CL-NAME S 20 A HEADING ('CLIENT' 'NAME')

produces the column heading:
CLIENT
NAME

MASK The MASK parameter is used to create a customized edit mask. An edit
mask is an optional pattern of characters specifying how numeric data is to be
printed. (Alphanumeric fields cannot be edited.) An edit mask is created using
combinations of the following characters:

Character Meaning

 9 Formats digits

 Z Suppresses Leading zeros

 * Replaces leading zeros with an asterisk

 - Prints a minus sign prior to the first non-zero digit of a
negative number

 $ Prints a currency symbol prior to the first non-zero digit

Each digit in the field must be designated by a character in the mask. For
example:

Edit Mask Field Value Result
$$,$$9 01234 $1,234

$$,$$9 93142 $93,142

Commas can be included in the edit mask for clarity. They are printed in
whatever location you indicate in the mask but are suppressed if the field value
does not exceed the number of places to the right of the comma.

3–10 Introduction to the Language

Describing Files and Fields

Defining Edit Masks

Some standard edit masks you might use in your programs are shown here:

Edit Mask Used For
'(999)999-9999' Telephone Number

'999-99-9999 Social Security number

'Z9/99/99' Date

'$$,$$$,$$9.99 CREDIT' Money (with floating $)

'*,***,***,999.99-' Protected Check Amount

'-,---,--9.99' Negative Number

Syntax
[MASK {[mask-identifier] [BWZ] ['mask-literal']}]

■ MASK is the CA-Easytrieve keyword that indicates an edit mask is to follow.

■ The mask-identifier is used to name the edit mask that follows it. If you name
a mask, you can reuse it on other field definitions just by specifying the
name. A name can be any single letter from A through Y. This means that
once you have defined a mask, you don’t have to define it again to use it
again.

■ BWZ (blank when zero) specifies that a field should not be printed if the
entire field contains zeros. Just code the letters BWZ whenever you want to
suppress an all zero field. BWZ is not carried over to other fields when
using a mask-identifier.

■ The mask-literal is the actual format of the mask. It must be enclosed in single
quotes and include one edit character for each digit in the field being
described.

Examples of Edit Masks

Given a numeric field with the contents 012345678, the following masks produce
the results shown:

Mask Result
'999-99-9999' 012-34-5678

'Z99,999,999' 12,345,678

'ZZZ,ZZZ,999' 12,345,678

'$$$,$$$,999' $12,345,678

'***,***,999' *12,345,678

Library Section - Describing and Defining Data 3–11

Describing Files and Fields

Masking Negative Values

Fields that have the potential for containing a negative value can be masked in
such a way that an indicator of their negativity is displayed when printed. An
indicator of negativity, such as minus sign (-), or the letters CR (for credit), or any
other chosen indicator prints only when the field contains a negative value. To do
this, mask the field as you would normally, making sure all digits are accounted
for, then add the indicator to the right end of the mask.

Given a numeric field with the contents -012345678, the following masks produce
the results shown:

Mask Result
'$$$,$$$,999 CREDIT' $12,345,678 CREDIT

'$$$,$$$,999-' $12,345,678-

'Z99,999,999-' 12,345,678-

The indicators, shown above (“CREDIT” and “-“), only print when the field
contains a negative value.

Default Edit Masks

Quantitative fields (fields defined with positions to the right of a decimal point)
have system default edit masks which account for the automatic printing of
commas and decimal points in printed totals.

Numeric fields that have no decimal positions defined are printed without
commas or decimal points and are not automatically totalled on control reports.

Assuming a field named PAY has a value of 1000, the following table gives the
corresponding default edit masks and results for some possible field definitions:

Field Definition Default Mask Result
PAY 10 5 N 0 'ZZ,ZZZ-' 1,000

PAY 10 5 N 2 'ZZZ.99-' 10.00

PAY 10 5 N '99999' 01000

Note: The number of decimal positions can be zero (0).

3–12 Introduction to the Language

Describing Files and Fields

Defining Working Storage

Working storage gives you a method for setting aside a temporary area of storage
in the computer memory; a place to keep the results of calculations or other
information that is created during the running of a CA-Easytrieve program.

Define working storage by specifying W as the start location. For example:
WORK-DEDUCT W 4 N 2

defines a numeric working storage field four characters long with two decimal
positions. This field could be defined in the library section or in an activity prior
to being referenced.

DEFINE within an Activity

You usually specify file fields and working storage fields in your CA-Easytrieve
library section, but you can also define them within an activity.

Compare the two examples below. The first shows DEFINE statements in the
library section, the second shows DEFINE statements in an activity section.
Remember, the DEFINE keyword is optional when defining fields in the library
section.

The following example shows fields defined in the library section of a program.
(The keyword DEFINE is shown but is optional.) There are no fields defined in
the activity section.
  FILE PERSNL FB(150 1800)
  DEFINE EMP# 9 5 N
 Library  DEFINE EMPNAME 17 20 A
 ...  DEFINE EMP-COUNT W 4 N
  *

  JOB INPUT PERSNL NAME MYPROG
  EMP-COUNT = EMP-COUNT + 1
 Activities  PRINT REPORT1
 ...  *
  REPORT REPORT1
  LINE EMP# EMPNAME EMP-COUNT

In contrast to the above, this example shows fields defined in the activity section
of a program. (The DEFINE keyword is required.)
  FILE PERSNL FB(150 1800)
 Library  SALARY-CODE 134 2 N
 ...  *

  JOB INPUT PERSNL NAME MYPROG
  DEFINE EMP# 9 5 N
 Activities  DEFINE EMPNAME 17 20 A
 ...  PRINT REPORT1
  *
  REPORT REPORT1
  LINE EMP# EMPNAME SALARY-CODE

Library Section - Describing and Defining Data 3–13

Describing Files and Fields

When fields are defined within an activity, each field definition must start with
the DEFINE keyword and physically be defined before the field is referenced.

⇒ Reading 1 of Chapter 3 ends here.

■ If you have completed the tutorial in Chapter 2, go on to the
beginning of Chapter 4.

■ If you branched to this chapter from the tutorial in Chapter 2, go back
to Lesson 2 in Chapter 2.

⇒ Reading 2 of Chapter 3 starts here.

Defining Static Working Storage

Static working storage fields are fields used for storing accumulated values that
are printed at the end of a report or are used to compute some other value(s) at
the end of a report or at control breaks, such as averages.

Static working storage fields are defined in your program by placing an S in the
position on the DEFINE statement where you normally place the field starting
position or a W. For example:
AVG-GROSS S 8 N 2

Static working storage fields are necessary because of the way CA-Easytrieve
processes reports. In the first reading of Chapter 5, “Activity Section - Input and
Output,” we discuss the PRINT statement and the process that occurs when
reports are either sequenced (by the SEQUENCE statement) or are multiple
within one JOB activity (more than one REPORT statement is used).

In both cases, CA-Easytrieve outputs data to an intermediary file called a work
file or spool file. (See the diagrams under Printing Reports in Chapter 5,
“Activity Section - Input and Output.”) Work files do not get formatted into
reports (through report definition statements) until they have first been
sequenced or until the system printer becomes available.

Due to the use of intermediary work files, two different types of working storage
fields are needed. The following discussion provides the differences between
them and helps you to understand the need for these two field types.

3–14 Introduction to the Language

Describing Files and Fields

Static Versus Non-Static

Unlike static working storage fields (type S), non-static working storage fields
(type W) are output to work files for every record in the input file. This is done
whenever the non-static working storage field is referenced in a REPORT
subactivity. If such a field is used to accumulate values during the processing of
an entire file, its value, at the time each record is output to the work file, appears
on the record in the work file. If the file is then sequenced, the non-static
working storage fields are sequenced along with the rest of the fields on the
record. This means that accumulated results do not appear, either internally or
when printed (if printed), in the order they were accumulated.

Therefore, any calculations based on the value of a non-static working storage
field performed at the time of report formatting are likely to produce results
which are in error. This is only true for non-static working storage fields (type
W) used to accumulate values for sequenced reports. For example:

│ Work File Before SEQUENCE │ │ Work File After SEQUENCE │
│─────────────────────────────│ │─────────────────────────────│
│ SEQUENCE │ W-TYPE │ │ SEQUENCE │ W-TYPE │
│ KEY │ ACCUMULATOR │ │ KEY │ ACCUMULATOR │
│ FIELD │ FIELD │ │ FIELD │ FIELD │
│─────────────│───────────────│ │─────────────│───────────────│
│ ZZZ │ 1 │ ───> │ AAA │ 3 │
│ BBB │ 2 │ │ BBB │ 2 │
│ AAA │ 3 │ │ CCC │ 7 │
│ PPP │ 4 │ │ PPP │ 4 │
│ QQQ │ 5 │ │ QQQ │ 5 │
│ SSS │ 6 │ │ SSS │ 6 │
│ CCC │ 7 │ │ ZZZ │ 1 │

In the above example, the W-type field increments by 1 each time a record is
processed. Once the work file has been sequenced and the report is formatted,
the value contained in the W-type field when last processed (output to the
report) is now different than it was prior to sequencing. If you attempted to
compute averages, based on this value, your results would be in error.

Static working storage fields are not output to work files. This means they are
not affected by sequencing. The last value accumulated into an S-type field
remains unchanged regardless of what is done to the work file and is therefore
suitable for any end-of-report calculations such as averaging. For example:

│ Report File Before SEQUENCE │ │ Work File Before SEQUENCE │
│─────────────────────────────│ │─────────────────────────────│
│ SEQUENCE │ S-TYPE │ │ SEQUENCE │S-FIELD VALUES │
│ KEY │ ACCUMULATOR │ │ KEY │ NOT PASSED │
│ FIELD │ FIELD │ │ FIELD │ TO WORK FILE │
│─────────────│───────────────│ │─────────────│───────────────│
│ ZZZ │ 1 │ ───> │ ZZZ │ │
│ BBB │ 2 │ │ BBB │ │
│ AAA │ 3 │ │ AAA │ │
│ PPP │ 4 │ │ PPP │ │
│ QQQ │ 5 │ │ QQQ │ │
│ SSS │ 6 │ │ SSS │ │
│ CCC │ 7 │ │ CCC │ │

Library Section - Describing and Defining Data 3–15

Describing Files and Fields

The above exhibit illustrates that static working storage fields are not copied to
work files and therefore are not sequenced as are non-static (type W) fields. The
static field shown above contains the value seven (7) at the time any averaging is
performed at end-of-report.

Initializing Working Storage Fields

To give working storage fields an initial value at the beginning of your program,
use the VALUE option of the DEFINE statement. For example:
CURR-MON W 10 A VALUE 'JANUARY'

Assigns an initial value of JANUARY to the alphanumeric working storage field
CURR-MON.

When the value clause is not used, numeric working storage fields are
automatically initialized to zeros and alphanumeric working storage fields to
blanks.

Redefining a Field

Sometimes it is necessary to break a field into several parts to get the exact
information you want. A birth date, for example, might have been entered
originally as one field in a record. Now, you want to access this information by
either the month, day, or year.

Explicit Redefinition

With CA-Easytrieve, you can explicitly redefine the field in the following
manner:
 DATE-OF-BIRTH 103 6 N
 MONTH 103 2 N
 DAY 105 2 N
 YEAR 107 2 N

Explicit redefinition requires the exact starting location of each field. Here is a
physical representation of the previously defined field:
 DATE-OF-BIRTH

 | | | | | | |0|2|1|0|5|5| | | | |

 | | |
 position 103 105 107
 in
 record:

In this exhibit, the MONTH (02) starts in position 103 and occupies positions 103
and 104. The DAY starts in 105 and occupies positions 105 and 106. Finally,
YEAR starts in 107 and occupies 107 and 108.

3–16 Introduction to the Language

Describing Files and Fields

Overlay Redefinition

You can perform overlay redefinition of a field by including the original
field-name as the starting location for all subsequent fields in the redefinition.
This is especially useful when redefining a working storage field which does not
have a numeric starting position. For example:
DATE-OF-BIRTH W 6 N
 MONTH DATE-OF-BIRTH 2 N
 DAY DATE-OF-BIRTH +2 2 N
 YEAR DATE-OF-BIRTH +4 2 N

The starting position of the redefining field is designated by using the original
field name plus any offset (+2 or +4 in the previous example).

When using overlay redefinition, make sure that the redefining field(s) fits
within the storage boundaries of the redefined field.

Implicit Start-location

You can define the start-location of a field with an implicitly defined position in
the record. Implicitly defining a start-location eliminates the need to identify the
actual start-location of a field. Implicit start-locations are most useful when you
are creating output files, since output files generally have contiguous field
locations.

Use an asterisk in place of the numeric start-location when implicitly defining a
field. The asterisk implies that the field begins in the next available starting
position (highest location defined so far, plus one). For example:
EMP# 1 5 N
NAME * 16 A
FILLER1 * 10 N
ADDRESS * 39 A

defines contiguous fields in a record. Since EMP# begins in position 1, then
NAME begins in position 6, FILLER1 in position 22, and ADDRESS in position
32. All locations between 1 and 70 are accounted for.

⇒ Reading 2 of Chapter 3 ends here.

■ Please continue with the description of the Assignment Statement,
which is Reading 2 of Chapter 4.

Library Section - Describing and Defining Data 3–17

Describing Files and Fields

⇒ Reading 3 of Chapter 3 starts here.

FILE Statement Revisited

In the first reading of this chapter, we discussed the FILE statement and said that
it was necessary for describing input and output files. We also said that there
are a number of FILE statement parameters. In this reading we discuss two FILE
statement parameters that are very useful to you.

Virtual File Manager (VFM)

The VIRTUAL parameter of the FILE statement invokes the virtual file
management facility (VFM) of CA-Easytrieve.

Syntax
   F
FILE file-name VIRTUAL [RETAIN] V logical-record-length
   U

VFM provides an easy method for establishing temporary work files without
special job control or file allocation statements. By using VFM, you can establish
your own extract or temporary files, using only CA-Easytrieve keywords.

The FILE keyword and a user-defined file name are required.

Parameters

VIRTUAL The VIRTUAL parameter designates that the named file is to be a
temporary VFM file. VFM files consist of a dynamically allocated space in
memory (64K default). If the allocated space is exhausted, VFM automatically
writes the excess data to a single spill area on disk.

RETAIN The RETAIN parameter specifies that the VFM file is to remain in
memory until the end of the associated CA-Easytrieve execution. If RETAIN is
not specified, the VFM file is deleted once it has been read back into your
program.

logical-record-length CA-Easytrieve requires that you specify a record
length for all output files. When specifying record length, you must also specify
record type (F, V, or U). Blocksize is not required since VFM files are
automatically blocked.

3–18 Introduction to the Language

Describing Files and Fields

EXIT Parameter

The EXIT parameter on the FILE statement invokes a user routine for every input
or output operation performed on the named file. You can use EXIT to access
your own user-written routine to convert non-standard data files CA-Easytrieve
does not process directly. EXIT is not valid for VFM.

Syntax
FILE file-name [EXIT (program-name +

    
 USING ( parm-field-name ...)  [MODIFY])] +
   parm-literal  
    

 [WORKAREA area-length]

The EXIT parameter followed by program-name indicates the routine or
subprogram to be executed.

Parameters

USING USING specifies any parameters to be passed to the exit routine. It is
limited to working storage fields, system defined fields, and card literals.

MODIFY The MODIFY option specifies that CA-Easytrieve provides input or
output services but that the exit can inspect and modify each record after input
and before output.

WORKAREA WORKAREA specifies that CA-Easytrieve sets up a special area of
storage to be used as the data buffer for the file. Area-length is used to specify the
length of the data buffer.

COPY Statement

The COPY statement duplicates the field definitions of a named file. You can
copy the field definitions of a given file an unlimited number of times.

Syntax
COPY file-name

If you copy the same field name into more than one file and the files are used in
the same activity, you must qualify the field when referencing it in your
programs or CA-Easytrieve cannot uniquely identify the data reference. You can
qualify fields in CA-Easytrieve by preceding them with their file name and a
colon. For example, OUTFILE:NAME.

Example of COPY Statement
 FILE PERSNL FB(150 1800)
 EMPNAME 17 20 A HEADING ('EMPLOYEE NAME')

Library Section - Describing and Defining Data 3–19

Describing Files and Fields

 NAME-LAST EMPNAME 8 A HEADING ('FIRST' 'NAME')
 NAME-FIRST EMPNAME +8 12 A HEADING ('LAST' 'NAME')
 FILE SORTWRK FB(150 1800) VIRTUAL
 COPY PERSNL
 SORT PERSNL TO SORTWRK USING +
 (NAME-LAST NAME-FIRST) NAME MYSORT
 JOB INPUT SORTWRK NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1
 LINE NAME-FIRST NAME-LAST

⇒ Reading 3 of Chapter 3 ends here.

■ Please continue with the description of the User Procedures (PROCs),
which is Reading 3 of Chapter 4.

3–20 Introduction to the Language

Chapter

4
Activity Section - Processing and
Logic

Introduction
The activity section of a CA-Easytrieve program is where all processing logic and
report declarations reside. You might say it’s where the action is. The activity
section can contain PROGRAM, SORT, JOB, and SCREEN activities.

This chapter discusses the JOB, PROGRAM, and SORT activities. Chapter 7,
“Activity Section - Screens” gives a detailed description of the SCREEN
activities. In this chapter, you’ll find:

⇒ Reading 1
■ CA-Easytrieve JOB statement
■ Processing with conditional expressions
■ Combined conditions
■ Arithmetic calculations

⇒ Reading 2
■ Assigning values to variables
■ Rounding values
■ Moving data
■ Processing with loops and branches including
■ GOTO, DO WHILE, and CASE statements
■ STOP statement

⇒ Reading 3
■ Processing with Procedures, including START and FINISH
■ Processing Tables
■ Controlling activities with a PROGRAM activity
■ Sorting data and the SORT statement

Activity Section - Processing and Logic 4–1

JOB Activities

⇒ Reading 1 of Chapter 4 starts here.

JOB Activities

JOB Statement

The JOB statement defines and initiates processing activity. It also identifies the
name of the automatic input file.

Syntax
JOB [INPUT file-name] [NAME job-name]

JOB statement parameters can be coded in any order.

Parameters

INPUT The optional INPUT parameter identifies the automatic input to the
activity. This means that all input-related logic, such as opening the file,
checking for end of file, and reading, are all controlled by CA-Easytrieve.

When you do not specify INPUT, CA-Easytrieve automatically provides an input
file. If a SORT activity immediately preceded the current JOB activity, the
default input is the output file from that SORT activity. Otherwise, the default
input is the first file named in the library section.

file-name The file-name identifies the automatic input file(s). It can identify any
file defined in the library section of the program eligible for sequential input
processing.

NAME job-name The optional NAME parameter names the JOB activity and is
normally used only for documentation purposes. The job-name can:

■ Be up to 128 characters in length

■ Contain any character other than a delimiter

■ Begin with A through Z, 0 through 9, or a national character (#, @, $)

■ Not consist of all numeric characters.

The following exhibit shows the location of the JOB statement and the
subactivities in a CA-Easytrieve program.

 ** Library **
 *
Activity JOB INPUT PERSNL NAME EXAMPLE
Logic IF DEPARTMENT = 911 THRU 914 921
 DEDUCTIONS = GROSS - NET
 PRINT EXAMPLE

4–2 Introduction to the Language

JOB Activities

 END-IF
 *
Report REPORT EXAMPLE
 SEQUENCE DEPARTMENT NAME
 TITLE 1 'EXAMPLE REPORT'
 LINE 1 EMPNAME DEPARTMENT EMP# GROSS NET DEDUCTIONS

You can use the logic subactivity to examine and manipulate data, initiate
printed reports, and write data to a file.

You can use the report subactivity to format the desired report.

Conditional Expressions

Data selection and manipulation takes place in the logic section of a
CA-Easytrieve program. Logic is coded immediately after the JOB statement.

IF Statement

Processing within a JOB activity can be dependent on the conditional (IF)
statements present in the program.

■ When an IF statement is present, records read from the input file are
processed according to the conditions it states.

■ Every IF statement must end with END-IF.

If Statement Syntax
 EQ = 
 NE ¬= field-two 
 IF field-one GT >  literal 
 GE >= arithmetic-expression 
 LT < 
 LE <=

 [statements executed for true IF condition]

 [ELSE-IF alternate-expression]

 [statements executed for true ELSE-IF condition]

 [ELSE]

 [statements executed for false IF condition]

 END-IF

IF Statement Examples

■ Comparing the value of a field to a literal:
 IF DEPT = 910
 IF EMPNAME = 'SMITH'
 IF AMT GE 500

■ Comparing two fields:
 IF DIV = HOLD-DIV

Activity Section - Processing and Logic 4–3

JOB Activities

■ Comparing the value of a field to a series or range of values:
 IF STATE = 'GA' 'SC' 'TN'
 IF CLASS = 'A' THRU 'E'
 IF AMT NE 100 THRU 500
 IF DEPT = 900 940 THRU 950 960 970 THRU 980

Arithmetic Operators

These arithmetic operators are valid in conditional statements:

Operators Meaning

EQ = Equal To

NE Ø= Not Equal To

GT > Greater Than

GE >= Greater Than or Equal To

LT < Less Than

LE <= Less Than or Equal To

Parameters

IF/ELSE ELSE directs CA-Easytrieve to perform alternative processing when the
condition, established by the IF statement, is not met.

■ For true IFs, all commands up to the ELSE (or END-IF if no ELSE is present)
are executed.

■ For false IFs, commands between ELSE and END-IF are executed.

■ Following END-IF, processing continues regardless of the result of the IF.

IF/ELSE Example
IF DIVISION = 'A' THRU 'L'
 DEDUCTIONS = GROSS * .15
ELSE
 DEDUCTIONS = GROSS * .18
END-IF

In the above example, records with a DIVISION field containing values in the A
through L range are processed according to the statement between the IF and
ELSE statements (DEDUCTIONS = GROSS * .15). For records with DIVISION
not in the range A through L, the statement following ELSE (DEDUCTIONS =
GROSS * .18) is executed. END-IF signifies the end of the condition.

In words, we could restate the condition in the above example something like
this, “For divisions A through L, deductions are equal to 15 percent of the gross;
for all other divisions deductions are equal to 18 percent of the gross.”

4–4 Introduction to the Language

JOB Activities

ELSE-IF ELSE-IF is optional and identifies a conditional expression to be tested
when the previous conditional expression is false. ELSE-IFs permit multiple
conditions to be nested without requiring an END-IF for each condition. You
can code as many ELSE-IFs as necessary.

ELSE-IF Example
IF DIVISION = 'A' THRU 'L'
 DEDUCTIONS = GROSS * .15
ELSE-IF DIVISION = 'M' THRU 'R'
 DEDUCTIONS = GROSS * .2
ELSE
 DEDUCTIONS = GROSS * .18
END-IF

Special IF Statements

Use Special IF statements to check the integrity of the data in your files.

Syntax
  ALPHABETIC 
  NULL 
  NUMERIC 
IF field-name [NOT]  SPACE 
  SPACES 
  ZERO 
  ZEROS 
  ZEROES 

Special IF statement keywords check for the following conditions:

Keyword Condition

ALPHABETIC Value containing characters A through Z and blank
spaces.

NULL No current value.

NUMERIC Value containing digits 0 through 9.

SPACE
SPACES

Value containing all blank spaces.

ZERO
ZEROS
ZEROES

Value containing all zeros (0).

Special IF Examples

This statement is true ... for this condition ...
IF AMT NOT NUMERIC AMT does not contain all digits

Activity Section - Processing and Logic 4–5

JOB Activities

This statement is true ... for this condition ...
IF NAME SPACES NAME contains all spaces

IF STATE ALPHABETIC STATE contains all letters and spaces

IF AMT-DUE ZERO AMT-DUE contains all zeros

Combining Conditional Expressions

Conditional expressions can be compounded by combining them through the
logical connectors AND and OR. For example, if you need to determine a value
based on two conditions, you can connect the conditions with a logical
connector:
IF DIVISION = 'A' THRU 'L' AND AMOUNT GE 15

This statement is true when DIVISION is equal to a letter in the range A through
L and when AMOUNT is also greater than or equal to 15. Both conditions must
be true for the entire statement to be true. The following statement uses the OR
connector:
IF DIVISION = 'A' THRU 'L' OR AMOUNT GE 15

This statement is true when DIVISION is equal to a letter in the range A through
L or when AMOUNT is greater than or equal to 15 or when both conditions are
true. Either one or both of the conditions can be true to make the entire
statement true.

When used together in the same statement, conditions connected by AND are
examined before conditions connected by OR, for example:
IF DIVISION = 'A' AND AMOUNT GE 15 OR STATE = 'GA'

In the previous statement, CA-Easytrieve examines the portion “DIVISION = ‘A’
AND AMOUNT GE 15” first. If both sides of the AND in that portion are found
to be true then the entire statement is true. If not, then the portion “OR STATE =
‘GA’” is examined and if found to be true, the entire statement is still true. If
conditions on both sides of the OR are false, then the entire statement is false.

The following table helps you visualize the concept of logical connectors. The
assumptions for the table are:
DIVISION = A
AMOUNT = 15
STATE = GA

The following IF statement ... is ...
IF DIVISION = 'A' AND AMOUNT GE 15 OR STATE = 'GA' TRUE
IF DIVISION = 'A' AND AMOUNT = 14 OR STATE = 'FL' FALSE

4–6 Introduction to the Language

JOB Activities

The following IF statement ... is ...
IF DIVISION = 'A' OR AMOUNT = 15 AND STATE = 'FL' TRUE
IF DIVISION = 'B' AND AMOUNT = 15 AND STATE = 'FL' FALSE
IF (DIVISION = 'A' OR AMOUNT = 15) AND STATE = 'FL' FALSE

Note: Inserting parentheses around a set of conditions can alter the outcome of
the statement. Remember these three rules:

■ All conditional expressions are considered one statement.

■ AND statements are evaluated before ORs.

■ Parentheses may alter the normal order of evaluation.

Calculations

There are four arithmetic operations in CA-Easytrieve:

* multiplication
/ division
+ addition
- subtraction

Multiplication and division are performed before addition and subtraction in
order from left to right. There must be a space before and after the arithmetic
operators.

Syntax
    * 
  =   / 
field-name   value-1   value-2
  EQ  + 
    - 

Parentheses in Calculations

Parentheses can be used to override the normal order of operation. Operations
contained in parentheses are performed first, for example:
RESULTS = GROSS - AMT * 1.3

is the same as:
RESULT = GROSS - (AMT * 1.3)

but different from:
RESULT = (GROSS - AMT) * 1.3

Activity Section - Processing and Logic 4–7

JOB Activities

You can “nest” parentheses to further alter the order of operation. Operation
proceeds from the innermost set of parentheses to the outermost:
RESULT = 1.3 * (GROSS - (AMT + DEDUCT))

In the above example, AMT and DEDUCT are added before being subtracted
from GROSS. After subtraction, the difference is multiplied by 1.3 and the
product of this is assigned to the RESULT field.

⇒ Reading 1 of Chapter 4 ends here.

■ If you have completed the tutorial in Chapter 2, go on to the
beginning of Chapter 5.

■ If you branched to this chapter from the tutorial in Chapter 2, go back
to Lesson 3 in Chapter 2.

⇒ Reading 2 of Chapter 4 starts here.

Assignment Statement

The Assignment statement establishes a value in a field by copying the value
from another field or literal. The value on the right of the equal sign is copied to
the field on the left of the equal sign. The Assignment statement also
accomplishes data conversion, such as packing or unpacking numeric data.

Syntax
 =  send-field-name 
receive-field-name   send-literal 
 EQ arithmetic expression

Simple Assignment Examples
HOLD-DIV = DIV
DEPT-NAME = 'ACCOUNTING DEPT'
RATE = 1.1

MOVE Statement

Use the MOVE statement to transfer data from one location to another. MOVE is
useful for moving data without conversion and for moving character strings
with variable lengths.

■ You can move a field or a literal to a field, or move a file to a file.

■ A sending field longer than a receiving field is truncated on the right.

■ A receiving field longer than the sending field is padded on the right with
spaces or an alternate fill character.

4–8 Introduction to the Language

JOB Activities

■ Spaces or zeros can be moved to one or many fields.

The MOVE statement has two formats.

MOVE Format 1

Syntax
 send-file-name    receive-file-name 
MOVE send-field-name send-length TO   +
 send-literal    receive-field-name

[receive-length] [FILL fill-character]

When you specify Format 1, data moves from one field to another, filling with
spaces or a specified fill character on the right. The FILL parameter enables you
to place specified characters in the unused spaces of the new field (the default is
blank spaces).

Remember, that the MOVE statement does not convert data as it is moved. Use
the Assignment statement to convert the data from one field’s data type to
another’s.

Examples
MOVE NAME 20 TO HOLD-NAME

Moves the first 20 characters of the NAME field to the HOLD-NAME field.
MOVE NAME CTR TO HOLD-NAME FILL '*'

A numeric length for the sending field (NAME) is replaced here by a field name
CTR. CTR contains a numeric value that determines the number of characters
moved to HOLD-NAME. Any remaining spaces after the move (assuming the
sending field is smaller than the receiving field) are filled with asterisks.

MOVE Format 2

Syntax
  NULL 
  SPACE 
MOVE  SPACES  TO field-name-1 field-name-n
  ZERO 
  ZEROS 
  ZEROES 

You can use Format 2 to initialize the receiving field.

Example
MOVE SPACES TO NAME, HOLD-NAME, HOLD-DIV

Fills all of the named fields with blank spaces.

Activity Section - Processing and Logic 4–9

JOB Activities

MOVE LIKE

MOVE LIKE moves the contents of fields in one file to identically named fields
in another file.

Syntax
MOVE LIKE file-name-1 TO file-name-2

It is important to understand that the MOVE LIKE statement creates assignments
of each LIKE field. These assignments perform data conversions, if necessary.

Example
FILE INFILE1
 EMPNAME 17 20 A
 DEPT 98 3 N
 AMT 90 4 P 2
FILE OUTFIL1
 AMT 1 7 N 2
 EMPNAME 8 11 A
JOB INPUT INFILE1 NAME MOVE-LIKE-EXAMPLE
 ** Logic **
*
MOVE LIKE INFILE1 TO OUTFIL1
 ** Logic **

In the above example, the EMPNAME field of INFILE1 is moved to the
EMPNAME field of OUTFIL1 where the last nine characters are truncated. The
AMT field of INFILE1 is moved to the AMT field of OUTFIL1 where it is
converted to numeric format from packed decimal format.

DO/END-DO Statements

Use the DO and END-DO statements to provide a controlled loop for repetitive
program logic.

Syntax
 WHILE
DO   conditional-expression
 UNTIL

 ** Logic **

END-DO

Parameters
WHILE
 
UNTIL

A WHILE loop evaluates the condition at the top of a group of statements. The
UNTIL loop evaluates the condition at the bottom of a group of statements.

4–10 Introduction to the Language

JOB Activities

conditional-expression Specify the condition that is the basis for the
continuing execution of the loop. Conditional expressions follow the rules of IF
statements.

END-DO Terminates the body of the loop associated with the DO statement. An
END-DO statement must be specified after each DO statement and its associated
statements.

DO WHILE Example
JOB INPUT PERSNL NAME DO-EX-1
CTR = 0
DO WHILE CTR LT 10
 CTR = CTR + 1
 ** Logic **
END-DO

The above DO WHILE statement causes “CTR = CTR + 1” to repeat until CTR is
equal to 10. At that point, control transfers to the first statement after the
END-DO statement.

DO UNTIL Example
JOB INPUT PERSNL NAME DO-EX-2
CTR = 0
DO UNTIL CTR GE 10
 CTR = CTR + 1
 ** Logic **
END-DO

The previous DO UNTIL statement causes “CTR = CTR + 1” to execute the logic
once then repeat until CTR is equal to 10. At that point, control transfers to the
first statement after the END-DO statement.

As you can see by the above examples, you can use the WHILE and UNTIL
parameters of the DO statement to perform identical tasks. The rule of thumb to
follow when trying to determine which parameter to use is to use UNTIL if you
want to be sure the logic (CA-Easytrieve statements) is executed at least once.
The UNTIL parameter causes CA-Easytrieve to perform the logic then evaluate
the conditional expression.

Use WHILE if you do not want the logic executed. The WHILE parameter
causes CA-Easytrieve to evaluate the conditional expression and perform the
logic only if the condition is true.

DO Nesting Example

You can nest DO statements. (The inner logic loop must be completely within
the outer logic loop.)

 JOB INPUT PAYROLL NAME DO-EX-3
 CTR1 = 0
 DO WHILE CTR1 LT 10
 CTR2 = 0
 DO WHILE CTR2 LT 5

Activity Section - Processing and Logic 4–11

JOB Activities

 CTR2 = CTR2 + 1
 Inner
 ** Logic ** Loop
 Outer
 END-DO Loop
 CTR1 = CTR1 + 1

 ** Logic **

 END-DO

In the above example, the inner DO WHILE loop executes five times for each
single execution of the outer loop. When CTR1 is equal to 10, control is passed
to the first statement following the outer END-DO statement.

CASE and END-CASE Statements

The CASE and END-CASE statements are used to conditionally execute one of
several alternative groups of statements, based on the value of a specific field.

Syntax
CASE field-name

 WHEN compare-literal-1 [THRU range-literal-1]
 (statements)

 WHEN compare-literal-n [THRU range-literal-n]
 (statements)

 [OTHERWISE]
 (statements)

END-CASE

Parameters

field-name Specifies a field that contains a value that is compared to the values
represented by compare-literal [THRU range-literal]. Field-name can be a field of
any type except a varying length alphanumeric field. If field-name is
alphanumeric, it must be 254 or fewer bytes in length. If field-name is numeric, it
must have zero or no decimal places.

WHEN You can specify as many WHEN conditions as necessary. At least one
WHEN condition is required. You cannot code statements between CASE and
the first WHEN condition. You must supply a unique set of values to be
compared with field-name in each WHEN condition.

compare-literal [THRU range-literal] Compare-literal is the value to be
compared with field-name. You can specify a single literal, a series of literals, or a
range of literals. A range is represented by compare-literal THRU range-literal. A
range is satisfied when field-name is greater than or equal to the lesser of compare-
literal and range-literal and is less than or equal to the greater of compare-literal
and range-literal.

4–12 Introduction to the Language

JOB Activities

When field-name is alphanumeric, compare-literal and range-literal must also be
alphanumeric and must be equal in length to field-name. When field-name is
defined as a numeric data type, compare-literal and range-literal must also be
numeric and must not have any decimal places. Numeric literals need not be
equal in length to field-name.

The set of literal values specified for a given WHEN, including the unspecified
values implied by a range, must be unique as compared to the literal values of
any other WHEN for the same CASE.

OTHERWISE An optional statement that specifies a group of statements to be
executed if no WHEN comparison was satisfied. If OTHERWISE is not specified
and field-name does not equal any of the specified WHEN conditions, execution
continues with the statement following END-CASE.

END-CASE Terminates the body of the CASE statement. END-CASE must be
specified after each CASE statement and its associated statements.

Nesting CASE Statements

A CASE statement can be nested within a CASE statement. Other conditional
execution statements can also be nested within a CASE statement. A CASE
statement can be nested within any other conditional execution statement.

Example

The following example uses CASE to compare the value in JOB-CATEGORY to
the range specified in the WHEN clauses and calculate Christmas bonuses, based
on that value.
FILE PERSNL FB (150 1800)
 EMPNAME 17 8 A
 EMP# 9 5 N
 DEPT 98 3 N
 GROSS 94 4 P 2
XMAS-BONUS W 4 P 2
JOB-CATEGORY 132 2 N 2

Continued

Continued
JOB INPUT PERSNL NAME COMPUTE-XMAS-BONUS
 CASE JOB-CATEGORY
 WHEN 1 THRU 29
 XMAS-BONUS = PAY-GROSS * 1.03
 WHEN 30 THRU 59
 XMAS-BONUS = PAY-GROSS * 1.05
 OTHERWISE
 XMAS-BONUS = PAY-GROSS * 1.07
END-CASE
PRINT RPT
REPORT RPT
LINE NAME-LAST XMAS-BONUS

Activity Section - Processing and Logic 4–13

JOB Activities

GOTO Statement

You use the GOTO statement to branch out of the normal top-to-bottom logic
flow in a program.

Syntax
GOTO  label 
  JOB 
GO TO  SCREEN

This statement directs program control to another area in the program.
CA-Easytrieve accepts either GOTO or GO TO.

Parameters

GOTO label Label refers to a statement label. GOTO label transfers control
immediately to the first statement following the named statement label. The
statement label can be anywhere in the same activity or procedure. A statement
label can:

■ Be up to 128 characters in length

■ Contain any character other than a delimiter

■ Begin with A-Z, 0-9, or a national character (#, @, $)

■ Not consist of all numeric characters.

GOTO JOB Transfers control to the top of the current JOB activity. This is useful
to stop specific records from further processing.

GOTO SCREEN Transfers control to the top of the current SCREEN activity. See
Chapter 7, “Activity Section - Screens” for more information.

Example
 JOB INPUT PERSNL NAME DIV-LIST <──────┐ Transfers
 IF DIV = 'A' │ Control
 GOTO JOB ──────────────────────────┘
 END-IF
 IF DIV = 'B'
 GOTO CHECK-REG-ROUTINE ─────────┐
 END-IF │
 │ Transfers
 ** Logic ** │ Control
 │
 CHECK-REG-ROUTINE <───────────────┘

 ** More Logic **

STOP Statement

A STOP statement enables you to terminate an activity.

Syntax

4–14 Introduction to the Language

JOB Activities

STOP [EXECUTE]

■ STOP ends the current JOB or SORT activity, completes the report
processing for the activity, if any, and then goes on to the next JOB or SORT
activity if one exists. A FINISH procedure (if one is present) is still executed
before going on to the next JOB or SORT activity.

■ STOP EXECUTE immediately terminates all CA-Easytrieve execution.

Example
IF AMT NOT NUMERIC
 STOP
END-IF

⇒ Reading 2 of Chapter 4 ends here.

■ Please continue with the description of User Controlled Input and
Output, which is Reading 2 of Chapter 5.

⇒ Reading 3 of Chapter 4 starts here.

User Procedures (PROCs)

A user procedure (also called PROC for short) is a group of user-written
CA-Easytrieve statements designed to accomplish some task. PROCs are useful
when developing structured programs which modularize discrete and repetitive
tasks.

Invocation Syntax

PROCs are invoked by using the PERFORM statement which has the following
format:
PERFORM proc-name

Parameters

proc-name Specifies the name of a user-defined procedure located at the end of
the activity in which it is PERFORMed. Proc-name can:

■ Be up to 128 characters in length

■ Contain any character other than a delimiter

■ Begin with A-Z, 0-9, or a national character (#, @, $)

■ Not consist of all numeric characters.

As mentioned earlier, procedures are discrete modules of program code which
perform a task.

Activity Section - Processing and Logic 4–15

JOB Activities

Procedure Syntax

When coded, procedures must have this format:
 proc-name. PROC

** Procedure Logic **

 END-PROC

Parameters

PROC The PROC keyword must follow the proc-name separated by a period and a
space. Proc-name is the same name as on the PERFORM statement.

END-PROC Every PROC must have an END-PROC which marks the end of the
procedure. At END-PROC, control is returned to the statement following the
PERFORM statement that invoked the PROC.

Procedure Example

The following example performs two simple procedures, based on the value of a
field named CODE.
IF CODE = 1
 PERFORM CODE1-RTN
ELSE
 PERFORM CODE2-RTN
END-IF

** Logic **

CODE1-RTN. PROC
 ORDER = 'NO'
END-PROC
CODE2-RTN. PROC
 ORDER = 'YES'
END-PROC

Nesting PROCs

A PERFORM statement within a procedure can invoke another procedure. For
example:
IF DEPT = 911
 PERFORM PROCA
END-IF

 ** Logic **

 PROCA. PROC
 IF ST = 'NY'
 PERFORM PROCB
 ELSE
 TAX = GROSS * .05
 END-IF
 END-PROC
 PROCB. PROC
 TAX = GROSS * .1
 END-PROC

4–16 Introduction to the Language

JOB Activities

START/FINISH Procedures

You use the optional START and FINISH parameters of the JOB statement to
automatically incorporate procedures into processing activities.

Syntax

The format for invoking these procedures is as follows:
JOB INPUT file-name [NAME job-name] +

 [START start-proc-name] [FINISH finish-proc-name]

Parameters

START start-proc-name START procedures are used to execute routines prior
to execution of the logic in the body of the JOB activity.

■ The procedure is invoked automatically after the file is opened but prior to
reading the first input record.

■ A typical START procedure might initialize working storage fields or
establish a position in a keyed sequenced file (see POINT statement in
Chapter 5, “Activity Section - Input and Output”).

FINISH finish-proc-name FINISH procedures are used to identify a
procedure to be executed during the normal termination of the JOB activity.

■ The procedure is invoked after the last input record is processed but before
any files are closed.

■ A typical FINISH procedure displays control information accumulated
during execution of the JOB activity.

■ CA-Easytrieve still executes FINISH procs if a STOP statement is encountered
during the course of the program but not if a STOP EXECUTE is
encountered.

Processing Tables

A table is a collection of uniform data records in a form suitable for quick
reference.

Much like books in a library, a table has two components; an identifier that helps
you find the information you are looking for (analogous to a card catalog
number) and the information you are looking for (a book). With tables however,
the identifier is called a search argument; the information you are after is called
the description. Each entry in a table must consist of:

■ A search argument that uniquely identifies the entry. This is defined as a
field with the name ARG after the FILE statement.

Activity Section - Processing and Logic 4–17

JOB Activities

■ A description (the data) associated with the search argument. This is
defined as a field with the name DESC after the FILE statement.

Your objective is to obtain the description from a table, based on the search
argument. Rules governing the processing of search arguments are as follows:

■ A table file must be arranged in ascending order by search argument.

■ No duplicate search arguments can be placed in the file.

■ You can use any number of tables in a job.

■ A minimum of three entries is required in a table.

The following example shows a table with search arguments and descriptions.
The argument is a numeric code used to look up a descriptive state name.
 ARG DESC

 01 ALABAMA
 02 ALASKA
 03 ARIZONA
 ...
 47 WASHINGTON
 48 WEST VIRGINIA
 49 WISCONSIN
 50 WYOMING

Creation of Table Files

The creation of tables involves the inclusion of certain parameters on the
CA-Easytrieve FILE statement:

Syntax
 INSTREAM 
FILE file-name TABLE  
 max-table-entries

Parameters

TABLE The TABLE parameter of the FILE statement declares that the file is the
object of a CA-Easytrieve SEARCH statement which is used to access tables.
Tables can be either external (stored in a file outside your program) or instream
(data is included within your program). External table files must be sequentially
accessible.

INSTREAM Denotes that the table file data is within your program. Such data
immediately follows the file description after the ARG and DESC field
definitions.

max-table-entries Specifies the maximum number of entries (records) in an
external table. Specify a value here only if the number of entries is greater than
the maximum stored in the Site Options Table.

4–18 Introduction to the Language

JOB Activities

Instream Table Example

The word ENDTABLE must be the last entry in an instream table and must be
coded in columns 1 through 8.
FILE STATTBL TABLE INSTREAM
 ARG 1 2 N
 DESC 4 15 A
01 ALABAMA
02 ALASKA
03 ARIZONA
 ...
47 WASHINGTON
48 WEST VIRGINIA
49 WISCONSIN
50 WYOMING
ENDTABLE

The previous example defines a table of state names which can now be looked
up according to a two-digit code.

Accessing Table Files

SEARCH Statement

The SEARCH statement is used to perform a search of a table. SEARCH can be:

■ Coded any place within a JOB, PROGRAM, or SCREEN activity

■ Issued any number of times against any number of tables.

Syntax

The SEARCH statement has this format:
SEARCH file-name WITH search-field GIVING result-field

file-name The name of the table that appears on the FILE statement.

search-field The name of a field which contains a value that is compared to
the search argument. It must be the same length and type as the search
argument (ARG).

result-field The name of a field into which the description is placed if a
match exists between search-field and the search argument. It must be the same
length and type as the description (DESC).

Testing for a Match

After using the SEARCH statement, you can test to determine whether a match
was found between the search-field and the search argument by using a special IF
statement.

Activity Section - Processing and Logic 4–19

SORT Activities

Syntax

The IF statement has this format:
IF [NOT] file-name

External Table Example
 FILE PERSNL
 EMPNAME 17 8 A
 STATE 69 2 A
 ZIP 71 5 N
 GROSS-PAY 94 4 P 2
 POST-OFFICE-DESC W 20 A
 FILE ZIPTABLE TABLE 5000
 ARG 1 5 N
 DESC 7 20 A
 JOB INPUT PERSNL NAME TABLE-SEARCH
 IF STATE = 'DC' 'IL'
 SEARCH ZIPTABLE WITH ZIP GIVING POST-OFFICE-DESC
 IF NOT ZIPTABLE
 POST-OFFICE-DESC = 'BAD ZIP CODE FOUND'
 END-IF
 PRINT STATE-REPORT
 END-IF
 REPORT STATE-REPORT
 SEQUENCE STATE
 CONTROL STATE
 TITLE 1 'REPORT OF EMPLOYEE SALARIES BY STATE'
 LINE 1 STATE EMPNAME GROSS-PAY ZIP POST-OFFICE-DESC

SORT Activities

SORT Statement

SORT is a separate activity (outside the activity of the JOB statement) that
sequences an input file in alphabetical or numerical order based on fields
specified as keys. You can sort on as many fields as your system allows. (The
SORT activity uses the sort utility provided by your system.)

Syntax
 SORT input-file-name TO sorted-file-name +

 USING (sort-key-field-name [D] ...) +

 NAME sort-name

Parameters

input-file-name The input file to be sorted.

sorted-file-name The output file.

4–20 Introduction to the Language

SORT Activities

USING sort-key-field-name Identifies those fields from input-file-name that
you use as sort keys. Keys are specified in “major to minor” order. This dictates
how information is sorted. For example, you could sort a file of employee
records by region, and then by location under region and then by department
under location. Region would be the major sort key, location would be minor,
and department would be more minor.

D Optionally sorts the field contents in descending order (ascending order is the
default).

NAME sort-name Like NAME on the JOB statement, this parameter identifies the
sort activity and is normally used for documentation purposes only. Sort-name
can:

■ Be up to 128 characters in length

■ Contain any character other than a delimiter

■ Begin with A-Z, 0-9, or a national character (#, @, $)

■ Not consist of all numeric characters.

Sort Example
 FILE PERSNL FB(150 1800)
 EMPNAME 1 10 A
 DEPT 11 5 N
 GROSS-PAY 16 4 P 2
 FILE PAYSORT FB(150 1800)
 SORT PERSNL TO PAYSORT +
 USING (DEPT GROSS-PAY) +
 NAME SORT-EXAMPLE-1

The above SORT activity sorts the file PERSNL in ascending order, first by DEPT
and then by GROSS-PAY under DEPT. This produces a file containing records
in order by department and records with LIKE departments in order by gross
pay.

SORT Procedures

CA-Easytrieve normally sorts all input records and outputs them into the TO file
of the SORT statement automatically. The output file usually has the same
format and length as the input file. However, sometimes it is desirable to sort
only certain records and/or to modify the contents. To do this, you must write a
SORT procedure which must immediately follow the SORT statement.

Syntax

A SORT procedure is executed through the BEFORE parameter of the SORT
statement:
SORT input-file-name TO sorted-file-name +

Activity Section - Processing and Logic 4–21

SORT Activities

 USING (sort-key-field-name [D] ...) +

 NAME sort-name +

 [BEFORE proc-name]

■ A SORT procedure must immediately follow the SORT statement.

■ You invoke a SORT procedure with the BEFORE parameter.

■ The SORT procedure executes for each record from input-file-name prior to
passing the record to the sort.

Parameters

BEFORE proc-name Identifies the user-defined procedure you want to execute.
CA-Easytrieve supplies input records to your SORT procedure one at a time. If a
BEFORE procedure is used, the SELECT statement must be executed for each
record that you want to sort.

■ You must execute a SELECT statement for each record that you want
returned to the output file.

■ A SELECTed record outputs only once, even if SELECTed more than once in
the procedure.

■ Any record not SELECTed does not go to the sorted file.

Select Syntax
SELECT

Sort Procedure Example

This example illustrates the use of the SORT activity and SORT procedures.
FILE PERSNL FB(150 1800)
 EMPNAME 1 10 A
 DEPT 11 5 N
 GROSS-PAY 16 4 P 2
FILE PAYSORT F(19) VIRTUAL
 SORT-NAME 1 10 A
 SORT-DEPT 11 5 N
 SORT-GROSS-PAY 16 4 P 2
JOB INPUT PERSNL NAME ACT-1
 PRINT RPT1
REPORT RPT1
 LINE 1 NAME DEPT GROSS-PAY
SORT PERSNL TO PAYSORT USING (DEPT GROSS-PAY D) +
 BEFORE SELECT-REC NAME SORT-ACTIVITY
 SELECT-REC. PROC
 IF GROSS-PAY GE 500
 SELECT
 END-IF
 END-PROC

In the above example, SELECT-REC is the name of the SORT procedure. The
procedure causes only those records with a gross pay of greater than or equal to
500 to be selected for sorting.

4–22 Introduction to the Language

PROGRAM Activities

PROGRAM Activities
A PROGRAM activity can be used for simple processing activities or to control
the execution of JOB, SORT, and SCREEN activities.

Simple PROGRAM Example

The following example illustrates the use of a PROGRAM activity where you
merely need to perform an arithmetic computation, display the results, then stop
processing.
DEFINE RESULT W 4 P 2
PROGRAM NAME COMPUTE
 RESULT = (2354.54 * 6) /3.8
 DISPLAY THE RESULT IS RESULT

Controlling Other Activities

A PROGRAM activity can be used to conditionally initiate JOB, SORT, and
SCREEN activities.
 PROGRAM NAME PROCESSOR
 IF SYSTIME = 09:00:00 THRU 17:00:00
 EXECUTE PRIME-TIME-JOB
 ELSE
 EXECUTE OFF-TIME-JOB
 END-IF
 JOB NAME PRIME-TIME-JOB
 ** Logic **
 JOB NAME OFF-TIME-JOB
 ** Logic **

The PROGRAM activity, in the above example, controls which JOB activity is
executed based on the time of day. If a PROGRAM activity had not been
specified, the JOB activities would have been executed sequentially from the first
JOB activity.

EXECUTE Statement

The EXECUTE statement invokes a JOB, SORT, or SCREEN activity from either a
PROGRAM or SCREEN activity. The EXECUTE statement transfers control to
an activity. After the activity is executed, control returns to the next executable
statement following the EXECUTE.

Note: You cannot invoke a JOB, SORT, or SCREEN activity within a JOB or
SORT activity.

EXECUTE statements within a SCREEN activity can invoke other activities. This
is called activity nesting.

Syntax

Activity Section - Processing and Logic 4–23

PROGRAM Activities

EXECUTE {job-name | sort-name | screen-name}

Parameters
{job-name | sort-name | screen-name}

Name the JOB, SORT, or SCREEN activity to be executed.

⇒ Reading 3 of Chapter 4 ends here.

■ Please continue with the description of the POINT Statement, which is
Reading 3 of Chapter 5.

4–24 Introduction to the Language

Chapter

5 Activity Section - Input and Output

Introduction
In CA-Easytrieve, file input/output can be either controlled by CA-Easytrieve
(automatic) or controlled by you (user controlled). There are several statements
available for providing input and output under a variety of conditions. All input
and output occurs in the activity section of your programs.

In this chapter, you’ll find:

⇒ Reading 1
■ Automatic input using the JOB statement
■ Report output using the PRINT statement

⇒ Reading 2
■ User-controlled input/output of sequential access files, including the use of

the DISPLAY, GET, and PUT statements

⇒ Reading 3
■ Using the POINT statement to establish a starting position for sequential

processing of a keyed file

■ Programmer-controlled input/output of randomly accessed files, including
the use of the READ and WRITE statements

⇒ Reading 1 of Chapter 5 starts here.

Automatic Input and Output
CA-Easytrieve gives you the option of letting it take care of input and output for
you. All of the usual “housekeeping” considerations like opening and closing
files, checking for end of file, issuing input and output statements in a loop, can
be taken care of automatically.

Activity Section - Input and Output 5–1

Automatic Input and Output

Automatic Input with the JOB Statement

The JOB statement lets you identify a file for automatic input to the JOB activity.
All you have to do is specify the file name after the word INPUT; CA-Easytrieve
takes care of all the rest.

Syntax

Here is how the JOB statement looks with automatic input:
JOB [INPUT file-name]

When you specify INPUT and a file name, the records of that file are
automatically made available to the logic in your JOB activity section. However,
there are some implied statements being executed which you don’t see in your
program. Here are the steps actually taken when the JOB statement is executed
with automatic input.
IF THERE IS A START PROCEDURE
 THEN PERFORM THE START PROCEDURE
END-IF
OPEN FILE(S)
RETRIEVE THE INPUT
IF NO MORE INPUT
 IF THERE IS A FINISH PROCEDURE
 THEN PERFORM THE FINISH PROCEDURE
 END-IF
 WRAP UP THE REPORTS
 GO TO THE NEXT ACTIVITY
ELSE
 PERFORM LOGIC ACTIVITIES
END-IF
GOTO

You can leave the INPUT parameter off the JOB statement. If you do,
CA-Easytrieve provides the automatic input by getting it from either the first file
described in your library section or the output of a directly previous SORT, if
any.

Printing Reports

Printing of reports is initiated with the CA-Easytrieve PRINT statement which
looks like this:

Syntax
PRINT [report-name]

PRINT is not completely automatic in that it does permit you a certain amount of
control. You can execute PRINT anywhere in your JOB activity logic and you
can use conditional logic to determine when it should execute. But, once PRINT
is executed, it activates the designated report declaration and takes care of all
output considerations automatically.

5–2 Introduction to the Language

Automatic Input and Output

In most cases however, your reports do not go directly to a printer (through a
print file). Rather, they go to a CA-Easytrieve work file (sometimes called a
spool file). Work files are necessary in two cases:

■ When the printer (print file) is already activated by a previous report of the
same JOB activity. (Multiple reports directed to the same printer).

■ When a report requires sequencing (specifically, a SEQUENCE statement is
present).

PRINT Statement Execution

The following exhibit illustrates how the PRINT statement is executed for reports
going to a single printer.

JOB
PRINT RPT1
PRINT RPT2

RPT1

RPT2
PRINT
FILE

ACTIVE

YES

FORMAT
RPT1

PRINT
RPT2

PRINT
RPT1

SEQUENCE
REQUIRED

?

NO NO

NO

YES YES

CREATE
WORK
FILE

SEQUENCE
REQUIRED

?

FORMAT
RPT2

CREATE
WORK
FILE

Activity Section - Input and Output 5–3

User Controlled Input and Output

Work File Processing

If work files are created, as presented in the previous exhibit, they are held until
the end of the job activity. At end of job, they are processed as shown in the next
exhibit.

PRINT
REPORTS

FORMAT
REPORTS

SEQUENCE
REQUIRED

?

YES

NO

NO

YES

END OF
JOB

WORK
FILES

PRESENT
?

NEXT JOB
or

SORT
or

END

SYSTEM

SORT

⇒ Reading 1 of Chapter 5 ends here.

■ If you have completed the tutorial in Chapter 2, go on to the
beginning of Chapter 6.

■ If you branched to this chapter from the tutorial in Chapter 2, go back
to Lesson 4 in Chapter 2.

⇒ Reading 2 of Chapter 5 starts here.

User Controlled Input and Output

Sequential File Processing

CA-Easytrieve provides you with three statements for sequentially processing
files. The following table lists these statements and their general purpose:

Statement Purpose

DISPLAY Normally used to display data to your system output
device

5–4 Introduction to the Language

User Controlled Input and Output

Statement Purpose

GET Used for sequential retrieval of input file records

PUT Used for sequential output of records to an output file

DISPLAY Statement

A DISPLAY statement sends data to a specified output file or output device.
DISPLAY is commonly used:

■ For error messages

■ For highlighting reports

■ For hexadecimal display of selected information.

If DISPLAY is used in the logic portion of the JOB activity and output is to a
report, the lines to be DISPLAYed are interspersed throughout the report in an
unSEQUENCEd report or printed at the beginning of a SEQUENCEd report
(before the first title). When DISPLAY is used in report procedures, you are only
permitted to display to the system output device (not to a data file). The
DISPLAY statement has two different formats.

DISPLAY Format 1

Syntax
      
DISPLAY [display-file-name] {TITLE | NOTITLE}  +offset +
 SKIP skip-integer  - 
      
  COL column-number 
  POS position-number
  
    
 literal-1  literal-n 
 field-name-1 ... field-name-n
    

Parameters

display-file-name When you specify display-file-name, CA-Easytrieve prints
data to the named file. If you do not specify display-file-name, the default is
SYSPRINT.

TITLE | NOTITLE The TITLE option specifies that a skip to a new page occurs
before the data is printed. Any titles and headings are also produced. NOTITLE
specifies that a skip to a new page occurs but titles and headings are not
produced.

SKIP skip-integer The SKIP option specifies that the designated number of
lines are skipped before the data is printed.

Activity Section - Input and Output 5–5

User Controlled Input and Output

offset Coding a positive or negative offset modifies the horizontal spacing
between display items.

COL column-number The COL column-number option specifies the print column
number where CA-Easytrieve places the next display item.

POS position-number When used in report procedures, the POS position-
number option causes the next display item to be positioned under the
corresponding position on the LINE 01 statement.

literal-1,n or field-name-1,n Code literals or field-names in the order you
want them to appear on the printed line.

DISPLAY Examples 1
DISPLAY SKIP 2 '**RECORD NOT FOUND FOR KEY' +2 SSN

DISPLAY ERRFILE 'THIS REPORT IS FOR ERRORS +
 THAT WERE FOUND IN THE EDIT PHASE.'

DISPLAY Format 2

Syntax
    
DISPLAY [display-file-name] {TITLE | NOTITLE} HEX file-name 
 SKIP skip-integer field-name
    

In this format, CA-Easytrieve produces a hexadecimal and character dump of the
current record or the specified field-name. The parameters, other than HEX,
operate the same as in Format 1.

DISPLAY Example 2
DISPLAY HEX NAME

produces:
CHAR WIMN
ZONE ECDD4444444444444444
 NUMR 69450000000000000000
 1...5...10...15...20

GET Statement

The GET statement retrieves the next record of the named file into the file input
area.

Syntax
GET file-name

Parameter

5–6 Introduction to the Language

User Controlled Input and Output

file-name Identifies the input file defined in the library section.

Note: You must test for end-of-file (EOF) when using the GET command.

GET Example
 FILE MASTER FB(150 1800)
 EMP# 9 5 N
 EMPNAME 17 16 A
 GROSS 94 4 P 2
 JOB INPUT NULL NAME READ-SEQ-MAN
 GET MASTER
 IF EOF MASTER
 STOP
 END-IF
 IF GROSS > 500
 PRINT RPT1
 END-IF
 REPORT RPT1
 LINE 1 EMP# EMPNAME GROSS

You cannot use GET for an automatic input file. To inhibit automatic input,
specify INPUT NULL on the JOB statement. For example:
JOB INPUT NULL

You might GET a secondary file while automatically accessing a primary file.

PUT Statement

The PUT statement outputs to a file sequentially.

Syntax
PUT output-file-name [FROM input-file-name]

Parameters

output-file-name Identifies a file defined in the library section to which you
are writing data.

FROM input-file-name Using the FROM option is like performing a MOVE of
data from input-file-name to output-file-name before performing the PUT.

PUT Example 1
 FILE PERSNL FB(150 1800)
 EMP# 9 5 N
 EMPNAME 17 16 A
 GROSS 94 4 P 2
 FILE NEWPAY2 F(20)
 EMPNAME 1 16 A
 GROSS 17 4 P 2
 JOB INPUT PERSNL NAME PUT-EXAMPLE
 ** Logic **
 MOVE LIKE PERSNL TO NEWPAY2
 PUT NEWPAY2

Activity Section - Input and Output 5–7

User Controlled Input and Output

PUT Example 2
 FILE MASTER FB(150 1800)
 EMP# 9 5 N
 EMPNAME 17 16 A
 GROSS 94 4 P 2
 FILE OUTMAST FB(150 1800)
 JOB INPUT MASTER NAME CREATE-SEQ
 IF GROSS > 500
 *
 PUT OUTMAST FROM MASTER
 *
 END-IF

⇒ Reading 2 of Chapter 5 ends here.

■ Please continue with the description of Label Reports, which is Reading
2 of Chapter 6.

⇒ Reading 3 of Chapter 5 starts here.

POINT Statement

The POINT statement is used to establish a starting position for sequential
processing of a keyed file. This statement is for use on INDEXED and
RELATIVE files. CA-Easytrieve does not require that you specify the length or
location of the record key field.

Data becomes available to your program only after the next successful sequential
retrieval either by automatic file input or a GET statement.

Syntax
  =   
POINT file-name  EQ   field-name  [STATUS]
  GE   
  GQ   literal 
  >=   

Parameters

file-name An INDEXED or RELATIVE file described on a FILE statement in
the library section of your program.

field-name or literal Any valid field-name or literal can be used as a key
search value for the POINT statement. This search value is compared to the
record key value in the file to determine the starting location for sequential
access.

5–8 Introduction to the Language

User Controlled Input and Output

STATUS Causes the system-defined field FILE-STATUS to be set with a return
code. By checking FILE-STATUS at some point in your program after coding
STATUS, you can determine if the input/output request was performed
properly. The FILE-STATUS field normally contains a value of zero after a
successful I/O request. This parameter is also used on the GET, PUT, READ and
WRITE statements.

POINT Example

The following example causes sequential processing of an INDEXED file to begin
on a record with a key value of 01963 or, if no such key exists, on a record with
the next higher key value.
FILE PERSNL INDEXED
 EMP# 9 5 N
 EMPNAME 17 8 A
 DEPT 98 3 N
 GROSS 94 4 P 2
JOB INPUT NULL NAME MYPROG
 POINT PERSNL GE '01963' STATUS
 IF FILE-STATUS NE 0 OR EOF PERSNL
 DISPLAY 'BAD POINT...FILE STATUS= ' FILE-STATUS
 STOP
 END-IF
 GET PERSNL STATUS
 IF FILE-STATUS NE 0
 DISPLAY 'BAD GET...FILE STATUS= ' FILE-STATUS
 ELSE
 DISPLAY PERSNL
 END-IF
 STOP

Random Access Processing

READ Statement

The READ statement provides random access to INDEXED and RELATIVE files.

Syntax
 key-field-name
READ file-name KEY   [STATUS]
 'key-literal' 

Parameters

file-name The file-name located on a FILE statement in the library section of
your program.
key-field-name
  [STATUS]
'key-literal' 

Key-field-name contains the value of the record key to be found. This key value
can also be expressed as a literal for INDEXED files.

Activity Section - Input and Output 5–9

User Controlled Input and Output

READ Example

The following example involves the use of two files, PAYROLL and MASTER.
PAYROLL is a sequential transaction file containing key values. MASTER is a
master file which is keyed for random access.

The PAYROLL file is made available to the program through automatic input.
Key values from this file, located in the EMP-NO field, are used to READ the
MASTER file. READs returning non-zero FILE-STATUS values cause the
DISPLAY of an error message.

 FILE PAYROLL
 EMP-NO 1 3 N
 FILE MASTER INDEXED
 EMP-NAME 40 10 A
 *
 JOB INPUT PAYROLL NAME READ-EXAMPLE
 READ MASTER KEY EMP-NO STATUS
 IF MASTER:FILE-STATUS NOT ZERO
 DISPLAY 'ERROR READING VSAM +
 FILE WITH KEY: ' EMP-NO +
 ' FILE-STATUS IS ' MASTER:FILE-STATUS
 GOTO JOB
 END-IF

 ** Logic **

WRITE Statement

Use the WRITE statement to add a new record, update an existing record, or
delete a record from an INDEXED or RELATIVE file.

■ When you use WRITE you must specify the UPDATE parameter on the FILE
statement of the file being written to.

■ Before you can issue a WRITE to delete or update, you must already have
read the record you are writing.

WRITE Format 1

Use Format 1 when adding to or updating a record.

Syntax
    
WRITE output-file-name UPDATE FROM input-file-name  [STATUS]
 ADD   
  

WRITE Example 1

This example involves two files, TRANS and PAYVS. TRANS is a sequential
transaction file containing transaction records with a key value located in the
EMP-NO field. PAYVS is a master file which is keyed for random access.

5–10 Introduction to the Language

User Controlled Input and Output

The TRANS file is made available to the program through automatic input. The
EMP-NO field of the TRANS file is used as a key to READ the PAYVS file.

The value returned to the FILE-STATUS field after a READ, is checked to find
out if a record with a matching key value was found. If no record was found,
then an ADD is performed.

If a record was found, then an UPDATE is performed. In either case, procedures
(not shown) are PERFORMed to check the FILE-STATUS value for each WRITE
statement executed.

 FILE TRANS
 EMP-NO 1 3 N
 GROSS 15 4 P 2
 *
 FILE PAYVS INDEXED (UPDATE)
 GROSS 15 4 P 2
 *
 JOB INPUT TRANS NAME UPDATE-PGM
 READ PAYVS KEY EMP-NO STATUS
 IF PAYVS:FILE-STATUS NE 0 . * RECORD NOT FOUND
 WRITE PAYVS ADD FROM TRANS STATUS
 PERFORM ADD-STATUS-CHK
 GOTO JOB
 END-IF
 IF PAYVS:FILE-STATUS = 0 . * RECORD FOUND
 MOVE LIKE TRANS TO PAYVS
 WRITE PAYVS UPDATE STATUS
 PERFORM UPDATE-STATUS-CHK
 GOTO JOB
 END-IF

WRITE Format 2

Use Format 2 for deleting a record.

Syntax
WRITE output-file-name DELETE [STATUS]

WRITE Example 1
 FILE TRANS
 TRANS-KEY 14 3 A
 TRANS-CODE 17 1 A. * TRANS-CODE value of D means Delete
 *
 FILE PAYVS INDEXED (UPDATE)
 JOB INPUT TRANS NAME VSAM-DELETE
 IF TRANS-CODE = 'D'
 READ PAYVS KEY TRANS-KEY STATUS
 IF FILE-STATUS = 0
 WRITE PAYVS DELETE STATUS
 PERFORM WRITE-STAT-CHECK
 ELSE
 DISPLAY 'ERROR IN STATUS CHECK'
 END-IF
 END-IF

⇒ Reading 3 of Chapter 5 ends here.

Activity Section - Input and Output 5–11

User Controlled Input and Output

■ Please continue with the description of Format Determination
Parameters, which is Reading 3 of Chapter 6.

5–12 Introduction to the Language

Chapter

6 Activity Section - Reporting

Introduction
One of the most powerful features of CA-Easytrieve is the easy-to-use reporting
facility. Seven basic statements control most aspects of report production,
including REPORT, SEQUENCE, CONTROL, SUM, TITLE, HEADING, and
LINE. Special-named procedures are also available for customizing reports,
allowing for great flexibility and user control. In this chapter, you’ll find:

⇒ Reading 1
■ Standard Reports

■ Defining basic report characteristics with the REPORT Statement

■ Spacing control parameters of the REPORT statement

■ Defining report content with report definition statements including
SEQUENCE, CONTROL, SUM, TITLE, HEADING, and LINE

⇒ Reading 2
■ Label reports

■ Testing aid and format determination parameters of the REPORT statement

⇒ Reading 3
■ More format determination parameters of the REPORT statement

■ Multiple Reports
■ File directing parameters of the REPORT statement
■ Report Procedures

Activity Section - Reporting 6–1

Standard Reports

⇒ Reading 1 of Chapter 6 starts here.

Standard Reports
CA-Easytrieve report facility includes all of the functions necessary to produce
most reports very easily. Using CA-Easytrieve report options, you can produce
almost any report format. Most reports, however, are variations of what is
termed the standard report. Standard reports typically consist of the following
items:

■ Titles
■ Headings
■ Lines or line groups.

The following exhibit shows the structure of a standard report.

<──────────────────────LINESIZE──────────────────────>

┌──┐
│ TOP MARGIN │
│──│ ───
│ TITLE AREA (optional) │ ↑
│ where titles are printed │ │
│──│ P
│ HEADING AREA (optional) │ A
│ where headings are printed │ G
│──│ E
│ │ S
│ │ I
│ REPORT BODY │ Z
│ │ E
│ where lines or line groups are printed │ │
│──│ │
│ BOTTOM MARGIN │ ↓
└──┘ ───

The following discussion tells how titles, headings, and lines are formatted and
generated by CA-Easytrieve.

Titles

The title is the first item printed on each report page. The report title is specified
in your program by the TITLE statement. You can have up to 99 TITLE
statements in your program. The following exhibit shows the title area of a
report.

6–2 Introduction to the Language

Standard Reports

<─────────────────────────LINESIZE────────────────────────>

SYSDATE PAGEWRD Page
 │ │ count
 │ │ │
 ↓ ↓ ↓
99/99/99 TITLE 01 items PAGE ZZ,ZZ9
 TITLE 02 items
 ...
 TITLE 04 items
 ...
 TITLE 99 items

When more than one TITLE statement is coded in your program, TITLE must be
followed by sequence numbers (01 through 99). The following list highlights
some points to remember about standard report titles:

■ TITLE 01 items are printed at top-of-form.

■ The current date and page count are automatically placed at either end of the
TITLE 01 line.

■ Title lines are centered within the space indicated by the LINESIZE
parameter of the REPORT statement.

■ The title sequence number controls the vertical spacing of titles relative to
the first title.

■ The SPACE parameter of the REPORT statement controls the number of
blank characters (spaces) between title items.

The following shows two TITLE statements and resulting titles:
Statements:

FILE PERSNL FB(150 1800)
 DEPT W 3 N VALUE '903'
JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 50
 TITLE 01 'TEMPORARY EMPLOYEES'
 TITLE 03 'IN DEPARTMENT' DEPT
 LINE 01 ' '

Produce:

01/09/89 TEMPORARY EMPLOYEES PAGE 1

 IN DEPARTMENT 903

Note: A blank line was inserted where a TITLE 02 item would have otherwise
been printed.

Activity Section - Reporting 6–3

Standard Reports

Headings

Headings in a report describe the content of line items. Line items are the single
pieces of information that make up a line on a report. Usually, they form vertical
columns. Each heading is centered over its associated line item. The following
list highlights points to remember about headings:

■ If no headings are defined, CA-Easytrieve uses the field names of the
DEFINE statement as headings.

■ Headings can be specified by HEADING statements in the report subactivity
or by HEADING parameters on DEFINE statements.

■ HEADING statements override any HEADING parameters defined for the
same field.

■ Line items which are literals (do not come from defined fields) do not have
headings.

■ Headings can be stacked (take up more than one vertical space).

The following exhibit shows the positioning of headings in a typical report:
 T I T L E A R E A
 HEADING
 HEADING Heading
 HEADING HEADING Area
 HEADING HEADING HEADING

 line line literal line
 item item line item Report
 item ... Body

The following shows how headings can be defined in your program.
Statements:

FILE PERSNL FB(150 1800)
 SSN 4 5 P HEADING('SOCIAL' 'SECURITY' 'NUMBER')
 EMPNAME 17 20 A
 PAY-NET 90 4 P 2
JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65
 HEADING PAY-NET ('NET' 'PAY')
 LINE EMPNAME SSN '* NO OVERTIME *' PAY-NET

Produce:

 SOCIAL
 SECURITY NET
 EMPNAME NUMBER PAY

 WIMN GLORIA 025-30-5228 * NO OVERTIME * 251.65
 BERG NANCY 121-16-6413 * NO OVERTIME * 547.88

6–4 Introduction to the Language

Report Processing

Line Group

A line is the result of a single LINE statement in your program. Each time a
PRINT statement is executed, all of the fields indicated on the LINE statement
are sent to the printer as a single formatted line. If there is more than one LINE
statement in your program, then they are output in groups for each PRINT
statement issued. All of the LINE statements of the report make up a line group,
which is also called a logical report line.
LINE 01 ...
LINE 02 ... line group (logical report line)
LINE 03 ...
 ...

The following exhibit illustrates line item positioning:

FILE PERSNL FB(150 1800)
 SSN 4 5 P MASK '999-99-9999' +
 HEADING('SOCIAL' 'SECURITY' 'NUMBER')
 EMPNAME 17 20 A HEADING 'EMPLOYEE NAME'
 ADDR-STREET 37 20 A HEADING 'STREET'
 ADDR-CITY 57 12 A HEADING 'CITY'
 SEX 127 1 N HEADING('SEX' 'CODE')
JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65
 LINE EMPNAME SSN SEX
 LINE 02 ADDR-STREET ADDR-CITY

 item area item area item area
 ┌───────┴────────┐ ┌─────┴─────┐ ┌─┴──┐
 1 5 10 15 1 5 10 1 4

 SOCIAL 
 SECURITY SEX  Heading
 EMPLOYEE NAME NUMBER CODE 

 WIMN GLORIA 025-30-5228 1  Line
 430 M ST SW 107 BOSTON  Group
 

See the “CA-IDMS Database Processing” chapter of the CA-Easytrieve
Programmer Guide for more information on line item positioning.

Report Processing
The PRINT statement discussed in Chapter 5, “Activity Section - Input and
Output” identifies records for output to a report and initiates the execution of a
report declaration. It does not directly cause the printing of the report. Printing
and formatting of a report is done by the statements that make up the report
declaration (sometimes called the report subactivity since report declarations are
considered subactivities of the JOB activity). There are two parts to every report
declaration:

Activity Section - Reporting 6–5

Report Processing

■ The REPORT statement specifies the type and physical characteristics of the
report.

■ Report definition statements define the content of the report.

REPORT Statement

The REPORT statement is the first statement coded in a report declaration. The
report statement includes the keyword REPORT and various report parameters.

Report parameters are keywords that permit you to assign values that alter the
physical characteristics of the final report. Although you can specify a large
number of report parameters, you can produce most reports using default
(CA-Easytrieve defined) parameter values.

Report statement parameters provide you with a simple way to define tailored
reports. They can be divided into three categories:

■ Spacing control parameters.
■ Testing aid parameters.
■ Format determination parameters.

In this reading, we discuss only spacing control parameters.

Spacing Control Parameters

The following REPORT statement parameters control spacing on a standard
format report:

■ PAGESIZE - Lines per page (default is 58).

■ LINESIZE - Length of each line (default is 132).

■ SKIP - Number of blank lines to be inserted between line groups (default is
0).

■ SPACE - Number of blanks inserted (horizontally) between field columns
and between fields and literals in title and detail lines (default is 3).

■ TITLESKIP - Number of blank lines inserted after last title line and before
the first heading or detail line (default is 3).

■ SPREAD - Requests that the columns of data be spread evenly over the
entire line, overrides the SPACE parameter (default is NOSPREAD).

■ NOADJUST - Requests title lines and report be left-justified on the page.
The default is to center the report on the page. SPREAD and NOADJUST are
mutually exclusive.

■ NODATE - Inhibits printing the system date in positions one through eight
of the first title line.

6–6 Introduction to the Language

Report Processing

■ NOPAGE - Inhibits the printing of a page number.

■ NOHEADING - Inhibits the printing of column headings.

Spacing control parameters are all optional. When used, they can be coded on
the REPORT statement in any order. The general format for these parameters is:
REPORT report-name +

 [PAGESIZE nn] [LINESIZE nn] +
 [SKIP nn] [SPACE nn] +
 [TITLESKIP nn] +

   Spacing
 SPREAD  Control
 NOSPREAD  + Parameters
  

 [NOADJUST] +

 [NODATE] [NOPAGE] +
 [NOHEADING] +

REPORT Statement Example

The following program shows an example of how spacing control parameters
can be used on the REPORT statement:

 FILE PERSNL FB(150 1800)
 EMP# 9 5 N
 EMPNAME 17 8 A HEADING ('EMPLOYEE' 'NAME')
 DEPT 98 3 N
 GROSS 94 4 P 2 MASK '$$,$$9.99'
 JOB INPUT PERSNL NAME FIRST-PROGRAM
 PRINT PAY-RPT
 REPORT PAY-RPT PAGESIZE 12 NOPAGE NODATE LINESIZE 70 SKIP 2 +
 SPREAD TITLESKIP 4
 TITLE 01 'EXAMPLE PROGRAM'
 LINE 01 EMPNAME EMP# DEPT GROSS

The program illustrated above produces the report shown on the following page
(only two pages are shown):

 EXAMPLE PROGRAM

 EMPLOYEE
 NAME EMP# DEPT GROSS

 WIMN 12267 903 $373.60

 EXAMPLE PROGRAM

 EMPLOYEE
 NAME EMP# DEPT GROSS

 BERG 11473 943 $759.20

Activity Section - Reporting 6–7

Report Processing

Report Definition Statements

The second part of a report declaration is the report definition statements. These
statements define the content of your report. When you use report definition
statements, you must code them immediately after the REPORT statement, in the
following order:

■ SEQUENCE
■ CONTROL
■ SUM
■ TITLE
■ HEADING
■ LINE

SEQUENCE Statement

The SEQUENCE statement enables you to specify the order of the lines in a
report. For example, you might want reports to be in alphabetical order by name
or in numerical order by employee number.

■ You can sequence on any field from any input file or any W working storage
field.

■ You can sequence on as many fields as your system sort permits.

■ Sequence fields are stated in major to minor order.

■ The default sequence order is ascending. Coding D after a field-name
reverses the order for that field only.

Syntax
SEQUENCE field-name [D] ...

SEQUENCE Examples
SEQUENCE CO DIV DEPT GROSS-PAY D

SEQUENCE GROUP AMT D CODE

CONTROL Statement

A CONTROL statement specifies that a report should automatically accumulate
and print totals. A control break occurs whenever the value of any control field
changes or end-of-report is reached. Control fields can be any non-quantitative
field from any input file or any W working storage field. At each control break,
totals are printed for any quantitative fields specified in the report.

■ You can specify an unlimited number of control fields.

■ Fields are coded on the CONTROL statement in major to minor order.

6–8 Introduction to the Language

Report Processing

Syntax
    
 CONTROL field-name NEWPAGE [NOPRINT] ...
  FINAL   RENUM 
    

■ Final totals are automatically provided. You can alter the default by coding
FINAL NOPRINT.

■ NOPRINT following any field-name suppresses the printing of totals for that
field (which are still accumulated) at the corresponding control break.

■ NEWPAGE following any field or FINAL causes a new page after the
printing of the control break totals (or, in the case of FINAL, before the
printing of the final totals). Page numbers continue.

■ RENUM following any field or FINAL causes a page break and restarts page
numbers at 1 after the printing of the control break totals (or, in the case of
FINAL, before the printing of the final totals).

Control Examples
CONTROL COMPANY RENUM DIV DEPT NOPRINT

CONTROL FINAL NOPRINT COMPANY NEWPAGE DIV

SUM Statement

The SUM statement specifies that only certain quantitative fields are to be totaled
for a control report. Normally on control reports, CA-Easytrieve totals all
quantitative fields specified on the LINE statement (to be discussed later). The
SUM statement overrides this process; only the fields specified on the SUM
statement are totaled.

■ You can use SUM only in control reports.

■ You can SUM any quantitative field from any active file or any W field.

Syntax
SUM field-name ...

SUM Example
SUM GROSS NET

TITLE Statement

The TITLE statement allows you to define a title for your report. Up to 99 titles
are permitted. You can specify literals and/or field names on the TITLE
statement.

Activity Section - Reporting 6–9

Report Processing

Syntax
     
TITLE [nn] +  field-name
 - offset  literal 
     
 COL column-number  
    

■ You use ± offset to alter the normal horizontal spacing between literals or
fields on the title lines. Spaces are added to or subtracted from the SPACE
parameter (which normally has a default of 3).

■ COL column-number specifies the print column number where the next title
item is to begin.

■ If no TITLEs are coded, the date and page number, which are normally
automatically included in the title, are not printed.

TITLE Examples
TITLE 01 'REPORT ONE'
TITLE 03 'THIS PAGE FOR DIV' -2 DIV-NO
TITLE 04 'ABC COMPANY'

prints:
01/31/91 REPORT ONE PAGE 1

 THIS PAGE FOR DIV 15
 ABC COMPANY

Control Field Values in Titles

Occasionally, you may want to print control field values in report titles. You can
accomplish this by using the NEWPAGE parameter of the CONTROL statement
and including a control field name on the TITLE statement. Then, control breaks
occur on a new page with the control field value in the title. The following
exhibit gives an example of this. (Output has been edited for the purpose of
illustration.)
Statements:

 FILE PERSNL FB(150 1800)
 EMPNAME 17 8 A
 STATE 69 2 A
 ZIP 71 5 N
 PAY-NET 90 4 P 2 MASK (A '$$,$$9.99')
 JOB INPUT PERSNL NAME MY-PROG
 PRINT REPORT-1
 REPORT REPORT-1 LINESIZE 65
 SEQUENCE STATE ZIP NAME
 CONTROL STATE NEWPAGE
 TITLE 01 'REPORT FOR THE STATE OF' STATE
 LINE 01 EMPNAME STATE ZIP PAY-NET

6–10 Introduction to the Language

Report Processing

 Produce:

 1/17/89 REPORT FOR THE STATE OF DC PAGE 1

 EMPNAME STATE ZIP PAY-NET

 JUDAR DC 00000 $459.57
 PHILPS 00000 $213.76
 CROCI 20002 $215.95
 WARD 20002 $141.47
 DC $1,030.75

 1/17/89 REPORT FOR THE STATE OF MD PAGE 2

 EMPNAME STATE ZIP PAY-NET

 MILLER MD 20014 $222.61
 PETRIK 20014 $154.70
 LACH 20028 $215.91
 VETTER 20028 $189.06
 MD $782.28

 1/17/89 REPORT FOR THE STATE OF VA PAGE 3

 EMPNAME STATE ZIP PAY-NET

 MCMAHON VA 22202 $283.19
 CORNING 22204 $103.43
 BYER 22207 $259.80
 ARNOLD 22209 $356.87
 VA $939.03

 $2,752.06

HEADING Statement

As with the DEFINE statement in the library section, you can define an alternate
column heading for a field in the report declaration. The HEADING statement
overrides a HEADING parameter coded for the same field in the library section
of the program. When alternate headings are not defined, either by a HEADING
statement or the HEADING parameter of DEFINE, then the field name is used as
the heading.

■ Use one HEADING statement per field.

■ Words in a heading can be stacked to save space in the column. This is done
by placing individual words in single quotes.

Syntax
HEADING field-name ('heading-literal'...)

HEADING Example 1
HEADING EMP-NO 'EMP NO'

prints a column heading on the report that looks like:
EMP NO

Activity Section - Reporting 6–11

Report Processing

HEADING Example 2
HEADING SSN ('SOCIAL' 'SECURITY' 'NUMBER')

prints a stacked column heading:
 SOCIAL
SECURITY
 NUMBER

LINE Statement

The LINE statement defines the content of a report line. Multiple LINE
statements define a line group. Use LINE 01 to designate headings for the report
columns.

■ You can specify up to 99 lines per record.

■ You can specify any field from an input file or working storage.

Syntax
     
 LINE [line-number] +  field-name
 - offset  literal 
     
 COL column-number   
 POS position-number   
    

■ When literals are specified they print on all lines but are not used as
headings.

■ ± offset is used to alter the normal spacing between line items. nn is added to
or subtracted from the SPACE parameter (which normally has a default of
3).

■ COL (column) specifies the print column number where the next field is to
begin.

■ POS (position) provides for aligning fields under the corresponding column
heading positions indicated on the LINE 01 statement.

LINE Example
LINE 01 DEPT DIV EMPNAME
LINE 02 POS 2 CODE POS 3 ADDRESS
LINE 03 POS 3 CITY-STATE

prints the field’s contents in the following format:
DEPT DIV EMPNAME

911 02 MATT JONES
 512 2232 HILL
 ANYWHERE IL

6–12 Introduction to the Language

Label Reports

⇒ Reading 1 of Chapter 6 ends here.

■ If you have completed the tutorial in Chapter 2, go on to the
beginning of Chapter 7.

■ If you branched to this chapter from the tutorial in Chapter 2, go back
to Lesson 5 in Chapter 2.

⇒ Reading 2 of Chapter 6 starts here.

Label Reports
You can use the label report capability of CA-Easytrieve to print mailing labels
and other applications that require inserting variable data in a repetitious
format. A label report is different from a standard report in the following ways:

■ Label reports do not have titles and headings.

■ Multiple labels can be printed side-by-side.

■ Controlled label reports permit control breaks, but do not automatically total
quantitative fields. Totals, however, can be specified on a SUM statement
and processed in BEFORE-BREAK and AFTER-BREAK procedures
(discussed later in this chapter).

You can use the label report function whenever a complete logical print page is
to be produced by each PRINT statement.

Label Format

Label reports are specified by use of the LABELS option of the REPORT
statement. The following exhibit illustrates the basic label report page format:

┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ ─
│ 1 │ │ 2 │ │ 3 │ │ 4 │ ↑ DOWN (6)
└─────────┘ └─────────┘ └─────────┘ └─────────┘ ↓
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ ─
│ 5 │ │ 6 │ │ 7 │ │ 8 │
└─────────┘ └─────────┘ └─────────┘ └─────────┘

│<─SIZE (30)─>│

<─────────────────────LINESIZE──────────────────────>

 ACROSS (4)

Activity Section - Reporting 6–13

Label Reports

A label line consists of one or more labels positioned across the label page. In the
previous exhibit, labels 1 through 4 compose a label line. A single line group
composes each label. Therefore, CA-Easytrieve produces a label for each PRINT
statement execution. CA-Easytrieve formats the labels on the page in the order
shown in the above exhibit. DOWN and SIZE (subparameters of the LABELS
option) indicate the dimensions of each label.

Format Determination Parameters

Format determination parameters are parameters of the REPORT statement
which determine the type of report to be printed. The LABELS parameter is
responsible for formatting reports which print mailing labels.

LABELS specifies that the report will be in label format rather than the standard
report format. It automatically inhibits the printing of the date, page, headings,
and titles. The following subparameters are used with LABELS.

■ ACROSS specifies the number of labels printed across the print line (default
is 4).

■ DOWN specifies the number of lines down from the first line of the first
label to the first line of the second label (default is 6).

■ SIZE specifies the number of print positions from the first position on the
first label to the first position on the second label (default is 30).

The LABELS parameter has the following format:
[LABELS] + Format
 ([ACROSS nn] Determination
 [DOWN nn] Parameters
 [SIZE nn])

REPORT Statement Example

The following program creates a label report (shown on the next page):
FILE PERSNL FB (150 1800)
 NAME 17 8 A
 ADDRESS 37 39 A
 ADDR-STREET 37 20 A
 ADDR-CITY 57 12 A
 ADDR-STATE 69 2 A
 ADDR-ZIP 71 5 N

JOB INPUT PERSNL NAME FIRST-PROGRAM
 PRINT PAY-RPT

REPORT PAY-RPT LABELS (ACROSS 3 SIZE 23)
 LINE 01 NAME
 LINE 02 ADDR-STREET
 LINE 03 ADDR-CITY ADDR-STATE
 LINE 04 ADDR-ZIP

The following report is created by the previous program:

6–14 Introduction to the Language

Testing Aid Parameters

 WIMN BERG CORNING
 430 M ST SW 107 3710 JENIFER ST N W 3208 S 5TH
 WASHINGTON DC WASHINGTON DC ARLINGTON VA
 20004 20015 22204

 NAGLE ARNOLD MANHART
 826 D STREET SE 1569 COLONIAL TERR A 1305 POTOMAC ST N W
 WASHINGTON DC ARLINGTON VA WASHINGTON DC
 20003 22209 20007

 TALL BRANDOW LARSON
 1412 36TH ST NW 3616 B ST S E 610 H ST SW
 WASHINGTON DC WASHINGTON DC WASH DC
 20007 20019 20024

 BYER HUSS POWELL
 3400 NORTH 18TH STRE 1355 TEWKESBURY PLAC 5023 AMES STREET N E
 ARLINGTON VA WASHINGTON DC WASHINGTON DC
 22207 20012 20019

Testing Aid Parameters
Testing aid parameters are provided as a testing aid for report development. You
can run your newly developed report programs against real data while limiting
the amount of information printed. There are two testing aid parameters of the
REPORT statement, LIMIT and EVERY.

Testing aid parameters have the following format:
REPORT [report-name] +
 [LIMIT number-of-records]
 [EVERY n-number-of-lines]

■ LIMIT option limits the number of records processed by the report. The
value, number-of-records, can be any integer literal in the range 1 through
32,767.

■ EVERY option enables you to specify that only every Nth line is printed in
the report. The value of n-number-of-lines can be any integer literal in the
range 1 through 32,767.

⇒ Reading 2 of Chapter 6 ends here.

■ Please continue with the description of Formatting a Screen Item for
Display, which is Reading 2 of Chapter 7.

Activity Section - Reporting 6–15

Format Determination Parameters

⇒ Reading 3 of Chapter 6 starts here.

Format Determination Parameters
Aside from the format determination parameter LABELS used (on the REPORT
statement) to format labels reports, there are six other format-related parameters
of the REPORT statement. We’ll discuss four of them here. Each parameter and
its purpose is given in the following table:

Parameter Purpose

DTLCTL (Detail Control) is used to control the printing of control
fields on detail lines of a control report.

SUMCTL (Sum Control) is used to control the printing of control
fields on total lines of a control report.

SUMMARY Inhibits the printing of detail data on control reports.
Permits only the printing of total lines.

SUMFILE Generates a file containing control fields and totals during
generation of a control report.

The format of these four parameters is:
 REPORT [report-name] +

 [SUMMARY] +
 [SUMFILE summary-file-name] +

  EVERY 
 DTLCTLFIRST  +
  NONE  

   ALL   
 SUMCTL  (HIAR DTLCOPY )   +
   NONE DTLCOPYALL  
   TAG   

A discussion of DTLCTL, SUMCTL, SUMMARY, and SUMFILE follows.

DTLCTL Parameter

The DTLCTL (Detail Control) parameter of REPORT establishes the method for
printing control field values on detail lines of a control report by using the
subparameters EVERY, FIRST, and NONE. The following exhibit shows an
example program using DTLCTL options. The program shown can be run with
any of the three options. See the “Report Processing” chapter in the
CA-Easytrieve Programmer Guide for more information.

6–16 Introduction to the Language

Format Determination Parameters

FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 DTLCTL option (* replace with one: EVERY, FIRST, or NONE *)
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET

SUMCTL Parameter

The SUMCTL (Sum Control) parameter of REPORT establishes the method for
printing control field values on total lines of a control report by using the
subparameters ALL, HIAR, NONE, and TAG. (The DTLCOPY subparameter
controls all non-control non-total field values on total lines and is shown along
with the SUMMARY parameter, later in this chapter.) The following exhibit
shows an example program using these options. The program shown can be run
with any of the four options. See the “Report Processing” chapter of the
CA-Easytrieve Programmer Guide for more information.
FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 SUMCTL option
 (* replace with one: ALL, HIAR, NONE, or TAG *)
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET

SUMMARY Reports

SUMMARY is a parameter of the REPORT statement that causes the report to
print as a summary report.

Summary reports consist of only total lines which normally include only control
fields and totals. All detail lines are inhibited from printing.

DTLCOPY Subparameter

It can be helpful on summary reports to have detail field information printed on
the total lines to provide greater readability. The DTLCOPY option of the
SUMCTL parameter of the REPORT statement, copies detail fields (non-control
and non-total fields) as they appear just before the control break, onto the total
lines of the summary report.

Activity Section - Reporting 6–17

Format Determination Parameters

The exhibit that follows shows a program that produces a summary report and
includes the DTLCOPY option. If this option was not used, the LAST-NAME
values would not print.

DTLCOPY causes the detail information to be printed only on the first control
level of the report. DTLCOPYALL prints the detail to be printed on all summary
lines.
Statements:

FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET

Data:

BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

Produce:

Line
Description LAST-NAME STATE ZIP PAY-NET

ZIP total BROWN IL 60076 802.35
ZIP total JONES IL 60077 641.97
STATE total IL 1444.32
ZIP total SMITH TX 75218 777.77
STATE total TX 777.77

FINAL total 2222.09

Summary Files

A summary file, containing all the control and summed field values at each
minor break, can be optionally generated during processing of a control report.
JOB activities in your program can subsequently process the summary file to
provide reports not otherwise available through the standard report facilities of
CA-Easytrieve. You can request the summary file by defining the file in the
library and then referencing it with the REPORT SUMFILE parameter. See the
“Report Processing” chapter of the CA-Easytrieve Programmer Guide for more
information.

6–18 Introduction to the Language

Multiple Reports

Multiple Reports

Multiple Reports to a Single Printer

Several reports can be produced simultaneously with one pass of the input file.
No special coding is needed for multiple reports on the same printer. The
following program produces three reports from one input file:
FILE PERSNL FB(150 1800)
 EMPNAME 17 8 A
 DEPARTMENT 98 3 N
 NET 90 4 P 2
 GROSS 94 4 P 2
 DEDUCTIONS W 4 P 2

Continued

Continued
JOB INPUT PERSNL NAME MULTRPTS
 PRINT RPT1
 DEDUCTIONS = GROSS - NET
 PRINT RPT2
 IF DEPARTMENT = 911
 PRINT RPT3
 END-IF
*
REPORT RPT1
 TITLE 1 'REPORT ONE'
 LINE 1 EMPNAME DEPARTMENT GROSS NET
*
REPORT RPT2
 SEQUENCE DEPARTMENT
 TITLE 1 'REPORT TWO'
 LINE 1 DEPARTMENT EMPNAME GROSS NET DEDUCTIONS
*
REPORT RPT3
 CONTROL
 TITLE 1 'REPORT THREE - DEPT 911'
 LINE 1 EMPNAME GROSS NET DEDUCTIONS

REPORT ONE (RPT1) produces a very simple listing of all employees.

REPORT TWO (RPT2) gives the same information as REPORT ONE but includes
an additional column with the deductions printed.

REPORT THREE (RPT3) produces a report that contains only information from
department 911.

Multiple Reports to More Than One Printer

Multiple reports in one program can be sent to multiple output devices or
multiple printers. This can be an effective way of economizing on processing
time if your site supports multiple output devices.

Activity Section - Reporting 6–19

Report Procedures (PROCs)

FILE Directing Parameters

PRINTER Parameter

The PRINTER parameter of the REPORT statement directs the report’s printed
output to a file other than the system default output device
(SYSPRINT/SYSLST). Such files must be defined in the library section by a FILE
statement which also contains a PRINTER parameter.

The REPORT statement must identify the appropriate file-name, using the
PRINTER parameter in the following format:
REPORT report-name
 [PRINTER file-name]

The following exhibit shows a CA-Easytrieve program that produces two
reports, each sent to separate printers.
FILE PAYFILE
 EMPNAME 17 16 A
 ADDRESS 57 20 A
 STREET 37 20 A
 EMP-NUMBER 9 5 N
*
FILE SPFORM PRINTER
*
JOB INPUT PAYFILE NAME MULT-PRINTERS
 IF EMP-NUMBER LE 12345
 PRINT FIRST-REPORT
 PRINT NORM-REPORT
 END-IF
*
REPORT FIRST-REPORT PRINTER SPFORM
 SEQUENCE EMP-NUMBER
 LINE 1 EMPNAME
 LINE 3 STREET
 LINE 5 ADDRESS
*
REPORT NORM-REPORT
 LINE 1 EMPNAME ADDRESS EMP-NUMBER

The first report declaration produces a report to a print output file designated
SPFORM in the second file statement. This print file gets tied to a physical
printer through your Job Control Language (JCL) statements.

The second report declaration produces a report that is output to the printer you
normally use with other CA-Easytrieve programs (the default system output
device).

Report Procedures (PROCs)
Report Procedures (PROCs) are user-defined routines that are automatically
invoked within a report declaration to perform special data manipulation not
included in the logic subactivity. There are seven report PROCs in
CA-Easytrieve.

6–20 Introduction to the Language

Report Procedures (PROCs)

Code any report procedures immediately after the last LINE statement of each
report in your program. Report procedures are identified in your program by
the” . PROC” keyword, as shown below:
 REPORT statement
 LINE statement
 
 REPORT-INPUT. PROC 
 BEFORE-BREAK. PROC 
 AFTER-BREAK. PROC 
 BEFORE-LINE. PROC 
 AFTER-LINE. PROC 
 ENDPAGE. PROC 
 TERMINATION. PROC 
 
 ** procedure logic **
 END-PROC

■ You must code an END-PROC at the end of each procedure.

■ You code the logic to be executed in a report PROC the same way you code
logic in a JOB activity.

■ DISPLAY is the only input or output operation permitted.

■ Although you can code these procs in any order, each proc can only be used
once per report.

REPORT-INPUT. PROC

The REPORT-INPUT. PROC allows for final screening and modification of
report input data. It is performed for each record selected for the report that
contains the PROC.

■ If you code a REPORT-INPUT procedure, then you must execute a SELECT
statement in the PROC to cause data to continue to the report.

■ If a report has been SEQUENCEd, this procedure is invoked after each
record is output from the system sort.

REPORT-INPUT Example
Statements:

FILE PERSNL
 BRANCH 2 2 N
 EMP# 9 5 N
 EMPNAME 17 20 A
 PAY-NET 90 4 P 2
 TOT-NET S 5 P 2
 PCT-NET-TO-TOT W 3 P 1
*
JOB INPUT PERSNL NAME RPTINPT
 TOT-NET = TOT-NET + PAY-NET
 PRINT PCT-RPT
*
REPORT PCT-RPT LIMIT 20
 SEQUENCE BRANCH EMP#
 CONTROL FINAL NOPRINT BRANCH NOPRINT
 TITLE 1 'EXAMPLE OF REPORT-INPUT PROC'
 LINE 1 BRANCH EMPNAME EMP# PAY-NET PCT-NET-TO-TOT
*

Activity Section - Reporting 6–21

Report Procedures (PROCs)

REPORT-INPUT. PROC
 PCT-NET-TO-TOT = PAY-NET / TOT-NET * 100 + .05
 SELECT
END-PROC

Produce:

 01/31/91 EXAMPLE OF REPORT-INPUT PROC PAGE 1

 EMPLOYEE NET
 BRANCH EMPLOYEE NAME NUMBER PAY PCT-NET-TO-TOT

 1 BRANDOW LYDIA 02200 554.31 4.4
 HUSS PATTI 11376 223.71 1.8
 WIMN GLORIA 12267 251.65 2.0

 2 NAGLE MARY 00370 340.59 2.7
 KRUSE MAX 03571 182.09 1.5
 BERG NANCY 11473 547.88 4.4
 POWELL CAROL 11710 167.96 1.3

 3 PETRIK KATHY 00577 154.70 1.2
 CORNING GEORGE 02688 103.43 .8
 DENNING RALPH 02765 109.60 .9
 FORREST BILL 03416 13.19 .1
 MCMAHON BARBARA 04234 283.19 2.3
 MANHART VIRGINIA 11602 250.89 2.0

 4 POST JEAN 00445 206.60 1.7
 ARNOLD LINDA 01963 356.87 2.9
 LARSON RODNEY 11357 215.47 1.7
 BYER JULIE 11467 259.80 2.1
 TALL ELAINE 11931 355.19 2.8

 5 VETTER DENISE 01895 189.06 1.5
 LOYAL NED 04225 230.50 1.8

BEFORE-BREAK. PROC

The BEFORE-BREAK. PROC allows for modification of totals and special
annotation before total line printing caused by the CONTROL statement. A
system-defined field named LEVEL can be tested to determine the appropriate
break:
LEVEL = 1 for minor break
 = 2 for next break
 = N + 1 for final totals.
 (N is the number of control fields)

In the following example, the BEFORE-BREAK. PROC causes the
DEPARTMENT annotation at each of the breaks, and modifies the total in PCT
to be the percent, based on total amounts.
Statements:

FILE PAYROLL
 EMP# 9 5 N HEADING ('EMPLOYEE' 'NUMBER')
 NET 90 4 P 2 HEADING ('NET' 'PAY')
 DEPT 98 3 N
 GROSS 94 4 P 2 HEADING ('GROSS' 'PAY')
 DED W 3 P 2
 PCT W 4 N 2
JOB INPUT PAYROLL NAME CORRECT-PCT
 IF DEPT = 911 914 921
 DED = GROSS - NET
 PCT = DED / GROSS * 100

6–22 Introduction to the Language

Report Procedures (PROCs)

 PRINT PCT-REPORT
 END-IF
REPORT PCT-REPORT LINESIZE 73
 SEQUENCE DEPT
 CONTROL FINAL NOPRINT DEPT NOPRINT
 TITLE 1 'THIS REPORT WILL ILLUSTRATE USE OF'
 TITLE 2 'BEFORE-BREAK PROCEDURE'
 LINE DEPT EMP# GROSS NET DED PCT
BEFORE-BREAK. PROC
 PCT = DED / GROSS * 100
 IF LEVEL = 1. * DEPT TOTALS
 DISPLAY SKIP 1 'DEPARTMENT ' DEPT POS 3 GROSS POS 4 NET +
 POS 5 DED POS 6 PCT
 DISPLAY SKIP 1
 END-IF
 IF LEVEL = 2. * FINAL TOTALS
 DISPLAY SKIP 1 'FINAL' POS 3 GROSS POS 4 NET +
 POS 5 DED POS 6 PCT
 END-IF
END-PROC

 Produce:

 01/31/91 THIS REPORT WILL ILLUSTRATE USE OF PAGE 1
 BEFORE-BREAK PROCEDURE

 EMPLOYEE GROSS NET
 DEPT NUMBER PAY PAY DED PCT

 911 00445 292.00 206.60 85.40 29.24
 11710 243.24 167.96 75.24 30.93
 11357 283.92 215.47 68.45 24.10
 01963 445.50 356.87 88.63 19.89
 09764 121.95 96.64 25.31 20.75
 04589 313.60 229.69 83.91 26.75
 05805 174.15 134.03 40.12 23.03
 03890 386.40 272.53 113.87 29.46
 12461 313.60 219.91 93.69 29.87
 12829 365.60 238.04 127.56 34.89
 01730 315.20 202.43 112.77 35.77
 03571 242.40 182.09 60.31 24.88

 DEPARTMENT 911 3,497.52 2,522.26 975.26 27.88

 914 07231 1,004.00 685.23 318.77 31.75
 08262 376.00 215.95 160.05 42.56
 10961 399.20 291.70 107.50 26.92
 11602 344.80 250.89 93.91 27.23
 00185 279.36 189.06 90.30 32.32

 DEPARTMENT 914 2,403.36 1,632.83 770.53 32.06

 921 00577 220.80 154.70 66.10 29.93
 11376 360.80 223.71 137.09 37.99
 05482 183.75 141.47 42.28 23.00

 DEPARTMENT 921 765.35 519.88 245.47 32.07

 FINAL 6,666.23 4,674.97 1991.26 29.87

AFTER-BREAK. PROC

An AFTER-BREAK procedure can be used to produce special annotation on
control reports. The value of LEVEL (a system-defined field) can be used to
determine which control break is being processed. In the following exhibit, the
total line for the second control field ZIP receives special annotation:

Activity Section - Reporting 6–23

Report Procedures (PROCs)

AFTER-BREAK Example
Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET
 *
 AFTER-BREAK. PROC
 IF LEVEL EQ 2
 DISPLAY 'TOTALS FOR THE STATE OF ' STATE
 END-IF
 END-PROC
 *

Data:

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Produce:

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 802.35
 JONES IL 60077 641.97
 IL 1444.32
 TOTALS FOR THE STATE OF IL

 SMITH TX 75218 777.77
 TX 777.77
 TOTALS FOR THE STATE OF TX
 2222.09

ENDPAGE. PROC

An ENDPAGE procedure can be used to produce page footing information. It is
invoked whenever end-of-page is detected. It is typically used to produce page
totals or other annotations, as in the following example of page footer
annotation.

ENDPAGE Example
Statements:

FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*

6–24 Introduction to the Language

Report Procedures (PROCs)

REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
*
ENDPAGE. PROC
 DISPLAY SKIP 2 '* CONFIDENTIAL - FOR INTERNAL USE ONLY *'
END-PROC
*

Data:

BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

Produce:

...
* CONFIDENTIAL - FOR INTERNAL USE ONLY *
╞══╡
...

TERMINATION. PROC

A TERMINATION procedure is invoked at the end of the report. This procedure
can be used to print report footing information, including control totals and
distribution information. The following is an example of report footing:

TERMINATION Example
Statements:

FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 TOTAL-NET S 8 N 2
JOB INPUT FILE1 NAME MYPROG
 TOTAL-NET = TOTAL-NET + PAY-NET
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
*
TERMINATION. PROC
 DISPLAY NOTITLE
 DISPLAY SKIP 5 TOTAL-NET 'IS THE Y-T-D COMPANY NET PAY'
 DISPLAY SKIP 5 'PLEASE ROUTE THIS REPORT TO CORPORATE OFFICERS'
END-PROC
*

Data:

BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876

Activity Section - Reporting 6–25

Report Procedures (PROCs)

JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

 Produce:

...
╞═══╡
 2222.09 IS THE Y-T-D COMPANY NET PAY

 PLEASE ROUTE THIS REPORT TO CORPORATE OFFICERS

BEFORE-LINE. PROC and AFTER-LINE. PROC

A BEFORE-LINE procedure is invoked immediately before, and an AFTER-LINE
procedure immediately following, the printing of each detail line.

A BEFORE-LINE/AFTER-LINE procedure is commonly used to print an
annotation before/after a detail line on the report. The following example
illustrates how an AFTER-LINE procedure can cause information to be printed
following a detail line of a report:
 Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 DTLCTL EVERY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET
 *
 AFTER-LINE. PROC
 IF PAY-NET GE 500
 DISPLAY '* EMPLOYEE ' LAST-NAME ' +
 EXCEEDED WEEKLY SALARY GOAL *'
 END-IF
 END-PROC
 *

 Data:

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

6–26 Introduction to the Language

Report Procedures (PROCs)

 Produces:

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 678.90
 * EMPLOYEE BROWN EXCEEDED WEEKLY SALARY GOAL *
 BROWN IL 60076 123.45
 IL 60076 802.35

 JONES IL 60077 543.21
 * EMPLOYEE JONES EXCEEDED WEEKLY SALARY GOAL *
 JONES IL 60077 98.76
 IL 60077 641.97

 IL 1444.32

 SMITH TX 75218 666.66
 * EMPLOYEE SMITH EXCEEDED WEEKLY SALARY GOAL *
 SMITH TX 75218 111.11
 TX 75218 777.77

 TX 777.77

 2222.09

⇒ Reading 3 of Chapter 6 ends here.

■ Please continue with the description of Determining the Cursor
Location, which is Reading 3 of Chapter 7.

Activity Section - Reporting 6–27

Chapter

7 Activity Section - Screens

Introduction
CA-Easytrieve allows you to display and receive information from an online
terminal. Five basic statements control most aspects of screen processing:
SCREEN, TITLE, ROW, KEY, and MESSAGE. Special-named procedures are
also available to perform customized actions specific to your application. In this
chapter, you’ll find:

⇒ Reading 1
■ Basic screen format
■ SCREEN activity structure, statement, display attributes
■ Screen title area, TITLE statement
■ Screen work area, ROW statement, edit masks
■ Screen message area, MESSAGE statement
■ Screen function key area, KEY statement
■ Special-named screen procedures

⇒ Reading 2
■ Formatting a screen item for display: JUSTIFY and FILL
■ Automatic editing of input: UPPERCASE and VALUE
■ Cursor positioning on a screen
■ KEY statement: branch actions and IMMEDIATE processing
■ Screen procedures: branch actions

⇒ Reading 3
■ Determining the cursor location

■ Testing for field modification

■ Overriding system-defined attributes and message locations: DEFAULT
statement

■ Overriding standard screen sizes

Activity Section - Screens 7–1

Basic Screen Format

⇒ Reading 1 of Chapter 7 starts here.

Basic Screen Format
CA-Easytrieve screen format is illustrated below. The size of the screen defaults
to the values specified by your system administrator when CA-Easytrieve was
installed.

<──────────────────────── LINESIZE ──────────────────────────>
 ↑
 Title Area │
 │
 │
 R
 O
 Work Area W
 C
 O
 U
 N
 T
 │
 Message Area │
 Function Key Area │
8/21/2002 ↓

Title Area

The title area is an optional area that consists of screen rows designated as titles
by TITLE statements in the screen declaration. Titles normally identify the
screen to the user, are located at the top of the screen, and are automatically
centered. The title area cannot be updated by the terminal user.

Work Area

The work area contains the items to be displayed to or received from the
terminal user. The items are specified by ROW statements in the screen
declaration.

Message Area

The message area is used to display system and programmer-issued messages to
the terminal user. The default location of the message area is the line just above
the function key display area at the bottom of the screen. You can issue your
own messages using the MESSAGE statement.

7–2 Introduction to the Language

SCREEN Activity

Function Key Area

The optional function key area is used to tell the terminal user which function
keys are active and the action they perform. This area, if used, is always located
on the last line(s) at the bottom of the screen. You use the KEY statement to
define the function key area.

SCREEN Activity
You use a SCREEN activity to describe and process an online screen display.
The CA-Easytrieve screen processing facility is basically declarative; you only
need to define the format and content of the screen and CA-Easytrieve creates
the necessary instructions to send and receive the screen.

There are two sections in a SCREEN activity:

■ The screen declaration statements (TITLE, ROW, KEY, MESSAGE) that
define the contents of the screen.

■ The optional special-named screen procedures that enable you to code
procedural logic to perform file I/O or complex editing.

The following exhibit illustrates the basic structure of screen processing in a
CA-Easytrieve program. You can define one or more screens for each program.

 CA-Easytrieve Program
 ┌───────────────────────┐
 │ FILE │
 │ (library section) │
 ├───────────────────────┤
 │ SCREEN NAME SCREEN1 │
 │ Screen Declaration │
 │ Screen Procedures │
 ├───────────────────────┤
 │ SCREEN NAME SCREEN2 │
 │ Screen Declaration │
 │ Screen Procedures │
 └───────────────────────┘

SCREEN Statement

You use the SCREEN statement to name and initiate a SCREEN activity. It must
be the first statement in your SCREEN activity.

Syntax
SCREEN [NAME screen-name] [UPPERCASE]

■ Optionally, specify a name for the SCREEN activity. The name can:
■ Be up to 128 characters in length
■ Contain any character other than a delimiter
■ Begin with A-Z, 0-9, or a national character (#, @, $)

Activity Section - Screens 7–3

SCREEN Activity

■ Not consist of all numeric characters.

■ Specify UPPERCASE to translate the data received from the terminal to
upper case before it is processed. If UPPERCASE is not specified, the data is
processed as the user enters it.

SCREEN Activity Example

The following exhibit illustrates the type of screen that can be created with
CA-Easytrieve:

 Employee File Main Menu

 Type an option, then press Enter.

 Option ===> W

 V View employee
 E Edit employee
 D Delete employee
 X Exit

 Please type V, E, D, or X
 F1=Help F3=Exit F12=Cancel

Following is the SCREEN activity used to create the example screen above:
 SCREEN NAME MAIN-MENU
 TITLE 'Employee File Main Menu'
 ROW 6 COL 10 'Type an option, then press Enter.'
 ROW 8 COL 10 'Option ===>' WS-REPLY VALUE ('V' 'E' 'D' 'X') +
 ERROR 'Please type V, E, D, or X'
 ROW 10 COL 22 'V View employee'
 ROW COL 22 'E Edit employee'
 ROW COL 22 'D Delete employee'
 ROW COL 22 'X Exit'
 KEY F1 NAME 'Help' IMMEDIATE
 KEY F3 NAME 'Exit' EXIT
 KEY F12 NAME 'Cancel' EXIT IMMEDIATE
 KEY ENTER

Screen Items

Screen items consist of the fields and literals that you want to display to or
receive from the terminal user. Unless you code otherwise, CA-Easytrieve
automatically places items for the same screen row one space apart. You can
optionally add to this space or locate an item at a specific column number by
using the COL parameter of the TITLE or ROW statement. See the TITLE or
ROW Statement, later in this chapter, for more information.

7–4 Introduction to the Language

SCREEN Activity

You must ensure that fields used on a screen are in available storage. This
requires that you code either WORKAREA on FILE statements for fields used on
the screen and explicitly initialize the fields or that you execute an input
statement to fill the fields with data prior to displaying the screen. See the
CA-Easytrieve Language Reference Guide for the complete syntax of the FILE
statement.

Screen Item Attributes

The space preceding each screen item contains system information describing the
screen attributes for the item. Screen attributes contain information that controls
the display of screen items, such as color and brightness.

CA-Easytrieve always uses the space preceding each screen item for attributes.

Note: The space preceding an item located in the first column of any screen row
is actually located in the last column of the previous screen row. The space
preceding an item located in the first column of the first screen row is located in
the last column of the last screen row.

You can specify screen attributes for each individual item on the screen by
coding one or more attribute keywords on the ATTR parameter of the TITLE or
ROW statement. If you do not specify attributes for each item, CA-Easytrieve
uses the default attributes specified by your system administrator when
CA-Easytrieve was installed.

Note: You can also override attributes at a screen level. See “Overriding
System-Defined Attributes and Message Locations,” later in this chapter.

Valid attributes are:

■ SENDONLY - specifies that the field is not to be received (it is ignored if
entered).

■ CURSOR - place the cursor on this field when displayed on the terminal. If
more than one field contains the CURSOR attribute, the cursor is placed on
the first field that contains CURSOR.

■ ASKIP or PROTECT - ASKIP specifies that the field is an auto-skip field.
PROTECT specifies that the field is protected and not auto-skipped. If
neither is specified, the field is unprotected.

■ NUMERIC - specifies that only numeric data can be entered in this screen
field.

■ INTENSE or INVISIBLE - INTENSE specifies that the field displays
brightly. INVISIBLE specifies that the field is present on the screen but is not
displayed.

Activity Section - Screens 7–5

Screen Title Area

■ GREEN, RED, BLUE, TURQ or TURQUOISE, PINK, YELLOW, WHITE -
The value specified is the color of the field or literal when displayed on a
screen.

■ MUSTFILL - requires that all spaces have a non-blank character typed into
them.

■ MUSTENTER - sends an error message to the terminal if the field was not
changed.

■ TRIGGER - causes the screen to be received as soon as the terminal operator
has modified the field and tries to move the cursor out of the field.

■ BLINK, REVERSE, or UNDERLINE - BLINK displays the item blinking.
REVERSE displays the item in reverse video. UNDERLINE displays the
item underlined.

■ ALARM - causes the terminal alarm to sound.

Screen Title Area
The title area is the first area on each screen. A screen title is optional, but
well-designed screens are usually identified with a title. You specify the screen
title with a TITLE statement coded after the SCREEN statement in the SCREEN
activity.

TITLE Statement

The TITLE statement is used to automatically center items for display on a
screen.

Syntax
  COL column-number field-name
TITLE [row-number]      +
  +offset  'literal' 

 
 [ATTR {(attribute-list)}]  ...
 

■ Specify the row-number on which you want the TITLE to be displayed. If
row-number is not specified, the next screen row is used for the title. The next
screen row is not the highest row used, but the previously-specified row plus
one. If no rows are previously specified, row one is used.

■ Use COL to display a title item at a specific column (column-number) on the
screen.

■ Title items are separated by one space on a screen. Use +offset to add
additional spaces between title items. Keep in mind that a syntax error
occurs when a TITLE item overlays another screen item.

7–6 Introduction to the Language

Screen Title Area

■ Specify one or more field-names or ‘literals’ for the title. Field-name is the
name of a field to be displayed as a title on the screen. ‘Literal’ is an
alphanumeric string to be displayed as a title on the screen.

■ Specify a list of attribute keywords for the title item. Remember, fields in a
title are always for display only. If you do not specify attributes for each title
item, CA-Easytrieve uses the default attributes specified by your system
administrator when CA-Easytrieve was installed.

Note: You can also override attributes at a screen level. See “Overriding
System-Defined Attributes and Message Locations,” later in this chapter.

Title Examples

Following are title statement examples and their resulting screen titles:

Default Centering and Attributes

This example illustrates two title rows that are automatically centered on the
screen. The titles are displayed with default screen attributes.
SCREEN NAME SCREEN1
 TITLE 1 Personnel View Utility
 TITLE 2 Acme, Inc.

 Personnel View Utility
 Acme, Inc.

Explicit Locations and Attributes

This example shows titles that contain items that are explicitly located on the title
row using column specification (COL). The company name in the second title
row is displayed bright yellow because the ATTR parameter for the literal is
coded to override the default set of attributes for title items.

SCREEN NAME SCREEN1
 TITLE 1 COL 1 ViewUtil Personnel View Utility COL 73 SYSDATE
 TITLE 2 Acme, Inc. ATTR (INTENSE YELLOW) COL 73 SYSTIME

 ViewUtil Personnel View Utility 07/08/90
 Acme, Inc. 12:32:04

Activity Section - Screens 7–7

Screen Work Area

Screen Work Area
The screen work area is built by coding ROW statements in a SCREEN activity.
Each ROW statement describes the fields and literals to be located on each row
of the screen.

ROW Statement

The ROW statement specifies the items (fields or literals) to be displayed or
received on a row of a screen. Multiple items can be coded on each ROW
statement. Attributes can be specified for each literal coded on the ROW
statement. Attributes and edit masks can be specified for each field-name coded
on the ROW statement.

Syntax
ROW [row-number] +

+offset-value  field-name  +
COL column-number 'row-literal'

[ATTR {(attribute-list)}] +

MASK ({[mask-identifier] [BWZ] ['mask-literal'] | HEX})
NOMASK  ...

■ Row-number specifies the line on which the item on the screen is displayed. A
ROW without a row-number is assigned the next row number on the screen.
Next is defined as the previous row-number plus one, not the highest number
used as yet.

■ A ROW without any fields or literals displays a blank line on the screen at
the corresponding row-number.

■ The +offset-value or the COL column-number parameter permits you to control
positioning of an item on the row.

■ +Offset-value is the number of columns (spaces) preceding a screen item. The
default +offset-value is +1 because the space preceding each screen item is
reserved for screen attributes.

■ Use column-number to explicitly specify the column at which the screen item
is displayed.

■ If you do not code an +offset-value or column-number, the next field-name or
‘row-literal' is displayed one column after the end of the previous field-name
or ‘row-literal' on the same row.

■ Field-name can be any field you defined in your program.

■ ‘Row-literal' can be any text you want to display on the screen.

■ ATTR specifies one or more attribute keywords for the row item. See the list
of valid attributes earlier in this chapter.

7–8 Introduction to the Language

Screen Work Area

■ The optional MASK parameter is used to format a numeric field for display.

■ If MASK is not coded, the MASK coded on the field's definition is used. Use
NOMASK to specify that the field's definition MASK not be used. See
“Describing Files and Fields” in Chapter 3, “Library Section - Describing and
Defining Data” for more information.

■ Any letter from A through Y can be used as an optional mask-identifier. You
can use the letter to identify a new mask or to retrieve a mask that was
previously defined by your system administrator or by a mask parameter on
a previous field definition or ROW usage. If the new mask that you identify
does not already exist, CA-Easytrieve retains the mask for future reference.
Do not use the same identifier to establish more than one mask.

■ The BWZ (blank when zero option suppresses the display of field-name when
it contains all zeros. BWZ can be used by itself or with other options on the
MASK parameter.)

■ ‘Mask-literal' defines an edit mask and must be enclosed within single
quotes. The actual edit mask is coded according to the rules specified under
the “MASK Parameter” in Chapter 3, “Library Section - Describing and
Defining Data.”

■ Specify HEX to display the field in double-digit hexadecimal format. You
can display fields of up to 50 bytes with the HEX mask. HEX edit masks are
not permitted for VARYING fields.

■ When fields are received from the terminal, the mask is used as an editing
template, also. Special characters in the MASK are stripped from the data
before it is moved into the field data area. See the CA-Easytrieve Programmer
Guide for more information.

Location Example

The following example illustrates various ROW statements and their resulting
screen displays.

 SCREEN NAME SCREEN1
 TITLE 1 'Personnel View Utility'
 ROW 3 'Type the following information, then press Enter.'
 ROW 6 COL 10 'Name ' EMPNAME
 ROW 8 COL 10 'Gross Pay . .' GROSS-PAY
 ROW 10 COL 10 'Dept ' DEPT-NO

 Personnel View Utility

 Type the following information, then press Enter.

 Name BERG

 Gross Pay . . 759.20

 Dept 943

Activity Section - Screens 7–9

Screen Work Area

Attribute Example

The following example illustrates various ROW statements coded with specific
attributes. The default attribute for fields is changed to protect the data. The
screen attribute for GROSS-PAY is then specified to unprotect data entry in the
field.

 SCREEN NAME SCREEN1
 DEFAULT FIELD ATTR (PROTECT TURQUOISE)
 TITLE 1 'Personnel View Utility'
 ROW 3 'Type the new gross pay, then press Enter.' ATTR WHITE
 ROW 6 COL 10 'Name ' EMPNAME
 ROW 8 COL 10 'Gross Pay . .' GROSS-PAY ATTR (INTENSE TURQUOISE)
 ROW 10 COL 10 'Dept ' DEPT-NO

 Personnel View Utility

 Type the following information, then press Enter.

 Name BERG

 Gross Pay . . _ 759.20

 Dept 943

Mask Example

The following exhibit illustrates masks:
 DEFINE FIELD-WITH-DEFAULT-MASK W 4 P 2 VALUE 1234.56
 DEFINE FIELD-WITH-DEFINED-MASK W 4 P 2 VALUE 1234.56 MASK '$$,$$$.99'
 SCREEN NAME SCREEN1
 TITLE 1 'Mask Examples'
 ROW 3 'Using Default Mask' FIELD-WITH-DEFAULT-MASK
 ROW 4 'Using Defined Mask' FIELD-WITH-DEFINED-MASK
 ROW 5 'Applying a Mask ' FIELD-WITH-DEFAULT-MASK MASK '**,***.99'
 ROW 6 'Reverting a Mask ' FIELD-WITH-DEFINED-MASK NOMASK

 Mask Examples

 Using Default Mask 1,234.56
 Using Defined Mask $1,234.56
 Applying a Mask *1,234.56
 Reverting a Mask 1,234.56

Hexadecimal Mask Example

CA-Easytrieve enables you to display data in hexadecimal format. A
hexadecimal mask can be applied to fields of any data type, including
alphanumeric. This permits you to display the contents of a field in double-digit
hexadecimal format. When used with a screen input field, you can use
CA-Easytrieve to enter or modify data in hexadecimal format. CA-Easytrieve
automatically checks each digit for validity (0 through F) and returns any errors
for correction.

7–10 Introduction to the Language

Screen Message Area

 SCREEN NAME SCREEN1
 TITLE 1 'Mask Examples'
 ROW 3 'Name ' EMPNAME MASK HEX
 ROW 5 'Gross Pay . .' GROSS-PAY MASK HEX

 Mask Examples

 Name C2C5D9C740404040404040404040404040404040
 Gross Pay . . 0075920C

Screen Message Area
The message area displays system and programmer-issued messages to the
terminal user. CA-Easytrieve enables you to issue different levels of messages
depending on the severity of the error using the MESSAGE statement. The three
message levels are (in order of ascending severity):

■ INFORMATION
■ WARNING
■ ACTION

Information messages typically inform a user that processing is proceeding
normally. Warning messages tell the user that a potentially undesirable result has
occurred or could occur. Action messages tell users that an action is required to
correct a situation.

System-issued messages are always message level ACTION.

MESSAGE Statement

The MESSAGE statement enables you to issue your own specific messages for a
screen activity. You define the message type and specify the message text using
the MESSAGE statement.

Syntax
 'literal' 
MESSAGE   ... +
 field-name

  INFORMATION 
 LEVEL WARNING  
  ACTION  

■ Use literal to define the text you want displayed in the message. Use
field-name to specify a field whose contents you want displayed as part of the
message. A message can consist of a combination of literals and field-names.

Activity Section - Screens 7–11

Screen Message Area

■ The maximum length of a message is 130 characters. If the message exceeds
the message area for the screen on which it is displayed, the message is
truncated.

■ Use LEVEL to specify the type of message you are defining.

Message Area Location

The default message area location is at the bottom of the screen, just above the
function key display area. All three levels of messages are sent to the same
screen row number. If two messages are sent at the same time, the message with
the highest severity is displayed. The severity precedence from highest to lowest
is:

■ ACTION
■ WARNING
■ INFORMATION

If multiple MESSAGE statements of the same precedence are issued before
displaying the screen, the last message issued is displayed.

Message Attributes

Screen attributes for the three levels of messages are set by your system
administrator when CA-Easytrieve is installed.

Note: You can override system-defined message attributes and message
locations with a DEFAULT statement. See “Overriding System-Defined
Attributes and Message Locations,” later in this chapter.

Message Text

The screen message area is used both for system-issued and programmer-issued
messages. System-issued messages result from the edit process that
CA-Easytrieve automatically performs on input data. You can issue messages
from special-named screen procedures that you code following the SCREEN
activity by executing the MESSAGE statement prior to the display of the screen.

Example
MESSAGE 'Department of ' EMP-DEPT ' not 900-999.' LEVEL ACTION

7–12 Introduction to the Language

Screen Function Key Area

Screen Function Key Area
The function key area is used to tell the terminal user which function keys are
active and the action each performs. You use KEY statements to define the
function key area on a screen.

KEY Statement

The KEY statement is used to:

■ Define valid keys for the screen

■ Specify descriptive text to be displayed for each valid key

■ Assign automatic functions to be executed for each valid key.

Syntax
KEY key-name [THRU key-name]...[NAME 'literal']

■ Each KEY statement specifies one or more terminal keys that are valid on the
screen. If the user presses an invalid key, CA-Easytrieve automatically
issues an error message.

■ Specify a symbolic name for a terminal key as described by the system-
defined field, KEY-PRESSED. KEY-PRESSED is a two-byte binary field that
contains a value representing the most recent terminal key pressed by the
terminal user.

■ CA-Easytrieve automatically defines symbolic names that correspond to
values for the most common keys.

Terminal Key Symbolic Name Constant Value

Enter ENTER 1

Clear CLEAR 11

PA1 thru PA3 PA1 thru PA3 12 thru 14

PF1 thru PF24 F1 thru F24 21 thru 44

F1 thru F12 F1 thru F12 21 thru 32

■ Only terminal keys with a KEY-PRESSED symbolic name can be used on a
KEY statement. If other terminal keys (for example, test request) are
required, you must test KEY-PRESSED using the constant value of the
terminal key in your program code. If you test for terminal keys without a
symbolic name, you cannot code KEY statements in your program. (In this
case, all terminal keys are considered valid for the screen.)

Activity Section - Screens 7–13

Screen Function Key Area

■ Use THRU key-name to specify a range of key-names. A range of key-names
includes all keys whose constant values for KEY-PRESSED fall between the
constant values of the keys you specify for the range. For example, if you
code:
KEY CLEAR THRU F12

 the PA1, PA2, and PA3 keys are also valid. The constant values of the PA
keys (12, 13, 14) fall between the value for CLEAR (11) and F12 (32).

■ You can also specify a series of non-consecutive key-names by omitting
THRU. Optionally, you can separate a series of key-names with commas for
readability.

■ You can specify a range of key-names and a series of key-names on the same
KEY statement. See the examples below.

■ The optional NAME parameter permits you to specify descriptive text to be
displayed with the key on the screen. The format is:
key-name=literal

 For example:

 F1=Help F3=Exit F12=Cancel

■ ‘Literal' can contain a maximum of 20 characters.

■ To display only the key-name on a screen, code NAME ‘literal' with a blank
space between single quotes (‘ ').

■ If you do not code NAME, no display is created for the key.

Location

The function key display area is built on the bottom line of a screen. If the key
display area requires additional lines because of the number of keys and the
length of the descriptive text you specify, additional lines at the bottom of the
screen are used. The function key area is built depending on the sequence of keys
specified in KEY statements. You must specify keys in the order you want them
displayed.

Note: If you specify that one or more message areas use the same screen row as
the function key area, messages may overlap the function key area. The default
location for messages is just above the function key area.

Attributes

Screen attributes for the function key area are set by your system administrator
when CA-Easytrieve is installed.

7–14 Introduction to the Language

Special-Named Screen Procedures

Examples

Code Meaning

KEY F1 F1 is valid, but nothing is displayed on the
screen. You must provide code.

KEY F1 THRU F24 F1 through F24 are valid keys, but nothing is
displayed on the screen. You must provide code
for all keys.

KEY F1 NAME 'Help' F1 is valid. F1=Help is displayed on the screen.
You must provide code.

KEY F1 F4 F1 and F4 are valid keys, but nothing is
displayed on the screen. You must provide code
for both keys.

KEY F1 THRU F4, F8 F1, F2, F3, F4, and F8 are valid keys, but nothing
is displayed on the screen. You must provide
code for all keys.

Special-Named Screen Procedures
The execution of a SCREEN activity is actually a collection of procedures that
CA-Easytrieve performs in a certain sequence. There are four points in a SCREEN
activity in which CA-Easytrieve invokes special-named procedures. You can code
these special-named procedures to perform customized actions specific to your
application. The special-named screen procedures are:

■ INITIATION
■ BEFORE-SCREEN
■ AFTER-SCREEN
■ TERMINATION

You are not required to code these procedures. If not coded, CA-Easytrieve
simply proceeds to the next step in the activity.

The following steps illustrate the basic SCREEN activity process that
CA-Easytrieve performs and when the special-named procedures, if coded, are
executed. The complete process is illustrated later in this chapter.

1. Perform INITIATION procedure.

2. Perform BEFORE-SCREEN procedure.

3. Build the screen using program fields, pending messages, and pending
cursor placement.

Activity Section - Screens 7–15

Special-Named Screen Procedures

4. Send the screen to the terminal.
Terminate and resume the program (if pseudo-conversational).
Receive the screen from the terminal.

5. Edit input data.
If any errors, go to step 4.
If no errors, move the data into the program fields.

6. Perform AFTER-SCREEN procedure.

7. Go to Step 2.

8. When EXIT is requested, perform TERMINATION procedure.

INITIATION

The INITIATION procedure is performed one time during the initiation of the
activity. Use INITIATION to perform actions that are only to be executed once,
for example, set a field to an initial value or position a file at a specific starting
location.

BEFORE-SCREEN

The BEFORE-SCREEN procedure is invoked during each iteration of the SCREEN
activity. It precedes building the screen and the terminal I/O process. Typically,
BEFORE-SCREEN is used to perform file I/O, initialize fields, or set the cursor
position.

AFTER-SCREEN

The AFTER-SCREEN procedure is performed during each iteration of the activity
after the terminal I/O processes. An AFTER-SCREEN procedure can be used to
perform complex editing and to update files with data entered on the screen.

TERMINATION

The TERMINATION procedure is performed when an EXIT action is executed,
either from a key pressed or from another screen procedure. It is used to perform
actions that are to be executed only at the end of the activity.

Programmer-Defined Procedures

You can code your own procedures in a SCREEN activity and perform them from
the special-named screen procedures. Procedures you code are local to the screen
activity and cannot be performed from other activities.

7–16 Introduction to the Language

Formatting a Screen Item for Display

⇒ Reading 1 of Chapter 7 ends here.

■ If you have completed the tutorial in Chapter 2, continue with the
description of Defining Static Working Storage, which is Reading 2 in
Chapter 3.

■ If you branched to this chapter from the tutorial in Chapter 2, go back
to Lesson 6 in Chapter 2.

⇒ Reading 2 of Chapter 7 starts here.

Formatting a Screen Item for Display
As discussed in Reading 1, you can use the MASK parameter on the ROW
statement to display a numeric field on the screen in a specific format. Two
additional parameters on the ROW statement that enable you to customize the
display of an item on the screen are JUSTIFY and FILL.

Justifying a Field's Contents

CA-Easytrieve normally displays data exactly as it exists in the field as
determined by its definition. Alphanumeric data that does not fill the field size
is normally left-justified. Numeric data is normally right-justified. To override
default justification, use the JUSTIFY parameter of the ROW statement.
ROW [row-number] field-name +

. . . +

 RIGHT 
JUSTIFY    +
 LEFT  

. . .

Use of the JUSTIFY parameter is illustrated below:
 SCREEN NAME SCREEN1
 TITLE 1 'Personnel View Utility'
 ROW 3 COL 10 'Name ' EMPNAME
 ROW 4 COL 10 'Name ' EMPNAME JUSTIFY RIGHT
 ROW 6 COL 10 'Gross Pay . .' GROSS-PAY
 ROW 7 COL 10 'Gross Pay . .' GROSS-PAY JUSTIFY LEFT

 Personnel View Utility

 Name BERG
 Name BERG

 Gross Pay . . 759.20
 Gross Pay . . 759.20

Activity Section - Screens 7–17

Formatting a Screen Item for Display

Filling an Item for Display

Use the FILL parameter of the ROW statement to translate all trailing blanks in a
field or literal to a specific character or nulls. If the field is also an input field,
CA-Easytrieve automatically translates all fill characters to spaces before placing
the data back into the field data area.
ROW [row-number] field-name +

. . . +

[FILL {'fill-character' | NULL}] +

. . .

Varying length fields with FILL NULL do not have trailing nulls translated to
spaces. The first trailing null terminates the varying length field and sets its
length.

Filling with Underscores

The following example illustrates filling a data entry field with underscores to
show the terminal user how much data can be entered. CA-Easytrieve removes
any remaining underscores when the screen is received.
 SCREEN NAME SCREEN1
 TITLE 1 'Personnel View Utility'
 ROW 3 'Change the employee''s name, then press Enter.'
 ROW 6 COL 10 'Name ' EMPNAME FILL '_'

 Personnel View Utility

 Change the employee's name, then press Enter.

 Name BERG________________

Filling with NULLs

The following example illustrates filling a data entry field with nulls to enable
the user to insert characters into the field. The 3270 Display Station requires
trailing nulls in a field in order for insertion to work.
 SCREEN NAME SCREEN1
 TITLE 1 'Personnel View Utility'
 ROW 3 'Change the employee''s name, then press Enter.'
 ROW 6 COL 10 'Name ' EMPNAME FILL NULL

 Personnel View Utility

 Change the employee's name, then press Enter.

 Name BRG

The user can then insert characters into the field to correct it.

7–18 Introduction to the Language

Automatic Editing of Input

Automatic Editing of Input
CA-Easytrieve automatically edits input data with little or no coding required.
In addition to data type validation and mask checking, CA-Easytrieve also
performs the following types of edits:

■ Uppercasing
■ Value checking

You specify these types of editing with additional parameters on the ROW
statement:
ROW [row-number] field-name +

. . . +

[UPPERCASE] +

[VALUE (literal [THRU literal] [...])] +

. . .

The order in which CA-Easytrieve performs editing is:

1. If UPPERCASE is specified for the field, receive the field in all upper-case
characters.

2. If a MASK is specified for the field, edit the data against the mask, including
data type validation.

3. If a VALUE is specified for the field, edit the data against the value(s).

UPPERCASE

You can specify the UPPERCASE parameter for any field coded on a ROW
statement. When UPPERCASE is coded, CA-Easytrieve converts data entered on
the screen to upper-case characters as it is received from the terminal.

VALUE

CA-Easytrieve automatically edits the input data against the value(s) specified in
the VALUE parameter for the field on the ROW statement. You can
automatically edit the data against a single value, a range of values, or a series of
values. The VALUE parameter works similar to an CA-Easytrieve IF statement.

When CA-Easytrieve edits an alphanumeric field:

■ The values must be alphanumeric literals enclosed in quotes.

■ The comparison is based on the greater of the length of the value and the
length of the field. The shorter item is padded with blanks out to the length
of the longer item. This rule is subject to the exception below.

Activity Section - Screens 7–19

Cursor Positioning on a Screen

■ When a fixed length field is compared with a longer fixed length value, the
comparison is based on the length of the field. The value is truncated to
match the length of the field. A warning message is generated by the
compiler.

■ The comparison is logical (bit-by-bit).

When CA-Easytrieve edits a numeric field:

■ The values must be numeric literals.

■ Comparison is arithmetic.

The following ROW statements illustrate automatic value editing:
DEFINE ALPHA-FIELD W 1 A
DEFINE NUMERIC FIELD W 3 N 0
ROW 'Alpha Test . . .' ALPHA-FIELD VALUE ('A', 'D', 'U')
ROW 'Numeric Test . .' NUMERIC-FIELD VALUE (1, 101 THRU 500, 999)

Cursor Positioning on a Screen
You can specify the placement of the cursor on the screen in the following ways:

■ Use the CURSOR attribute in the ATTR parameter for the field on the ROW
statement.

■ Execute a CURSOR statement in a screen procedure to specify the field on
the screen that receives the cursor on the next display of the screen.

CURSOR Statement

The CURSOR statement is used within a screen procedure to set the initial
position of the cursor in a field for the next display of the screen.

Syntax
CURSOR AT field-name

■ Field-name refers to a field on a ROW statement within the screen declaration.

■ You can use the CURSOR statement only within screen procedures (AFTER-
SCREEN, BEFORE-SCREEN, INITIATION, TERMINATION) or procedures
performed by screen procedures.

Example
SCREEN NAME SCRN1
 ROW 3 WORK-DESCRIPTION
 ROW 5 EMP#
. . .
 BEFORE-SCREEN. PROC
 CURSOR AT EMP#
 END-PROC

7–20 Introduction to the Language

KEY Statement - Branch Actions and IMMEDIATE Processing

Cursor Placement Hierarchy

When more than one way is used to place the cursor in a specific location,
CA-Easytrieve uses the following hierarchy to determine how the cursor is
placed. The priority is from highest to lowest.

1. A CURSOR statement, executed in a screen procedure, names the field to
receive the cursor. If the CURSOR statement is executed more than once
before the screen is displayed, the last CURSOR statement executed
determines cursor placement.

2. If a CURSOR statement is not executed, the first field on the screen with the
CURSOR attribute receives the cursor.

3. If no field on the screen contains the CURSOR attribute, the first modifiable
field on the screen receives the cursor.

4. If there are no modifiable fields on the screen, the first item on the screen
receives the cursor.

KEY Statement - Branch Actions and IMMEDIATE Processing
There are three additional parameters you can code on the KEY statement to
perform branch actions or to perform IMMEDIATE processing:

■ EXIT
■ REFRESH
■ IMMEDIATE

 EXIT 
KEY key-name [THRU key-name]...[NAME 'literal']   [IMMEDIATE]
 REFRESH

Branch Actions

With each KEY statement, you can optionally assign the key(s) to automatically
perform a branch action. Branch actions cause activity execution to branch to
specific steps in the process. The actions you can code on a KEY statement and
their effects are:

Action Effect

REFRESH Restore the initial condition of the screen

EXIT Terminate the SCREEN activity

Activity Section - Screens 7–21

Screen Procedures - Branch Actions

Optionally, you can code EXIT or REFRESH to specify the action taken when a
user presses key-name. If EXIT or REFRESH is specified, the action is
automatically executed by CA-Easytrieve and the AFTER-SCREEN procedure (if
any) is not executed.

Specify EXIT to terminate the screen activity after editing and extracting data
from screen fields into program fields.

Specify REFRESH to restore the initial screen image by rebuilding it with current
values of the program fields. Data in screen fields is edited and extracted into
program fields.

If an action is not specified for key-name, you can include code for key-name in
your SCREEN activity procedures.

KEY IMMEDIATE Processing

With each KEY statement, you can optionally assign the key to perform
IMMEDIATE processing. IMMEDIATE indicates that the key is to be processed
immediately, without editing the input data and moving the data into the
program fields.

Specify IMMEDIATE to execute an action, or the AFTER-SCREEN procedure if
no action is specified, without editing data in screen fields and moving it into the
program fields.

Screen Procedures - Branch Actions
There are four actions that cause the program execution to branch to specific
steps in the SCREEN activity process:

Action Step Effect

GOTO SCREEN 2 Repeat the activity process

REFRESH 3 Restore the initial condition of the screen

RESHOW 4 Re-display the screen as it was received

EXIT 9 Terminate the activity

The following steps detail the complete SCREEN activity process that
CA-Easytrieve performs.

1. Perform INITIATION procedure, processing any branch actions.

7–22 Introduction to the Language

Screen Procedures - Branch Actions

2. Perform BEFORE-SCREEN procedure, processing any branch actions.

3. Build the screen using program fields, pending messages, and pending
cursor placement.
Clear the internal pending message buffer.

4. Send the screen to the terminal.
Terminate and resume the program (if pseudo-conversational).
Receive the screen from the terminal.

5. If KEY-PRESSED is an IMMEDIATE key, go to step 7.

6. If KEY-PRESSED is not an IMMEDIATE key, edit input data.
If any errors, go to step 4.
If no errors, move the data into the program fields.

7. If KEY-PRESSED has an associated branch action, perform it.

8. Perform AFTER-SCREEN procedure, processing any branch actions.

9. Go to Step 2.

10. When EXIT is requested, perform TERMINATION procedure, processing
any branch actions.

GOTO SCREEN

■ You can use the GOTO SCREEN statement to repeat the activity process.
The default action of a SCREEN activity is to repeat the process until an EXIT
action is executed.

■ If the bottom of the process (that is, the end of the AFTER-SCREEN
procedure) is reached, the activity simply repeats, starting with the
BEFORE-SCREEN procedure. (The INITIATION procedure is a
one-time-only procedure).

■ You can code the GOTO SCREEN statement to cause an immediate branch to
the top of the activity. This is similar to the way in which GOTO JOB
branches to the top of a JOB activity.

REFRESH

■ REFRESH causes the screen to be restored to its initial condition or updated
to reflect the current status of information. CA-Easytrieve rebuilds the
screen using the current value of the fields specified on the screen.

■ When REFRESH is coded on an IMMEDIATE key, CA-Easytrieve ignores
data entered on the screen and refreshes the screen just as it was originally
sent to the user.

■ When REFRESH is coded on a non-IMMEDIATE key, it causes data entered
to be edited and moved into the program field areas, but no special-named
procedure is invoked.

Activity Section - Screens 7–23

Determining the Cursor Location

RESHOW

■ RESHOW can be used in an AFTER-SCREEN procedure to redisplay the
screen after the screen has been received. CA-Easytrieve saves a copy of the
screen image it receives. You can then execute another SCREEN activity.
When the program returns to the first activity, use RESHOW to redisplay the
saved image of the first screen.

■ When associated indirectly with an IMMEDIATE key, you can ignore any
data entered on the screen, display a second screen, then RESHOW the first
screen intact. For example, you can permit the user to view a help screen,
then return to the screen on which he requested help.

■ When associated indirectly with a non-IMMEDIATE key, you can permit the
user to display a selection list, accept and process the user's selection(s), then
redisplay the original screen.

EXIT

■ EXIT terminates the SCREEN activity and returns control to the activity from
which it was EXECUTEd or, if the current SCREEN activity was not
EXECUTEd from another activity, terminates the program.

■ Associating EXIT with an IMMEDIATE key is equivalent to a cancel
function. Any data on the screen is ignored and the activity terminates.

■ Associating EXIT with a non-IMMEDIATE key saves the data into the
program fields after editing it.

 It is your responsibility to save the data to a file if your application requires
it. Data saved into the program fields is lost when the program terminates
unless written to a file.

⇒ Reading 2 of Chapter 7 ends here.

■ Please go on to the beginning of Chapter 8.

⇒ Reading 3 of Chapter 7 starts here.

Determining the Cursor Location
You can determine the position of the cursor when the screen is received by
using the special IF CURSOR statement in a screen procedure. You use the IF
CURSOR statement to test whether the cursor is present within a specified field.
The syntax of the IF CURSOR statement is:
 Subject Object

7–24 Introduction to the Language

Testing for Field Modification

 IF field-name CURSOR

The IF CURSOR statement is included as part of the Field Class Condition. See
the CA-Easytrieve Language Reference Guide for more information.

The following exhibit illustrates using the IF CURSOR statement to implement a
menu:

 DEFINE VIEW-OPTION W 1 A
 DEFINE EDIT-OPTION W 1 A
 DEFINE DELETE-OPTION W 1 A
 DEFINE ADD-OPTION W 1 A
 SCREEN NAME MENU
 KEY F2 NAME 'Select'
 KEY F3 NAME 'Exit' EXIT
 TITLE 1 'Employee System Main Menu'
 ROW 3 'Position the cursor by your selection, press F2 to select.'
 ROW 5 COL 10 VIEW-OPTION 'View employee'
 ROW COL 10 EDIT-OPTION 'Edit employee'
 ROW COL 10 DELETE-OPTION 'Delete employee'
 ROW COL 10 ADD-OPTION 'Add employee'
 AFTER-SCREEN. PROC
 IF VIEW-OPTION CURSOR
 EXECUTE VIEW-EMPLOYEE
 ELSE-IF EDIT-OPTION CURSOR
 EXECUTE EDIT-EMPLOYEE
 ELSE-IF DELETE-OPTION CURSOR
 EXECUTE DELETE-EMPLOYEE
 ELSE-IF ADD-OPTION CURSOR
 EXECUTE ADD-EMPLOYEE
 ELSE
 MESSAGE 'Position cursor by a menu selection.'
 END-IF
 END-PROC
 ...

 Employee System Main Menu

 Position the cursor by your selection, press F2 to select.

 _ View employee
 Edit employee
 Delete employee
 Add employee
 ...
 F2=Select F3=Exit

Testing for Field Modification
You can use the IF MODIFIED statement to test whether a field was modified by
the terminal user. The syntax of the IF MODIFIED statement is:
 Subject Object

 IF field-name MODIFIED

The IF MODIFIED statement is included as part of the Field Class Condition.
See the CA-Easytrieve Language Reference Guide for more information.

Activity Section - Screens 7–25

Overriding System-Defined Attributes and Message Locations

Following are the rules for using the IF MODIFIED statement:

■ The test for modification determines whether the value of the field actually
changed.

 Note: If the user types the same value in the field as was originally
displayed, the modification test is false.

■ The results of the IF MODIFIED test are set at the time the screen is received.
If the value of the input data is not equal to the value of the program field,
the field was modified. If the input data is equal to the program field, the
field is considered not modified.

■ The IF MODIFIED comparison is done logically for alphanumeric fields and
arithmetically for numeric fields.

■ The IF MODIFIED comparison is done after all automatic edit operations
have been done for the input data.

■ If the screen is received as the result of an IMMEDIATE key, the IF
MODIFIED test is always false.

Using the IF MODIFIED test can help you write more efficient programs. For
example, you might not want to perform complex editing on a field unless it was
changed by the user.

The following is an example of the IF MODIFIED test:
 SCREEN NAME EDIT-EMPLOYEE
 KEY ENTER
 KEY F3 NAME 'Exit' EXIT
 TITLE 1 'Employee Edit Utility'
 ROW 3 'Enter the employee number and new job category.'
 ROW 5 'Employee number . .' EMP#
 ROW 7 'Job Category' JOB-CATEGORY
 AFTER-SCREEN. PROC
 IF JOB-CATEGORY MODIFIED
 PERFORM VERIFY-AND-UPDATE-JOB-CAT
 ELSE
 MESSAGE 'Job category not modified.' LEVEL WARNING
 JOB-CATEGORY = 0
 END-IF
 END-PROC
 ...

Overriding System-Defined Attributes and Message
Locations

CA-Easytrieve enables you to override display attributes and message locations
set by your system administrator at installation by using the DEFAULT
statement.

7–26 Introduction to the Language

Overriding System-Defined Attributes and Message Locations

DEFAULT Statement

The DEFAULT statement has two formats. Use Format 1 to specify screen-level
overrides of title, field, literal, and function key attributes. Use Format 2 to
override message attributes and locations.

Syntax
Format 1

 TITLE 
DEFAULT FIELD [ERROR] ATTR {(attribute-list)} 
 LITERAL 
 KEY 

Format 2

 INFORMATION ATTR {(attribute-list)} 
DEFAULT MESSAGE (WARNING  ...)   ...
 ACTION  ROW row-number 

■ Use TITLE to override attributes for all screen titles (fields and literals) in a
screen activity.

 Note: You can also override attributes at a title item level. See the TITLE
Statement.

■ Use LITERAL to override attributes for all row literals in a screen activity.

 Note: You can also override attributes at a screen item level. See the ROW
Statement.

■ Use FIELD to override attributes for all row fields in a screen activity.
Optionally, specify ERROR to override attributes for fields flagged in error
by the automatic edit process.

 Note: You can also override attributes at a screen item level. See the ROW
Statement.

■ Use KEY to override attributes for a function key display area in a screen
activity.

■ Specify a list of attribute keywords for the item. See Screen Item Attributes
earlier in this chapter for a list of attribute keywords.

■ Use MESSAGE to override attributes for any or all message levels
(INFORMATION, WARNING, ACTION).

■ Use ROW to override the placement of the message level (INFORMATION,
WARNING, ACTION). Row-number must be an unsigned integer that does
not exceed the maximum screen size (SCREEN ROWCOUNT) and specifies
the row number on which the message is displayed.

 If ROW is not specified, all messages are displayed one line above the key
display area, if used.

Examples

Activity Section - Screens 7–27

Overriding Standard Screen Sizes

You can use MESSAGE to display INFORMATION level messages in yellow and
all other levels of messages in red:
DEFAULT MESSAGE INFORMATION ATTR YELLOW
DEFAULT MESSAGE (WARNING ACTION) ATTR (RED INTENSE)

You can override the placement of messages on a screen using the ROW
parameter:
SCREEN NAME MENU-SCREEN
 DEFAULT FIELD ATTR (TURQ PROTECT)
 DEFAULT FIELD ERROR ATTR (RED BLINK ALARM)
 DEFAULT MESSAGE (INFORMATION WARNING) ATTR YELLOW ROW 23
 DEFAULT MESSAGE (ACTION) ATTR RED ROW 24

Overriding Standard Screen Sizes
As discussed in Reading 1, your system administrator determines the default
screen size when CA-Easytrieve is installed at your site. In most instances, you
use the default linesize and rowcount for your screens.

However, you can override the default screen size, if necessary, by using the
LINESIZE and ROWCOUNT parameters of the SCREEN statement to create
“pop-up windows” for your application. The following illustration shows the
parameters of the SCREEN statement that define a window:
SCREEN [NAME screen-name] +

 [ROWCOUNT rows] [LINESIZE columns] +

 [ROW screen-start-row] [COL screen-start-col] +

 [BORDER SINGLE]

■ ROWCOUNT enables you to override the default number of terminal rows
for the screen display.

■ LINESIZE permits you to override the default number of terminal columns
for the screen display.

■ ROW specifies the terminal row where the top of the screen starts.

■ COL specifies the terminal column where the left portion of the screen starts.

■ BORDER SINGLE specifies that a single line border is to be drawn around
the screen.

If the LINESIZE and ROWCOUNT for a screen are less than the line size and
number of rows on the terminal, the screen is displayed as a pop-up window.
Any fields from previous screens that are still displayed are given the ASKIP
attribute to prevent data entry on those screens.

Example

7–28 Introduction to the Language

Overriding Standard Screen Sizes

The following program code illustrates a full-sized screen executing a pop-up
window to prompt the user to enter an employee number to find.
SCREEN NAME SHOW-EMPLOYEE LINESIZE 80 ROWCOUNT 24
 TITLE 'Employee Record'
 KEY F3 NAME 'Exit' EXIT IMMEDIATE
 KEY F5 NAME 'Find Employee'
 ROW ...
 ...
 AFTER-SCREEN. PROC
 IF KEY-PRESSED = F5
 EXECUTE PROMPT-WINDOW
 READ ...
 ...
 END-PROC
SCREEN NAME PROMPT-WINDOW LINESIZE 40 ROWCOUNT 15 +
 ROW 5 COL 20 BORDER SINGLE
 TITLE 'Find Employee'
 KEY ENTER EXIT
 ROW 5 'Employee number. . .' WEMP#

When the user presses F5, the screen looks like the screen on the following page.

 Employee Record

 Employee number 00000

 First name +---------------------------------------+
 | Find Employee |
 Last name | |
 | |
 Address | |
 | Employee number. . . 00000 |
 City | |
 | |
 State | |
 | |
 Zip 000| |
 | |
 | |
 | |
 +---------------------------------------+

 F3=Exit F5=Find Employee

⇒ Reading 3 of Chapter 7 ends here.

■ Please continue with the description of Sequencing a Graph, which is
Reading 3 of Chapter 8.

Activity Section - Screens 7–29

Chapter

8 Activity Section - Graphs

Introduction
CA-Easytrieve provides a facility for producing bit-mapped presentation graphs
with a non-procedural technique very similar to reporting. The graph facility
controls the format of the graph by making assumptions based on best-fit. You
can easily create: Pie charts, Bar charts, Line graphs, and Scatter diagrams.

Note: Graph processing is available only when using
CA-Easytrieve/Workstation.

In this chapter, you’ll find:

⇒ Reading 1
■ Basic structure of a graph program
■ Graph display format
■ GRAPH statement
■ Graph definition statements
■ Graph title area, TITLE statement
■ Graph work area, VALUE statement
■ DRAW statement processing

⇒ Reading 2
■ Graph headings, HEADING statement
■ Summing graph values: SUMMARY parameter of the GRAPH statement

⇒ Reading 3
■ Sequencing a graph: SEQUENCE statement
■ Graph display resolution: MODE parameter of the GRAPH statement

Activity Section - Graphs 8–1

Basic Structure of a Graph Program

⇒ Reading 1 of Chapter 8 starts here.

Basic Structure of a Graph Program
With the CA-Easytrieve graph facility, you only need to define the style and
content of the graph, and CA-Easytrieve creates the necessary instructions to
produce it. The following exhibit illustrates the basic structure of a
CA-Easytrieve JOB with graph processing. You can define one or more graphs
for each JOB activity.

 CA-Easytrieve Program

 ┌────────────────────────┐
 │ FILE │
 ┌─────┐ │ (library) │
 │INPUT│ ├────────────────────────┤
 │DATA │─── │ JOB │
 └─────┘ │ (job activity) │
 │ DRAW GRAPH1 │
 │ DRAW GRAPH2 │
 │ │
 ├────────────────────────┤
 │ GRAPH GRAPH1 │
 │ │
 ├────────────────────────┤
 │ GRAPH GRAPH2 │
 │ │
 └────────────────────────┘

Graph Display Format
The CA-Easytrieve graph display format is illustrated below:

 Title Area

 Work Area

 Function Key Area

8–2 Introduction to the Language

GRAPH Activity

Title Area

The optional title area consists of a single line designated as the title by a TITLE
statement in the graph declaration.

Work Area

The work area contains the display of data points specified on the VALUE
statement. The work area also displays a legend identifying the data.

Function Key Area

The function key area shows the system-defined function key assignments for
the graph view facility. Using these keys, you can receive help, exit the view, or
print the graph to the default print device.

GRAPH Activity

GRAPH Statement

You define a graph in CA-Easytrieve by coding a GRAPH statement followed by
a series of graph definition statements. You must code the GRAPH statement
first in a GRAPH declarative.

Syntax
 STYLE 'PIE' 
  'VBAR' 
  'SVBAR' 
  'HBAR' 
GRAPH [graph-name]  'SHBAR' 
  'LINE' 
  'XY' 
  'SCATTER' 
  style-field-name

■ Specify the name of the graph. Graph-name is optional if there is only one
graph coded in a JOB activity.

■ STYLE specifies the style of graph to be displayed:

■ Specify PIE to display a pie chart. PIE is the default if the graph style is
not coded. The y-value for this graph determines the size of the pie slice.
The x-value for this graph determines the category for the y-value.

■ Specify VBAR or SVBAR to display a vertical bar graph. The y-value
determines the height of the vertical bar. The x-value determines the
category for the y-value.

Activity Section - Graphs 8–3

GRAPH Activity

■ VBAR produces side-by-side vertical bars if multiple y-values are
coded on the VALUE statement.

■ SVBAR produces stacked vertical bars if multiple y-values are coded
on the VALUE statement.

■ Specify HBAR or SHBAR to display a horizontal bar graph. The y-value
determines the length of the horizontal bar. The x-value determines the
category for the y-value.

■ HBAR produces side-by-side horizontal bars if multiple y-values are
coded on the VALUE statement.

■ SHBAR produces stacked horizontal bars if multiple y-values are
coded on the VALUE statement.

■ Specify LINE to display a line graph. The y-value determines the height
of the data point on the graph. The x-value determines the category for
the y-value.

■ Specify XY to display an XY graph in which values are connected by
lines. The y-value determines position of the data point on the y-axis.
The x-value determines the position of the data point on the x-axis.

■ Specify SCATTER to display a scatter graph. Values are not connected
by lines and a y-axis grid is displayed. The y-value determines position
of the data point on the y-axis. The x-value determines the position of
the data point on the x-axis.

■ ‘Style-field-name’ is a field you can define that contains the graph type (one of
the style literals described above).

Graph Definition Statements

A set of graph definition statements defines every CA-Easytrieve graph. The
statements define the graph style, format, sequence, and data content. Graph
definition statements are the last statements coded in a JOB activity. These
graph definition statements must be coded in the following order:

■ SEQUENCE statement — optionally specifies the order of the graph values.
You would normally sequence the values by the x-value.

■ TITLE statement — defines optional title items and their position on the title
line.

■ HEADING statement — optionally defines an alternative heading or label
for a field.

■ VALUE statement — defines the content of the graph. The x-value is used as
the horizontal axis of the graph. One or more numeric y-values are used on
the vertical axis of the graph.

The SEQUENCE and HEADING statements are discussed in Reading 2.

8–4 Introduction to the Language

Graph Title Area

Graph Title Area
The title area is the first area on a graph. A graph title is optional. You specify
the graph title with a TITLE statement coded after the GRAPH statement in the
GRAPH subactivity.

TITLE Statement

The TITLE statement specifies the title to be displayed on the graph.

Syntax
 COL column-number 'title-literal' 
TITLE     ...
 +offset]  title-field-name

■ Use COL to display a title at a specific column (column-number) on the graph.
Graphs are 80 columns wide when text is displayed.

■ Title items are separated by one space. Use +offset to add additional spaces
between title items.

■ ‘Title-literal’ specifies a character string to be used for the graph title.
Title-field-name identifies an alphanumeric field to be used for the graph title.
The title-field-name must be in an active file or W type working storage.

Graph Work Area
The graph work area is built by coding a VALUE statement in a GRAPH activity.

VALUE Statement

VALUE specifies the fields to be used to draw a graph.

Syntax
VALUE x-value {y-value [...]}

■ X-value specifies the field or literal to be used for drawing the horizontal axis
of the graph. X-value must be a numeric field or literal if you are drawing an
XY or SCATTER graph.

■ Y-value specifies the field and or literal to be used for drawing the vertical
axis of the graph. Each field or literal must be numeric.

■ You can code a maximum of eight y-values to produce a multi-series graph.
PIE charts are limited to one y-value.

Activity Section - Graphs 8–5

DRAW Statement Processing

■ You can use a literal value to count occurrences. For example, the statement
VALUE DEPT 1 counts the number of records within each department.

■ All graphs are automatically scaled; any data that is too long to be displayed
is truncated.

■ S type working storage fields cannot be used in a VALUE statement.

■ All graphs are de-spooled before REPORTs/SYSPRINT.

■ The y-value for a PIE graph determines the size of the pie slice. The x-value
for a PIE graph determines the category for the y-value.

■ For VBAR (vertical bar) and HBAR (horizontal bar) graphs, the x-value
determines the category for the y-value.

■ For LINE graphs, the x-value determines the category for the y-value.

■ For XY and SCATTER graphs, the y-value determines position of the data
point on the y-axis. The x-value determines the position of the data point on
the x-axis.

DRAW Statement Processing
The DRAW statement activates the graph logic defined by GRAPH declarations.
CA-Easytrieve extracts the data required for the requested graph, formats it in
the specified manner, and sends it to the terminal for display and, optionally,
printing.

The immediate result of a DRAW statement is to store the data in a work or
spool file. The normal termination of each JOB activity includes the processing
of any graph work files created during the JOB activity. At this time, each graph
is displayed at the terminal in the order in which the GRAPH subactivity is
defined.

Syntax
 DRAW [graph-name]

■ Graph-name is the name of the graph as specified on a GRAPH statement.

■ If you do not specify graph-name, CA-Easytrieve assumes that graph-name is
the first graph in the JOB activity.

⇒ Reading 1 of Chapter 8 ends here.

■ If you have completed the tutorial in Chapter 2, please go on to the
beginning of Chapter 9.

■ If you branched to this chapter from the tutorial in Chapter 2, go back
to the beginning of Chapter 3.

8–6 Introduction to the Language

Graph Headings

⇒ Reading 2 of Chapter 8 starts here.

Graph Headings
You can inhibit the display of headings on a graph by using the NOHEADING
parameter of the GRAPH statement or you can define an alternate heading for a
field by coding a HEADING statement in your GRAPH declaration.

Inhibiting Graph Headings

You can use the NOHEADING parameter of the GRAPH statement to suppress
the display of X and Y headings on the graph. The default is for X and Y field
headings to be displayed on the graph.

GRAPH Statement Syntax
 GRAPH [graph-name] +

 ... +

 [NOHEADING]

Defining Alternate Headings

The HEADING statement optionally defines an alternate heading for a field.
When defining a field, you specify the default heading. Using the HEADING
statement in a report or on a graph enables you to override the default field
headings for that graph.

HEADING Statement Syntax
HEADING field-name ('heading-literal'...)

■ Field-name specifies a field defined on the VALUE statement of your graph
declaration.

■ ‘Heading-literal’ can be up to 128 characters in length.

■ Specify the text for the heading to be displayed for the field on the VALUE
statement. Multiple literals, each enclosed within single quotes (‘ ‘) and
separated by one or more blanks within the parentheses, are displayed on a
single line with a space between each literal.

■ The HEADING statement is ignored for PIE graphs.

Example

Activity Section - Graphs 8–7

Summing Graph Values

The following code produces a vertical bar graph that displays the sum of the
gross pay for each region with user-specified headings:

 FILE PERSNL F(150)
 %PERSNL
 JOB INPUT PERSNL NAME DRAW-GRAPH
 DRAW GRAPH1
 GRAPH VBAR GRAPH1 SUMMARY MODE('HIGH') TYPE('VBAR')
 SEQUENCE REGION
 HEADING REGION ('Region')
 HEADING PAY-GROSS ('Gross' 'Pay')
 TITLE COL 1 SYSDATE 'GROSS PAY BY REGION' COL 73 SYSTIME
 VALUE REGION PAY-GROSS

Summing Graph Values
You can use the SUMMARY parameter of the GRAPH statement to
automatically sum all values (y-values) for each category (x-value) before the
graph is displayed.

GRAPH Statement Syntax
 GRAPH [graph-name] +

 . . . +

 [SUMMARY]

■ For PIE charts, all y-values for each identical x-value are summed producing
a slice that is the size of the sum of all of the y-values for this category.

■ For VBAR or SVBAR vertical bar graphs, all y-values for each identical
x-value are summed, producing a vertical bar that is the sum of all of the
y-values for this category.

■ For HBAR or SHBAR horizontal bar graphs, all y-values for each identical
x-value are summed producing a horizontal bar that is the sum of all of the
y-values for this category.

■ For LINE graphs, all y-values for each identical x-value are summed
producing a data point that is the sum of all of the y-values for this category.

■ For XY graphs, all y-values for each identical x-value are summed producing
a data point that is the sum of all of the y-values for this x-value.

■ For SCATTER graphs, all y-values for each identical x-value are summed
producing a data point that is the sum of all of the y-values for this x-value.

⇒ Reading 2 of Chapter 8 ends here.

■ Please go on to the beginning of Chapter 3.

8–8 Introduction to the Language

Sequencing a Graph

⇒ Reading 3 of Chapter 8 starts here.

Sequencing a Graph
You can use the SEQUENCE statement to specify the order of the values on a
graph. You can order any graph, based on the content of one or more fields.

SEQUENCE Statement Syntax
SEQUENCE field-name [D] ...

■ Field-name identifies a field on which graph values are sequenced. Only one
field-name is permitted for a graph.

■ Field-name must be in an active file or W type working storage. Each field
must be less than 256 bytes. The fields specified are used as sort keys
processed in major to minor order.

 Note: Varying length fields cannot be specified on a SEQUENCE statement.

■ An optional D, following a field-name, indicates that the field is sequenced
into descending order. If you do not code D after a field-name, by default the
field is sorted in ascending order.

■ The fields, used to SEQUENCE a graph, do not have to be part of the
displayed graph.

Example

The following illustrates using the SEQUENCE statement in a graph declaration.
FILE PERSNL F(150)
%PERSNL
JOB INPUT PERSNL NAME DRAW-GRAPH
 DRAW GRAPH1
GRAPH GRAPH1 SUMMARY
 SEQUENCE BRANCH
 TITLE 'GROSS PAY BY BRANCH'
 VALUE BRANCH PAY-GROSS

The above graph declaration produces a pie graph that displays the sum of the
gross pay for each branch sequenced by branch.

Graph Display Resolution
You can use the MODE parameter of the GRAPH statement to determine the
display resolution of the graph.

GRAPH Statement Syntax

Activity Section - Graphs 8–9

Graph Display Resolution

  'LOW' 
 GRAPH [graph-name] MODE'HIGH'  . . .
  mode-field-name

■ LOW specifies a resolution of 640 x 200 in black and white. LOW resolution
mode is compatible with the CGA, EGA, VGA and MCGA video adapter
boards. LOW is recommended if you are going to print the graph.

■ HIGH specifies a resolution of 640 x 350 in 16 colors and is compatible with
the EGA and VGA video adapter boards.

■ Mode-field-name is a field you can define that contains LOW or HIGH.

■ If not specified, MODE defaults to the highest resolution supported by the
video adapter board.

⇒ Reading 3 of Chapter 8 ends here.

8–10 Introduction to the Language

Chapter

9 System-Defined Fields

Introduction
System-defined fields are fields that CA-Easytrieve automatically defines and
maintains internally. You can access these fields in your program to retrieve
data that can be useful in processing, or in certain types of error trapping.

This chapter consists of a single reading which describes the four categories of
system-defined fields that CA-Easytrieve provides:

⇒ Reading 1
■ General purpose fields

■ File processing fields

■ Report processing fields

■ Screen processing fields

⇒ Reading 1 of Chapter 8 starts here.

General Purpose Fields
CA-Easytrieve automatically provides the system-defined fields listed below for
general use.

SYSDATE

SYSDATE is a read-only field that contains the system date at the start of
CA-Easytrieve execution. The DATE option of the Options Table (see your
CA-Easytrieve Language Reference Guide) determines the format of the date.
Normally, a slash (/) separates the month, day, and year components of the date
(for example, MM/DD/YY).

System-Defined Fields 9–1

General Purpose Fields

SYSDATE-LONG

SYSDATE-LONG is a read-only field that contains the system date at the start of
CA-Easytrieve execution and is similar to SYSDATE, except that it includes the
century (for example, MM/DD/YYYY).

SYSTIME

SYSTIME is a read-only field that contains the system time at the start of
CA-Easytrieve execution. Normally, a colon (:) separates the data into hours,
minutes, and seconds (for example, HH:MM:SS).

RETURN-CODE

RETURN-CODE is a field whose contents are returned to the operating system
in register 15 when CA-Easytrieve terminates. RETURN-CODE is initialized to
zero, but you can set it to any value. RETURN-CODE applies only to MVS
systems.

UIBFCTR

When processing an IMS/DLI database in a CICS environment, UIBFCTR
contains the values from the UIBFCTR fields in the CICS UIB. See the CICS
Application Programmer’s Reference Manual for a description of the UIBFCTR
fields.

UIBDLTR

When processing an IMS/DLI database in a CICS environment, UIBDLTR
contains the values from the UIBDLTR fields in the CICS UIB. See the CICS
Application Programmer’s Reference Manual for a description of the UIBDLTR
fields.

UIB-ADDRESS

When processing an IMS/DLI database in a CICS environment, UIB-ADDRESS
contains the address of the CICS UIB. It only contains the UIB- ADDRESS
following the execution of a Format 5 DL/I statement. See the CICS Application
Programmer’s Reference Manual for a description of the UIB.

9–2 Introduction to the Language

File Processing Fields

File Processing Fields
CA-Easytrieve automatically provides the system-defined fields listed below for
each of your files. These fields are stored as part of working storage but can be
qualified by file-name. As working storage fields, they are not subject to invalid
file reference errors.

RECORD-LENGTH

RECORD-LENGTH is a field with zero decimal places used for all file types to
determine or establish the length of the current data record. For variable-length
records, this field contains only the length of the record’s actual data. CA-
Easytrieve automatically adjusts the field to account for the four-byte record-
control word and four-byte block-control-word. For variable-length files, assign
the length of the record to the RECORD-LENGTH field before the PUT or
WRITE statement is executed.

For SQL files, RECORD-LENGTH contains the sum of the maximum lengths of
all fields in the file. For CA-IDMS and IMS/DLI files, RECORD-LENGTH
contains the sum of the maximum lengths of all records in the file.

RECORD-COUNT

RECORD-COUNT is a read-only field with zero decimal places that contains the
number of logical I/O operations performed on a file.

For CA-IDMS and IMS/DLI files, only automatic input increments RECORD-
COUNT.

FILE-STATUS

FILE-STATUS is a read-only field that contains the results of the most recent I/O
operation on a file. FILE-STATUS is available when you code STATUS on the
I/O statement. If you do not code STATUS, an appropriate error message is
generated. The error message contains one of these codes.

For CA-IDMS files using automatic input, FILE-STATUS contains IDMSSTATUS.
For IMS/DLI files, FILE-STATUS contains the status code from the PCB.

FILE-STATUS codes and their meanings are:

0000 Operation successful.

Explanation: This is not an error condition. It indicates that the last I/O
operation was successful. No additional information is required.

System-Defined Fields 9–3

File Processing Fields

0004 End of file.

Explanation: This is not an error condition. It indicates that the file position has
been moved beyond the last record in the file.

Cause: This condition occurs following a GET statement when the current
record is the last record in the file. It can occur for SEQUENTIAL, INDEXED,
and RELATIVE files.

Following a GET PRIOR statement, this condition could also indicate the
beginning of a file.

0008 Record with a duplicate alternate key exists.

Explanation: This is not an error condition. It indicates that the key of this
record matches the key of the record that follows it in the sequential order of this
file.

Cause: This condition can occur following a GET or READ statement for an
INDEXED file that does not have unique keys.

Following a GET statement, this condition indicates that at least one more record
with a matching key is waiting to be processed.

Following a READ statement, this condition indicates that there is at least one
more record in the file with a matching key (a GET statement must be used to
retrieve any remaining records).

In CICS/VS, MVS (batch and TSO), and CMS/OS, an INDEXED file can have
non-unique keys if the associated data set is a VSAM PATH and the auxiliary
index data set was defined with non-unique keys.

Note: There is no alternate or primary index on the workstation, in BETRIEVE,
or in ISAM/VSAM, therefore, a status code of 8 is never encountered. However,
if you move the application to the mainframe, you should test for this condition.

0012 Duplicate key.

Explanation: This error condition indicates that an attempt was made to store a
record with a duplicate key, or there is a duplicate record for an alternate index
with the Unique Key option.

Cause: This condition can occur following a PUT or WRITE ADD statement for
an INDEXED file, or a PUT statement for a RELATIVE file.

For an INDEXED file, it indicates that the key of the record matches the key of a
record already present in the file. For a RELATIVE file, it indicates that the slot
designated by the relative record number already contains a record (the slot is
not empty).

9–4 Introduction to the Language

File Processing Fields

This condition can also occur following a WRITE UPDATE statement for a
SEQUENTIAL or INDEXED file. It indicates that:

■ There is at least one alternate index associated with this file.

■ The alternate index was defined with the unique key and the upgrade
option.

■ The updated record caused a duplicate key condition to occur when the
alternate index was updated.

0016 Record not found.

Explanation: This error condition indicates that the record designated by the
KEY parameter is not found in the file.

Cause: This condition can occur following a READ or POINT statement for an
INDEXED or RELATIVE file. For an INDEXED file, it indicates that no record in
the file matches the key specified by the statement. For a RELATIVE file, this
condition indicates that the slot designated by the relative record number is
empty.

0020 Record locked.

Explanation: This error condition indicates that an attempt was made to access
or update a record that has a lock placed on it by another process.

Cause: This condition is only possible on the workstation.

0024 Logical or physical error condition.

Explanation: This error condition indicates that a logical or physical error
condition was detected by the access method routines used to access the file.
The specific cause of the error is displayed in a runtime abend message. See
Appendix A of the CA-Easytrieve/Online User Guide for a list of the feedback
codes.

PATH-ID

For CA-IDMS and IMS/DLI files, PATH-ID is field that contains the ID value of
the lowest record retrieve in a path, using the RETRIEVE statement. See the CA-
Easytrieve Programmer Guide for more information.

IDMSCOM

IDMSCOM contains a set of fields defined for the CA-IDMS Communications
Block. See the CA-Easytrieve Programmer Guide for more information.

System-Defined Fields 9–5

Report Processing Fields

SLC

SLC contains a set of fields defined for a logical record communications block.
See the CA-Easytrieve Programmer Guide for more information.

SQLCA

SQLCA contains a set of fields defined for the SQL communications Block. See
the CA-Easytrieve Programmer Guide for more information.

Report Processing Fields
CA-Easytrieve automatically provides the system-defined fields listed below for
report generating. These fields are stored as part of working storage and are
read-only.

LINE-COUNT

LINE-COUNT contains the number of lines printed on the page.

LINE-NUMBER

LINE-NUMBER contains the number of the line being printed within the line
group.

PAGE-COUNT

PAGE-COUNT contains the number of pages printed.

PAGE-NUMBER

PAGE-NUMBER contains the number of the page being printed.

TALLY

TALLY contains the number of detail records that comprise a control break.
You can use TALLY on a LINE statement or you can use it in calculations within
report procedures. TALLY is commonly used to determine averages for a
control level.

9–6 Introduction to the Language

Screen Processing Fields

TALLY is a field with zero decimal places. This definition is used for
calculations contained within report procedures. The TALLYSIZE parameter of
the REPORT statement defines the number of digits which are printed for
TALLY. A TALLY accumulator is created for each control break level.

LEVEL

LEVEL is a system-defined field provided for determining which control break is
currently active. The value in LEVEL indicates the control break level and varies
from 0 to n based on the number of field names on the CONTROL statement of
the associated report. LEVEL contains the logical position number of the
controlling field name. This value also applies to FINAL whether it is coded or
not.

LEVEL Example
LEVEL = 1 on TERRITORY breaks.
LEVEL = 2 on REGION breaks.
LEVEL = 3 on AREA breaks.
LEVEL = 4 final break.

CONTROL FINAL NOPRINT AREA REGION TERRITORY
 4 3 2 1

CONTROL AREA REGION TERRITORY
 4 3 2 1

BREAK-LEVEL

BREAK-LEVEL indicates the highest field in the break.

Screen Processing Fields
CA-Easytrieve automatically provides the system-defined fields listed below for
screen applications. These fields are stored as part of working storage and are
read-only.

KEY-PRESSED

KEY-PRESSED is a field that contains a value representing the most recent
terminal key pressed by the terminal user.

CA-Easytrieve automatically defines symbolic names that correspond to values
for the most common keys. Only keys with symbolic names can be used on a
KEY statement.

System-Defined Fields 9–7

Screen Processing Fields

Terminal Key Symbolic Name Constant Value

Unknown 0

Enter ENTER 1

Clear CLEAR 11

PA1 thru PA3 PA1 thru PA3 12 thru 14

PF1 thru PF24 F1 thru F24 21 thru 44

F1 thru F12 F1 thru F12 21 thru 32

Test Request 220

Op ID card Reader 222

Magnetic Slot Reader 223

Trigger Action 224

Structured Field 230

Clear Partition 231

Read Partition 232

No Aid Generated 255

TERM-COLUMNS

TERM-COLUMNS is a field that contains the maximum number of columns the
screen supports. You can test TERM-COLUMNS to execute a SCREEN activity
designed specifically for the terminal being used.

TERM-ROWS

TERM-ROWS is a field that contains the maximum number of rows the screen
supports. You can test TERM-ROWS to execute a SCREEN activity designed
specifically for the terminal being used.

TERM-NAME

TERM-NAME is a field that contains the terminal identification. This field is set
only in CICS environments.

9–8 Introduction to the Language

Screen Processing Fields

SYSUSERID

SYSUSERID is a field that identifies the terminal user. In CICS, this field is
retrieved from the EIB.

⇒ Reading 1 of Chapter 9 ends here.

■ Please go back to the beginning of Chapter 3.

System-Defined Fields 9–9

 Index–1

 Index

A

Action messages 7-11

ACTION messages 7-27

Activity
nesting 4-23
processing 2-6, 4-2
terminating 4-14

Activity section
definition 2-6
JOB 1-12
PROGRAM 1-12
SCREEN 1-12
SORT 1-12

Addition 4-7

AFTER-BREAK procedure 6-12, 6-23

AFTER-LINE procedure 6-25

AFTER-SCREEN screen procedure 2-25, 2-27, 7-15,
7-16, 7-22, 7-23, 7-24

ALARM attribute 7-6

Alphabetic literals 3-5

Arithmetic
operations 4-7
operators 3-5, 4-3

Ascending order 2-17, 4-21

ASKIP attribute 7-5, 7-28

Assignment statement 4-8

Asterisk
arithmetic operator 3-5
designate comments 3-2

ATTR parameter 2-28, 7-8, 7-20

Attributes

changing 2-30
colors for 7-6
display 2-28
function key area 7-14
function keys 7-27
messages 7-12, 7-27
overriding 7-5
row fields 7-27
row literals 7-27
screen titles 7-27
specifying 7-7, 7-8

Automatic input
JOB statement 4-2, 5-2

Automatic input/output 5-1

Automatic totals on reports 6-8

B

Bar graph
horizontal 8-4
vertical 8-3

BEFORE procedure with SORT 4-21, 4-22

BEFORE-BREAK procedure 6-12, 6-21

BEFORE-LINE procedure 6-25

BEFORE-SCREEN screen procedure 7-15, 7-16, 7-23

Blank when zero (BWZ) 3-11, 7-9

BLINK attribute 7-6

Blocksize 2-3

BLUE attribute 7-6

Branch actions 7-23

BREAK-LEVEL 9-7

BWZ 2-14, 3-11, 7-9

Index–2 Programmer Guide

C

CA-Easytrieve
printing reports 5-2
program structure 1-11
publications 1-5
sample program 1-13

Calculations 4-7

CASE statement 4-12
nesting 4-13

Century 9-2

Column headings, customizing 2-14, 6-11

Comments, adding 3-2

Conditional execution statement 4-12

Conditional expressions 4-3
arithmetic operators 4-3
combining 4-3, 4-6
comparing two fields 4-3
IF/ELSE 4-4
logical connectors 4-6
rules of use 4-7

Continuation characters 3-2

Control break totals, overriding 6-9

Control breaks 6-8, 6-10

Control field
values in titles 6-10

CONTROL statement 2-18, 6-8

Controlling activities 4-23

COPY statement 3-19

Cursor
determining position 7-24
placement 7-20
placement hierarchy 7-21

CURSOR
attribute 7-5, 7-20, 7-21
statement 7-20, 7-21

D

Data
conversion 4-8
definition 2-3, 3-8, 3-10, 3-11

terminal case 7-4
transferring 4-8
types 3-9

Decimal positions 2-5, 3-9

DECLAREd screen attributes 7-27

DEFAULT statement 7-26

DEFINE statement 2-3, 3-8
components 2-4
decimal position 2-5
field data type 2-5
field length 2-5
HEADING parameter 2-14, 3-10
implied 2-4
in an activity 3-13
MASK parameter 2-12, 2-13, 2-14, 2-29, 3-10
starting position 2-5

DEFINE Statement 3-8
describing fields 2-4

Delimiters 3-3

Descending order 2-17, 4-21

Description (DESC), tables 4-17

Display
area 7-14, 7-15
attributes 7-5

DISPLAY statement 5-5, 5-6
COL 5-6
format 1 5-5
format 2 5-6
HEX 5-6
integer 5-6
literals 5-6
naming 5-5
POS 5-6
SKIP 5-5
TITLE 5-5

Division 4-7

DO loops 4-10
example 4-11

DO UNTIL statement 4-10

DO WHILE statement 4-10

Documentation conventions 1-6

Dollar sign 2-13
floating 3-10

DRAW statement

 Index–3

graph program 2-37
processing 8-6

DTLCOPY parameter 6-17

DTLCTL (detail control) parameter 6-16

DTLCTL options
example 6-16

E

Edit masks 2-13, 2-29, 3-10
commas 2-14, 2-30, 3-10
copying 2-14, 2-30, 3-11
decimal points 2-14
decimals 2-30, 3-10
defaults 3-12
defining 3-11
digits 2-14, 2-30, 3-10
dollar signs 2-13, 2-30, 3-10
high-order zeros 2-13, 2-30, 3-10
MASK 7-9
naming 2-14, 2-30, 3-10, 3-11
rules 2-13, 2-29, 3-10
user-defined 7-9

END-CASE statement 4-12, 4-13

END-DO statement 4-10

END-IF statement 2-8, 4-3

ENDPAGE procedure 6-24

END-PROC keyword 4-16

ENDTABLE keyword 4-19

Environment section 1-11

Error messages
creating 2-32

Error Messages 2-33

ERROR parameter 2-32

EVERY parameter 6-15

EXECUTE parameter 4-14

EXECUTE statement 1-12, 4-23

Execution flow, PRINT statement 5-3

EXIT action 7-16, 7-22, 7-23, 7-24

EXIT parameter, FILE statement 3-19

Exit routines 3-19

Explicit redefinition, fields 3-16

Expressions
arithmetic 4-7
conditional 4-3

External table
example 4-20

F

fields
masking negative values 3-12
negative values 3-12

Fields
characteristics 2-4
comparing values 4-3
data type 2-5, 3-9
defined in library section 3-13
defining 2-3, 3-8
defining working storage 2-9
definition 2-3, 3-10
describing 3-6
displaying in hexadecimal format 7-9
duplicating definitions 3-19
edit masks 3-10
explicit redefinition 3-16
file processing 9-3
general purpose 9-1
length 2-5, 3-8
naming 3-4, 3-8, 4-12
overlay redefinition 3-17
qualifying 3-4
quantitative 3-9
redefining 3-16
report processing 9-6
screen processing 9-7
sequencing 3-15
start location 3-8
start location of new fields 3-16
starting position 2-5
static working storage 3-14
varying length 8-9
working storage 3-13

File directing parameters
REPORT 6-19

FILE directing parameters 6-19

FILE statement 2-3
EXIT parameter 3-19

Index–4 Programmer Guide

MODIFY parameter 3-19
VIRTUAL parameter 3-18
WORKAREA parameter 3-19

FILE Statement 3-7

Files
accessing 1-7
attributes 3-7
defining 2-3
definition 3-7
describing 3-6
start locations, implicit 3-17
synchronized processing 1-7
VFM 3-18
work, temporary 3-18

FILE-STATUS 9-3

FILL parameter 7-18

FINISH procedure 4-17

Fixed blocked records 2-3

format determination parameters
REPORT 6-13

Format determination parameters 6-13
DTLCTL 6-16
LABELS parameter 6-13
subparameters 6-13
SUMCTL 6-16
SUMFILE 6-18
SUMMARY 6-18

FROM parameter 5-7

Function keys 2-26, 7-14, 7-15
area 2-24
attributes 7-27

G

GET statement 5-6

GOTO JOB statement 7-23

GOTO SCREEN
action 7-22
statement 7-23

GOTO statement 4-14
JOB 4-14
label 4-14

graph
function key area 8-3

title area 8-3
work area 8-3

Graph
definition statements 2-36
display format 8-2
display resolution 8-9
headings 8-7
inhibiting headings 8-7
overriding default headings 8-7
printing 8-10
processing 2-33
sequencing 8-9
summing values 8-8
title area 8-5
work area 8-5

GRAPH
activity 8-3
subactivity 1-12

Graph program
basic structure 2-33, 8-2
display format 2-34
function key area 2-34
title area 2-34
work area 2-34

GRAPH statement 2-35, 2-37, 8-5
MODE parameter 8-9
NOHEADING parameter 8-7
SUMMARY parameter 8-8

Graph styles 8-3

GREEN attribute 7-6

H

HEADING
parameter 2-14, 3-10
statement 2-15, 2-20, 6-11, 8-4, 8-7

Hexadecimal literals 3-6

Horizontal bar graph 8-6, 8-8

Hyphen
arithmetic operator 3-5
continuation character 3-2

 Index–5

I

Identifiers 3-5

IF CURSOR statement 7-24

IF MODIFIED statement 7-25

IF statement 2-8, 4-3
ELSE-IF 4-5
IF/ELSE 4-4
special uses 4-5

IMMEDIATE function keys 7-22

Information messages 7-11

INFORMATION messages 7-27

INITIATION screen procedure 7-15, 7-16

Input
automatic editing 7-19
automatic to program 4-2
controlled 5-6
GET statement 5-6
POINT statement 5-8
READ statement 5-9

INPUT parameter 2-7, 4-2

Instream tables 4-18, 4-19

INTENSE attribute 7-5

INVISIBLE attribute 7-5

J

Job activities 2-10

JOB Activities 4-2

JOB activity 1-12, 5-3, 8-2, 8-3, 8-4, 8-6
adding logic 2-9
graph program 2-33
input 2-7
invoking 4-23
naming 2-7, 4-2
parts 4-2

Job Control Language (JCL) statements 6-19

JOB statement 2-6
automatic input 2-7
INPUT parameter 5-2
NAME parameter 4-2

JUSTIFY parameter 7-17

K

KEY IMMEDIATE processing 7-22, 7-23, 7-26

Key statement
branch actions 7-21
KEY IMMEDIATE processing 7-21

KEY statement 2-24, 2-25, 2-26, 2-27, 7-3, 7-13, 9-7

KEY Statement 7-21

KEY-PRESSED 7-13, 7-14, 9-7

Keywords 3-4

L

Label reports
controlled 6-12
example 6-14
format 6-13

Labels 3-5

LABELS parameter 6-13

LEVEL 7-12, 9-7
AFTER-BREAK 6-23
BEFORE-BREAK 6-21

Library definition section 1-11

Library section
DEFINE statement 2-6
definition 2-3
FILE statement 2-6

LIMIT parameter 6-15

Line
graph 8-4, 8-6, 8-8
order 6-7
print length 2-16, 6-6

LINE statement 2-11, 2-15, 2-21, 6-11, 9-6

LINESIZE parameter 2-16
REPORT 6-6

Literals
alphanumeric 3-5
hexadecimal 3-6
numeric 3-5

Index–6 Programmer Guide

Logical connectors 4-6

Loops 4-10

M

MASK parameter 2-13, 2-29, 3-10, 3-11, 7-9
BWZ 2-13, 2-14, 2-29, 3-11

MASK Parameter 7-9

MASK statement 2-15

Message area 2-24

Message levels 7-11
placement on screen 7-27

Message locations
overriding 7-26

MESSAGE statement 7-2, 7-11

Messages 7-11

Minus sign 3-5

MODIFY parameter 3-19

MOVE LIKE statement 4-10

MOVE statement 4-8
format 1 4-9
format 2 4-9

Multiplication 4-7

MUSTENTER attribute 7-6

MUSTFILL attribute 7-6

N

NAME parameter 4-2

Nulls 7-18

NULLs 7-18

NUMERIC attribute 7-5

Numeric literals 3-5

O

OTHERWISE statement 4-13

Output
DISPLAY statement 5-5
PUT statement 5-7
WRITE statement 5-10

Overlay redefinition
fields 3-17

P

Parameters, multiple 3-4

Parentheses
group relationships 3-4
in calculations 4-7

PERFORM statement 4-15

Period, statement delimiter 3-2

Pie chart 8-3, 8-5, 8-7, 8-8

PINK attribute 7-6

Plus sign
arithmetic operator 3-5
continuation character 3-2

POINT statement 5-8

Pop-up window 7-28
example 7-29

Pre-printed forms 6-12

PRINT statement 2-11, 2-15, 5-2, 6-12, 6-13
execution flow 5-3
work file processing 5-4

PRINTER parameter
REPORT 6-19

Printers, multiple 6-18

PROC keyword 4-16

Procedures, user defined 4-15

Processing activities 4-17

Program
activity sections 1-12, 2-6
environment sections 1-11
examples 1-1

 Index–7

input 2-6, 5-1
library sections 1-11, 2-3
logic 2-8
order of statements 1-12
structure 1-11
termination 4-14

PROGRAM Activities 4-23

Program logic 4-3
assignments 4-8
branching 4-14
calculations 4-7
conditional expressions 4-3
loops 4-10
moves 4-8

PROTECT attribute 7-5

Publications
CA-Easytrieve 1-5
related 1-6

PUT statement 5-7
FROM 5-7

Q

Qualifying fields 3-4

Quantitative fields 3-9, 6-8, 6-9

R

Random access processing 5-9

READ statement 5-9

RECORD-COUNT 9-3

RECORD-LENGTH 9-3

Records
adding 5-10
definition 2-3, 3-6
fixed, blocked 2-3
length 3-18
retrieving 5-6
updating 5-10

RED attribute 7-6

REFRESH action 7-22, 7-23

Report declarations 2-21

Report definition
mnemonic 2-17
order of statements 2-16

Report definition statements 6-7
CONTROL 2-18, 6-7
HEADING 2-20, 6-7
LINE 2-21
SEQUENCE 2-17, 6-7
SUM 2-19, 6-7
TITLE 2-19, 6-7

Report procedures
(PROCs) 6-20
AFTER-BREAK 6-23
AFTER-LINE 6-25
BEFORE-BREAK 6-21
BEFORE-LINE 6-25
ENDPAGE 6-24
REPORT-INPUT 6-20
TERMINATION 6-24

REPORT statement 2-16, 6-5, 6-6, 6-13, 9-7
format determination parameters 6-13
LINESIZE 2-16, 6-6
report name 2-16
testing aid parameters 6-14

REPORT-INPUT~ PROC 6-20

Reports 6-2
annotating 6-21, 6-23, 6-24, 6-25
column headings 2-14, 6-11
control breaks 2-18, 6-8
creation 2-16, 6-2
declarations 2-16
detail lines 2-21, 6-2
editing 2-11, 3-10
field headings 2-14, 6-3
formatting 1-8
grouping data 6-8
heading fields 3-10
heading options 6-4
heading position 6-4
headings 2-20, 3-10, 6-2, 6-3
line groups 6-2, 6-4
line item positioning example 6-4
multiple to more than one printer 6-19
multiple to separate printers 6-19
naming 2-16
output 5-2
overriding control break totals 2-19
overriding totals with SUM 6-9
print line length 6-4
print line size 6-4
printing 2-11, 5-2

Index–8 Programmer Guide

printing multiples to one printer 6-18
procedures 6-20
processing 6-5
sorting 6-7
sorting data 2-17
titles 2-19, 6-2, 6-9
totals 6-8

RESHOW action 7-22, 7-24

RETAIN parameter, FILE statement 3-18

RETURN-CODE 9-2

REVERSE attribute 7-6

Rounded fractional values 4-8

ROUNDED parameter 4-8

ROW statement 2-23, 2-25, 2-26, 7-2, 7-8
specifying range of values 2-31

S

S fields, not sequenced 3-15

Scatter diagram 2-35, 8-4, 8-5, 8-6, 8-8

Screen
activities 2-27
attributes 7-5
basic format 7-2
borders 7-28
centering display items 7-6
declaration statements 7-3
defining valid keys 7-13
format 2-23
formatting display item 7-17
function key area 2-23, 7-3, 7-13
items 7-4
justifying data 7-17
message area 2-23, 7-2, 7-11
overriding size 7-28
refresh 7-22
restoring 7-22
structure 2-23
title area 2-23, 7-2, 7-6
title attributes 7-27
titles 7-6
work area 2-23, 7-2, 7-8

SCREEN activity 1-12, 2-22, 7-3, 7-15, 9-8
initiating 7-3
invoking 4-23
issuing messages 7-11

naming 7-3
screen declaration statements 2-22
screen procedures 2-22

Screen procedures
branch actions 7-22
special name 7-15

SCREEN statement 2-25, 7-3, 7-28

Search argument (ARG) 4-17

SENDONLY attribute 7-5

SEQUENCE statement 2-17, 6-7, 8-4, 8-9
example 8-9

Sequential file processing 5-4

Slash, division symbol 3-5

SORT activity 1-12
invoking 4-23

SORT Activity 4-20

SORT statement 4-20
NAME parameter 4-21
procedures 4-21
USING parameter 4-21

Sorting program, input and output 4-20

SPACE parameter 6-6

Spacing control parameter 6-6
code 6-7

Spool file 5-3

Standard report 6-2

Start position, fields 3-8

START procedure 4-17

Start-location
implicit 3-17

Statements
area 3-2
comment 3-2
continued 3-2
delimiters 3-3
labels 3-5
multiple 3-2
reporting 2-16

STATUS parameter 5-8

STOP statement 4-14

Subtraction 4-7

 Index–9

SUM statement 2-19, 6-9, 6-12

SUMCTL (sum control) parameter 6-16

SUMCTL options, example 6-16

SUMFILE parameter 6-18

Summary files 6-18

SUMMARY Reports 6-17

Syntax rules 3-2

SYSDATE 9-1

SYSDATE-LONG 9-2

System
date 9-1
time 9-2

System-defined attribute
overriding 7-26

System-defined fields
FILE-STATUS 9-3
KEY-PRESSED 9-7
LEVEL 9-7
RECORD-COUNT 9-3
RECORD-LENGTH 9-3
RETURN-CODE 9-1
SYSDATE 9-1
SYSTIME 9-1
SYSUSERID 9-9
TALLY 9-6
TERM-COLUMNS 9-8
TERM-NAME 9-8
TERM-ROWS 9-8

SYSTIME 9-2

SYSUSERID 9-9

T

Table files
accessing 4-19
creation 4-18

Tables 4-17
ARG 4-17
DESC 4-17
external 4-20
instream 4-18
literal 4-18
rules 4-18
SEARCH statement 4-19

TABLE parameter 4-18
testing for match 4-19

TALLY 9-6

TERM-COLUMNS 9-8

Terminal keys 7-13
IMMEDIATE 7-22
specifying descriptive text 7-14

TERMINATION
report procedure 6-24
screen procedure 7-15, 7-16

TERM-NAME 9-8

TERM-ROWS 9-8

Test, field modification 7-25

Testing aid parameters 6-14
EVERY 6-14
LIMIT 6-14

Title area 2-23

TITLE statement 2-19, 2-23, 2-25, 6-9, 7-2, 7-6
control field values 6-10
graph program 2-36
graphs 8-3, 8-4, 8-5
resulting titles 6-3

TRIGGER attribute 7-6

TURQUOISE/TURQ attribute 7-6

Tutorial directions 2-1

U

UNDERLINE attribute 7-6

Underscores 7-18

Uppercase
edit 7-19
translating to 7-4

UPPERCASE parameter 7-19

User-defined procedure 4-15
examples 4-16
naming 4-15
nesting 4-16

USING parameter 3-19

Index–10 Programmer Guide

V

Value checking edit 7-19

VALUE parameter 2-31, 2-32, 3-16, 7-19

VALUE statement 8-3, 8-4, 8-5, 8-7
graph program 2-36

Vertical bar graph 8-6, 8-8
example 8-8

Virtual file manager (VFM) 3-18

Virtual File Manager (VFM) 1-10

VIRTUAL parameter, FILE statement 3-18

W

Warning messages 7-11

WARNING messages 7-27

WHEN condition
literals 4-12

WHITE attribute 7-6

Windows, pop-up 7-28

Work area 2-23

Work file processing 5-4

WORKAREA parameter 3-19

Working storage
Library section 2-9
type S (static) 3-14
type W 2-9, 3-13

Working storage fields, static 3-14

WRITE statement 5-10
format 1 5-10
format 2 5-11

X

XY graph 8-4, 8-5, 8-6, 8-8

Y

YELLOW attribute 7-6

Z

Zeros, suppressing 2-13, 2-14, 2-29, 2-30, 3-11

	Introduction to the Language Guide
	Contents
	Overview
	Introduction
	Program Examples

	About This Guide
	Reading The Guide
	Organization

	Other CA-Easytrieve Publications
	Related Publications
	Documentation Conventions
	Capabilities
	File Access
	Field Definition
	Logic Processing
	File Output
	SQL Processing
	Report Output
	Screen Processing
	Graph Processing
	Virtual File Manager
	Debugging Capabilities
	Current Technology

	Structure of a CA-Easytrieve Program
	Environment Section
	Library Definition Section
	Activity Section
	Sample Program

	Programming with CA-Easytrieve
	Introduction
	Reading This Tutorial

	Lesson 1
	The Report Your Program Creates
	One Statement at a Time
	Reviewing the Library Section

	Lesson 2
	A Look at Logic
	CA-Easytrieve Working Storage
	Review of Job Activities

	Lesson 3
	CA-Easytrieve LINE Statement
	Editing Your Report Output
	Reviewing PRINT, LINE, MASK, and HEADING

	Lesson 4
	The REPORT Statement
	Report Definition Statements
	Reviewing Report Declarations

	Lesson 5
	Basic Structure
	Screen Format
	Sample Screen Program
	The Screen Your Program Creates
	Review of Screen Activities

	Lesson 6
	Changing Attributes (ATTR Parameter)
	Review of Changing Attributes

	Lesson 7
	Creating Error Messages
	Reviewing Error Messages

	Lesson 8
	Basic Structure
	Graph Format
	Sample Graph Program
	The Graph Your Program Creates
	DRAW Statement Processing
	Review of Graph Declarations

	Summing Things Up

	Library Section - Describing and Defining Data
	Introduction
	CA-Easytrieve Syntax Rules
	Statement Area
	Multiple Statements
	Comments
	Continuations
	Words and Delimiters
	Keywords
	Multiple Parameters
	Field Names
	Labels
	Identifiers
	Arithmetic Operators
	Alphanumeric Literals
	Numeric Literals
	Hexadecimal Literals

	Describing Files and Fields
	Defining Data
	FILE Statement
	DEFINE Statement
	FILE Statement Revisited
	Virtual File Manager (VFM)
	EXIT Parameter
	COPY Statement

	Activity Section - Processing and Logic
	Introduction
	JOB Activities
	JOB Statement
	Conditional Expressions
	Calculations
	Assignment Statement
	MOVE Statement
	MOVE LIKE
	DO/END-DO Statements
	CASE and END-CASE Statements
	GOTO Statement
	STOP Statement
	User Procedures (PROCs)
	START/FINISH Procedures
	Processing Tables

	SORT Activities
	SORT Statement

	PROGRAM Activities
	Controlling Other Activities

	Activity Section - Input and Output
	Introduction
	Automatic Input and Output
	Automatic Input with the JOB Statement
	Printing Reports

	User Controlled Input and Output
	Sequential File Processing
	Random Access Processing

	Activity Section - Reporting
	Introduction
	Standard Reports
	Titles
	Headings
	Line Group

	Report Processing
	REPORT Statement
	Report Definition Statements

	Label Reports
	Label Format

	Testing Aid Parameters
	Format Determination Parameters
	DTLCTL Parameter
	SUMCTL Parameter
	SUMMARY Reports
	DTLCOPY Subparameter
	Summary Files

	Multiple Reports
	Multiple Reports to a Single Printer
	Multiple Reports to More Than One Printer

	Report Procedures (PROCs)

	Activity Section - Screens
	Introduction
	Basic Screen Format
	SCREEN Activity
	SCREEN Statement
	Screen Items

	Screen Title Area
	TITLE Statement
	Title Examples

	Screen Work Area
	ROW Statement

	Screen Message Area
	MESSAGE Statement
	Message Area Location
	Message Attributes
	Message Text

	Screen Function Key Area
	KEY Statement
	Location
	Attributes

	Special-Named Screen Procedures
	Programmer-Defined Procedures

	Formatting a Screen Item for Display
	Justifying a Field's Contents

	Automatic Editing of Input
	Cursor Positioning on a Screen
	CURSOR Statement
	Cursor Placement Hierarchy

	KEY Statement - Branch Actions and IMMEDIATE Processing
	Branch Actions
	KEY IMMEDIATE Processing

	Screen Procedures - Branch Actions
	Determining the Cursor Location
	Testing for Field Modification
	Overriding System-Defined Attributes and Message Locations
	DEFAULT Statement

	Overriding Standard Screen Sizes

	Activity Section - Graphs
	Introduction
	Basic Structure of a Graph Program
	Graph Display Format
	GRAPH Activity
	GRAPH Statement
	Graph Definition Statements

	Graph Title Area
	TITLE Statement

	Graph Work Area
	VALUE Statement

	DRAW Statement Processing
	Graph Headings
	Inhibiting Graph Headings
	Defining Alternate Headings

	Summing Graph Values
	Sequencing a Graph
	Graph Display Resolution

	System-Defined Fields
	Introduction
	General Purpose Fields
	File Processing Fields
	Report Processing Fields
	Screen Processing Fields

	Index

