

Programmer Guide

Advantage CA-Easytrieve

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2002 Computer Associates International, Inc. (CA)

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1: Overview
Introduction.. 1-1
About This Guide... 1-1

Organization ... 1-2
Other CA-Easytrieve Publications .. 1-3
Related Publications .. 1-4
Documentation Conventions... 1-5
Summary of Revisions ... 1-5

CA-Easytrieve/Online Enhancements from CA-Easytrieve Plus 1-5
CA-Easytrieve/Workstation Enhancements from CA-Easytrieve Plus/PC 1-6
CA-Easytrieve/Online 1.1 Enhancements .. 1-8
CA-Easytrieve/Online 1.4 Enhancements .. 1-9
CA-Easytrieve/Workstation 1.2 Enhancements .. 1-11
CA-Easytrieve 1.3 for UNIX Enhancements.. 1-11
CA-Easytrieve 1.4 for UNIX Enhancements.. 1-12

Chapter 2: Coding a CA-Easytrieve Program
Steps in the Application Development Process... 2-1
Structured Programming Using CA-Easytrieve .. 2-1
CA-Easytrieve Program Sections ... 2-2

Environment Section .. 2-3
Library Section ... 2-3
Activity Section ... 2-3

Defining Files .. 2-5
Defining Fields ... 2-5

File Fields .. 2-6
Working Storage Fields .. 2-6
Signed/Unsigned Field Rules .. 2-7
Data Reference.. 2-8
Indexing .. 2-10

Contents iii

Subscripts ... 2-10
Varying Length Fields .. 2-10

Displaying Varying Length Fields ... 2-11
Assigning and Moving Varying Length Fields .. 2-11
Comparing Varying Length Fields ... 2-12

Declaring Screen Item Attributes .. 2-12
Declaring Input Edit Patterns ... 2-13
Declaring Subprogram Linkage ... 2-13
Literal and Data Formatting Rules... 2-13

ASCII and EBCDIC Alphanumeric Literals ... 2-14
Hexadecimal Literals ... 2-14
UNIX Data Format ... 2-14
Format and Conversion Rules (Workstation Only) .. 2-14
Format Relationship Rules (Workstation Only).. 2-15
Format and Conversion Rules (Mainframe Only).. 2-18
Format Relationship Rules (Mainframe Only)... 2-20
DBCS Format Literals .. 2-22
MIXED Format Literals ... 2-22

Controlling Program Flow .. 2-22
Activities.. 2-23

Program Flow.. 2-23
Screen Flow.. 2-24
Job Flow... 2-24
Sort Flow .. 2-25

Units of Work/Commit Processing .. 2-25
Automatic Commit Processing .. 2-26
Controlled Commit Processing .. 2-26
Recoverable Resources.. 2-27

Decision and Branching Logic ... 2-29
Conditional Expressions .. 2-30
Double Byte Character Set Support... 2-31

Assignments and Moves.. 2-31
Arithmetic Expressions ... 2-32

Operators ... 2-32
Parentheses.. 2-33
Evaluations .. 2-33

Assignment Statement.. 2-35
EBCDIC To DBCS Conversion (Mainframe Only).. 2-36
Format 1 (Normal Assignment) .. 2-36
Examples.. 2-39
Format 2 (Logical Expression) ... 2-40

Contents iv

Example... 2-41
MOVE Statement .. 2-41
MOVE LIKE Statement ... 2-42

Table Processing... 2-42
Defining Tables .. 2-42
Searching Tables ... 2-44

Array Processing .. 2-44
Bounds Checking .. 2-45
Indexing .. 2-45
Single Dimension Arrays ... 2-45
Multiple Dimension Arrays ... 2-46
Subscripts ... 2-48
Subscripting a One-Dimensional Array .. 2-49
Subscripting a Two-Dimensional Array .. 2-49
Subscripting a Three-Dimensional Array ... 2-50
Segmented Data ... 2-51
Data Strings ... 2-53

Interprogram Linkage.. 2-54
CALL Statement on the Mainframe .. 2-55

Program Linking ... 2-55
Storage Management ... 2-56
Linkage (Register Usage) Conventions ... 2-57
Assembler Subprogram Linkage ... 2-57
COBOL Subprogram Linkage ... 2-58
Parameter Lists .. 2-59
Parameter List Format .. 2-59
Error Condition Handling... 2-59

CALL Statement on the Workstation ... 2-60
Program Linking ... 2-60
Storage Management ... 2-60
Linkage Conventions ... 2-60
Error Condition Handling... 2-65

CALL Statement in UNIX... 2-65
Program Linking ... 2-65
Storage Management ... 2-66
Linkage Conventions ... 2-66
Error Condition Handling... 2-70

LINK Statement.. 2-71
LINK vs. CALL .. 2-71
Commands Issued by the Child Program ... 2-71
USING Parameter .. 2-71

Contents v

GIVING Parameter ... 2-72
Operating System Implementation ... 2-73

TRANSFER Statement .. 2-75
Commands Issued by the Target Program .. 2-75
Operating System Implementations .. 2-76
CA-Easytrieve/ESP Interactive Execution .. 2-77

Coding Efficient CA-Easytrieve Programs.. 2-77
Data Usage .. 2-77
Table Processing ... 2-78
Compiler Site and Program Options ... 2-78
Report Processing .. 2-79

Coding Programs That Run Under CICS ... 2-79

Chapter 3: File Processing
Overview .. 3-1

File Definition .. 3-2
Controlled vs. Automatic Processing.. 3-3
Data Buffering Mode .. 3-3

WORKAREA Parameter ... 3-3
Record Format.. 3-4

CARD, PUNCH, and VSAM.. 3-4
Record Address... 3-5
STATUS Parameter.. 3-5
System-Defined File Fields ... 3-5

RECORD-LENGTH ... 3-5
RECORD-COUNT... 3-6
FILE-STATUS... 3-6

Error Conditions .. 3-6
Data Availability Tests .. 3-6
Opening Files... 3-7
Closing Files.. 3-7
File Processing Modes ... 3-7
File Access Mode ... 3-8

Valid Syntax - FILE Statement .. 3-8
File Browse Mode ... 3-9
Hold/Release Processing .. 3-9

Workstation LANs ... 3-10
SEQUENTIAL Files .. 3-10

SEQUENTIAL File Processing Rules ... 3-10
SEQUENTIAL Input ... 3-11

Contents vi

Automatic Processing... 3-11
Controlled Processing .. 3-11
CARD Input ... 3-11

SEQUENTIAL Output.. 3-12
Fixed-length File Creation... 3-12
Variable-length File Creation .. 3-12
VSAM File Creation .. 3-12
PUNCH Files .. 3-13

Virtual File Manager ... 3-13
INDEXED Files .. 3-14

INDEXED Sequential Input ... 3-14
POINTing to a Specific Record... 3-14
Skip-Sequential Processing .. 3-15
Random Input ... 3-15

Adding Records to an INDEXED File .. 3-15
Adding a Single Record... 3-16
Mass-Sequential Record Insertion.. 3-16

File Creation... 3-16
Deleting a Record .. 3-16
Updating a Record ... 3-17

RELATIVE Files ... 3-17
RELATIVE File Sequential Input... 3-17

POINTing to a Specific Record... 3-18
Skip-Sequential Processing .. 3-18

Random Input ... 3-18
Adding Records to a RELATIVE file ... 3-19

Record Addition ... 3-19
File Creation ... 3-19

Deleting a Record .. 3-19
Updating a Record ... 3-20

Sorting Files... 3-20
SORT Activity Example... 3-21

Sort Procedures .. 3-21
Sorting a Selected Portion of a File ... 3-22

Synchronized File Processing ... 3-22
Synchronized File Input .. 3-23

Example... 3-23
Record Availability... 3-24

Special IF Statements ... 3-25
MATCHED.. 3-25
File Existence .. 3-26

Contents vii

DUPLICATE, FIRST-DUP, and LAST-DUP ... 3-26
Updating a Master File ... 3-27
Single File Keyed Processing .. 3-27

PRINTER Files .. 3-28
Defining a PRINTER File ... 3-28

SYSPRINT... 3-29
Workstation Files .. 3-29

Coding FILE Statements .. 3-29
SYSTEM Parameter... 3-29
File Type .. 3-30
Record Format ... 3-30
Logical Record Length .. 3-31
File Code System ... 3-31
Allowed Field Types.. 3-31

Supported File Structures ... 3-32
Sequential ... 3-32
Indexed Sequential (FABS ISAM) .. 3-32
Relative (Random-access) ... 3-32
BTRIEVE .. 3-33
DBASE (xBASE).. 3-33
LOTUS .. 3-34
CA-SuperCalc ... 3-35
Comma-Delimited.. 3-35
Host Mainframe.. 3-36

UNIX Files .. 3-37
File Type .. 3-37
Record Format... 3-37
Logical Record Length.. 3-37
C-ISAM ... 3-38

Chapter 4: SQL Database Processing
Overview .. 4-1

Programming Methods .. 4-2
Native SQL Statements .. 4-2
Automatic Cursor Management .. 4-2

CA-Easytrieve SQL Statement Rules .. 4-3
Program Environment .. 4-3

Units of Work .. 4-4
PARM Statement Parameters... 4-4

DB2 .. 4-5

Contents viii

SQL/DS.. 4-6
CA-Datacom/PC.. 4-6
CA-Datacom/DB.. 4-7
CA-IDMS... 4-7
CA-Ingres .. 4-7
ORACLE ... 4-7

Library Section Definition ... 4-7
SQL Catalog INCLUDE Facility .. 4-8
Processing NULLable Fields ... 4-8

Manual NULL Processing.. 4-9
SQL Data Types... 4-9

Decimal Data Types .. 4-12
SQL Syntax Checking... 4-12

System-Defined File Fields .. 4-13
RECORD-COUNT.. 4-13
RECORD-LENGTH .. 4-13

EOF Processing .. 4-13
SQL Communications Area Fields ... 4-13
Sample Database... 4-16

Working Storage Definitions .. 4-16
CA-Easytrieve SQL Files.. 4-17

Processing Requirements ... 4-17
Operation ... 4-18
Input Processing ... 4-18

Automatic Processing... 4-18
Controlled Processing .. 4-20

Update Processing ... 4-22
Controlled Processing .. 4-22
Automatic Processing... 4-22
Deleting from an SQL File... 4-23
Inserting an SQL Row .. 4-23

Automatic Retrieval without a File .. 4-23
Processing Requirements ... 4-23
Operation ... 4-24
Retrieving All Columns... 4-24
Selected Columns .. 4-25
Multiple Tables .. 4-25

Native SQL Processing ... 4-25
Processing Requirements ... 4-25
Operation ... 4-26
Supported Commands.. 4-26

Contents ix

DB2 ... 4-26
SQL/DS... 4-26
CA-Datacom/PC... 4-27
CA-Ingres ... 4-27
ORACLE .. 4-27

Unsupported SQL Commands .. 4-27
Retrieving All Columns... 4-28

Reassign Departments .. 4-28
Update Phone Numbers .. 4-29
Using Table Name as Host Variable with Indicator Array 4-30

Data Types Supported on the Workstation ... 4-30

Chapter 5: CA-IDMS Database Processing
Introduction.. 5-1

CA-IDMS Interface.. 5-1
IDD Interface ... 5-1
CA-IDMS Functionality.. 5-2
CA-Easytrieve CA-IDMS Statements.. 5-2
Processing Overview .. 5-2

CA-IDMS Processing on the Workstation ... 5-3
Data Code System... 5-3
Field Data Types .. 5-4
CA-IDMS Entity Names ... 5-4

Sample CA-IDMS Database.. 5-5
Field Definitions .. 5-5

Sample Logical Record .. 5-7
Logical Record Definition.. 5-7

IDD Interface... 5-8
Program Name ... 5-9
Conforming IDD Item Descriptions to CA-Easytrieve Standards............................... 5-9
Handling of Group Item Definition ... 5-9
Examples.. 5-10

IDMS Interface .. 5-10
Communications Block ... 5-11
Logical Record Communications Block... 5-14
Using Logical and Element Records in Non-CA-IDMS Statements 5-14
Automatic Input ... 5-15

Sweep of an Area... 5-16
Tickler File Control ... 5-16
Input Definition (Paths)... 5-16

Contents x

Automatic Input of Logical Records.. 5-17
WHERE Clause .. 5-17
Examples.. 5-17

Controlled Processing .. 5-21
IDMS Statement.. 5-22
Controlled Processing Examples ... 5-23

Chapter 6: IMS/DLI Database Processing
Introduction.. 6-1

Test Database... 6-2
DBD Source Statements.. 6-2
PSB Source Statements... 6-2
Test Database Structure.. 6-2

PCB and PSB Processing... 6-3
PCB Specification and Access .. 6-3
PSB Specification.. 6-3
Status Information .. 6-3

Automatic Input .. 6-4
Sweep of Database .. 6-4
Tickler File Control.. 6-4
Input Definition (Paths).. 6-5
Typical Path Examples .. 6-5

Tickler File Usage Example... 6-6
Segment Selection Example .. 6-6
Path Identification Example .. 6-7
Complete Path Processing with Schedule and Terminate 6-8
Limiting Segment Retrieval .. 6-8
Root Segment Qualification Input Control ... 6-9
Conditional Segment Retrieval (Segment Pre-screening) 6-9

Controlled Processing ... 6-9
Complete Path Processing .. 6-10
Database Maintenance.. 6-11

Chapter 7: Report Processing
Overview .. 7-1

Basic Report Structure ... 7-2
PRINT Statement Processing ... 7-2

Work File Records... 7-3
PRINT Workfile Processing .. 7-4

Contents xi

Report Formats ... 7-5
Standard Format .. 7-5
Label Format ... 7-6

REPORT Statement.. 7-7
Report Definition Structure .. 7-7

Report Definition Statements ... 7-7
System-Defined Fields... 7-8

LINE-COUNT .. 7-8
LINE-NUMBER ... 7-8
PAGE-COUNT.. 7-8
PAGE-NUMBER .. 7-8
TALLY ... 7-8
LEVEL ... 7-8
BREAK-LEVEL ... 7-8

Standard Reports ... 7-9
Titles .. 7-9

Overriding Defaults .. 7-10
Examples.. 7-10

Headings.. 7-11
Line Group .. 7-12
Line Item Positioning... 7-12
Special Positioning ... 7-13
Pre-printed Form Production.. 7-14
SPREAD Parameter .. 7-15

Label Reports.. 7-15
CONTROL Statement .. 7-16

Sequenced Reports... 7-17
CONTROL Reports .. 7-17

Terminology... 7-18
Data Reference... 7-18
TALLY.. 7-19
LEVEL .. 7-19
BREAK-LEVEL .. 7-20
Control Report Contents .. 7-21
DTLCTL .. 7-23
SUMCTL.. 7-24

TAG .. 7-26
DTLCOPY... 7-27

DTLCOPYALL... 7-28
Control Field Values in Titles.. 7-28
Overflow of Total Values ... 7-29

Contents xii

Controlling Overflow... 7-30
Summary File.. 7-32

SUMFILE Example ... 7-33
Report Procedures ... 7-33

Special-name Report Procedures .. 7-34
Coding Techniques... 7-35

Field Reference... 7-36
Static Working Storage ... 7-36
REPORT-INPUT ... 7-37
BEFORE-LINE and AFTER-LINE .. 7-38
BEFORE-BREAK... 7-39
AFTER-BREAK .. 7-40
ENDPAGE .. 7-41
TERMINATION ... 7-42

Routing Printer Output... 7-43
Reporting to the Terminal... 7-44

Extended Reporting.. 7-46
Reporting Environment Example .. 7-47

Program Example .. 7-47
Printer Support .. 7-48

Printer Identification ... 7-49
Font Identification.. 7-49

CA-Easytrieve Printer Definitions ... 7-50
Page Mode Printers... 7-50
Line Compatibility Mode Printers.. 7-54
XEROX Printers .. 7-55

Chapter 8: Screen Processing
Overview .. 8-1

Basic Structure.. 8-1
Screen Format .. 8-2

Title Area... 8-2
Work Area.. 8-2
Message Area ... 8-2
Function Key Area .. 8-3
Screen Borders .. 8-3
Screen Example ... 8-3

SCREEN Statement.. 8-4
Screen Definition Statements ... 8-4
Screen Items .. 8-4

Contents xiii

System-Defined Fields... 8-6
KEY-PRESSED .. 8-6
TERM-COLUMNS .. 8-6
TERM-ROWS ... 8-7
TERM-NAME... 8-7
SYSUSERID .. 8-7

Screen Title Area.. 8-7
Title Rules.. 8-7
Title Examples .. 8-8

Default Centering and Attributes ... 8-8
Explicit Locations and Attributes ... 8-9

Screen Work Area .. 8-9
Item Location... 8-9

Location Examples ... 8-10
Attribute Examples... 8-11

Formatting an Item for Display.. 8-11
Filling an Item for Display .. 8-12

Filling with Underscores .. 8-12
Filling with NULLs... 8-12

Justifying a Field’s Contents... 8-13
Using Edit Masks for Display ... 8-13

Mask Example ... 8-14
Hexadecimal Mask Example .. 8-14

Automatic Editing of Input ... 8-14
UPPERCASE .. 8-15
MASK .. 8-15
PATTERN... 8-16

Valid PATTERN Characters ... 8-17
Building Patterns... 8-18
Character Sets.. 8-20
Internal Operation of Patterns ... 8-22
Additional Considerations .. 8-24

VALUE ... 8-25
Edit Error Messages .. 8-25
Cursor Placement .. 8-26

Cursor Placement Hierarchy .. 8-26
Repeating Rows of Data .. 8-27

A Simple REPEAT Example ... 8-27
Two-dimensional Arrays.. 8-28

Screen Message Area... 8-28
Message Area Location ... 8-29

Contents xiv

Message Attributes... 8-29
Message Text .. 8-29

Screen Function Key Area .. 8-29
Location .. 8-30
Attributes ... 8-30

Screen Key Processing.. 8-30
3270 Display Station Keys... 8-31

Screen Procedures ... 8-31
INITIATION... 8-32
BEFORE-SCREEN.. 8-33
AFTER-SCREEN ... 8-33
TERMINATION ... 8-33

Programmer-Defined Procedures.. 8-33
Branch Actions .. 8-33

GOTO SCREEN .. 8-34
REFRESH ... 8-34
RESHOW.. 8-35
EXIT .. 8-36

CICS Pseudo-conversational Programs... 8-36
Sending Messages.. 8-36

Using Message Levels .. 8-37
Determining the Cursor Location .. 8-38
Testing for Field Modification ... 8-38
Setting Errors.. 8-39

Commit Processing... 8-40
SCREEN COMMIT Parameter ... 8-40
Conversational Processing Example .. 8-41
Pseudo-Conversational Processing Example ... 8-41
Concurrent Updates .. 8-43
SQL Processing Example .. 8-44

Sample Screen Applications ... 8-45
Editing Data and Setting Errors .. 8-46
Using Dynamic Screen Attributes... 8-46
Using a Menu .. 8-47
Providing Help Screens ... 8-48
Field-specific Help.. 8-50
Windowed Screens ... 8-51
Action Bar Pull-Downs.. 8-52

Chapter 9: Graph Processing

Contents xv

Overview .. 9-1
Basic Structure.. 9-1
DRAW Statement Processing... 9-2
Graph Format .. 9-2

Title Area... 9-2
Work Area.. 9-2
Function Key Area .. 9-3

GRAPH Statement .. 9-3
Graph Definition Statements ... 9-3

Processing a Graph ... 9-4
Sample Graph Applications.. 9-5

Pie Chart ... 9-5
Vertical Bar Chart ... 9-6
Horizontal Bar Chart .. 9-7
Line Chart.. 9-8
Scatter Diagram... 9-9

Chapter 10: System Services
CA-Easytrieve Macro Facility ... 10-1

Macro Invocation Statement... 10-1
Syntax .. 10-1

Invoking Macros ... 10-2
Macro Library ... 10-2
Macro Files .. 10-2
Macro Library Security ... 10-3

CA-Panvalet ... 10-3
VSAM... 10-3

Macro Definition... 10-3
Macro Prototype Statement ... 10-4
Macro Body ... 10-5
Macro Termination Command... 10-5

Macro Processing .. 10-5
Parameter Substitution ... 10-5
Examples.. 10-6
Parameter Substitution in a Macro ... 10-7

Instream Macros ... 10-7
Example... 10-7

Contents xvi

Glossary

Index

Contents xvii

Chapter

1 Overview

Introduction
CA-Easytrieve is an information retrieval and data management system
designed to simplify computer programming. Its English-like language and
simple declarative statements provide the new user with the tools needed to
produce comprehensive reports and screens with ease, while its enhanced
facilities provide the experienced data processor with the capabilities to perform
complex programming tasks.

CA-Easytrieve operates on the IBM 370, 30xx, 43xx, and compatible processors in
the VM, MVS, and VSE environments. Under TSO, CMS, and CICS,
CA-Easytrieve runs interactively for data inquiry, analysis, and reporting. The
output can be either returned to your terminal screen or routed to a printer.

CA-Easytrieve/Workstation operates on the IBM/PC (or 100% compatible) in the
PC/DOS or OS/2 environment.

CA-Easytrieve also operates on the HP-9000 Series 700/800 in the HP-UX
environment, and on the IBM RS/6000 in the AIX environment.

About This Guide
This Programmer Guide is designed for use by you, the CA-Easytrieve
programmer. It assumes that you are familiar with the CA-Easytrieve language
and understand basic data processing concepts.

The purpose of this guide is to help you:

■ Apply CA-Easytrieve programs to various application tasks

■ Create efficient CA-Easytrieve programs

■ Analyze and modify existing CA-Easytrieve programs.

This guide is to be used with the following implementations of CA-Easytrieve:

Overview 1–1

About This Guide

■ CA-Easytrieve/Online, version 1.4

■ CA-Easytrieve/Workstation, version 1.2

■ CA-Easytrieve in the UNIX environment, version 1.4.

Use of this guide, along with the CA-Easytrieve Language Reference Guide, provides
you with the information needed to use CA-Easytrieve for all your programming
needs. For a tutorial approach to learning the basics of CA-Easytrieve, see the
CA-Easytrieve Introduction to the Language Guide.

Organization

This guide is divided into 10 chapters, a glossary, and an index:

Chapter 1, Overview Introduces you to CA-Easytrieve, this guide, and the
related publications. Chapter 1 also lists the steps in the application
development process, and discusses structured programming using
CA-Easytrieve.

Chapter 2, Coding a CA-Easytrieve Program Provides you with CA-Easytrieve
coding basics. Topics include data descriptions, program flow, table and array
handling, assignments and moves, and subprogram conventions. Chapter 2 also
includes tips on how to write programs in CICS.

Chapter 3, File Processing Describes the processing of sequential, indexed, and
relative record files. Chapter 3 also describes printer file processing.

Chapter 4, SQL Database Processing Describes the two methods available for
using CA-Easytrieve to retrieve and maintain data in an SQL database.

Chapter 5, CA-IDMS Database Processing Describes the optional processing
facilities that interface with CA-IDMS databases and with the CA-IDMS
Integrated Data Dictionary (IDD).

Chapter 6, IMS/DLI Database Processing Describes the optional processing
facilities for information retrieval and maintenance of IMS/DL/I databases.

Chapter 7, Report Processing Describes how to produce printed reports using
CA-Easytrieve.

Chapter 8, Screen Processing Describes how to display and receive information
from an online terminal using CA-Easytrieve.

Chapter 9, Graph Processing Describes how to display and print graphs using
CA-Easytrieve.

Overview 1–2

Other CA-Easytrieve Publications

Chapter 10, System Services Describes how to use the CA-Easytrieve Macro
Facility.

Glossary List of common CA-Easytrieve terms.

Index Provides a quick way to find references to terms and procedures.

Other CA-Easytrieve Publications
In addition to this CA-Easytrieve Programmer Guide, Computer Associates
provides the following CA-Easytrieve documentation:

Name Contents

CA-Easytrieve Language
Reference Guide

Describes the complete syntax of each CA-Easytrieve
statement, organized in easy-to-find alphabetical
order. Also provides lists of system-defined fields,
symbols, and reserved words, as well as information
for those sites converting to this version of
CA-Easytrieve.

CA-Easytrieve Introduction
to the Language Guide

Provides new users with the information they need
to become productive quickly. Includes a tutorial
and a format designed to make the material more
interesting and easy to comprehend.

CA-Easytrieve/Online User
Guide

How to compile, link-edit, and execute
CA-Easytrieve programs on the mainframe. Also,
how to compile and execute interactively using an
editor and how to use the CA-Easytrieve/Online
Screen and Report Painters.

CA-Easytrieve/Online
Administrator Guide

Provides system administrators with the information
needed to set up, customize, and administer a
CA-Easytrieve/Online system.

CA-Easytrieve/Online
Installation Guide

Describes installation of CA-Easytrieve/Online in all
environments. The most current step-by-step
procedures for installing CA-Easytrieve/Online in
your environment(s) can be found on the product
tape.

CA-Easytrieve/Online
CA-Activator Supplement

How to install and maintain CA-Easytrieve/Online
on your MVS system, using the Computer Associates
SMP/E software interface called CA-Activator.

CA-Easytrieve UNIX User
Guide

Helps compile, link-edit, and execute CA-Easytrieve
programs in the UNIX environment from the

Overview 1–3

Related Publications

Name Contents
operating system command line.

Related Publications
The following publications, produced by Computer Associates, are either
referenced in this publication or are recommended reading:

■ CA-Easytrieve/Workstation User Guide

■ CA-Easytrieve UNIX User Guide

■ CA-Ingres SQL Reference Guide

■ CA-PSI Subsystems DBCS Environment Guide

■ CA-PSI Subsystems Reporting Environment Guide

■ CA-Pan/SQL SQL Interface Installation Guide

■ CA-Datacom/PC MS-DOS Database and System Administration Guide

■ CA-Datacom/PC SQL Programming and Reference Guide

These publications are also either referenced in this publication or are
recommended reading:

■ SQL/Data System Application Programming for VSE (SH24-5018)

■ SQL/Data System Application Programming for VM/SP (SH24-5068)

■ CA-Datacom/PC SQL Programming and Reference Guide

■ DATABASE 2 SQL Reference Manual (SC26-4380)

■ Programmer’s Reference Guide - COBOL

■ IMS/DL/I Applications Programming Manual

■ IMS/VS Installation Guide

■ ORACLE SQL Reference Guide

■ IBM Guide for New Users

■ IBM CICS Application Programmer’s Reference Manual

■ IBM DLI Programmer’s Reference Manual

Overview 1–4

Documentation Conventions

Documentation Conventions
The following conventions are used throughout this guide for illustrative
purposes.

Notation Meaning

{braces} Mandatory choice of one of these entries.

[brackets] Optional entry or choice of one of these entries.

| (OR bar) Choice of one of these entries.

(parentheses) Multiple parameters must be enclosed in parentheses.

... Ellipses indicate you can code the immediately preceding
parameters multiple times.

BOLD Bold text in program code is used to highlight an example of
the use of a statement.

CAPS All capital letters indicate a CA-Easytrieve keyword, or
within text descriptions, indicate a name or field used in a
program example.

lowercase italics Lowercase italics represent variable information in statement
syntax.

Summary of Revisions
The following lists summarize the technical changes and enhancements provided
in version upgrades of CA-Easytrieve.

CA-Easytrieve/Online Enhancements from CA-Easytrieve Plus
■ Full 31-bit addressing in MVS environments.

■ Environment-independent FILE statements ensure portability between
environments and access methods.

■ The CLOSE statement now allows controlled file opens and closes.

■ A dynamic file name provides the ability to determine the file name at
execution time.

■ Simple read/write access to SQL files provides automated cursor
management with full application capabilities

■ Complete control over SQL units of work using the COMMIT statement and
activity options.

Overview 1–5

Summary of Revisions

■ 128-character entity names for ANSI standard support.

■ Use of descriptive logical file names greater than 8 characters.

■ Boundary checking of subscripts and indices during execution protects
environment and makes debugging easier.

■ Introduction of the PROGRAM "super" activity that can execute other
activities as logic dictates.

■ Direct access to execution parameters via the PROGRAM statement.

■ Ability to LINK and TRANSFER to other CA-Easytrieve programs.

■ SCREEN activities provide easy creation of online transaction processing
applications. Screen generation and maintenance assisted by Screen Painter.

■ SEARCH of INDEXED table file results in keyed read rather than binary
search.

■ Online Report Display Facility allows browsing of report output.

■ Access to report line and page counters.

■ Ability to modify report lines in BEFORE-LINE procedures.

■ Ability to specify column locations for title items in automatically adjusted
reports.

■ Fully integrated support of DISPLAY statements in REPORTs with
page-break handling and consistent production of titles and headings.

■ Integrated syntax-directed editor and interpreter giving compatible
development tools and rapid prototyping abilities.

■ Source program input directly from CA-Panvalet and PIELIB libraries.

■ Access to multiple macro library types during compilation.

■ Issuance of warning messages during compilation provide helpful direction.

■ Enhanced compilation listing.

■ Report Painter provides visual environment for creation and maintenance of
report declarations.

CA-Easytrieve/Workstation Enhancements from CA-Easytrieve Plus/PC
■ Compatibility with mainframe implementations including portable file and

field definition, arithmetic functions, reporting, and screen handling.

■ Generation of EXE modules for significant performance improvement and
decreased memory requirements.

■ Full generation of Intel object code for compatibility with other PC
compilers.

Overview 1–6

Summary of Revisions

■ Environment-independent FILE statements ensure portability between
environments and access methods.

■ Direct program access to CA-IDMS, CA-Datacom, dBASE, LOTUS,
CA-SuperCalc, and comma-delimited files.

■ Complete control over SQL and CA-IDMS units of work using the COMMIT
statement and activity options.

■ Simple read/write access to SQL files.

■ CLOSE statement allows controlled file opens and closes.

■ Dynamic file name provides ability to determine file name at execution time.

■ 128-character entity names for ANSI standard support.

■ Use of descriptive logical file names greater than 8 characters.

■ Subscripting of arrays.

■ Boundary checking of subscripts and indices during execution protects
environment and makes debugging easier.

■ Introduction of the PROGRAM "super" activity that can execute other
activities as logic dictates.

■ Direct access to execution parameters via the PROGRAM statement.

■ Ability to LINK and TRANSFER to other CA-Easytrieve programs as well as
to any operating system command using a command shell.

■ Direct CALLs to subroutines written in C, Assembler, and COBOL.

■ SCREEN activities provide easy creation of online transaction processing
applications.

■ SEARCH of INDEXED table file results in keyed read rather than binary
search.

■ Report Display Facility allows browsing of report output.

■ Access to report line and page counters.

■ Ability to modify report lines in BEFORE-LINE procedures.

■ Ability to specify column locations for title items in automatically adjusted
reports.

■ Fully integrated support of DISPLAY statements in REPORTs with
page-break handling.

■ Enhanced compilation listing.

■ GRAPH subactivities provide business graphics with the ease of
CA-Easytrieve reporting.

■ HLLAPI Host Interface providing automated function shipping to the
mainframe and behind-the-scenes file transfers.

Overview 1–7

Summary of Revisions

CA-Easytrieve/Online 1.1 Enhancements

Windowed Screens SCREENs can now be any size and have any start location. When
a SCREEN activity executes another SCREEN activity in which the
second screen is smaller than the first, the second screen overlays
the first as a "pop-up" window.

Screens can now have a border built displayed around them, whether they are
full-screen applications or windows.

SET Statement The SET statement provides an easy method to change screen
attributes for a field or to indicate an erroneous field in your
screen procedures.

SCREEN Attributes The CURSOR attribute has been added to the default set of
attributes applied to fields in error. Existing users may want to
add the attribute in their site options.

GET PRIOR Statement The PRIOR parameter on the GET statement allows backwards
browses against VSAM files. In addition, you can load a
CA-Easytrieve virtual file and browse forward and backward
through the file.

Working Storage
Reinitialization (DEFINE
RESET)

A RESET parameter on the DEFINE statement allows you to
specify that W working storage fields are initialized automatically
for each execution of a JOB, SORT, or SCREEN statement.

INTEGER/ROUNDED/TRUNCATED on Assignment Statement

These options provide the following capabilities:

■ Automatic dropping of fractional results of calculations or assigns.

■ Automatic rounding off of fractional results of calculations

■ Truncation of digits during an assignment.

The INTEGER parameter can be used with ROUNDED or TRUNCATED.
Additional calculations and multiple Assignment statements previously required
to perform these functions are no longer needed.

Instream Macros The compiler now supports including macro definition as part of
the source program. This capability is particularly useful for
testing new macros prior to storing them in the macro library.

Multiple Name
Support

CA-Easytrieve/Online now supports multiple entities with the
same name. For example JOBs, FILEs, fields, keywords can all
have the same name.

TRANSFER NOCLEAR The NOCLEAR parameter on the TRANSFER statement tells

Overview 1–8

Summary of Revisions

CA-Easytrieve to leave the screen displayed as it terminates the
program and transfers control to another program. The terminal
user is able to still see the screen display as the target program
processes and is not left with a blank screen.

Double Byte
Character Set
Support

CA-Easytrieve/Online now supports the IBM Double Byte
Character Set (DBCS). Kanji and mixed fields and literals can be
displayed on and received from the terminal.

Report Painter A Report Painter provides a visual method for creating and
maintaining report declarations. Screens and reports can be
painted online using the same easy-to-use interface.

Screen Painter
Enhancements

A new Field Select window is available to display program fields
for selection from other windows and lists.

The Repeat Definition panel now automatically generates subscript fields on
ROW statements.

A new CAPS command provides a session override of the CA-Easytrieve/ESP
Editor CAPS setting.

CASE Statement The CASE statement now supports variable length fields. If
field-name is an alphanumeric literal, it no longer must be 254 or
fewer bytes in length.

CA-Easytrieve/Online 1.4 Enhancements

CA-IDMS Processing The CA-Easytrieve interface to CA-IDMS is now available in
CA-Easytrieve/Online. This interface provides complete facilities
for information retrieval and maintenance of CA-IDMS databases.

IMS/DL/I Processing The CA-Easytrieve interface to IMS/DL/I is now available in
CA-Easytrieve/Online. This interface provides complete facilities
for information retrieval and maintenance of IMS/DL/I
databases.

SQL Processing CA-Easytrieve SQL processing has been expanded to include
interfaces to CA-Datacom and CA-IDMS SQL databases.

A new PARM statement parameter, SQLSYNTAX, enables you to specify the level
of syntax checking performed on SQL statements in your CA-Easytrieve program.

Extended Reporting CA-Easytrieve/Online now uses the CA-PSI Subsystems
Reporting Environment to generate printer set definitions. The
Reporting Environment provides support for Impact Dot, Ink-Jet,
and Electro-Photographic printers. This facility interacts with

Overview 1–9

Summary of Revisions

CA-Easytrieve report processing to provide support for many
additional features, such as font control. These are described fully
in the CA-Easytrieve Programmer Guide.

Synchronized File
Processing

The Synchronized File Processing (SFP) facility is now available in
CA-Easytrieve/Online.

File Exits You can now use the EXIT parameter of the FILE statement to
invoke subprograms written in other programming languages for
input/output related events.

Label Reports Label reports are now available in CA-Easytrieve/Online.

Even Precision for
Packed Fields

You can use the EVEN parameter on the DEFINE statement to
indicate that a packed decimal field is to contain an even number
of digits.

MOVE LIKE Statement
for Working Storage

The MOVE LIKE statement now supports moving contents of
fields with identical names to and from working storage.

Static Call Support for
Subroutines

The CALL parameter is now available on the PARM statement.
CALL enables you to specify how subprograms referenced in
CALL statements are linked to your CA-Easytrieve program.

The DECLARE statement specifies how a particular subprogram is linked and
overrides the CALL parameter on the PARM statement.

IF BREAK New IF BREAK/HIGHEST-BREAK class tests can be used as
alternatives in testing report control breaks.

CONTROLSKIP The CONTROLSKIP parameter is available on the REPORT
statement. CONTROLSKIP enables you to define the number of
blank lines to be inserted following CONTROL total lines and the
next detail line.

Identifiers and DBCS Identifiers can now contain DBCS characters.

Year 2000 Support A SYSDATE-LONG field is now available that contains the
century. SHORTDATE and LONGDATE options have been
added to the REPORT statement to display the date with or
without the century.

A new Options Table entry has been added called LONGDTE. This specifies the
default date for reports.

Overview 1–10

Summary of Revisions

CA-Easytrieve/Workstation 1.2 Enhancements

CA-IDMS Processing
(PC/DOS Only)

The CA-Easytrieve interface to CA-IDMS is now available in
CA-Easytrieve/Workstation. This interface provides complete
facilities for information retrieval and maintenance of
CA-IDMS/PC databases.

SQL Processing
(PC/DOS Only)

The CA-Easytrieve SQL interface is now available in
CA-Easytrieve/Workstation. This interface provides complete
facilities for information retrieval and maintenance of SQL tables.
SQL processing for Version 1.2 supports CA-Datacom/PC.

MOVE LIKE Statement
for Working Storage

The MOVE LIKE statement now supports moving contents of
fields with identical names to and from working storage.

OS/2 Support CA-Easytrieve/Workstation now supports OS/2 2.0 and above.
This support includes development and execution of full-screen
and windowed text-based applications. However, there is no
database support.

ASCII Numeric Data CA-Easytrieve/Workstation now supports ASCII data in N type
fields.

Distributable
Applications

Your CA-Easytrieve/Workstation applications are fully
distributable. If you use the Report Display Facility, you must
distribute the EZBR.EXE file with your
CA-Easytrieve/Workstation applications. If you use the Graph
Display Facility, you must distribute the EZGR.EXE file with your
CA-Easytrieve/Workstation applications.

CA-Easytrieve 1.3 for UNIX Enhancements

CA-Easytrieve is now available for use in the HP-UX environment and operates on
the HP-9000 Series 700/800.

CA-Ingres
Processing

The CA-Easytrieve SQL Interface now supports CA-Ingres in the
UNIX environment.

Oracle Processing The CA-Easytrieve SQL Interface now supports Oracle in the UNIX
environment.

C-ISAM Processing CA-Easytrieve now supports C-ISAM files as INDEXED file types.

Overview 1–11

Summary of Revisions

Year 2000 Support A SYSDATE-LONG field is now available that contains the century.
SHORTDATE and LONGDATE options have been added to the
REPORT statement to display the date with or without the century.

A new Options Table entry has been added called LONGDTE. This specifies the
default date for reports.

CA-Easytrieve 1.4 for UNIX Enhancements

CA-Easytrieve now operates on the IBM RS/6000 in AIX.

DB2 Processing The CA-Easytrieve SQL Interface now supports DB2 in the UNIX
environment.

Extended Reporting A subset of the Extended Reporting feature is now available in
UNIX. See the CA-Easytrieve for UNIX User Guide for details.

Overview 1–12

Chapter

2 Coding a CA-Easytrieve Program

Steps in the Application Development Process
The organization of this guide simulates the way an application program is
developed. The basic application development process steps are:

1. Design the program:

■ Determine the task you want the program to accomplish.

■ Define the files necessary to read and write the information used by the
program.

■ Fill in successive levels of the design until you have a program structure
that accomplishes the task.

2. Code the program logic as designed:

■ Code and test the basic flow of your program before filling in lower
levels of the design.

See the CA-Easytrieve/Online User Guide, the CA-Easytrieve/Workstation User Guide,
or the CA-Easytrieve UNIX User Guide for instructions on compiling, link-editing,
and executing your program.

Structured Programming Using CA-Easytrieve
The CA-Easytrieve language supports structured programming concepts by
requiring you to use defined activities and special-named procedures. These
activities and procedures help you create programs that are efficient, reliable,
and maintainable.

CA-Easytrieve also allows you to practice structured programming concepts
when you want to incorporate large sections of procedural code into your
program.

Coding a CA-Easytrieve Program 2–1

CA-Easytrieve Program Sections

CA-Easytrieve allows you to easily break a large program into manageable
modules by using JOB, SCREEN, and SORT activities, and REPORT and
SCREEN special-named procedures. You can code each module to perform a
specific function for the program. Each specific function is then easily identified
and maintained.

CA-Easytrieve allows you to create well-structured programs that can be read
easily. To accomplish this, design your program with the following items in
mind:

■ Keep modules (procedures) small (small enough to fit on one page of the
compile listing).

■ Use meaningful comments wherever possible so that others can easily read
and modify your program.

■ Use the CA-Easytrieve control flow structures to make programs more
readable and efficient. CA-Easytrieve provides two special GOTO
statements that are very useful: GOTO JOB and GOTO SCREEN. These
statements provide a well-defined method to instruct CA-Easytrieve to
iterate the activity process.

■ Use the following structured programming statements to control your
program in a clear and logical way:

 IF/ELSE/ELSE-IF
 CASE
 DO WHILE
 DO UNTIL
 EXECUTE
 PERFORM

■ Use consistent indentation that shows nesting and control flow. Indent
statements that are enclosed in control flow structures, such as IFs and DOs.
When nesting these control flow structures, indent an additional level. For
example:

Poor Indentation Good Indentation

FILE FILEA FILE FILEA
REGION 1 1 N REGION 1 1 N
EMPNAME 17 20 A EMPNAME 17 20 A
JOB INPUT FILEA JOB INPUT FILEA
IF REGION = 1 IF REGION = 1
PRINT RPT PRINT RPT
END-IF END-IF
REPORT RPT REPORT RPT
LINE REGION EMPNAME LINE REGION EMPNAME

CA-Easytrieve Program Sections
A CA-Easytrieve program consists of three main sections:

2–2 Programmer Guide

CA-Easytrieve Program Sections

1. Environment section — optional

2. Library definition section — optional

3. Activity section(s) — at least one required.

Environment Section

The environment section enables you to customize the operating environment
for the duration of a program’s compilation and execution by overriding selected
general standards for a CA-Easytrieve program.

Some of the standard CA-Easytrieve options affect the efficiency of a
CA-Easytrieve program. There can be minor trade-offs between the automatic
debugging tools provided by CA-Easytrieve and the efficiency of the program
code.

For example, you can specify that CA-Easytrieve record the statement numbers
of the statements being executed for display during an abnormal termination
(FLOW). Use of this option, however, does have a minor impact on processing
time. You can turn this option on or off in the environment section of each
CA-Easytrieve program.

See Coding Efficient CA-Easytrieve Programs later in this chapter for details on
how parameter settings affect your compilation.

Library Section

The library section describes the data to be processed by the program. It
describes data files and their associated fields, as well as working storage
requirements of a program. The library section is said to be optional because, on
rare occasions, a program may not be doing any input or output of files.
However, in most cases, use of the library definition section is required.

Processing time can be shortened by coding data definitions to avoid
unnecessary data conversions. See Assignment and Moves later in this chapter
for details on data conversions.

Activity Section

The executable statements that process your data are coded in one or more
activity sections. Executable statements in CA-Easytrieve can be procedural
statements or declarative statements.

Coding a CA-Easytrieve Program 2–3

CA-Easytrieve Program Sections

The activity section is the only required section of your program. There are four
types of activities: PROGRAM, SCREEN, JOB, and SORT.

■ A PROGRAM activity is a simple top-down sequence of instructions. A
PROGRAM activity can be used to conditionally execute the other types of
activities using the EXECUTE statement.

■ SCREEN activities define screen-oriented transactions. Data can be
displayed to a terminal operator and received back into the program. Files
can be read and updated. A SCREEN activity can EXECUTE a JOB or SORT
activity to perform a special process such as printing a report.

■ JOB activities read information from files, examine and manipulate data,
write information to files, and initiate reports and graphs.

■ SORT activities create sequenced or ordered files.

You can code one or more procedures (PROCs) at the end of each activity.
Procedures are separate modules of program code you use to perform specific
tasks.

REPORT subactivities are areas in a JOB activity where reports are described.
You can code one or more REPORT subactivities after the PROCs (if any) at the
end of each JOB activity. You must code any PROCs used within a REPORT
subactivity (REPORT PROCs) immediately after the REPORT subactivity in
which you use them.

GRAPH subactivities are areas in a JOB activity where graphs are described.
One or more GRAPH subactivities can be coded after JOB procedures. You
cannot code procedures for a GRAPH subactivity.

2–4 Programmer Guide

Defining Files

The following exhibit shows some CA-Easytrieve keywords and other items in
the sections where they are usually located, and gives the general order of
CA-Easytrieve statements within a program.

 PARM ... Environment

 Section
 FILE ...
 DEFINE ...
 ...

 Library
 Section

 PROGRAM
 (statements)
 (program procedures)
 SCREEN
 (screen procedures)
 JOB
 (statements)
 (job procedures)
 REPORT
 (report procedures)
 GRAPH
 SORT
 (sort procedures)
 ...

 Activity
 Section

Defining Files
Use the FILE statement to describe a file or a database. FILE statements must
describe all files and databases that your program references. FILE statements
are the first statements coded in the library section of a CA-Easytrieve program.

The FILE statement can differ greatly depending on the operating environment
and the type of file being processed. See the “File Processing” chapter for more
information.

Defining Fields
Use the DEFINE statement to define fields. The DEFINE statement specifies data
fields within a record or within working storage. You usually specify file fields
and work fields in your CA-Easytrieve library section, but you can also define
them within an activity as the following examples illustrate. The first example
shows fields defined in the library section:

FILE PERSNL FB(150 1800)
 DEFINE EMP# 9 5 N Library
 DEFINE EMPNAME 17 20 A
 DEFINE EMP-COUNT W 4 N
*

Coding a CA-Easytrieve Program 2–5

Defining Fields

 JOB INPUT PERSNL NAME MYPROG
 EMP-COUNT = EMP-COUNT + 1
 PRINT REPORT1 Activity
*
REPORT REPORT1
 LINE EMP# EMPNAME EMP-COUNT

The next example shows a field defined in the activity section:

FILE PERSNL FB(150 1800)
 DEFINE EMP# 9 5 N Library
 DEFINE EMPNAME 17 20 A
*
JOB INPUT PERSNL NAME MYPROG
 DEFINE EMP-COUNT W 4 N
 EMP-COUNT = EMP-COUNT + 1
 PRINT REPORT1 Activity
*
REPORT REPORT1
 LINE EMP# EMPNAME EMP-COUNT

When fields are defined within an activity, each field definition must start with
the DEFINE keyword and physically be defined before the field is referenced. In
the library section, use of the DEFINE keyword is optional.

If the same field is defined more than once, subsequent definitions are ignored,
that is, the first definition is used.

File Fields

File fields are normally defined immediately following the associated FILE
statement in the library section of a CA-Easytrieve program. Their rules of usage
are:

■ CA-Easytrieve accepts an unlimited number of fields for each file
(constrained by available memory).

■ Field names must be unique within a file.

■ You can define file fields anywhere in a CA-Easytrieve library or activity
section, except within a REPORT subactivity or a SCREEN declaration.

■ For more specific information about defining fields in a database file, see the
appropriate SQL or CA-IDMS guide.

Working Storage Fields

You can specify two types of working storage fields: S (static) and W (work).
Each type is used in a different way, particularly when used in reporting.

2–6 Programmer Guide

Defining Fields

Fields defined as type S are stored in a static working storage area and are not
copied onto report work files. All references to S fields in a report occur at the
time the report is actually formatted and printed.

Fields defined as type W are copied onto the report work files at the time a
PRINT statement is executed. A spooled report is not actually formatted and
printed at the same time the PRINT is executed. Therefore, the value of a W field
on a report is set at the time the report data is selected for printing, not at the
time it is printed.

With this in mind, you should use S (static) working storage fields for:

■ Temporary work fields for report procedures

■ Line annotations controlled from report procedures

■ Grand total values used to calculate percentages.

See the “Report Processing” chapter for examples of the use of W versus S fields.

Working storage fields are normally defined in the CA-Easytrieve library
section. Their rules of usage are:

■ CA-Easytrieve accepts an unlimited number of working storage fields
(constrained by available memory).

■ Working storage fields must be uniquely named within working storage.

■ You can define working storage fields anywhere in a CA-Easytrieve library
section, activity, or procedure.

■ The sum of all working storage fields cannot exceed 32K (workstation only).

Signed/Unsigned Field Rules

Signed Fields

If you specify a numeric field with decimal positions (0 to 18), CA-Easytrieve
considers it a signed (quantitative) field. The following rules apply to signed
fields:

■ For binary numbers, CA-Easytrieve takes the high-order (left-most) bit as the
sign, regardless of field length. In any manipulation, CA-Easytrieve shifts
the field and propagates the high-order bit. For example, a one-byte binary
field containing a hexadecimal FF has the numeric value -1.

■ For non-negative, zoned decimal numbers on the left side of an Assignment
statement, CA-Easytrieve sets an F sign if EBCDIC, a 3 sign if ASCII.
Otherwise, it manipulates the number in packed decimal format.

■ Packed decimal numbers are manipulated in packed decimal format.
Arithmetic operations that result in a positive result set a C sign.

Coding a CA-Easytrieve Program 2–7

Defining Fields

■ By definition, there is no sign in unsigned packed decimal numbers (U
format). When you manipulate these numbers, CA-Easytrieve supplies an F
sign.

■ For integer numbers (workstation and UNIX only), the sign is manipulated
as a 2’s complement in native host format.

■ For fixed point ASCII numbers (workstation only), the actual ASCII numeric
data can reside anywhere within the field and can contain leading and/or
trailing blanks or zeros. The sign must be the first non-blank character and
all digits must follow without embedded blanks.

Unsigned Fields

If you specify a numeric field with no decimal positions, CA-Easytrieve
considers that field unsigned (non-quantitative) and the following rules apply:

■ For binary numbers, the magnitude of the number must fit within 31 bits or
less. The NUMERIC test is not true for a four-byte binary field with the
high-order bit on. The high-order bit contributes to the magnitude of
numbers in fields of one-byte to three-byte lengths. For example, a one-byte
binary field containing a hexadecimal FF has a numeric value of 255.

■ Both zoned decimal and packed decimal fields follow the same rules.
CA-Easytrieve packs all zoned decimal fields and handles them as packed
fields. CA-Easytrieve uses the actual storage value in the field, but it is your
responsibility to maintain a positive sign. An EBCDIC F sign or an ASCII 3
sign is placed in any unsigned field used on the left-hand side of an
Assignment statement.

■ An unsigned packed decimal field (U format) is always unsigned. When
you manipulate the field, CA-Easytrieve supplies an F sign.

■ For integer numbers, the high order bit is treated as part of the number
increasing the positive magnitude to twice the signed magnitude plus one.

■ For fixed point ASCII numbers, the actual ASCII numeric data can reside
anywhere within the field and can contain leading and/or trailing blanks or
zeros.

Data Reference

Every data reference (file or field) in your program must be unique. You can
provide uniqueness in one of two ways:

■ Unique name — A name is unique if no other file or work field has that
name. For example, GROSS-PAY is unique if it appears as field-name in only
one DEFINE statement (and has never been copied to another file with a
COPY statement).

2–8 Programmer Guide

Defining Fields

■ Qualification — Qualification occurs when you prefix the optional qualifier
file-name: to a field name. CA-Easytrieve requires the use of the qualifier
whenever the field name alone cannot uniquely identify the data reference.
The qualifier for file fields is the associated file name and/or record name.
For working storage fields, the qualifier is the keyword WORK.

Default Qualification

Through default qualification, CA-Easytrieve attempts to determine which field
you want to reference when a field name is not a unique name.

If you are in the library section, the current FILE (if one is coded) and the WORK
file are searched for an occurrence of the field in question. If the field is not
found in either the current file or the WORK file, or if the field occurs in both the
current file and the WORK file, an error message is issued stating that additional
qualification is required.

If you are in a SORT or JOB activity, and you code an INPUT filename on a JOB
statement, the input file is searched for an occurrence of the field in question.
For synchronized file processing, all of the files coded on the INPUT parameter
of the JOB statement are checked for an occurrence of the field in question. If the
field occurs in exactly one of the input files, that field is used. If the field occurs
in more than one of the default files, an error message is issued stating that
additional qualification is required.

If the field does not occur in any of the default files, each of the remaining files
(including WORK) is searched for an occurrence of the field in question. If the
field occurs in exactly one of the remaining files, that field is used. If the field
occurs in more than one of the remaining files, an error message is issued stating
that additional qualification is required.

If you do not specify an INPUT parameter on the JOB statement, a default input
file is used. If the JOB activity immediately follows a SORT activity, the output
from the SORT activity is the default input file. If the JOB activity occurs at any
other point, the default input file is the first FILE coded that is not a TABLE file,
a PUNCH file, or a PRINTER file. Once a default input file is selected, default
qualification occurs as described above.

For PROGRAM, SCREEN, and JOB INPUT NULL activities, no default
qualification occurs.

Coding a CA-Easytrieve Program 2–9

Defining Fields

Indexing

Indexing is data reference that results from CA-Easytrieve deriving a
displacement value to correspond to a particular occurrence in a field name
defined with OCCURS. The formula for deriving the index value is: the number
of the desired occurrence minus one, multiplied by the length of the occurring
field element. For example, if an occurring field is defined as:

DEFINE MONTHWORD MONTH-TABLE 9 A OCCURS 12 INDEX MONTH-INDEX

MONTH-INDEX for the third occurrence is derived as follows:
MONTH-INDEX = (3 - 1) * 9

Or:
MONTH-INDEX = 18

See Array Processing later in this chapter for more information.

Subscripts

Subscripts are an alternate method available to select an individual element from
an array. A subscript is a literal or field that contains the actual occurrence of the
element you are referencing.

The use of subscripts removes the requirement of computing the index value;
CA-Easytrieve does this automatically. See Array Processing later in this chapter
for more information.

Varying Length Fields

The VARYING keyword on the DEFINE statement designates varying length
alphanumeric fields. Varying length fields are often used in SQL databases. An
example of a varying length field definition is shown below:
FLDA W 250 A VARYING

Because VARYING is used, this W type work field has two parts which are
internally defined as follows:
W 2 B 0 for the two-byte field length

W 248 A for the data

When this field is referenced in your statements, you can designate the entire
field including the length, by specifying FLDA. Or, you can specify only the
length portion or only the data portion of the field. For the W field defined
above:

FLDA:LENGTH references the binary portion only (bytes 1 and 2)

2–10 Programmer Guide

Defining Fields

FLDA:DATA references alphanumeric portion only (bytes 3 - 250)

FLDA references the entire field (bytes 1 through 250)

When you reference the entire field, CA-Easytrieve automatically uses the length
portion of the field when it acts on the field.

Displaying Varying Length Fields

The display “window” for varying length fields is based on the maximum
length. However, the current value of the length portion determines how much
of the data portion is actually displayed in the window.

Normally, the length portion of the field is not displayed. But when DISPLAY
HEX is used, length as well as data are displayed. DISPLAY HEX displays
length and the full data field in hexadecimal and character format. For example:
Statements:

 DEFINE FLDA W 7 A VALUE 'ABCD' VARYING
 JOB INPUT NULL NAME MYPROG
 DISPLAY FLDA
 DISPLAY HEX FLDA
 STOP

Results:

 ABCD
 CHAR ABCD
 ZONE 00CCCC4
 NUMB 0412340

Assigning and Moving Varying Length Fields

Assignments are based on the current length of the data and the rules of
assignment. MOVEs default to the current length of the data. MOVE SPACES
moves blanks according to the maximum possible length of the varying length
field. For example:

Statements:

DEFINE NULLSTRING W 10 A VARYING VALUE ''
DEFINE SENDVAR W 10 A VARYING VALUE '12345678'
DEFINE RECVVAR07 W 7 A VARYING
DEFINE RECVVAR10 W 10 A VARYING
JOB INPUT NULL NAME MYPROG
 RECVVAR10 = NULLSTRING . * ASSIGN NULL STRING TO VARYING
 DISPLAY '1. VALUE=' RECVVAR10 ' LENGTH=' RECVVAR10:LENGTH
 RECVVAR10 = SENDVAR . * ASSIGN 10 BYTE VARYING TO 10 BYTE VARYING
 DISPLAY '2. VALUE=' RECVVAR10 ' LENGTH=' RECVVAR10:LENGTH
 RECVVAR07 = SENDVAR . * ASSIGN 10 BYTE VARYING TO 7 BYTE VARYING
 DISPLAY '3. VALUE=' RECVVAR07 ' LENGTH=' RECVVAR07:LENGTH
 RECVVAR10 = RECVVAR07 . * ASSIGN 7 BYTE VARYING TO 10 BYTE VARYING
 DISPLAY '4. VALUE=' RECVVAR10 ' LENGTH=' RECVVAR10:LENGTH
 MOVE SPACES TO RECVVAR07 . * MOVE SPACES TO 7 BYTE VARYING
 DISPLAY '5. VALUE=' RECVVAR07 ' LENGTH=' RECVVAR07:LENGTH
 STOP

Results:

Coding a CA-Easytrieve Program 2–11

Declaring Screen Item Attributes

1. VALUE= LENGTH=
2. VALUE=12345678 LENGTH= 8
3. VALUE=12345 LENGTH= 5
4. VALUE=12345 LENGTH= 5
5. VALUE= LENGTH= 5

Note: If the sending field has length zero and the receiving field is a VARYING
field, the receiving field has a length of zero. If the sending field has length zero
and the receiving field is not a VARYING field, the receiving field is filled with
the fill character (blank for assigned, blank or specified fill character for MOVE).

Comparing Varying Length Fields

Comparisons of varying length fields are based on the length of the data at the
time of the comparison.

Declaring Screen Item Attributes
You can declare named screen attribute fields using the DECLARE statement.
These declared attributes are different than ordinary fields that you DEFINE.
Screen attributes contain information that controls the display of screen items
such as their color and brightness.

Use of declared attributes provides the ability to dynamically change screen
attributes during program execution, and saves you coding time when the set of
attributes is used many times. Declared attributes can be used as follows:

■ Use the DECLARE statement to name a set of screen attributes you want to
use on multiple screen items.

 For example, it is easier to use a declared attribute containing the INTENSE,
BLUE, and MUSTFILL attributes on multiple items than to code the three
attributes on each item in the screen. Declared attributes can be used in the
ATTR parameter of the DEFAULT, TITLE, and ROW statements.

■ You can use declared attributes to contain a dynamic set of attributes, that is,
you can declare named attributes containing various sets of attributes. To do
this, declare an empty named attribute to use on your ROW statements.
Before displaying the screen, you can assign one of the declared attributes
containing a specific set of attributes into the empty declared attribute. This
allows you to dynamically set the screen attributes of items based on
decisions made during execution.

See the “Screen Processing” chapter for details of the use of screen attributes.

2–12 Programmer Guide

Declaring Input Edit Patterns

Declaring Input Edit Patterns
The DECLARE statement can also be used to declare named input edit patterns.
An input edit pattern allows you to specify a character sequence that describes
the format of the data in the field.

Note: Use a PATTERN to edit complex combinations of data types and
character sequences. Use a MASK to edit numeric data.

These named input patterns can then be used in the PATTERN parameter of
multiple items on ROW statements in a SCREEN activity. CA-Easytrieve
automatically checks input data against the pattern and issues an appropriate
error message to the terminal user if the data does not conform to its specified
PATTERN.

Similar to declared attributes, using a declared pattern requires you to specify
the PATTERN once. Declared patterns can then be used on multiple items on
ROW statements.

See the “Screen Processing” chapter for a complete explanation of patterns.

Declaring Subprogram Linkage
The DECLARE statement can also be used to specify how you want to link a
subprogram. Subprograms can be linked statically with your CA-Easytrieve
program or dynamically loaded.

See Interprograms Linkage later in this chapter for details.

Literal and Data Formatting Rules
You can code the following types of literals in your CA-Easytrieve program:

■ ASCII alphanumeric

■ EBCDIC alphanumeric (mainframe and workstation only)

■ Hexadecimal

■ Double Byte Character Set (DBCS)

■ MIXED format

Coding a CA-Easytrieve Program 2–13

Literal and Data Formatting Rules

CA-Easytrieve processes EBCDIC, ASCII, SBCS, MIXED, and DBCS data
formats, but does not support all the possible relationships that can exist
between these formats. The following topics describe each of the literals listed
above, and explain the format and conversion rules and format relationship rules
for the workstation and on the mainframe.

ASCII and EBCDIC Alphanumeric Literals

Alphanumeric literals are words enclosed within single quotes, and can be 254
characters long. An alphanumeric literal can contain ASCII and EBCDIC
alphabetic characters A through Z, and numeric characters 0 through 9.
Whenever an alphanumeric literal contains an embedded single quote, you must
code two single quotes. For example, the literal O’KELLY is coded as:
'O''KELLY'

Note: ASCII is supported on the workstation and UNIX. EBCDIC is supported
on the mainframe and workstation.

Hexadecimal Literals

Hexadecimal literals are words used to code values that contain characters not
available on standard data entry keyboards. Prefix the hexadecimal literal with
X’ (the letter X and a single quote), and terminate it with a single quote.
CA-Easytrieve compresses each pair of digits that you code within the single
quotes into one character. CA-Easytrieve permits only the digits 0 through 9 and
the letters A through F. The following hexadecimal literal defines two bytes of
binary zeros:
X'0000'

UNIX Data Format

In the UNIX environment, CA-Easytrieve assumes all literals and alphanumeric
data are ASCII and performs no conversion.

Format and Conversion Rules (Workstation Only)

During compilation, CA-Easytrieve converts all literals coded in the source
program into the correct code system and data format (EBCDIC or ASCII) as
dictated by the CA-Easytrieve statement in which they appear. To understand
the process used to determine the correct code system and data format, it is
important to identify the element of each CA-Easytrieve statement that is
interpreted as the subject of that statement. The subject dictates the correct code
system and format type.

2–14 Programmer Guide

Literal and Data Formatting Rules

Each CA-Easytrieve statement has a subject element whose code system and data
format define the code system and data format of all the other elements that
appear on that statement. The following table lists the subject element of those
CA-Easytrieve statements that support the coding of literals. Those that do not
have a subject element are also included. They are indicated by the words not
applicable.

Statement Subject Element

FILE file-name file-name

DEFINE field-name field-name

Assignment - field-name = field-name

IF field-name field-name

CASE field-name field-name

DO WHILE|UNTIL field-name field-name

MOVE not applicable

POINT file-name file-name

CALL program-name field-name

DISPLAY file-name(printer)

REPORT report-name file-name(printer)

HEADING file-name(printer)

TITLE file-name(printer)

LINE file-name(printer)

Format Relationship Rules (Workstation Only)

CA-Easytrieve processes EBCDIC and ASCII data formats, but does not support
all the possible relationships that can exist between these data formats. The
following table defines the relationships CA-Easytrieve supports. CA-Easytrieve
only supports the relationships defined in the table. Compilation errors occur if
you specify any unsupported relationships in your CA-Easytrieve program.

Coding a CA-Easytrieve Program 2–15

Literal and Data Formatting Rules

If a conversion is necessary, the conversion column in the table indicates the
additional processing that applies to get the object into the correct code system
and applicable data format. The letter F means that CA-Easytrieve reformats the
object to meet the requirements of the subject element. This category includes
the reformatting of numeric data into the numeric format of the subject and also
the reformatting from one data format (EBCDIC or ASCII) into the data format of
the subject element. The letter C means that CA-Easytrieve performs a code
system conversion when the code system of the data identified in the object does
not match the code system of the subject element.

2–16 Programmer Guide

Literal and Data Formatting Rules

The workstation format relationships CA-Easytrieve supports are as follows:

Subject Data Format Supported Object Data Format Conversion

 A - EBCDIC Alpha EBCDIC Alpha field
 Zoned Numeric field F
 Packed field F
 Unsigned field F
 Binary field F
 Integer field F
 Hexadecimal literal
 ASCII Fixed Point field F C
 ASCII Alpha field C
 ASCII Alphanumeric literal C
 A - ASCII Alpha ASCII Alpha field
 Zoned Numeric field F
 Packed field F
 Unsigned field F
 Binary field F
 Integer field F
 Hexadecimal literal
 ASCII Fixed Point field F C
 EBCDIC Alpha field C
 EBCDIC Alphanumeric literal C
 N - Zoned numeric Zoned Numeric field
 Packed field F
 Unsigned field F
 Binary field F
 Integer field F
 ASCII Fixed Point field C F
 P - Packed Zoned Numeric field F
 Packed field
 Unsigned field F
 Binary field F
 Integer field F
 ASCII Fixed Point field C F
 U - Unsigned Packed Zoned Numeric field F
 Packed field F
 Unsigned field
 Binary field F
 Integer field F
 ASCII Fixed Point field C F
 B - Binary Zoned Numeric field F
 Packed field F
 Unsigned field F

Coding a CA-Easytrieve Program 2–17

Literal and Data Formatting Rules

Subject Data Format Supported Object Data Format Conversion
 Binary field
 Integer field F
 ASCII Fixed Point field C F
 I - Integer Zoned Numeric field F
 Packed field F
 Unsigned field F
 Binary field F
 Integer field
 ASCII Fixed Point field C F
 F - ASCII fixed Zoned Numeric field F
 point Packed field F
 Unsigned field F
 Binary field F
 Integer field F
 ASCII Fixed Point field

Format and Conversion Rules (Mainframe Only)

During compilation, CA-Easytrieve converts all literals coded in the source
program into the correct DBCS code system and data format (SBCS, MIXED, or
DBCS) as dictated by the CA-Easytrieve statement upon which they appear. To
understand the process used to determine the correct code system and data
format, it is important to identify the element of each CA-Easytrieve statement
that is interpreted as the subject of that statement. The subject that dictates the
correct code system and format type.

Literal Subject Elements (Mainframe)

Each CA-Easytrieve statement has a subject element whose DBCS code system
and data format define the DBCS code system and data format of all the other
elements that appear on that statement.

The following table lists the subject elements of those CA-Easytrieve statements
that support the coding of literals. Those that do not have a subject element are
also included. They are indicated by the words not applicable.

Statement Subject Element

FILE file-name file-name

DEFINE field-name field-name

Assignment - field-name field-name

IF field-name field-name

2–18 Programmer Guide

Literal and Data Formatting Rules

Statement Subject Element

DO WHILE field-name field-name

RETRIEVE WHILE field-name field-name

MOVE not applicable

POINT file-name file-name

CALL program-name not applicable

DISPLAY file-name(printer)

REPORT report-name file-name(printer)

HEADING file-name(printer)

TITLE (report) file-name(printer)

LINE file-name(printer)

SCREEN screen-name terminal

DEFAULT not applicable

KEY terminal

TITLE (screen) terminal

ROW/REPEAT terminal

DBCS Code System and Data Format Literal Rules

Using the identified subject element of each CA-Easytrieve statement, the next
table defines the rules for determining the DBCS code system and data format
for a literal. If a literal is not in the required DBCS code system or data format,
CA-Easytrieve converts the literal to the correct DBCS code system and data
format during compilation.

In the following table, the code ASIS means that the data format (SBCS, MIXED,
or DBCS) of the literal coded in the CA-Easytrieve source is retained by the
CA-Easytrieve compiler (it is not converted).

Statement/
Keyword

Data Format of
Literal

DBCS Code
System of Literal

FILE - EXIT..USING ASIS PROCESSING

DEFINE - HEADING ASIS PROCESSING

IF/DO...WHILE field-name field-name

Assignment field-name field-name

POINT ASIS file-name

Coding a CA-Easytrieve Program 2–19

Literal and Data Formatting Rules

Statement/
Keyword

Data Format of
Literal

DBCS Code
System of Literal

HEADING ASIS file-name(printer)

TITLE (report) ASIS file-name(printer)

LINE ASIS file-name(printer)

KEY ASIS terminal

TITLE (screen) ASIS terminal

ROW ASIS terminal

Format Relationship Rules (Mainframe Only)

CA-Easytrieve processes SBCS, MIXED, and DBCS data formats, but does not
support all the possible relationships that can exist between these data formats.
The following table defines the relationships CA-Easytrieve supports.
CA-Easytrieve does not support the relationships not defined in the table.
Compilation errors occur if you specify them in your CA-Easytrieve program.

If a conversion is necessary, the conversion column in the table indicates the
additional processing that applies to get the Object into the correct DBCS code
system and applicable data format. The letter F means that CA-Easytrieve
reformats the object to meet the requirements of the subject element. This
category includes the reformatting of numeric data into the numeric format of
the subject and also the reformatting from one data format (SBCS, MIXED, or
DBCS) into the data format of the subject element.

2–20 Programmer Guide

Literal and Data Formatting Rules

The mainframe format relationships CA-Easytrieve supports are as follows:

Subject Element Data Format Supported Object Data Format Conversion

 A - SBCS Alpha SBCS Alphabetic field
 SBCS Zoned Numeric field F
 SBCS Packed field F
 SBCS Unsigned Packed field F
 SBCS Binary field F
 SBCS Alphabetic Literal
 SBCS Hexadecimal Literal
 N - Zoned Numeric SBCS Zoned Numeric field
 SBCS Packed field F
 SBCS Unsigned Packed field F
 SBCS Binary field F
 SBCS Numeric Literal
 P - Packed SBCS Zoned Numeric field F
 SBCS Packed field
 SBCS Unsigned Packed field F
 SBCS Binary field F
 SBCS Numeric Literal F
 N - Unsigned Packed SBCS Zoned Numeric field F
 SBCS Packed field
 SBCS Unsigned Packed field F
 SBCS Binary field F
 SBCS Numeric Literal F
 B - Binary SBCS Zoned Numeric field F
 SBCS Packed field F
 SBCS Unsigned Packed field F
 SBCS Binary field
 SBCS Numeric Literal F
 M - Mixed SBCS Alphabetic field
 SBCS Zoned Numeric field F
 SBCS Packed field F
 SBCS Unsigned Packed field F
 SBCS Binary field F
 MIXED field F C
 DBCS/Kanji field F C
 SBCS Alphabetic Literal
 SBCS Numeric Literal F
 SBCS Hexadecimal Literal
 DBCS Format Literal F C
 MIXED Format Literal C
 K - DBCS/Kanji SBCS Alphabetic field
 SBCS Zoned Numeric field F
 SBCS Packed field F

Coding a CA-Easytrieve Program 2–21

Controlling Program Flow

Subject Element Data Format Supported Object Data Format Conversion
 SBCS Unsigned Packed field F
 SBCS Binary field F
 MIXED field F
 DBCS/Kanji field
 SBCS Alphabetic Literal F
 SBCS Numeric Literal F
 SBCS Hexadecimal Literal
 DBCS Format Literal
 MIXED Format Literal F

DBCS Format Literals

DBCS format literals contain DBCS characters only. Enclose a DBCS format
literal within apostrophes. A DBCS format literal can be 254 bytes long,
including the shift codes. An example of a DBCS literal follows:
'[DBDBDBDBDBDB]'

The left bracket ([) and right bracket (]) indicate shift-out and shift-in codes.

MIXED Format Literals

MIXED format literals are words containing both SBCS and DBCS characters.
Enclose MIXED format literals within apostrophes. The presence of shift codes
identifies DBCS subfields. Shift codes also identify the code system of that DBCS
data. The word coded within the apostrophes (including the shift codes) cannot
exceed 254 bytes in length. A MIXED literal is defined in the following example:
'EEEE[DBDBDB]'

The left bracket ([) and right bracket (]) indicate shift-out and shift-in codes.

Controlling Program Flow
You control the flow of execution through your CA-Easytrieve program with the
statements coded within your activities.

2–22 Programmer Guide

Controlling Program Flow

Activities

CA-Easytrieve activities resemble the steps of a batch job, but they are not
constrained by Job Control Language (JCL) and associated operating system
overhead. A CA-Easytrieve program consists of at least one of the four types of
CA-Easytrieve activities: PROGRAM, SCREEN, JOB, and SORT.

A PROGRAM activity is optional, but if used, only one PROGRAM activity can
be coded in a CA-Easytrieve program, and it must be coded before any other
activities. PROGRAM activities can control the entire program. If used, the
PROGRAM activity must EXECUTE the other types of activities when they are to
be initiated. When not coded, there is an implied PROGRAM activity that
initiates other activities as follows:

■ JOB and SORT activities are executed sequentially until a SCREEN activity is
detected.

■ The SCREEN activity is executed.

■ Any remaining activities must be executed by the first SCREEN activity.
Automatic sequential execution does not proceed beyond the first SCREEN
activity.

You can code one or more procedures (PROCs) at the end of each activity.
Procedures are local to the activity after which they are coded. You cannot
PERFORM procedures not associated with the activity in which the PERFORM is
coded.

You can code one or more REPORT or GRAPH subactivities after the PROCs at
the end of each JOB activity. You must code PROCs used within a REPORT
subactivity immediately after the REPORT subactivity in which you use them.

Program Flow

The PROGRAM activity is a simple top-down execution of the statements
contained in it. It is delimited by another activity in the source. PROGRAM
activity execution stops when:

■ The end of the activity is reached

■ A STOP statement is executed in the PROGRAM activity

■ A STOP EXECUTE or TRANSFER statement is executed anywhere in the
program.

When a PROGRAM activity is coded, it is responsible for the execution of other
activities in the program.

Coding a CA-Easytrieve Program 2–23

Controlling Program Flow

Screen Flow

The following shows the basic flow of a SCREEN activity. See the “Screen
Processing” chapter for more information.
 RESET working storage
 [PERFORM INITIATION]
 SCREEN ...
 RESET working storage
 [PERFORM BEFORE-SCREEN]
 1. Build screen using program fields,
 pending messages, and cursor placement
 2. Send the screen
 3. Receive the screen
 4. Edit the input data
 5. Handle automatic actions
 [PERFORM AFTER-SCREEN]
 GOTO SCREEN
 RESET working storage
 [PERFORM TERMINATION]

Job Flow

The following shows the relationship between JOB activity statements and
shows implied statements attributed to JOB.

RESET working storage
[PERFORM start-proc]
JOB ... retrieve automatic input
 IF EOF
 RESET working storage Logic generated by JOB
 [PERFORM finish-proc]
 wrap-up REPORTS and GRAPHS
 return to invoking activity
 END-IF

 IF ...
 PERFORM proc-name
 PRINT report-name JOB activity statements
 DRAW graph-name
 ...
 END-IF

 RESET working storage
 GOTO JOB Implied iteration at end
 of JOB statements
 proc-name. PROC
 ... Optional procedures,
 END-PROC graphs, and reports are
 GRAPH graph-name placed at end of JOB
 REPORT report-name statements
 ...
 JOB/SORT/SCREEN Other activities

CA-Easytrieve processes input records one at a time. You can use any valid
combination of CA-Easytrieve statements to examine and manipulate the input
record. CA-Easytrieve repeats the processing activity until the input is
exhausted or until you issue a STOP statement.

2–24 Programmer Guide

Controlling Program Flow

Sort Flow

The following exhibit illustrates the flow of a SORT activity.

Retrieve first record from input file (file-a) Step 1
 Logic generated by the
DO WHILE NOT EOF file-a SORT statement

 IF BEFORE was specified Step 2
 If BEFORE requested
 IF RESET working storage fields specified Step 3
 reset all RESET working storage fields Re-initialize RESET fields
 PERFORM proc-name Step 4
 Perform the user’s proc
 IF SELECT statement was executed Step 5
 pass record to SORT SELECT executed?
 END-IF pass record to SORT

 ELSE
 Step 6
 pass record to SORT No BEFORE proc,
 pass all to SORT
 END-IF
 Step 7
 Retrieve next record from input file (file-a) Get next record from
 input file
END-DO
 Step 8
Perform SORT process (USING fld1, ...) Actually SORT the
 records

DO WHILE sorted records exist Step 9
 Write sorted record to output file (file-b) Write sorted records to
END-DO output file

proc-name. PROC Step 10
... Optional user-written
 SELECT procedure is placed
... after the SORT
END-PROC

JOB/SORT

Units of Work/Commit Processing

To help you control the integrity of your files, databases, and other resources,
CA-Easytrieve performs commit processing. Commit processing issues commands
to the operating environment signifying the end of one unit of work and the start
of another. These commit points provide a point at which updates are committed
to the operating system. Changes that are not committed can be recovered or
rolled back.

Commit points and rollbacks can be issued automatically by CA-Easytrieve or
you can control this processing yourself.

Coding a CA-Easytrieve Program 2–25

Controlling Program Flow

Automatic Commit Processing

Each CA-Easytrieve activity can be considered a logical unit of work. For each
activity statement, you can code a COMMIT parameter on the PROGRAM, JOB,
SCREEN, and SORT statements to control the way CA-Easytrieve automatically
issues commit points.

There are two times when CA-Easytrieve can automatically issue commit points:

■ Use the ACTIVITY | NOACTIVITY subparameter to indicate whether
CA-Easytrieve issues a commit point during the normal termination of an
activity.

– ACTIVITY - Tells CA-Easytrieve to commit during the activity’s normal
termination process. This is the default for PROGRAM activities, if not
specified.

– NOACTIVITY - Tells CA-Easytrieve not to commit during activity
termination. This is the default for JOB, SCREEN, and SORT activities, if
not specified.

■ Use the TERMINAL | NOTERMINAL subparameter to indicate whether
CA-Easytrieve issues a commit point during each terminal I/O operation
performed in the activity.

– TERMINAL - Tells CA-Easytrieve to commit during each terminal I/O.
This includes terminal I/O for SCREEN activities and also for the Report
Display Facility. In CICS, committing during terminal I/O runs your
program pseudo-conversationally. This is the default, if not specified.

– NOTERMINAL - Tells CA-Easytrieve not to commit during terminal
I/O. In CICS, this runs your program conversationally.

 Note: Once an activity with NOTERMINAL specified starts, all child
activities execute with NOTERMINAL specified for them until the
parent activity terminates.

 Note: When CA-Easytrieve determines that a program has been linked
to, the linked to program always behaves as if NOTERMINAL had been
specified, that is, the child program always executes in fully-
conversational mode. See Interprogram Linkage later in this chapter for
complete details of the LINK statement.

When an activity terminates abnormally, CA-Easytrieve automatically issues a
rollback to recover the updates made since the last commit point.

Note: If you execute a STOP EXECUTE statement in your activity, it is
considered an abnormal termination.

Controlled Commit Processing

2–26 Programmer Guide

Controlling Program Flow

You can issue your own commit points and rollbacks as needed for your
application by using the COMMIT and ROLLBACK statements. These commits
and rollbacks are performed in addition to the commits and rollbacks
automatically issued as a result of the COMMIT parameter on the activity
statement.

Note: Controlled commits have no effect on whether programs run
conversationally or pseudo-conversationally in CICS.

Recoverable Resources

A recoverable resource and the actual processing performed by the execution of
commits and rollbacks is determined by the operating environment in which
CA-Easytrieve is running. Each time a commit point is issued, CA-Easytrieve
causes the following actions to happen:

■ An SQL COMMIT that closes cursors is executed.

■ An IDMS COMMIT or IDMS FINISH is executed. IDMS FINISH statements
end run-units and are used at the end of activities or during terminal I/O.
Following an IDMS FINISH statement, CA-Easytrieve does not
automatically bind the run-unit or re-establish currencies.

■ HOLDs that have been issued are released.

■ Browses of VSAM files are terminated. CA-Easytrieve can generally
reposition the file for you. However, CA-Easytrieve cannot reposition an
INDEXED file where the associated data set is a VSAM PATH and the
auxiliary or secondary index data set was defined with non-unique keys.

■ Browses of UNIX C-ISAM files are terminated. As CA-Easytrieve only
supports files with unique keys, it repositions the file for you.

■ In CICS, printer spool files are closed. CA-Easytrieve automatically defers
opening these files until they are used.

You must provide the necessary logic in your code to handle the above events.

CICS

In the CICS environment, the following resources are generally recoverable:

■ SQL databases

■ VSAM data sets specified as recoverable in their FCT entries

■ CA-IDMS databases

■ IMS/DLI databases.

Coding a CA-Easytrieve Program 2–27

Controlling Program Flow

In CICS, a request for a commit (either automatic or controlled) issues a CICS
SYNCPOINT command. A rollback request issues a CICS SYNCPOINT
ROLLBACK command. A CICS SYNCPOINT ROLLBACK command terminates
the DLI PSB and database positioning is lost. CA-Easytrieve does not
automatically re-schedule the PSB or reposition the DLI database.

When CA-IDMS is available, a request for a controlled commit issues an IDMS
COMMIT command. An automatic commit issues an IDMS FINISH command.
A rollback request issues an IDMS ROLLBACK command. Each time an IDMS
FINISH command is issued, CA-IDMS ends the run-unit. You must provide the
necessary logic in your program to bind a new run-unit and re-establish
currencies as needed.

TSO and CMS

In TSO and CMS, SQL databases are the only recoverable resources. In TSO,
CA-IDMS databases are also recoverable.

When SQL is available, a request for a commit (either automatic or controlled)
issues an SQL COMMIT command. A rollback request issues an SQL
ROLLBACK command.

Each time a commit point is issued, SQL closes all cursors. You must provide the
necessary logic in your program to open and reposition the cursor as needed.
Exceptions can exist for specific SQL databases that maintain cursor positioning
across commits.

For DL/I files, issuing a commit point has no effect. In this case, DL/I
CHECKPOINT and RESTART functions should be used to manage logical units
of work. D/LI files do not lose positioning when a commit point is issued.

When CA-IDMS is available, a request for a controlled commit issues an IDMS
COMMIT command. An automatic commit issues an IDMS FINISH command.
A rollback request issues an IDMS ROLLBACK command. Each time an IDMS
FINISH command is issued, CA-IDMS ends the run-unit. You must provide the
necessary logic in your program to bind a new run-unit and re-establish
currencies as needed.

Workstation

Generally, resources are not recoverable on the workstation. Updates are
applied to the file immediately and cannot be rolled back. Commit processing
does have an impact, however, on locks held on INDEXED file records when
executing in a multi-user environment such as a Local Area Network (LAN). See
Hold/Release Processing in the “File Processing” chapter for details of how and
when CA-Easytrieve issues holds.

2–28 Programmer Guide

Controlling Program Flow

When SQL is available, a request for a commit (either automatic or controlled)
issues an SQL COMMIT command. A rollback request issues an SQL
ROLLBACK command. Each time a commit point is issued, SQL closes all
cursors. You must provide the necessary logic in your program to open and
reposition the cursor as needed.

When CA-IDMS is available, a request for a controlled commit issues an IDMS
COMMIT command. An automatic commit issues an IDMS FINISH command.
A rollback request issues an IDMS ROLLBACK command. Each time an IDMS
FINISH command is issued, CA-IDMS ends the run-unit. You must provide the
necessary logic in your program to bind a new run-unit and re-establish
currencies as needed.

UNIX

In the UNIX environment, SQL, CA-IDMS, and C-ISAM are recoverable
resources.

When SQL is available, a request for a commit (either automatic or controlled)
issues an SQL COMMIT command. A rollback request issues an SQL
ROLLBACK command. Each time a commit point is issued, SQL closes all
cursors. You must provide the necessary logic in your program to open and
reposition the cursor as needed.

When CA-IDMS is available, a request for a controlled commit issues an IDMS
COMMIT command. An automatic commit issues an IDMS FINISH command.
A rollback request issues an IDMS ROLLBACK command. Each time an IDMS
FINISH command is issued, CA-IDMS ends the run-unit. You must provide the
necessary logic in your program to bind a new run-unit and re-establish
currencies as needed.

When C-ISAM is available, a request for a commit, either automatic or
controlled, issues a call to iscommit. A rollback request issues a call to isrollback.
Each time a commit point is issued, CA-Easytrieve closes and reopens all active
C-ISAM files. Files are then repositioned upon the next browse operation.

Decision and Branching Logic

CA-Easytrieve uses certain statements to control the execution of your program
by means of decision and branching logic. These statements can govern a
program’s execution flow depending on the truth value of the conditional
expressions. The following statements are associated with decision and
branching logic:

CASE IF
DO GOTO
EXECUTE PERFORM

Coding a CA-Easytrieve Program 2–29

Controlling Program Flow

PROC STOP
EXIT REFRESH
RESHOW

Conditional Expressions

Conditional expressions used as parameters of IF and DO statements offer an
alternative to the normal top to bottom execution of CA-Easytrieve statements.
The syntax of a conditional expression is:
{IF } [{AND}]
{DO WHILE} condition [{ } condition]...
{DO UNTIL} [{OR }]

CA-Easytrieve accepts seven different conditions. There are five simple
conditions (having at most two operands) and two extended conditions (having
potentially an unlimited number of operands):

Simple Conditions Extended Conditions

Field Relational Field Series

Field Class File Relational

Field Bits

File Presence

Record Relational

The following are skeletal examples of each type of conditional expression used
in an IF statement:

Type Example

Field Relational IF field-1 = field-2

Field Series IF field-1 = field-2, field-3, field-4

Field Class IF field-1 ALPHABETIC

Field Bits IF field-1 ON X'0F4000'

File Presence IF EOF file-name

File Relational IF MATCHED file-1, file-2, file-3

Record Relational IF DUPLICATE file-name

See the CA-Easytrieve Language Reference Guide for more information on each of
these conditional expressions.

2–30 Programmer Guide

Assignments and Moves

Double Byte Character Set Support

The following conditions provide support for DBCS and MIXED fields:

■ Field Relational

■ Field Series

■ Field Class

■ Field Bits

As with the data equations, when conversion from EBCDIC to DBCS format is
part of the conditional expression, CA-Easytrieve converts the EBCDIC data
using the technique defined below:

■ CA-Easytrieve converts lower case EBCDIC values into the applicable DBCS
Katakana characters.

■ CA-Easytrieve converts other valid EBCDIC characters into their equivalent
English values.

■ CA-Easytrieve converts invalid EBCDIC values into DBCS spaces.

Combined Conditions

Any of these conditions, simple and extended, can be combined using the logical
connectors AND or OR in any combination.

In the case of combined conditions, those connected by AND are evaluated first.
The connected condition is true only if all of the conditions are true. The
conditions connected by OR are then evaluated. The combined condition is true
if any of the connected conditions are true. You can use parentheses to override
the normal AND/OR relationships. The following table illustrates the results of
combining conditions with AND, OR, and parentheses. The values x, y, and z
represent any condition.

 x y z x OR x AND x OR (x OR y)
 y OR z y AND z y AND z AND z

True True True True True True True
True True False True False True False
True False True True False True True
True False False True False True False
False True True True False True True
False True False True False False False
False False True True False False False
False False False False False False False

Assignments and Moves
The Assignment statement establishes the value of a field as a result of simple
data movements, an arithmetic expression, or logical bit manipulation. If
necessary, data is converted to the correct format depending on field type.

Coding a CA-Easytrieve Program 2–31

Assignments and Moves

■ An arithmetic expression produces a numeric value by adding, subtracting,
multiplying, or dividing numeric quantities.

■ The MOVE statement transfers, without conversion, character strings from
one storage location to another.

■ The MOVE LIKE statement copies fields with identical field names from one
file to another. Assignments are generated for each field moved. Because
assignments are used, the MOVE LIKE statement converts data to the correct
format of the receiving field if necessary.

Arithmetic Expressions

To fully understand how an Assignment establishes the value of a field as a
result of an arithmetic expression, you need to know how arithmetic expressions
work within CA-Easytrieve. An arithmetic expression allows two or more
numeric quantities to be combined to produce a single value. Arithmetic
expressions can be used in Assignment statements and in field relational
conditions.

Operators

The arithmetic operators used in CA-Easytrieve are:

Symbol Operation

 * multiplication

 / division

 + addition

 - subtraction

All fields and literals in an arithmetic expression must be numeric.
CA-Easytrieve follows the standard mathematical order of operations when
computing arithmetic expressions: multiplication and division are performed
before addition and subtraction, in order from left to right.

2–32 Programmer Guide

Assignments and Moves

The following exhibit illustrates how CA-Easytrieve evaluates arithmetic
expressions:
 11 + 5 * 8 - 48 / 16 + 4 Step 1
 └─── ───┘

 11 + 40 - 48 / 16 + 4 Step 2
 └──── ────┘

 11 + 40 - 3 + 4 Step 3
└──── ──────┘

 51 - 3 + 4 Step 4
 └─────────── ────────┘

 48 + 4 Step 5
 └──────── ──────────┘
 52

Parentheses

You can use parentheses to override the normal order of evaluation. Any level
of parenthesis nesting is allowed. CA-Easytrieve evaluates expressions within
parentheses first, proceeding from innermost parenthesis level to the outermost.

The following exhibit illustrates how CA-Easytrieve evaluates parentheses found
within arithmetic expressions:
 11 + 5 * ((8 - 48) / 16 + 4) Step 1
 └──── ──────┘

 11 + 5 * (-40 / 16 + 4) Step 2
 └─────────── ─────┘

 11 + 5 * (-2.5 + 4) Step 3
 └──────────────── ────┘

 11 + 5 * 1.5 Step 4
 └─────────── ──────────────┘

 11 + 7.5 Step 5
└───────── ───────────┘
 18.5

Evaluations

When evaluating an arithmetic expression, CA-Easytrieve maintains at most 30
decimal digits for each operation. During the calculation of:
 {*}
 {= } {/}
field-name-1 { } value-1 { } value-2
 {EQ} {+}
 {-}

Coding a CA-Easytrieve Program 2–33

Assignments and Moves

the length and number of decimal places maintained during the calculation
(intermediate results) is determined for each operation according to the rules
shown in the following table.

If operation is: The number of decimal places equals:

Addition or
Subtraction

Decimal places — The larger of the number of decimal
places in value-1 or value-2.

Length — The larger of the number of integer places in
value-1 or value-2, plus the number of decimal places in
result plus 1.

Multiplication Decimal places — The sum of the number of decimal places
in value-1 and value-2.

Length — The sum of the length of value-1 and value-2.

Division Decimal places — The larger of:
a) The number of decimal places in value-1 minus the
number of decimal places in value-2.

b) The number of decimal places in field-name-1 plus one.

c) 4 decimal places.

Length — The number of integer places in value-1 plus the
number of decimal places in the result.

If the length of the intermediate result has more than 30 digits, CA-Easytrieve
must truncate the excess digits. For addition, subtraction, and division, the
excess digits are always truncated from the left side of the result.

For multiplication, however, CA-Easytrieve first attempts to do the truncation on
the right side of the result. The minimum number of decimal places to be
maintained in the result is the larger of:

■ The number of decimal places in field-name-1 plus one, or

■ Four decimal places.

If the number of decimal places in the result is less than or equal to this
minimum, no digits are truncated from the right side of the result. Otherwise,
the number of digits truncated from the right is the smaller of:

■ The number of excess digits

Or:

■ The difference between the number of decimal places in the result and the
minimum.

2–34 Programmer Guide

Assignments and Moves

When truncation occurs on the right, both the length and number of decimal
places in the result are reduced by the number of digits truncated. If there are
still excess digits after right truncation, these excess digits are truncated from the
left.

For example, assume that value-1 and value-2 both have a length of 18 digits and
both have 4 decimal places. Then, according to the previous rules table, the
result has a length of 36 digits and 8 decimal places. In this case, the number of
excess digits is 6. Then, for various values of the number of decimal places in
field-name-1, the result is truncated as shown in the next table:

Decimal places in
field-name-1

Digits truncated on (right)
(on left)

Decimal places in
result

fewer than 2 6 0 4

2 5 1 4

3 4 2 4

4 3 3 5

5 2 4 6

6 1 5 7

more than 6 0 6 8

Assignment Statement

The Assignment statement establishes a value in a field. The value can be a copy
of the data in another field or literal, or it can be the result of an arithmetic or
logical expression evaluation.

The two formats of the Assignment statement are:

Format 1 Syntax (Normal Assignment)
 {= } {send-field-name }
 receive-field-name { } {send-literal }
 {EQ} {arithmetic-expression}

Format 2 Syntax (Logical Expression)
 {= } {AND} {bit-mask-field-name}
 receive-field-name { } send-field-name {OR } {bit-mask-literal }
 {EQ} {XOR} { }

Coding a CA-Easytrieve Program 2–35

Assignments and Moves

EBCDIC To DBCS Conversion (Mainframe Only)

When conversion from EBCDIC to Double Byte Character Set format is required
for the Assignment statement, CA-Easytrieve converts the EBCDIC data using
the techniques defined below:

■ Converts lower case EBCDIC values into the applicable DBCS Katakana
characters.

■ Converts other valid EBCDIC characters into their equivalent English values.

■ Converts invalid EBCDIC values into DBCS spaces.

Format 1 (Normal Assignment)

Format 1 sets the value of receive-field-name equal to the value of send-field-name,
send-literal, or the arithmetic expression. The rules of the statement are shown in
the following table:

Receive-field-name
(Left-hand side)

Send-field-name
(Right-hand side)

Resulting Value

Alphanumeric field Alphabetic field Resulting value of receive-field-name is padded on right
with spaces or truncated as necessary.

 Numeric field Resulting value of receive-field-name is the zoned
decimal equivalent of send-field-name with padding or
truncation on left as necessary. Assignment of numeric
fields to varying alphanumeric fields is not allowed.

 Alphanumeric or
hexadecimal literal

Resulting value of receive-field-name is padded on right
with spaces as necessary.

Alphanumeric or
hexadecimal field

MIXED field Each byte of send-literal is moved to receive-field-name
unaltered. The resulting value of receive-field-name is
padded on right with EBCDIC spaces.

2–36 Programmer Guide

Assignments and Moves

Receive-field-name
(Left-hand side)

Send-field-name
(Right-hand side)

Resulting Value

Numeric field Numeric field,
literal, or arithmetic
expression

Result is padded on left with zeros to fit the description
of receive-field-name. If the value of the assignment is
too large to be stored in receive-field-name, it is truncated
as follows:

■ For Binary numbers (numbers expressed in Two's
Complement form), the sign and high order bits are
truncated from left as necessary, and the remaining
left-most bit becomes the new sign.

■ For Zoned Decimal, Packed Decimal, and Unsigned
Packed Decimal numbers (numbers expressed in
Sign-Magnitude form), the high order digits are
truncated from left as necessary. The result is
truncated on right if the number of decimal places
in receive-field-name is less than the right-hand side.

DECLARed attribute
field

DECLARed attribute
field

Receive-field name is replaced with the attributes
contained in send-field-name.

Nullable field NULL field Indicator for receive-field-name set to 1 (indicates NULL).

 Not NULL field The assignment works as usual and the indicator for
receive-field-name is set to 0, indicating NOT NULL.

 Literal Indicator for receive-field-name is set to 0.

 Arithmetic
expression with any
NULL operand

A runtime error occurs.

 Arithmetic
expression in which
all operands are
NOT NULL

Indicator for receive-field-name is set to 0.

Not nullable field NULL field A runtime error occurs.

DBCS field DBCS field Send-field-name is converted into the DBCS code
system of receive-field-name. The resulting value of
receive-field-name is padded on right with DBCS spaces
or truncated on right as necessary.

 MIXED field Each EBCDIC byte of send-field-name is converted into
its equivalent DBCS value. Any DBCS data identified
by shift codes is converted to the DBCS code system of
receive-field-name. The shift codes are then removed.
The resulting value of receive-field-name is padded on
right with DBCS spaces or truncated on right as
necessary.

Coding a CA-Easytrieve Program 2–37

Assignments and Moves

Receive-field-name
(Left-hand side)

Send-field-name
(Right-hand side)

Resulting Value

 Alphabetic field Each byte of send-field-name is converted into its
equivalent DBCS value and the resulting value is stored
in receive-field-name. The resulting value of
receive-field-name is padded on right with DBCS spaces
or truncated on right as necessary.

 Numeric, packed, or
binary field

Resulting value of receive-field-name is zoned decimal
equivalent of send-field-name with each byte converted
into the DBCS equivalent. Before the conversion, the
result is padded on left with DBCS zeros, or truncated
on left.

 DBCS literal Resulting value of receive-field-name is padded on right
with DBCS spaces or truncated on right as necessary.

DBCS Field Alphanumeric or
hexadecimal literal

Each byte of send-literal is converted into its equivalent
DBCS value and the result is stored in receive-field-name.
Resulting value of receive-field-name is padded on right
with DBCS spaces or truncated on right as necessary.

MIXED field DBCS field Send-field-name is converted into the DBCS code system
of receive-field-name. The shift codes defined for the
code system of receive-field-name are added and the
resulting value is padded on right with EBCDIC spaces
or truncated on right as necessary. When truncation
occurs, DBCS characters are not split. Truncation is to
the nearest double byte.

 MIXED field The EBCDIC data in send-field-name is moved unaltered
to receive-field-name. The DBCS data identified by shift
codes is converted to the DBCS code system of
receive-field-name. The shift codes are also converted to
meet the requirements of that code system. The
resulting value of receive-field-name is padded on right
with EBCDIC spaces or truncated on right as necessary.
When truncation occurs within the DBCS portion of a
field, DBCS characters are not split. Truncation is to the
nearest double byte.

 Alphabetic field Each byte of send-field-name is moved unaltered to
receive-field-name. The resulting value of
receive-field-name is padded on right with EBCDIC
spaces or truncated on right as necessary.

 Numeric, packed, or
binary field

Resulting value of receive-field-name is the zoned
decimal equivalent of send-field-name with padding or
truncation on left, if necessary.

2–38 Programmer Guide

Assignments and Moves

Receive-field-name
(Left-hand side)

Send-field-name
(Right-hand side)

Resulting Value

 DBCS literal Send-field-name is converted into the code system of
receive-field-name and the correct shift codes are added.
The result is padded on right with EBCDIC spaces.

Examples

The following examples of Format 1 of the Assignment statement illustrate its
various rules:
Format 1 (Normal Assignment, receive-field-name alphanumeric)
Statements:

F1A W 4 A
F2A1 W 1 A VALUE 'A'
F2A2 W 6 A VALUE 'ABCDEF'
F2N1 W 2 N VALUE 12
F2N2 W 3 P 1 VALUE 1234.5
 ...

Resulting Value:

F1A = F2A1 'A '
F1A = F2A2 'ABCD'
F1A = F2N1 '0012'
F1A = F2N2 '2345'
F1A = X'FF' X'FF404040'

Note: For an example using varying length alphanumeric fields, see Field
Definition earlier in this chapter.
Format 1 (Normal Assignment, receive-field-name numeric)
Statements:

DEFINE F1N W 4 N 1
DEFINE F2N1 W 4 N 1 VALUE 1
DEFINE F2N2 W 4 N 1 VALUE 2
DEFINE F2N3 W 4 N 1 VALUE 3
JOB INPUT NULL NAME MYPROG
 F1N = F2N1 + F2N2 + F2N3
 DISPLAY SKIP 2 +
 'F1N = F2N1 + F2N2 + F2N3 = ' F1N
 F1N = F2N1 + F2N2 / F2N3
 DISPLAY SKIP 2 +
 'F1N = F2N1 + F2N2 / F2N3 = ' F1N
 F1N = (F2N1 + F2N2) / F2N3
 DISPLAY SKIP 2 +
 'F1N = (F2N1 + F2N2) / F2N3 = ' F1N
 F1N = ((F2N1 / F2N2) * 100) + .5
 DISPLAY SKIP 2 +
 'F1N = ((F2N1 / F2N2) * 100) + .5 = ' F1N
 STOP

Coding a CA-Easytrieve Program 2–39

Assignments and Moves

Results:
 Resulting
 Value

 F1N = F2N1 + F2N2 + F2N3 = 6.0
 (1 + 2 + 3)

 F1N = F2N1 + F2N2 / F2N3 = 1.6
 (1 + 2 / 3)
 (1 + 0.6666)

 F1N = (F2N1 + F2N2) / F2N3 = 1.0
 ((1 + 2) / 3)
 (3 / 3)

 F1N = ((F2N1 / F2N2) * 100) + .5 = 50.5
 ((1 / 2) * 100) + .5
 ((0.5 * 100) + .5)
 (50 + .5)

Format 2 (Logical Expression)

Format 2 of the Assignment statement sets the value of receive-field-name equal to
the result of evaluating a logical expression. The value of send-field-name is
logically acted upon by the value of bit-mask-field-name or bit-mask-literal. The
lengths of all values must be the same and bit-mask-literal must be hexadecimal.

■ AND - Zero bits in bit-mask-field-name or bit-mask-literal are carried forward
to send-field-name and the result is placed in receive-field-name.

■ OR - One bits in bit-mask-field-name or bit-mask-literal are carried forward to
send-field-name and the result is placed in receive-field-name.

■ XOR - Corresponding bits of bit-mask-field-name or bit-mask-literal, and
send-field-name must be opposite (zero and one) to result in a one bit in
receive-field-name.

Rules for Varying Length Fields

1. Receive-field-name and send-field-name must both be varying length fields or
fixed length fields.

2. Bit-mask-field-name must be a fixed length field.

3. If receive-field-name is a varying length field, the length of its data portion
must be equal to the length of the data portion of send-field-length and the
length of bit-mask-field-name or bit-mask-literal.

Rules for Nullable Fields

The rules for nullable fields are shown in the following table:

Receive-field-name
(Left-hand side)

Send-field-name
(Right-hand side)

Resulting Value

2–40 Programmer Guide

Assignments and Moves

Nullable field Nullable field but not
NULL

The receiving field’s indicator is set to 0, indicating
NOT NULL.

 Not a nullable field The receiving field’s indicator is set to 0, indicating
NOT NULL.

Not nullable field NULL field A runtime error occurs.

Example

The following example of Format 2 of the Assignment statement illustrates its
various rules:

Format 2 (Logical Expression Evaluation) Statements:

DEFINE F1P W 2 P MASK HEX
DEFINE F2P W 2 P VALUE X'123D'
JOB INPUT NULL NAME MYPROG
 F1P = F2P AND X'FFFE'
 DISPLAY SKIP 2 +
 'F1P = F2P AND X''FFFE'' = ' F1P
 F1P = F2P OR X'000F
 DISPLAY SKIP 2 +
 'F1P = F2P OR X''000F'' = ' F1P
 F1P = F2P XOR X'FFFF'
 DISPLAY SKIP 2 +
 'F1P = F2P XOR X''FFFF'' = ' F1P
 F1P = F2P XOR F2P
 DISPLAY SKIP 2 +
 'F1P = F2P XOR F2P = ' F1P
STOP

Results:
 Resulting
 Value
 F1P = F2P AND X'FFFE' = 123C

 F1P = F2P OR X'000F' = 123F

 F1P = F2P XOR X'FFFF' = EDC2

 F1P = F2P XOR F2P = 0000

MOVE Statement

MOVE transfers characters from one storage location to another. It is used for
moving data without conversion and for moving variable length data strings.
The following table illustrates the rules of the MOVE statement regarding
nullable fields:

Receive-field-name
(Left-hand side)

Send-field-name
(Right-hand side)

Resulting Value

Nullable field Send-field name that is not
nullable

Receiving field’s indicator is set to 0, indicating
NOT NULL.

Coding a CA-Easytrieve Program 2–41

Table Processing

 Literal Receiving field’s indicator is set to 0, indicating
NOT NULL.

 Send-field-name that is
nullable

The receiving field’s indicator is set to -1 if the
sending field is NULL, or if it is NOT NULL.

Not nullable field NULL field A runtime error occurs.

MOVE LIKE Statement

MOVE LIKE moves the contents of fields with identical names from one file to
another. Data movement and conversion follow the rules of the Assignment
statement.

Table Processing
A table is a collection of uniform data records that presents unique processing
opportunities. All tables have two parts:

1. The argument uniquely identifies a table entry.

2. The description is the remainder of the table entry.

Some typical examples of table usage include organization structures, parts lists
for assembly processes, and accounting chart-of-accounts.

The search of CA-Easytrieve table files is extremely efficient. Therefore, table use
is recommended for applications that need to validate encoded data and/or
retrieve code description.

Defining Tables

There are two types of tables that can be specified on the FILE statement:

1. Instream - (specified by the INSTREAM subparameter on the TABLE
parameter) directs CA-Easytrieve to look for table data within the program
immediately following the definition of the ARG and DESC fields for the
file. This table is established at the time the program is compiled. Its size is
limited only by the amount of available memory.

2. External - (INSTREAM is not specified) indicates that the table is located in a
file external to the program. This file must be sequentially accessible. An
external table is established just before use.

2–42 Programmer Guide

Table Processing

An external table can be:

■ An existing file that is in ascending order by its search argument

■ Created by specifying the name of the table as the TO file-name parameter in
a SORT activity.

External tables that are also INDEXED files result in a random read to the file
using the search argument as the key. This results in added efficiency.

All data needed to create small tables (to be processed by the SEARCH
statement) can be entered instream along with CA-Easytrieve statements; that is,
the table data can immediately follow the library definition statements for the
table. The data is delimited by the ENDTABLE statement in the first eight
positions of a record.

Instream table data is 80 characters per record and is unaffected by the
SCANCOL options. All characters between the ARG and DESC definitions and
the ENDTABLE delimiter are treated as data.

Note: An instream table can be retrieved from a macro file. However, the macro
must contain the entire table definition (FILE statement through ENDTABLE).

The following illustrates a table-of-days definition:
FILE DAYTABL TABLE INSTREAM
 ARG 1 1 A. DESC 3 9 A
1 SUNDAY }
2 MONDAY }
 ... } (instream data)
7 SATURDAY }
ENDTABLE }

The only way to modify an instream table is to recompile the program after
supplying new table data. However, you can modify external tables without
program change because CA-Easytrieve builds these tables dynamically prior to
each use.

All tables must be sorted in ascending order by their search argument. No
duplicate search arguments are allowed. Table sequence is validated as the table
is created.

The only fields defined for table files are ARG (argument) and DESC
(description). ARG defines the field used when searching the table. DESC
defines the field which contains the desired information. The maximum length
for an alphanumeric ARG or DESC field is 254 bytes.

The following illustrates a typical table file description. The resulting table
provides descriptions of a hypothetical high school curriculum:
1011 ENGLISH I }
1012 ENGLISH II } records from
 ... } CLASSES file
 ... }

Coding a CA-Easytrieve Program 2–43

Array Processing

9712 HOME ECONOMICS }

FILE CLASSES TABLE (150)...
 ARG 1 4 A. DESC 10 40 A |

Searching Tables

The SEARCH statement provides access to table information. You can code
SEARCH statements any place within a PROGRAM, SCREEN, or JOB activity,
and issue any number of SEARCHes against any number of tables. To test the
success of the SEARCH, use the file presence test: IF [NOT] file-name.

The following illustrates the retrieval of high school class descriptions based
upon class identification codes:

 Statements:
 DEFINE CODE W 4 A
 DEFINE DESCRIPTION W 40 A
 FILE CLASSES TABLE INSTREAM
 ARG 1 4 A
 DESC 10 40 A
 1011 ENGLISH I
 1012 ENGLISH II
 1013 ENGLISH III
 1014 ENGLISH IV
 ENDTABLE
 PROGRAM NAME MYPROG
 MOVE '1012' TO CODE
 SEARCH CLASSES WITH CODE, GIVING DESCRIPTION
 IF CLASSES
 DISPLAY DESCRIPTION
 ELSE
 DISPLAY 'CLASS NOT FOUND'
 END-IF

 Result:
 ENGLISH II

Array Processing
An array is a series of consecutive memory locations in one or more dimensions.
You can process identical elements in arrays by using either index manipulation
or subscripting.

2–44 Programmer Guide

Array Processing

Bounds Checking

CA-Easytrieve automatically checks that indexes and subscripts do not reference
data outside the storage boundary of the field being referenced. If your index or
subscript is “out of bounds,” an execution error occurs. Subscripts are checked
to ensure that they are within the OCCURS value of the field’s definition.
Indexes are checked to ensure that the reference is within the largest enclosing
data structure. For file fields, this structure is the file buffer. For working
storage fields, this is the defined field, or the base field if the defined field is a
redefinition.

On the workstation, bounds checking can have an impact on the performance of
your program. See Coding an Efficient CA-Easytrieve Program later in this
chapter for information on coding for optimum performance.

Indexing

Any data field definition can contain the INDEX attribute. An index can be used
to reference data fields that occur multiple times. If you do not use an index, you
must either use subscripts or assign individual field names to multiple field
occurrences.

The data field’s starting location is adjusted by the contents of its indexes to
determine the desired field occurrence. The INDEX index-name value is set to:
(desired occurrence number - 1) * (length of element)

Single Dimension Arrays

The following one-dimensional array is typical of those found in most programs.
Data definition is straightforward. The value of MONTH-INDEX controls access
to the desired data occurrence, MONTH.

 Statements:

 DEFINE ARRAY-ELEMENT W 2 N
 DEFINE MONTHS W 120 A VALUE +
 'JANUARY +
 FEBRUARY +
 MARCH +
 APRIL +
 MAY +
 JUNE +
 JULY +
 AUGUST +
 SEPTEMBER +
 OCTOBER +
 NOVEMBER +
 DECEMBER '
 DEFINE MONTH MONTHS 10 A +
 OCCURS (12) INDEX (MONTH-INDEX)
 JOB INPUT NULL NAME MYPROG
 ARRAY-ELEMENT = 11
 MONTH-INDEX = (ARRAY-ELEMENT - 1) * 10
 DISPLAY MONTH

Coding a CA-Easytrieve Program 2–45

Array Processing

 STOP

 Results:

 NOVEMBER

Since MONTH is 10 bytes long, the following relationships are true:

ARRAY-ELEMENT is MONTH-INDEX is DATA OCCURRENCE
is

 1 0 JANUARY

 2 10 FEBRUARY

 3 20 MARCH

...

12 110 DECEMBER

Multiple Dimension Arrays

Multiple dimension arrays can be defined in two different ways:

■ Define a single field with multiple indexes.

■ Index a re-defining field, as well as the parent field.

The following table illustrates two arrays which are identical in size and usage,
but are defined very differently

MONTH-
INDEX-1

MONTH-INDE
X-2

MONTH ROW-
INDEX-1

COL-
INDEX-2

MONTH-
CELL

0 0 JANUARY 0 0 JANUARY

0 10 FEBRUARY 0 10 FEBRUARY

0 20 MARCH 0 20 MARCH

30 0 APRIL 30 0 APRIL

30 10 MAY 30 10 MAY

30 20 JUNE 30 20 JUNE

60 0 JULY 60 0 JULY

60 10 AUGUST 60 10 AUGUST

60 20 SEPTEMBER 60 20 SEPTEMBER

90 0 OCTOBER 90 0 OCTOBER

2–46 Programmer Guide

Array Processing

90 10 NOVEMBER 90 10 NOVEMBER

90 20 DECEMBER 90 20 DECEMBER

In both cases, the sum of the indices determines which data occurrence is
referenced. Both MONTH and MONTH-CELL are ten-character fields with two
indexes. Both fields also occur twelve times. MONTH-INDEX-1 and
ROW-INDEX, and MONTH-INDEX-2 and COL-INDEX are considered similar
indexes.

You can define and access arrays of more than two dimensions by a simple
extension of the following examples.

Defining a Field with Multiple Indexes
Statements:

DEFINE QUARTER-ROW W 2 N
DEFINE MONTH-COL W 2 N
DEFINE MONTHS W 120 A VALUE +
 'JANUARY +
 FEBRUARY +
 MARCH +
 APRIL +
 MAY +
 JUNE +
 JULY +
 AUGUST +
 SEPTEMBER +
 OCTOBER +
 NOVEMBER +
 DECEMBER '
DEFINE MONTH MONTHS 10 A OCCURS (12) +
 INDEX (MONTH-INDEX-1, MONTH-INDEX-2)
JOB INPUT NULL NAME MYPROG
 QUARTER-ROW = 4
 MONTH-COL = 2
 MONTH-INDEX-1 = (QUARTER-ROW - 1) * 30
 MONTH-INDEX-2 = (MONTH-COL - 1) * 10
 DISPLAY MONTH
 STOP

JANUARY FEBRUARY MARCH

APRIL MAY JUNE <── Quarter-Row
JULY AUGUST SEPTEMBER <── Quarter-Row
OCTOBER NOVEMBER DECEMBER <── Quarter-Row

 ↑ ↑ ↑
 M M M
 O O O
 N N N
 T T T
 H H H
 - - -
 C C C
 O O O
 L L L

Result:

 NOVEMBER

Coding a CA-Easytrieve Program 2–47

Array Processing

Redefining a Field, Giving each Field Its Own Index
Statements:

DEFINE QUARTER-ROW W 2 N
DEFINE MONTH-COL W 2 N
DEFINE MONTHS W 120 A VALUE +
 'JANUARY +
 FEBRUARY +
 MARCH +
 APRIL +
 MAY +
 JUNE +
 JULY +
 AUGUST +
 SEPTEMBER +
 OCTOBER +
 NOVEMBER +
 DECEMBER '
DEFINE MONTH MONTHS 10 A +
 OCCURS (12)
DEFINE MONTH-ROW MONTH 30 A, +
 OCCURS 4, INDEX (ROW-INDEX)
DEFINE MONTH-COLS MONTH-ROW 10 A, +
 OCCURS 3, INDEX (COL-INDEX)
DEFINE MONTH-CELL MONTH-COLS 10 A
JOB INPUT NULL NAME MYPROG
 QUARTER-ROW = 4
 MONTH-COL = 2
 ROW-INDEX = (QUARTER-ROW - 1) * 30
 COL-INDEX = (MONTH-COL - 1) * 10
 DISPLAY MONTH-CELL
 STOP

JANUARY
(month-cell)

FEBRUARY
(month-cell)

MARCH
(month-cell)

<── Month-Row

APRIL MAY JUNE <── Month-Row
JULY AUGUST SEPTEMBER <── Month-Row
OCTOBER NOVEMBER DECEMBER <── Month-Row

 ↑ ↑ ↑
 M M M
 O O O
 N N N
 T T T
 H H H
 - - -
 C C C
 O O O
 L L L
 S S S

 Results:

 NOVEMBER

Subscripts

Subscripts are an alternate method available to select an individual element from
an array. A subscript is an integer (or a field containing an integer) that
represents the occurrence number of the element within the array to be
referenced. CA-Easytrieve computes the index value for you.

You can use subscripts with a field name in the following manner:

2–48 Programmer Guide

Array Processing

[file-name:] field-name (subscript ...)

The following restrictions apply to the use of subscripts:

■ A subscript must be a field name or a literal. An arithmetic expression
cannot be coded for a subscript.

■ A subscript’s value must be a positive integer, no greater than the value
specified for the OCCURS parameter of the DEFINE statement for field-name.

■ You cannot subscript a field name used as a subscript.

■ An indexed field cannot be used as a subscript.

Subscripting a One-Dimensional Array

A one-dimensional array is defined just as it would be if indexing were to be
used. Referring to the Single Dimension Array shown earlier, the following table
illustrates the relationship between the array element and the corresponding
array element value:

ELEMENT is VALUE is

MONTH(1) JANUARY

MONTH(2) FEBRUARY

MONTH(3) MARCH

... ...

MONTH(12) DECEMBER

For this array the maximum value that can be specified for the occurrence
number is 12.

Subscripting a Two-Dimensional Array

A two-dimensional array is somewhat more complicated. To define a
two-dimensional array, you must define the length and number of occurrences
of each dimension. The following illustrates this:
DATA W 30 A VALUE 'AA+
 BB+
 CC+
 ...
 00'
ROW DATA 10 A OCCURS 3
COLUMN ROW 2 A, OCCURS 5
ELEMENT COLUMN 2 A

Coding a CA-Easytrieve Program 2–49

Array Processing

This illustration defines a two-dimensional array (ELEMENT) with three rows
and five columns, each occurrence of which is an alphabetic field of two
characters. The first dimension (ROW) is defined as having three occurrences.
The second dimension (COLUMN) is defined as having five occurrences. The
length of the first dimension (ROW) must be the length of the second dimension
(COLUMN) times the number of occurrences of the second dimension
(COLUMN).

The next table illustrates the relationship between the array element and the
corresponding array element value:

ELEMENT is VALUE is

ELEMENT(1,1) AA

ELEMENT(1,2) BB

ELEMENT(1,3) CC

ELEMENT(1,4) DD

ELEMENT(1,5) EE

ELEMENT(2,1) FF

... ...

ELEMENT(3,5) OO

Subscripting a Three-Dimensional Array

A three-dimensional array is a simple extension of a two-dimensional array. To
define a three-dimensional array, you define the length and number of
occurrences of each dimension (as you did for a two-dimensional array). The
only difference is that you add the definition of a third dimension
(MONTH-LET). This third dimension permits you to easily select individual
positions within a cell in the array.

2–50 Programmer Guide

Array Processing

The following illustrates the definition and use of a three-dimensional array:
 Statements:

 DEFINE QUARTER-ROW W 2 N
 DEFINE MONTH-COL W 2 N
 DEFINE MONTHS W 120 A VALUE +
 'JANUARY +
 FEBRUARY +
 MARCH +
 APRIL +
 MAY +
 JUNE +
 JULY +
 AUGUST +
 SEPTEMBER +
 OCTOBER +
 NOVEMBER +
 DECEMBER '
 DEFINE MONTH-ROW MONTHS 30 A, +
 OCCURS 4
 DEFINE MONTH-COLS MONTH-ROW 10 A, +
 OCCURS 3
 DEFINE MONTH-LET MONTH-COLS 1 A, +
 OCCURS 10
 DEFINE MONTH-CELL MONTH-LET 1 A
 JOB INPUT NULL NAME MYPROG
 * THIS PROGRAM DISPLAYS THE 3RD
 * LETTER OF THE MONTH IN THE 4TH
 * ROW, 2ND COLUMN (THE V IN NOVEMBER)
 DISPLAY MONTH-CELL (4, 2, 3)
 STOP

 Results:

 V

Segmented Data

One of the most common data structures is segmented data. Each record
contains a fixed portion of data and multiple occurrences of data segments. The
actual number of occurrences are not known until execution time. In COBOL,
these structures are known as variable-length table definitions and are defined
with an “occurs depending on” clause.

Defining Segmented Data

The following illustrates the field definitions necessary to describe a personnel
record with a fixed area and variable occurrences of dependent and salary
history segments:
FILE MASTER SEQUENTIAL
*
* FIXED PORTION
*
EMP-ID 1 5 N
EMPNAME 6 20 A
NO-OF-DEPENDS 26 2 N
NO-OF-JOBS 28 2 N
*
* DEPENDENT SEGMENTS
*
DEPEND-INFO 30 26 A OCCURS 20
 DEPEND-NAME 30 20 A INDEX DEPINDEX
 DEPEND-BIRTH 50 6 N INDEX DEPINDEX

Coding a CA-Easytrieve Program 2–51

Array Processing

*
* SALARY HISTORY SEGMENTS
*
SALARY-HISTORY 30 16 A OCCURS 10
 SALARY-AMOUNT 30 8 N 2 INDEX SALINDEX
 SALARY-GRADE 38 2 N INDEX SALINDEX
 SALARY-EFF-DATE 40 6 N INDEX SALINDEX

Because the starting location for each variable occurring segment is not known,
the first position after the fixed portion is used. Later, to access the data, the
length of the preceding segment(s) is added to the index to determine the
starting location of the next variable segment. The OCCURS parameter specifies
the maximum number of occurrences for each variable portion.

Accessing Segmented Data

The next example illustrates the index manipulation statements necessary to
access the data contained in the file:

FILE MASTER SEQUENTIAL
*
* FIXED PORTION
*
EMP-ID 1 5 N
EMPNAME 6 20 A
NO-OF-DEPENDS 26 2 N
NO-OF-JOBS 28 2 N
*
* DEPENDENT SEGMENTS
*
DEPEND-INFO 30 26 A OCCURS 20
 DEPEND-NAME 30 20 A INDEX DEPINDEX
 DEPEND-BIRTH 50 6 N INDEX DEPINDEX
*
* SALARY HISTORY SEGMENTS
*
SALARY-HISTORY 30 16 A OCCURS 10
 SALARY-AMOUNT 30 8 N 2 INDEX SALINDEX
 SALARY-GRADE 38 2 N INDEX SALINDEX
 SALARY-EFF-DATE 40 6 N INDEX SALINDEX
WORK-CTR W 2 N
*
JOB INPUT MASTER NAME PERSONNEL-REPORTS
 MOVE ZEROS TO DEPINDEX, WORK-CTR . * INITIALIZE DEPENDENT INDEX,CTR
 DO WHILE WORK-CTR < NO-OF-DEPENDS. * PROCESS ALL DEPENDENT PORTIONS
 PRINT DEPEND-REPORT
 WORK-CTR = WORK-CTR + 1
 DEPINDEX = DEPINDEX + 26
 END-DO
*
 MOVE ZERO TO WORK-CTR . * REINITIALIZE CTR
 SALINDEX = (NO-OF-DEPENDS * 26) . * START OF SALARY HISTORY IS THE
* . * END OF THE DEPENDENT PORTION
 DO WHILE WORK-CTR < NO-OF-JOBS . * PROCESS ALL SALARY PORTIONS
 PRINT SALARY-REPORT
 WORK-CTR = WORK-CTR + 1
 SALINDEX = SALINDEX + 16
 END-DO
*
 REPORT DEPEND-REPORT LINESIZE 72 SPACE 1
 TITLE 'DEPENDENT REPORT'
 LINE EMP-ID EMPNAME DEPEND-NAME DEPEND-BIRTHDATE
*
 REPORT SALARY-REPORT LINESIZE 72 SPACE 1
 TITLE 'SALARY REPORT'
 LINE EMP-ID EMPNAME SALARY-AMOUNT SALARY-GRADE SALARY-EFF-DATE

2–52 Programmer Guide

Array Processing

Data Strings

Evaluating strings of data is another common index process. The following
illustrates a technique for taking names from the input record, reversing them,
and then printing them. The results of this program are:

REVERSED-NAME DATA-NAME

GLORIA WIMN WIMN,GLORIA

NANCY BERG BERG,NANCY

GEORGE CORNING CORNING,GEORGE

MARY NAGLE NAGLE,MARY

Coding a CA-Easytrieve Program 2–53

Interprogram Linkage

The program code is as follows:
 FILE NAMES CARD
 DATA-NAME 1 20 A
 SCAN-NAME DATA-NAME 1 A INDEX SUB1
 REVERSED-NAME W 20 A
 SCAN-REVERSED REVERSED-NAME 1 A INDEX SUB2
 COUNTER W 2 P 0
 SAVE-COUNT W 2 P 0
 JOB INPUT NAMES
 *
 * INITIALIZE REVERSED NAME, SUB1, SUB2, AND COUNTER FIELDS
 *
 MOVE SPACES TO REVERSED-NAME
 MOVE ZEROS TO SUB1, SUB2, COUNTER
 *
 * FIND LENGTH OF LAST NAME
 *
 DO WHILE SCAN-NAME NQ ','
 COUNTER = COUNTER + 1
 SUB1 = SUB1 + 1
 END-DO
 SAVE-COUNT = COUNTER . *SAVE LENGTH OF LAST NAME
 COUNTER = 0 . *RESET COUNTER
 SUB1 = SUB1 + 1 . *BUMP SUB1 PAST THE COMMA
 *
 * FIND FIRST NAME AND MOVE TO REVERSED NAME
 *
 DO WHILE SCAN-NAME NQ ' ' +
 AND COUNTER LE 20 - SAVE-COUNT - 1
 SCAN-REVERSED = SCAN-NAME
 COUNTER = COUNTER + 1
 SUB2 = SUB2 + 1
 SUB1 = SUB1 + 1
 END-DO
 COUNTER = 0 . *RESET COUNTER
 SUB1 = 0 . *RESET TO BEGINNING OF LAST NAME
 SUB2 = SUB2 + 1 . *BUMP SO SPACE IS BETWEEN FIRST AND
 * *LAST NAMES
 * MOVE LAST NAME TO REVERSED NAME FIELD
 *
 DO WHILE COUNTER LQ SAVE-COUNT - 1
 SCAN-REVERSED = SCAN-NAME
 COUNTER = COUNTER + 1
 SUB1 = SUB1 + 1
 SUB2 = SUB2 + 1
 END-DO
 PRINT NAMES-REPORT
 REPORT NAMES-REPORT LINESIZE 78
 TITLE 1 'EXAMPLE OF HOW TO REVERSE NAMES'
 TITLE 2 'INPUT FIELD FORMAT IS:'
 TITLE 3 'LAST-NAME,FIRST-NAME'
 LINE REVERSED-NAME DATA-NAME
 END

Interprogram Linkage
The facilities of CA-Easytrieve provide all of the functions necessary to perform
standard input/output, data examination, and data manipulation.

The LINK and TRANSFER statements can be used to invoke other
CA-Easytrieve programs. You can also invoke subprograms written in other
programming languages through the CALL, LINK, and TRANSFER statements,
and the EXIT parameter of the FILE statement.

2–54 Programmer Guide

Interprogram Linkage

■ The FILE EXIT and CALL statements enable you to invoke subprograms
written in other programming languages. All discussions of the CALL
statement also apply to FILE EXITs. (FILE EXITs are CALLs that are
controlled automatically by CA-Easytrieve.)

■ The LINK statement allows you to transfer control from the current program
(parent) to another program (child) and then return control to the parent
program.

■ The TRANSFER statement allows you to transfer execution to a target
program without returning to the invoking program.

CALL Statement on the Mainframe

The CALL statement on the mainframe provides a means to invoke subprograms
written in other programming languages. The following topics discuss the
mainframe techniques used with the CALL statement:

■ Program linking

■ Storage management

■ Linkage (register usage) conventions

■ Parameter list

■ Error condition handling.

Program Linking

Called subprograms can be statically or dynamically linked with the
CA-Easytrieve object module. You must declare which type of linkage you want
to use in your CA-Easytrieve program with either the DECLARE statement or
the CALL parameter on the PARM statement. For example:
PARM CALL (STATIC)

Or:
DECLARE INTCALC PROGRAM DYNAMIC

The way that the CALLed program is bound is determined by the following, in
order:

1. If the program was declared on a DECLARE statement, the STATIC or
DYNAMIC keyword on the DECLARE statement determines how it is
bound.

2. If specified, the CALL parameter on the PARM statement supplies the
default for all CALLed programs in your CA-Easytrieve program.

Coding a CA-Easytrieve Program 2–55

Interprogram Linkage

3. The default is determined by the environment. The default on the
mainframe is DYNAMIC. The default on the workstation and UNIX is
STATIC.

CICS

In CICS, all dynamic programs are loaded by executing the CICS LOAD
command. The LOAD command dynamically places the program in storage and
returns the program’s entry point to CA-Easytrieve.

Each time the CALL statement is executed, CA-Easytrieve determines whether
or not the program has been loaded. If the program has not been loaded,
CA-Easytrieve executes a CICS LOAD command to load it. Once loaded, the
program remains loaded until one of the following points is reached:

■ The end of the first activity that references the program — If the current
activity (the child activity) was invoked with an EXECUTE statement from
another activity (the parent activity), and if both the child and parent activity
reference the program, the program is not deleted until the parent activity
terminates. The termination of the child activity does not cause the program
to be deleted.

■ CA-Easytrieve performs the next screen input/output operation — If,
however, you specified COMMIT NOTERMINAL on the SCREEN statement
or the calling CA-Easytrieve program is executing conversationally,
CA-Easytrieve does not delete the program.

MVS

In MVS, all dynamic programs are loaded by invoking the LOAD function of the
operating system. The LOAD function dynamically places the program in
storage and returns the program’s entry point to CA-Easytrieve.

CA-Easytrieve loads the program as part of the initialization of the first activity
that references the program. If the current activity (the child activity) was
invoked with an EXECUTE statement from another activity (the parent activity),
and if both the child and parent activity reference the program, then
CA-Easytrieve loads the program during the initialization of the parent activity.
In addition, CA-Easytrieve does not delete the program until the termination of
the parent activity. Neither the initialization nor the termination of the child
activity has any effect on the program’s status.

Storage Management

In VSE, the author of programs in other languages is responsible for managing
required storage. If additional storage is needed, (for example, to LOAD another
program), you cannot use DOS COMREG facilities. All storage must be:

■ Within the originally loaded program

2–56 Programmer Guide

Interprogram Linkage

■ Obtained via GETVIS

■ Uniquely controlled within the STORMAX area.

Linkage (Register Usage) Conventions

When CA-Easytrieve invokes a subprogram written in another programming
language, it adheres to standard IBM register management conventions. The
called subprogram must honor these conventions:

Register Usage

REGISTER 1 Address of the parameter list

REGISTER 13 Address of an 18 fullword register save area

REGISTER 14 Address of where to return to within CA-Easytrieve

REGISTER 15 Address of the entry point in the subprogram

The subprogram must save the CA-Easytrieve registers in the save area
addressed by REGISTER 13 and must restore them prior to returning via
REGISTER 14. The 18 fullword register save area provided by CA-Easytrieve
must be maintained as illustrated in the following table:

Save Area Usage

WORD 1 Reserved

WORD 2 Set by CA-Easytrieve to address of the save area for the
internal routine prior to the one issuing the subprogram
call

WORD 3 Set by the subprogram to address of the save area within
the subprogram

WORD 4 thru
WORD 18

Set by the subprogram to values contained in
CA-Easytrieve REGISTERS 14 through 12 upon entry to
the subprogram.

Assembler Subprogram Linkage

Assembler language subprograms present no linkage problems. The following
shows the instructions necessary to successfully control assembler language
subprogram linkage:

 ASMPGM CSECT
 STM 14,12,12(13) save registers 14 through 12
 LR 11,15 set base register
 USING ASMPGM,11 assign base register
 LA 14,0(0,13) address of CA-Easytrieve save area
 LA 13,MYSAVE address of subprogram save area
 ST 13,8(0,14) chain forward

Coding a CA-Easytrieve Program 2–57

Interprogram Linkage

 ST 14,MYSAVE+4 chain backward
 LR 10,1 save parameter list address
 ...
 ...
 ...
 RETURN L 13,4(0,13) address of CA-Easytrieve save area
 LM 14,12,12(13) restore CA-Easytrieve registers
 MVI 8(13),X'FF' indicate unused save area
 SR 15,15 set zero return code
 BR 14 return to CA-Easytrieve
 ...
 MYSAVE DC 18A(0) 18 fullword save area
 ...
 ...

COBOL Subprogram Linkage

Note: COBOL subprograms are supported only in environments in which IBM
supports a COBOL program invocation by an Assembler program. CICS does
not support such an invocation.

COBOL subprogram linkage is dependent upon the operating system (OS/MVS
or DOS/VSE) and the COBOL parameters that were in effect when the COBOL
subprogram was compiled. Refer to the COBOL Programmer’s Guide for specific
details on these parameters and linkage conventions.

The following shows typical COBOL instructions necessary to control
subprogram linkage:

 ...
 LINKAGE SECTION.
 01 PARAMETER-1.
 ...
 01 PARAMETER-2.
 ...
 01 PARAMETER-N.
 ...
 PROCEDURE DIVISION USING PARAMETER-1,
 PARAMETER-2,
 ...
 PARAMETER-N.
 ...
 ...
 GOBACK
 ...

In DOS/VSE, for the subroutine to act correctly as a called program, the linkage
control module ILBDMNS0 must be assembled as:

 // EXEC ASSEMBLY
 ILBDMNS0 CSECT
 DC X'FF0000000000000000000000000000'
 * Older versions of COBOL used an eight byte ILBDMNS0
 * Check existing link maps to determine the length.
 END
 /*

CA-Easytrieve uses the dynamic call feature of OS/MVS to execute COBOL
subprograms.

2–58 Programmer Guide

Interprogram Linkage

To establish a proper execution environment for COBOL subprograms in OS/VS
COBOL, you can compile your COBOL subprogram with the NOENDJOB and
NORESIDENT options. This establishes the subprogram properly as a called
program. The NOENDJOB parameter is not available in COBOL II. Therefore,
COBOL II subprograms are not supported in this version of CA-Easytrieve.

Note: You cannot CALL and LINK to an OS/VS COBOL program in the same
activity.

Parameter Lists

The parameter list for both input/output and CALL exits (pointed to by register
1) passes information to the subprogram. Each entry in this contiguous group of
fullwords identifies one parameter. The end of the list is indicated by the
high-order bit of the high-order byte of the last entry being set to a one.

Parameter List Format

The parameter lists passed to subprograms for EXIT (FILE) and CALL are quite
similar. In fact, the list for CALL is identical to that associated with the USING
subparameter of EXIT. The only difference is that EXIT always passes at least
two parameters.

Note: If multiple fields are coded on the USING subparameter, and storage
areas overlap, results are unpredictable.

Error Condition Handling

Program errors which occur in subprogram exits cause the abnormal termination
of CA-Easytrieve programs. Since these errors are occasionally difficult to
analyze within the complex environment of CA-Easytrieve, exits should be
tested first with simulation.

Coding a CA-Easytrieve Program 2–59

Interprogram Linkage

CALL Statement on the Workstation

The CALL statement on the workstation provides a means to invoke
subprograms written in other programming languages. The following topics
discuss the workstation techniques used with the CALL statement:

■ Program linking

■ Storage management

■ Linkage conventions

■ Error condition handling.

Program Linking

Called subprograms are statically linked with the CA-Easytrieve object module.

Storage Management

Called subprograms are free to use the INT 21H memory management services
48H (allocate) and 49H (free), the DosAllocSeq in MS-DOS or DosFreeSeq
functions in OS/2, or the malloc() and free() ‘C’ functions.

Linkage Conventions

The CALL statement can be used to call programs that conform to either the FAR
PASCAL or ‘C’ calling conventions. See the CA-Easytrieve/Workstation User Guide
for more information.

FAR PASCAL Calling Convention

The FAR PASCAL calling convention is the calling convention normally used by
PC-based ASSEMBLER, BASIC, FORTRAN, and PASCAL programs. The FAR
PASCAL calling convention pushes the parameters onto the stack in the order in
which they are coded on the USING clause. The called procedure must pop the
parameters off of the stack before returning. This is the default calling
convention.

‘C’ Calling Convention

The ‘C’ calling convention is used by workstation ‘C’ programs and most
workstation COBOL programs. The ‘C’ calling convention pushes the
parameters onto the stack in the reverse order in which they are coded on the
USING clause. CA-Easytrieve pops the parameters off of the stack when the
procedure returns.

2–60 Programmer Guide

Interprogram Linkage

Note: When compiling a CA-IDMS program, ‘C’ calling conventions are
automatically used for all calls.

Stack Usage

For both the FAR PASCAL and ‘C’ calling conventions, the CALL statement
pushes a far pointer (segment and offset) of each parameter coded onto the stack
and expects that the called procedure is a far procedure. As such, the CALLed
function or procedure must be compiled with a LARGE MEMORY MODEL
specified.

The following diagram illustrates the contents of the stack for the CALL
statement:

 ---------- STACK ------
 FAR PASCAL C
 ---------- ---
 DEFINE FLDA W 5 A CS CS
 DEFINE FLDB W 2 B IP IP
 . SEG FLDA SEG FLDB
 . OFF FLDA OFF FLDB
 CALL TEST USING(FLDA FLDB) SEG FLDB SEG FLDA
 OFF FLDB OFF FLDA

Note: ‘C’ compilers distributed by Borland usually require that an object
module of startup code is incorporated into the executable. This can be
accomplished at link-time. Refer to your Borland documentation for details.

If RETURNS is coded on the CALL statement, the value of the accumulator (AX)
is placed into the RETURNS field. This is the standard return code convention.

Assembler Language Subprogram Example

Following is an example of a CA-Easytrieve program calling an Assembler
subprogram:

DEFINE NUMBER W 2 I 0 VALUE 123
DEFINE RESULT W 2 I 0
JOB INPUT NULL
 DISPLAY 'NUMBER = ' NUMBER
 CALL SQUARE USING(NUMBER, RESULT)
 DISPLAY 'RESULT = ' RESULT
 STOP

 .MODEL LARGE ;large model.
 .CODE ;code segment declaration.
 PUBLIC SQUARE ;make public for all.
SQUARE PROC ;square procedure declaration.
 push bp ;save base pointer.
 mov bp,sp ;set stack pointer to base pointer.
 push ds ;save CA-Easytrieve ds.
 mov ds,[bp+12] ;get number to square segment.
 mov si,[bp+10] ;get number to square offset.
 mov ax,[si] ;get the number to square.
 mov cx,ax ;save number to square in cx.
 mul cx ;dx:ax = ax * cx.
 mov ds,[bp+8] ;get result segment.
 mov si,[bp+6] ;get result offset.
 mov [si],ax ;move to CA-Easytrieve result field.
 pop ds ;restore CA-Easytrieve ds.
 pop bp ;restore original base pointer.
 ret 8 ;pop 4 parms off the stack, return

Coding a CA-Easytrieve Program 2–61

Interprogram Linkage

SQUARE ENDP ;end of square procedure.
 END ;end of module.

C Subprogram Linkage Example

Following is an example of a CA-Easytrieve program calling a ‘C’ function:
PARM CODE (PROCESS ASCII)
DEFINE FLDA W 2 I 0 VALUE 12345
DEFINE FLDB W 2 I 0 VALUE -23456
DEFINE FLDC W 2 I 0 VALUE 32767
DEFINE FLDD W 20 A VALUE('This is a test !')
DEFINE RC W 5 N
JOB INPUT NULL
 DISPLAY 'Ready to call C function FLDC =' FLDC
 CALL TEST1 USING(FLDA, FLDB, FLDC, FLDD) RETURNS(RC)
 DISPLAY 'Back from C function FLDC =' FLDC
 DISPLAY 'RETURN-CODE =' RETURN-CODE 'RC =' RC
 STOP

int TEST1(int *user1, int *user2, int *user3, char *field)
{
 char string[80];
 int i;
 printf("FLDA = %d\nFLDB =%d\nFLDC = %d\n",*user1,*user2,*user3);
 for(i=0;i<20;i++)
 {
 string[i]=*field;
 field++;
 }
 string[i]='\0';
 printf("FLDD = %s\n",string);
 *user3=9999;
 return(12345);
}

Exit Parameter List

You can use the EXIT parameter of the FILE statement to invoke subprograms
written in other programming languages for input/output related events. Code
the name of these subprograms on the EXIT parameter of the FILE statement in
the library of your program.

For input/output exits, the work area address and the control code address are
required parameters. The control code is a fullword used to indicate the
function to be performed by the exit. For example:

Control Code Value Function

00000000 input request

2–62 Programmer Guide

Interprogram Linkage

Control Code Value Function

00000004 output request

00000008 file close request, or end-of-input (set by
input exit subprogram)

For MODIFY exits (subparameter of the FILE statement), the required two
parameters are record area address and work area address because the exit
receives all records after input and before output.

Parameters coded on the optional USING subparameter of EXIT are appended to
the standard two parameters. The following exhibit shows input/output and
MODIFY subprogram parameter list examples:
(INPUT/OUTPUT)
 ...
FILE USERFIL EXIT (ASMPGM USING (RECORD-LENGTH))
 ...
 Parameter List

address of work area

address of control code

address of RECORD-LENGTH field

(MODIFY)
 ...
FILE USERFIL EXIT (ASMPGM MODIFY) WORKAREA(500)
 ...
 Parameter List

address of record

address of work area

FILE EXIT Example

Following is an example of a program that calls a file exit written in PC
Assembler:
FILE PERSNL F(150) EXIT MYEXIT
%PERSNL
JOB INPUT PERSNL
 DISPLAY REGION ' ' BRANCH ' ' EMPNAME

Coding a CA-Easytrieve Program 2–63

Interprogram Linkage

The file exit program code is as follows:
;
;
; +--+
; | Procedure: MYEXIT. Model: large. |
; | |
; | Sample file EXIT routine to get a record from the PERSNL file. |
; | |
; | parms passed = 4: |
; | |
; | [bp+12] - contains the segment of the file buffer. |
; | |
; | [bp+10] - contains the offset of the file buffer. |
; | |
; | [bp+8] - contains the segment of the control code. |
; | |
; | [bp+6] - contains the offset of the control code. |
; +--+
;
MYEXIT_TEXT segment byte public 'code'
 assume cs:MYEXIT_TEXT,ds:MYEXIT_DATA
MYEXIT proc far ;exit routine.
 public MYEXIT ;make public for all.
 push bp ;save bp.
 mov bp,sp ;set bp to current sp.
 push ax ;save ax.
 push bx ;save bx.
 push cx ;save cx.
 push dx ;save dx.
 push si ;save si.
 push di ;save di.
 push ds ;save ds.
 push es ;save es.
 mov ax,MYEXIT_DATA ;MYEXIT data segment.
 mov ds,ax ;set ds to MYEXIT ds.
 cmp OPEN_FLAG,0 ;file open ?
 jne MYEXIT_010 ;yes, proceed.
 lea dx,FILE_NAME ;point to filename.
 mov al,040h ;R/O access deny none.
 mov ah,03dh ;open file function.
 int 21h ;open the file.
 jc MYEXIT_020 ;set EOF if error.
 mov OPEN_FLAG,1 ;set file open flag.
 mov FILE_HANDLE,ax ;save file handle.
MYEXIT_010: mov bx,FILE_HANDLE ;get file handle.
 mov ds,[bp+12] ;get buffer segment.
 mov dx,[bp+10] ;get buffer offset.
 mov cx,150 ;read 150 bytes.
 mov ah,03fh ;read file function.
 int 21h ;read the file.
 jc MYEXIT_020 ;set EOF if error.
 cmp ax,150 ;all bytes read ?
 je MYEXIT_030 ;yes, end of case.
MYEXIT_020: mov ds,[bp+8] ;control code segment.
 mov di,[bp+6] ;control code offset.
 mov ax,00008h ;close request code.
 mov [di],ax ;request EZT to close.
MYEXIT_030: pop es ;restore es.
 pop ds ;restore ds.
 pop di ;restore di.
 pop si ;restore si.
 pop dx ;restore dx.
 pop cx ;restore cx.
 pop bx ;restore bx.
 pop ax ;restore ax.
 pop bp ;restore bp.
 ret 8 ;return to caller.
MYEXIT endp ;end of procedure.
MYEXIT_TEXT ends
MYEXIT_DATA segment word public 'data'
OPEN_FLAG db 0 ;file open flag.
FILE_NAME db 'PERSNL',0 ;filename for get.
FILE_HANDLE dw 0 ;file handle.
MYEXIT_DATA ends
 end

2–64 Programmer Guide

Interprogram Linkage

Error Condition Handling

Program errors that occur in subprograms cause the abnormal termination of
CA-Easytrieve programs. Because these errors can be difficult to analyze in the
complex environment of CA-Easytrieve, subprograms should be tested before
using them in CA-Easytrieve.

CALL Statement in UNIX

The CALL statement in UNIX provides a means to invoke subprograms written
in other programming languages. The following topics discuss the UNIX
techniques used with the CALL statement:

■ Program linking

■ Storage management

■ Linkage conventions

■ Error condition handling.

Program Linking

Called subprograms can be statically or dynamically linked with the
CA-Easytrieve object module. You must declare which type of linkage you want
to use in your CA-Easytrieve program with either the DECLARE statement or
the CALL parameter on the PARM statement. For example:
PARM CALL (STATIC)

Or:
DECLARE INTCALC PROGRAM DYNAMIC

The way that the CALLed program is bound is determined by the following, in
order:

1. If the program was declared on a DECLARE statement, the STATIC or
DYNAMIC keyword on the DECLARE statement determines how it is
bound.

2. If specified, the CALL parameter on the PARM statement supplies the
default for all CALLed programs in your CA-Easytrieve program.

3. The default is determined by the environment. The default on the
mainframe is DYNAMIC. The default on the workstation and UNIX is
STATIC.

Note: The AIX environment currently does not support DYNAMIC.

Coding a CA-Easytrieve Program 2–65

Interprogram Linkage

Storage Management

Called subprograms should use the malloc and free functions to allocate and free
storage. The subprogram should free any storage it has allocated.

Linkage Conventions

The CALL statement can be used to call programs that conform to the ‘C’ calling
conventions for the platform on which you are running CA-Easytrieve. See the
CA-Easytrieve for UNIX User Guide for more information.

FILE EXIT Linkage

You can use the EXIT parameter of the FILE statement to invoke subprograms
written in other programming languages for input/output related events. There
are two types of exits you can code:

■ Standard

■ Using the MODIFY subparameter.

Standard Exits

A standard exit should perform its own I/O. A standard exit function should
look like this:
unsigned long YourStandardExit(
 long eOperation,
 void * pRecord,
 unsigned long * pcbRecord,
 void * pKey,
 unsigned long * pcbKey,
 P_EZEXIT_FCB pFCB,
 void * * pExitArgList
);

where the meaning of parameters is as follows:

eOperation Has a value as shown in the following list of constants. These
constants enumerate the possible values for eOperation and their meaning:

#define IO_OPEN 0 /* Open the file */
#define IO_GET_NEXT_NH 4 /* GET NEXT NOHOLD */
#define IO_GET_NEXT_H 6 /* GET NEXT HOLD */
#define IO_GET_PRIOR_NH 10 /* GET PRIOR NOHOLD */
#define IO_GET_PRIOR_H 12 /* GET PRIOR HOLD */
#define IO_PUT 14 /* PUT */
#define IO_READ_NH 18 /* READ NOHOLD */
#define IO_READ_H 20 /* READ HOLD */
#define IO_WRITE_ADD 22 /* WRITE ADD */
#define IO_WRITE_UPD 24 /* WRITE UPDATE */
#define IO_WRITE_DEL 26 /* WRITE DELETE */
#define IO_POINT_FWD 28 /* POINT forward */
#define IO_RELEASE 30 /* RELEASE */
#define IO_CLOSE 42 /* CLOSE */
#define IO_DISPLAY 48 /* DISPLAY */
#define IO_SYNCPOINT 54 /* SYNCPOINT */
#define IO_POINT_BWD 56 /* POINT backward */

2–66 Programmer Guide

Interprogram Linkage

pRecord Is the pointer to the record buffer. On input operations, your exit
places data into this buffer from the file. On output, your exit writes the data
from the buffer to the file.

pcbRecord Is the pointer to the length of the record currently in the buffer. On
input operations, your exit must place the size of the record at this location.

pKey Is the pointer to the key. This field is valid only for operations that require
a key.

pcbKey Is the pointer to the length of the key.

pFCB Is the pointer to the EXIT_FCB. The EXIT_FCB contains information
describing the file. The EXIT_FCB is described after the description of the
parameters.

pExitArgList Is the pointer to the array of pointers to the fields in the USING list
of the EXIT phrase. The pointers are ordered as the fields in the USING list are
ordered.

Return Value The following list of constants enumerate the valid return values
and the meanings:

#define FC_NORMAL 0 /* The operation completed */
 /* normally. */
#define FC_ENDFILE 4 /* The operation attempted to */
 /* position the file past the */
 /* last record in the file */
#define FC_RDUPREC 8 /* The key of the record just */
 /* read matches the key of the */
 /* next record in the file */
#define FC_WDUPREC 12 /* The operation attempted to */
 /* insert a record whose key */
 /* matches a record already in */
 /* the file */
#define FC_NRFOUND 16 /* The key specified for the */
 /* operation does not match */
 /* the key of any record in */
 /* the file */
#define FC_LOCKED 20 /* The operation attempted to */
 /* retrieve a record that is */
 /* locked by another user */
#define FC_IOERROR 24 /* The operation failed for some */
 /* reason other than one of */
 /* those given above */

The ANCHOR is a control block that the exit might want to allocate. (It is not
required.) Its purpose is to hold information that the exit needs from one
invocation of the exit to the next. The ANCHOR is chained off of the EXIT_FCB
(which follows).

Your exit is responsible for the creation, maintenance, and destruction of this
area.

 typedef struct ANCHOR {
 FILE * pFile;
 /* More data could be placed here. Since there is no more data
 * in this example, a better solution would be to use the pAnchor
 * field in the EXIT_FCB as the file pointer.

Coding a CA-Easytrieve Program 2–67

Interprogram Linkage

 */
 } ANCHOR, * P_ANCHOR;

The EXIT_FCB is a control block which is passed to the exit each time the exit is
called. The same instance of the EXIT_FCB is passed from the time the file is
opened to the time the file is closed for each operation on the file.

Hence, if your exit allocates its own control block (like the ANCHOR, shown
below), its address can be placed as the first item in the EXIT_FCB and retrieved
from the same place with each invocation of the exit. Remember to deallocate
the control block when the file is closed.

CA-Easytrieve creates, maintains, and destroys this control block. Your exit
should restrict itself solely to changing the pAnchor field.

2–68 Programmer Guide

Interprogram Linkage

 typedef struct EZEXIT_FCB {
 P_ANCHOR pAnchor; /* for use by the Exit */
 char *pszFileName; /* Pointer to the file name */
 char *pszPathName; /* Pointer to the Path */
 unsigned long cbRecordSize; /* Logical record length */
 unsigned long cbBufAreaLen; /* Length of the buffer area */
 void *pBuffer; /* Pointer to the file buffer */
 char szProcessMode[4]; /* File Access Mode */
 unsigned char eRecordFormat; /* Record format */
define RF_NONE 0 /* Record format not specified */
define RF_FIXED 1 /* F or FB specified */
define RF_VARIABLE 2 /* V, VB, or VSB specified */
define RF_UNDEFINED 3 /* U specified */
 unsigned char eFileOrg; /* File type */
define FO_NONE 0 /* File type not specified */
define FO_SEQUENTIAL 1 /* SEQUENTIAL */
define FO_INDEXED 2 /* INDEXED */
define FO_RELATIVE 3 /* RELATIVE */
 unsigned char fMiscFlags0; /* Miscellaneous flags */
#if defined(LSB)
/* For architectures with the Least Significant Byte First
 * such as the INTEL 80x86 chips.
 */
define FM_DEFER 0x01 /* DEFER */
define FM_ASA 0x02 /* ASA */
define FM_CREATE 0x04 /* CREATE */
define FM_RESET 0x08 /* CREATE RESET */
define FM_UPDATE 0x20 /* UPDATE */
define FM_NOVERIFY 0x40 /* NOVERIFY */
define FM_MODIFY 0x80 /* EXIT with MODIFY */
#elif defined(MSB)
/* For architectures with the Most Significant Byte First
 * such as the HP PA Risc (HP 9000) chips.
 */
define FM_DEFER 0x80 /* DEFER */
define FM_ASA 0x40 /* ASA */
define FM_CREATE 0x20 /* CREATE */
define FM_RESET 0x10 /* CREATE RESET */
define FM_UPDATE 0x04 /* UPDATE */
define FM_NOVERIFY 0x02 /* NOVERIFY */
define FM_MODIFY 0x01 /* EXIT with MODIFY */
endif
 unsigned char Reserved1; /* Reserved for future expansion */
 void * pReserved2;
 void * pReserved3;
 void * pReserved4;
 } EZEXIT_FCB, * P_EZEXIT_FCB;

The Install Tape contains an example of a standard exit program, VRTXTEXT.c.
Ask your system administrator where that program can be found.

MODIFY File Exit

If you code the MODIFY subparameter on the FILE statement, CA-Easytrieve
performs the I/O. Your exit should examine the record and convert it into the
correct form. On an input operation, CA-Easytrieve reads the record, then
passes it to your MODIFY file exit to be reformatted. On an output operation,
CA-Easytrieve passes the record to your exit to be reformatted. When your exit
finishes, CA-Easytrieve writes the reformatted record to the file.

The prototype for your MODIFY file exit should look like:
 unsigned long YRMDEXIT(
 void * pRecordArea,
 void * pWorkArea,
 unsigned long cbRecordLength,

Coding a CA-Easytrieve Program 2–69

Interprogram Linkage

 unsigned long * pcbWorkAreaLength,
 void * * pExitArgList
);

where:

pRecord Points to the record buffer. The record to be reformatted is in this
buffer.

pWorkArea Points to a buffer. The record from pRecord must be reformatted
and placed in this buffer.

cbRecord This is the length of the record at pRecord.

pcbWorkArea Points to the length of pWorkArea’s buffer. Once your exit has
placed the reformatted in the buffer, it must place the length of the reformatted
record at this field.

pExitArgList Is the pointer to the array of pointers to the fields in the USING list
of the EXIT phrase. The pointers are ordered as the fields in the USING list are
ordered.

Return Value This exit uses the same values as were defined for the standard file
exit.

The Install Tape contains an example of a MODIFY exit program, YRMDEXIT.c.
Ask your system administrator where that program can be found.

If your exit processes variable length records, the RECORD-LENGTH field of the
file should be in the USING list. Your exit must place the correct value in the
USING list.

If your exit handles both input and output operations, you should place a field in
the USING list that can tell your exit what type of operation the exit must
perform.

Error Condition Handling

Program errors that occur in subprograms cause the abnormal termination of
CA-Easytrieve programs. Because these errors can be difficult to analyze in the
complex environment of CA-Easytrieve, subprograms should be tested before
using them in CA-Easytrieve.

2–70 Programmer Guide

Interprogram Linkage

LINK Statement

The LINK statement is used to invoke another program and then return
execution to the statement following the LINK statement in the original
(invoking) program. The program invoked can be written in any language that
is supported by the operating system in which the program is executing
(including CA-Easytrieve).

LINK vs. CALL

The LINK statement differs from the CALL statement in the following ways:

■ LINK creates a new program execution environment that bears a child
relationship to the program issuing the LINK command (the parent
program). A CALLed program executes in the same execution environment
as the program issuing the CALL command.

■ On the mainframe, a CALLed program uses the same linkage conventions in
all execution environments, LINK uses the linkage conventions of the
operating system in which the program is executing.

Commands Issued by the Child Program

The child program can issue any command supported by the operating system.
In a CICS environment, the program can issue terminal I/O or display reports,
but only in a fully-conversational mode.

Commands issued by a child program, such as SYNCPOINT, and I/O
commands, can affect the operating environment of the parent program.
CA-Easytrieve does not guarantee that applications using LINK execute
identically in all execution environments. If portability between operating
systems is required by an application, it is your responsibility to code the
application in such a way that portability is assured.

USING Parameter

A single parameter can be passed to the child program by specifying the USING
parameter. The parameter is passed to the child program by value, that is, the
parent program passes a copy of the value of the field or literal to the child
program. The child program cannot directly modify the value of the field or
literal. You specify the field to receive the parameter with the USING parameter
on the PROGRAM statement in the child program.

Coding a CA-Easytrieve Program 2–71

Interprogram Linkage

GIVING Parameter

You can allow the parent program to accept a return parameter from the child
program by specifying the GIVING parameter. You specify the field to be
returned in the GIVING parameter of the PROGRAM statement in the child
program. CA-Easytrieve returns a value to the parent program by writing the
return value into the same parameter area that was used by CA-Easytrieve to
pass the USING parameter to the child program.

When the child program terminates, the parameter is copied from the parameter
area to the variable specified in the GIVING parameter of the parent program.
Because a single parameter area is used for communications in both directions,
CA-Easytrieve determines the size of the parameter area by the larger of the
fields specified on the USING and GIVING parameters. If the child program
copies a return parameter into the parameter area with the PROGRAM GIVING
parameter, but there is no GIVING parameter specified in the parent program,
the returned parameter is ignored without any error indication.

2–72 Programmer Guide

Interprogram Linkage

Operating System Implementation

The LINK statement is implemented as listed below:

Operating
System

Command

Parameters Passed By

CICS EXEC CICS LINK CICS communication
area

TSO MVS LINK SVC 6 Standard MVS/TSO
linkage conventions

CMS CMS LINK SVC 6 Standard CMS linkage
conventions

PC/DOS INTERRUPT 21H
FUNCTION 4BH

PSP command tail or
INT 60H

OS/2 DosExecPgm Command line or
shared segment

UNIX system (“routine_name
using_data”)

Note: When linking to an OS/VS COBOL program in TSO or CMS, the COBOL
program must be compiled with the NORES compile option. Also, you cannot
LINK and CALL an OS/VS COBOL program in the same activity.

Note: In CICS, the TRANSFER statement is more efficient than the LINK
statement. In TSO and CMS, the opposite is true.

Workstation

The /FR (Far Reference) compiler switch is required to compile the LINKed
program to CA-Easytrieve/Workstation if the PROGRAM statement has a
USING field that is longer than 100 bytes or is a P, B, U, I, S, or D type field.

A secondary command processor (COMMAND.COM) is executed with the /C
switch followed by the program name and any USING parameters. This method
allows any .EXE, .COM, or .BAT file to be executed just as if the name were
typed directly on the command line.

If the program name contains all blanks, a command shell is brought up on top
of the parent process allowing the user to enter any valid DOS command. Type
EXIT to terminate the shell and return control to the CA-Easytrieve parent
program.

Coding a CA-Easytrieve Program 2–73

Interprogram Linkage

If the USING parameter is coded, the USING parameter is converted to ASCII, if
necessary, and passed by value to the child process via the PSP command tail. If
the /FR (Far Reference) compiler switch was specified, the USING data is passed
to the child program by reference using the vector at Interrupt 60H, or via a
shared segment in OS/2.

If the GIVING parameter is coded, the first item passed to the child process is the
address of the GIVING field of the parent process. The CA-Easytrieve child
program places the contents of the GIVING field specified on the program
statement into the GIVING field of the parent process. The GIVING parameter
should only be used with CA-Easytrieve child programs.

Note: The USING and GIVING parameters are limited to a maximum length of
100 characters, unless the child program was compiled with the /FR switch.

When the child process terminates with INT 21H function 4CH, or DosExit in
OS/2, control is returned to the parent process.

Workstation Host Interface

CA-Easytrieve programs running on the workstation can communicate with a
host TSO or CMS session using the LINK statement with the HOST parameter.
The communication method uses the High Level Application Program Interface
(HLLAPI). Requirements for this feature are:

■ An IBM PC 3270 connection to the mainframe

■ A PC 3270 emulator program that supports HLLAPI

■ LLAPI executing resident on the workstation, or COMM MANNCU in
OS/2.

See the CA-Easytrieve/Workstation User Guide for information on HLLAPI
requirements and setup options.

The LINK statement sends the program name and USING parameter as an
EBCDIC string to the host. Workstation execution continues immediately after
the send operation is complete. The GIVING parameter is not returned to the
workstation.

UNIX

The GIVING parameter on the LINK and PROGRAM statements is ignored in
UNIX. The data from the USING parameter must be acceptable in the shell you
are running.

2–74 Programmer Guide

Interprogram Linkage

TRANSFER Statement

The TRANSFER statement is used to transfer execution to a target program
without returning to the invoking program. The target program can be written
in any language that is supported by the operating system in which the program
is executing.

The TRANSFER statement completely terminates the current CA-Easytrieve
program and invokes a target program using the linkage conventions of the
operating system in which the program is executing. The target program
inherits the execution environment of the program issuing the TRANSFER
command.

Commands Issued by the Target Program

The target program can issue any command supported by the operating system.
In a CICS environment, the program can issue terminal I/O or display reports in
a pseudo-conversational mode only if the program issuing the TRANSFER
command can operate pseudo-conversationally.

Complete termination of the current CA-Easytrieve program does not imply the
termination of the current logical unit of work. Although CA-Easytrieve
attempts to terminate the current program (for example, close files, complete
reports), it does not necessarily terminate all activities performed by the
operating system for the CA-Easytrieve program.

Commands issued by a child program, such as SYNCPOINT, and I/O
commands can affect the operating environment of the parent program.
CA-Easytrieve does not guarantee that applications using TRANSFER execute
identically in all execution environments. If portability between operating
systems is required by an application, it is your responsibility to code the
application in such a way that portability is assured.

USING Parameter

A single parameter can be passed to the target program by specifying the USING
parameter. The parameter is passed to the target program by value, that is, the
invoking program passes a copy of the value of the field or literal to the target
program. The target program cannot directly modify the value of the field or
literal. You specify the field to receive the parameter with the USING parameter
on the PROGRAM statement in the target program.

Coding a CA-Easytrieve Program 2–75

Interprogram Linkage

Operating System Implementations

The TRANSFER statement is implemented as follows:

Operating
System

Command

Parameters Passed
By

CICS EXEC CICS XCTL CICS
communication
area

TSO MVS XCTL SVC 7 Standard
MVS/TSO linkage
conventions

CMS CMS XCTL SVC 7 Standard CMS
linkage conventions

PC/DOS INTERRUPT 21H
FUNCTION 4BH

PSP command tail
or INT 60H

OS/2 DosExecPgm Command line or
shared segment

UNIX execl (“/bin/sh”, “/bin/sh,
“routine_name
using_data”, NULL)

Note: When running pseudo-conversationally in CICS, you must specify the
TRANSID parameter on the PARM statement in the target program. TRANSID
specifies the CICS transaction ID that is invoked when the terminal user presses
an attention key following the program’s termination for a pseudo-conversation.
The transaction ID of the target program must be defined in the PCT.

Note: In CICS, the TRANSFER statement is more efficient than the LINK
statement. In TSO, CICS, and CMS, the opposite is true.

Workstation

The /FR (Far Reference) compiler switch is required to compile the LINKed
program to CA-Easytrieve/Workstation if the PROGRAM statement has a
USING field that is longer than 100 bytes or is a P, B, U, I, S, or D type field.

A secondary command processor (COMMAND.COM in PC/DOS,
COMMAND.EXE in OS/2) is executed with the /C switch followed by the
program name, the parent transfer buffer pointer and any USING parameters.
This method enables any .EXE, .COM, or .BAT file to be executed just as if the
name were typed directly on the command line.

2–76 Programmer Guide

Coding Efficient CA-Easytrieve Programs

If the USING parameter is coded, the USING parameter is converted to ASCII, if
necessary, and passed by value to the child process using the PSP command tail
in PC/DOS, or the command line in OS/2. If the /FR (Far Reference) compiler
switch was specified, the USING data is passed to the child program by
reference using the vector at Interrupt 60H in PC/DOS, or shared segment in
OS/2.

Note: The USING and GIVING parameters are limited to a maximum length of
100 characters, unless the child program was compiled with the /FR switch.

 If a TRANSFER command is issued by the child process, the TRANSFER
command is placed into the transfer buffer of the parent process and the child
execution is terminated with INT 21H function 4CH in PC/DOS, or DosExit in
OS/2.

When the child process terminates with INT 21H function 4CH in PC/DOS, or
DosExit in OS/2, control is returned to the parent process. If the parent process
transfer buffer is empty, the parent process terminates via INT 21H function
4CH in PC/DOS, or DosExit in OS/2. If the parent process transfer command
buffer is not empty, the parent process executes the command in the transfer
buffer.

UNIX

If you coded a SHELL environment variable, CA-Easytrieve uses that path
instead of “/bin/sh”. The data from the USING parameter must be acceptable
in the shell you are running.

CA-Easytrieve/ESP Interactive Execution

When a TRANSFER command is executed in CA-Easytrieve/ESP, the
interpretive execution session is terminated.

Coding Efficient CA-Easytrieve Programs
Provided below are coding tips to help you write more efficient CA-Easytrieve
programs.

Data Usage

Coding a CA-Easytrieve Program 2–77

Coding Efficient CA-Easytrieve Programs

■ CA-Easytrieve normally generates the most efficient code when performing
operations on binary fields (data type B) on the mainframe and integer fields
(data type I) on the workstation. CA-Easytrieve performs binary or integer
arithmetic whenever possible. When this is impractical due to the size of
intermediate results, CA-Easytrieve uses packed decimal.

■ When you code packed decimal fields, if you use 15 or fewer digits,
CA-Easytrieve generates inline program code. On the mainframe, if you use
more than 15 digits, CA-Easytrieve uses runtime library routines for
multiplication and division. The use of runtime library routines results in a
longer execution time of your program.

■ Avoid the use of zoned numeric or fixed-point ASCII fields for heavily used
computations in your program.

■ Use indexes, rather than subscripts, in array processing to produce more
efficient code. Although subscripts are easier to use, they must be internally
computed into the index displacements.

■ When you use subscripts to access arrays, use a two-byte binary field on the
mainframe or an integer field on the workstation instead of a zoned numeric
field to reduce execution time.

■ CA-Easytrieve must convert one of the operands when you perform an
operation on fields of different data types. To limit data conversions, code
the fields to be updated or compared as the same type and the same number
of decimal places whenever possible.

■ When executing CA-Easytrieve on a workstation, limit the conversions that
CA-Easytrieve must perform between EBCDIC and ASCII fields.

■ n UNIX, all numeric operations require that the operands be converted to
packed. Therefore, in the UNIX environment, packed decimal is the most
efficient data type. However, this is subject to change.

Table Processing
■ Avoid using very large tables because they take more time to search and

require more storage than small tables.

Note: CA-Easytrieve automatically converts a SEARCH of an INDEXED table
file into a keyed read when the ARG field is also the file’s key. This results in
much faster access and reduced storage requirements.

Compiler Site and Program Options
■ The FASTSRT mainframe site option allows you to specify whether

CA-Easytrieve instructs the mainframe sort program to process all of the I/O
whenever possible. If the FASTSRT option is specified at your site, ensure
that the sort program can process extended parameter lists.

2–78 Programmer Guide

Coding Programs That Run Under CICS

■ The STATE site option and PARM statement parameter saves the statement
number of the statement currently being executed for display during an
abnormal termination. This option/parameter requires approximately six to
eight bytes of additional storage for each executable source line in your
program.

■ The FLOW site option and PARM statement parameter activates a trace of
statements being executed to be printed during an abnormal termination.
This option/parameter requires a subroutine to be invoked once for each
executable source line.

 After you test your program, deactivate the FLOW trace, if possible, to
decrease execution time of your program.

■ The FLDCHK site option and PARM statement parameter validates all data
references during program execution. This option/parameter generates
additional CA-Easytrieve code.

 After you test your program, deactivate the FLDCHK validation, if possible,
to decrease execution time of your program.

■ The VFM site option and PARM statement parameter specifies the amount of
storage available for the Virtual File Manager (VFM) buffer pool. Additional
storage can decrease execution time.

■ The BOUNCHK workstation option enables you to turn off bounds checking
for subscripted and indexed field references. You can also turn off bounds
checking with the /NB option during compilation.

 Bounds checking generates a significant amount of additional code and
subroutine usage on the workstation. To decrease execution time and
storage consumption, deactivate bounds checking, if possible, after you test
your program.

Report Processing

In non-CICS mainframe environments, report processing performance can be
enhanced by coding the FILE parameter on the REPORT statement or the
WORKFILE parameter of the PARM statement. Either of these parameters
specifies that a dedicated work file is used rather than a VFM work file.

Coding Programs That Run Under CICS
Provided below are tips to help you write efficient CA-Easytrieve programs in a
CICS environment.

■ The following site options or PARM statement parameters are ignored under
CICS:

Coding a CA-Easytrieve Program 2–79

Coding Programs That Run Under CICS

– FASTSRT site option

– SSID site option

– SSID PARM statement parameter.

■ CA-Easytrieve saves and restores all working storage fields, record I/O
buffers, and table file entries across pseudo-conversations using temporary
storage. Limit the number of fields and table entries you use in your
program.

■ To save on table usage, use INDEXED files as the subject of SEARCHes of
large tables rather than instream files. When an INDEXED file is used as a
table, the SEARCH statement results in a random read to the INDEXED file
using the argument as the key.

■ You must code the TRANSID parameter of the PARM statement if the
program is invoked by another program through the TRANSFER statement.
TRANSID specifies the PCT transaction ID that is invoked after a
pseudo-conversation.

■ Terminal I/O is done pseudo-conversationally unless COMMIT
NOTERMINAL is specified on the activity statement. See Controlling
Program Flow: Units of Work/Commit Processing earlier in this chapter for
more information on CA-Easytrieve commit processing.

 It is important to remember that commit points and pseudo-conversational
terminal I/O can cause the following:

– VSAM file browses on non-unique paths are terminated.

– File holds are released.

– SQL cursors are closed and data is committed.

– CALLed subroutines are deleted and reloaded.

– CA-IDMS run units are terminated.

– DLI PSBs are terminated.

 You must code your programs carefully. For example, when browsing an
SQL file, you must reposition browses after a pseudo-conversation.

■ Printer spool files are closed during each commit point, including
pseudo-conversations.

2–80 Programmer Guide

Chapter

3 File Processing

Overview
CA-Easytrieve provides all the facilities necessary to process your file or
database. Capabilities range from simple automatic input processing to complex
controlled database maintenance. CA-Easytrieve processes the following file
types:

■ Sequential

■ Indexed

■ Relative record

■ SQL, CA-IDMS, and IMS/DL/I databases

■ BTRIEVE

■ xBASE

■ Lotus

■ CA-SuperCalc

■ Comma-delimited

■ C-ISAM.

In addition, CA-Easytrieve provides its own sequential access method called the
Virtual File Manager (VFM). VFM processes all the work files needed by a
program.

This chapter describes the processing of sequential, indexed, and relative record
files. It also includes a discussion of printer files, and a discussion of workstation
file processing. See the “SQL Database Processing” chapter for a description of
SQL processing. See the “CA-IDMS Database Processing” chapter for a
description of CA-IDMS processing. See the “IMS/DL/I Database Processing”
chapter for a description of IMS/DL/I processing.

Following are items that apply to each type of file that CA-Easytrieve processes.

File Processing 3–1

Overview

File Definition

The FILE statement describes your file. It provides a logical name for the file and
also the physical name of the file as known by the operating system. It can also
specify the file’s organization and characteristics. Following is an example of a
FILE statement:

 (1) (2) (3) (4) (5) (6) (7)
FILE PERSONNEL-MASTER SYSNAME 'PERSNL' SEQUENTIAL FB(150 1800) SYSTEM (PC PATH +
 'D:\DATA\PERSNL')
...
GET PERSONNEL-MASTER
 (1)

Refer to the numbers in the above exhibit:

(1) The name of the file as it is known to the program.

(2) The name that identifies the file to the operating system. SYSNAME is
optional, and, if not specified, defaults to the file name (1). The name is one
of the following depending on your environment:
– A CMS FILEDEF name or DLBL name
– An MVS DDname
– A CICS FCT name
– A fully-qualified workstation file name. For absolute portability when a

workstation path is required, code the mainframe name here and also
use the SYSTEM parameter (see (7) below).

– A file description string or environment variable to the file (UNIX).

(3) The organization type of the file: SEQUENTIAL, INDEXED, or RELATIVE.

 Note: CA-Easytrieve Plus batch versions do not support the SEQUENTIAL,
INDEXED, and RELATIVE keywords. For compatibility, these
implementations support older FILE statements (VS or unspecified file
types). See Appendix C in the CA-Easytrieve Language Reference Guide for
differences.

(4) The record format.

(5) The record length.

(6) The block size of the file. This is ignored on the workstation.

(7) Environment-specific information can be specified in the SYSTEM
parameter. This parameter is used to isolate information needed on the
workstation. It is ignored on the mainframe and UNIX, enabling this FILE
statement to be portable. See Workstation Files later in this chapter for more
information on working with files on the workstation.

 Note: CA-Easytrieve Plus batch versions 6.0 and below do not ignore the
SYSNAME parameter and flag it as an error.

File Processing 3–2

Overview

Controlled vs. Automatic Processing

File input can be either automatic or controlled.

JOB and SORT statements designate automatic input. SORT and the SUMFILE
parameter of the REPORT statement are the only automatic output functions.
All other output is, at least to some degree, under programmer control.

Input and output statements (DISPLAY, GET, CLOSE, POINT, PUT, READ, and
WRITE) designate controlled processing. You can code these statements in any
CA-Easytrieve processing activity, except SORTs, with or without automatic
input.

Following are the rules for using automatic and controlled file processing:

■ Controlled statements are not permitted in SORT or REPORT procedures.

■ The GET statement cannot reference an automatic input file within the same
JOB activity.

■ Controlled statements are not normally valid for automatic input files in the
JOB activity, with the following exceptions:

– The POINT statement can be used in conjunction with automatic input
for indexed and relative files. This allows for skip-sequential input
processing while under system control.

– The PUT and WRITE statements can be used for automatic input of an
indexed or relative file, except when using synchronized file processing.

Data Buffering Mode

CA-Easytrieve always uses the move mode when processing files.
CA-Easytrieve moves the logical record from the buffer into a work area. File
buffers and work areas are never initialized by CA-Easytrieve. Therefore, if you
do not explicitly move data to the buffer or work area before output, the record
can contain unpredictable data.

WORKAREA Parameter

Normally, CA-Easytrieve allocates the data buffer of a file either during the
initiation of the activity that opens the file, or when the file is actually opened. If
you reference the fields in a file before the buffer is allocated, a runtime error is
issued indicating you have referenced a field in an unavailable file.

File Processing 3–3

Overview

You can use the WORKAREA parameter on the FILE statement to allocate the
buffer during the initiation of the program. The fields in the file will then always
be available for reference during the execution of the program. These fields are
treated similarly to working storage fields, however, unlike working storage
fields, file fields are never initialized. If you reference these fields before a
successful input operation, you must initialize them.

Record Format

File records must be in one of three formats:

■ Fixed-length

■ Variable-length

■ Undefined-length.

Fixed-length and variable-length records can be blocked. Block sizes are ignored
for Virtual File Manager (VFM) files and all files on the workstation.

All file formats must adhere to the standards established for processing by IBM
input/output control system routines. Records that deviate from the standards
for fixed-length or variable-length records can be processed only as
undefined-length records.

See Workstation Files later in this chapter, for more information on record
formats for workstation files.

See UNIX Files later in this chapter, for more information on record formats for
UNIX files.

CARD, PUNCH, and VSAM

CA-Easytrieve makes the following assumptions about the format of CARD,
PUNCH, and VSAM files:

■ Mainframe CARD and PUNCH file records are always a fixed-length of 80
characters.

■ Mainframe VSAM records have a variable length but no record length
indicator.

■ UNIX CARD files receive input from stdin.

When CA-Easytrieve produces variable-length or undefined-length records, the
length of the output record is controlled by the current contents of the output
file’s RECORD-LENGTH field. Unless otherwise specified, all records created by
CA-Easytrieve have a maximum data length based on the file’s record-size
attributes.

File Processing 3–4

Overview

Record Address

The address of a record points to the first data byte of the record. The
record-descriptor-word (RDW) of variable-length records is accessible only
through the system-defined RECORD-LENGTH field.

STATUS Parameter

The STATUS parameter can be optionally specified on the GET, POINT, READ,
PUT, and WRITE statements for files on which SEQUENTIAL, INDEXED, or
RELATIVE is specified on the FILE statement.

Specify STATUS whenever the possibility exists for an unsatisfactory completion
of the input/output request. STATUS checks input/output processing to see if it
was performed properly. You can code your program to perform an appropriate
action based on that status.

STATUS causes the file’s FILE-STATUS field to be set with the appropriate
return code. See System-Defined File Fields below to determine the meaning of
the contents of FILE-STATUS. Normally, a zero or non-zero test is sufficient.
FILE-STATUS is not defined if you do not specify the file type on the file
definition.

If you do not code STATUS and the operating system returns a non-zero status,
CA-Easytrieve issues an appropriate diagnostic message.

System-Defined File Fields

CA-Easytrieve automatically provides the special data fields listed below for
each of your files. These fields are stored as part of working storage but can be
qualified by file-name. As working storage fields, they are not subject to invalid
file reference errors.

RECORD-LENGTH

RECORD-LENGTH is a four-byte binary field used for all file types to determine
or establish the length of the current data record. For variable-length records,
this field contains only the length of the record’s data. CA-Easytrieve
automatically adjusts the field to account for the four-byte record-control-word
and four-byte block-control-word. For variable-length files, assign the length of
the record to the RECORD-LENGTH field before the PUT or WRITE statement is
executed.

File Processing 3–5

Overview

RECORD-COUNT

RECORD-COUNT is a read-only four-byte binary field that contains the number
of logical input operations performed to the file.

FILE-STATUS

FILE-STATUS is a read-only, four-byte binary field that contains a code that tells
you the results of the most recent I/O operation on a file. See Appendix A,
“System-Defined Fields,” in the CA-Easytrieve Language Reference Guide for
FILE-STATUS codes and their meanings.

Error Conditions

Error conditions that are flagged during file processing activities generally fall
into one of the following three categories:

■ File OPEN errors - commonly caused by incorrect or missing JCL or
information (mainframe) or incorrect path information (workstation and
UNIX). The operating system detects these errors and terminates
CA-Easytrieve processing.

■ Invalid file reference errors - caused by statements that refer to data from a
file which does not have a current record, for example, after end-of-file or
record not found. CA-Easytrieve issues a diagnostic message for these errors
when the FLDCHK option is in effect.

■ Improper handling of nonzero STATUS conditions - (returned from
statements such as READ.) You are responsible for correctly resolving these
conditions. (See System-Defined File Fields above for information on
FILE-STATUS.)

Data Availability Tests

CA-Easytrieve provides conditional expressions to assist you in resolving
questions of data availability. You can test these conditions with an IF statement
after GET, POINT, READ, and WRITE statements and in association with
synchronized file processing. The conditions used with synchronized file
processing are described later in this chapter under Synchronized File Processing.
The file presence test is available to test the success of the last input operation.
For example, the IF file-name test is true when the last GET or READ operation
was successful and there is another record that can be accessed.

Note: Referencing data in a file after any output operation is undefined and
results are unpredictable unless you code WORKAREA on the FILE statement.

File Processing 3–6

Overview

Opening Files

During the initiation of an activity, CA-Easytrieve opens all files used in the
activity (except for those specified with the DEFER parameter) that are not
already open. DEFERed files are opened when the first input/output statement
is issued for them. Files that are already open when an activity begins remain
open with the same file characteristics.

As part of its file-opening process, CA-Easytrieve performs the following tasks as
needed:

■ Validates block length for disk devices

■ Sets the FULLTRK value

■ Allocates buffer areas

■ Allocates work areas

■ Sets the file’s processing and access modes.

Closing Files

CA-Easytrieve automatically closes all files that were opened by the activity at
the end of each activity. You can also manually close a file by executing a
CLOSE statement for the file. The next I/O statement using the file
automatically reopens the file. Automatic input and output files cannot be
manually closed.

Note: If you close an output file without executing a PUT statement, null files
are created, unless you code DEFER on the FILE statement. Closing a DEFERed
file leaves the file undefined.

File Processing Modes

CA-Easytrieve makes certain assumptions about the use of each file in an activity
by scanning the I/O statements coded in the activity. (This is assuming that all
statement syntax is valid.) One of these assumptions is the file’s processing
mode. The processing mode dictates whether the file is opened for read or write
access. CA-Easytrieve file processing modes are:

■ Input - indicates that only GET, POINT, and READ statements are coded in
the activity that opened the file.

■ Create - indicates that the file has CREATE specified on the FILE statement
and that a PUT statement is coded in the activity. If you coded RESET on the
FILE statement, CA-Easytrieve attempts to reload an existing file.

■ Output - indicates that UPDATE is specified on the FILE statement and PUT
or WRITE ADD statements are coded in the activity.

File Processing 3–7

Overview

■ Update - indicates that UPDATE is specified on the FILE statement and
WRITE UPDATE or WRITE DELETE statements are coded in the activity
that opened the file.

File Access Mode

The other assumption CA-Easytrieve makes about a file is the file’s access mode.
CA-Easytrieve always opens a file for dynamic access. This allows records to be
read either sequentially or directly as follows:

■ Sequential - indicates that records are accessed in a sequence determined by
the file type as follows:

– For file type SEQUENTIAL, the records are accessed in the sequence in
which the records were added to the file.

– For file type INDEXED, the records are accessed in the sequence defined
by the key of the associated data set.

– For file type RELATIVE, the records are accessed in ascending sequence
of relative record numbers.

 Sequential access allows the use of the GET, PUT, and WRITE UPDATE
statements. If the file type is INDEXED or RELATIVE, sequential access also
allows the use of the WRITE DELETE statement.

■ Direct - indicates that records are accessed in a sequence determined by the
program. Each statement that accesses a record specifies the key of the
record to be accessed as follows:

– For file type SEQUENTIAL, direct access is not allowed.

– For file type INDEXED, the key value must be an alphanumeric item
whose length is equal to the key length specified for the associated data
set.

– For file type RELATIVE, the key value is a 4-byte binary integer that
specifies a relative record number.

 Direct access allows the use of the READ, WRITE ADD, WRITE DELETE,
and WRITE UPDATE statements.

Valid Syntax - FILE Statement

If file type is...

And parameters are... I/O statements allowed:

SEQUENTIAL CREATE
UPDATE
(none)

PUT
GET, WRITE UPDATE
GET

File Processing 3–8

Overview

If file type is...

And parameters are... I/O statements allowed:

RELATIVE CREATE
UPDATE
(none)

PUT
All except WRITE ADD
GET, POINT, or READ

INDEXED CREATE
UPDATE
(none)

PUT
All
GET, POINT, or READ

(none) CREATE or UPDATE

(none)

*** Error condition ***
File type must be specified
PUT or GET

File Browse Mode

Sequential input of a file implies a browse mode. CA-Easytrieve normally
maintains the positioning within a file during a browse. The following
operations terminate the browse and lose positioning within the file:

■ A RELEASE statement

Note: You can use the PRIOR parameter on the GET statement to perform a
backward browse.

Hold/Release Processing

CA-Easytrieve automatically issues a hold for a record when the FILE statement
specifies UPDATE. You can override this by specifying HOLD or NOHOLD on
your READ and GET statements.

You can manually release the hold on any file with the RELEASE statement.

■ Commit processing, automatic or by a COMMIT statement during a browse
of a file containing a path of non-unique keys. See the “Units of
Work/Commit Processing” chapter for more information.

When CA-Easytrieve holds a record for update, it establishes the intent to update
a record with the operating system. This intent does not mean you are obligated
to actually perform the update. It just holds the position in the file and may also
lock the record (CICS and workstation LANs). Locks are automatically released
when the update operation completes or a commit point is taken.

File Processing 3–9

SEQUENTIAL Files

In CICS, the default action for a READ statement is HOLD when you specify
UPDATE on the FILE statement. The default action for a GET statement and for
automatic input is NOHOLD. CICS does not allow you to browse a file for
update.

In all other environments, CA-Easytrieve issues a HOLD by default for READs,
GETs, and for automatic input. See Commit Processing in the “Screen
Processing” chapter for examples of hold processing in screen processing.

CA-Easytrieve/Workstation supplies a mechanism to hold records in INDEXED
files for update on LANs to protect records from concurrent update from
multiple users. This facility functions similarly to the mainframe environment
facility. When CA-Easytrieve issues a HOLD as described above, the record is
locked from other users accessing the record. System options control how long
subsequent users wait before being given an option to retry or escape the hold
request. When the update is complete or when a commit point is taken, the
record is automatically released.

SEQUENTIAL Files
CA-Easytrieve supports the access of all sequential files that the operating
environment in which CA-Easytrieve is running also supports. When also
supported by the operating environment, CA-Easytrieve supports all of the
following sequential access methods:

■ Virtual Storage Access Method Entry Sequenced Data Set (VSAM ESDS).

■ CARD and PUNCH files (not valid in CICS).

■ CA-Easytrieve’s Virtual File Manager.

■ In UNIX, variable-length text files and fixed-length record files are
supported.

SEQUENTIAL File Processing Rules

CA-Easytrieve processes SEQUENTIAL files according to the following rules:

Workstation LANs

■ Queued Sequential Access Method (QSAM).

■ Workstation fixed and variable-length text files, DBASE, LOTUS,
CA-SuperCalc, comma-delimited files, and mainframe EBCDIC files through
HLLAPI.

File Processing 3–10

SEQUENTIAL Files

■ When you do not code a file type on the FILE statement, SEQUENTIAL is the
default. CARD, PUNCH, and VIRTUAL files imply a SEQUENTIAL file
type.

 Note: When SEQUENTIAL is not specified for a sequential file, the
FILE-STATUS field is not available for the file.

■ You cannot process the same SEQUENTIAL file as both an input and an
output file within the same activity.

■ You can create SEQUENTIAL files in one activity and process them by
subsequent activities.

SEQUENTIAL Input

CA-Easytrieve provides both automatic and controlled processing of
SEQUENTIAL files.

Automatic Processing

FILE SEQFILE FB(150 1800)
%PERSNL
JOB INPUT SEQFILE NAME MYPROG

*
REPORT REPORT1 LINESIZE 65
LINE EMP# EMPNAME

The next example shows SEQUENTIAL processing with programmer control:
FILE SEQFILE FB(150 1800)
%PERSNL

GET SEQFILE
IF EOF SEQFILE
STOP

PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65

CARD Input

In TSO or CMS, you can process one of the input files through the system input
stream (SYSIN) by defining the file with a device type of CARD. On the
workstation, CARD files are 80-byte card images.

■ CA-Easytrieve permits only one CARD file in a program.

The following example shows SEQUENTIAL processing with automatic control:

PRINT REPORT1

Controlled Processing

JOB INPUT NULL NAME MYPROG

END-IF

LINE EMP# EMPNAME

File Processing 3–11

SEQUENTIAL Files

In UNIX, the device type of CARD is equal to stdin. The file is treated as a
variable-length text file.

FILE CARDFILE CARD
FIELD 1 5 A
JOB INPUT CARDFILE NAME MYPROG

SEQUENTIAL Output

You can create output files using controlled processing with the PUT statement.

Fixed-length File Creation

FILE INFILE
FIELD 1 5 A
FILE OUTFILE FB(100 500)

JOB INPUT INFILE NAME MYPROG
PUT OUTFILE FROM INFILE

Variable-length File Creation

FILE INFILE
FIELD 1 5 A
FILE OUTFILE VB(100 504)

JOB INPUT INFILE NAME MYPROG
OUTFILE:RECORD-LENGTH = 5
PUT OUTFILE FROM INFILE

Note: Unless redirected, stdin reads input from the terminal device.

DISPLAY FIELD

The following example shows fixed-length SEQUENTIAL file creation:

FIELD 1 5 A

The next example shows variable-length SEQUENTIAL file creation:

FIELD 1 5 A

VSAM File Creation

The FILE statement and the PUT statement are used to create (load) VSAM ESDS
files. You can reference a newly created file in subsequent activities by coding
another FILE statement with a different file name, but with JCL pointing to the
same physical file. The example below illustrates reloading a fixed-length ESDS
file.

You can create INDEXED and RELATIVE files using a similar technique. The
data set must be defined as reusable to use the RESET option on the FILE
statement.
FILE ESDS SEQUENTIAL CREATE RESET
%PERSNL
FILE PERSNL FB(150 1800)
COPY ESDS
JOB INPUT PERSNL NAME MYPROG

File Processing 3–12

Virtual File Manager

PUT ESDS FROM PERSNL STATUS
IF ESDS:FILE-STATUS NE 0
DISPLAY 'LOAD ERROR STATUS= ' ESDS:FILE-STATUS
STOP

Note: When using multiple files, you should qualify FILE-STATUS, as
illustrated above (ESDS:FILE-STATUS).

PUNCH Files

FILE INFILE
FIELD 1 5 A

FIELD 1 5 A
JOB INPUT INFILE NAME MYPROG

In MVS, the PUNCH parameter is not required, due to its device independence.
Simply define an output SEQUENTIAL file as fixed-length 80 characters and
assign it to the proper SYSOUT class via the DD card. If you code the PUNCH
parameter, MVS routes the output to the DD, SYSPUNCH.

Virtual File Manager

As a virtual file is read back into the program, the space it occupied is released
and the area can be immediately reused. You can, however, retain VFM files for
subsequent CA-Easytrieve activities.

The use of VFM is identical to SEQUENTIAL processing with the following
additions:

■ VFM files with the RETAIN option are deleted at the end of the associated
CA-Easytrieve execution.

■ VFM files are automatically blocked. Any block size you supply is ignored.

END-IF

Except for the PUNCH parameter, CA-Easytrieve treats PUNCH files the same
as any other 80-byte SEQUENTIAL file. The next example illustrates PUNCH
file output:

FILE OUTFILE PUNCH

PUT OUTFILE FROM INFILE

The Virtual File Manager (VFM) is a sequential access method that processes
work files needed by a program. Typically, when work files are needed by a
program, separate disk areas must be reserved for each work file. VFM,
however, maintains as much disk area in memory as possible. If the area in
memory is exhausted, VFM writes the excess data to a single spill area. When
you use VFM, you need only define one physical file.

■ VFM files without the RETAIN option are deleted once CA-Easytrieve has
processed them as input files and closed them.

File Processing 3–13

INDEXED Files

The following example illustrates a typical use of the VFM access method:
FILE PERSNL FB(150 1800)
%PERSNL

COPY PERSNL
SORT PERSNL TO SORTFILE USING PAY-NET NAME MYSORT

PRINT REPORT1
*

LINE EMPNAME PAY-NET

Because the file SORTFILE is a virtual file:

■ SORTFILE does not leave any files known to the operating system.

INDEXED Files

■ Virtual Storage Access Method Keyed Sequenced Data Set (VSAM KSDS)

■ Workstation Fast Access Btree Structure (FABS) ISAM files

■ UNIX C-ISAM files (fixed format, unique single keys only).

INDEXED Sequential Input

POINTing to a Specific Record
FILE KSDS INDEXED F(150)

JOB INPUT KSDS NAME MYPROG START POINT-PROC
DISPLAY EMP# +2 EMPNAME

POINT KSDS EQ '12318' STATUS
 IF FILE-STATUS NE 0

FILE SORTFILE VIRTUAL F(150)

JOB INPUT SORTFILE NAME MYPROG

REPORT REPORT1

■ You do not have to define SORTFILE in JCL

CA-Easytrieve supports both sequential and random (direct) processing of
INDEXED files. INDEXED files use a key that is contained in each record.
Sequential processing retrieves records sequenced by the key. When also
supported by the operating environment, CA-Easytrieve supports the following
index access methods:

■ Workstation BTRIEVE files (fixed format only)

CA-Easytrieve can process INDEXED files as if they were SEQUENTIAL files.
The access can be done either automatically (JOB INPUT) or controlled (GET).
The process used is essentially the same as that described for SEQUENTIAL file
input. Additionally, you can also start the input at a specific record or use
skip-sequential processing to bypass groups of records. The following two
examples illustrate INDEXED sequential input with a starting record and
skip-sequential processing.

%PERSNL

POINT-PROC. PROC

File Processing 3–14

INDEXED Files

 DISPLAY 'FILE-STATUS= ', KSDS:FILE-STATUS
 STOP
 END-IF

Skip-Sequential Processing
FILE VSAM INDEXED

 END-PROC

%PERSNL
JOB INPUT VSAM NAME MYPROG
 IF EMP# EQ 1000 THRU 1999
 PERFORM POINT-VSAM
 GOTO JOB
 END-IF
 PRINT REPORT1
*
POINT-VSAM. PROC
 POINT VSAM GE '02000' STATUS
 IF VSAM:FILE-STATUS NE 0
 DISPLAY 'FILE-STATUS= ' FILE-STATUS

END-PROC
*
REPORT REPORT1 LINESIZE 65

Random Input

INDEXED files can be read randomly (direct access mode) by the READ
statement. The next example illustrates reading an INDEXED file (PERSNL)
using keys contained in a SEQUENTIAL file (INKEYS).
FILE PERSNL INDEXED

FILE INKEYS
WHO * 5 N
JOB INPUT INKEYS NAME MYPROG

 IF FILE-STATUS EQ 16
 DISPLAY 'BAD KEY=' WHO
 GOTO JOB

 DISPLAY SKIP 2 HEX PERSNL

Adding Records to an INDEXED File

You can use either the WRITE or PUT statements to add records to an INDEXED
file. Either statement adds a single record to the file, but to use mass-sequential
insertion, use the PUT statement to add many records to the same place in the
file.

The following examples illustrate single and mass-insertion record addition.

 END-IF

 LINE EMP# EMPNAME

%PERSNL

 READ PERSNL KEY WHO STATUS

 END-IF

If you use the WRITE or PUT statements, you must include the CREATE or
UPDATE parameter on the FILE statement. UPDATE informs CA-Easytrieve
that all input records can potentially be updated or deleted. CREATE informs
CA-Easytrieve that the activity will use the PUT statement to load the file.

File Processing 3–15

INDEXED Files

Adding a Single Record
FILE PERSNL INDEXED UPDATE

FILE INKEYS
WHO * 5 N
PHONE * 10 N

 MOVE WHO TO EMP#
 MOVE PHONE TO TELEPHONE
 WRITE PERSNL ADD STATUS

 DISPLAY 'BAD KEY=' WHO ' STATUS=' PERSNL:FILE-STATUS
 GOTO JOB
 END-IF

FILE PERSNL INDEXED UPDATE
%PERSNL
FILE LOADER

%PERSNL

JOB INPUT INKEYS NAME MYPROG

 IF PERSNL:FILE-STATUS NE 0

Mass-Sequential Record Insertion

COPY PERSNL
JOB INPUT LOADER NAME MYPROG
 PUT PERSNL FROM LOADER STATUS
 IF FILE-STATUS NE 0
 DISPLAY 'ADD FAILED'
 DISPLAY HEX LOADER
 STOP
 END-IF

File Creation

The FILE statement and the PUT statement are used to create (load) INDEXED
files. You can reference a newly created file in subsequent activities by coding
another FILE statement with a different file name, but with JCL that points to the
same physical file. The following example illustrates reloading a INDEXED file.
The data set must be defined as reusable to use the RESET option on the FILE
statement.
FILE KSDS INDEXED CREATE RESET
%PERSNL
FILE PERSNL FB(150 1800)

JOB INPUT PERSNL NAME MYPROG
 PUT KSDS FROM PERSNL STATUS
 IF KSDS:FILE-STATUS NE 0

 STOP
 END-IF

Deleting a Record

FILE KSDS INDEXED UPDATE
%PERSNL
FILE KEYS

JOB INPUT KEYS NAME MYPROG
 READ KSDS KEY WHO STATUS
 IF FILE-STATUS NE 0

COPY ESDS

 DISPLAY 'LOAD ERROR STATUS= ' ESDS:FILE-STATUS

You can use the WRITE statement to delete individual records from an
INDEXED file. The deleted record is the file’s current input record.

WHO 1 5 N

File Processing 3–16

RELATIVE Files

 DISPLAY 'READ FAILED...KEY= ' WHO
 STOP
 END-IF
 WRITE KSDS DELETE STATUS

 DISPLAY 'DELETE FAILED'
 STOP
 END-IF

You can modify and rewrite the current input record by using the WRITE
statement.
FILE KSDS INDEXED UPDATE
%PERSNL

WHO 1 5 N
PHONE 6 10 N
JOB INPUT KEYS NAME MYPROG

 IF FILE-STATUS NE 0
 DISPLAY 'READ FAILED...KEY= ' WHO
 STOP

 MOVE PHONE TO TELEPHONE
 WRITE KSDS UPDATE STATUS
 IF FILE-STATUS NE 0

 STOP
 END-IF

RELATIVE Files

■ Virtual Storage Access Method Relative Record Data Set (VSAM RRDS)

■ Workstation and UNIX fixed-length relative (random-access) files.

RELATIVE File Sequential Input

 IF FILE-STATUS NE 0

Updating a Record

FILE KEYS

 READ KSDS KEY WHO STATUS

 END-IF

 DISPLAY 'UPDATE FAILED...KEY= ' WHO

CA-Easytrieve supports both sequential and random (direct file access)
processing of RELATIVE files. RELATIVE files use a four-byte binary key that
contains an integer value that specifies the relative record number. Sequential
processing retrieves records sequenced by the relative sequence number. When
also supported by the operating environment, CA-Easytrieve supports the
following relative access methods:

CA-Easytrieve can process RELATIVE files as if they were SEQUENTIAL files.
The access can be done either automatically (JOB INPUT) or controlled (GET).
The process used is essentially the same as that described for SEQUENTIAL file
input. Additionally, you can start the input at a specific record or use
skip-sequential processing to bypass groups of records.

File Processing 3–17

RELATIVE Files

POINTing to a Specific Record

The following example shows RELATIVE sequential input with a starting record:
FILE RRDS RELATIVE

REC-NUMBER W 4 B
JOB INPUT RRDS NAME MYPROG START POINT-PROC
 DISPLAY EMP# +2 NAME

 REC-NUMBER = 20
 POINT RRDS EQ REC-NUMBER STATUS
 IF FILE-STATUS NE 0

 STOP
 END-IF
END-PROC

The next example shows RELATIVE skip-sequential processing:
FILE RRDS RELATIVE
%PERSNL

JOB INPUT RRDS NAME MYPROG
 IF RECORD-COUNT GR 3
 PERFORM POINT-RRDS

 END-IF
 PRINT REPORT1
*

 REC-NUMBER = 40
 POINT RRDS GE REC-NUMBER STATUS
 IF RRDS:FILE-STATUS NE 0

 END-IF
END-PROC
*

 LINE EMP# EMPNAME

Random Input

RELATIVE files can be read randomly (direct access mode) by the READ
statement. The example below illustrates reading a RELATIVE file, PERSNL,
using keys contained in a SEQUENTIAL file, INKEYS:

%PERSNL
FILE INKEYS
WHO * 4 B

 READ PERSNL KEY WHO STATUS
 IF FILE-STATUS NE 0
 DISPLAY 'BAD KEY=' WHO

 END-IF
 DISPLAY SKIP 2 HEX PERSNL

%PERSNL

POINT-PROC. PROC

 DISPLAY 'FILE-STATUS= ', RRDS:FILE-STATUS

Skip-Sequential Processing

REC-NUMBER W 4 B

 GOTO JOB

POINT-RRDS. PROC

 DISPLAY 'FILE-STATUS= ' FILE-STATUS

REPORT REPORT1 LINESIZE 65

FILE PERSNL RELATIVE

JOB INPUT INKEYS NAME MYPROG

 GOTO JOB

File Processing 3–18

RELATIVE Files

Adding Records to a RELATIVE file

Record Addition
FILE PERSNL RELATIVE UPDATE
%PERSNL

COPY PERSNL
REC-NUMBER W 4 B VALUE 330. * STARTING SLOT NUMBER
JOB INPUT LOADER NAME MYPROG

 PUT PERSNL FROM LOADER STATUS
 IF FILE-STATUS NE 0
 DISPLAY 'ADD FAILED'

 STOP
 END-IF
 REC-NUMBER = REC-NUMBER + 1

The FILE statement and the PUT statement are used to create (load) RELATIVE
files. You can reference a newly created file in subsequent activities by coding
another FILE statement with a different file name, but with JCL that points to the
same physical file. The example below illustrates reloading a RELATIVE file.
The data set must be defined as reusable to use the RESET option on the FILE
statement:
FILE RRDS RELATIVE CREATE RESET
%PERSNL

COPY RRDS
JOB INPUT PERSNL NAME MYPROG
 PUT RRDS FROM PERSNL STATUS

 DISPLAY 'LOAD ERROR STATUS= ' RRDS:FILE-STATUS
 STOP
 END-IF

You can use the WRITE statement to delete individual records from a RELATIVE
file. The deleted record is the file’s current input record. For example:
FILE RRDS RELATIVE UPDATE
%PERSNL

WHO 1 4 B
JOB INPUT KEYS NAME MYPROG
 READ RRDS KEY WHO STATUS

You can use the PUT statement to add records to a RELATIVE file. If you use the
PUT statement, you must include the CREATE or UPDATE parameter on the
FILE statement. UPDATE informs CA-Easytrieve that all input records can
potentially be updated or deleted. CREATE informs CA-Easytrieve that the
activity will use the PUT statement to load the file. The following examples
illustrate record addition and file creation.

FILE LOADER

 POINT PERSNL GE REC-NUMBER STATUS

 DISPLAY HEX LOADER

File Creation

FILE PERSNL FB(150 1800)

 IF RRDS:FILE-STATUS NE 0

Deleting a Record

FILE KEYS

 IF FILE-STATUS NE 0

File Processing 3–19

Sorting Files

 DISPLAY 'READ FAILED...KEY= ' WHO
 STOP
 END-IF

 IF FILE-STATUS NE 0
 DISPLAY 'DELETE FAILED'
 STOP

Updating a Record

You can modify and rewrite the current input record by using the WRITE
statement. For example:
FILE RRDS RELATIVE UPDATE

FILE KEYS
WHO 1 4 B
PHONE 6 10 N

 READ RRDS KEY WHO STATUS
 IF FILE-STATUS NE 0
 DISPLAY 'READ FAILED...KEY= ' WHO

 END-IF
 MOVE PHONE TO TELEPHONE
 WRITE RRDS UPDATE STATUS

 DISPLAY 'UPDATE FAILED...KEY= ' WHO
 STOP
 END-IF

You can use the SORT statement to sort files. CA-Easytrieve can sort any file that
can be processed sequentially. The following illustrates the position of a SORT
activity within a CA-Easytrieve program:
Environment
...

...
Activities
...

SORT sort procedure
... ...
...

 WRITE RRDS DELETE STATUS

 END-IF

%PERSNL

JOB INPUT KEYS NAME MYPROG

 STOP

 IF FILE-STATUS NE 0

Sorting Files

Library

... SORT ...

Your installation’s sort program performs the actual sort process, except in CICS,
on the workstation, and in UNIX, where CA-Easytrieve supplies its own sort
program. CA-Easytrieve normally utilizes conventional sort interface
techniques. For example, on a mainframe CA-Easytrieve invokes the sort
program’s E15 (input) and E35 (output) exits.

File Processing 3–20

Sorting Files

You can set a site option to use versions of sort in which the sort processes all
input and output. For detailed information on the available options for sort
program utilization, refer to your installations’s sort program manual.

Note: In CICS, on the workstation, and in UNIX, CA-Easytrieve provides a sort
program.

See Sequenced Reports in the “Report Processing” chapter for information on
sorting report output.

In the following example, the output file contains all of the records of the input
file sorted into ascending sequence by the values of fields REGION and
BRANCH:
 FILE PERSNL FB(150 1800)
 %PERSNL

 COPY PERSNL
 SORT PERSNL TO SORTWRK USING +
 (REGION, BRANCH) NAME MYSORT

 PRINT REPORT1
 *
 REPORT REPORT1

Sort Procedures

CA-Easytrieve normally sorts all input records and outputs them to the file you
specify. The output file usually has the same format and length as the input file.
However, sometimes you may want to sort only certain records and/or modify
the contents. To do this, you can write a sort procedure which must immediately
follow the SORT statement.

You can code any valid CA-Easytrieve statement in a sort procedure, but you
cannot code statements that generate input/output. Invalid statements are:

DISPLAYFETCH GET
IDMS INSERT
POINT PRINT

SORT Activity Example

 FILE SORTWRK FB(150 1800) VIRTUAL

 JOB INPUT SORTWRK NAME MYPROG

 LINE REGION BRANCH EMPNAME

COMMIT DELETE

PUT READ
RETRIEVE (IDMS) ROLLBACK
SELECT (SQL) SELECT (IDMS)
SQL UPDATE
WRITE

Note: For debugging purposes, you can DISPLAY to the system output device
(SYSPRINT/SYSLST).

File Processing 3–21

Synchronized File Processing

The only valid field references within a sort procedure are:

■ Any field of the input file

■ Any working storage field

■ System-defined fields such as SYSDATE and RECORD-LENGTH.

Sorting a Selected Portion of a File

CA-Easytrieve supplies input records to your sort procedure one at a time. If
you code a BEFORE procedure, a SELECT statement must be executed for each
record that you want to sort.

The following example illustrates how to code an output file that will contain
only a reordered subset of the input file. The output file contains only those
records for which the SELECT statement is executed:
FILE PERSNL FB(150 1800)
%PERSNL
FILE SORTWRK FB(150 1800) VIRTUAL
COPY PERSNL
SORT PERSNL TO SORTWRK USING +
 (REGION, BRANCH, DEPT, +
 NAME-LAST, NAME-FIRST) +
 NAME MYSORT BEFORE SCREENER
*
SCREENER. PROC
 IF MARITAL-STAT = 'S' AND SEX = 1
 SELECT
 END-IF
END-PROC
*
JOB INPUT SORTWRK NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1
LINE REGION BRANCH DEPT NAME-LAST NAME-FIRST

Synchronized File Processing
The Synchronized File Processing (SFP) facility can be used with one file or
multiple files:

■ Synchronized File Input - performs match/merge operations on multiple
files.

■ Single File Keyed Processing - compares the contents of a key field or fields
from one record to the next in a single file.

File Processing 3–22

Synchronized File Processing

Synchronized File Input

CA-Easytrieve has a twofold solution to help you avoid coding complex logic for
match/merge operations:

■ Automatic input that includes a universally-adaptable match/merge
algorithm.

■ Special conditional expressions that help to determine simple, yet precise file
relationships.

The synchronized file match/merge algorithm is based on the following
assumptions and rules:

■ Two or more files capable of being processed sequentially can be accessed.

■ All files involved in the operation must be in ascending order by their key
values.

■ The number of keys for each file is identical.

■ Corresponding keys of all files must be either alphanumeric or numeric. An
alphanumeric key must be alphanumeric in all files, but can have different
lengths. A numeric key must be numeric in all files, but can have different
data types (N, P, U, B, F, I) and lengths.

■ Because the algorithm must “read ahead” to perform a match/merge,
INDEXED, RELATIVE, and input files cannot be updated during
synchronized file processing.

■ You can use the POINT statement to position an INDEXED or RELATIVE file
at a record other than the first record before processing. Use a START
procedure to perform the positioning.

Example

The INPUT parameter of the JOB statement designates files and their keys for
synchronized file input. The example below illustrates a variety of synchronized
file and key combinations:
FILE FILE1 ...
 KEY1A 1 5 A
 KEY1B 6 4 P
 ...
 KEY1X ...
 ...
FILE FILE2 ...
 KEY2A 24 5 A
 KEY2B 1 2 B
 ...
 KEY2X ...
 ...
FILE FILEN ...
 KEYNA 17 5 A
 KEYNB 10 7 N
 ...
 KEYNX ...
 ...

File Processing 3–23

Synchronized File Processing

JOB INPUT(FILE1 KEY KEY1A +
 FILE2 KEY KEY2A)
 ...
JOB INPUT (FILEN KEY(KEYNB, KEYNA) +
 FILE1 KEY(KEY1B, KEY1A) +
 FILE2 KEY(KEY2B, KEY2A))
 ...
JOB INPUT (FILE1 KEY(KEY1A ...) +
 ... +
 FILEN KEY(KEYNA ...))
 ...
 ...

Record Availability

Records from files in CA-Easytrieve synchronized file input are made available
for processing based on the relationship of the files’ keys. Records with the
lowest keys are made available first, and the match is hierarchical based upon
the order of the files specified on the JOB statement.

Refer to the following three input files for an example of synchronized file input:
FILE1 FILE2 FILE3
 1 2 1
 2 3 A 3
 3 A 3 B 4
 3 B 4 A 5
 8 A 4 B 7
 8 B 6 8 A
 9 7 8 B

The key is the single numeric digit and the letter indicates duplicates for
illustrative purposes. The JOB statement to process the three files for the
match/merge operation is:
 JOB INPUT (FILE1 KEY(KEY1) +
 FILE2 KEY(KEY2) +
 FILE3 KEY(KEY3)) NAME MYPROG

Duplicate key values affect record availability differently based on which file
contains the duplicates. Remember, the matching algorithm is hierarchical so the
key is exhausted on the lowest level before another record is processed from the
next higher level file.

Match/Merge Operation Output

The following exhibit illustrates the match/merge output from the synchronized
file input process. The output shows the results of each iteration (loop) through
the JOB activity. N/A under a file indicates that a record from the file is not
available and no fields from this file can be referenced during the associated
iteration.

File Processing 3–24

Synchronized File Processing

Note: CA-Easytrieve provides special IF statements to help you determine
record availability. See Special IF Statements next.

 JOB FILE1 FILE2 FILE3
 ITERATION RECORD RECORD RECORD
 1 1 N/A 1
 2 2 2 N/A
 3 3A 3A 3
 4 3A 3B N/A
 5 3B N/A N/A
 6 N/A 4A 4
 7 N/A 4B N/A
 8 N/A N/A 5
 9 N/A 6 N/A
 10 N/A 7 7
 11 8A N/A 8A
 12 8A N/A 8B
 13 8B N/A N/A
 14 9 N/A N/A

Refer to iterations 3 through 5 in the above output. FILE1 and FILE2 both
contain two records with a key value of 3. FILE3 contains only one record of key
3. These records are processed by CA-Easytrieve, as follows:

■ Iteration 3: The first record 3 from FILE1 and FILE2 and the only record
with key 3 from FILE3 are available.

■ Iteration 4: Since the next record on FILE3 is a key 4 record and there are
still key 3 records to process in the other files, FILE3’s record is not available.
CA-Easytrieve goes back to FILE2 and gets the next key 3 record. The
original key 3 record from FILE1 and the second key 3 record from FILE2 are
available.

■ Iteration 5: Since the next record on FILE2 is a key 4 record and there is still
a key 3 record on FILE1 to process, FILE2 is now unavailable. CA-Easytrieve
returns to FILE1 and retrieves the next record. This time the only record
available is the second key 3 record from FILE1.

Special IF Statements

CA-Easytrieve provides a simple way of determining the contents of current
synchronized file input with special conditional expressions.

MATCHED

Use the MATCHED test to determine the relationship between the current record
of one file and the current record of one or more other files.
IF [NOT] MATCHED [file-name-1 ... file-name-2 ...]

Refer to the earlier table under Match/Merge Operation Output, which depicts
automatic synchronized file input.

■ IF MATCHED is true for JOB iteration 3.

■ IF MATCHED FILE1, FILE3 is true for JOB iterations 1, 3, 11, and 12.

File Processing 3–25

Synchronized File Processing

■ IF MATCHED FILE2, FILE3 is true for JOB iterations 3, 6, and 10.

File Existence

To determine the presence of data from a particular file, use the following special
conditional expressions:
IF [NOT] file-name

IF [NOT] EOF file-name

When the IF file-name condition is true, a record from that file is present and
available for processing. The IF NOT file-name condition is true when the file
does not contain a record with a current key. When this condition is true, no
fields from the file can be referenced in the activity. If you reference a field in an
unavailable file, CA-Easytrieve issues a runtime error.

Refer again to the earlier table under Match/Merge Operation Output.

■ IF FILE1 is true for JOB iterations 1 through 5 and 11 through 14.

■ IF NOT FILE2 is true for JOB iterations 1, 5, 8, and 11 through 14.

■ IF EOF FILE2 is true for JOB iterations 11 through 14.

DUPLICATE, FIRST-DUP, and LAST-DUP

The DUPLICATE, FIRST-DUP, and LAST-DUP tests determine the relationship
of the current record of a file to the preceding and following records in the same
file:
 {DUPLICATE}
 IF [NOT] {FIRST-DUP} file-name
 {LAST-DUP }

The following record relationship tests are based on the previous example of
automatic synchronized file input. See the table under Match/Merge Operation
Output.

■ IF DUPLICATE FILE1 is true for JOB iterations 3 through 5 and 11 through
13.

■ IF FIRST-DUP FILE2 is true for JOB iterations 3 and 6.

■ IF LAST-DUP FILE3 is true for JOB iteration 12.

The FIRST-DUP and LAST-DUP conditions are also DUPLICATE conditions. A
record that satisfies the IF LAST-DUP or IF FIRST-DUP condition also satisfies
the IF DUPLICATE condition.

Refer to the CA-Easytrieve Language Reference Guide for more detailed examples of
conditional expressions.

File Processing 3–26

Synchronized File Processing

Updating a Master File

The next example illustrates updating a master file based upon matching
transaction file records. The program assumes:

■ A new master record is written when a match exists between the master file
and the transaction file.

■ There should be no duplicate transactions for a given master record. If this
occurs, the first duplicate is processed but subsequent duplicates are
bypassed.

■ No transaction records should exist without a matching master record. If this
occurs, the record is displayed on an error report and processing is bypassed.

 FILE OLDMSTR SEQUENTIAL
 O-KEY 1 2 N
 O-AMT 3 3 N
 FILE TRANS SEQUENTIAL
 T-KEY 1 2 N
 T-AMT 3 3 N
 FILE NEWMSTR SEQUENTIAL
 N-KEY 1 2 N
 N-AMT 3 3 N
 JOB INPUT (OLDMSTR KEY(O-KEY) +
 TRANS KEY(T-KEY)) NAME MYPROG
 * FOR MATCHED: UPDATE WITH TRAN AMT AND PUT NEWMSTR.
 * IF TRAN IS A DUPLICATE BUT NOT THE FIRST, BYPASS THE RECORD.
 IF MATCHED
 IF DUPLICATE TRANS AND NOT FIRST-DUP TRANS
 GOTO JOB
 END-IF
 MOVE O-KEY TO N-KEY
 N-AMT = O-AMT + T-AMT
 PUT NEWMSTR
 GOTO JOB
 END-IF
 * ON OLDMSTR ONLY: PUT THE NEWMSTR WITHOUT ANY UPDATE.
 IF OLDMSTR
 PUT NEWMSTR FROM OLDMSTR
 GOTO JOB
 END-IF
 * ON TRANS ONLY: PRINT ERROR REPORT.
 IF TRANS
 PRINT ERROR-RPT
 GOTO JOB
 END-IF
 *
 REPORT ERROR-RPT
 TITLE 'REPORT OF TRANSACTION WITH INVALID KEYS'
 LINE T-KEY T-AMT

Single File Keyed Processing

Using Synchronized File Processing on a single file allows you to compare the
contents of a key field or fields from one record to the next and use IF tests to
group records according to the key fields. The file name is coded on the JOB
INPUT statement as follows:
JOB INPUT (filename KEY (keyfield...))

File Processing 3–27

PRINTER Files

Using single file input allows you to determine the start of a new key value and
the end of the current key value by use of IF tests.

The following IF statement determines the start of a new key:

The next IF statement determines the end of the current key:
IF LAST-DUP filename OR NOT DUPLICATE filename

PRINTER Files
CA-Easytrieve enables you to create files with a device type of PRINTER to write
printed output with the REPORT and/or DISPLAY statements. See Routing
Printer Output in the “Report Processing” chapter for more information on
output creation. A PRINTER file can be directed to one of the following
destinations:

■ Any other terminal (only in CICS)

■ Your operating system’s spooling subsystem

The destination is determined by the FILE statement for the PRINTER file.

Defining a PRINTER File

IF FIRST-DUP filename OR NOT DUPLICATE filename

The file must be in ascending order by its key value(s).

■ The user’s terminal

■ An external data set.

A PRINTER file is specified by coding PRINTER as the device type on the FILE
statement. You designate the destination of the file by specifying the data set
type. The data set type can be one of the following:

■ TERMINAL indicates that the output for the printer is routed to a terminal.
The terminal can be a display terminal or an online CICS printer terminal. In
CICS, you can specify the ID of a terminal other than the originating user’s
terminal. When you do not specify a terminal ID (regardless of operating
environment), the output is routed back to the originating terminal.

■ SPOOL indicates that the output for this printer is routed to the operating
system spooling subsystem. You can also specify the output class,
destination node, and destination userid. In CMS, spooling requires that the
user’s machine has its printer spooled to RSCS.

File Processing 3–28

Workstation Files

■ If you are not executing in a CICS environment, SYSNAME associates the
PRINTER file to an external data set. If you do not specify a valid data set
type for the PRINTER file, CA-Easytrieve attempts to write the output to an
external data set. When SYSNAME is not coded for an external data set, the
file name is used as the external name of the file.

■ On the workstation, SYSNAME (or the file name) can specify a device name
(LPT1, CON).

SYSPRINT

SYSPRINT is a system-defined PRINTER file where printed output is sent unless
otherwise specified. You can override this default by specifying the name of
your PRINTER file on the REPORT and/or DISPLAY statement. SYSPRINT is
routed to the destination specified in your Site Options. This may cause the
output to be sent to one of the above destinations. See your system administrator
for more information.

Workstation Files

Note: To support existing CA-Easytrieve FILE statements, file information is
merged from FILE statements residing in the source program and the
CA-Easytrieve/Workstation File Control Table (FCT). See the File Control Table
(FCT) in Chapter 2 of the CA-Easytrieve/Workstation User Guide for more
information.

 Coding FILE Statements

SYSTEM Parameter

You must use the SYSTEM parameter on the FILE statement to describe
operating environment-specific information about a file. This information may
be necessary for CA-Easytrieve to process the file on the workstation. The
SYSTEM parameter is ignored on the mainframe.

CA-Easytrieve can access most workstation file structures in a way that allows
the program to be portable to the mainframe environment.

The following guidelines apply when coding a workstation FILE statement.

Note: CA-Easytrieve Plus versions 6.0 and below do not ignore the SYSTEM
parameter and flag it as an error. To ensure portability to these versions, code
the system information in an FCT entry.

File Processing 3–29

Workstation Files

Use the ACCESS subparameter to specify workstation access methods.

When you code a FILE statement for a file you want to access on both the
workstation and mainframe, use the PATH subparameter instead of including
the path on the SYSNAME parameter.

The FILE statement for each file specifies the type of CA-Easytrieve access.
SEQUENTIAL is the default if not specified. Optionally, you can specify
INDEXED or RELATIVE for keyed file access.

Note: CA-Easytrieve Plus batch versions do not support the SEQUENTIAL,
INDEXED, and RELATIVE keywords. For compatibility, both
CA-Easytrieve/Online and CA-Easytrieve/Workstation support older FILE
statements (VS or unspecified file types). See Appendix C in the CA-Easytrieve
Language Reference Guide for differences.

Records can have either a fixed or variable format on the workstation.

ASCII variable-length records are always delimited by a carriage return (x’0D’)
and line feed character (x’0A’) at the end of each record. EBCDIC variable-length
records are delimited by the 2-byte user option VAREVAL. See the User Guide
for option descriptions.

CA-Easytrieve/Workstation reads a record until either a delimiter is
encountered or until the specified record length is read. If the delimiter
characters are not located, an error message is issued and the program
terminates.

When creating a variable-length file, assign the length of the record to the
RECORD-LENGTH field before a PUT or WRITE statement is executed. If you
do not do this, the record is padded with spaces up to the specified record length
or default record length (if not specified).

File Type

Record Format

The record length of an EBCDIC variable-length file is the maximum data length
plus four (4) bytes. Unlike the mainframe, the PC does not support a
record-descriptor-word (RDW). For code portability, these four bytes are
maintained internally, with the first two bytes being VAREVAL.

Note: Use caution when specifying variable-length EBCDIC files. There can be
cases in which the EBCDIC delimiter characters appear as part of the legitimate
data. CA-Easytrieve/Workstation interprets these as the end of record delimiter,
which does not produce the results expected.

File Processing 3–30

Workstation Files

Note: BTRIEVE variable-length records are not supported.

Fixed-length records are logical in nature. The record length of the file
determines the end of one record and the beginning of the next.

Logical Record Length

If you do not specify the logical record length (LRECL) of the file,
CA-Easytrieve/Workstation assumes the record length is 256 bytes. If the file is
variable EBCDIC, this implies 252 bytes of data and four bytes for the RDW. For
variable-length files (carriage-return/line-feed terminated ASCII), 256 bytes can
be wasteful if the true record length is very small. If the true record length
exceeds 256 bytes, CA-Easytrieve/Workstation issues an error message. For
fixed format files, the length of fixed files is logical in nature. If set incorrectly,
CA-Easytrieve/Workstation will not find fields where expected. Invalid data
found in a numeric field could cause execution errors. CARD and PUNCH files
are assumed to be 80 bytes.

File Code System

Use the CODE parameter of the file to specify the code system. CA-Easytrieve
programs running on the workstation can access files using either ASCII or
EBCDIC code systems. Code systems are converted as necessary. The code
system defaults to the CODE PROCESS parameter of the PARM statement or
system option. Some code systems are not supported in some access systems.
CA-Easytrieve always assumes that PRINTER and variable-length files are
ASCII.

Allowed Field Types

Refer to the following table for field types normally used for files:

Code System Field Types

Variable-length ASCII A, F

Fixed-length ASCII A, F, I, S, D, B

EBCDIC A, N, P, U, B

CA-Easytrieve always assumes that N, P, and U type numeric fields are EBCDIC
numeric format.

File Processing 3–31

Workstation Files

Supported File Structures

The following list describes the supported file structures on the workstation and
any special considerations for using them.

Sequential

File type: unspecified (Batch, Online, or UNIX portability) or SEQUENTIAL
(Online or UNIX portability)

Record format: Fixed or variable

Code sets: ASCII or EBCDIC

SYSTEM ACCESS: not required

Indexed Sequential (FABS ISAM)

File type: IS (Batch or Online portability) or INDEXED (Online portability)

Record format: Fixed

Code sets: ASCII or EBCDIC

SYSTEM ACCESS: not required

Notes: The SYSTEM KEY parameter specifies the key of the record and is
required. The SYSTEM INDEX parameter names the associated index
component for the file. This allows a single data component to have alternate
indexes or keys.

See the CA-Easytrieve/Workstation User Guide for information on a utility that can
be used to build or rebuild the index component for ISAM files.

Relative (Random-access)

File type: VS (Batch or Online portability) or RELATIVE (Online or UNIX
portability)

Record format: Fixed

Code sets: ASCII or EBCDIC

Notes: Random-access files are sequential files in which each record is located
using a relative record number. When used in multi-user environments (LANs)
for update the entire file remains locked while open.

SYSTEM ACCESS: RRDS if VS

File Processing 3–32

Workstation Files

BTRIEVE

Record format: Fixed

Code sets: ASCII or EBCDIC

Notes: The BTRIEVE record manager must be loaded when you execute
programs accessing BTRIEVE files. See the CA-Easytrieve/Workstation User Guide
for more information.

Use the SYSTEM ACCESS-PATH parameter to specify the access path used for
record retrieval. Use the SYSTEM CREATE-PATH parameter to specify the
access paths and keys to create. The keys need to be specified only during file
creation. Use the SYSTEM OWNER parameter to specify the owner
identification for the file. Use the SYSTEM CREATE-MODE parameter to set
access rights and encryption mode for the file. Use the SYSTEM PAGESIZE
parameter to set the data page size used by BTRIEVE. See your BTRIEVE
documentation for complete information.

File type: VS (Batch or Online portability) or INDEXED (Online portability)

SYSTEM ACCESS: BTRIEVE

DBASE (xBASE)

File type: unspecified (Batch, Online, or UNIX portability) or SEQUENTIAL
(Online or UNIX portability)

Record format: Fixed

Code sets: ASCII only

SYSTEM ACCESS: DBASE

Notes: Field definitions for the CA-Easytrieve file must be compatible with the
dBASE structure. dBASE does not support N, P, B, U, I, S, or D field types. If
used during output, CA-Easytrieve converts data in these field types to character
fields. If used during input, CA-Easytrieve does not perform any conversion,
enabling the character data to be defined by these field types.

Do not include the dBASE delete indicator byte present in every dBASE file in
your record length.

When defining a file for ouput in dBASE format, the fields must be defined so
that there are no undefined bytes between fields. For the dBASE software to
correctly read the file, each field must be defined so that its first byte
immediately follows the last byte of the preceding field.

File Processing 3–33

Workstation Files

Also, the record length must be equal to the sum of all field lengths defined in
the dBASE output file. Note the following examples:
FILE DBASE-OUT F(100) +
 SYSTEM(ACCESS DBASE PATH 'DBFILE.DBF')
FLD-1 1 10 A
FLD-2 11 20 A
 * The record length is too long and
 * should be changed to F(30).

FILE DBASE-OUT F(35) +
 SYSTEM(ACCESS DBASE PATH 'DBFILE.DBF')
FLD-1 1 10 A
FLD-2 11 20 A
 * FLD-2 should be defined so that its
 * starting position is 11, not 16.
 * Leaving a blank space between fields
 * causes errors when the file is read
 * into dBASE. When you change the
 * definition for FLD-2 to FLD-2 11 20 A,
 * you should also change the record
 * length to F(30).

LOTUS

File type: unspecified (Batch, Online, or UNIX portability) or SEQUENTIAL
(Online or UNIX portability)

Record format: Fixed

Code sets: ASCII only

SYSTEM ACCESS: LOTUS

Notes: CA-Easytrieve supports both WKS and WK1 file formats. The format is
determined from the extension of the file. If not extension is specified, WKS is
assumed.

When used as input, CA-Easytrieve ignores titles and formulas in the
spreadsheet. When processing each row, CA-Easytrieve assigns each cell,
left-to-right, into each base field defined in the CA-Easytrieve file. Data in the
cell must conform to the field type and data is either truncated or padded to fit
the field.

Numeric data in the spreadsheet is converted to the correct format if defined as
F, N, P, B, U, I, S, or D.

When used as output, CA-Easytrieve creates cells, left-to-right, from each base
field. Cell size is set to the length of the CA-Easytrieve field. F, N, P, B, U, I, S, or
D type data is converted to a numeric cell when written to the spreadsheet.

Note the following example:
* This program is an example of how to read a
* Lotus 'WK1' format file as sequential input:
* as you can see, the only major difference
* between processing a Lotus file and a standard
* 'flat' sequential file is in the access method
* that is specified on the file statement.

File Processing 3–34

Workstation Files

* Note: The file 'PERSNL.WK1' is distributed
* with CA-Easytrieve/Workstation and is normally
* loaded into the 'SAMPLES' subdirectory of the
* product whenever the 'INCLUDE SAMPLE FILES'
* option of the installation is chosen.

FILE LOTUS-IN F(75) +
 SYSTEM(PC PATH('PERSNL.WK1') ACCESS LOTUS)

 ADDR * 20 A
 CITY * 13 A
 ST * 2 A
 ZIP * 6 F
 PAY1 * 9 F 2

PARM CODE PROCESS ASCII

 NAME 1 16 A

 PAY2 * 9 F 2

JOB INPUT LOTUS-IN

 PRINT REPT1

REPORT REPT1 SPACE 1
CONTROL
TITLE 1 'TEST REPORT USING A LOTUS FILE AS +
 INPUT'
LINE NAME ADDR CITY ST ZIP PAY1 PAY2

CA-SuperCalc

File type: unspecified (Batch, Online, or UNIX portability) or SEQUENTIAL
(Online or UNIX portability)

Record format: Fixed

Code sets: ASCII only

Notes: CA-Easytrieve supports any CA-SuperCalc version 5 file.

When used as input, CA-Easytrieve ignores titles in the spreadsheet. When
processing each row, CA-Easytrieve assigns each cell, left-to-right, into each base
field defined in the CA-Easytrieve file. Data in the cell must conform to the field
type and data is either truncated or padded to fit the field. Numeric data in the
spreadsheet is converted to the correct format if defined as F, N, P, B, U, I, S, or
D.

When used as output, CA-Easytrieve creates cells, left-to-right, from each base
field. Cell size is set to the length of the CA-Easytrieve field. F, N, P, B, U, I, S, or
D type data is converted to a numeric cell when written to the spreadsheet.

File type: unspecified (Batch, Online, or UNIX portability) or SEQUENTIAL
(Online or UNIX portability)

SYSTEM ACCESS: SUPERCALC

Comma-Delimited

File Processing 3–35

Workstation Files

Record format: Variable

Code sets: ASCII only

Notes: When processing each record for input, CA-Easytrieve assigns each field,
left-to-right, into each base field defined in the CA-Easytrieve file. Data in the
field must conform to the field type and data is either truncated or padded to fit
the field. F type data in the file is converted to the correct format if defined as N,
P, B, U, I, S, or D. Null alphanumeric values assigned into a varying
alphanumeric field have a length of zero.

When used as output, CA-Easytrieve creates record fields, left-to-right, from
each base field. Field size is set to the length of the CA-Easytrieve field. N, P, B,
U, I, S, or D type data is converted to F type when written. Varying length
alphanumeric fields with a length of zero create a null alphanumeric value.

Host Mainframe

Record format: Fixed

Code sets: EBCDIC

SYSTEM ACCESS: HOST

– An IBM PC 3270 connection to the mainframe.

– A PC 3270 emulator program that supports HLLAPI. See the
CA-Easytrieve/Workstation User Guide for information on HLLAPI
requirements and setup options.

– HLLAPI executing resident on the workstation.

When CA-Easytrieve opens a file for input that specifies HOST, a file transfer
request is made to download the file to a system-defined virtual file on the
workstation. When the transfer is complete, CA-Easytrieve processes the file.
CA-Easytrieve assumes the file is in EBCDIC format on the mainframe. If you
specify CODE ASCII on the FILE statement, CA-Easytrieve instructs the file
transfer to convert the code system of the file from EBCDIC to ASCII and add
carriage return and line feed characters (if variable) during the transfer.

SYSTEM ACCESS: DELIMITED

File type: unspecified (Batch or Online portability) or SEQUENTIAL (Online
portability)

Notes: The host file is accessed using the file transfer facility of the High level
Applications Level Interface (HLLAPI). Requirements for this feature are:

– The IND$FILE program executable in TSO or CMS.

File Processing 3–36

UNIX Files

When CA-Easytrieve opens a file for output that specifies HOST, output records
are written to a virtual file on the workstation. When the file is closed, the virtual
file is uploaded using a file transfer request to the mainframe. CA-Easytrieve
assumes the file is in EBCDIC format on the mainframe. If you specify CODE
ASCII on the FILE statement, CA-Easytrieve instructs the file transfer to convert
the code system of the file from ASCII to EBCDIC and remove carriage return
and line feed characters (if variable) during the transfer.

UNIX Files

File Type

The FILE statement for each file specifies the type of CA-Easytrieve access.
CA-Easytrieve in the UNIX environment supports SEQUENTIAL, INDEXED and
RELATIVE file types. SEQUENTIAL is the default if not specified. INDEXED
files can be processed using various access methods. See Executing Your
Program in UNIX in the User Guide.

Record Format

The following guidelines apply when you code the FILE statement in UNIX.

RELATIVE and INDEXED files permit only fixed format records. SEQUENTIAL
files can have fixed or variable format records. Variable format records are
line-feed (newline) delimited. Only text files can be variable. Binary data cannot
be stored in a sequential variable file. You should set your record length to the
length of the longest text. CA-Easytrieve reads the file for
record-length-plus-one characters or up to a newline character, whichever comes
first. If a newline character is not present, CA-Easytrieve issues an I/O error.

Fixed format records are fixed in length. The record length of the file determines
where each record in the file begins. For example, if a file has a record length of
20, bytes 0 through 19 make up the first record, bytes 20 through 39 make up the
second record, and so on. You can store binary data in fixed format files.
Because fixed format records on UNIX and the Workstation are not line-feed
delimited, you can get unpredictable results viewing or editing them.

Logical Record Length

You should specify the logical record length for each file. The defaults
CA-Easytrieve may assume in the UNIX environment most likely are wrong.
■ If you set the record length of a variable file too short, an error occurs.

File Processing 3–37

UNIX Files

■ If you set the record length of a fixed file incorrectly, any record after the first
appears to have fields shifted out of place. Often, this causes data errors.

Generally, CA-Easytrieve computes the default record length to be the greater of
the following items:

■ The highest location of a field defined in the file.

■ The WORKAREA parameter of the FILE statement.

■ The logical record length specified on the FILE statement.

C-ISAM

Creating C-ISAM files requires that CA-Easytrieve know what field represents
the key of the record. See the FILE statement KEY parameter for details.
CA-Easytrieve receives key information from C-ISAM after the files are created.
Currently, CA-Easytrieve supports only fixed-length, unique single-keyed
C-ISAM files and only as INDEXED files.

Not all C-ISAM data types are directly supported by CA-Easytrieve. The table
below shows the C-ISAM data types and their CA-Easytrieve equivalents.

C-ISAM Data Type CA-Easytrieve Field Definition

CHARTYPE x A

INTTYPE 2 I /0

LONGTYPE 4 I /0

FLOATTYPE

DOUBLETYPE 8 A*

DECIMALTYPE x A*

C-ISAM execution requires special execution setup. See the User Guide for details
on executing your C-ISAM program.

4 A*

*These C-ISAM numeric data types are not directly usable within CA-Easytrieve.
C-ISAM provides functions to convert between their machine-independent data
representation and the internal representation required by CA-Easytrieve when
it executes. You can call these routines from a FILE MODIFY exit to reformat
data into any of the various CA-Easytrieve numeric data types. A sample exit is
supplied with CA-Easytrieve as CISAMXIT.c.

File Processing 3–38

SQL Database Processing 4–1

Chapter

4 SQL Database Processing

Overview
CA-Easytrieve provides optional processing facilities for SQL databases. The
following SQL databases are supported:

■ IBM’s DB2, version 2.2 and greater

■ IBM’s DB2 for AIX, version 2.1 and greater

■ IBM’s SQL/DS, version 2.2 and greater

■ CA-Datacom/PC, version 1.0 and greater

■ CA-Datacom/DB with SQL, version 8.0 and greater

■ CA-IDMS, version 12.0 and greater

■ CA-Ingres, HP-UX and AIX, version 6.4 and greater

■ CA-OpenIngres, HP-UX, and AIX, version 1.0 and greater.

■ ORACLE, HP-UX and AIX, version 7.1 and greater.

Mainframe users:

■ Before CA-Easytrieve can process these databases, the CA-Pan/SQL
Interface product, version 2.4, must be correctly installed. See the
CA-Pan/SQL SQL Interface Installation Guide for complete information.

Workstation users:

■ CICSSERV.COM must be loaded into memory before CA-Easytrieve can
process queries to CA-Datacom/PC. If CICSSERV.COM is not loaded into
memory before compiling an SQL CA-Easytrieve program, the compile
process suspends processing on the system. See the CA-Datacom/PC
MS-DOS Database and System Administration Guide for more information
about the CICSSERV facility.

UNIX users:

■ All CA-Pan/SQL Interface functionality is installed with CA-Easytrieve. No
additional installation or documentation is required.

Overview

SQL Database Processing 4–2

To use these facilities effectively, you should have a basic knowledge of SQL and
the given database management system to be processed.

Programming Methods

There are two programming methods supported for processing SQL databases:

■ Using native SQL statements to manually manage the SQL cursor

■ Allowing CA-Easytrieve to automatically manage the SQL cursor.

Native SQL Statements

CA-Easytrieve supports most of the SQL statements available for a given DBMS.
The exceptions are those statements that are compiler directives and statements
that cannot be dynamically “prepared.” Using these native SQL statements, you
can code fully SQL-compliant programs in which you control the SQL cursor
operation. All native SQL statements are prefixed with the SQL keyword. See
the CA-Easytrieve Language Reference Guide for complete syntax. A list of all
supported and unsupported SQL commands is provided later in this chapter.

Automatic Cursor Management

There are two ways that CA-Easytrieve can manage the SQL cursor for you:

■ CA-Easytrieve files

■ Automatic retrieval without a file.

CA-Easytrieve Files

CA-Easytrieve can automate SQL cursor management when you associate an
SQL cursor with a CA-Easytrieve file. The SQL file can then be accessed in two
ways:

■ JOB INPUT statement - With each iteration of the JOB statement or activity,
another row from the table is automatically retrieved into the file’s data area.
Even if you have only a basic knowledge of SQL, you can report on data
contained in an SQL database.

■ CA-Easytrieve SQL-like statements - Use the following statements to read
and write SQL data on a controlled basis:

CLOSE DELETE
FETCH INSERT
SELECT UPDATE.

Automatic Retrieval without a File

Program Environment

SQL Database Processing 4–3

Automatic retrieval does not require that you define a CA-Easytrieve file. In this
read-only method, SQL must be coded on the JOB statement in place of a file
name. A SELECT statement must be coded directly after the JOB statement to
specify the columns to be retrieved and the host variables to receive the data.
Each time the JOB activity is iterated, another row of SQL data is retrieved. This
is a simple way to retrieve SQL data into working storage or into an extract file
for subsequent output.

CA-Easytrieve SQL Statement Rules

There are several differences in the rules to follow when coding SQL control
statements in CA-Easytrieve. The following syntax rules apply:

■ Operators must be separated by blanks.

■ Standard CA-Easytrieve continuation conventions are followed.

■ Commas are not ignored.

■ The period is used as a qualification separator, not to signify
end-of-statement.

■ The colon is used to identify host/indicator variables, not as a qualification
separator.

■ An SQL statement cannot be followed by another statement on the same
source record.

Program Environment
CA-Easytrieve processes SQL statements using the CA-Pan/SQL Interface
product on the mainframe and internal interfaces in UNIX and on the
Workstation. A specific implementation exists for each supported database:

■ For mainframe DB2, a dynamic and static interface are supported.

■ For SQL/DS, “extended dynamic” SQL is supported. SQL statements are
dynamically prepared during the compilation of your CA-Easytrieve
program and an access module or package is created. At runtime, SQL
statements are executed from the access module or package.

■ The CA-Datacom/DB SQL interface is very similar to the SQL/DS interface.
An access plan is created at compile time from which SQL statements are
executed.

■ The CA-Datacom/PC interface is similar to the CA-Datacom/DB SQL
interface on the mainframe. An access plan, from which SQL statements are
executed, is created at compile time .

Program Environment

SQL Database Processing 4–4

■ The CA-IDMS SQL interface is strictly a dynamic interface for both
compilation and execution.

■ The UNIX CA-Ingres, DB2, and ORACLE SQL interfaces are strictly dynamic
interfaces for both compilation and execution.

See Unsupported SQL Commands later in this chapter, for a list of commands
that cannot be coded in CA-Easytrieve programs.

Units of Work

Each CA-Easytrieve activity is considered a separate SQL unit of work or
transaction. If COMMIT TERMINAL is specified on the activity statement, a
commit is automatically executed during terminal I/O. If COMMIT ACTIVITY
is specified in the activity, a commit is also executed following the termination of
the activity. A ROLLBACK statement is automatically executed if CA-Easytrieve
detects an error condition or if you code a STOP EXECUTE statement in your
program.

You can issue your own COMMIT and ROLLBACK statements to signal the
successful or unsuccessful end of the transaction. These COMMIT and
ROLLBACK statements are performed in addition to the ones CA-Easytrieve
does automatically.

Each time a COMMIT or ROLLBACK statement is executed, all open SQL
cursors are closed. See the “Coding a CA-Easytrieve Program” chapter for more
information on commit processing. Exceptions may exist for specific databases
that maintain cursor positioning across commits or syncpoints.

PARM Statement Parameters

The following PARM statement parameters set the SQL environment for the
program:

Database Parameters that Set Environment

DB2 SQLID (mainframe only)
SSID
PLAN (mainframe only)
BIND (mainframe only)
SQLSYNTAX

SQL/DS USERID
PREPNAME
SQLSYNTAX

CA-Datacom/PC PREPNAME

Program Environment

SQL Database Processing 4–5

CA-Datacom/DB PLANOPTS
PREPNAME
SQLSYNTAX

CA-IDMS USERID
SQLSYNTAX

CA-Ingres SSID
USERID
SQLSYNTAX

ORACLE USERID
SQLSYNTAX

In all environments, use the SQLSYNTAX parameter to specify the level of SQL
syntax checking to be performed on the SQL statements in your program.
SQLSYNTAX FULL specifies that SQL statements will undergo detail-level
syntax checking. An SQL PREPARE statement is executed for those SQL
statements that can be dynamically prepared. Your DBMS must be available to
CA-Easytrieve. SQLSYNTAX PARTIAL indicates that your SQL statements are
checked for valid commands and secondary keywords. No connection is made
to your DBMS unless you have an SQL INCLUDE statement in your program.
Your program will not execute until it has undergone FULL syntax checking.

You can use the SQLSYNTAX NONE parameter on the PARM statement with a
static bind if you want syntax checking to be performed by the DB2 preprocessor
in a batch environment. An option of NONE causes your program to undergo
“partial” syntax checking. If no partial level compile errors are found and a
BIND option of STATIC-ONLY is specified, and no other non-SQL syntax errors
are found, your program continues to execution.

DB2

The SQLID parameter of the PARM statement results in the execution of the SQL
SET CURRENT SQLID command by the SQL Interface at compile time. The SQL
SET CURRENT SQLID command is executed at runtime for controlled or
automatic processing. Execution of the SQL SET CURRENT SQLID command is
valid for sites that have an external security package that supports group IDs.

The SSID parameter of the PARM statement can be used to specify the desired
DB2 subsystem in non-CICS environments. If the SSID parameter is not coded,
the SQL interface gets the DB2 subsystem ID from the DB2 system default
module DSNHDECP. DSNHDECP is made available through the JOBLIB or
steplib libraries. In CICS, the currently attached subsystem is used. In UNIX, the
SSID identifies the database to be connected.

Program Environment

SQL Database Processing 4–6

Static SQL is used to improve the performance of an SQL program. In a static
SQL program, all SQL statements are known ahead of time and an optimized
plan is created prior to execution time.

Static SQL is specified by two parameters on the PARM statement. PLAN
specifies the name of the DB2 static-command-program and its planname. The
command program can either be linked with the CA-Easytrieve program or
linked as a separate load module. A BIND parameter of STATIC-ONLY or ANY
causes the static-command-program to be generated.

To run your program statically, you must run special steps to create and link the
static command program and plan. See the “Batch Compilation” and
“Link-Editing” chapters in the CA-Easytrieve/Online User Guide for a complete
discussion.

Dynamic SQL is used to process your program when running under the
interpreter, regardless of the BIND parameter specified.

Static SQL and the LINK Statement

When you execute multiple static SQL programs in a given transaction or task,
you must bind all of the involved DBRMs into a single plan. Therefore, specify
the same planname for the PLAN parameter of each application program.

SQL/DS

Specify the SQL/DS userid to be used for compiling the program on the USERID
parameter of the PARM statement. At execution time, a CONNECT is executed
by CA-Easytrieve for automatic processing only. For controlled processing, you
must code the SQL CONNECT command providing the values for an sqlid and
password.

Specify the name of the SQL/DS access module for this program on the
PREPNAME parameter of the PARM statement. When an SQL program is
compiled, an access module is created or replaced. You should use unique
access module names for each application program to avoid using the default
name. In a high volume system, using the default PREPNAME can result in
catalog contention and a -911 SQLCODE resulting from a rollback.

CA-Datacom/PC

Specify the name of the CA-Datacom/PC PLAN for this program on the
PREPNAME parameter of the PARM statement. When an SQL program is
compiled, a PLAN is created or replaced. You should use unique PLAN names
for each application program to avoid using the default PLAN name from the
Site Options Table.

Library Section Definition

SQL Database Processing 4–7

CA-Datacom/DB

Use the PLANOPTS parameter on the PARM statement to specify the name of a
CA-Pan/SQL PLAN options module to override the default module
(DQSMPLN@). See the CA-Pan/SQL SQL Interface Installation Guide for more
information about defining your own options module.

CA-IDMS

Use the USERID parameter to specify the name of the IDMS dictionary to be
used for explicit connect (no password is needed).

If no dictionary name is provided, an implicit connection is attempted when the
first SQL statement is processed. The dictionary name is then obtained from the
SYSCTL DD card provided in your JCL.

CA-Ingres

Use the SSID parameter on the PARM statement to specify the name of the
database to which this session will connect.

Use the USERID parameter on the PARM statement to specify the user identifier
under which this session will run. The password subparameter is ignored.

ORACLE

Specify the ORACLE userid to be used for compiling the program on the
USERID parameter of the PARM statement. At execution time, a CONNECT is
executed by CA-Easytrieve for automatic processing only. For controlled
processing, you must code the SQL CONNECT command providing the values
for an sqlid and password.

Library Section Definition
Before SQL data can be accessed, you must define the fields to hold the columns
to be retrieved. These fields are known as host variables.

If you are using native SQL commands or using automatic retrieval without a
file, you usually define the fields as working storage fields. Alternatively, you
can define the fields within an active output file. This is an effective method to
select SQL data into a sequential file for extraction purposes. You must specify
which columns are to be retrieved and which host variables are to receive the
data.

Library Section Definition

SQL Database Processing 4–8

When using a CA-Easytrieve file, however, fields defined within the file
correspond to the selected columns of the SQL table. The table columns are
retrieved into the file fields.

SQL Catalog INCLUDE Facility

The SQL catalog INCLUDE facility can be used to automatically generate
CA-Easytrieve field definitions directly from the SQL catalog. This eliminates
the need to code host variable definitions in the library section of your program.

The SQL INCLUDE statement names the SQL table or view from which column
names and data types are obtained, and defines the location at which the field
definitions are generated.

The SQL INCLUDE statement must precede any other SQL or SELECT
statements and must be coded in the library section of your CA-Easytrieve
program.

Note: To use the SQL catalog INCLUDE facility on the workstation, your
database administrator must have installed the CA-Easytrieve workstation
compiler’s plan and granted you access to the system catalog tables.

Note: To use the SQL catalog INCLUDE facility for ORACLE, your database
administrator must have installed the catalog views (catalog.sql).

Processing NULLable Fields

CA-Easytrieve supports the SQL concept of a null data value. Null is a value
that denotes the absence of a known value for a field. Specify the keyword
NULLABLE on the SQL INCLUDE statement to generate the null indicator
variables. CA-Easytrieve does the rest of the processing for you when processing
the SQL table as a file.

Note: CA-Easytrieve/Workstation defines binary fields as either a B or I data
type, depending on the SQL setting in the Site Options Table.

When a field is defined as nullable, you can use special processing statements:

■ IF NULL can be used to determine if the field contains a null value.

■ MOVE NULL can be used to set a field’s value to null.

Library Section Definition

SQL Database Processing 4–9

Manual NULL Processing

When you use native SQL statements or automatic retrieval without a file, you
define null values differently. You define an indicator variable as a two-byte
quantitative binary field (2 B 0). This indicator variable is then used in the INTO
clause of the native or automatic SELECT statement. SQL returns a negative
value to the indicator variable when the field’s value is null. See the native SQL
examples for the use of manual indicator values.

Note: CA-Datacom/PC uses I type fields as indicator variables. You can code B
or I data types as indicator variables, however, if you code B type data,
conversion is performed whenever the database is accessed.

SQL Data Types

The following tables illustrate SQL data types and corresponding CA-Easytrieve
field definitions. SQL provides some data conversion in SQL assignments and
comparisons. Refer to your SQL manuals for more information on SQL data
conversions. See the corresponding notes after the tables for asterisked items in
the tables.

The first table includes DB2, SQL/DS, CA-Datacom/DB, and CA-Datacom/PC
databases.

SQL

CA-Easytriev
e

DB2,
SQL/DS

CA-Datacom/
DB SQL

CA-Datacom/
PC SQL

INTEGER 4 B 0
4 I 0

Y Y Y *4

SMALL INTEGER 2 B 0
2 I 0

Y Y Y *4

DECIMAL (x,y) x P y Y Y Y *5

UNSIGNED
DECIMAL (x,y)

x P y N N Y *5

CHARACTER (x) x A Y Y Y *6

VARCHAR (x) x A VARYING
(x <= 254)

Y Y (8.1) N

TEXT (x) x A VARYING N N N

LONG VARCHAR (x) x A VARYING
(x > 254)

Y Y (8.1) N

VARCHAR2 (x) x A VARYING N N N

Library Section Definition

SQL Database Processing 4–10

SQL

CA-Easytriev
e

DB2,
SQL/DS

CA-Datacom/
DB SQL

CA-Datacom/
PC SQL

RAW x A VARYING N N N

LONG RAW (x) x A VARYING N N N

NUMERIC (x,y) x N y N Y Y *7

UNSIGNED
NUMERIC (x,y)

x N y N N Y *7

FLOAT 10 P 3 *1 Y Y Y

REAL 10 P 3 *1 Y Y Y

DOUBLE PRECISION 10 P 3 *1 Y Y Y

NUMBER x P y N N N

MONEY 10 P 2 N N N

GRAPHIC (x) x M
x K

Y N N

VARGRAPHIC (x) x M VARYING
x K VARYING
(x <= 254)

Y N N

LONG VARGRAPHIC
(x)

x M VARYING
x K VARYING
(x > 254)

Y N N

DATE 10 A *8 Y Y Y

TIME 8 A Y Y Y

TIMESTAMP 26 A Y Y Y

LONG INTEGER 8 B O *2 N N N

BINARY x B y *3 N N N

none x U y - - -

The next table includes CA-IDMS, CA-Ingres, and ORACLE databases.

SQL CA-Easytrieve CA-IDMS SQL CA-Ingres ORACLE

INTEGER 4 B 0
4 I 0

Y Y N

SMALL INTEGER 2 B 0
2 I 0

Y Y N

Library Section Definition

SQL Database Processing 4–11

SQL CA-Easytrieve CA-IDMS SQL CA-Ingres ORACLE

DECIMAL (x,y) x P y Y N N

UNSIGNED
DECIMAL (x,y)

x P y Y N N

CHARACTER (x) x A Y Y Y

VARCHAR (x) x A VARYING
(x <= 254)

Y Y Y

TEXT (x) x A VARYING N Y N

LONG VARCHAR (x) x A VARYING
(x > 254)

Y N N

VARCHAR2 (x) x A VARYING N N Y

RAW (x) x A VARYING N N Y

LONG RAW (x) x A VARYING N N Y

NUMERIC (x,y) x N y Y N N

UNSIGNED
NUMERIC (x,y)

x N y Y N N

FLOAT 10 P 3 *1 Y Y Y

REAL 10 P 3 *1 Y N N

DOUBLE PRECISION 10 P 3 *1 Y N N

NUMBER (x,y) x P y *9 N N Y

MONEY 10 P 2 N Y N

GRAPHIC (x) x M
x K

Y N N

VARGRAPHIC (x) x M VARYING
x K VARYING
(x < = 254)

Y N N

LONG VARGRAPHIC
(x)

x M VARYING
x K VARYING
(x > 254)

Y N N

DATE 10 A *8 Y Y Y

TIME 8 A Y N N

TIMESTAMP 26 A Y N N

LONG INTEGER 8 B 0 *2 Y N N

BINARY x B y *3 Y N N

Library Section Definition

SQL Database Processing 4–12

SQL CA-Easytrieve CA-IDMS SQL CA-Ingres ORACLE

none x U y - - -

Note 1: On the Workstation, these types are converted to the CA-Easytrieve
data definition of 8 D 0.

Note 2: LONG INTEGER is valid only for CA-Easytrieve/Workstation. When
processing an SQL INCLUDE statement on the mainframe, this data type is
converted to the CA-Easytrieve data definition of 10 P 0.

Note 3: The CA-Easytrieve data type of BINARY for a length other than 2 or 4 is
valid only for CA-Easytrieve/Workstation. When processing an SQL INCLUDE
statement on the mainframe, this data type is converted to x A.

Note 4: Data conversion required.

Note 5: Data conversion required for EBCDIC.

Note 6: Maximum length = 8 bytes.

Note 7: Maximum length = 15 bytes.

Note 8: For CA-Ingres, dates are 11 bytes in length.

Note 9: Maximum length = 10 bytes.

Decimal Data Types

For SQL DECIMAL data types, the scale is the same as the decimal places of a
CA-Easytrieve field. SQL precision refers to the total number of digits that can
occur in the packed field. A CA-Easytrieve length refers to the number of bytes
occupied by the packed field. A CA-Easytrieve field that is 5 P 2 is the equivalent
of an SQL DECIMAL data type of precision = 9 and scale = 2. Depending on
your SQL release, SQL may not support CA-Easytrieve packed fields with
lengths > 8.

SQL Syntax Checking

When an SQL statement is passed to SQL for syntax checking, host variables are
converted to question marks (?) by CA-Easytrieve. It is possible that when an
SQL error is detected, the question mark is identified as the field in error. In this
case, you are responsible for looking up the error message and identifying which
host variable is in error. Because host variables are replaced with question
marks, their use in arithmetic expressions may result in compile errors. For DB2
and SQL/DS, an SQLCODE of -418 can occur.

Library Section Definition

SQL Database Processing 4–13

System-Defined File Fields

When using a CA-Easytrieve file to process an SQL database, the following
system-defined fields are used:

RECORD-COUNT

When the end of the table(s) has been reached, either with automatic (JOB) or
controlled (FETCH) processing, the file is marked EOF (end of file). In automatic
processing, execution stops, and the FINISH procedure (if present) executes. In
controlled processing, you can code file presence tests (IF EOF file-name) to
determine whether an end of file condition exists.

RECORD-COUNT contains the number of rows returned to the CA-Easytrieve
program. This is the number of rows fetched either by automatic or controlled
processing.

RECORD-LENGTH

RECORD-LENGTH is the length of the SQL file. The length is the sum of the
maximum lengths of all fields in the file.

EOF Processing

SQL Communications Area Fields

All of the SQL Communication Area fields (SQLCA) are automatically created in
S (static) working storage when any of the following occurs:

■ The first SQL-managed file is encountered

■ The first SQL INCLUDE statement is encountered

■ The first native or controlled SQL statement is found

■ The first JOB INPUT SQL statement is found.

The fields generated for SQLCA for the supported SQL database management
systems are shown in the following exhibits.

SQL Communication Area Fields for DB2, SQL/DS, CA-Ingres, and ORACLE
 DEFINE SQLCA S 136 A
 DEFINE SQLCAID SQLCA 8 A
 DEFINE SQLCABC SQLCA +8 4 B 0
 DEFINE SQLCODE SQLCA +12 4 B 0
 DEFINE SQLERRM SQLCA +16 72 A
 DEFINE SQLERRML SQLCA +16 2 B 0
 DEFINE SQLERRMC SQLCA +18 70 A
 DEFINE SQLERRP SQLCA +88 8 A

Library Section Definition

SQL Database Processing 4–14

 DEFINE SQLERRD SQLCA +96 4 B 0 OCCURS 6
 DEFINE SQLWARN SQLCA +120 8 A
 DEFINE SQLWARN0 SQLCA +120 1 A
 DEFINE SQLWARN1 SQLCA +121 1 A
 DEFINE SQLWARN2 SQLCA +122 1 A
 DEFINE SQLWARN3 SQLCA +123 1 A
 DEFINE SQLWARN4 SQLCA +124 1 A
 DEFINE SQLWARN5 SQLCA +125 1 A
 DEFINE SQLWARN6 SQLCA +126 1 A
 DEFINE SQLWARN7 SQLCA +127 1 A
 DEFINE SQLWARN8 SQLCA +128 1 A
 DEFINE SQLWARN9 SQLCA +129 1 A
 DEFINE SQLWARNA SQLCA +130 1 A
 DEFINE SQLEXT SQLCA +131 5 A

Library Section Definition

SQL Database Processing 4–15

SQL Communication Area Fields for CA-Datacom/DB and CA-Datacom/PC
 SQLCA S 196 A
 SQLCA-EYE-CATCH SQLCA 8 A
 SQLCAID SQLCA 8 A
 SQLCA-LEN SQLCA +8 4 B 0
 SQLCABC SQLCA +8 4 B 0
 SQLCA-DB-VRS SQLCA +12 2 A
 SQLCA-DB-RLS SQLCA +14 2 A
 SQLCA-LUWID SQLCA +16 8 A
 SQLCODE SQLCA +24 4 B 0
 SQLCA-ERROR-INFO SQLCA +28 82 A
 SQLCA-ERR-LEN SQLCA +28 2 B 0
 SQLCA-ERR-MSG SQLCA +30 80 A
 SQLERRM SQLCA +28 72 A
 SQLERRML SQLCA +28 2 B 0
 SQLERRMC SQLCA +30 70 A
 SQLCA-ERROR-PGM SQLCA +110 8 A
 SQLERRP SQLCA +110 8 A
 SQLCA-FILLER-1 SQLCA +118 2 A
 SQLCA-ERROR-DATA SQLCA +120 24 A
 SQLCA-DSFCODE SQLCA +120 4 A
 SQLCA-INFCODE SQLCA +124 4 B 0
 SQLCA-DBCODE SQLCA +128 4 A
 SQLCA-DBCODE-EXT SQLCA +128 2 A
 SQLCA-DBCODE-INT SQLCA +130 2 B 0
 SQLCA-MISC-CODE1 SQLCA +132 4 A

 SQLWARN SQLCA +144 8 A

 SQLWARN4 SQLCA +148 1 A

 SQLCA-AUTHID SQLCA +160 18 A

 SQLCA-MISC-CODE2 SQLCA +136 4 B 0
 SQLCA-MISC-CODE3 SQLCA +140 4 A
 SQLCA-WRN-AREA SQLCA +144 8 A
 SQLCA-WARNING SQLCA +144 1 A OCCURS 8

 SQLWARN0 SQLCA +144 1 A
 SQLWARN1 SQLCA +145 1 A
 SQLWARN2 SQLCA +146 1 A
 SQLWARN3 SQLCA +147 1 A

 SQLWARN5 SQLCA +149 1 A
 SQLWARN6 SQLCA +150 1 A
 SQLWARN7 SQLCA +151 1 A
 SQLCA-PGM-NAME SQLCA +152 8 A

 SQLCA-PLAN-NAME SQLCA +178 18 A

Library Section Definition

SQL Database Processing 4–16

SQL Communication Area Fields for CA-IDMS
 SQLCA S 344 A
 SQLCAID SQLCA 8 A
 SQLCODE SQLCA +8 4 B 0
 SQLCSID SQLCA +12 4 B 0 OCCURS 2
 SQLCERC SQLCA +20 4 B 0
 SQLCNRP SQLCA +28 4 B 0
 SQLCSER SQLCA +36 4 B 0
 SQLCLNO SQLCA +44 4 B 0
 SQLCMCT SQLCA +48 4 B 0
 SQLCOPTS SQLCA +52 4 B 0
 SQLCFJB SQLCA +56 4 B 0
 SQLCPCID SQLCA +60 4 B 0
 SQLCLCID SQLCA +64 4 B 0
 SQLCERL SQLCA +68 2 B 0
 SQLCERM SQLCA +72 256 A
 SQLSTATE SQLCA +328 5 A

Sample Database

The following two tables are used for all the examples in this chapter.
 TABLE: PERSONNEL
 --
 COLUMNS: EMPNAME WORKDEPT EMPPHONE
 --
 DATA: NORIDGE DEBBIE 901 5001
 OSMON SAMUEL 901 5004
 MILLER JOAN 950 6034
 EPERT LINDA 950 null

 EMPPHONE - DECIMAL(5,0) (NULL)

 DATA: SHIPPING 901

 DATA PROCESSING 951

 DEPTNUMBER - DECIMAL(3,0) (NOT NULL)

 STRIDE ANN 901 null
 ROGERS PAT 921 2231

 EMPNAME - CHAR(20) (NOT NULL)
 WORKDEPT - DECIMAL(3,0) (NOT NULL)

...

 TABLE: DEPARTMENTS

 COLUMNS: DEPTNAME DEPTNUMBER

 HUMAN RESOURCES 921
 ACCOUNTING 950

 DEPTNAME - VARCHAR(20) (NOT NULL)

 WORKDEPT in the PERSONNEL table corresponds with
 the DEPTNUMBER in the DEPARTMENTS table.

Working Storage Definitions

The next exhibit shows working storage field definitions for the sample tables in
the previous exhibit.

DEFINE EMPNAME W 20 A
DEFINE WORKDEPT W 2 P 0
DEFINE EMPPHONE W 3 P 0
DEFINE DEPTNAME W 22 A VARYING
DEFINE DEPTNUMBER W 2 P 0
DEFINE NULLPHONE W 2 B 0 .* NULL INDICATOR

CA-Easytrieve SQL Files

SQL Database Processing 4–17

DEFINE USERID W 8 A VALUE('SQLDBA') .* SQL/DS USERID
DEFINE PASSWORD W 8 A VALUE('SQLDBAPW') .* SQL/DS PASSWORD

CA-Easytrieve SQL Files

To process data from an SQL table using this method, you must code the
following:

■ A SELECT statement that defines the result set for the cursor. If you do not
use a SELECT statement, CA-Easytrieve generates a default SELECT to
retrieve all rows for the table(s). You can override this default by specifying
your own file-based SELECT statement as the first statement following the
JOB statement.

– Organize the data in the table by groups (GROUP BY)

 In addition to overriding the default SELECT, you can code one or more
SELECTS anywhere in your JOB activity. This enables you to use conditional
logic to dynamically determine which SELECT is executed.

In this method of processing SQL, CA-Easytrieve automates cursor management
by associating an SQL cursor with a CA-Easytrieve file.

Processing Requirements

■ A FILE statement specifying one or more table names. If all columns defined
in the file are subject to update, specify the UPDATE keyword on the FILE
statement.

■ One or more field definitions for the columns within the table(s) that you
want to retrieve. These definitions can be coded using the DEFINE
statement or by using the SQL INCLUDE statement to automatically
generate the definitions from the SQL catalog. If you want to selectively
update only a few columns of those defined within the file, omit the
UPDATE keyword from the FILE statement and specify UPDATE only on
the field definitions (columns) you want to update. Coding UPDATE on the
SQL INCLUDE statement causes generated definitions to be subject to
update.

 Overriding the default SELECT allows you to use SQL techniques to
customize the result set for the cursor. For example, you can:

– Limit the result set to a subset of records (WHERE)

– Limit the groups returned (HAVING)

– Sequence the returning records (ORDER BY).

CA-Easytrieve SQL Files

SQL Database Processing 4–18

 A SELECT statement for an SQL file is similar to opening the file.
SELECTing a file that is already open first closes the file and then reopens
the file based on the new SELECT statement.

See the CA-Easytrieve Language Reference Guide for more information on SELECT
usage.

Operation

The SQL cursor that is automatically defined by a SELECT statement is closed
following the termination of the activity that opened it.

You can access SQL data using a CA-Easytrieve file either automatically or using
controlled processing.

The following program displays all records in the table, PERSONNEL:

WORKDEPT * 2 P 0

If you are executing in an SQL/DS, CA-Ingres, UNIX DB2, or ORACLE system,
CA-Easytrieve generates and executes a CONNECT statement. You need not
code an SQL CONNECT statement when using CA-Easytrieve automatic
processing. The user ID and password parameters are taken from those specified
in the USERID parameter of the PARM statement.

CA-Easytrieve checks the SQLCODE field following each execution of a
file-based SQL statement. If the SQLCODE indicates an error, CA-Easytrieve
issues an error message based on the SQL error and terminates execution.
During automatic processing, an SQLCODE indicating end of data causes
CA-Easytrieve to initiate end-of-input processing; the FINISH PROC (if any)
executes, spooled reports are printed, and the current JOB activity ends. During
controlled processing, an SQLCODE indicating end of data causes CA-Easytrieve
to set the value of EOF to true.

Note: UNIX DB2 and ORACLE systems are limited to a maximum of 10 cursors.

Input Processing

Automatic Processing

CA-Easytrieve automatically accesses your SQL database if you name the SQL
file as the input file on a JOB statement. When you specify an SQL file as
automatic input, CA-Easytrieve prepares a default SELECT statement for the
cursor:

FILE PERSNL SQL (PERSONNEL)
EMPNAME * 20 A

JOB NAME RETRIEVE-PERSONNEL INPUT PERSNL

CA-Easytrieve SQL Files

SQL Database Processing 4–19

 DISPLAY EMPNAME +2 WORKDEPT

You can override the default SELECT statement by coding a SELECT statement
for the automatic input file as the first statement in the JOB, as shown in the
following exhibit:
FILE PERSNL SQL (PERSONNEL)
EMPNAME * 20 A
WORKDEPT * 2 P 0
JOB NAME RETRIEVE-PERSONNEL INPUT PERSNL
 SELECT FROM PERSNL WHERE WORKDEPT = 901
 DISPLAY EMPNAME +2 WORKDEPT

The above program displays only the records for employees assigned to
department 901. The SELECT statement provides the new default selection
criteria.

Using DEFER with SELECT

You can use the DEFER parameter on the SQL FILE statement to delay SELECT
processing. For example, assume you want to select only employee numbers in a
particular department and the department number is kept in a card file. The
SELECT statement contains a WHERE clause specifying the host variable in the
card file. CA-Easytrieve opens the CARD file at the initiation of the JOB activity
but the GET statement is coded in a START procedure. If the file SELECT is not
DEFERed, the SELECT is performed using an uninitialized host variable. Coding
DEFER enables the START procedure to get the card before the SELECT is
performed.

In addition, if DEFER is not specified, the default SELECT is executed before the
START procedure. Then the SELECT in the START procedure is executed. This
causes extra processing that is not needed. An example follows:

FILE PERSNL SQL (PERSONNEL) DEFER
EMPNAME * 20 A
WORKDEPT * 2 P
FILE CARDFIL CARD
CARDDEPT 1 3 N
JOB NAME RETRIEVE-PERSONNEL INPUT PERSNL START GETCARD
 DISPLAY EMPNAME +2 WORKDEPT
 GETCARD. PROC
 GET CARDFIL
 SELECT FROM PERSNL WHERE WORKDEPT = :CARDDEPT
 END-PROC

NULLable Field Processing

The following example illustrates how to process the nullable field, EMPPHONE.
You must test for a nullable field before processing it. If EMPPHONE contains a
null value, it is set to zero before displaying it:
FILE PERSNL SQL (PERSONNEL)
 SQL INCLUDE (EMPNAME, WORKDEPT, EMPPHONE) +
 FROM PERSONNEL LOCATION * NULLABLE
JOB NAME RETRIEVE-PERSONNEL INPUT PERSNL
 IF EMPPHONE NULL
 EMPPHONE = 0
 END-IF
 DISPLAY EMPNAME +2 WORKDEPT +2 EMPPHONE

CA-Easytrieve SQL Files

SQL Database Processing 4–20

Multiple Tables

The next example illustrates joining two tables, PERSONNEL and
DEPARTMENTS, to report on employees and the departments in which they
work:
FILE PERSNL SQL (PERSONNEL, DEPARTMENTS)
EMPNAME * 20 A HEADING 'EMPLOYEE NAME'
WORKDEPT * 2 P 0 HEADING ('DEPT', 'NO')
DEPTNAME * 22 A HEADING 'DEPARTMENT'
DEPTNUMBER * 2 P 0
JOB NAME RETRIEVE-PERSONNEL INPUT PERSNL
 SELECT FROM PERSNL WHERE WORKDEPT = DEPTNUMBER
 PRINT PERSNL-REPORT
 REPORT PERSNL-REPORT
 LINE EMPNAME WORKDEPT DEPTNAME

Both table names are specified on the FILE statement. The default SELECT is
overridden because the result set should include only those DEPARTMENT
records that match the department number of the PERSONNEL record.

Controlled Processing

You use the FETCH statement (in conjunction with SELECT and CLOSE
statements) to retrieve the records from the file with controlled processing. You
can code these statements within a PROGRAM, SCREEN, or JOB activity, with or
without automatic input. The following rules apply:

■ Controlled statements are not permitted in SORT or REPORT procedures.

■ The FETCH statement cannot reference an automatic input file within the
same JOB activity. You can FETCH from a file other than the file subject to
automatic input.

In a PROGRAM Activity

Here is an example of controlled input from a default cursor:
FILE PERSNL SQL (PERSONNEL)
EMPNAME * 20 A
WORKDEPT * 2 P 0
PROGRAM NAME RETRIEVE-PERSONNEL
 FETCH FROM PERSNL
 DO WHILE NOT EOF PERSNL
 DISPLAY EMPNAME +2 WORKDEPT
 FETCH FROM PERSNL
 END-DO

The PROGRAM activity fetches each row of the table and displays the fields.
The DO statement executes until end-of-file.

In a JOB Activity

The same process used in a JOB activity is coded as follows:
FILE PERSNL SQL (PERSONNEL)
EMPNAME * 20 A
WORKDEPT * 2 P 0

CA-Easytrieve SQL Files

SQL Database Processing 4–21

JOB NAME RETRIEVE-PERSONNEL INPUT NULL
 FETCH FROM PERSNL
 IF NOT EOF PERSNL
 DISPLAY EMPNAME +2 WORKDEPT
 ELSE
 STOP
 END-IF

You must execute a STOP statement when end-of-file is reached because a NULL
JOB activity automatically loops.

Random Processing

The following example illustrates a type of random processing in which the SQL
file’s cursor is built using a key contained in a sequential file.
FILE ESDS SEQUENTIAL
FILENAME 17 20 A
FILE PERSNL SQL (PERSONNEL) DEFER
EMPNAME * 20 A
WORKDEPT * 2 P 0
JOB NAME RETRIEVE-PERSONNEL INPUT ESDS
 SELECT FROM PERSNL WHERE EMPNAME = :FILENAME
 FETCH FROM PERSNL
 IF EOF PERSNL
 DISPLAY 'EMPLOYEE NOT ON FILE ' FILENAME
 ELSE
 DISPLAY EMPNAME +2 WORKDEPT
 END-IF
 CLOSE PERSNL

The sequential file is read automatically by the JOB activity. For each record, a
SELECT statement is executed to locate the employee in the PERSONNEL table.
If the FETCH statement results in end-of-file, the employee is not found.
Otherwise, the employee’s name and department are displayed.

Synchronized File Processing

The following example illustrates a way to match a sequential file with an SQL
file. This example uses the default SELECT and then matches the two files based
on the employee name in both files:

 FILE ESDS SEQUENTIAL
 FILENAME 17 20 A
 FILE PERSNL SQL (PERSONNEL)
 EMPNAME * 20 A
 WORKDEPT * 2 P 0
 JOB NAME MATCH-PERSNL INPUT (ESDS KEY (FILENAME) PERSNL KEY (EMPNAME))
 IF NOT MATCHED AND ESDS
 DISPLAY 'EMPLOYEE NOT IN SQL FILE' FILENAME
 ELSE
 IF NOT MATCHED AND PERSNL
 DISPLAY 'EMPLOYEE NOT ON ESDS FILE' EMPNAME
 ELSE
 DISPLAY 'EMPLOYEE ON BOTH FILES' EMPNAME
 END-IF
 END-IF

The default SELECT could have been overridden by coding a SELECT as the first
statement after the JOB statement.

CA-Easytrieve SQL Files

SQL Database Processing 4–22

Update Processing

Following are additional requirements for updating a CA-Easytrieve SQL file:

■ You can name only one table on the FILE statement for updates, inserts, or
deletions.

■ You must specify the UPDATE parameter on the FILE statement if all fields
defined are subject to update. If you want to update only certain fields, do
not specify UPDATE on the FILE statement, but specify UPDATE on the
DEFINE statement for each field to be updated. You can also use the SQL
INCLUDE statement to automatically generate definitions with UPDATE.

■ You must specify UPDATE on the FILE statement to insert or delete rows.

■ For updating, you must code a SELECT statement for the file that contains
the FOR UPDATE clause. If the FOR UPDATE clause is omitted, the first
UPDATE statement is flagged in error. Default SELECT statements created
by CA-Easytrieve do not contain the FOR UPDATE clause.

■ For ORACLE, dynamic UPDATEs and DELETEs must be mimicked by
CA-Easytrieve by selecting the ROWID of each row, then using that value to
identify the current row during the UPDATE or DELETE. For this reason,
you must use a SELECT statement with the FOR UPDATE clause.

FILE PERSNL SQL (PERSONNEL) UPDATE

PROGRAM NAME RETRIEVE-PERSONNEL

 IF EOF PERSNL

 WORKDEPT = 930

Controlled Processing

The following example selects a specific row from the table, updates the
department to 930, and moves a null data value to the phone number.

SQL INCLUDE (EMPNAME, WORKDEPT, EMPPHONE) +
 FROM PERSONNEL LOCATION * NULLABLE

 SELECT FROM PERSNL WHERE EMPNAME = 'ROGERS PAT' FOR UPDATE
 FETCH FROM PERSNL

 DISPLAY 'EMPLOYEE NOT FOUND'
 ELSE

 MOVE NULL TO EMPPHONE
 UPDATE PERSNL
 END-IF

Automatic Processing

The following example changes the department number for all employees in
department 901 to 921.
FILE PERSNL SQL (PERSONNEL) UPDATE
SQL INCLUDE (WORKDEPT) +
 FROM PERSONNEL LOCATION *
JOB NAME RETRIEVE-PERSONNEL INPUT PERSNL
 SELECT FROM PERSNL WHERE WORKDEPT = 901 FOR UPDATE
 WORKDEPT = 921
 UPDATE PERSNL

Automatic Retrieval without a File

SQL Database Processing 4–23

Deleting from an SQL File

The following example illustrates how to select a specific row from the table, and
then delete it.

FILE PERSNL SQL (PERSONNEL) UPDATE
SQL INCLUDE (EMPNAME, WORKDEPT, EMPPHONE) +
 FROM PERSONNEL LOCATION * NULLABLE
PROGRAM NAME RETRIEVE-PERSONNEL
 SELECT FROM PERSNL WHERE EMPNAME = 'ROGERS PAT' FOR UPDATE
 FETCH FROM PERSNL
 IF EOF PERSNL
 DISPLAY 'EMPLOYEE NOT FOUND'
 ELSE
 DELETE FROM PERSNL
 END-IF

Inserting an SQL Row

The following example illustrates how to insert a new row into a table.
FILE PERSNL SQL (PERSONNEL) UPDATE
SQL INCLUDE (EMPNAME, WORKDEPT, EMPPHONE) +
 FROM PERSONNEL LOCATION * NULLABLE
PROGRAM NAME RETRIEVE-PERSONNEL
 EMPNAME = 'WIMN GLORIA'
 WORKDEPT = 921
 EMPPHONE = 3478
 INSERT INTO PERSNL

Automatic Retrieval without a File
In this method of processing, SQL data is retrieved as a result of a
specially-coded JOB and SELECT statement combination. Automatic retrieval
without a file is a read-only method that typically uses working storage fields as
the receiving area for the data. This method allows some advanced selection
techniques not available for cursors associated with CA-Easytrieve files.

Processing Requirements

To process data from an SQL table using this method, you must provide the
following:

■ One or more field definitions for the columns within the table(s) that you
want to retrieve. These definitions can be coded using the DEFINE
statement or by using the SQL INCLUDE statement to automatically
generate the definitions from the SQL catalog. The definitions are usually
coded in working storage, but you can define the fields in an output file for
extraction purposes.

■ A JOB statement with the INPUT SQL parameter. SQL signifies that the
automatic processing does not involve a CA-Easytrieve file.

Automatic Retrieval without a File

SQL Database Processing 4–24

■ A non-file-based SELECT statement that defines the result set for the cursor.
Only one non-file based SELECT statement can be coded in each JOB
activity.

 This SELECT statement is very different from the file-based SELECT
statement used with a CA-Easytrieve SQL file because it more closely
approximates a true SQL SELECT clause. For example, you name the tables
which participate in the result. Also, the SELECT can perform more
advanced selections such as UNIONs.

Operation

If you are executing in an SQL/DS system, CA-Easytrieve generates and
executes a CONNECT statement. You need not code an SQL CONNECT
statement when using CA-Easytrieve automatic processing. The userid and
password parameters are taken from those specified in the USERID parameter of
the PARM statement.

CA-Easytrieve checks the SQLCODE field following each execution of the
SELECT statement. If the SQLCODE indicates an error, CA-Easytrieve issues an
error message based on the SQL error and terminates execution. An SQLCODE
indicating end of data causes CA-Easytrieve to initiate end-of-input processing:
the FINISH PROC (if any) executes, spooled reports are printed, and the current
JOB activity ends.

The SQL cursor that is automatically defined by a non-file based SELECT
statement is closed following the termination of the JOB activity that opened it.

Retrieving All Columns

The code in the following exhibit retrieves all columns and all rows from the
PERSONNEL table. A report is generated showing WORKDEPT, EMPNAME,
and EMPPHONE. CA-Easytrieve sorts the report by WORKDEPT. Note the use
of manual null variable indicators.

DEFINE EMPNAME W 20 A
DEFINE WORKDEPT W 2 P 0
DEFINE EMPPHONE W 3 P 0
DEFINE NULLPHONE W 2 B 0 .* NULL INDICATOR
JOB INPUT SQL NAME(SQLEX1)
 SELECT * FROM PERSONNEL +
 INTO :EMPNAME, :WORKDEPT, :EMPPHONE :NULLPHONE
 IF NULLPHONE < 0 .* PHONE PRESENT?
 EMPPHONE = 0 .* NO, SET TO 0
 END-IF
 PRINT PERSNL
REPORT PERSNL LINESIZE 65
 SEQUENCE WORKDEPT
 LINE WORKDEPT EMPNAME EMPPHONE

Native SQL Processing

SQL Database Processing 4–25

Selected Columns

The code in the following exhibit retrieves all rows of selected columns from the
PERSONNEL table and generates a report showing WORKDEPT and
EMPNAME. SQL orders the rows by WORKDEPT.
DEFINE EMPNAME W 20 A
DEFINE WORKDEPT W 2 P 0
JOB INPUT SQL NAME(SQLEX2)
 SELECT EMPNAME, WORKDEPT +
 FROM PERSONNEL +
 ORDER BY WORKDEPT +
 INTO :EMPNAME, :WORKDEPT
 PRINT PERSNL
REPORT PERSNL LINESIZE 65
 LINE WORKDEPT EMPNAME

Multiple Tables

The code in the following example retrieves an employee name and the
corresponding department name from the PERSONNEL and DEPARTMENTS
tables. This example shows parameters required for SQL/DS.
PARM USERID('SQLDBA' 'SQLDBAPW') +
 PREPNAME(EASYOL 'SQLDBA')
DEFINE EMPNAME W 20 A
DEFINE WORKDEPT W 2 P 0
DEFINE EMPPHONE W 3 P 0
DEFINE DEPTNAME W 22 A VARYING
DEFINE DEPTNUMBER W 2 P 0
DEFINE NULLPHONE W 2 B 0 .* NULL INDICATOR
JOB INPUT SQL NAME(SQLEX3)
 SELECT EMPNAME, DEPTNAME +
 FROM PERSONNEL, DEPARTMENTS +
 WHERE WORKDEPT = DEPTNUMBER +
 INTO :EMPNAME, :DEPTNAME
 PRINT PERSNL

Native SQL Processing

■ The SQL DECLARE statement must be coded in the Library Definition
section of a CA-Easytrieve program. All other SQL statements, except SQL
INCLUDE, must be coded in the Activity Definition section.

REPORT PERSNL LINESIZE 65
 LINE EMPNAME DEPTNAME

This method of processing uses native SQL statements that are equivalent to
many of those used in COBOL. Using these native SQL statements, you can code
fully SQL-compliant programs in which you control the SQL cursor operation.
All native SQL statements are prefixed with the SQL keyword. See the
CA-Easytrieve Language Reference Guide for complete syntax.

Processing Requirements

Native SQL Processing

SQL Database Processing 4–26

■ You should test the SQLCODE field in the SQLCA to determine whether or
not the execution of each controlled processing statement is successful.

 If the SQLCODE field contains a zero (0), you should test the SQLWARN0
field to ensure that no warning conditions were issued during processing of
the SQL statement. Refer to the appropriate SQL reference manual to
determine acceptable values for SQLWARN0.

■ All SQL INCLUDE statements and SQL-managed file definitions must be
coded prior to any controlled SQL statements.

Supported Commands

CONNECT DECLARE

INSERT OPEN

DB2

All SQL/DS commands that are supported through the EXTENDED DYNAMIC
facilities of SQL/DS are supported. See either the SQL/Data System Application
Programming for VSE (SH24-5018) or the SQL/Data System Application
Programming for VM/SP (SH24-5068) for more information.

Operation

Coding native SQL statements requires an advanced knowledge of SQL
statements and of the database to be processed. Native SQL statements can be
coded in any PROGRAM, SCREEN, or JOB activity. You cannot code them in
SORT or REPORT procedures.

Following is a list of commonly used SQL commands. They must be prefixed by
SQL. See the CA-Easytrieve Language Reference Guide for a complete list. See your
SQL vendor reference manuals for more information.

CLOSE COMMIT

DELETE FETCH

PUT ROLLBACK
UPDATE

All DB2 commands that can be executed using the DYNAMIC execution facilities
of DB2 are supported. See the DATABASE 2 SQL Reference (SC26-4380) manual
for more information.

SQL/DS

Native SQL Processing

SQL Database Processing 4–27

CA-Datacom/PC

All CA-Datacom/PC SQL commands are supported. See the CA-Datacom/PC
SQL Programming and Reference Guide for more information.

CA-Ingres

All CA-Ingres SQL commands that can be executed using the DYNAMIC
execution facilities are supported. See the CA-Ingres SQL Reference Guide for
information.

ORACLE

All ORACLE SQL commands that can be executed using the DYNAMIC
execution facilities are supported. See the ORACLE SQL Reference Guide for
information.

Note: Due to the ORACLE restriction against using the CURRENT OF clause
with dynamic SQL, CA-Easytrieve must mimic the CURRENT OF clause using
ROWID. This technique prohibits use of SELECT * in conjunction with DELETE
or UPDATE WHERE CURRENT OF cursor.

Note: ORACLE systems are limited to a maximum of 10 cursors.

Unsupported SQL Commands

The following SQL commands cannot be issued using CA-Easytrieve controlled
SQL processing:

BEGIN DECLARE CREATE PROGRAM
DECLARE STATEMENT DECLARE TABLE
DESCRIBE END DECLARE
EXECUTE EXECUTE IMMEDIATE
PREPARE SELECT ... INTO ...
WHENEVER

The SELECT ...INTO... command is valid when processing DB2 static-only
programs. Refer to the explanation for the SQLSYNTAX parameter for
additional information.

Note: The SELECT ... INTO ... command (single SELECT) can be simulated
using CA-Easytrieve automatic cursor management.

Native SQL Processing

SQL Database Processing 4–28

Retrieving All Columns

The following example retrieves all columns from the PERSONNEL table.
PARM USERID('SQLDBA' 'SQLDBAPW') +
 PREPNAME(EASYOL 'SQLDBA')
DEFINE EMPNAME W 20 A
DEFINE WORKDEPT W 2 P 0
DEFINE EMPPHONE W 3 P 0
DEFINE DEPTNAME W 22 A VARYING
DEFINE DEPTNUMBER W 2 P 0
DEFINE NULLPHONE W 2 B 0 .* NULL INDICATOR
DEFINE USERID W 8 A VALUE ('SQLDBA')
DEFINE PASSWORD W 8 A VALUE ('SQLDBAPW')
SQL DECLARE CURSOR1 CURSOR FOR +
SELECT * +
 FROM PERSONNEL
JOB INPUT NULL NAME(SQLEX4)
 SQL CONNECT :USERID IDENTIFIED BY :PASSWORD
 PERFORM CHECKSQL
 SQL OPEN CURSOR1
 PERFORM CHECKSQL
 DO WHILE SQLCODE NE 100. * 1403 FOR ORACLE
 SQL FETCH CURSOR1 +
 INTO :EMPNAME, :WORKDEPT, :EMPPHONE :NULLPHONE
 PERFORM CHECKSQL
 IF NULLPHONE < 0 . * PHONE PRESENT?
 EMPPHONE = 0 . * NO, SET TO 0
 END-IF
 IF SQLCODE NE 100 . * NOT END OF TABLE
 PRINT PERSNL
 END-IF
 END-DO
 SQL CLOSE CURSOR1
 PERFORM CHECKSQL
 STOP
CHECKSQL. PROC
 IF SQLCODE NE 0 AND SQLCODE NE 100. * 1403 FOR ORACLE
 DISPLAY 'SQLCODE = ' SQLCODE
 STOP EXECUTE
 END-IF
END-PROC
REPORT PERSNL LINESIZE 65
 LINE EMPNAME WORKDEPT EMPPHONE

Reassign Departments

The next example reassigns all employees in department 901 to department 109
and displays the names of the employees. The PARM statement parameters are
necessary only if you want to access a DB2 or CA-Ingres database subsystem
other than the default.

PARM SSID('DB2B')
DEFINE EMPNAME W 20 A
DEFINE WORKDEPT W 2 P 0
SQL DECLARE CURSOR1 CURSOR FOR +
SELECT EMPNAME +
 FROM PERSONNEL +
 WHERE WORKDEPT = 901 +
 FOR UPDATE OF WORKDEPT
JOB INPUT NULL NAME(SQLEX5)
 SQL CONNECT :USERID IDENTIFIED BY :PASSWORD
 PERFORM CHECKSQL
 SQL OPEN CURSOR1
 PERFORM CHECKSQL

Native SQL Processing

SQL Database Processing 4–29

 DO WHILE SQLCODE NE 100. * 1403 FOR ORACLE
 SQL FETCH CURSOR1 +
 INTO :EMPNAME
 PERFORM CHECKSQL
 IF SQLCODE NE 100 . * 1403 FOR ORACLE
 PRINT PERSNL
 SQL UPDATE PERSONNEL +
 SET WORKDEPT = 109 +
 WHERE CURRENT OF CURSOR1
 PERFORM CHECKSQL
 END-IF
 END-DO
 SQL CLOSE CURSOR1
 PERFORM CHECKSQL
 STOP
CHECKSQL. PROC
 IF SQLCODE NE 0 AND SQLCODE NE 100. * 1403 FOR ORACLE
 DISPLAY 'SQLCODE = ' SQLCODE
 STOP EXECUTE
 END-IF
END-PROC
REPORT PERSNL LINESIZE 65
 LINE EMPNAME

Update Phone Numbers

The next example illustrates how to update a phone system. In this case all
phone numbers must be changed to 5 digits. The first character must be a 7 and
the rest of the digits remain the same. If an employee does not have a phone
number, his or her record is not updated. No update report is necessary.

JOB INPUT NULL NAME(SQLEX6)
 SQL CONNECT :USERID IDENTIFIED BY :PASSWORD
 PERFORM CHECKSQL
 SQL UPDATE PERSONNEL +
 SET EMPPHONE = 70000 + EMPPHONE +
 WHERE EMPPHONE IS NOT NULL
 PERFORM CHECKSQL
 STOP
CHECKSQL. PROC
 IF SQLCODE NE 0 AND SQLCODE NE 100. * 1403 FOR ORACLE
 DISPLAY 'SQLCODE = ' SQLCODE
 STOP EXECUTE
 END-IF
END-PROC

Data Types Supported on the Workstation

SQL Database Processing 4–30

Using Table Name as Host Variable with Indicator Array

In this example, INDARRAY is used instead of the default indicator created by
the SQL INCLUDE statement. An indicator is matched for each field in the
PERSONNEL table.

PARM USERID('SQLDBA' 'SQLDBAPW') +
 PREPNAME(EASYOL 'SQLDBA')
SQL INCLUDE (EMPNAME, WORKDEPT, EMPPHONE) FROM PERSONNEL NULLABLE
DEFINE INDARRAY W 2 B 0 OCCURS 3
SQL DECLARE CURSOR1 CURSOR FOR +
 SELECT * FROM PERSONNEL
JOB INPUT NULL NAME(SQLEXT)
 SQL CONNECT :USERID IDENTIFIED BY :PASSWORD
 PERFORM CHECKSQL
 SQL OPEN CURSOR1
 PERFORM CHECKSQL
 DO WHILE SQLCODE EQ 0
 SQL FETCH CURSOR1 +
 INTO :PERSONNEL :INDARRAY
 PERFORM CHECKSQL
 IF INDARRAY(3) < 0
 EMPPHONE = 0
 END-IF
 IF SQLCODE NE 100. * 1403 FOR ORACLE
 PRINT PERSNL
 END-IF
 END-DO
 SQL CLOSE CURSOR1
 PERFORM CHECKSQL
 STOP
CHECKSQL. PROC
 IF SQLCODE NE 0 AND SQLCODE NE 100. * 1403 FOR ORACLE
 DISPLAY 'SQLCODE = ' SQLCODE
 STOP EXECUTE
 END-IF
END-PROC
REPORT PERSNL LINESIZE 65
 LINE EMPNAME WORKDEPT EMPPHONE

Data Types Supported on the Workstation
The Workstation SQL interface supports both the EBCDIC and ASCII code
systems; however, CA-Datacom/PC uses the ASCII code system. When you are
processing EBCDIC data, additional processing time is required for conversion
between code systems.

The Workstation SQL interface supports all NUMERIC data; however,
CA-Datacom/PC uses the number “7” to denote a negative number. If either the
EBCDIC code system or a sign digit other than “7” is used, a code conversion
must be done before and after every database access.

Data Types Supported on the Workstation

SQL Database Processing 4–31

The Workstation SQL interface supports both B or I binary types; however,
CA-Datacom/PC uses only I. For performance reasons, you should specify an I
data type for the SQL COMP field type (SQLCOMP) on the Datacom SQL
Options panel in the Site Options Table. SQLCOMP specifies the internal data
type used when including SQL catalog information using the SQL INCLUDE
statement. See the CA-Easytrieve/Workstation User Guide for more information
about the Site Options Table.

CA-IDMS Database Processing 5–1

Chapter

5 CA-IDMS Database Processing

Introduction
CA-Easytrieve provides optional processing facilities that interface with
CA-IDMS databases and with the CA-IDMS Integrated Data Dictionary (IDD).

CA-IDMS Interface

The CA-IDMS interface provides complete facilities for information retrieval
from, and maintenance of, CA-IDMS databases. To use this interface effectively,
you should have a basic knowledge of CA-IDMS and of the database(s) to be
processed.

You can access an CA-IDMS database in one of two ways:

■ Using automatic input

■ Using controlled processing, which incorporates statements similar to those
used in COBOL.

With automatic input (also called path processing), you can sweep an entire area
of the database or retrieve records under the control of a tickler file or integrated
indexing.

If the IDD interface is not used to generate definitions, the database
administrator should build the FILE, RECORD, LOGICAL-RECORD,
ELEMENT-RECORD, and DEFINE statements to describe the subschemas used.
The subschema descriptions can then be stored in a CA-Easytrieve macro library.

IDD Interface

The IDD interface automatically generates definitions (taken from the IDD) for
files, records, logical records, element records, and fields. This greatly reduces
the effort often associated with database processing.

Introduction

CA-IDMS Database Processing 5–2

CA-IDMS Functionality

CA-Easytrieve’s portability is constrained by CA-IDMS’s portability. Where
differences exist, CA-Easytrieve attempts to resolve the difference while still
allowing your program to execute. Therefore, some parameters may be ignored
where they do not function.

CA-Easytrieve CA-IDMS Statements

The following statements are used to define CA-IDMS database activities:

Statement(s) Description

IDD statements Retrieve definitions from the Integrated Data
Dictionary

FILE Identify a CA-IDMS database

RECORD Describe database records

LOGICAL-RECORD Describe logical records

ELEMENT-RECORD Describe the database records that are part of a
logical record

RETRIEVE Describe automatic (path) processing for database
records

SELECT Describe automatic (path) processing for logical
records

IDMS statements Provide controlled retrieval and maintenance for
both database and logical records

See the CA-Easytrieve Language Reference Guide for complete syntax for these
statements.

Processing Overview

The following exhibit gives an overview of how CA-Easytrieve interacts with a
CA-IDMS database.

FILE file-name-1 IDMS
RECORD record-name
JOB INPUT (file-name-1) ...

 Automatic Input

 | |
 RETRIEVE file-name-1 ... ---------------->| |
 | CA-IDMS |
 | |

CA-IDMS Processing on the Workstation

CA-IDMS Database Processing 5–3

 CA-IDMS records in path form for <--------| |
 automatic input) | |
 ... -----------

 Controlled Processing

 | |
 IDMS statement ... ---------------------->| |
 | CA-IDMS |
 | |
 (CA-IDMS controlled record processing) <--| |
 ... | |

CA-IDMS Processing on the Workstation
CA-IDMS programs can be developed and targeted for execution on the
workstation or they can be developed and tested, then ported to the mainframe.
The following items are important when accessing CA-IDMS on the workstation.

Data Code System

The mainframe CA-IDMS data area is normally stored as EBCDIC and the
workstation data area is stored in ASCII (there are exceptions). To process data
in a CA-IDMS database, CA-Easytrieve must know the code system of the data.
The code system controls how alphanumeric and zoned-numeric data are
treated. The CODE ASCII parameter of the PARM statement is ignored on the
mainframe, therefore, you can port your programs without changing platforms.
You can either use the CODE parameter of the PARM statement (which becomes
the default for the entire program) or the FILE statement coded for the CA-IDMS
database.

For example:
PARM CODE PROCESS ASCII

Or:
FILE... CODE ASCII

Note: The PROCESS Site Option can be set to define the system-wide processing
code system. See the Execution Options Panel in Chapter 2 of the
CA-Easytrieve/Workstation User Guide for more information.

Note: If you use IDD statements to automatically generate FILE statements, the
CODE parameter is not generated. You should use the PARM statement in this
case.

Note: In UNIX, data is assumed to be ASCII.

CA-IDMS Processing on the Workstation

CA-IDMS Database Processing 5–4

Field Data Types

ASCII files can have fields defined for all standard data types, including
alphanumeric, zoned-numeric, packed decimal, and binary. CA-Easytrieve
stores and accesses data using fields you have defined. It is your responsibility
to define the correct data types. This is critical when accessing data created by or
accessed by other software products.

Zoned-numeric data in ASCII files can have various formats for negative data.
You should use the ASCSIGN Site Option to specify the format when creating
negative data. CA-Easytrieve automatically uses any of the supported formats
for input. See the Execution Options Panel in Chapter 2 of the
CA-Easytrieve/Workstation User Guide for more information.

Computational data (USAGE COMP) can be stored either as binary (B) fields, as
on the mainframe, or as integer fields (I). CA-IDMS files normally use I fields for
computational data. You can define your own I or B fields as needed. When
fields are generated using the IDD interface, CA-Easytrieve uses the IDDCOMP
Site Option to determine which type of field to generate. When IDDCOMP is set
to B, computational fields are generated as mainframe binary (B) type fields.
When IDDCOMP is set to I, computational fields are generated as integer (I) type
fields. See the IDMS Options Panel in the CA-Easytrieve/Workstation User Guide
for more information.

When porting your program, it is important to consider the definitions of
computational data. Mainframe CA-Easytrieve programs may contain binary
field definitions. Test data on the workstation may contain integer data. You
must then change B data type fields to I data type fields or use IDD statements to
automatically define your fields. This allows your program to remain fully
portable.

CA-Easytrieve automatically converts binary data to and from integer data for
statements that require binary fields as parameters. Similarly, binary fields in the
CA-IDMS Communications Block (IDMSCOM) are automatically converted as
needed.

CA-IDMS Entity Names

CA-IDMS entity names such as records, sets, or areas, that are kept in the
program source are already in ASCII on the workstation. When supplied as
dynamic parameters, CA-Easytrieve converts them to ASCII as needed.

Sample CA-IDMS Database

 CA-IDMS Database Processing 5–5

Sample CA-IDMS Database
The following exhibit illustrates a portion of the database used in examples in
this guide. The CA-Easytrieve field definitions for this portion follow the exhibit.

 CUSTOMER ORDOR OREMARK
 --------------- --------------- ------------
 611|F|104|CALC 620|F|40|CALC 622|V|72|VIA
 --------------- --------------- ------------
 CUST-NUMBER|DN ORD-NUMBER|DN ORDER-OREMARK
 --------------- --------------- ------------
 CUSTOMER-REGION ORDER-REGION ORDER-REGION

 CUSTOMER-ORDER ORDER-OREMARK
 NPO MA NP MA LAST
 ASC ORD-DATE-PROM
CUSTOMER-SALES DL
NPO MA
ASC SLS-PROD-NUMBER

 SALES ORDER-ITEM
 -------------- N MA NEXT
 640|F|28|VIA

 CUST-SALES

 CUSTOMER-REGION

PRODUCT-SALES
NPO MA
ASC SLS-CUST-NUMBER

 PRODUCT ITEM
 -------------- --------------
 631|F|48|CALC 621|V|3226|VIA
 -------------- --------------
 PROD-NUMBER|DN ORDER-ITEM
 -------------- --------------
 PRODUCT-REGION ORDER-REGION

 PRODUCT-ITEM
 NPO OA
 ASC ITEM-LOG-NUMBER DF

Field Definitions

The following field definitions describe the sample database shown in the
previous exhibit. These definitions are established by the database administrator
and stored in a CA-Easytrieve macro.
FILE DBASE IDMS(DEMOSS03)
 RECORD CUSTOMER 104 KEY(CUST-NO)
 CUST-NO 1 10 A
 CUST-NAME 11 20 A
 RECORD ORDOR 40
 ORD-NO 1 7 A
 ORD-CPO# 8 10 A
 RECORD OREMARK 72
 ORD-SEQ 1 2 A
 ORD-TEXT 3 70 A
 RECORD SALES 28
 SLS-CUST-NO 1 10 A
 RECORD PRODUCT 48
 PROD-NO 1 8 A
 PROD-DESC 9 20 A
 RECORD ITEM 3226

Sample CA-IDMS Database

CA-IDMS Database Processing 5–6

 ITEM-PROD# 1 8 A

Sample Logical Record

CA-IDMS Database Processing 5–7

Sample Logical Record
A description of the logical record definition for our database example as defined
in CA-IDMS is as follows:
 ADD LOGICAL RECORD NAME IS CUST-SALES-LR
 ELEMENTS ARE CUSTOMER
 SALES
 PRODUCT
 COMMENTS.
 '********************************'
 -' '
 -'LR VERBS ALLOWED: ALL '
 -' '
 -'********************************'

 ADD PATH-GROUP OBTAIN CUST-SALES-LR

 SELECT FOR FIELDNAME-EQ CUST-NUMBER
 OBTAIN EMPLOYEE WHERE CALCKEY EQ CUST-NUMBER
 OF REQUEST
 ON 0326 CLEAR RETURN LR-NOT-FOUND
 OBTAIN EACH SALES WITHIN CUSTOMER-SALES
 OBTAIN EACH PRODUCT WITHIN PRODUCT-SALES

 SELECT FOR FIELDNAME-EQ PROD-NUMBER
 OBTAIN PRODUCT WHERE CALCKEY EQ PROD-NUMBER
 OF REQUEST
 ON 0326 CLEAR RETURN LR-NOT-FOUND
 OBTAIN OWNER WITHIN PRODUCT-SALES
 OBTAIN OWNER WITHIN CUSTOMER-SALES

 SELECT
 OBTAIN EACH CUSTOMER WITHIN CUSTOMER-REGION
 OBTAIN EACH SALES WITHIN CUSTOMER-SALES
 OBTAIN EACH PRODUCT WITHIN PRODUCT-REGION

 ADD PATH-GROUP MODIFY CUST-SALES-LR

 SELECT
 MODIFY SALES.

 ADD PATH-GROUP ERASE CUST-SALES-LR

 SELECT
 ERASE SALES.

 ADD PATH-GROUP STORE CUST-SALES-LR

 SELECT
 STORE SALES.

Logical Record Definition

The CA-Easytrieve field definitions that follow describe the sample logical record
shown above. These definitions are established by the database administrator
and stored in a CA-Easytrieve macro.
 *
 IDD NAME DBNAME 'TSTDICT'
 *
 FILE DEMOSSLR IDMS (DEMOSSLR)
 LOGICAL-RECORD CUST-SALES-LR

IDD Interface

CA-IDMS Database Processing 5–8

 ELEMENT-RECORD CUSTOMER
 CUST-NUMBER 1 10 A
 CUST-NAME 11 20 A
 ELEMENT-RECORD SALES
 SLS-CUST-NO 1 10 A
 ELEMENT-RECORD PRODUCT
 PROD-NUMBER 1 8 A
 PROD-DESC 9 20 A
 *
 JOB INPUT NULL
 STOP

IDD Interface
The interface between CA-Easytrieve and the CA-IDMS Integrated Data
Dictionary (IDD) is accomplished by the use of IDD statements. To give you the
fullest control over this access, CA-Easytrieve provides the following IDD
statements:

Statement Description

IDD NAME Control which dictionary is accessed.

IDD VERSION Specify which version of the information is to
be retrieved.

IDD SUBSCHEMA Retrieve definitions of CA-IDMS files
(subschemas).

IDD FILE Retrieve definitions of non-CA-IDMS files.

IDD RECORD Retrieve definitions of records.

IDD statements generate CA-Easytrieve library definitions based on the
parameters coded on the statement. IDD statement parameters direct the
retrieval of data definition information from the IDD and insert definitions for
files, database records, logical records, element records, and fields directly into
CA-Easytrieve internal tables.

The actual FILE, RECORD, LOGICAL-RECORD, ELEMENT-RECORD, and
DEFINE statements are not generated as visible source code, and will not appear
in the output listing. Instead, the IDD NAME statement simulates the presence
of these statements by storing the information obtained from the IDD in the same
manner that the statements would. The DMAP parameter of the PARM
statement can be used to obtain a description of the information stored.

Note: IDD statements are compatible with operating systems using
CA-IDMS/PC release 2.50 or above.

See the CA-Easytrieve Language Reference Guide for complete syntax for the above
statements.

IDD Interface

CA-IDMS Database Processing 5–9

Program Name

If a subschema has restricted authorization, a properly-registered program name
must be supplied to CA-Easytrieve. This program name can be specified on the
IDD NAME statement. If the IDD NAME statement is not coded, CA-Easytrieve
uses a default name of EASYPLUS. The default program name would have to
have been previously stored in the IDD definition for the restricted subschema.

Conforming IDD Item Descriptions to CA-Easytrieve Standards

To ensure the correct translation of certain IDD record constructs into
CA-Easytrieve formats, the following adaptations have been made:

■ For an item that occurs multiple times in a record and is supplied with an
index, the index name is used as the CA-Easytrieve INDEX name. If the
index is not supplied in the IDD, a CA-Easytrieve INDEX name is generated
by concatenating the item name with the string +INDEX.

■ If the item being defined is part of a group item, the relationship between the
defined item and its containing group item is preserved by CA-Easytrieve.
The group item is defined as a segmented data item (see Table Processing
and Array Processing in the “Coding a CA-Easytrieve Program” chapter for
a discussion of segmented data). If the group item occurs multiple times,
then the defined item also occurs multiple times.

■ Data types that do not conform to the rules of CA-Easytrieve are treated as
alphanumeric (A) fields.

Handling of Group Item Definition

When the IDD interface creates a definition of a group item and its component
items, it is possible that an ambiguity might occur, making the definition
unusable by your CA-Easytrieve program. This ambiguity is created when a
component of the group item and another item within the same database record
have identical names. The component item name, either alone or with the record
name as a qualifier, is not sufficient to distinguish between the two items. To
resolve this ambiguity, CA-Easytrieve enables you to use the group item’s name
as a qualifier for any item it contains.

Since the group item itself might be part of a larger group item, it is possible for
an item defined with the IDD interface to use many levels of qualification. The
only limit on the number of levels is the number of levels the IDD allows you to
define for the record definition in the dictionary.

IDMS Interface

CA-IDMS Database Processing 5–10

Note: On the workstation, the MAXQUAL Site Option controls the maximum
number of levels allowed in CA-Easytrieve. The minimum setting when using
CA-IDMS is 4. However, it is recommended that you set MAXQUAL to a
minimum of 8. If you define a level that exceeds the MAXQUAL setting, you
receive an error. If you set MAXQUAL too high, you use excessive memory. See
the Compiler Options Panel in the CA-Easytrieve/Workstation User Guide for more
information.

As a result, the syntax of a reference to an item defined with the IDD interface is:
[file-name :] [record-name :] [group-item-name : ...] field-name

for an item defined in a database record and:
[file-name :] [logical-record-name :] [element-record-name :] +
[group-item-name : ...] field-name

for an item defined in a logical record.

Examples

Defining a Subschema
 PARM DEBUG (DMAP)
 *
 IDD SUBSCHEMA DEMOSS03 SCHEMA DEMOSCHM
 *
 JOB INPUT NULL
 STOP

Defining a Logical Record of a Subschema
 PARM DEBUG (DMAP)
 *
 IDD SUBSCHEMA DEMOSSLR SCHEMA DEMOSCHM +
 SELECT (CUST-SALES-LR)
 *
 JOB INPUT NULL
 STOP

Defining Only Select Records from a Subschema
 PARM DEBUG (DMAP)
 *
 IDD VERSION SCHEMA 100
 IDD SUBSCHEMA DEMOSS03 SCHEMA DEMOSCHM +
 SELECT (SALES OREMARK)
 *
 JOB INPUT NULL
 STOP

IDMS Interface
When using the CA-IDMS interface, you can define subschemas using the
following statements:

IDMS Interface

CA-IDMS Database Processing 5–11

Statement Description

FILE Identify the database to be processed.

RECORD Identify the database records available for
automatic or controlled processing.

LOGICAL-RECORD Identify the logical records available for
automatic or controlled processing.

ELEMENT-RECORD Identify the element records that comprise the
logical record.

Examples of these statements were shown previously (See Logical Record
Definition) and can be used by the database administrator to establish database
field definitions. These definitions can then be stored in a CA-Easytrieve macros
for your access. You can also generate these statements automatically using the
IDD interface.

See the CA-Easytrieve Language Reference Guide for complete syntax for the above
statements.

Note: Logical records are supported on the workstation.

Communications Block

When the first IDMS FILE statement is encountered, a CA-IDMS
Communications Block is created in “S” working storage. The fields generated
in CA-Easytrieve (mainframe and workstation), and in CA-Easytrieve UNIX, are
as follows:

CA-Easytrieve IDMS Communications Block
DEFINE IDMSCOM S 216 A
DEFINE IDMSNAME IDMSCOM 8 A, VALUE 'EASYPLUS'
DEFINE IDMSSTATUS IDMSCOM + 8 4 A
DEFINE IDMSKEY IDMSCOM + 12 4 B 0, MASK HEX
DEFINE IDMSREC IDMSCOM + 16 16 A
DEFINE IDMSNODE IDMSCOM + 16 8 A
DEFINE IDMSDB IDMSCOM + 24 8 A
DEFINE IDMSAREA IDMSCOM + 32 16 A
DEFINE IDMSDICTNODE IDMSCOM + 32 8 A
DEFINE IDMSDICTNAME IDMSCOM + 40 8 A
DEFINE IDMSESET IDMSCOM + 48 16 A
DEFINE IDMSEREC IDMSCOM + 64 16 A
DEFINE IDMSEAREA IDMSCOM + 80 16 A
DEFINE IDMSCON IDMSCOM + 96 1 A, OCCURS 100, INDEX IDMSCON-INDEX
DEFINE IDMSCON02 IDMSCOM + 97 1 A. * FINISH
DEFINE IDMSCON03 IDMSCOM + 98 1 A. * ERASE PERMANENT
DEFINE IDMSCON04 IDMSCOM + 99 1 A. * ERASE ALL
DEFINE IDMSCON06 IDMSCOM +101 1 A. * FIND DB-KEY REC
DEFINE IDMSCON07 IDMSCOM +102 1 A. * FIND CURRENT REC
DEFINE IDMSCON08 IDMSCOM +103 1 A. * FIND CURRENT SET
DEFINE IDMSCON09 IDMSCOM +104 1 A. * FIND CURRENT AREA
DEFINE IDMSCON10 IDMSCOM +105 1 A. * FIND NEXT REC SET
DEFINE IDMSCON11 IDMSCOM +106 1 A. * FIND NEXT REC AREA
DEFINE IDMSCON12 IDMSCOM +107 1 A. * FIND PRIOR REC SET

IDMS Interface

CA-IDMS Database Processing 5–12

DEFINE IDMSCON13 IDMSCOM +108 1 A. * FIND PRIOR REC AREA
DEFINE IDMSCON14 IDMSCOM +109 1 A. * FIND NEXT SET
DEFINE IDMSCON15 IDMSCOM +110 1 A. * FIND NEXT AREA
DEFINE IDMSCON16 IDMSCOM +111 1 A. * FIND PRIOR SET
DEFINE IDMSCON17 IDMSCOM +112 1 A. * FIND PRIOR AREA
DEFINE IDMSCON18 IDMSCOM +113 1 A. * FIND FIRST REC SET
DEFINE IDMSCON19 IDMSCOM +114 1 A. * FIND FIRST REC AREA
DEFINE IDMSCON20 IDMSCOM +115 1 A. * FIND FIRST SET
DEFINE IDMSCON21 IDMSCOM +116 1 A. * FIND FIRST AREA
DEFINE IDMSCON22 IDMSCOM +117 1 A. * FIND LAST REC SET
DEFINE IDMSCON23 IDMSCOM +118 1 A. * FIND LAST REC AREA
DEFINE IDMSCON24 IDMSCOM +119 1 A. * FIND LAST SET
DEFINE IDMSCON25 IDMSCOM +120 1 A. * FIND LAST AREA
DEFINE IDMSCON30 IDMSCOM +125 1 A. * FIND CURRENT
DEFINE IDMSCON31 IDMSCOM +126 1 A. * FIND OWNER SET
DEFINE IDMSCON32 IDMSCOM +127 1 A. * FIND CALC
DEFINE IDMSCON33 IDMSCOM +128 1 A. * FIND REC SET USING
DEFINE IDMSCON34 IDMSCOM +129 1 A. * GET REC
DEFINE IDMSCON35 IDMSCOM +130 1 A. * MODIFY
DEFINE IDMSCON36 IDMSCOM +131 1 A. * READY UPDATE
DEFINE IDMSCON37 IDMSCOM +132 1 A. * READY RETRIEVAL
DEFINE IDMSCON38 IDMSCOM +133 1 A. * READY UPDATE PROT
DEFINE IDMSCON39 IDMSCOM +134 1 A. * READY RETRIEVE PROT
DEFINE IDMSCON40 IDMSCOM +135 1 A. * READY RETRIEVE EXCL
DEFINE IDMSCON41 IDMSCOM +136 1 A. * READY UPDATE EXCL
DEFINE IDMSCON42 IDMSCOM +137 1 A. * STORE
DEFINE IDMSCON43 IDMSCOM +138 1 A. * GET
DEFINE IDMSCON44 IDMSCOM +139 1 A. * CONNECT
DEFINE IDMSCON46 IDMSCOM +141 1 A. * DISCONNECT
DEFINE IDMSCON48 IDMSCOM +143 1 A. * BIND REC
DEFINE IDMSCON50 IDMSCOM +145 1 A. * FIND DUP
DEFINE IDMSCON51 IDMSCOM +146 1 A. * FIND REC SET CURR USING
DEFINE IDMSCON52 IDMSCOM +147 1 A. * ERASE MEMBER
DEFINE IDMSCON53 IDMSCOM +148 1 A. * ERASE SELECTIVE
DEFINE IDMSCON54 IDMSCOM +149 1 A. * ACCEPT
DEFINE IDMSCON55 IDMSCOM +150 1 A. * ACCEPT RECORD
DEFINE IDMSCON56 IDMSCOM +151 1 A. * ACCEPT AREA
DEFINE IDMSCON57 IDMSCOM +152 1 A. * ACCEPT SET
DEFINE IDMSCON59 IDMSCOM +154 1 A. * BIND SUBSCHEMA
DEFINE IDMSCON60 IDMSCOM +155 1 A. * IF MEMBER
DEFINE IDMSCON62 IDMSCOM +157 1 A. * IF NOMEMBER
DEFINE IDMSCON64 IDMSCOM +159 1 A. * IF EMPTY
DEFINE IDMSCON65 IDMSCOM +160 1 A. * IF NOEMPTY
DEFINE IDMSCON66 IDMSCOM +161 1 A. * COMMIT
DEFINE IDMSCON67 IDMSCOM +162 1 A. * ROLLBACK
DEFINE IDMSCON68 IDMSCOM +163 1 A. * ACCEPT NEXT SET
DEFINE IDMSCON69 IDMSCOM +164 1 A. * ACCEPT PRIOR SET
DEFINE IDMSCON70 IDMSCOM +165 1 A. * ACCEPT OWNER SET
DEFINE IDMSCON71 IDMSCOM +166 1 A. * ACCEPT STATISTICS
DEFINE IDMSCON73 IDMSCOM +168 1 A. * BIND PROCEDURE
DEFINE IDMSCON74 IDMSCOM +169 1 A. * ACCEPT PROCEDURE
DEFINE IDMSCON75 IDMSCOM +170 1 A. * FIND DB-KEY
DEFINE IDMSCON76 IDMSCOM +171 1 A. * FIND NTH REC SET
DEFINE IDMSCON77 IDMSCOM +172 1 A. * FIND NTH REC AREA
DEFINE IDMSCON78 IDMSCOM +173 1 A. * FIND NTH SET
DEFINE IDMSCON79 IDMSCOM +174 1 A. * FIND NTH AREA
DEFINE IDMSCON81 IDMSCOM +176 1 A. * RETURN
DEFINE IDMSCON82 IDMSCOM +177 1 A. * RETURN FIRST
DEFINE IDMSCON83 IDMSCOM +178 1 A. * RETURN LAST
DEFINE IDMSCON84 IDMSCOM +179 1 A. * RETURN NEXT
DEFINE IDMSCON85 IDMSCOM +180 1 A. * RETURN PRIOR
DEFINE IDMSCON86 IDMSCOM +181 1 A. * RETURN USING
DEFINE IDMSCON87 IDMSCOM +182 1 A. * KEEP
DEFINE IDMSCON88 IDMSCOM +183 1 A. * KEEP EXCLUSIVE
DEFINE IDMSCON89 IDMSCOM +184 1 A. * KEEP REC
DEFINE IDMSCON90 IDMSCOM +185 1 A. * KEEP EXCLUSIVE REC
DEFINE IDMSCON91 IDMSCOM +186 1 A. * KEEP SET
DEFINE IDMSCON92 IDMSCOM +187 1 A. * KEEP EXCLUSIVE SET
DEFINE IDMSCON93 IDMSCOM +188 1 A. * KEEP AREA
DEFINE IDMSCON94 IDMSCOM +189 1 A. * KEEP EXCLUSIVE AREA
DEFINE IDMSCON95 IDMSCOM +190 1 A. * COMMIT ALL
DEFINE IDMSCON96 IDMSCOM +191 1 A. * ROLLBACK CONTINUE
DEFINE IDMSCON99 IDMSCOM +194 1 A. * LRF FUNCTION
DEFINE IDMSDIRECT IDMSCOM +196 4 B 0, MASK HEX
DEFINE IDMSRESV IDMSCOM +200 7 N, MASK HEX

IDMS Interface

CA-IDMS Database Processing 5–13

DEFINE IDMSFILL IDMSCOM +207 1 N, MASK HEX
DEFINE IDMSOCCUR IDMSCOM +208 4 B 0, MASK HEX
DEFINE IDMSSEQ IDMSCOM +212 4 B 0, MASK HEX

IDMS Interface

CA-IDMS Database Processing 5–14

CA-Easytrieve UNIX IDMS Communications Block
DEFINE IDMSCOM S 216 A
DEFINE IDMSNAME IDMSCOM 8 A, VALUE 'EASYPLUS'
DEFINE IDMSSTATUS IDMSCOM + 8 4 A
DEFINE IDMSKEY IDMSCOM + 12 4 B 0, MASK HEX
DEFINE IDMSREC IDMSCOM + 16 16 A
DEFINE IDMSNODE IDMSCOM + 16 8 A
DEFINE IDMSDB IDMSCOM + 24 8 A
DEFINE IDMSAREA IDMSCOM + 32 16 A
DEFINE IDMSDICTNODE IDMSCOM + 32 8 A
DEFINE IDMSDICTNAME IDMSCOM + 40 8 A
DEFINE IDMSESET IDMSCOM + 48 16 A
DEFINE IDMSEREC IDMSCOM + 64 16 A
DEFINE IDMSEAREA IDMSCOM + 80 16 A
DEFINE IDMSCON IDMSCOM + 96 1 A, OCCURS 100
DEFINE IDMSDIRECT IDMSCOM +196 4 B 0, MASK HEX
DEFINE IDMSRESV IDMSCOM +200 7 N, MASK HEX
DEFINE IDMSFILL IDMSCOM +207 1 N, MASK HEX
DEFINE IDMSOCCUR IDMSCOM +208 4 B 0, MASK HEX
DEFINE IDMSSEQ IDMSCOM +212 4 B 0, MASK HEX

Logical Record Communications Block

When the first Logical Record statement is encountered, a Logical Record
Communications Block is created in “S” working storage. The fields generated
are:
DEFINE SLC S 1024 A
DEFINE SUBSCHEMA-LR-CTRL SLC 1024 A
DEFINE LRC-LRPXELNG SLC 2 B
DEFINE LRC-MAXVXP SLC +0002 2 B
DEFINE LRIDENT SLC +0004 4 A
DEFINE LRVERB SLC +0008 8 A
DEFINE LRNAME SLC +0016 16 A
DEFINE LR-STATUS SLC +0032 16 A
DEFINE LR-FILLER-01 SLC +0048 16 A
DEFINE LRPXE SLC +0064 1 A +
 OCCURS 960 INDEX LR-PXE-NDX
DEFINE PXE LRPXE 256 A
DEFINE PXENEXT LRPXE 4 B
DEFINE PXETABO LRPXE +0004 2 B
DEFINE PXEDSPL LRPXE +0006 2 B
DEFINE PXEDYN LRPXE +0008 2 B
DEFINE PXEDLEN LRPXE +0010 2 B
DEFINE PXENDEC LRPXE +0012 1 A
DEFINE PXEDTYP LRPXE +0013 1 A
DEFINE PXEOTYP LRPXE +0014 1 A
DEFINE PXEFLAG LRPXE +0015 1 A
DEFINE PXE-FILLER-01 LRPXE +0016 240 A

Using Logical and Element Records in Non-CA-IDMS Statements

Non-CA-IDMS statements in CA-Easytrieve treat database records in much the
same way as files. That is, the database record can be written to a file using the
FROM parameter of the PUT or WRITE statement, the contents of the record
buffer can be accessed using the MOVE statement, and the fields of the record
can be moved selectively using the MOVE LIKE statement. In addition, the
definitions of all fields defined in the record can be copied to another record or
file using the COPY statement.

IDMS Interface

CA-IDMS Database Processing 5–15

For those non-CA-IDMS statements that allow record names to be used, a logical
record is treated in exactly the same manner as a database record.

However, element records are not treated like database records. In
non-CA-IDMS statements, element records are treated as alphanumeric fields.
This means that you can use an element record name in any context where you
can use an alphanumeric field.

Automatic Input

Automatic input is a facility whereby CA-Easytrieve retrieves information from
the database and makes it available to the program. See Controlled vs. Automatic
Processing in the “File Processing” chapter for a description of automatic input
as it applies to conventional files. To indicate that automatic input is to occur for
a database, you must do the following:

1. Code the INPUT parameter on the JOB statement for each activity that will
require automatic input from the database. The INPUT parameter must
specify the filename from the FILE statement that defines the subschema.
This must be the only filename specified. CA-Easytrieve does not support
synchronized file processing for CA-IDMS database files.

2. Code either a RETRIEVE statement or a SELECT statement following the JOB
statement. Use a RETRIEVE statement to retrieve database records. Use a
SELECT statement for logical records. Only one statement, RETRIEVE or
SELECT, must be coded.

The RETRIEVE and SELECT statements describe the particular portion of the
database to be retrieved. CA-Easytrieve performs all the calls needed to retrieve
the information described by the automatic input statements. The sequence of
processing for automatic input from a CA-IDMS database is shown in the
following exhibit.

 IF first call
 IDMS BIND subschema-name from INPUT file +
 PROGRAM-NAME parameter from RETRIEVE/SELECT +
 DBNAME parameter from RETRIEVE/SELECT +
 NODE parameter from RETRIEVE/SELECT +
 DICTNAME parameter from RETRIEVE/SELECT +
 DICTNODE parameter from RETRIEVE/SELECT
 IDMS BIND FILE file-name RECORD record-name (RETRIEVE only)
 ... (repeated for each record specified)
 IDMS READY ALL RETRIEVAL

 END-IF
 retrieve next set of information
 IF no more information
 wrap up reports
 STOP
 END-IF
 ... (your program processes the information)
 GO TO JOB

IDMS Interface

CA-IDMS Database Processing 5–16

The RETRIEVE statement provides for automatic input of CA-IDMS databases.
Input is accomplished by either sweeping an entire database area and
sequentially processing all occurrences of the root record, or by selectively
processing root records through the use of a tickler file or integrated index.

Sweep of an Area

Sweeping an entire database area for all occurrences of the root record provides
the default input. OBTAIN NEXT RECORD WITHIN AREA calls are issued at
the root level until the database area has been exhausted. If specified, the
INDEX, LIMIT, and WHILE subparameters control the sweep.

Tickler File Control

Optionally, a file of root record keys can control the extent of the database to be
processed. The keys are obtained one-at-a-time from the tickler file. OBTAIN
CALC calls are issued for each key in the tickler file. Only CALC records can be
the root when the tickler file is used. The record must have the KEY parameter
specified on the RECORD statement.

Input Definition (Paths)

Automatic input of CA-IDMS databases depends on the concept of path
processing. Each database path, identified by the SELECT parameter, is
processed in a top-to-bottom order. A root record is obtained first, then path
access continues downward through the records coded in the SELECT
parameter. When the end of each path is reached, that data is made available to
the program as an input record.

If another path is defined, denoted by a repeated record name or node, that path
is then processed until end of path. When all paths for the root have been
exhausted, the next root is obtained. Paths can be defined from a member
occurrence to its owner occurrence if owner pointers exist for the set.

Records at each level of the path below the root are retrieved using OBTAIN
NEXT RECORD WITHIN SET if the owner record type is at the higher level. If
the member record type is specified at the higher level, then OBTAIN OWNER
calls are used. The name of the set to be used must be specified with the SET
subparameter of the SELECT parameter entry for the lower level record.

IDMS Interface

 CA-IDMS Database Processing 5–17

Automatic Input of Logical Records

The SELECT statement provides for automatic input of logical records from
CA-IDMS databases. The input is a sequential retrieval of all occurrences of a
specified logical record that satisfy a user-specified WHERE clause. OBTAIN
NEXT RECORD WHERE calls are issued for the logical record until all records
have been retrieved. A logical path is not input if LR-STATUS is LR-ERROR or
LR-NOT-FOUND.

WHERE Clause

The Boolean expression required by the WHERE parameter of the SELECT
statement is coded using the syntax required by CA-IDMS for COBOL programs.
The only difference is that if the Boolean expression extends over multiple source
records, each record must be continued using the CA-Easytrieve conventions
described in the “Overview” chapter of the CA-Easytrieve Language Reference
Guide.

See the Programmer’s Reference Guide - COBOL for a description of the syntax of a
Boolean expression.

Examples

Processing Two Distinct Paths from a Single Root

This example illustrates path processing. The RETRIEVE statement returns all
data to the program for processing. Information about missing data is also
available.

CUSTOMER SALES

CUSTOMER ORDOR OREMARK

FILE DBASE IDMS(DEMOSS03)
RECORD CUSTOMER 104
 CUST-NO 1 10 A
 CUST-NAME 11 20 A
RECORD ORDOR 40
 ORD-NO 1 7 A
 ORD-CPO# 8 10 A
RECORD OREMARK 72
 ORD-SEQ 1 2 A
 ORD-TEXT 3 70 A
RECORD SALES 28
 SLS-CUST-NO 1 10 A
JOB INPUT (DBASE) NAME TWO-DISTINCT-PATHS
 RETRIEVE DBASE +
 SELECT (CUSTOMER AREA 'CUSTOMER-REGION' +
 SALES ID 'SA' SET 'CUSTOMER-SALES' +
 CUSTOMER +
 ORDOR SET 'CUSTOMER-ORDER' +
 OREMARK ID 'RE' SET 'ORDER-OREMARK')
 IF PATH-ID EQ 'RE'

IDMS Interface

CA-IDMS Database Processing 5–18

 DISPLAY ORD-TEXT
 ELSE
 DISPLAY SLS-CUST-NO
 END-IF

The first customer record in the area is obtained. The first sales record for the
customer is then obtained. If no sales exist, the order path is processed. If a sale
record exists for the customer, the path containing the customer and sales record
is returned to the program. This processing continues until no more sales
records exist for the customer. The order path is then processed.

The first order for the root customer is then obtained, as well as the first remark
for the order. This path is then returned to the program. Next, the second
remark for the first order is obtained and the path is returned. The customer and
order records remain unchanged. Only the remark record is affected. When all
remarks for the first order are returned, the next order for the customer is
obtained with all its remarks. This processing continues until all orders and all
remarks are obtained and returned to the program. The second customer root is
then obtained and processing continues as described above until all customer
records have been processed.

PATH-ID is used to test which path is returned to the program. When PATH-ID
= SA, the customer sales path is available. When PATH-ID = RE, the
customer/order/remark path is available. Paths for customers without sales or
without orders are not processed by this program.

IDMS Interface

 CA-IDMS Database Processing 5–19

Processing Two Paths with Intermediate Records the Same

Like the previous example, the program in this example also processes two
paths. The product, sales, customers, and order records are all processed. Then
the first path specifies that the item records for each order are to be returned and
then the remark records for the same order are returned. Each record also has an
ID specified.

PRODUCT SALES CUSTOMER ORDOR ITEM

PRODUCT SALES CUSTOMER ORDOR OREMARK

 FILE DBASE IDMS(DEMOSS03)
 RECORD CUSTOMER 104
 CUST-NO 1 10 A
 CUST-NAME 11 20 A
 RECORD ORDOR 40
 ORD-NO 1 7 A
 ORD-CPO# 8 10 A
 RECORD OREMARK 72
 ORD-SEQ 1 2 A
 ORD-TEXT 3 70 A
 RECORD SALES 28
 SLS-CUST-NO 1 10 A
 RECORD PRODUCT 48
 PROD-NO 1 8 A
 PROD-DESC 9 20 A
 RECORD ITEM 3226
 ITEM-PROD# 1 8 A
 JOB INPUT (DBASE) NAME TWO-PATHS
 RETRIEVE DBASE +
 SELECT (PRODUCT ID 'PR' AREA 'PRODUCT-REGION' +
 SALES ID 'SA' SET 'PRODUCT-SALES' +
 CUSTOMER ID 'CU' SET 'CUSTOMER-SALES' +
 ORDOR ID 'OR' SET 'CUSTOMER-ORDER' +
 ITEM ID 'IT' SET 'ORDER-ITEM' +
 ORDOR +
 OREMARK ID 'RE' SET 'ORDER-OREMARK')
 IF PATH-ID EQ 'RE'
 DISPLAY PROD-DESC CUST-NAME ORD-TEXT
 END-IF
 IF PATH-ID EQ 'IT'
 DISPLAY PROD-DESC CUST-NAME ITEM-PROD#
 END-IF

In a typical CA-IDMS database path, each record can occur multiple times or
may not occur at all. Occasionally, you might want to determine not only which
path is available but also which records in the path are available. Based on the
previous example, the information in the following table is provided.

PATH-ID Available RECORD(s)

PR PRODUCT

SA PRODUCT - SALES

CU PRODUCT - SALES - CUSTOMER

IDMS Interface

CA-IDMS Database Processing 5–20

OR PRODUCT - SALES - CUSTOMER - ORDOR

IT PRODUCT - SALES - CUSTOMER - ORDOR - ITEM

RE PRODUCT - SALES - CUSTOMER - ORDOR - OREMARK

Tickler File Control of Root Records

The program in this example illustrates path processing using a tickler file to
identify the root records to be processed.
 FILE DBASE IDMS(DEMOSS03)
 RECORD CUSTOMER 104 KEY(CUST-NO)

 KEY 1 10 N

 SELECT (CUSTOMER AREA 'CUSTOMER-REGION')

 CUST-NO 1 10 A
 CUST-NAME 11 20 A
 FILE KEYS

 JOB INPUT (DBASE) NAME TICKLER-FILE-CONTROL
 RETRIEVE DBASE +
 KEYFILE KEYS KEYVALUE(CUST-NO = KEY) +

 IF PATH-ID EQ 'NF'
 DISPLAY 'ROOT RECORD NOT FOUND FOR ' KEY
 GO TO JOB
 END-IF
 DISPLAY CUST-NAME

Complete Path Processing

The program in this example illustrates how to bypass certain paths, specifically
those paths whose lowest record is not present. This example selects only
complete paths for data processing.

 FILE DBASE IDMS(DEMOSS03)
 RECORD CUSTOMER 104
 CUST-NO 1 10 A
 CUST-NAME 11 20 A
 RECORD ORDOR 40
 ORD-NO 1 7 A
 ORD-CPO# 8 10 A
 RECORD ITEM 3226
 ITEM-PROD# 1 8 A
 JOB INPUT (DBASE) NAME COMPLETE-PATH-PROCESSING
 RETRIEVE DBASE +
 SELECT (CUSTOMER AREA 'CUSTOMER-REGION' +
 ORDOR SET 'CUSTOMER-ORDER' +
 ITEM ID 'IT' SET 'ORDER-ITEM')
 IF PATH-ID NE 'IT'
 GO TO JOB
 END-IF
 DISPLAY CUST-NAME ITEM-PROD#

Limited Record Retrieval

You can use the LIMIT subparameter of the SELECT statement to limit record
occurrence retrieval. This example describes an area sweep where the number of
root records retrieved is limited to five for program testing purposes. When the
limit is reached, input processing is terminated.
 FILE DBASE IDMS(DEMOSS03)
 RECORD SALES 28
 SLS-CUST-NO 1 10 A
 JOB INPUT (DBASE) NAME RETRIEVAL-LIMIT
 RETRIEVE DBASE +

IDMS Interface

CA-IDMS Database Processing 5–21

 SELECT (SALES AREA 'CUSTOMER-REGION' LIMIT 5)
 DISPLAY SLS-CUST-NO

Another reason to limit record retrieval is to inhibit potential redundant calls to
CA-IDMS. For instance, if it is known that a particular record never occurs more
than twice in a path, code LIMIT 2 for that record. This use of LIMIT improves
throughput for database activities.

Conditional Record Retrieval

You can screen any record to establish the acceptability of the record.
CA-Easytrieve bypasses record occurrences that fail the acceptance test for input
consideration. Use the WHILE condition to control record acceptance.
 FILE DBASE IDMS(DEMOSS03)
 RECORD CUSTOMER 104
 CUST-NO 1 10 A
 CUST-NAME 11 20 A
 JOB INPUT (DBASE) NAME RECORD-PROCESSING
 RETRIEVE DBASE +
 SELECT (CUSTOMER AREA 'CUSTOMER-REGION' +
 WHILE (CUST-NAME EQ 'JONES'))
 DISPLAY CUST-NO

Select Statement

The following shows a logical record Select statement.
 *
 IDD SUBSCHEMA DEMOSSLR SCHEMA DEMOSCHM +
 SELECT (CUST-SALES-LR)
 *
 JOB INPUT DEMOSSLR
 SELECT CUST-SALES-LR
 *
 DISPLAY CUST-NAME +2 SLS-CUST-NO +2 PROD-DESC

Controlled Processing

All valid CA-IDMS functions can be performed using the controlled processing
commands of the IDMS statement. Basically, each of these commands generates
a call to CA-IDMS in much the same manner as a COBOL program. Refer to the
appropriate CA-IDMS DML Reference Guide for details on the use of these
commands. The first parameter of the IDMS statement identifies the command
to be issued. These commands are:

ACCEPT BIND
COMMIT CONNECT
DISCONNECT ERASE
FIND or OBTAIN FINISH
GET IF
KEEP MODIFY
READY RETURN
ROLLBACK STORE

IDMS Interface

CA-IDMS Database Processing 5–22

You should test the IDMSSTATUS field in the CA-IDMS Communications Block
to determine whether the execution of each controlled processing statement is
successful.

IDMS Statement

The IDMS statement provides controlled input/output of an CA-IDMS database.
You can use the commands of the CA-IDMS statement either with or without the
automatic input associated with RETRIEVE or SELECT. Exercise caution when
combining automatic input and controlled processing to ensure that currency is
maintained for automatic input. You can code these statements at any place in a
JOB where an I/O statement for any other file can be coded. See the
CA-Easytrieve Language Reference Guide for complete syntax for all IDMS
statements.

IDMS Interface

CA-IDMS Database Processing 5–23

Controlled Processing Examples

The examples that follow use the CA-IDMS test database supplied with your
CA-IDMS system.

Area Sweep for Record Type
 %IDMSCUST. * INVOKE FIELD DEFINITIONS
 *
 JOB INPUT(NULL), START(SIGN-ON), NAME(AREA-SWEEP)
 *
 * RETRIEVE FIRST RECORD
 IDMS OBTAIN FIRST, RECORD 'CUSTOMER', AREA 'CUSTOMER-REGION'
 LOOP
 * IF STATUS IS OK, PRINT CUSTOMER NAME
 * AND RETRIEVE NEXT RECORD
 PERFORM STATUS-CHECK
 PRINT AREA-SWEEP
 IDMS OBTAIN, NEXT, RECORD 'CUSTOMER', AREA 'CUSTOMER-REGION'
 GO TO LOOP
 *
 SIGN-ON. PROC
 *
 * BIND THE RUN-UNIT
 IDMS BIND 'DEMOSS03'
 PERFORM STATUS-CHECK
 * ASSIGN RECORD WORK AREA
 IDMS BIND, FILE DBASE, RECORD CUSTOMER
 PERFORM STATUS-CHECK
 * READY THE AREA
 IDMS READY, AREA 'CUSTOMER-REGION'
 PERFORM STATUS-CHECK
 END-PROC
 *
 STATUS-CHECK. PROC
 * IF STATUS NOT OK, TERMINATE PROCESSING
 IF IDMSSTATUS NE '0000'
 DISPLAY NEWPAGE, 'IDMS STATUS IS ', IDMSSTATUS
 IDMS FINISH
 STOP
 END-IF
 END-PROC
 *
 REPORT AREA-SWEEP LINESIZE(72)
 TITLE 'SWEEP OF ''CUSTOMER-REGION'' FOR ALL ''CUSTOMERS'''
 LINE CUST-NAME

Record Retrieval Using a Tickler File
 %IDMSCUST. * INVOKE FIELD DEFINITIONS
*
 FILE KEYFILE
 CUSTOMER-KEY 1 10 A
*
 JOB INPUT(KEYFILE), START(SIGN-ON), FINISH(SIGN-OFF)
* ESTABLISH KEY AND RETRIEVE RECORD
 CUST-NO = CUSTOMER-KEY
 IDMS OBTAIN, CALC, RECORD 'CUSTOMER'
* IF "RECORD-NOT-FOUND", INDICATE SO
 IF IDMSSTATUS EQ '0326'
 CUST-NAME = 'NOT FOUND'
 CUST-NO = CUSTOMER-KEY
 ELSE
 PERFORM STATUS-CHECK
 END-IF
* PRODUCE REPORT
 PRINT CALC-RPT
*

IDMS Interface

CA-IDMS Database Processing 5–24

 SIGN-ON. PROC
* BIND THE RUN-UNIT
 IDMS BIND 'DEMOSS03'
 PERFORM STATUS-CHECK
* ASSIGN RECORD WORK AREA
 IDMS BIND, FILE DBASE, RECORD CUSTOMER
 PERFORM STATUS-CHECK
* READY THE AREA
 IDMS READY, AREA 'CUSTOMER-REGION'
 PERFORM STATUS-CHECK
 END-PROC
*
 STATUS-CHECK. PROC
* IF STATUS NOT OK, TERMINATE PROCESSING
 IF IDMSSTATUS NE '0000'
 DISPLAY NEWPAGE, 'IDMS STATUS IS ', IDMSSTATUS
 IDMS FINISH
 END-IF
 END-PROC
*
 SIGN-OFF. PROC
* SIGN-OFF THE DATA BASE
 IDMS FINISH
 END-PROC
*
 REPORT CALC-RPT LINESIZE(72)
 TITLE 'RECORD RETRIEVAL BY CALC KEY'
 LINE CUST-NO CUST-NAME
*

Locate all Customer Orders
 %IDMSCUST. * INVOKE FIELD DEFINITIONS
*
 JOB INPUT(NULL), START(SIGN-ON)
* RETRIEVE FIRST CUSTOMER
 IDMS OBTAIN, FIRST, RECORD 'CUSTOMER', AREA 'CUSTOMER-REGION'
 GO TO CUSTOMER-CHECK
 CUSTOMER-NEXT.
 PERFORM STATUS-CHECK
* RETRIEVE NEXT CUSTOMER
 IDMS OBTAIN, NEXT, RECORD 'CUSTOMER', AREA 'CUSTOMER-REGION'
* IF "END-OF-AREA", SIGN-OFF
 IF IDMSSTATUS EQ '0307'
 IDMS FINISH
 STOP
 END-IF
 CUSTOMER-CHECK.
 PERFORM STATUS-CHECK
* RETRIEVE FIRST ORDER
 IDMS OBTAIN, NEXT, RECORD 'ORDOR' SET 'CUSTOMER-ORDER'
 IF IDMSSTATUS EQ '0307'
 MOVE SPACES TO ORD-NO ORD-CPO#
 PRINT CUST-ORD
 GO TO CUSTOMER-NEXT
 END-IF
 PERFORM STATUS-CHECK
 ORDER-NEXT.
 PRINT CUST-ORD
*
* RETRIEVE NEXT ORDER AND PRINT
 IDMS OBTAIN, NEXT, RECORD 'ORDOR', SET 'CUSTOMER-ORDER'
 IF IDMSSTATUS EQ '0000'
 GO TO ORDER-NEXT
 END-IF
* IF "END-OF-AREA", GET THE NEXT
* CUSTOMER
 IF IDMSSTATUS EQ '0307'
 GO TO CUSTOMER-NEXT
 END-IF
 PERFORM STATUS-CHECK
*
 SIGN-ON. PROC
* BIND THE RUN-UNIT

IDMS Interface

CA-IDMS Database Processing 5–25

 IDMS BIND 'DEMOSS03'
 PERFORM STATUS-CHECK
* ASSIGN RECORD WORK AREA
 IDMS BIND, FILE DBASE, RECORD CUSTOMER
 PERFORM STATUS-CHECK
* ASSIGN ORDER WORK AREA
 IDMS BIND, FILE DBASE, RECORD ORDOR
 PERFORM STATUS-CHECK
* READY THE AREA
 IDMS READY, AREA 'CUSTOMER-REGION'
 PERFORM STATUS-CHECK
* READY THE AREA
 IDMS READY, AREA 'ORDER-REGION'
 PERFORM STATUS-CHECK
 END-PROC
*
 STATUS-CHECK. PROC
* IF STATUS NOT OK, TERMINATE
* PROCESSING
 IF IDMSSTATUS NE '0000'
 DISPLAY NEWPAGE, 'IDMS STATUS IS ', IDMSSTATUS
 IDMS FINISH
 STOP
 END-IF
 END-PROC
*
 REPORT CUST-ORD LINESIZE(72), DTLCTL(FIRST)
 SEQUENCE CUST-NO
 CONTROL FINAL NOPRINT, CUST-NO NOPRINT, CUST-NAME NOPRINT
 TITLE 'CUSTOMER ORDERS'
 LINE CUST-NO, CUST-NAME ORD-NO, ORD-CPO#

IDMS Interface

CA-IDMS Database Processing 5–26

Obtain Logical Record
 PARM DEBUG (DMAP)
 *
 IDD SUBSCHEMA DEMOSSLR SCHEMA DEMOSCHM +
 SELECT (CUST-SALES-LR)
 *
 FILE IDS FB (80 8000)
 IDENT 1 4 N
 *
 JOB INPUT IDS NAME (LROBTAIN) +
 START SIGN-ON FINISH SIGN-OFF
 *
 IDMS OBTAIN NEXT RECORD CUST-SALES-LR +
 WHERE (IDENT = CUST-NUMBER)
 PERFORM LR-STATUS-CHECK
 *
 IF LR-STATUS = 'LR-FOUND'
 DISPLAY CUST-NAME +2 SLS-CUST-NO +2 PROD-DESC
 END-IF
 *
 SIGN-ON. PROC
 IDMS BIND 'DEMOSSLR' DICTNAME 'DICTDB'
 PERFORM STATUS-CHECK
 IDMS READY
 PERFORM STATUS-CHECK
 END-PROC
 *
 SIGN-OFF. PROC
 IDMS FINISH
 PERFORM STATUS-CHECK
 END-PROC
 *
 STATUS-CHECK. PROC
 IF IDMSSTATUS NE '0000'
 DISPLAY 'IDMS STATUS ' IDMSSTATUS
 DISPLAY 'ERROR DATA: AREA ' IDMSEAREA +
 ' SET ' IDMSESET ' RECORD ' IDMSEREC
 STOP
 END-IF
 END-PROC
 *
 LR-STATUS-CHECK. PROC
 IF LR-STATUS EQ 'LR-ERROR'
 DISPLAY 'LR STATUS ' LR-STATUS ' NAME ' LRNAME +
 ' VERB ' LRVERB
 PERFORM STATUS-CHECK
 END-IF
 END-PROC

IMS/DLI Database Processing 6–1

Chapter

6 IMS/DLI Database Processing

Introduction
The IMS/DL/I interface provides complete facilities for information retrieval
and maintenance of IMS/DL/I databases. To use this interface efficiently, you
should have a basic knowledge of IMS/DL/I and of the database(s) to be
processed. Preparatory work by the database administrator significantly reduces
the effort of writing programs that process databases.

The database administrator should place the data definition statements necessary
to process each database into the CA-Easytrieve macro library. Control of these
segment and field definition statements can greatly reduce the number of simple
programming errors associated with database processing.

This chapter discusses CA-Easytrieve database processing requirements in detail.
The four CA-Easytrieve statements that define database activities are described
in the CA-Easytrieve Language Reference Guide.

■ FILE statement - identifies the database.

■ RECORD statement - identifies the database segments that are available for
processing.

■ RETRIEVE statement - describes automatic database input.

■ DLI statement - provides controlled processing for the creation, retrieval, and
maintenance of a database.

CA-Easytrieve cannot access PSBs generated with a language type of PL/I; a
language type of ASSEM or COBOL is required.

This chapter also discusses how automatic input uses the RETRIEVE statement
in one of three ways:

■ Sweep of a database

■ Tickler file control

■ Input definition (paths).

Introduction

 IMS/DLI Database Processing 6–2

Test Database

The source statement samples that follow show database definition statements
(DBD) and program specification block (PSB) statements that describe the
database referenced throughout this chapter. The database is a portion of the
PARTS test database provided by IBM with the IMS system. Detailed
information about the database can be found in the IBM publication IMS/VS
Installation Guide. The test database for DLI DOS/VS is described in the IBM
publication Guide for New Users. This chapter uses only the OS/IMS test
database that is shown in the Test Database Structure diagram.

DBD Source Statements
DBD NAME=DI21PART,ACCESS=(HISAM,ISAM)
DATASET DD1=DI21PART,DEVICE=3330,OVFLW=DI21PARO
SEGM NAME=PARTROOT,PARENT=0,BYTES=50,FREQ=250
FIELD NAME=(PARTKEY,SEQ),TYPE=C,BYTES=17,START=1
SEGM NAME=STANINFO,PARENT=PARTROOT,BYTES=85,FREQ=1
FIELD NAME=(STANKEY,SEQ),TYPE=C,BYTES=2,START=1
SEGM NAME=STOKSTAT,PARENT=PARTROOT,BYTES=160,FREQ=2
FIELD NAME=(STOCKEY,SEQ),TYPE=C,BYTES=16,START=1
SEGM NAME=CYCCOUNT,PARENT=STOKSTAT,BYTES=25,FREQ=1
FIELD NAME=(CYCLKEY,SEQ),TYPE=C,BYTES=2,START=1
SEGM NAME=BACKORDR,PARENT=STOKSTAT,BYTES=75,FREQ=0
FIELD NAME=(BACKKEY,SEQ),TYPE=C,BYTES=10,START=1
DBDGEN

PSB Source Statements
 PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=A,KEYLEN=43
 SENSEG PARTROOT
 SENSEG STANINFO,PARTROOT
 SENSEG STOKSTAT,PARTROOT
 SENSEG CYCCOUNT,STOKSTAT
 SENSEG BACKORDR,STOKSTAT
 PSBGEN LANG=ASSEM,PSBNAME=EZTPPSBA

Test Database Structure

PCB and PSB Processing

IMS/DLI Database Processing 6–3

PCB and PSB Processing
CA-Easytrieve uses the Call DLI interface to access an IMS/DLI database.
ASMTDLI is statically linked with your CA-Easytrieve program when you run a
batch compile. See the CA-Easytrieve/Online User Guide for more information
about program linkage.

PCB Specification and Access

Regardless of the execution environment, the PCB to be processed is specified on
the FILE statement. See the CA-Easytrieve Language Reference Guide for a complete
description of the FILE statement. Field definitions immediately following the
FILE statement map the specified PCB. All PCB fields can be accessed in a
CA-Easytrieve program.

PSB Specification

In batch and TSO environments, the PSB name is passed to IMS/DLI as a
parameter on the statement that executes the DFSRRC00 program. When your
CA-Easytrieve program begins executing, the PCB specified on the FILE
statement is found in the PSB by the CA-Easytrieve library routines and made
available to your program automatically.

In CICS, a PSB must be explicitly scheduled by your program before any DLI file
can be accessed. The DLI PCB statement must be used to schedule a PSB. See
the CA-Easytrieve Language Reference Guide for a complete description of the DLI
statement. Also see the CICS Application Programmer’s Reference Manual for
information about PSB scheduling and terminating. After a DLI PCB statement
is executed, all DLI files in the CA-Easytrieve program are accessible. The DLI
PCB statement must be executed even when automatic input (the RETRIEVE
statement) is being used to read the database. Because the PSB can only be
scheduled one time, the DLI PCB statement should be placed in a JOB START
proc, or some other one-time only code. When all DLI processing is finished, the
DLI TERM statement should be used to terminate the PSB. If this is not done, the
PSB remains scheduled until task termination. In non-CICS environments, the
DLI PCB and DLI TERM statements have no effect.

Status Information

After each DLI operation, the PCB Status Code field is placed in the
CA-Easytrieve system-defined field, FILE-STATUS. See the IBM DLI
Programmer’s Reference Manual for the definition of the status code values.

Automatic Input

IMS/DLI Database Processing 6–4

In CICS, two additional system-defined fields are supplied to give additional
status data: UIBFCTR and UIBDLTR. Each is a one-byte binary field. The value
of each field is copied directly from the same-named UIB fields after each DLI
operation. See the IBM CICS Application Programmer’s Reference Manual for the
definition of the UIB field values.

In non-CICS environments, UIBFCTR and UIBDLTR contain zeros.

Automatic Input
Automatic input is a facility whereby CA-Easytrieve retrieves records from the
database and makes them available to the program. See Controlled vs.
Automatic Processing in the “File Processing” chapter for a description of
automatic input as it applies to conventional files. To indicate that automatic
input is to occur for the IMS/DLI database, you must do the following:

1. Code the INPUT parameter on the JOB statement for each activity that will
require automatic input from the database. The INPUT parameter must
specify the filename from the FILE statement that defines the IMS/DLI file.
This must be the only filename specified. CA-Easytrieve does not support
synchronized file processing for IMS/DLI database files.

2. Code a RETRIEVE statement following the JOB statement. Only one
RETRIEVE statement must be coded.

The RETRIEVE statement with SELECT parameters describes the particular
portion of the database to be retrieved. CA-Easytrieve performs all the DLI calls
needed to retrieve the records described by the automatic input statements.
Automatic input is either a sweep of the entire database or a selection of root
statements through the use of a tickler file.

Sweep of Database

Sweeping the entire database provides the default input. A get next (GN) call is
issued at the root level until the database has been exhausted. LIMIT, SSA, or
WHILE parameters, if specified, control the sweep.

Tickler File Control

Optionally, a file of root segment keys can control the extent of the database to be
processed. Root segment keys are obtained one-at-a-time from the tickler file.
Get unique (GU) calls are issued for each key on the tickler file. The KEY
parameter must be specified on the RECORD statement for the root segments
retrieved by the tickler file option.

Automatic Input

 IMS/DLI Database Processing 6–5

Input Definition (Paths)

Automatic input of IMS/DLI databases depends upon the concept of path
processing. Each database path identified with the SELECT parameter is
processed in a top-to-bottom, front-to-back, and left-to-right order. A root
segment is accessed first, with path accessing continuing downward to the left
until the end of the path. When the end of each path is reached, that data is
made available to the program as an input record. The following exhibit
illustrates the paths in a portion of the test database. Path-id is enclosed in
parentheses () above the field-name:

 PARTROOT
 (02RC07GF273J)
 (A)

 PARTROOT
 (02N51P3003F0)

 (AC)

 STANINFO STOKSTAT
 (0025906026)

 (CE) (CF)

 CYCCOUNT BACKORDR
 (20) (30)

 CYCCOUNT
 (21)

 INPUT PARTROOT STOKSTAT CYCCOUNT BACKORDR
 RECORD DATA DATA DATA DATA
 1 02N51P3003F0 0025906026 20
 2 02N51P3003F0 0025906026 21
 3 02N51P3003F0 0025906026 30
 4 02RC07GF273J 00...

CA-Easytrieve exhausts each path before proceeding to the next path. When it
exhausts the last path, it retrieves the next root and processing begins anew with
the leftmost path.

Typical Path Examples

The following series of path processing examples illustrates the functions of the
various statements and parameters associated with automatic database input.
The examples are based upon the Test Database Structure depicted earlier in this
chapter. Each example also relies upon the data definition indicated below:
 FILE DLIFILE DLI(DI21PART 1)
 DBD-NAME 1 8 A
 SEG-LEVEL 9 2 A

Automatic Input

IMS/DLI Database Processing 6–6

 STATUS-CODE 11 2 A
 PROC-OPTIONS 13 4 A
 RESERVE-DL1 17 4 B
 SEG-NAME-FB 21 8 A
 LENGTH-FB-KEY 29 4 B
 NUMB-SENS-SEGS 33 4 B
 KEY-FB-AREA 37 43 A
 *
 RECORD PARTROOT 50 KEY(PARTKEY 1 17)
 PARTKEY 1 17 A
 PART-NUMBER 1 17 A
 PART-DESC 27 24 A
 *
 RECORD STANINFO 85 PARTROOT KEY(STANKEY 1 2)
 STANKEY 1 2 A
 STAN-MAKE-DEPT 48 6 A
 STAN-MAKE-TIME 62 3 A
 *
 RECORD STOKSTAT 160 PARTROOT KEY(STOCKEY 1 16)
 STOKKEY 1 16 A
 STOK-ON-ORDER 106 8 N
 STOK-IN-STOCK 114 8 N
 *
 RECORD CYCCOUNT 25 STOKSTAT
 CYCLKEY 1 2 A
 *
 RECORD BACKORDR 75 STOKSTAT
 BACKKEY 1 2 A
 BACK-Q1 11 13 A

Tickler File Usage Example

This example illustrates path processing using a tickler file to identify the root
segments to be processed.
 FILE DLIFILE DLI (DI21PART 1)
 RECORD PARTROOT 50 KEY(PARTKEY 1 17)
 PARTKEY 1 17 A
 PART-NUMBER 1 17 A
 PART-DESC 27 24 A
 FILE KEYS
 KEY 1 17 A
 JOB INPUT (DLIFILE) NAME MYPROG
 RETRIEVE DLIFILE +
 KEYFILE KEYS, +
 KEYVALUE KEY, +
 SELECT PARTROOT
 IF PATH-ID EQ 'NF'
 DISPLAY 'ROOT NOT FOUND FOR ' KEY
 ELSE
 DISPLAY PART-NUMBER PART-DESC
 END-IF

Segment Selection Example

Segment selection must include complete paths. Therefore, knowledge of the
logical structures of a database is mandatory. The following exhibits illustrate
the results of various SELECT parameters.

Root-only Processing
 ...
 RETRIEVE DLIFILE ... +
 SELECT (PARTROOT)
 ...

Automatic Input

IMS/DLI Database Processing 6–7

 ...

Two Path, One Parent Example
 ...
 RETRIEVE DLIFILE ... +
 SELECT (PARTROOT +
 STANINFO +
 STOKSTAT)
 ...
 paths are: 1 - PARTROOT AND STANINFO
 2 - PARTROOT AND STOKSTAT

Two Path, Two Parent Example
 ...
 RETRIEVE DLIFILE ... +
 SELECT (PARTROOT ID 'A' +
 STOKSTAT ID 'AC' +
 CYCCOUNT ID 'CE' +
 BACKORDR ID 'CF')
 ...
 paths are: 1 - PARTROOT AND STOKSTAT AND CYCCOUNT
 2 - PARTROOT AND STOKSTAT AND BACKORDR

Path Identification Example

In a typical IMS/DLI database path, each segment can occur multiple times, or it
may not occur at all. It is often desirable to be able to determine not only which
path is available, but also which segments in the path are available. Based upon
the previous Two Path, One Parent Example, the following information is
provided:

PATH-ID Value Segment(s) availability

A PARTROOT

AC PARTROOT - STOKSTAT

CE PARTROOT - STOKSTAT - CYCCOUNT

CF PARTROOT - STOKSTAT - BACKORDR

Automatic Input

IMS/DLI Database Processing 6–8

Complete Path Processing with Schedule and Terminate

Consider the following example in which we want to process data only from a
complete path. That is, when the lowest segment in the path is not present, we
want to bypass processing the path altogether.

 FILE DLIFILE DLI (DI21PART 1)
 RECORD PARTROOT 50 KEY(PARTKEY 1 17)
 PARTKEY 1 17 A
 PART-NUMBER 1 17 A
 PART-DESC 27 24 A
 RECORD STOKSTAT 160 PARTROOT KEY(STOKKEY 1 16)
 STOKKEY 1 17 A
 STOK-ON-ORDER 1 17 A
 STOK-IN-STOK 27 24 A
 RECORD BACKORDR 75 STOKSTAT
 BACKKEY 1 2 A
 BACK-Q1 11 13 A
 JOB INPUT (DLIFILE) NAME MYPROG START INITPSB FINISH TERMPSB
 RETRIEVE DLIFILE +
 SELECT (PARTROOT +
 STOKSTAT +
 BACKORDR ID 'CF')
 IF PATH-ID NE 'CF'
 GO TO JOB
 END-IF
 DISPLAY PART-NUMBER PART-DESC BACK-Q1
 INITPSB. PROC
 DLI PCB 'EZTPPSBA'
 END-PROC.
 TERMPSB. PROC
 DLI TERM
 END-PROC

Note: The DLI PCB and DLI TERM statements are required only in CICS
environments. They are ignored in non-CICS environments.

Limiting Segment Retrieval

You can use the LIMIT subparameter of SELECT to limit segment occurrence
retrieval. The following exhibit describes an area sweep where the number of
root segments retrieved is limited to five for program testing purposes. When
the limit is reached, input processing is terminated.
FILE DLIFILE DLI (DI21PART 1)
RECORD PARTROOT 50 KEY(PARTKEY 1 17)
PARTKEY 1 17 A
PART-NUMBER 1 17 A
PART-DESC 27 24 A
JOB INPUT (DLIFILE) NAME MYPROG
 RETRIEVE DLIFILE +
 SELECT (PARTROOT LIMIT 5)
 DISPLAY PART-NUMBER PART-DESC

Another example of limiting segment retrieval is its use to inhibit potential
redundant calls to IMS/DLI. For instance, if it is known that a particular
segment never occurs more than two times in a path, code LIMIT 2 for that
segment. This use of LIMIT improves performance for database activities.

Controlled Processing

IMS/DLI Database Processing 6–9

Root Segment Qualification Input Control

You can qualify root segments for retrieval by using the SSA subparameter of
SELECT. The value supplied with SSA is enclosed within parentheses and
concatenated with the segment-name to produce the root segment’s SSA. The
following example illustrates the control of input through root segment
qualification. Processing terminates when IMS/DLI returns a status-code
indicating that the qualification cannot be satisfied.

FILE DLIFILE DLI (DI21PART 1)
RECORD PARTROOT 50 KEY(PARTKEY 1 17)
PARTKEY 1 17 A
PART-NUMBER 1 17 A
PART-DESC 27 24 A
JOB INPUT (DLIFILE) NAME MYPROG
 RETRIEVE DLIFILE +
 SELECT (PARTROOT SSA 'PARTKEY = 02N51P3003F000 ')
 DISPLAY PARTKEY PART-NUMBER PART-DESC

Conditional Segment Retrieval (Segment Pre-screening)

You can pre-screen any segment to establish the acceptability of the segment.
CA-Easytrieve bypasses segment occurrences that fail the acceptance test for
input consideration. Use the WHILE condition when the Boolean logic of
IMS/DLI is inadequate for root SSA qualification or for segment qualification
below the root level. The following example demonstrates a segment pre-screen
which is unavailable through normal IMS/DLI interfaces.
FILE DLIFILE DLI (DI21PART 1)
RECORD PARTROOT 50 KEY(PARTKEY 1 17)
PARTKEY 1 17 A
PART-NUMBER 1 17 A
PART-DESC 27 24 A
JOB INPUT (DLIFILE) NAME MYPROG
 RETRIEVE DLIFILE +
 SELECT (PARTROOT WHILE (PART-DESC ALPHABETIC))
 DISPLAY PART-NUMBER +3 PART-DESC

Controlled Processing
You perform IMS/DLI functions using the DLI statement. This statement
generates a call to IMS/DLI which is identical to that generated by other
programming languages. It is essential that you test the status-code returned in
the PCB to determine the success of each DLI statement. These return codes are
described in the IMS/DLI Applications Programming Manual. The following
discussions illustrate typical use of DLI statements.

You must exercise caution when using the DLI statement in conjunction with
RETRIEVE. You should save and restore database positioning to ensure the
correct continuation of automatic input. Otherwise, input data can be lost or
repeated.

Controlled Processing

IMS/DLI Database Processing 6–10

When accessing a database in multiple JOBs, it is your responsibility to
reposition the database to where processing is to begin in each JOB ‘2’ through
JOB ‘n’. In the following code for Repositioning Databases with Schedule and
Terminate, processing is to begin at the start of the database. By using the
START procedure on the JOB statement, DLI statements can be issued to
reposition the database at its beginning.

In all the following examples, if the execution environment is CICS, the PSB must
be scheduled using the DLI PCB statement before the database is accessed using
the DLI or RETRIEVE statement. If the execution environment is not CICS, the
DLI PCB and DLI TERM statements have no effect.

 FILE DLIFILE DLI (DI21PART 1)
 RECORD PARTROOT 50 KEY(PARTKEY 1 17)
 PARTKEY 1 17 A
 PART-NUMBER 1 17 A
 PART-DESC 27 24 A
 RECORD STOKSTAT 160 PARTROOT KEY(STOKKEY 1 16)
 STOKKEY 1 17 A
 STOK-ON-ORDER 1 17 A
 STOK-IN-STOK 27 24 A
 RECORD BACKORDR 75 STOKSTAT
 BACKKEY 1 2 A
 BACK-Q1 11 13 A
 JOB INPUT (DLIFILE) NAME MYPROG START INITPSB
 RETRIEVE DLIFILE +
 SELECT (PARTROOT +
 STOKSTAT +
 BACKORDR ID 'CF')
 IF PATH-ID NE 'CF'
 GO TO JOB
 END-IF
 DISPLAY PART-NUMBER BACK-Q1
 INITPSB. PROC
 DLI PCB 'EZTPPSBA'
 END-PROC
 JOB INPUT (DLIFILE) START BEGIN NAME MYPROG2 FINISH TERMPSB
 RETRIEVE DLIFILE +
 SELECT (PARTROOT STOKSTAT ID 'SS')
 IF PATH-ID EQ 'SS'
 DISPLAY STOK-ON-ORDER
 END-IF
 *
 BEGIN. PROC
 DLI DLIFILE PARTROOT 'GU ' +
 SSA 'PARTROOT(PARTKEY =>99999999999999999)'
 DLI DLIFILE PARTROOT 'GN'
 END-PROC
 TERMPSB. PROC
 DLI TERM
 END-PROC.

Complete Path Processing

The following example illustrates the DLI statements necessary to produce the
same input data as is produced by the automatic input of the Complete Path
Processing discussion earlier in this chapter.

 SSA-PART W 37 A VALUE 'PARTROOT(PARTKEY = XXXXXXXXXXXXXXXXX)'
 SSA-PART-DATA SSA-PART +19 17 A
 SSA-STOK W 36 A VALUE 'STOKSTAT(STOCKEY = XXXXXXXXXXXXXXXX)'
 SSA-STOK-DATA SSA-STOK +19 16 A
 ...
 JOB INPUT (NULL)

Controlled Processing

IMS/DLI Database Processing 6–11

 DLI DLIFILE PARTROOT 'GN'
 IF FILE-STATUS EQ 'GE', 'GB'
 STOP
 END-IF
 IF FILE-STATUS NOT SPACE
 DISPLAY 'JOB TERMINATED, CODE = ' FILE-STATUS
 STOP
 END-IF
 NEXT-STOK
 SSA-PART-DATA = PARTKEY
 DLI DLIFILE STOKSTAT 'GNP ' SSA (SSA-PART, +
 'STOKSTAT ')
 IF FILE-STATUS EQ 'GE'
 GO TO JOB
 END-IF
 IF FILE-STATUS NOT SPACE
 DISPLAY 'JOB ...'
 STOP
 END-IF
 NEXT-BACK
 SSA-STOK-DATA = STOK-KEY
 DLI DLIFILE BACKORDR 'GNP ' SSA (SSA-PART, +
 SSA-STOK, +
 'BACKORDR ')
 IF FILE-STATUS EQ 'GE'
 GO TO NEXT-STOK
 END-IF
 IF FILE-STATUS NOT SPACE
 DISPLAY 'JOB ... '
 STOP
 END-IF
 ...
 process data base path
 ...
 GO TO NEXT-BACK

Database Maintenance

You can perform complete database maintenance using the DLI statement. One
of the programming techniques used in association with database maintenance is
usually the dynamic construction and use of SSAs. The following exhibit
(Creation of IMS/DLI Calls) depicts some of the basic programming necessary to
dynamically create IMS/DLI calls. The next exhibit (Basic Database Maintenance
Activity) shows basic activities that do not require the sophistication of dynamic
call generation.

Controlled Processing

IMS/DLI Database Processing 6–12

Creation of IMS/DLI Calls
 ...
 SSA-COUNT W 4 B
 FUNCTION W 4 A
 *
 SSA-ROOT W 37 A VALUE 'PARTROOT(PARTKEY = XXXXXXXXXXXXXXXXX)'
 SSA-ROOT-QUAL SSA-ROOT +8 1 A
 SSA-ROOT-DATA SSA-ROOT +19 17 A
 *
 SSA-LVL2 W 23 A VALUE 'STANINFO(STANKEY = XX)'
 SSA-LVL2-SEG SSA-LVL2 8 A
 SSA-LVL2-QUAL SSA-LVL2 +8 1 A
 SSA-LVL2-KEY SSA-LVL2 +9 8 A
 SSA-LVL2-DATA SSA-LVL2 +19 2 A
 ...
 JOB ...
 ...
 SSA-COUNT = 1
 SSA-ROOT-QUAL = ' '
 FUNCTION = 'GN '
 DLI DLIFILE PARTROOT FUNCTION SSANO SSA-COUNT SSA(SSA-ROOT)
 PERFORM TEST-STATUS
 SSA-ROOT-QUAL = '('
 SSA-ROOT-DATA = PARTKEY
 FUNCTION = 'GNP '
 SSA-LVL2-SEG = 'STANINFO'
 SSA-LVL2-QUAL = ' '
 SSA-COUNT = 2
 PERFORM DLI-CALL
 IF FILE-STATUS ...
 ...
 ELSE
 PERFORM TEST-STATUS
 END-IF
 ...
 DLI-CALL. PROC
 DLI DLIFILE STANINFO FUNCTION +
 SSANO SSA-COUNT +

 SSA (SSA-ROOT, +
 SSA-LVL2, +
 ...)
 END-PROC
 TEST-STATUS. PROC
 IF FILE-STATUS ...
 ...
 END-IF
 END-PROC.
 ...
 ...

Controlled Processing

IMS/DLI Database Processing 6–13

Basic Database Maintenance Activity
 ...

 DLI DLIFILE PARTROOT 'GHN '
 IF FILE-STATUS EQ 'GE'
 STOP
 ELSE
 PERFORM TEST-STATUS
 END-IF
 IF PARTKEY ...
 DLI DLIFILE PARTROOT 'DLET'
 PERFORM TEST-STATUS
 END-IF
 IF FILE-STATUS SPACES
 PRINT
 END-IF
 ...
 TEST-STATUS. PROC
 IF FILE-STATUS NOT SPACE
 DISPLAY ...
 ...
 STOP
 END-IF
 END-PROC
 ...
 ...

Report Processing 7–1

Chapter

7 Report Processing

Overview
A major function of many CA-Easytrieve programs is to produce printed reports.
The non-procedural nature of CA-Easytrieve report syntax is readily adaptable
to the production of basic and extremely complex reports, both with minimum
programming effort. Two statements generate printed output:

■ The PRINT statement initiates the basic declarative report facility.

■ The DISPLAY statement produces single print lines on print files.

PRINT is the preferred method because of its many automatic facilities. This
chapter primarily discusses report processing using the PRINT statement. Using
the DISPLAY statement to mix single print lines within a report is discussed with
report procedures.

Overview

 Report Processing 7–2

Basic Report Structure

The CA-Easytrieve report facility is basically declarative; you need only define
the format and content of the report and CA-Easytrieve creates the necessary
instructions to produce the report. The following exhibit illustrates the basic
structure of a CA-Easytrieve job with report processing. You can define one or
more reports for each activity.

Note: You can use the CA-Easytrieve/Online Report Painter to automate the
coding of a report declaration. See the CA-Easytrieve/Online User Guide for more
information.

PRINT Statement Processing

The PRINT statement activates the report logic defined by REPORT declarations.
CA-Easytrieve extracts the data required for the requested report, formats it in
the specified manner, and sends it to the printer. The immediate result of a
PRINT statement is either of the following:

■ Data output to a print file

■ Data output to a work (or spool) file.

Note: Output to a printer can be sent to a terminal for display (except in UNIX).
See Routing Printer Output later in this chapter, for more information.

CA-Easytrieve automatically creates work file records when:

■ The report is SEQUENCEd
■ Another report is already using the associated print file (when you have

multiple reports in a single JOB activity).

Overview

 Report Processing 7–3

The results of a PRINT statement are illustrated below:

Work File Records

Each work file record contains all of the data required to produce the report. The
PRINT statements generate the work file when it is necessary. The order of
occurrence of work file fields is the same as the field’s reference occurrence in the
REPORT statements. In the next exhibit, the underlined fields determine work
file record contents:
 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 DTLCTL EVERY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET

By default, work files are written to the CA-Easytrieve system work file, xxxVFM
(where xxx is the value of WKDSNPF in the options table). The algorithm for
naming work files is xxxRnnn, where xxx is the value of the WKDSNPF option
and nnn is the sequential number of the report within the JOB activity. A typical
work file name for the first work file in a JOB is EZTR001.

Overview

Report Processing 7–4

You can save the work file contents for future processing by coding the FILE
parameter on the REPORT statement. The corresponding FILE statement, coded
in the library, must identify a sequential file. You must also specify that the
work file’s record length is at least as long as the dynamically created work file
record. Records should be blocked to a reasonable value to ensure efficient
processing. This technique can also be used to offload the amount of Virtual File
Manager (VFM) space required by the program to another file.

Large Reports

If you have multiple large reports in a program, you can code the WORKFILE
YES parameter on the PARM statement. This allows you to use a report work
file without coding a FILE statement and a FILE parameter on the REPORT
statement for every report in your program. You must also add a DD statement
for each report to your JCL.

The DDname must conform to the format xxxRnnn, where xxx is the WKDSNPF
option in your site option table (EZT is the default) and nnn is the report number.
For example, the first report in your program would use the DD EZTR001.

It is also recommended that a large blocksize be coded in the JCL. The default
DCB for the work file is FB with record and block lengths set to the minimum
needed for the report. You can use the PARM WORKFILE BLOCKMAX
parameter to automatically set the blocksize for you. See PARM Statement in the
CA-Easytrieve Language Reference Guide for more information.

Note: Use VFM for small reports and all reports executing in CICS.

PRINT Workfile Processing

The normal termination process of each JOB activity, illustrated in the following
exhibit, includes the processing of any print work files created during the JOB
activity. If the JOB activity abends or terminates due to a STOP EXECUTE
statement, the print work files are not processed.

Overview

 Report Processing 7–5

Report Formats

There are two basic report formats:

■ Standard format, called a report

■ Label format, called a label report.

Standard Format

The CA-Easytrieve default report format is the standard format illustrated
below:

Top Margin

Overview

 Report Processing 7–6

The top margin is the space between the physical top of the form and the point to
which the printer positions when a top-of-form order is issued to the printer.
The size of the top margin is controlled by the printer carriage tape or forms
control buffer.

Title Area

The optional title area consists of 1 to 99 title lines plus a title margin between the
last title line and the first heading line.

Heading Area

The optional heading area consists of 1 to 99 heading lines plus a heading margin
between the last heading line and the report body.

Report Body

The report body consists of one or more occurrences of a line group. Each
occurrence of a line group is 1 to 99 lines plus, optionally, one or more blank
lines between occurrences.

Bottom Margin

The bottom margin is the area remaining between the bottom of the report body
and the physical bottom of the page.

Label Format

The second report format is used to print labels. The following exhibit illustrates
the basic label report page format:

A label line consists of one or more labels positioned across the label page. In the
above exhibit, labels one through four compose a label line. A single line group
composes each label. CA-Easytrieve produces a label for each PRINT statement
execution. CA-Easytrieve formats the labels on the page in the order as
numbered above. DOWN and SIZE indicate the dimensions of each label.

Overview

Report Processing 7–7

REPORT Statement

You define a report in CA-Easytrieve by coding a REPORT statement followed
by a series of report definition statements. You must code the REPORT
statement first in a report declarative. The REPORT statement establishes the
type and characteristics of the report. Although you can specify a large number
of REPORT statement parameters, you probably will produce most reports using
default parameter values. REPORT statement parameters provide a simple way
to define tailored reports. See the CA-Easytrieve Language Reference Guide for
complete explanations of REPORT statement parameters.

Report Definition Structure

A set of report definition statements defines every CA-Easytrieve report. The
statements define the report type, format, sequence, and data content. Report
definition statements are the last statements coded in a JOB activity. These
statements must be coded in the order illustrated in the following exhibit. You
can code report procedures in any order and can define any number of reports
for each JOB activity.

 ...
 JOB ...
 ...
 PRINT ...
 ...
 REPORT
 { SEQUENCE
 { CONTROL
 Report { SUM
 Definition { TITLE { REPORT-INPUT
 Statements { HEADING { BEFORE-LINE
 { LINE { AFTER-LINE
 { special-name procedures { BEFORE-BREAK
 { AFTER-BREAK
 { ENDPAGE
 { TERMINATION

Report Definition Statements

The REPORT statement and its parameters define the physical attributes of your
report. Code the following statements to define the content of your report:

■ SEQUENCE - optionally specifies the order of the report based on the
content of one or more fields.

■ CONTROL - identifies control fields used for a control report. A control
break occurs whenever the value of any control field changes or
end-of-report occurs.

■ SUM - specifies the quantitative fields which are totaled for a control report.

■ TITLE - defines optional report title items and their position on the title line.

■ HEADING - optionally defines an alternate heading for a field.

Overview

Report Processing 7–8

■ LINE - defines the content of a report line.

See the CA-Easytrieve Language Reference Guide for complete syntax.

PAGE-NUMBER

TALLY is a field that contains the number of detail records in a control break.
See Control Reports later in this chapter for more information.

System-Defined Fields

CA-Easytrieve automatically provides the special data fields listed below for
your reports. These fields are stored as part of working storage and are
read-only.

LINE-COUNT

LINE-COUNT is a field that contains the number of lines printed on the page.

LINE-NUMBER

LINE-NUMBER is a field that contains the number of the line being printed
within the line group. See Standard Reports for details of line-groups.

PAGE-COUNT

PAGE-COUNT is a field that contains the number of pages printed.

PAGE-NUMBER is a field that contains the number of the page being printed.

TALLY

LEVEL

LEVEL indicates the control break level. See Control Reports later in this chapter
for more information.

BREAK-LEVEL

BREAK-LEVEL indicates the highest field in the break. See Control Reports later
in this chapter for more information.

Standard Reports

 Report Processing 7–9

Standard Reports
The report facility in CA-Easytrieve includes all of the functions necessary to
produce most reports very easily. Using CA-Easytrieve report options, you can
produce a report in almost any format. Most reports, however, are variations of
a CA-Easytrieve standard report.

Titles

The title is the first item printed on each report page. You can specify the report
title with up to 99 TITLE statements. The following exhibit illustrates the title
area of a report.

The following are true for standard report titles:

■ TITLE 01 items are printed at top-of-form.

■ The current date and page count are placed at either end of the TITLE 01 line.

■ Title lines are centered within the space indicated by the LINESIZE
parameter of the REPORT statement.

■ The title line number controls the vertical spacing of titles relative to the first
title.

■ The SPACE parameter controls the number of blank characters (spaces)
between title items. SPACE also controls the separation of the items in the
line group in the report body.

Following are title statement examples and their resulting titles:
Statements:

 FILE PERSNL FB(150 1800)
 %PERSNL
 JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 50
 TITLE 01 'TEMPORARY EMPLOYEES'
 TITLE 03 'IN DEPARTMENT' DEPT
 LINE 01 ' '

Standard Reports

Report Processing 7–10

Results:

 2/09/87 TEMPORARY EMPLOYEES PAGE 1

 IN DEPARTMENT 903

Overriding Defaults

You can override the automatic (default) functions associated with title contents
and spacing to produce any desired report title. This may be necessary to
produce reports that use pre-printed forms as the output medium. You can use
the following parameters to produce non-standard title content and spacing:

■ NOADJUST - causes each title line to be left-justified on the page.
NOADJUST may cause line items to overlay the tags printed for SUMCTL
TAG. COL positioning is necessary for tag to appear.

■ NODATE and NOPAGE - inhibit current date and page count information
from being placed on the first title line.

■ COL - Use the COL positioning parameter to position items in specific print
columns. COL can be used with ADJUST or NODADJUST.

Note: The date overlays the left-most positions of TITLE 1 when NOADJUST is
specified. Either use NODATE or reserve an area for SYSDATE by specifying
COL 10 for SHORTDATE or COL 12 for LONGDATE before the first item on the
TITLE statement.

Examples

The following examples of title statements use title content and space adjustment
parameters. The report title that results from the statements is also illustrated.
Statements:

 FILE PERSNL FB(150 1800)
 %PERSNL
 JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
 REPORT REPORT1 NOADJUST NODATE NOPAGE
 TITLE 01 COL 20 SSN
 TITLE 02 SYSDATE COL 20 NAME
 TITLE 03 COL 20 ADDR-STREET
 TITLE 04 COL 20 ADDR-CITY -3 ',' +
 -2 ADDR-STATE +5 ADDR-ZIP
 LINE 01 ' '

Results:

 column column
 0 2
 1 0

 025-30-5228
 11/19/86 WIMN GLORIA
 430 M ST SW 107
 BOSTON , MA 02005

Standard Reports

Report Processing 7–11

Headings

A report heading is normally printed for line items specified on LINE 01. Each
heading is centered over its associated line item. The following rules control the
heading; the order in which they are listed indicates the hierarchy of override:

1. The NOHEADING parameter of the REPORT statement inhibits the printing
of any headings.

2. The HEADING statement sets the item heading content.

3. The HEADING parameter of the DEFINE statement sets the item heading
content.

4. Field-name of the DEFINE statement sets the item heading content.

5. Line items which are literals do not have headings.

6. Only LINE 01 items have headings.

The following exhibit illustrates the positioning of headings in a typical report.
Line items may not always have the same number of heading entries. In this
case, the corresponding heading line area is blank for those items with missing
headings.
 T I T L E A R E A

 HEADING

 TITLESKIP space
 HEADING

 Heading HEADING HEADING
 area HEADING HEADING HEADING

 line line literal line
 report item item line item
 body item ...

The next exhibit illustrates various heading options:
Statements:

 FILE PERSNL FB(150 1800)
 SSN 4 5 P MASK '999-99-9999' +
 HEADING('SOCIAL' 'SECURITY' 'NUMBER')
 EMPNAME 17 20 A
 NAME-LAST NAME 8 A
 NAME-FIRST NAME +8 12 A
 PAY-NET 90 4 P 2
 JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65
 HEADING PAY-NET ('NET', 'PAY')
 LINE EMPNAME SSN '* NO OVERTIME *' PAY-NET

Results:

 SOCIAL
 SECURITY NET
 NAME NUMBER PAY

 WIMN GLORIA 025-30-5228 * NO OVERTIME * 251.65
 BERG NANCY 121-16-6413 * NO OVERTIME * 547.88

Standard Reports

Report Processing 7–12

Line Group

Lines compose the body of a report. The lines of a report are output in groups
for each PRINT statement issued. All of the LINE statements of the report make
up a line group, which is also called a logical report line.
LINE ... }
LINE 02 ...} line or logical report
LINE 03 ...} group line
 ...

Line Item Positioning

Line item positioning follows three rules:

■ LINE 01 items and their associated headings are centered in an area whose
length is controlled by the longer of the following:

– The line item
– The longest heading entry.

The resulting value is called the item length.

■ The first line item other than on LINE 01 (that is, LINE 02 through LINE 99)
is positioned under the first item of LINE 01. The data is left-justified under
the LINE01 data, regardless of the heading size.

■ Blank characters (spaces) separate all line items according to the value of the
SPACE parameter of the REPORT statement.

Note: When CA-Easytrieve analyzes a LINE statement according to the above
rules, the total number of characters on that line must not exceed LINESIZE.

Standard Reports

Report Processing 7–13

The following exhibit illustrates line item positioning:
 FILE PERSNL FB(150 1800)
 SSN 4 5 P MASK '999-99-9999' +
 HEADING('SOCIAL' 'SECURITY' 'NUMBER')
 EMPNAME 17 20 A HEADING 'EMPLOYEE NAME'
 NAME-LAST NAME 8 A HEADING('LAST' 'NAME')
 NAME-FIRST NAME +8 12 A HEADING('FIRST' 'NAME')
 ADDRESS 37 39 A
 ADDR-STREET 37 20 A HEADING 'STREET'
 ADDR-CITY 57 12 A HEADING 'CITY'
 ADDR-STATE 69 2 A HEADING 'STATE'
 ADDR-ZIP 71 5 N HEADING('ZIP' 'CODE')
 SEX 127 1 N HEADING('SEX' 'CODE')
 JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65
 LINE EMPNAME SSN SEX
 LINE 02 ADDR-STREET POS 2 ADDR-CITY

 item area item area item area

 1 5 10 15 1 5 10 1 4

 SOCIAL
 SECURITY SEX heading
 EMPLOYEE NAME NUMBER CODE

 WIMN GLORIA 025-30-5228 1 line
 430 M ST SW 107 BOSTON group

Special Positioning

Sometimes the standard positioning of line items on a report is unsuitable for
producing the desired result, as in the case of aligning numeric fields on LINE 02
with the decimal point of corresponding fields on LINE 01. The POS line item
adjusting parameter left-justifies the corresponding fields, but when the LINE 02
field is not as long as the LINE 01 field, the two fields are unaligned. If that
happens, use the +offset or -offset line item adjustment parameter after the POS
parameter to adjust the data’s position.

The next exhibit illustrates poor and good decimal alignment. The first
occurrence of FLD2 on LINE 02 is not decimal-aligned with FLD1 on LINE 01.
To align the second occurrence correctly, an additional offset of 3 spaces (+3) is
specified.

Standard Reports

 Report Processing 7–14

Statements:

 DEFINE FLD1 W 4 P 2 VALUE 123.45

 DEFINE FLD2 W 3 P 2 VALUE 678.90
 JOB INPUT NULL NAME MYPROG
 PRINT REPORT1
 STOP
 *

 LINE 01 FLD1 FLD1
 LINE 02 FLD2 POS 2 +3 FLD2

Results:

 poor good

 column column
 1 5 10 15 1 5 10 15

 FLD1 FLD1

 678.90 678.90 line 02

Pre-printed Form Production

Pre-printed form production is another instance when standard line item
positioning must be overridden. A very simple example of this override is W-2
form printing in a payroll application. The following code shows the report
declarative statements necessary to print a hypothetical W-2 form This is
followed by the result on the pre-printed form.

REPORT PAGESIZE 20 NOADJUST NOHEADING SPACE 1
 LINE COL 7 'YOUR COMPANY NAME' COL 33 '903' +

 LINE 02 COL 7 'YOUR COMPANY STREET'
 LINE 03 COL 7 'YOUR COMPANY CITY STATE ZIP'
 LINE 10 COL 7 SSN COL 23 YTD-FEDTAX +
 COL 39 YTD-WAGES +
 COL 54 YTD-FICA

 LINE 14 COL 7 EMP-STREET
 LINE 15 COL 7 EMP-CITY EMP-STATE EMP-ZIP

 REPORT REPORT1 LINESIZE 40

 123.45 123.45 line 01

 COL 39 '12-3456789'

 LINE 12 COL 7 EMP-NAME COL 39 YTD-WAGES

Label Reports

Report Processing 7–15

SPREAD Parameter

The SPREAD parameter of the REPORT statement offers a unique way to space
line items. When you use reports as work sheets, it is often desirable to space
line items as far apart as possible. SPREAD overrides the SPACE parameter of
the REPORT statement and creates report lines with the maximum number of
spaces between each item, as this exhibit illustrates.

Statements:

 DEFINE FLD1 W 4 P 2 VALUE 123.45
 DEFINE FLD2 W 3 P 2 VALUE 678.90
 DEFINE FLD3 W 4 P 2 VALUE 1129.59
 JOB INPUT NULL NAME MYPROG
 PRINT REPORT1
 PRINT REPORT2
 STOP
 *
 REPORT REPORT1 SPREAD LINESIZE 65
 TITLE 'S P R E A D EXAMPLE'
 LINE FLD1 FLD2 FLD3
 *
 REPORT REPORT2 NOSPREAD LINESIZE 65
 TITLE 'NOSPREAD EXAMPLE'
 LINE FLD1 FLD2 FLD3

Produce:

 11/19/86 S P R E A D EXAMPLE PAGE 1

 FLD1 FLD2 FLD3
 123.45 678.90 1,129.59

 ..

 11/19/86 NOSPREAD EXAMPLE PAGE 1

 FLD1 FLD2 FLD3
 123.45 678.90 1,129.59

Label Reports
You can use the label report capability of CA-Easytrieve to print mailing labels
and other applications that require inserting variable data in a repetitious format.
A label report is different from a standard report in the following ways:

■ Label reports do not have titles and headings.

■ Multiple labels can be printed side-by-side.

■ Controlled label reports allow for control breaks, but do not automatically
total quantitative fields. Totals, however, can be specified on a SUM
statement and processed in BEFORE-BREAK and AFTER-BREAK
procedures.

Label Reports

 Report Processing 7–16

You can use the label report function whenever a complete logical print page is
to be produced by each PRINT statement. Consider the W-2 form printing
example; print time could be substantially reduced by having 2-up forms. You
can then modify report declaration statements as shown in the following code. A
sample result follows the code.

REPORT LBLS LABELS (ACROSS 2 DOWN 15 SIZE 65 NEWPAGE) SPACE 1
 LINE 01 COL 7 'YOUR COMPANY NAME' COL 33 '903' +
 COL 39 '12-3456789'

 LINE 03 COL 7 'YOUR COMPANY CITY STATE ZIP'
 LINE 10 COL 7 SSN COL 23 YTD-FEDTAX +
 COL 39 YTD-WAGES +
 COL 54 YTD-FICA
 LINE 12 COL 7 EMP-NAME COL 39 YTD-WAGES

 LINE 15 COL 7 EMP-CITY EMP-STATE EMP-ZIP

CONTROL Statement

You can use the CONTROL statement with label reports to truncate a group of
labels. Truncating makes it easy to separate labels after they are printed. The
following exhibit demonstrates how a new label page starts when the control
field changes.
Statements:

 FILE PERSNL FB(150 1800)
 %PERSNL
 FILE SORTWRK FB(150 1800) VIRTUAL
 COPY PERSNL
 SORT PERSNL TO SORTWRK +

 JOB INPUT SORTWRK NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LABELS
 CONTROL ADDR-STATE NEWPAGE

 LINE 02 ADDR-STREET
 LINE 03 ADDR-CITY, ADDR-STATE, ADDR-ZIP

 LINE 02 COL 7 'YOUR COMPANY STREET'

 LINE 14 COL 7 EMP-STREET

 USING (ADDR-STATE, ADDR-ZIP) NAME MYSORT

 LINE 01 NAME

Sequenced Reports

 Report Processing 7–17

Results:

 xxx xxx xxx xxx
 xxx xxx xxx xxx
 xxx xxx xxx xxx

 xxx
 xxx

 (goes to new page when ADDR-STATE changes)

 yyy yyy
 ...

Any labels remaining on a line are left unused. The optional NEWPAGE
parameter causes a top-of-page for the next print line.

Sequenced Reports
Report sequence is controlled either by the order in which PRINT statements
were issued or by the SEQUENCE statement. You can print both standard
reports and label reports in any sequence.

The SEQUENCE function is performed by invoking your installation’s sort
program or, in CICS, on the workstation, or in UNIX, the sort provided with
CA-Easytrieve. The temporary workfile is input to the sort program. When the
sort is complete, the work file data is retrieved and the report is produced.

Only those data items used in the report are sorted. The sorted output is directly
printed from the sort. These attributes combine to make the SEQUENCE facility
of CA-Easytrieve extremely efficient.

CONTROL Reports
The CONTROL statement specifies that a report automatically accumulates and
prints totals of quantitative report information. The report accumulates
information according to the hierarchy indicated on the CONTROL statement.

 xxx

Report definitions that contain SEQUENCE statements cause the report data to
be spooled to a temporary work file upon execution of a PRINT statement. Work
file usage is transparent.

CONTROL Reports

Report Processing 7–18

Terminology

The following terms are used throughout the discussion on control reports:

■ A control field is any field named on a CONTROL statement to establish the
hierarchy of a control report.

■ A control break occurs whenever any field of the control hierarchy changes
value.

■ A total line is a logical line group in a report body which contains control
totals. These control totals can contain subtotal or final values. Total lines
are normally annotated with the value of control fields according to the
SUMCTL parameter of the REPORT statement. This is done by listing the
control fields first on the LINE statement.

■ A detail line is the same line data as in a standard report body line (not a
total line). Control fields on detail lines are printed according to the DTLCTL
parameter of the REPORT statement. The SUMMARY parameter of the
REPORT statement inhibits the printing of detail lines on a control report.

■ Accumulators are system-created fields which contain totals. Accumulators
are created for:

– All fields designated on the SUM statement

– All active file or W storage quantitative fields designated on the line group (LINE
nn) statements, if a SUM statement is not specified. (Quantitative fields are
numeric fields with a decimal point designation of 0 through 18.)

■ SUMFILE data are the contents of control fields and accumulators at each
minor control break.

Data Reference

In general, report statements and procedures can reference any field of an active
file or working storage. (Some report procedures have minor restrictions which
are described with the associated procedure.)

Statements and procedures can directly reference data for detail lines in
non-control reports. When control or total fields are referenced, CA-Easytrieve
automatically adjusts so that SUMFILE data is used. This assures access to the
field actually used in the report. SUMFILE data includes all control fields and
ten-byte (18 digit) packed fields for all accumulators. (See Summary File later in
this chapter.)

CONTROL Reports

 LEVEL = 2

 LEVEL = 3 (FINAL)

Report Processing 7–19

TALLY

TALLY is a system-defined field for control reports. TALLY contains the number
of detail records that comprise a control break. You can use TALLY on a LINE
statement or you can use it in calculations within report procedures. TALLY is
commonly used to determine averages for a control break.

TALLY is a ten-byte packed decimal field with zero decimal places. This
definition is used for calculations contained within report procedures. REPORT
TALLYSIZE defines the number of digits which are printed for TALLY. A
TALLY accumulator is created for each control break level.

LEVEL

LEVEL is a system-defined field provided for control reports. The field is
defined as a two-byte binary field. The value in LEVEL indicates the control
break level and varies from 0 to ‘n + 1’ where:

■ LEVEL = 0 when processing detail lines

■ LEVEL = n for total line processing at each control level

■ LEVEL = n + 1, when processing FINAL totals.

The LEVEL values for fields on the CONTROL statement are illustrated below:
REPORT
 SEQUENCE REGION BRANCH
 CONTROL REGION BRANCH

 LEVEL = 1

CONTROL Reports

 Report Processing 7–20

The following exhibit illustrates the relationship between control fields,
accumulators, and LEVEL:

 SUMFILE data

 control fields accumulators LEVEL

 control control control SUM SUM 1
 field-n .. field-2 field-1 TALLY field-1 ... field-n

 TALLY ... 2

 ...

 TALLY ... n

 SUM SUM
 FINAL TALLY field-1 ... field-n n + 1

 ELSE-IF BREAK-LEVEL = 2. * region is breaking too

 END-PROC

See BREAK-LEVEL, which follows, for an example of testing LEVEL and
BREAK-LEVEL.

BREAK-LEVEL

BREAK-LEVEL is a system-defined field whose value indicates the highest
control break level. The following exhibit illustrates using BREAK-LEVEL to
display an appropriate message in a BEFORE-BREAK procedure:

REPORT RPT
 SEQUENCE REGION BRANCH
 CONTROL REGION BRANCH
 LINE REGION BRANCH NAME PAY-GROSS
 BEFORE-BREAK. PROC
 IF LEVEL = 1 . * processing lowest break
 IF BREAK-LEVEL = 1 . * only branch is breaking
 DISPLAY '*** BRANCH TOTALS'

 DISPLAY '*** BRANCH AND REGION TOTALS'
 ELSE-IF BREAK-LEVEL = 3. * final report totals
 DISPLAY '*** BRANCH, REGION, AND FINAL TOTALS'
 END-IF
 END-IF

CA-Easytrieve invokes the BEFORE-BREAK procedure before printing summary
lines. See Report Procedures later in this chapter for more information.

CONTROL Reports

Report Processing 7–21

In the above example, LEVEL and BREAK-LEVEL fields are used to determine
the appropriate message to be displayed before the summary lines are printed.
Testing for LEVEL 1 tells us that CA-Easytrieve is going to print the first
summary line next (BRANCH totals). When BREAK-LEVEL is 1, only the
BRANCH field is breaking. Therefore, we want to display a message stating this.
When BREAK-LEVEL is 2, the REGION field is breaking. This causes both
BRANCH and REGION summary lines to print. When BREAK-LEVEL is 3,
CA-Easytrieve prints BRANCH, REGION, and final summary lines.

Note: (Mainframe and UNIX only) An alternative to testing LEVEL and
BREAK-LEVEL is to use IF field-name BREAK and IF field-name
HIGHEST-BREAK processing. Using the previous example, you can code the
following for the same result:

REPORT RPT
 SEQUENCE REGION BRANCH
 CONTROL REGION BRANCH
 LINE REGION BRANCH NAME PAY-GROSS
 BEFORE-BREAK. PROC
 IF BRANCH BREAK . * processing lowest break
 IF BRANCH HIGHEST-BREAK . * only branch is breaking
 DISPLAY '*** BRANCH TOTALS ***'
 ELSE-IF REGION HIGHEST-BREAK . * region is breaking also
 DISPLAY '*** BRANCH AND REGION TOTALS ***'
 ELSE-IF REGION HIGHEST-BREAK . * final report totals
 DISPLAY '*** BRANCH, REGION AND FINAL TOTALS ***'
 END-IF
 END-IF
 END-PROC

Control Report Contents

The report body contains the only difference between standard and control
report contents. Control reports print total lines in addition to detail lines
(optional). The following examples use two control fields (STATE and ZIP)
which contain data that is two and five bytes long, respectively, and one
quantitative field (PAY-NET) which contains numeric data.

The standard control report contains standard report data plus total data. The
following example illustrates the report body of such a report. Detail and total
lines are shown, with the totals illustrating the hierarchy of the report data.

Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET

CONTROL Reports

 BROWNIL6007667890

Report Processing 7–22

Data:

 BROWNIL6007612345

 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Results:

 Line
 Description Control Fields Accumulator

 LAST-NAME STATE ZIP PAY-NET

 detail BROWN IL 60076 678.90
 detail BROWN 123.45
 ZIP total IL 60076 802.35

 detail JONES IL 60077 543.21
 detail JONES 98.76
 ZIP total IL 60077 641.97

 STATE total IL 1444.32

 detail SMITH TX 75218 666.66
 detail SMITH 111.11
 ZIP total TX 75218 777.77

 STATE total TX 777.77

 FINAL total 2222.09

The same report without the detail lines is a SUMMARY report. For example:
Statements:

 FILE FILE1
 LAST-NAME 1 20 A
 STATE 21 2 A
 ZIP 23 5 N
 PAY-NET 28 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 SUMMARY +
 DTLCTL NONE
 SEQUENCE STATE ZIP
 CONTROL STATE ZIP
 LINE 01 STATE ZIP PAY-NET

Data:

 BROWN IL6007612345
 BROWN IL6007667890
 JONES IL6007709876
 JONES IL6007754321
 SMITH TX7521811111
 SMITH TX7521866666

Results:

 Line
 Description Control Fields Accumulator

 STATE ZIP PAY-NET

 ZIP total IL 60076 802.35
 ZIP total IL 60077 641.97

CONTROL Reports

 Report Processing 7–23

 STATE total IL 1444.32

 ZIP total TX 75218 777.77
 STATE total TX 777.77

 FINAL total 2222.09

This report contains only control totals because SUMMARY was specified on the
REPORT statement.

DTLCTL

The REPORT statement DTLCTL parameter establishes the method for printing
control field values on detail lines by using the subparameters EVERY, FIRST,
and NONE. The following is an example program using DTLCTL options:
Statements:

FILE FILE1
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*

 LINE 01 LAST-NAME STATE ZIP PAY-NET

 BROWNIL6007667890

REPORT REPORT1 LINESIZE 65 +
 DTLCTL option (* with option being EVERY, FIRST, or NONE *)
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP

Data:

 BROWNIL6007612345

 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

The next three exhibits show the results of using each of the DTLCTL options:
 EVERY -- prints all control fields on every detail line.

 Line
 Description Control Fields Accumulator

 LAST-NAME STATE ZIP PAY-NET

 detail BROWN IL 60076 678.90
 detail BROWN IL 60076 123.45
 ZIP total IL 60076 802.35

 detail JONES IL 60077 543.21
 detail JONES IL 60077 98.76
 ZIP total IL 60077 641.97

 STATE total IL 1444.32

 detail SMITH TX 75218 666.66
 detail SMITH TX 75218 111.11
 ZIP total TX 75218 777.77

 STATE total TX 777.77

 FINAL total 2222.09

CONTROL Reports

 Report Processing 7–24

 FIRST -- prints all control fields on the first detail line at
 top-of-page and after each break.

 Line
Description Control Fields Accumulator

 LAST-NAME STATE ZIP PAY-NET

detail BROWN IL 60076 678.90
detail BROWN 123.45
ZIP total IL 60076 802.35

detail JONES IL 60077 543.21
detail JONES 98.76
ZIP total IL 60077 641.97

STATE total IL 1444.32

STATE total TX 777.77

detail SMITH TX 75218 666.66
detail SMITH 111.11
ZIP total TX 75218 777.77

FINAL total 2222.09

 NONE -- prints no control fields on detail lines.

 Line
Description Control Fields Accumulator

 LAST-NAME STATE ZIP PAY-NET

detail BROWN 678.90
detail BROWN 123.45
ZIP total IL 60076 802.35

detail JONES 543.21
detail JONES 98.76
ZIP total IL 60077 641.97

STATE total IL 1444.32

detail SMITH 666.66
detail SMITH 111.11
ZIP total TX 75218 777.77

STATE total TX 777.77

FINAL total 2222.09

SUMCTL

The SUMCTL parameter of the REPORT statement establishes the method for
printing control field values on total lines of a control report by using the
subparameters ALL, HIAR, NONE, and TAG. (The DTLCOPY subparameter
controls all non-control non-total values on total lines.) The following shows an
example program using these parameters:
Statements:

 STATE 6 2 A

 JOB INPUT FILE1 NAME MYPROG

 FILE FILE1
 LAST-NAME 1 5 A

 ZIP 8 5 N
 PAY-NET 13 5 N 2

CONTROL Reports

 Report Processing 7–25

 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +

 SEQUENCE STATE ZIP LAST-NAME

 BROWNIL6007612345

 JONESIL6007754321

 SUMCTL option
 (* with option being ALL, HIAR, NONE, or TAG *)

 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET

Data:

 BROWNIL6007667890
 JONESIL6007709876

 SMITHTX7521811111
 SMITHTX7521866666

The next three examples illustrate the results of using All, HIAR, and NONE.

ALL -- prints all control fields on every total line.

 Line
Description Control Fields Accumulator

 T-NAME STATE ZIP PAY-NET

 ROWN 123.45

 ONES IL 60077 543.21

 MITH TX 75218 666.66

FINAL total TX 75218 2222.09

 HIAR -- prints control fields in hierarchical order on total lines.

 LAS

 B

 J

 S

 BROWN IL 60076 678.90

ZIP total IL 60076 802.35

 JONES 98.76
ZIP total IL 60077 641.97

STATE total IL 60077 1444.32

 SMITH 111.11
ZIP total TX 75218 777.77

STATE total TX 75218 777.77

 Line
Description Control Fields Accumulator

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 678.90
 BROWN 123.45
ZIP total IL 60076 802.35

 JONES IL 60077 543.21
 JONES 98.76
ZIP total IL 60077 641.97

STATE total IL 1444.32

 SMITH TX 75218 666.66
 SMITH 111.11
ZIP total TX 75218 777.77

STATE total TX 777.77

FINAL total 2222.09

CONTROL Reports

 Report Processing 7–26

 NONE -- prints no control fields on total lines.

 Line
Description Control Fields Accumulator

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 678.90
 BROWN 123.45
ZIP total 802.35

 JONES IL 60077 543.21
 JONES 98.76
ZIP total 641.97

STATE total 1444.32

 SMITH TX 75218 666.66
 SMITH 111.11
ZIP total 777.77

STATE total 777.77

FINAL total 2222.09

TAG

Use the TAG subparameter of SUMCTL to annotate the total line with a
description of the total values being printed. The TAG subparameter of
SUMCTL creates a line area on the left side of the total line. This LINE 01 item is
governed by the following rules:

■ The length of the area is the length of the longest control-field-name plus
seven.

■ TOTAL preceded by the control field name is the annotation for control
break totals.

■ FINAL TOTAL is the annotation for the final totals line.

■ The line item area is positioned at the left margin of the report.

The following example illustrates how tags appear on a report.
Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 SUMCTL TAG
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET

Data:

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876

CONTROL Reports

Report Processing 7–27

 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Results:

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 678.90
 BROWN 123.45
 ZIP TOTAL 802.35

 JONES IL 60077 543.21
 JONES 98.76
 ZIP TOTAL 641.97

 STATE TOTAL 1444.32

 SMITH TX 75218 666.66
 SMITH 111.11
 ZIP TOTAL 777.77

 STATE TOTAL 777.77

 FINAL TOTAL 2222.09

DTLCOPY

When printing control reports (particularly a summary report) you may want to
include detail information in total lines (normally, CA-Easytrieve prints only
control field values and associated totals on total lines). The DTLCOPY
subparameter of SUMCTL causes detail field contents (values just prior to the
break) to be printed on total lines for LEVEL 1 breaks. The following exhibit
illustrates the use of DTLCOPY to print the contents of the LAST-NAME detail
field on the lowest level total line (ZIP).
Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP

Data:

 BROWNIL6007667890

 SMITHTX7521811111

Results:

 LINE 01 LAST-NAME STATE ZIP PAY-NET

 BROWNIL6007612345

 JONESIL6007709876
 JONESIL6007754321

 SMITHTX7521866666

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 802.35
 JONES IL 60077 641.97

CONTROL Reports

Report Processing 7–28

 IL 1444.32
 SMITH TX 75218 777.77
 TX 777.77

 2222.09

DTLCOPYALL

DTLCOPYALL has the same effect as DTLCOPY except that the detail fields are
printed for all control break totals. The following exhibit illustrates the use of
DTLCOPYALL to print LAST-NAME on all total lines.
Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPYALL
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET

Data:

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Results:

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 802.35
 JONES IL 60077 641.35
 JONES IL 1444.32
 SMITH TX 75218 777.77
 SMITH TX 777.77

 SMITH TX 2222.09

Control Field Values in Titles

Occasionally, you may want to print control field values in report titles. For
example, you can use control field annotation within the title of a report to
emphasize the structure of an organization, particularly at its higher levels. This
technique uses only basic report facilities, and does not require special
parameters. The following example shows field annotation within a report title.
Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2

CONTROL Reports

Report Processing 7–29

 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET

Data:

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Results:

 11/23/86 REPORT FOR THE STATE OF IL PAGE 1

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 802.35
 JONES IL 60077 641.97
 IL 1444.32

 11/23/86 REPORT FOR THE STATE OF TX PAGE 2

 LAST-NAME STATE ZIP PAY-NET

 SMITH TX 75218 777.77

Overflow of Total Values

 STATE 6 2 A

 *

 PRINT REPORT1

 REPORT REPORT1 SUMSPACE 0 +

 CONTROL STATE NEWPAGE ZIP

 TX 777.77
 2222.09

In control reports, line items for totaled fields define an area not only for detail
lines, but also for corresponding total lines. Since totals are normally larger than
the detail, you need a means of expanding the item area. Without this expansion,
the item area might be too small to contain the totals. If your report contains this
overflow condition, CA-Easytrieve automatically depicts it by setting the
right-most character of the item area byte to an * (asterisk), as the following
example illustrates:
Statements:

 FILE FILE1
 LAST-NAME 1 5 A

 ZIP 8 5 N
 PAY-NET 13 5 N 2

 JOB INPUT FILE1 NAME MYPROG
 *

 *

 SUMCTL HIAR LINESIZE 65
 SEQUENCE STATE ZIP LAST-NAME

 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET

Data:

CONTROL Reports

Report Processing 7–30

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Results:

 2/11/87 REPORT FOR THE STATE OF IL PAGE 1

 LAST-NAME STATE ZIP PAY-NET
 BROWN IL 60076 678.90
 BROWN 123.45
 IL 60076 802.35

 JONES IL 60077 543.21
 JONES 98.76
 IL 60077 641.97

 IL 444.32*

 2/11/87 REPORT FOR THE STATE OF TX PAGE 2

 LAST-NAME STATE ZIP PAY-NET
 SMITH TX 75218 666.66
 SMITH 111.11
 TX 75218 777.77

 TX 777.77

 222.09*

Controlling Overflow

You can control overflow using two methods, as illustrated by the following
examples:

1. Line Item Expansion - Ensure that the detail field being totaled is large enough
to absorb the totals. The example below illustrates how overflow can be
prevented by effectively expanding the line item to six-digit positions.

Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 T-PAY-NET W 6 N 2 HEADING ('PAY-NET')
 *
 JOB INPUT FILE1 NAME MYPROG
 T-PAY-NET = PAY-NET
 PRINT REPORT1
 *
 REPORT REPORT1 SUMSPACE 0 +
 SUMCTL HIAR LINESIZE 65
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP T-PAY-NET

Data:

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876

CONTROL Reports

Report Processing 7–31

 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Results:

 2/11/87 REPORT FOR THE STATE OF IL PAGE 1

 LAST-NAME STATE ZIP PAY-NET
 BROWN IL 60076 678.90
 BROWN 123.45
 IL 60076 802.35

 JONES IL 60077 543.21
 JONES 98.76
 IL 60077 641.97

 IL 1,444.32

 2/11/87 REPORT FOR THE STATE OF TX PAGE 2

 LAST-NAME STATE ZIP PAY-NET
 SMITH TX 75218 666.66
 SMITH 111.11
 TX 75218 777.77

 TX 777.77

 2,222.09

2. Item Area Expansion - Expand the item area by using the SUMSPACE
parameter of the REPORT statement. The value of SUMSPACE is added to
the length of detail fields to determine an adjusted line item length for the
total field. The resulting line item expansion is illustrated in the next
example as a print edit mask.

Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2 .* (999.99- mask without SUMSPACE specified)
 *
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 SUMSPACE 1 +
 SUMCTL HIAR LINESIZE 65
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET

Data:

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Results:

2/11/87 REPORT FOR THE STATE OF IL PAGE 1

 LAST-NAME STATE ZIP PAY-NET
 BROWN IL 60076 678.90
 BROWN 123.45
 IL 60076 802.35

CONTROL Reports

Report Processing 7–32

 JONES IL 60077 543.21
 JONES 98.76
 IL 60077 641.97

 IL 1444.32 (9999.99- mask
 with SUMSPACE 1)

2/11/87 REPORT FOR THE STATE OF TX PAGE 2

 LAST-NAME STATE ZIP PAY-NET
 SMITH TX 75218 666.66
 SMITH 111.11
 TX 75218 777.77

 TX 777.77

 2222.09 (9999.99- mask
 with SUMSPACE 1)

Summary File

A summary file, which contains all the control and summed field values at each
minor break, can be optionally generated during processing of a control report.
JOB activities in your program can subsequently process the summary file to
provide reports not otherwise available via the standard report facilities of
CA-Easytrieve.

You can produce a summary file by defining the file in the library and then
referencing it with the REPORT SUMFILE parameter.

The FILE statement must contain the file name, record format, logical record
length, and blocksize. When you just want to retain the file for the duration of
the program, you can specify the file as an unblocked VIRTUAL file. The record
format can be any standard format. The record length must be large enough to
contain the data which is output. Blocksize should be appropriate for the
specified format and record length.

The summary file record contains three parts:

1. Control field area - a concatenation of the control fields specified on the
CONTROL statement. The sum of the lengths of the control fields defines
the length of the control field area.

2. TALLY - a ten-byte field.

3. Summed field area - a concatenation of summed fields to form the remaining
segment of the summary file record. Each summed field is a ten-byte packed
field with the same decimal specification as the source field.

Therefore, the summary file record length is the sum of the control field area
length, plus 10 bytes for TALLY, plus 10 times the number of summed fields.

Report Procedures

Report Processing 7–33

SUMFILE Example

The following example illustrates the use of SUMFILE data. The values of SFILE
are listed in order of ascending magnitude within SFILE-STATE, without
reprocessing the original data.
Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 FILE SFILE F(30)
 SFILE-STATE 1 2 A
 SFILE-ZIP 3 5 N
 SFILE-TALLY 8 10 P 0
 SFILE-PAY-NET 18 10 P 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMFILE SFILE SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP

 *

 SMITHTX7521811111

 TX 75218 2 777.77

 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET

 JOB INPUT SFILE NAME MYPROG2
 PRINT REPORT2
 *
 REPORT REPORT2 NOADJUST
 SEQUENCE SFILE-STATE SFILE-PAY-NET
 LINE 01 SFILE-STATE SFILE-ZIP +
 SFILE-TALLY SFILE-PAY-NET

 Data:

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321

 SMITHTX7521866666

Results:

SFILE-STATE SFILE-ZIP SFILE-TALLY SFILE-PAY-NET

 IL 60077 2 641.97
 IL 60076 2 802.35

Report Procedures
Although REPORT statements meet most of all report requirements, some
reports depend upon special data manipulation. Report procedures are routines
provided by CA-Easytrieve to satisfy this requirement.

Code report procedures at the end of their associated report. The report
processor invokes special-name procedures (such as BEFORE-LINE or
AFTER-BREAK) as required.

Report Procedures

Report Processing 7–34

Special-name Report Procedures

Report procedures are invoked at specific points during the report processing
activity. You can determine the specific point in time based on the name of the
procedure. The exhibit that follows illustrates the use of the procedures listed
below:

■ REPORT-INPUT - final screening of report input data. Report data can be
selected and/or modified. This procedure is invoked after the PRINT
statement is executed or as records are read back from the work file (if used).

■ BEFORE-LINE - detail line has not been created or printed. It is typically
used to modify the contents of fields or annotate the body of the report
before line printing.

■ AFTER-LINE - detail line has been printed. It is typically used to annotate
the body of the report after each line is printed.

■ BEFORE-BREAK - modification of totals before total line printing. It is
typically used to calculate averages on control reports.

■ AFTER-BREAK - total line has been printed. It is typically used to produce
special annotation following total lines on control reports.

■ ENDPAGE - at end-of-page body based on pagesize. This procedure can be
used to produce footers on each page of the report.

■ TERMINATION - at end-of-report. This procedure produces end-of-report
information such as hash or other control totals.

Report Procedures

Report Processing 7–35

 (REPORT-INPUT - caused by the first PRINT statement)

 5/18/84 PROCEDURE USAGE PAGE 1

 STATE ZIP PAY-NET

 (BEFORE-LINE)
 detail IL 60076 678.90
 (AFTER-LINE)

 (REPORT-INPUT - caused by the second PRINT statement)
 (BEFORE-LINE)
 detail IL 60076 123.45
 (AFTER-LINE)

 (REPORT-INPUT - caused by the third PRINT statement)
 (BEFORE-BREAK)
 total IL 60076 802.35
 (AFTER-BREAK

 (BEFORE-LINE)
 detail IL 60077 543.21
 (AFTER-LINE)
 (REPORT-INPUT - caused by the fourth PRINT statement)

 (BEFORE-LINE)
 detail IL 60077 98.76
 (AFTER-LINE)

 (REPORT-INPUT - caused by the fifth PRINT statement)
 (BEFORE-BREAK)
 total IL 60077 641.97
 (AFTER-BREAK)

 (BEFORE-BREAK)
 total IL 1444.32
 (AFTER-BREAK)
 ...
 ...
 (ENDPAGE)

Coding Techniques

Coding report procedures is the same as coding procedures within JOB activities,
with the following exceptions:

■ You cannot use the following input/output generating statements:

DELETE FETCH
GET INSERT
POINT PRINT
PUT READ
SELECT (SQL) SQL
UPDATE WRITE

■ You cannot use the STOP, TRANSFER, or GOTO JOB statements.

■ You cannot PERFORM other procedures from within report procedures.

■ Use the DISPLAY statement to perform special report annotations. Use of
DISPLAY requires the following extra considerations:

– You cannot code the DISPLAY statement’s display-file-name parameter.
DISPLAY is only to the associated report.

Report Procedures

Report Processing 7–36

– You cannot code the HEX parameter of DISPLAY.

– DISPLAY lines are counted and included in the end-of-page
determination. DISPLAY statements only cause page breaks when the
line count exceeds the display-page-size REPORT parameter or DISPLAY
TITLE or NOTITLE is used.

– With display-page-size specified, using DISPLAY in a BEFORE-LINE
procedure could result in a page overflow by one line.

Field Reference

In report procedures, you can reference any field contained in an active file or in
working storage. When control or total fields are referenced, CA-Easytrieve
automatically adjusts so that SUMFILE data is used. This assures access to the
field actually used in the report.

Static Working Storage

Fields contained in S storage exhibit unique properties during report processing.
S fields are stored in a static working storage area and are not copied onto report
work files. All references to S fields occur at the time the report is actually
formatted and printed. Remember, the format and print operation can occur at
one of two different times; either immediately upon execution of the PRINT
statement or after the processing of work files. With this in mind, you should
use S storage fields for:

■ Temporary work fields for report procedures

■ Line annotations controlled from report procedures

■ Grand total values from which you can calculate percentages.

The following example illustrates the use of S fields versus W fields in a report
(spooled report):
Statements:

 FILE FILEA
 INPUT-FIELD 1 5 A
 SFLD-RECORD-COUNT S 2 N
 WFLD-RECORD-COUNT W 2 N
 JOB INPUT FILEA
 SFLD-RECORD-COUNT = RECORD-COUNT
 WFLD-RECORD-COUNT = RECORD-COUNT
 PRINT RPT
 REPORT RPT NOADJUST
 SEQUENCE INPUT-FIELD
 LINE INPUT-FIELD SFLD-RECORD-COUNT WFLD-RECORD-COUNT

Data:

 TESTA
 TESTB
 TESTC

Report Procedures

Report Processing 7–37

Results:

 INPUT-FIELD SFLD-RECORD-COUNT WFLD-RECORD-COUNT
 TESTA 03 01
 TESTB 03 02
 TESTC 03 03

The SEQUENCE statement causes the report information to be copied to the
report work file when the PRINT statement is executed. The format and print
operation is performed when the JOB activity completes. Remember, all
references to S fields occur when the actual print and format takes place. Thus,
the value of SFLD-RECORD-COUNT on the report is always 3.
WFLD-RECORD-COUNT is taken from the report work record and so maintains
the value it had at the execution of the PRINT statement.

The same program with the SEQUENCE statement removed produces quite
different results as illustrated below in the non-spooled report:
INPUT-FIELD SFLD-RECORD-COUNT WFLD-RECORD-COUNT
 TESTA 01 01
 TESTB 02 02
 TESTC 03 03

In this example, a report work file is not needed. The format and print operation
occur upon execution of the PRINT statement and the value of
SFLD-RECORD-COUNT is captured with each execution of the PRINT
statement.

As seen, in non-spooled reports, there is little difference between S fields and W
fields. The difference lies in how and when spooled reports reference the fields.
It is important to understand when to use S fields and when to use W fields.
Though the report you may be writing is a non-spooled report today, a future
change to your program may cause the report to become spooled. For example,
you might add another report before this one or add a SEQUENCE statement to
this report. Both these conditions cause your non-spooled report to become a
spooled report. If you do not define your working storage fields properly, your
program may produce incorrect output in the future.

REPORT-INPUT

A REPORT-INPUT procedure selects and/or modifies report input data. This
procedure is performed for each PRINT statement (report input). In order to
cause the data to continue into report processing, you must execute a SELECT
statement for the associated input data. In other words, input which is not
SELECTed is bypassed for continued processing.

When the report data has been spooled (because the report was SEQUENCEd or
the printer file was in use), the REPORT-INPUT procedure is invoked as each
spooled record is read to produce this report. This implies that if the report is
sequenced, the REPORT-INPUT procedure is invoked after the sort program
returns the sorted spool record.

Report Procedures

Report Processing 7–38

Although you can code the logic within the JOB activity itself, it is occasionally
desirable to place the logic in a REPORT-INPUT procedure. The next example
illustrates use of the REPORT-INPUT procedure in final report input selection.
Only the first record within each ZIP code is selected.
Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 HOLD-ZIP S 5 N VALUE 00000
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
 *
 REPORT-INPUT. PROC
 IF ZIP NE HOLD-ZIP
 HOLD-ZIP = ZIP
 SELECT
 END-IF
 END-PROC

Data:

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Results:

 11/23/86 REPORT FOR THE STATE OF IL PAGE 1

 LAST-NAME STATE ZIP PAY-NET
 BROWN IL 60076 678.90
 JONES IL 60077 543.21
 IL 1222.11

 11/23/86 REPORT FOR THE STATE OF TX PAGE 2

 LAST-NAME STATE ZIP PAY-NET
 SMITH TX 75218 666.66
 TX 666.66

 1888.77

BEFORE-LINE and AFTER-LINE

A BEFORE-LINE procedure is invoked immediately before, and an AFTER-LINE
procedure immediately following, the printing of each detail line.
BEFORE-LINE procedure is the final chance to modify the data in the detail line
detail line before it is printed.

Report Procedures

Report Processing 7–39

The following example illustrates how an AFTER-LINE procedure can cause
information to be printed following a detail line of a report:
Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 DTLCTL EVERY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET
 *
 AFTER-LINE. PROC
 IF PAY-NET GE 500
 DISPLAY '* EMPLOYEE ' LAST-NAME ' +
 EXCEEDED WEEKLY SALARY GOAL *'
 END-IF
 END-PROC

Data:

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Results:

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 678.90
 * EMPLOYEE BROWN EXCEEDED WEEKLY SALARY GOAL *
 BROWN IL 60076 123.45
 IL 60076 802.35

 JONES IL 60077 543.21
 * EMPLOYEE JONES EXCEEDED WEEKLY SALARY GOAL *
 JONES IL 60077 98.76
 IL 60077 641.97

 IL 1444.32

 SMITH TX 75218 666.66
 * EMPLOYEE SMITH EXCEEDED WEEKLY SALARY GOAL *
 SMITH TX 75218 111.11
 TX 75218 777.77

 TX 777.77

 2222.09

BEFORE-BREAK

A BEFORE-BREAK procedure can be used to calculate percentages and average
totals. These values must be calculated immediately before printing.

Report Procedures

Report Processing 7–40

The grand-total for percentage and average calculations is often maintained in S
storage. TALLY is typically used as the number of items when calculating
averages. The value of LEVEL (a system-defined field) can be used to determine
which control break is being processed. The value of BREAK-LEVEL can be used
to determine the highest level to break.

Consider the percentage calculation in the following example, paying special
attention to when and how PERCENT is calculated:
Statements:

FILE FILE1
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
*
PERCENT W 2 N 2
TOTAL-NET S 8 N 2
*
JOB INPUT FILE1 NAME MYPROG
*
 TOTAL-NET = TOTAL-NET + PAY-NET
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 80 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET PERCENT
*
BEFORE-BREAK. PROC
 PERCENT = PAY-NET * 100 / TOTAL-NET + .005
END-PROC

Data:

BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

Results:

LAST-NAME STATE ZIP PAY-NET PERCENT

 BROWN IL 60076 802.35 36.11
 JONES IL 60077 641.97 28.89
 IL 1444.32 65.00

 SMITH TX 75218 777.77 35.00
 TX 777.77 35.00

 2222.09 100.00

AFTER-BREAK

An AFTER-BREAK procedure can be used to produce special annotation on
control reports. The value of LEVEL (a system-defined field) can be used to
determine which control break is being processed. The value of BREAK-LEVEL
can be used to determine the highest level to break.

Report Procedures

Report Processing 7–41

In the next example, the total line for the control field STATE receives special
annotation:
Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET
 *
 AFTER-BREAK. PROC
 IF LEVEL EQ 2
 DISPLAY 'TOTALS FOR THE STATE OF ' STATE
 END-IF
 END-PROC

Data:

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Produce:

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 802.35
 JONES IL 60077 641.97
 IL 1444.32
 TOTALS FOR THE STATE OF IL

 SMITH TX 75218 777.77
 TX 777.77
 TOTALS FOR THE STATE OF TX
 2222.09

ENDPAGE

An ENDPAGE procedure can be used to produce page footing information. It is
invoked whenever end-of-page is detected. It is typically used to produce page
totals or other annotations, as in the following example of page footer
annotation:
Statements:

FILE FILE1
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY

Report Procedures

Report Processing 7–42

 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
*
ENDPAGE. PROC
 DISPLAY SKIP 2 '* CONFIDENTIAL - FOR INTERNAL USE ONLY *'
 END-PROC

Data:

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Produce:

 ...
 * CONFIDENTIAL - FOR INTERNAL USE ONLY *
..
 ...

TERMINATION

A TERMINATION procedure is invoked at the end of the report. This procedure
can be used to print report footing information, including control totals and
distribution information. The following is an example of report footing:
Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 TOTAL-NET S 8 N 2
 JOB INPUT FILE1 NAME MYPROG
 TOTAL-NET = TOTAL-NET + PAY-NET
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
 *
 TERMINATION. PROC
 DISPLAY NOTITLE
 DISPLAY SKIP 5 TOTAL-NET 'IS THE Y-T-D COMPANY NET PAY'
 DISPLAY SKIP 5 'PLEASE ROUTE THIS REPORT TO CORPORATE OFFICERS'
 END-PROC

Data:

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Routing Printer Output

Report Processing 7–43

Produce:

 ...
..
 2222.09 IS THE Y-T-D COMPANY NET PAY

 PLEASE ROUTE THIS REPORT TO CORPORATE OFFICERS

Routing Printer Output
You can route reports to any printer, terminal, or file. The default destination is
the CA-Easytrieve system output printer, SYSPRINT. (The actual SYSPRINT
destination is set in the Site Options Table. See your system administrator for
more information.) However, since most operating systems support multiple
logical printers (spool files), you can realize significant performance
improvements by routing each output to a different logical printer, if there is no
SEQUENCE specified.

Use the PRINTER parameter of the REPORT statement to route the printed
report. The file named by this parameter corresponds to a library defined file.
The FILE statement used to define the file must have the PRINTER parameter
specified. Unless otherwise designated, the record length of these files defaults
based upon a site option or the REPORT’s LINESIZE. See the “File Processing”
chapter for more information on defining PRINTER files.

A PRINTER file can be directed to one of the following destinations:

■ The originating terminal

■ Another terminal (valid only in CICS)

■ The spooling subsystem of your operating system

■ An external data set.

The destination is determined on the FILE statement for the PRINTER file.

When output is sent back to the originating terminal on the mainframe or on the
workstation, the Report Display Facility is automatically invoked. See Report
Display Facility in the “Report Display Facility” chapter of the
CA-Easytrieve/Online User Guide, or Chapter 5 of the CA-Easytrieve/Workstation
User Guide.

Routing Printer Output

Report Processing 7–44

The following example shows a program that takes advantage of print routing to
multiple logical files:
 FILE PRINTR1 PRINTER F(121)
 FILE PRINTR2 PRINTER F(121)
 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 IF ZIP EQ 60076, 60077
 PRINT REPORT1
 ELSE
 PRINT REPORT2
 END-IF
 *
 REPORT REPORT1 PRINTER PRINTR1 LINESIZE 120 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
 *
 REPORT REPORT2 PRINTER PRINTR2 LINESIZE 120 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET

Each report in the example is routed to a different logical file.

This CA-Easytrieve facility is an efficient way to separate output to different
printer form types such as standard paper, labels, or pre-printed forms.

Reporting to the Terminal

Whenever CA-Easytrieve routes output to the originating terminal on the
mainframe or on the workstation, the following events take place:

1. When CA-Easytrieve opens a PRINTER file, a Virtual File Manager (VFM)
file is substituted for the terminal. Remember that SYSPRINT is the
system-defined PRINTER file.

2. When the file is closed, CA-Easytrieve invokes the Report Display Facility to
enable you to browse the printed output.

3. You can print the report being displayed from the Report Display Facility.
The output is printed to the device specified by your system administrator as
the standard print device.

4. In CA-Easytrieve/Online, runtime errors and any snap dumps produced are
also written to a VFM file for display with the Report Display Facility. When
you request these to be printed, they are printed to the device specified by
your system administrator as the standard error print device. When there is
no terminal associated with the task, errors are also written to the same
device.

Routing Printer Output

Report Processing 7–45

5. The order in which printed output is displayed within the Report Display
Facility is determined by the following rules:

■ Runtime errors are displayed at the point the error occurs, but after any
pending printer output.

■ The contents of PRINTER files are displayed when the PRINTER file is
closed, except for REPORT output and DISPLAY statements in JOB
activities with non-spooled reports.

■ Each PRINTER file is closed during the termination of the activity that
opened it.

■ The system-defined PRINTER file, SYSPRINT, is opened during the
initiation of the program. Therefore, it is closed during termination of
the program. All DISPLAYs to SYSPRINT are displayed last. This does
not include DISPLAY statements within report procedures or within JOB
activities with non-spooled reports.

■ Spooled report output, including any DISPLAYs within report
procedures are always displayed at the termination of the JOB activity.

■ Non-spooled report output, including any DISPLAYs within the report
procedures or the JOB activity, are displayed at the termination of the
JOB activity.

■ If an activity does not produce non-spooled reports, output from
DISPLAYs within the activity are displayed at the end of the activity that
opened the PRINTER file. This is at the end of the program for displays
to SYSPRINT.

■ When a JOB activity terminates, the file’s contents are displayed in the
following order:

– Non-spooled reports are displayed in the order in which they were
defined. These reports are displayed at the time the activity actually
terminates. DISPLAY statement output not associated with a
REPORT is displayed, along with non-spooled report output to the
same printer file.

– Spooled reports are displayed in the order in which they were
defined. These reports are displayed at the time they are despooled.

See the CA-Easytrieve/Online User Guide or the CA-Easytrieve/Workstation User
Guide for more information on the Report Display Facility.

If you instruct CA-Easytrieve to write output to the terminal and there is no
terminal associated with the task, the output is routed directly to the device
specified by your system administrator as the standard print device.

Extended Reporting

Report Processing 7–46

Extended Reporting
On the mainframe, CA-Easytrieve uses the CA-PSI Subsystems Reporting
Environment to produce reports on print devices so that CA-Easytrieve users do
not have to be concerned with environment and device-specific characteristics in
printing operations. The use of CA-PSI Subsystems Reporting Environment
enables printer set definitions to be shared between other Computer Associates
products (such as CA-TELON and CA-Easytrieve/IQ) that use the CA-PSI
Subsystems Reporting Environment.

The Reporting Environment provides support for Impact Dot, Ink-Jet, and
Electro-Photographic printers. This facility interacts with CA-Easytrieve
reporting processing to provide support for additional features allowing
CA-Easytrieve to:

■ Mix multiple different character sets on the same logical print line. For
example, in the same report the extended reporting option can process
EBCDIC fields and literals, and data containing DBCS (Double Byte
Character Set) format codes. Double Byte Character sets represent writing
systems that use more than 256 characters, such as Kanji (Japanese
characters).

■ Process fields and literals belonging to different fonts. For example, in the
same report you can use multiple fonts.

 A font is a complete set of images of characters and symbols having common
characteristics (for example, style, height, width, weight). In a CA-Easytrieve
report, each character within a font must have the same amount of lateral
space. That is, CA-Easytrieve supports only fixed-pitch fonts.

 CA-Easytrieve automatically formats a report compensating for fields and
literals that produce characters of different height and width. CA-Easytrieve
automatically calculates the size of elements on title, heading, detail, and
summary lines.

 The CA-PSI Subsystems printer set definition module (PSIXRPSD) defines
the character widths that CA-Easytrieve uses. The module can define the
widths as either characters per inch (pitch) or a point size where the term
point defines the size of a character as a multiple of 1/72nd of an inch.

■ Support control codes in addition to the ANSI paper control codes.

■ Support printer files that use non-standard record formats, block sizes, and
record lengths.

For detailed information about the CA-PSI Subsystems Reporting Environment,
see the CA-PSI Subsystems Reporting Environment Guide.

In UNIX, CA-Easytrieve provides a subset of the Extended Reporting
environment. See the CA-Easytrieve for UNIX User Guide for details.

Extended Reporting

Report Processing 7–47

Reporting Environment Example

Using the Reporting Environment, you can use multiple print fonts in a report.
This enables you to highlight fields of special significance. The following output
shows you an example of what the Reporting Environment can do. The
CA-Easytrieve program that produced the report is shown immediately
following the output.

 REGION PAY SCALE SUMMARY
 REGION: 1

BRANCH EMPLOYEE GROSS NET
 DEPT NUMBER PAY PAY DEDUCTIONS

01 903 12267 373.60 251.65 121.95
 918 02200 804.64 554.31 250.33
 1,178.24 805.96 372.28

02 943 11473 759.20 547.88 211.32
 935 00370 554.40 340.59 213.81
 1,313.60 888.47 425.13

03 915 02688 146.16 103.43 42.73
 914 11602 344.80 250.89 93.91
 490.96 354.32 136.64

04 917 11931 492.26 355.19 137.07
 911 11357 283.92 215.47 68.45
 932 11467 396.68 259.80 136.63
 911 01963 445.50 356.87 88.63
 1,618.36 1,187.33 431.03

 4,601.16 3,236.08 1,365.08

END OF REGION 1

Program Example

The following CA-Easytrieve program created the previous report. Note the
fields and literals preceded by a pound sign (#) and integer.

FILE FILEA
REGION 1 1 N
BRANCH 2 2 N HEADING (#5 'BRANCH') <
EMP# 9 5 N HEADING ('EMPLOYEE' 'NUMBER')
NAME 17 20 A HEADING ('EMPLOYEE' 'NAME')
STREET 37 20 A
CITY 57 12 A
STATE 69 2 A
ZIP 71 5 N
NET 90 4 P 2 HEADING ('NET' 'PAY')
GROSS 94 4 P 2 HEADING ('GROSS' 'PAY')
DEPT 98 3 N
DEDUCT W 4 P 2 HEADING ('DEDUCTIONS')
JOB INPUT FILEA NAME BASIC
 DEDUCT = GROSS - NET
 PRINT REPORT1
REPORT REPORT1 LINESIZE 130 PAGESIZE 45 SUMCTL NONE
 SEQUENCE REGION BRANCH
 CONTROL REGION NEWPAGE BRANCH
 TITLE 01 #3 'REGION PAY SCALE SUMMARY' <
 TITLE 02 #5 'REGION :' -2 #2 REGION <
 LINE 01 #5 BRANCH DEPT EMP# GROSS NET DEDUCT <
 AFTER-BREAK. PROC
 IF LEVEL = 2

Extended Reporting

Report Processing 7–48

 DISPLAY SKIP 3 COL 20 #5 'END OF REGION ' #5 REGION <
 END-IF
 END-PROC

See REPORT Statement in the CA-Easytrieve Language Reference Guide for
complete syntax.

Printer Support

The CA-PSI Subsystems Reporting Environment supports a variety of printers.

Each printer has its own characteristics, especially with respect to the
identification of the font, the presentation of print records, and the distinction
between character sets. To support each printer’s characteristics, CA-PSI
Subsystems uses a printer set definition module. This module defines the type of
printer that CA-PSI Subsystems supports, and the font codes that the
CA-Easytrieve program supports.

An empty CA-PSI Subsystems printer set definition module (PSIXRPSD) is
provided as part of the normal installation of CA-Easytrieve/ESP. Therefore, the
CA-Easytrieve reporting mechanism uses the default mode of operation.
CA-Easytrieve programs can use the Reporting Environment only after your
systems programmer generates the printer set definition module. For
information on how to generate the module, see the CA-PSI Subsystems Reporting
Environment Guide.

The printer set definition module provides support for special formatted files
(HTML and RTF) and for the following printers:

■ IBM 3800-I, IBM 3800-II

■ IBM 3800-III, IBM 3800-VIII

■ IBM 3820

■ MELCOM 8250, MELCOM 8270, MELCOM 8290

■ MEMOREX 1500/1520

■ IBM 3200

■ XEROX 2700, XEROX 8700, XEROX 9700

■ FACOM 6715D, FACOM 6716D

■ HITACHI 8196

■ TORAY 8500

■ SHOWA INFORMATION SYSTEM SP7, SP8

Sample printer definitions are provided in the EZTXMP PIELIB.

Extended Reporting

Report Processing 7–49

Printer Identification

The PRINTER command in the printer set definition module identifies the type
of printer(s) that the CA-Easytrieve system uses. A unique extended printer
name (ebstring-1) identifies each printer in the module. This name not only
identifies the characteristics of the printer but also enables you to define up to
256 different font codes for use in CA-Easytrieve programs. The font codes cause
fields and literals to be correctly formatted into output lines so that the printer
can print them using the correct font sets.

The extended reporting printer name is a parameter (EXTENDED xrpt-printer) on
the FILE statement of the CA-Easytrieve program. Once you define an extended
reporting printer name on a CA-Easytrieve FILE statement, any output, whether
it is from a report or from the DISPLAY command, directed to that file, is
formatted based on the characteristics defined for that extended reporting
printer.

 JOB INPUT PSIXRPSD module.

The following exhibit illustrates the CA-Easytrieve syntax supported by the
Reporting Environment. Note the EXTENDED keyword on the CA-Easytrieve
FILE statement. This keyword enables you to associate the extended reporting
printer to a CA-Easytrieve printer file. The exhibit also illustrates the use of the
CA-Easytrieve DISPLAY statement within the processing logic of a program to
direct print lines to that printer file, thereby taking advantage of the extended
reporting facilities that the printer provides.

 CA-Easytrieve Coding

 FILE NEWPTR EXTENDED IBM38002 <=== 1. Same name as the
 extended reporting
 printer name in the

 DISPLAY NEWPTR FIELD1 #2 FIELD2 <=== 2. Output a print line
 to a printer file
 associated with an
 extended reporting
 printer. Also
 special use of font
 2 requested.

Font Identification

The next exhibit illustrates the definition of two extended reporting printer
names in the printer set definition module. Both definitions are for an IBM 3800
printer, but a different set of fonts is associated with each printer.

The FILE statement in the previous exhibit illustrated the association of an
extended reporting printer named IBM38002 to a file called NEWPTR. The
DISPLAY statement in previous exhibit illustrates the use of different fonts on
the same print line.

Extended Reporting

 Report Processing 7–50

The fonts used in the previous exhibit are defined for the extended reporting
printer called IBM38002. This definition is illustrated in the following exhibit.
As a result, FIELD1 is output at 10 characters per inch (the default as no override
was coded) and FIELD2 is output using a font of 15 characters per inch. If a field
or literal is to use a different font, then you must precede the field with the
character ‘#’ followed by an integer. This integer defines the number of the font
in the font table of the extended reporting printer that you are using. The entry
must exist for the data type of the field or literal, that is EBCDIC, DBCS, or
MIXED. The DBCS data type defines data associated with a Double Byte
Character Set (DBCS). Use this data type to output characters for languages such
as Japanese, Chinese, Korean, and so on.

 Printer Set Definition Module - PSIXRPSD

 Code this name on Relative
 FILE statement Position of Font
[EXTENDED xrpt-printer] coded as #nnn.

 ebstring-1 FONT TABLE _ EBCDIC DATA
 ---------- ----------
 IBM38001 default 15 cpi
 1. 10 cpi
 2. 12 cpi

 IBM38002 default 10 cpi
 1. 12 cpi
 2. 15 cpi

CA-Easytrieve Printer Definitions

Page Mode Printers

Page mode printers can be addressed by CA-Easytrieve as either absolute
(IBM3800C and IBM3800E) coordinates, or relative (IBM3800D and IBM3800F)
coordinates. Either coordinate scheme produces the same output on the printed
page. Functionally, the IBM3800C and IBM3800D definitions are
interchangeable. IBM3800E and IBM3800F are also interchangeable.

The record and block sizes on the CA-Easytrieve FILE statement should be as
large as possible to get the most advantage of a page mode printer (3800-3 or
3820). Coding a value of U(32760) would be a good value.

To make a USER3801 printer definition, using absolute coordinates for a single
10 pitch font with 6 LPI, code the printer definition as:

Set;
 Printer Name('USER3801') Use(System);
 Page Startpos (0, 0);
 Dataset ASA(No) Record(V , 4096) Concatenate(Yes);
 Defaults Size(1, 1) Form(3168, 2400) Fonts(1);
 SetVerPos Value(X'2BD304D20000') AbsPos (9, 4,B);
 SetHorPos Value(X'2BD304C60000') AbsPos (9, 4,B);
 StartPage Value(X'F10040');
 FormatPage Value(X'5A');
 FormatPage Value(X'0000D3EE9B000000') RecLength(1, 4,B)

Extended Reporting

Report Processing 7–51

 RecNumber(13, 4,B);
 Font Number(1) Width(24.00) Height(40.00) Format(EBCDIC);
 FctHeader Value(X'2BD303F000');
 EndPrinter;
EndSet;
SAVE OBJECT('PSIXRPSD');

With the JCL:
//filename DD SYSOUT=*,CHARS=GS10
FILE filename EXTENDED USER3801 ASA
JOB INPUT NULL
 DISPLAY filename #1 'GS10'
 STOP

To make a USER3802 printer definition, using relative coordinates for a 12 pitch
font with 8 LPI, code the printer definition as:

Set;
 Printer Name('USER3802') Use(System);
 Page Startpos (0, 0);
 Dataset ASA(No) Record(V , 4096)
 Concatenate(Yes);
 Defaults Size(1, 1) Form(3168, 2400) Fonts(1);
 SetVerPos Value(X'2BD304C600002BD304D40000') RelPos (21, 4,B);
 SetHorPos Value(X'2BD304C80000') RelPos (9, 4,B);
 StartPage Value(X'F10040');
 FormatPage Value(X'5A');
 FormatPage Value(X'0000D3EE9B000000') RecLength(1, 4,B)
 RecNumber(13, 4,B);
 Font Number(1) Width(20.00) Height(30.00) Format(EBCDIC);
 FctHeader Value(X'2BD303F000');
 EndPrinter;
EndSet;
SAVE OBJECT('PSIXRPSD');

With the JCL:
//filename DD SYSOUT=*,CHARS=GS12
FILE filename EXTENDED USER3802 ASA
JOB INPUT NULL
 DISPLAY filename #1 'GS12'
 STOP

To make a USER3804 printer definition using relative coordinates for a 15 pitch
font with 8 LPI, code the printer definition as:

Set;
 Printer Name('USER3804') Use(System);
 Page Startpos (0, 0);
 Dataset ASA(No) Record(V , 4096) Concatenate(Yes);
 Defaults Size(1, 1) Form(3168, 2400) Fonts(1);
 SetVerPos Value(X'2BD304C600002BD304D40000') RelPos (21, 4,B);
 SetHorPos Value(X'2BD304C80000') RelPos (9, 4,B);
 StartPage Value(X'F10040');
 FormatPage Value(X'5A');
 FormatPage Value(X'0000D3EE9B000000') RecLength(1, 4,B)
 RecNumber(13, 4,B);
 Font Number(1) Width(16.00) Height(30.00) Format(EBCDIC);
 FctHeader Value(X'2BD303F000');
 EndPrinter;
EndSet;
SAVE OBJECT('PSIXRPSD');

Extended Reporting

Report Processing 7–52

With the JCL:
//filename DD SYSOUT=*,CHARS=GS15
FILE filename EXTENDED USER3804 ASA
JOB INPUT NULL
 DISPLAY filename #1 'GS15'
 STOP

To make a USER3805 printer definition, using relative coordinates for a 15 pitch
font with 10 LPI, code the printer definition as:

Set;
 Printer Name('USER3805') Use(System);
 Page Startpos (0, 0);
 Dataset ASA(No) Record(V , 4096) Concatenate(Yes);
 Defaults Size(1, 1) Form(3168, 2400) Fonts(1);
 SetVerPos Value(X'2BD304C600002BD304D40000') RelPos (21, 4,B);
 SetHorPos Value(X'2BD304C80000') RelPos (9, 4,B);
 StartPage Value(X'F10040');
 FormatPage Value(X'5A');
 FormatPage Value(X'0000D3EE9B000000') RecLength(1, 4,B)
 RecNumber(13, 4,B);
 Font Number(1) Width(16.00) Height(24.00) Format(EBCDIC);
 FctHeader Value(X'2BD303F000');
 EndPrinter;
EndSet;
SAVE OBJECT('PSIXRPSD');

With the JCL:
//filename DD SYSOUT=*,CHARS=GS15
FILE filename EXTENDED USER3805 ASA
JOB INPUT NULL
 DISPLAY filename #1 'GS15'
 STOP

To make a USER3806 printer definition, using relative coordinates for a set of 10,
12, 15 and 10 bold pitch fonts with 8 LPI, code the printer definition as follows.
The default font is 10 pitch:

Set;
 Printer Name('USER3806') Use(System);
 Page Startpos (0, 0);
 Dataset ASA(No) Record(V , 4096) Concatenate(Yes);
 Defaults Size(1, 1) Form(3168, 2400) Fonts(1);
 SetVerPos Value(X'2BD304C600002BD304D40000') RelPos (21, 4,B);
 SetHorPos Value(X'2BD304C80000') RelPos (9, 4,B);
 StartPage Value(X'F10040');
 FormatPage Value(X'5A');
 FormatPage Value(X'0000D3EE9B000000') RecLength(1, 4,B)
 RecNumber(13, 4,B);
 Font Number(1) Width(24.00) Height(30.00) Format(EBCDIC);
 FctHeader Value(X'2BD303F000');
 Font Number(2) Width(20.00) Height(30.00) Format(EBCDIC);
 FctHeader Value(X'2BD303F001');
 Font Number(3) Width(16.00) Height(30.00) Format(EBCDIC);
 FctHeader Value(X'2BD303F002');
 Font Number(4) Width(24.00) Height(30.00) Format(EBCDIC);
 FctHeader Value(X'2BD303F003');
 EndPrinter;
EndSet;
SAVE OBJECT('PSIXRPSD');

With the JCL:
//filename DD SYSOUT=*,CHARS=(GS10,GS12,GS15,GB10)

Extended Reporting

Report Processing 7–53

In the CA-Easytrieve program, #1 (the default, if not specified) refers to font 1
(GS10), #2 refers to font 2 (GS12), #3 refers to font 3 (GS15), and #4 refers to font
4 (GB10).

FILE filename EXTENDED USER3806 ASA
JOB INPUT NULL
 DISPLAY filename #1 'GS10' #2 'GS12' #3 'GS15' #4 'GB10'
 STOP

To make an IBM3820 printer definition, using absolute coordinates for a 15 pitch
EBCDIC font and a 7.5 pitch DBCS font with 8 LPI, code the printer definition as
follows. The default font is 15 pitch EBCDIC and 7.5 pitch DBCS:

Set;
 Printer Name('IBM3820 ') Use(System);
 Page Startpos (0, 0);
 Dataset ASA(No) Record(V , 4096) Concatenate(Yes);
 Defaults Size(1, 1) Form(3168, 2400) DBCS(IBM) Fonts(3, 103, 203);
 SetVerPos Value(X'2BD304D20000') AbsPos (9, 4,B);
 SetHorPos Value(X'2BD304C60000') AbsPos (9, 4,B);
 StartPage Value(X'F10040');
 FormatPage Value(X'5A');
 FormatPage Value(X'0000D3EE9B000000') RecLength(1, 4,B)
 RecNumber(13, 4,B);
 Font Number(3) Width(16.00) Height(30.00) Format(EBCDIC);
 FctHeader Value(X'2BD303F001');
 Font Number(103) Width(32.00) Height(30.00) Format(DBCS);
 FctHeader Value(X'2BD303F002');
 Font Number(203) Format(3, 103);
 EndPrinter;
EndSet;
SAVE OBJECT('PSIXRPSD');

With the JCL:
//filename DD SYSOUT=*,CHARS=(GS15,M32F)

In the CA-Easytrieve program, #3 (the default, if not specified) refers to EBCDIC
font 3 (GS15), #2 refers to DBCS font 103 (M32F). Font 203 is used for mixed
EBCDIC and DBCS characters.

FILE filename EXTENDED IBM3820 ASA
JOB INPUT NULL
 DISPLAY filename #3 'GS15' #103 D'42F142F242F3' +
 #203 X'F1F20E42F342F40FF5F6'
 STOP

CA-Easytrieve drives printers using standard IBM procedures. MVS printer
information can be given using the CHARS parameter on the DD statement as
described in the above examples, or the information can be specified by using the
OUTPUT JCL statement.

For example, you could code the following definition to CA-Easytrieve:
//SYSPRINT DD SYSOUT=A,CHARS=(GS10,GB10)

or if you have a FORMDEF that has CHARS (and any other pertinent
information) you could code:
//OUT1 OUTPUT CLASS=A,FORMDEF=formdef
//SYSPRINT DD OUTPUT=OUT1

Extended Reporting

Report Processing 7–54

VSE printer information can be given using the CHARS and TRC parameters on
the SETPRT statement, or the information can be specified in a Printer-Parameter
Member.

For example, you could code the following definition to CA-Easytrieve:
// ASSGN SYSxxx,cuu
* cuu is the address of the 3800 printer as defined to VSE
// SETPRT SYSxxx,CHARS=(GS10,GS12,GS15),TRC=Y

or if you have a Printer-Parameter Member that contains a PAGEDEF,CHARS
(and any other pertinent information) you could code:
$$ LST CLASS=x,FNO=fnoname,LST=cuu
...
// ASSGN SYSxxx,cuu

Line Compatibility Mode Printers

To make a LINE3801 printer definition, using line compatibility for a set of 10, 12,
and 15 pitch fonts, code the printer definition as follows. The default font is 10
pitch:

Set;
 Printer Name('LINE3801') Use(System);
 Line OverPrint(Merge, 4) Control(Ansi);
 Dataset ASA(Yes) Record(F , 206) Device(Printer) MaxLrecl(206)
 MaxData (204);
 Defaults Size(1) Fonts(1);
 Font Number(1) Width(7.20) Format(EBCDIC);
 OpCode Value(X'F0');
 Font Number(2) Width(6.00) Format(EBCDIC);
 OpCode Value(X'F0');
 Font Number(3) Width(4.80) Format(EBCDIC);
 OpCode Value(X'F0');
 Font Number(4) Width(7.20) Format(EBCDIC);
 OpCode Value(X'F1');
 EndPrinter;
EndSet;
SAVE OBJECT('PSIXRPSD');

With MVS JCL:
//filenme DD SYSOUT=*,CHARS=(GS10,GS12,GS15),DCB=OPTCD=J

With VSE JCL:
// ASSGN SYSxxx,cuu
* cuu is the address of the 3800 printer as defined to VSE
// SETPRT SYSxxx,CHARS=(GS10,GS12,GS15),TRC=Y

In CA-Easytrieve, CHAR GS10 would be referenced by font number 1 (#1). This
is the default font (if no font command is specified). CHAR GS12 would be
referenced by font number 5 (#5). CHAR GS15 would be referenced by font
number 9 (#9).

MVS FILE statement: FILE filenme EXTENDED LINE3801 ASA
VSE FILE statement: FILE filenme EXTENDED LINE3801 SYSxxx
JOB INPUT NULL
 DISPLAY filenme #1 'GS10' #2 'GS12' #3 'GS15' #4 'GB10'
 DISPLAY filenme 'GS10' #2 'GS12' #3 'GS15' #4 'GB10'
 STOP

Extended Reporting

Report Processing 7–55

The above code displays the literal in the respective font.

To make a LINE3802 printer definition, using line compatibility for a set of 12, 15,
and 10 pitch fonts, code the printer definition as follows. The default font is 15
pitch.

Set;
 Printer Name('LINE3802') Use(System);
 Line OverPrint(Merge, 4) Control(Ansi);
 Dataset ASA(Yes) Record(F , 206) Device(Printer) MaxLrecl(206)
 MaxData (204);
 Defaults Size(1) Fonts(6);
 Font Number(2) Width(6.00) Format(EBCDIC);
 OpCode Value(X'F0');
 Font Number(6) Width(4.80) Format(EBCDIC);
 OpCode Value(X'F1');
 Font Number(7) Width(7.20) Format(EBCDIC);
 OpCode Value(X'F2');
 EndPrinter;
EndSet;
SAVE OBJECT('PSIXRPSD');

With MVS JCL:
//filenme DD SYSOUT=*,CHARS=(GS12,GS15,GS10),DCB=OPTCD=J

With VSE JCL:
// ASSGN SYSxxx,cuu
* cuu is the address of the 3800 printer as defined to VSE
// SETPRT SYSxxx,CHARS=(GS12,GS15,GS10),TRC=Y

In CA-Easytrieve, CHAR GS12 would be referenced by font number 2 (#2).
CHAR GS15 would be referenced by font number 6 (#6). This is the default font
(if no font command is specified). CHAR GS10 would be referenced by font
number 7 (#7).

MVS FILE statement: FILE filenme EXTENDED LINE3802 ASA
VSE FILE statement: FILE filenme EXTENDED LINE3802 SYSxxx
JOB INPUT NULL
 DISPLAY filenme #2 'GS12' #6 'GS15' #7 'GS10'
 DISPLAY filenme #2 'GS12' 'GS15' #7 'GS10'
 STOP

The above code displays the literal in the respective font.

XEROX Printers

Assume that you define a PDE, we will call it PDE200, using the following fonts:
 font width approx type
 name (dots) point size face
 L0112A 22 9 1200
 L02BOA 20 9 BOLD
 L03BOA 22 7 BOLD
 L0412A 20 7 1200
 L0512A 30 12 1200
 L05SCA 30 12 SCRIPT

Extended Reporting

Report Processing 7–56

The following CA-Easytrieve printer set definition would be used. As coded
with the DJDE in the FILE-HEADER, this report will print duplex (DUP=YES,
both sides of the paper), and will shift the output on the page (SHI=YES, miss the
holes on the paper):

Set;
 Printer Name('XEROX01') Use(System);
 Line OverPrint(Print, 4) Control(Ansi);
 Dataset ASA(Yes) Record(F , 212);
 Defaults Size(1) Fonts(1);
 FileHeader Value(
 ' DJDE FORMAT=PDE200,FONTINDEX=0,OVERPRINT=PRINT,DATA=(1,211)' +
 ',END;');
 Font Number(1) Width(22.00) Format(EBCDIC);
 OpCode Value(X'F1');
 Font Number(2) Width(20.00) Format(EBCDIC);
 OpCode Value(X'F2');
 Font Number(3) Width(22.00) Format(EBCDIC);
 OpCode Value(X'F3');
 Font Number(4) Width(20.00) Format(EBCDIC);
 OpCode Value(X'F4');
 Font Number(5) Width(30.00) Format(EBCDIC);
 OpCode Value(X'F5');
 Font Number(6) Width(30.00) Format(EBCDIC);
 OpCode Value(X'F6');
 EndPrinter;
EndSet;
SAVE OBJECT('PSIXRPSD');

To actually use this definition, you would code the following CA-Easytrieve
program:

With MVS JCL:
//filenme DD SYSOUT=*

With VSE JCL:
// ASSGN SYSxxx,cuu
* cuu is the address of the 3800 printer as defined to VSE
MVS FILE statement: FILE filenme EXTENDED XEROX01 ASA
VSE FILE statement: FILE filenme EXTENDED XEROX01 SYSxxx
JOB INPUT NULL
 DISPLAY filenme #1 'L0112A'
 DISPLAY filenme #2 'L02BOA'
 DISPLAY filenme #3 'L03BOA'
 DISPLAY filenme #4 'L0412A'
 DISPLAY filenme #5 'L0512A'
 DISPLAY filenme #6 'L05SCA'
 STOP

Chapter

8 Screen Processing

Overview
CA-Easytrieve provides all the facilities necessary to display and receive
information from an online terminal. As with other features, the non-procedural
nature of CA-Easytrieve provides relief from having to deal with many of the
complexities of transaction programming.

Note: Screen processing activities are available only in CA-Easytrieve/Online
and CA-Easytrieve/Workstation.

Basic Structure

You use a SCREEN activity to describe and process a screen display. The
CA-Easytrieve screen processing facility is basically declarative; you only need
to define the format and content of the screen and CA-Easytrieve creates the
necessary instructions to send and receive the screen. There are two sections in a
SCREEN activity.

1. The screen declaration statements that define the contents of the screen.

2. The optional screen procedures that permit you to code procedural logic to
perform file I/O or complex editing of fields displayed on the screen.

The following exhibit illustrates the basic structure of screen processing in an
CA-Easytrieve program. You can define one or more screens for each program.

 CA-Easytrieve Program

 FILE
 (library section)

 SCREEN NAME SCREEN1
 Screen Declaration
 Screen Procedures

 SCREEN NAME SCREEN2
 Screen Declaration
 Screen Procedures

Screen Processing 8–1

Overview

Note: The screen declaration process can be automated using the
CA-Easytrieve/Online Screen Painter. See the CA-Easytrieve/Online User Guide
for complete information.

Screen Format

The CA-Easytrieve screen format is illustrated below. The size of the screen
defaults to the values specified in your site options. These values can be
overridden by the LINESIZE and ROWCOUNT parameters of the SCREEN
statement.

 LINESIZE

 Title Area

 R
 O
 W
 Work Area C
 O
 U
 N
 T
 Message Area
 Function Key Area

Title Area

The title area is an optional area that consists of screen rows designated as titles
by TITLE statements in the screen declaration. Titles normally identify the
screen to the user and are automatically centered at the top of the screen. The
title area cannot be updated by the terminal user.

Work Area

The work area contains the items to be displayed to or received from the
terminal user. The items are specified by ROW statements in the screen
declaration. Repeating groups of rows can be specified with the REPEAT and
END-REPEAT statements.

Message Area

The message area is used to display system and programmer-issued messages to
the terminal user. The default location of the message area is the line just above
the function key display area at the bottom of the screen. You can issue your
own messages using the MESSAGE or SET statement.

8–2 Programmer Guide

Overview

Function Key Area

The optional function key area is used to tell the terminal user which function
keys are active and the action they perform. This area, if used, is always located
on the last line(s) at the bottom of the screen. You use the KEY statement in the
screen declaration to define the function key area.

Screen Borders

Specifying the BORDER parameter on a SCREEN statement reduces the size of
available screen areas to allow space for the border characters. A border reduces
the total screen area by two rows and four columns. For example, if you define a
screen with a border and LINESIZE(80) ROWCOUNT(24), available rows are
from one to 22, and available columns are from one to 76. ROW 1, COLUMN 1
always refers to the first usable display position on the screen.

Screen Example

The following exhibit illustrates the type of screen that can be created with
CA-Easytrieve.

 Employee File Main Menu

 Type an option, then press Enter.

 Option ===> W

 V View employee
 E Edit employee
 D Delete employee
 X Exit

 Please type V, E, D, or X
 F1=Help F3=Exit F12=Cancel

Following is the screen declaration used to create the example screen above:
 SCREEN NAME MAIN-MENU
 TITLE 'Employee File Main Menu'
 ROW 6 COL 10 'Type an option, then press Enter.'
 ROW 8 COL 10 'Option ===>' WS-REPLY VALUE ('V' 'E' 'D' 'X') +
 ERROR 'Please type V, E, D, or X'
 ROW 10 COL 22 'V View employee'
 ROW COL 22 'E Edit employee'
 ROW COL 22 'D Delete employee'
 ROW COL 22 'X Exit'
 KEY F1 NAME 'Help' IMMEDIATE
 KEY F3 NAME 'Exit' EXIT
 KEY F12 NAME 'Cancel' EXIT IMMEDIATE
 KEY ENTER

Screen Processing 8–3

Overview

SCREEN Statement

You define a screen in CA-Easytrieve by coding a SCREEN statement followed
by a series of screen definition statements. You must code the SCREEN
statement first in a screen declaration. The SCREEN statement defines the
characteristics of the screen and activity. See the CA-Easytrieve Language
Reference Guide for complete explanations of SCREEN statement parameters.

Screen Definition Statements

A set of screen definition statements defines every CA-Easytrieve screen. The
statements define the screen format and data content. Screen definition
statements must follow the SCREEN statements and precede any procedures in
the SCREEN activity. The following exhibit illustrates the order that statements
must appear in a SCREEN activity:

 SCREEN ...
Screen { DEFAULT
Definition { KEY
Statements { TITLE
 { ROW/REPEAT
 { INITIATION
 special-named procedures { BEFORE-SCREEN
 { AFTER-SCREEN
 { TERMINATION
 programmer-defined procedures

■ DEFAULT - optionally overrides system-defined screen attributes and
message locations.

■ KEY - defines valid terminal keys for a screen, specifies descriptive text, and
assigns functions to terminal keys.

■ TITLE - defines optional screen title items, their attributes, and their position
on the title row.

■ ROW - defines the contents of a screen row. Item attributes and positioning
are optionally specified.

■ REPEAT - displays arrays on a screen.

See the CA-Easytrieve Language Reference Guide for complete syntax of these
statements.

Screen Items

Screen items include the fields and literals that you want to display to or receive
from the terminal user. Basic rules regarding items on a screen include the
following:

■ Unless directed otherwise, CA-Easytrieve automatically places items for the
same screen row one space apart. You can optionally add to this space or
locate an item at a specific column number.

8–4 Programmer Guide

Overview

■ The space preceding each item contains system information describing the
screen attributes for the item. The attributes contain information that
controls the display of screen items such as color and brightness.
CA-Easytrieve always uses the space preceding each screen item for
attributes.

 Note: The space preceding an item located in the first column of any screen
row is actually located in the last column of the previous screen row. The
space preceding an item located in the first column of the first screen row is
located in the last column of the last screen row.

■ You can override the automatic placement of items by using the COL
parameter. You use COL to specify an explicit screen column number where
the item is placed. The COL parameter specifies the column number where
the data contained in the item is placed.

 Use an offset (+n) to add to the minimum single space used between items
(+1 is the default). The offset applies to the data to be displayed. To add
additional space, use an offset greater than +1. There must always be at least
one space between each item on the screen. Items cannot overlap each other.

■ You can specify screen attributes for each item on the screen. If you do not
specify attributes for each item, default attributes apply. The following
hierarchy is used to determine screen attributes:

– If attributes are not specified for an item, (ATTR parameter on the ROW
or TITLE statement), CA-Easytrieve uses default attributes specified on
the DEFAULT statement at the beginning of the SCREEN declaration.

– If a DEFAULT statement is not coded in the SCREEN activity,
CA-Easytrieve uses attributes set in the site options.

 Attributes can be specified either as one or more keywords or by using a
declared screen attribute. Use of declared attributes provides the ability to
define and name a set of attribute keywords. See Declaring Screen Item
Attributes in “Coding a CA-Easytrieve Program” chapter in this guide, and
DECLARE Statement in the CA-Easytrieve Language Reference Guide for more
information. In addition, screen attributes can be changed dynamically
during program execution using the SET statement. See SET Statement in
the CA-Easytrieve Language Reference Guide.

■ You must ensure that fields used on a screen are in available storage. This
requires that you code WORKAREA on FILE statements for fields used on
the screen where you do not execute an input statement to fill the fields with
data prior to displaying the screen.

 Note: You must know the record length to reserve a WORKAREA.
CA-Easytrieve does not initialize WORKAREAs. Results are unpredictable
if an uninitialized WORKAREA is displayed.

Screen Processing 8–5

Overview

System-Defined Fields

CA-Easytrieve automatically provides the special data fields listed below for
your screens. These fields are stored as part of working storage and are
read-only.

KEY-PRESSED

KEY-PRESSED is a two-byte binary field that contains a value representing the
most recent terminal key pressed by the terminal user.

CA-Easytrieve automatically defines symbolic names that correspond to values
for the most common keys. Only keys with symbolic names can be used on a
KEY statement.

Terminal Key Symbolic Name Constant Value

Unknown 0

Enter ENTER 1

Clear CLEAR 11

PA1 thru PA3 PA1 thru PA3 12 thru 14

PF1 thru PF24 F1 thru F2 21 thru 44

F1 thru F12 F1 thru F12 21 thru 32

Test Request 220

Op ID card Reader 222

Magnetic Slot Reader 223

Trigger Action 224

Structured Field 230

Clear Partition 231

Read Partition 232

No Aid Generated 255

TERM-COLUMNS

TERM-COLUMNS is a two-byte binary field containing the maximum number
of columns the screen supports. You can test TERM-COLUMNS to execute a
SCREEN activity designed specifically for the terminal being used.

8–6 Programmer Guide

Screen Title Area

TERM-ROWS

TERM-ROWS is a two-byte binary field containing the maximum number of
rows the screen supports. You can test TERM-ROWS to execute a SCREEN
activity designed specifically for the terminal being used.

TERM-NAME

TERM-NAME is a 16-byte alphanumeric field containing the terminal
identification. This field is set only in CICS environments.

SYSUSERID

SYSUSERID is a 16-byte alphanumeric field identifying the terminal user. In
CICS, SYSUSERID is copied from the EIB.

Screen Title Area
The title area is the first area on each screen. A screen title is optional but
well-designed screens are usually identified with a title. You specify the screen
title with TITLE statements coded in the SCREEN declaration.

Title Rules

Following are the rules for specifying screen titles:

■ Titles are for display purposes only. You cannot receive data from the
terminal user in a TITLE. (To receive data, use a ROW statement in the
screen work area.)

■ You can specify the screen row number for the title in the TITLE statement.
If you do not specify an explicit row number, the next screen row number is
assigned. The next row number is one higher than the previous TITLE or
ROW statement coded. If no TITLE statement is previously coded, the title is
assigned to the top of the screen.

■ All title row numbers must precede row numbers associated with the screen
work area.

■ You need not code TITLE statements for empty rows between titles. For
example, if you specify titles for rows 1 and 3 of the screen, row 2 is also
considered part of the title area.

■ Title items are automatically centered on the screen based on the LINESIZE
parameter of the SCREEN statement.

Screen Processing 8–7

Screen Title Area

■ All title items without explicit column numbers participate in centering.

■ Multiple items on a title row are automatically separated from each other by
one space. This space contains the screen attributes for the second of the two
items. You can optionally add to this space or locate an item at a specific
column number.

■ You can override the automatic placement of title items by using the COL
parameter. You use COL to specify an explicit screen column number where
the title item is placed. The COL parameter specifies the column number
where the data contained in the item is placed.

 Use an offset (+n) to add to the minimum single space used between items
(+1 is the default). The offset applies to the title to be displayed. To add
additional space, use an offset greater than +1. There must always be the
minimum one space between each item on the screen. Title items cannot
overlap each other.

■ You can specify screen attributes for each title item on the screen. If you do
not specify attributes for each item, default attributes apply. The following
hierarchy is used to determine screen attributes:

– If attributes are not specified for a title item, (ATTR parameter on the
TITLE statement), CA-Easytrieve uses default attributes specified on the
DEFAULT TITLE statement at the beginning of the SCREEN declaration.

– If a DEFAULT TITLE statement is not coded in the SCREEN activity,
CA-Easytrieve uses attributes set in the site options.

 Because titles are not updatable, the following attributes are flagged as
warnings when compiled, and ignored when used:

 CURSOR NUMERIC
 INVISIBLE MUSTFILL
 MUSTENTER TRIGGER
 ALARM

Title Examples

Following are title statement examples and their resulting screen titles.

Default Centering and Attributes

This example illustrates two title rows that are automatically centered on the
screen. The titles are displayed with default screen attributes.
SCREEN NAME SCREEN1
 TITLE 1 'Personnel View Utility'
 TITLE 2 'Acme, Inc.'

 Personnel View Utility
 Acme, Inc.

8–8 Programmer Guide

Screen Work Area

Explicit Locations and Attributes

This example shows titles that contain items that are explicitly located on the title
row using column specification (COL). The company name in the second title
row is displayed bright yellow because the ATTR parameter for the literal is
coded to override the default set of attributes for title items.

SCREEN NAME SCREEN1
 TITLE 1 COL 1 'ViewUtil' 'Personnel View Utility' COL 73 SYSDATE
 TITLE 2 'Acme, Inc.' ATTR (INTENSE YELLOW) COL 73 SYSTIME

ViewUtil Personnel View Utility 07/08/90
 Acme, Inc. 12:32:04

Screen Work Area
The screen work area is built by coding ROW statements in a SCREEN
declaration. Each ROW statement describes the fields and literals to be located
on each row of the screen.

Item Location

The following rules apply to the location of items in the screen work area:

■ You can specify the screen row number in the ROW statement. If you do not
specify a row number, the next screen row number is assigned. The next row
number is one higher than the row number for the previous ROW or TITLE
statement. If no TITLE or ROW statement is previously coded, the row is
assigned to the first line at the top of the screen.

■ All title rows must precede rows associated with the screen work area. This
does not mean that you must code all TITLEs before ROWs. Instead, a row
number explicitly or implicitly defined for a title cannot be greater than any
row number defined for a work area row.

■ You need not code ROW statements for empty rows between rows with
data. You can code ROW statements as placeholders for other ROWs
defined without row-numbers. An empty row is coded with a ROW
statement without any items.

■ Multiple items on a row are automatically separated from each other by one
space. This space contains the screen attributes for the second of the two
items. You can optionally add to this space or locate an item at a specific
column number.

■ You can override the automatic placement of items using the COL
parameter. You use the COL parameter to specify an explicit screen column
number where the item is placed. The COL parameter specifies the column
number where the data contained in the item is placed.

Screen Processing 8–9

Screen Work Area

 Use an offset (+n) to add to the minimum single space used between items
(+1 is the default). The offset applies to the data to be displayed. To add
additional space, use an offset greater than +1. There must always be at least
one space between each item on the screen. Items cannot overlap each other.

■ You can repeat a ROW statement or group of ROW statements within the
REPEAT and END-REPEAT statements to display an array on a screen.

■ You can specify the screen attributes for each item on a work area row. If
you do not specify attributes for each item, default attributes apply as
follows:

– If attributes are not specified for a field (ATTR parameter on the ROW
statement), CA-Easytrieve uses default attributes specified on the
DEFAULT FIELD statement, if coded at the beginning of the SCREEN
declaration.

– If attributes are not specified for a literal (ATTR parameter),
CA-Easytrieve uses default attributes specified on the DEFAULT
LITERAL statement, if coded.

– If DEFAULT statements are not coded in the SCREEN activity,
CA-Easytrieve uses attributes set in site options.

 Because literals and read-only fields are not updatable, the following
attributes are flagged as warnings when compiled and ignored when used:

 CURSOR NUMERIC
 INVISIBLE MUSTFILL
 MUSTENTER TRIGGER
 ALARM

■ Field attributes can be changed during program execution with the SET
statement. See SET Statement in the CA-Easytrieve Language Reference Guide
for more information.

Location Examples

The following example illustrates various ROW statements and their resulting
screen displays.

 SCREEN NAME SCREEN1
 TITLE 1 'Personnel View Utility'
 ROW 3 'Type the following information, then press Enter.'
 ROW 6 COL 10 'Name ' EMPNAME
 ROW 8 COL 10 'Gross Pay . .' GROSS-PAY
 ROW 10 COL 10 'Dept ' DEPT-NO

 Personnel View Utility

 Type the following information, then press Enter.

 Name BERG

 Gross Pay . . 759.20

8–10 Programmer Guide

Formatting an Item for Display

 Dept 943

Attribute Examples

The following example illustrates various ROW statements coded with specific
attributes. The default attribute for fields is changed to protect the data. The
screen attribute for GROSS-PAY is then specified to unprotect data entry in the
field. CA-Easytrieve automatically places the cursor in the first unprotected field
on the screen.

 SCREEN NAME SCREEN1
 DEFAULT FIELD ATTR (PROTECT TURQUOISE)
 TITLE 1 'Personnel View Utility'
 ROW 3 'Type the new gross pay, then press Enter.' ATTR WHITE
 ROW 6 COL 10 'Name ' EMPNAME
 ROW 8 COL 10 'Gross Pay . .' GROSS-PAY ATTR (INTENSE TURQUOISE)
 ROW 10 COL 10 'Dept ' DEPT-NO

 Personnel View Utility

 Type the following information, then press Enter.

 Name BERG

 Gross Pay . . _ 759.20

 Dept 943

Note: When you override the default attribute setting, you must supply all of
the attributes for the item. Attributes are not merged. For example, if the default
attribute is BLUE PROTECT and you specify ATTR TURQ, the field is left
unprotected because you did not also specify PROTECT in the override.

Formatting an Item for Display
You can use the following parameters to customize the display of an item in the
screen work area:

■ FILL

■ JUSTIFY

■ MASK

Screen Processing 8–11

Formatting an Item for Display

Filling an Item for Display

Use the FILL parameter to translate all trailing blanks in a field or literal to a
specific character or nulls. If the field is also an input field, CA-Easytrieve
automatically translates all fill characters to spaces before placing the data back
into the field data area.

Varying length fields with FILL NULL specified do not have trailing nulls
translated to spaces. The first trailing null terminates the varying length field
and sets its length.

Filling with Underscores

The following example illustrates filling a data entry field with underscores to
show the terminal user how much data can be entered. CA-Easytrieve removes
any remaining underscores when the screen is received.

 SCREEN NAME SCREEN1
 TITLE 1 'Personnel View Utility'
 ROW 3 'Change the employee''s name, then press Enter.'
 ROW 6 COL 10 'Name ' EMPNAME FILL '_'

 Personnel View Utility

 Change the employee's name, then press Enter.

 Name BERG________________

Filling with NULLs

The following example illustrates filling a data entry field with nulls in order to
allow the user to insert characters into the field. The 3270 Display Station
requires trailing nulls in a field in order for insertion to work.
 SCREEN NAME SCREEN1
 TITLE 1 'Personnel View Utility'
 ROW 3 'Change the employee''s name, then press Enter.'
 ROW 6 COL 10 'Name ' EMPNAME FILL NULL

The screen the user receives is:

 Personnel View Utility

 Change the employee's name, then press Enter.

 Name BRG

The user can then insert characters into the field to change it to the correct name,
BERG.

8–12 Programmer Guide

Formatting an Item for Display

Justifying a Field’s Contents

CA-Easytrieve normally displays data exactly as it exists in the field as
determined by its definition.

The JUSTIFY RIGHT parameter shifts the data in the display field to the right.
Trailing spaces and nulls are deleted and leading spaces are inserted. The
JUSTIFY LEFT parameter shifts the data in the display field to the left. Leading
spaces and nulls are deleted and trailing spaces are inserted. The following
example illustrates these two parameters.

 SCREEN NAME SCREEN1
 TITLE 1 'Personnel View Utility'
 ROW 3 COL 10 'Name ' EMPNAME
 ROW 4 COL 10 'Name ' EMPNAME JUSTIFY RIGHT
 ROW 6 COL 10 'Gross Pay . .' GROSS-PAY
 ROW 7 COL 10 'Gross Pay . .' GROSS-PAY JUSTIFY LEFT

 Personnel View Utility

 Name BERG
 Name BERG

 Gross Pay . . 759.20
 Gross Pay . . 759.20

Using Edit Masks for Display

CA-Easytrieve automatically applies a mask to numeric fields when displayed.
All numeric fields have a default edit mask. You can override this default with a
mask you define. See DEFINE Statement and MASK Parameter in the
CA-Easytrieve Language Reference Guide for an explanation of the default mask
and how to code your own mask.

When CA-Easytrieve displays a numeric field, it uses the mask associated with
the field (either the default or its override on the DEFINE statement). If you
want to use a mask other than the default or override mask for display upon the
screen, use the MASK parameter on the ROW statement. The mask on the ROW
specifies the mask to be used for this specific occurrence of the field on the
screen. If the field is used more than once on the screen, the mask must be
specified for each occurrence.

You can use a mask identifier to identify a mask for future use. This shortens
coding time when you want to use a particular mask for several fields of the
same size on the screen.

If you have defined a mask for a field on a DEFINE statement and you want to
use the system-defined default mask, code NOMASK on the ROW statement for
the field.

Screen Processing 8–13

Formatting an Item for Display

Mask Example

The following exhibit illustrates masks.
 DEFINE FIELD-WITH-DEFAULT-MASK W 4 P 2 VALUE 1234.56
 DEFINE FIELD-WITH-DEFINED-MASK W 4 P 2 VALUE 1234.56 MASK '$$,$$$.99'
 DEFINE FIELD-WITH-BWZ-MASK W 4 P 2 VALUE 0 MASK BWZ
 SCREEN NAME SCREEN1
 TITLE 1 'Mask Examples'
 ROW 3 'Using Default Mask' FIELD-WITH-DEFAULT-MASK
 ROW 4 'Using Defined Mask' FIELD-WITH-DEFINED-MASK
 ROW 5 'Applying a Mask ' FIELD-WITH-DEFAULT-MASK MASK '**,***.99'
 ROW 6 'Reverting a Mask ' FIELD-WITH-DEFINED-MASK NOMASK
 ROW 7 'BWZ Mask' FIELD-WITH-BWZ-MASK

 Mask Examples

 Using Default Mask 1,234.56
 Using Defined Mask $1,234.56
 Applying a Mask *1,234.56
 Reverting a Mask 1,234.56
 BWZ Mask

Hexadecimal Mask Example

CA-Easytrieve allows you to display data in hexadecimal format. A
hexadecimal mask can be applied to fields of any data type, including
alphanumeric (except for varying length fields). This feature allows you to
display the actual contents of a field in double-digit hexadecimal format. When
used with a screen input field, you can use CA-Easytrieve to enter or modify
data in hexadecimal format. CA-Easytrieve automatically checks each digit for
validity (0 through F) and returns any errors for correction.
 SCREEN NAME SCREEN1
 TITLE 1 'Mask Examples'
 ROW 3 'Name ' EMPNAME MASK HEX
 ROW 5 'Gross Pay . .' GROSS-PAY MASK HEX

 Mask Examples

 Name C2C5D9C740404040404040404040404040404040
 Gross Pay . . 0075920C

Automatic Editing of Input

CA-Easytrieve automatically edits input data with little or no coding required.
CA-Easytrieve performs the following types of edits:

■ Data type validation

■ Upper casing

■ Value checking

■ Mask checking

■ Pattern matching

8–14 Programmer Guide

Formatting an Item for Display

The order in which CA-Easytrieve performs editing is:

1. If UPPERCASE is specified for the field, translate the field to all uppercase
characters.

2. If a PATTERN is specified for the field, edit the data against the pattern. See
PATTERN later in this chapter for details.

3. If a MASK is specified for the field, edit the data against the mask, including
data type validation.

4. If a VALUE is specified for the field, edit the data against the value.

See Setting Errors later in this chapter for information on how you can use the
SET statement to edit input data.

UPPERCASE

You can specify UPPERCASE for fields coded on a ROW statement. When
UPPERCASE is coded, CA-Easytrieve converts data entered on the screen to
uppercase characters as it is received from the terminal. To convert all fields on
the screen to uppercase, code UPPERCASE on the SCREEN statement.

MASK

CA-Easytrieve automatically edits the data entered in a numeric field according
to an edit mask (default or override)..

■ Allow and accept digits, a leading or trailing sign (but not both), and a single
decimal point. Leading signs are + or -. Trailing signs are +, -, or the trailing
string in the mask (for example, CR). Leading and trailing blanks are
accepted and discarded.

■ Align the decimal point when the data is received from the screen.

For example, if you code the following field:
DEFINE NUMFLD W 3 P 2 MASK 'ZZ9.99'

data is actually placed into the field as follows:

If the user types... Then CA-Easytrieve stores:

 1 001 .00

 1.2 001 .20

 .235 000 .24

 CA-Easytrieve automatically rounds the data to fit the field.

Screen Processing 8–15

Formatting an Item for Display

 Decimal alignment is performed only for input. When you display data with
a mask, there is no implied relationship between the mask and the number
of decimal digits in the field.

■ Allow and discard characters that appear in the mask that are displayed
along with the data. For example, commas appearing in a quantitative field
or parentheses and a hyphen appearing in a telephone number are discarded
from the input before the data is stored in the actual field.

 Display characters in the data must occur in the same order they appear in
the mask. The characters, however, are not required to appear in the data.
For example, applying the mask, 99,999.99, against the data, 12345.67 does
not cause an error condition. However, applying the mask, ‘(999) 999-9999’,
against the data, ‘(617 322-2762)’ is in error because the display characters
are out of order.

 Any other characters not appearing in the mask cause an error message to be
displayed to the terminal user. Blanks imbedded in the middle of data that
are not part of the mask also cause an error condition.

■ Allow only numeric data for numeric fields. A blank entry is allowed only
when the mask specifies blank when zero. A field is blank when zero when
the mask is BWZ or contains only Z’s for digits.

■ Fields that use a hexadecimal mask (MASK HEX) have the input data
automatically validated for correct double-digit hexadecimal characters (0
through F). You can display numeric or alphanumeric (except VARYING)
fields with the hexadecimal mask. If MASK HEX is applied to a numeric
field, CA-Easytrieve only edits data for a valid hexadecimal format, not that
data is numerically valid.

PATTERN

PATTERN allows each input character to be edited according to the pattern
specified. A pattern is a sequence of characters that describe the format of the
data in the field. You can use a PATTERN to edit complex combinations of data
types and character sequences. (A MASK is used only for numeric data. If you
use arithmetic on the data, you probably do not want to use a PATTERN.)

You typically use a PATTERN to edit a field that contains a mixture of alphabetic
and numeric characters in a specific sequence.

For example, to specify a part identification that is a five-character alphanumeric
field where the first and last characters must be uppercase alphabetic (U) and the
middle three characters must be numeric digits (D), code:
ROW 'Part ID . . .' PART-ID PATTERN 'UDDDU'

This pattern tells CA-Easytrieve to accept entries such as A123C and reject
entries such as 1A23C.

8–16 Programmer Guide

Formatting an Item for Display

Valid PATTERN Characters

The valid pattern characters and their meanings are listed in the following table.

Character Meaning

A Represents an uppercase or a lowercase letter.

B Represents a single blank.

D Represents a digit.

E Represents an empty string.

L Represents a lowercase letter.

N Represents an uppercase letter or a national character.

U Represents an uppercase letter.

X Represents any character.

“x” Double quotes surrounding a character or a sequence of
characters literally represent the character or the sequence
of characters contained within. The x represents any
character. To literally represent single or double quotes, use
two sets of quotes within the surrounding set of double
quotes (‘““““‘ or ‘“x””x”‘, ‘“‘‘“‘ or ‘“x’’x”‘).

blank Blanks (unless contained in double quotes) serve as
delimiters but are otherwise ignored. They can be inserted
into the pattern to increase readability.

() Represents grouping to control the precedence of operators.

 or | or , Represents a choice between alternatives.

(m) or (m..n)

or (m..*)

or (*)

or *

Represents the repetition of the preceding pattern
expression. The m and n represent numbers and m must be
less than n. A single number within the parentheses
indicates the exact number of repetitions. (m..n) represents
a range of repetitions, minimum to maximum. An asterisk
in a range, (m..*), represents an infinite maximum. An
asterisk by itself, (*) or *, represents a range from 0 to
infinity.

or /-/ Represents the remove (or toss) operation. This operation
applies only to a single character set at a time and must
immediately follow the character set in the pattern. This
operation removes from the data the character that matched
the character set.

+ Represents character set addition to form another character
set.

Screen Processing 8–17

Formatting an Item for Display

Character Meaning

- Represents character set difference to form another
character set.

concatenation Concatenation is implied by proximity. For example,
DDDU means 3 digits followed by an uppercase letter.

The precedence of operators from highest to lowest:
 Grouping: () and ""
 Set Construction: + and -
 Actions: #
 Repetition: (n) (m..n) (m..*) (*)
 Concatenation: proximity
 Choice: |

The edit pattern is evaluated from left to right (that is, the data from the screen is
processed from left to right). Patterns examine only one character at a time.
They do not look ahead and they do not back track.

Building Patterns

The steps for building a pattern are:

Step 1: Analyze your requirements.

Step 2: Determine the order in which you expect users to key characters. Use
concatenation to describe the order.

Step 3: Determine how to describe which characters you want to allow in each
position in the order.

Step 4: If there is more than one order, use the choice operator to separate the
orders.

Step 5: If, within an order, you expect a character or a sequence of characters to
be repeated, use an appropriate repetition operator.

Some examples of these steps follow.

Building a Zip Code Pattern

If you have a field which requires that 5 and only 5 digits be keyed into a field,
such as a zip code:

Step 1: The field must have only 5 digits.

8–18 Programmer Guide

Formatting an Item for Display

Step 2: The pattern can best be described by:

■ Accept 0 through 9 for position 1.

■ Accept 0 through 9 for position 2.

■ Accept 0 through 9 for position 3.

■ Accept 0 through 9 for position 4.

■ Accept 0 through 9 for position 5.

Step 3: The best pattern character for each position is D, since D represents the
character set of digits. The pattern becomes: DDDDD.

Step 4: Because there is only 1 order expected for this field, Step 4 does not
apply.

Step 5: Because D repeats 5 times, the pattern can be D(5). In this case, the
application of this step is not required. CA-Easytrieve internally generates the
same for DDDDD and D(5). You can use either pattern.

Building a Name Pattern

If you have a field that represents a first name:

Step 1: Analyze your requirements:

■ All blanks are acceptable.

■ If a name is keyed, the first character must be uppercase and the remaining
characters must be lowercase.

■ If a name is keyed, there can be no leading blanks.

■ If a name is keyed, trailing blanks are acceptable.

■ If only an initial is keyed, it must be uppercase and it must be followed by a
period. The remainder of the field must be blank.

■ If an initial is keyed, there can be no leading blanks.

Step 2: There are 3 possible orders for how the characters for this field can be
keyed:

■ The first order is all blanks (requirement 1).

■ The second order is an uppercase character followed by one or more
lowercase characters followed by 0 or more blanks (requirements 2, 3, and 4).

■ The third order is an uppercase character followed by a period followed by
blanks (requirements 5 and 6).

Steps 3, 4, and 5: The part of the pattern which corresponds to the first order is a
repetition of B, since B represents blanks.

Screen Processing 8–19

Formatting an Item for Display

If the field is 10 characters long, one way to specify this order is B(10) or
BBBBBBBBBB. A better way to specify this order is B*. B* means that an infinite
number of blanks can be accepted. Since the field is only 10 bytes long, there can
be at most 10 blanks to accept. The B* generates a much smaller internal
representation, and also adapts better to changes in the size of the field.

The part of the pattern which corresponds to the second order is:

■ A U for the uppercase character

■ A repetition of L’s for the lowercase characters

■ A repetition of B’s for the trailing blanks.

If the field is 10 characters long, there can be 1 through 9 lowercase letters. One
way to specify the repetition is L(1..9), but a better way is to use L(1..*) since the
length of the field enforces a practical limit. For the repetition of blanks, use B*
instead of B(0..8). The part of the pattern for the second order is UL(1..*) B*.
(Blanks imbedded in patterns are ignored.)

The part of the pattern which corresponds to the third order is:

■ A U for the uppercase character

■ A “.” for the period

■ A repetition of B’s for the blanks.

Although there is always the same number of blanks, use B* to describe the
trailing blanks in the order. B(*) produces a much smaller internal
representation and is also more flexible. The part of the pattern for the third
order is U “.” B*.

Combining the parts into a single pattern results in:
'(B*) | (U L(1..*) B*) | (U "." B*)'

Character Sets

A pattern represents the order of character sets in which you accept the data
from the screen for a particular field. The letters A, B, E, D, L, N, U, and X
represent predefined character sets. A single letter enclosed in double quotes
represents a character set consisting of one character. (A sequence of letters
enclosed in double quotes represents a series of character sets.)

A character set indicates which characters are acceptable. For example, the letter
U (when not enclosed in double quotes) indicates that any uppercase letter is
acceptable.

8–20 Programmer Guide

Formatting an Item for Display

Occasionally, you prefer to identify characters which do not fit into one of the
predefined character sets. In these cases, you can build a character set that
identifies exactly the characters you require. The + and the - operators enable
you to add sets together or to obtain the set difference. The () enable you to
control the precedence of the operations.

A frequent use for set difference is constructing a set of all characters except a
specific set of characters. For example, a pattern to specify all characters excepts
blanks is X-B.

A frequent use for set addition is constructing a set of characters consisting of
one of the predefined sets plus a few additional characters. For example, a
pattern to specify uppercase letters plus blanks is U+B.

Both U+B and U|B recognize the same data. The internal form of U+B is
marginally better than U|B because U+B describes a character set; U|B does not.
As a character set, the action operator # can be appended to the set. The set can
be combined with another set using - or + to form a different set.

Note: If you need to specify a pattern for predefined character sets in another
language, contact Computer Associates Technical Support.

Advanced Numeric Patterns

You can use a PATTERN to provide advanced editing of numeric data. For
example, you can use a MASK to provide basic display and edit criteria for a
nine-digit ZIP code:
ROW 13 'ZIP Code . . .' ZIP-CODE MASK '99999-9999'

The mask, when used alone, allows the user to simply type zero. To require the
user to enter all nine digits with or without the hyphen, add the following
PATTERN:

ROW 13 'ZIP Code . . .' ZIP-CODE MASK '99999-9999' +
 PATTERN 'D(5)"-"(0..1)D(4)B(*)'

The pattern specifies that there should be exactly five digits entered, followed by
0 to 1 hyphens followed by exactly four digits.

Following is a similar example of a PATTERN for a social security number:
ROW 13 'SSN . . .' SSN MASK '999-99-9999' +
 PATTERN 'DDD "-"(0..1) DD "-"(0..1) DDDDB(*)'

The PATTERN specifies that there should be exactly three digits entered,
followed by 0 to 1 hyphens, followed by exactly two digits, followed by 0 to 1
hyphens, followed by exactly four digits, followed by any number of spaces.

Advanced Editing of Names

Screen Processing 8–21

Formatting an Item for Display

You can use a PATTERN to ensure the terminal operator enters valid data in a
name field:
ROW 13 'Name . .' EMPNAME PATTERN 'U(1..*) B(*)'

The PATTERN specifies that only a single name of at least one uppercase-only
character, followed by any number of spaces is valid.

To permit a single uppercase letter followed by only uppercase, or only
lowercase letters followed by any number of spaces use:
ROW 13 'Name . .' EMPNAME PATTERN 'U(U(*),L(*)) B(*)'

To strip leading blanks add:
ROW 13 'Name . .' EMPNAME PATTERN 'B#(*) U(U(*),L(*)) B(*)'

To enable one or more names in uppercase with separation by only one space:
ROW 13 'Name . .' EMPNAME PATTERN 'U(1..*) (B U(1..*))(*) B(*)'

To permit uppercase or lowercase letters after the first uppercase letter:
ROW 13 'Name . .' EMPNAME PATTERN 'U(U(*),L(*) (B U(U(*),L(*))(*) B(*)'

Miscellaneous Advanced Editing

This pattern strips leading blanks while not permitting an all blank field:
ROW 13 'Description . .' DESCRIPTION PATTERN 'B#(*) (X-B) X(*)'

X-B signifies that all characters except blanks are allowed. To permit an all blank
field:

ROW 13 'Description . .' DESCRIPTION +
 PATTERN 'B(*) ((X-B)(1..*), B(*))(*)'

To strip leading spaces and remove extra spaces:
ROW 13 'Description . .' DESCRIPTION +
 PATTERN 'B#(*) ((X-B)(1..*) B B#(*))(*)'

Internal Operation of Patterns

This topic discusses some advanced material relating to the internal operation of
patterns. This information is not required to build most patterns. However, if
you have difficulty building a pattern with the # and (m..n) operators, this
information is helpful.

Patterns are implemented as state tables. A state table examines each character
in a string to determine if the string is acceptable or not. Each character
examined causes a transition from one state to the next. Most compilers use state
tables for recognizing tokens (for example, labels or identifiers).

8–22 Programmer Guide

Formatting an Item for Display

In CA-Easytrieve, there are two extensions in the pattern language which are not
always converted to a state table: the # and the (m..n) operators. These
operations are implemented as actions which are associated with transitions.

First Extension - TOSS Operator

The first extension is the toss operator, # or /-/. It is possible to compose a
pattern which converts to a state table in which the transition from one state to
the next does not know whether to toss or keep the recognized character.
Consider the following pattern:
'B* (X-B)* B*'

This pattern allows data that consists of a single string of non-blank characters
with or without leading and trailing blanks, or an all blank field. The following
exhibit illustrates the state table and graphical representation of the table.

The body of the table indicates what CA-Easytrieve does when in a given state
with given input. If the entry indicates a state, CA-Easytrieve goes to that state.
If the entry indicates accept, the data is valid. If the entry is error, the data is
rejected.

If you change the pattern to remove any leading blanks, the pattern becomes:
'B#* (X-B)* B*'

In the process of converting the pattern to the state table, all of the possible paths
through the pattern are considered. If the first entry is a blank, CA-Easytrieve
does not know whether to remove the character or not (does it match the B#* or
the B*?). This pattern generates an error message when compiled.

To correct this pattern and achieve the same results, use:
'B#* (X-B) B#*'

Screen Processing 8–23

Formatting an Item for Display

This pattern removes leading and trailing blanks. When the first character is a
blank, it does not matter if it is a leading or a trailing blank since both get
removed. The loss of trailing blanks is not damaging. After the data has been
accepted, CA-Easytrieve moves the data into the corresponding field in the
library section. If the field is alphanumeric, it is padded with blanks. If it is a
VARYING alphanumeric field, the length of the field reflects the data, less the
trailing blanks. If the field is numeric, the conversion to the correct data format
ignores the blanks.

Second Extension - Limited Repetition

The second extension is the range repetition with a fixed upper bound, (m..n).
This type of repetition is called a limited repetition. The restrictions on its use
are:

1. Limited repetitions cannot be nested within other repetitions (except (m)).

2. When a character from the input data is examined, there can be no
ambiguity as to which is the next state and how to count the character.

Rule 1 is the result of the nature of state tables. All actions are done at the
transition from one state to the next. The counting and the checking required by
a limited repetition is done at a transition. It is impossible, in all cases, to assign
an action to one or more transitions that reset the counters.

To illustrate Rule 2, consider the following pattern:
'D(0..2) ("."|E) D(0..2) B*'

If the first character in the input data is a digit, does it match the first D(0..2) or
the second? If CA-Easytrieve could look ahead to see the rest of the input it
could decide which one it was. But, as stated earlier, patterns examine only one
character at a time. Therefore, this pattern generates an error message when
compiled.

Note: The pattern ‘D(0..2) (“.”|E) D(0..2)’ does not appear to have any practical
application.

Additional Considerations

Consider the following pattern:
'B* X'

If the first character to be examined by the pattern is a blank, does the blank
match the B* or the X? If it matches the B* there can be more data. If it matches
the X, there can be no more input. Therefore, this pattern generates an error
message when compiled.

8–24 Programmer Guide

Formatting an Item for Display

When CA-Easytrieve gets data back from the screen, the data is almost always
padded with trailing blanks unless you filled the entire field with data. The EOF
key on the 3270 terminal may set the rest of the field on the screen to nulls, but
by the time the pattern sees the data, the nulls have been converted to blanks.
You may want to allow for trailing blanks in your patterns.

Note: Trailing blanks in displayed VARYING alphanumeric fields are
converted to nulls when received.

VALUE

CA-Easytrieve automatically edits the input data against the value(s) specified in
the VALUE parameter for the field on the ROW statement. You can
automatically edit the data against a single value, a range of values, or a series of
values. The VALUE parameter works similar to a CA-Easytrieve IF statement.

When CA-Easytrieve edits an alphanumeric field:

■ The values must be alphanumeric literals enclosed in quotes.
■ The comparison is based on the greater of the length of the value and the

length of the field. The shorter item is padded with blanks out to the length
of the longer item. This rule is subject to the exception below.

■ When a fixed length field is compared with a longer fixed length value, the
comparison is based on the length of the field. The value is truncated to
match the length of the field. A warning message is generated by the
compiler.

■ The comparison is logical (bit-by-bit).

When CA-Easytrieve edits a numeric field:

■ The values must be numeric literals.
■ Comparison is arithmetic.

The following ROW statements illustrate automatic value editing:
DEFINE ALPHA-FIELD W 1 A
DEFINE NUMERIC FIELD W 3 N 0
ROW 'Alpha Test . . .' ALPHA-FIELD VALUE ('A', 'D', 'U')
ROW 'Numeric Test . .' NUMERIC-FIELD VALUE (1, 101 THRU 500, 999)

Edit Error Messages

As a result of the automatic editing process, CA-Easytrieve handles error
conditions as follows:

■ Input fields are edited as found on the screen from left-to-right and
top-to-bottom.

Screen Processing 8–25

Formatting an Item for Display

■ All input fields are edited each time a user presses a programmable key (for
example, PA keys, function keys, Enter) unless the key pressed is an
IMMEDIATE key. IMMEDIATE keys cause the screen to be received but the
data is not edited and moved into program fields. See Screen Key
Processing, later in this chapter for details.

 Note: If you are executing in the workstation environment, CA-Easytrieve
performs much of the automatic editing as the data is entered in the field. It
does not wait for a programmable key to be pressed before editing the data.

■ Each field found in error receives the FIELD ERROR attribute. You can
specify this attribute on a DEFAULT FIELD ERROR statement at the
beginning of the screen declaration. If you do not use the DEFAULT FIELD
ERROR statement, this attribute is taken from the site options. You can set
individual error attributes for a field using the ERROR ATTR parameter for
the field on the ROW statement.

■ CA-Easytrieve automatically displays a message describing the error for the
first field in error on the screen. This message typically tells the user that the
field did not match one of the values permitted for the field or that the
format of the data was incorrect. You can override the system-issued
message with your own message using the ERROR parameter for the field
on the ROW statement.

 Messages issued for editing errors, whether system-issued or from the
ERROR parameter, are always an ACTION message level. See Screen
Message Area, later in this chapter for more information.

Cursor Placement

You can specify the placement of the cursor on the screen in the following ways:

■ Use the CURSOR attribute in the ATTR parameter for the field on the ROW
statement. You can also specify the CURSOR attribute for a field flagged in
error using the ERROR ATTR parameter for the field on the ROW statement.

■ Execute a CURSOR statement in a screen procedure to specify the field on
the screen that receives the cursor upon the next display of the screen.

Cursor Placement Hierarchy

When more than one way is used to place the cursor in a specific location,
CA-Easytrieve uses the following hierarchy to determine how the cursor is
placed. The priority is from highest to lowest.

1. If the screen is re-displayed using a RESHOW action (see Screen Procedures
later in this chapter), the cursor is placed in the same position as when the
screen was received, regardless of any other method used.

8–26 Programmer Guide

Formatting an Item for Display

2. If the field is detected in error by the automatic editing process or a SET
statement, the first field containing the CURSOR attribute on the ERROR
ATTR parameter of the ROW statement receives the cursor. First is defined
as left-to-right, top-to-bottom.

3. If not a RESHOW or error condition, a CURSOR statement executed in a
screen procedure names the field to receive the cursor. If the CURSOR
statement is executed more than once before the screen is displayed, the last
CURSOR statement executed determines cursor placement.

4. If a CURSOR statement is not executed, the first field on the screen with the
CURSOR attribute receives the cursor.

5. If no field on the screen contains the CURSOR attribute, the first modifiable
field on the screen receives the cursor.

6. If there are no modifiable fields on the screen, the first item on the screen
receives the cursor.

Repeating Rows of Data

CA-Easytrieve supports the display of arrays on the screen with the REPEAT
and END-REPEAT statements. You use the REPEAT and END-REPEAT
statements to surround one or more ROW statements in the screen declaration,
and specify the number of times that the enclosed group of ROW statements is
repeated on the screen.

The REPEAT and END-REPEAT statements can also be used to name an
CA-Easytrieve subscript field which is incremented each time the repeated rows
are displayed. The subscript field helps automate the process of moving the
array to the screen and then back again upon receiving the data when you use it
for the array elements. You can define the subscript field or let CA-Easytrieve
automatically define it for you.

A Simple REPEAT Example

Following is an example of how to display an array in a file on the screen.
CA-Easytrieve automatically defines the subscript field, POLICY-SUB, used on
the REPEAT statement.

FILE POLICIES INDEXED
 CUST-NO * 5 N
 CUST-NAME * 20 A
 POLICY-NO 50 8 N OCCURS 3. * Customer may have up to 3
 . * policies
SCREEN NAME SHOW-POLICIES
 TITLE 'View Customer Policy Numbers'
 ROW 3 'Customer Number . .' CUST-NO
 ROW 5 'Customer Name . . .' CUST-NAME
 ROW 7 'Policies'
 REPEAT 3 TIMES VARYING POLICY-SUB
 ROW POLICY-NO (POLICY-SUB)
 END-REPEAT

Screen Processing 8–27

Screen Message Area

 View Customer Policy Numbers

 Customer Number . . 10346

 Customer Name . . . JONES

 Policies
 32894671
 65274902
 76642915

Two-dimensional Arrays

As illustrated in the previous example, you can code a subscript on each element
of an array within a REPEAT group. If these fields are elements of a
two-dimensional array, you can also add a second subscript. CA-Easytrieve
does not automatically increment a second subscript for you. The second
subscript must be specified as a literal or as a static field. The following example
illustrates this:

...
WS-EMPLOYEE W 33 A OCCURS 3 . * 2-dimensional table of
 WS-NAME WS-EMPLOYEE 30 A . * 3 employees containing:
 WS-STATUSES WS-EMPLOYEE +30 3 A . * employee name and
 WS-STAT WS-STATUSES 1 A OCCURS 3. * 3 statuses
...
SCREEN NAME EMPLOYEE-LIST
 TITLE 'List of Employees'
 ROW 3 'Name' COL 30 'Statuses'
 REPEAT 3 TIMES VARYING USER-SUB
 ROW WS-NAME (USER-SUB) +
 WS-STAT (USER-SUB, 1) WS-STAT (USER-SUB, 2) +
 WS-STAT (USER-SUB, 3)
 END-REPEAT

 List of Employees

 Name Statuses
 WIMN, GLORIA F G O
 BERG, NANCY C
 CORNING, GEORGE I T

Screen Message Area
The message area is used to display system and programmer-issued messages to
the terminal user. CA-Easytrieve allows you to issue different levels of messages
depending on the severity of the error. The three message levels are (in order of
ascending severity):

■ INFORMATION

■ WARNING

■ ACTION

8–28 Programmer Guide

Screen Function Key Area

Information messages typically inform a user that processing is proceeding
normally. Warning messages tell the user that a potentially undesirable result
has occurred or could occur. Action messages tell users that an action is
required to correct a situation.

System-issued messages and messages specified on the SET statement are
always message level ACTION.

Message Area Location

The default message area location is at the bottom of the screen, just above the
function key display area. You can move the message area by specifying its row
number on a DEFAULT MESSAGE statement at the beginning of the screen
declaration. By default, all three levels of messages are sent to the same screen
row number. Use the DEFAULT statement to designate from one to three rows
to display different levels of messages on the screen.

Message Attributes

You can specify attributes for the three levels of messages on DEFAULT
MESSAGE statements. If you do not use a DEFAULT MESSAGE statement,
screen attributes for each message level are taken from the site options.

Message Text

The screen message area is used both for system-issued and programmer-issued
messages. System-issued messages result from the edit process that
CA-Easytrieve automatically performs on input data. You can override the
message resulting from the edit process with the ERROR parameter of the ROW
statement. See Automatic Editing of Input earlier in this chapter. You can also
issue messages from the screen procedures that you code following the screen
declaration by executing the MESSAGE or SET statement prior to the display of
the screen.

Screen Function Key Area
The optional function key area is used to tell the terminal user which function
keys are active and the action each performs.

Screen Processing 8–29

Screen Key Processing

Location

The function key area is always located at the bottom of the screen. The display
is determined by the KEY statements you code in the screen declaration. You
can specify descriptive text on each KEY statement to be displayed with the
name of the key. Depending on the number of keys and the length of the
descriptive text, more than one row of the screen may be required to display the
active function keys.

Note: If you specify that one or more message areas use the same screen row as
the function key area, messages may overlap the function key area. The default
location for messages is just above the function key area.

Attributes

You can specify attributes for the function key area on a DEFAULT KEY
statement. If you do not use a DEFAULT KEY statement, screen attributes for
the function key area are taken from the site options.

Screen Key Processing
CA-Easytrieve automatically validates keys that the terminal user presses to
send the screen to the program for processing. You control this process by
coding KEY statements in the screen declaration. KEY statements determine
which keys are valid on a particular screen.

Keys can also be assigned to perform specific actions when the key is pressed.
As described earlier in Screen Function Key Area, you also control the display of
information about the keys to the terminal user on KEY statements.

The following rules apply to key processing in CA-Easytrieve:

■ Each KEY statement specifies one or more keys that are active for that
SCREEN activity. If the user presses an inactive key, CA-Easytrieve
automatically sends an error message to the user.

■ Each KEY statement can specify a NAME parameter containing text to be
displayed at the bottom of the screen.

■ If you do not code any KEY statements in your SCREEN activity, all keys are
active and you must provide code in your SCREEN procedures to validate
key values.

■ With each KEY statement, you can optionally assign the key(s) to
automatically perform a branch action. Branch actions cause activity
execution to branch to a specific step in the process. The branch actions you
can code on a KEY statement and their effects are:

8–30 Programmer Guide

Screen Procedures

Action Effect

REFRESH Restore the initial condition of the screen

EXIT Terminate the SCREEN activity

 See Screen Procedures later in this chapter, for more information.

■ With each KEY statement, you can optionally assign the key to perform
IMMEDIATE processing. IMMEDIATE indicates that the key is to be
processed immediately, without editing the input data and moving the data
into the program fields.

■ KEY statements can only be coded for keys for which CA-Easytrieve has
defined a symbolic name. The symbolic names are assigned to specific
values of the system-defined field, KEY-PRESSED. See System-defined
Fields earlier in this chapter, for symbolic names.

 Note: If you process values of KEY-PRESSED that do not have symbolic
names (in screen procedures) you cannot code KEY statements in your
screen declaration.

3270 Display Station Keys

When the terminal user presses CLEAR, PA1, PA2, or PA3, the 3270 Display
Station returns only the name of the key pressed. Data on the screen is not
received and the cursor position cannot be determined.

Screen Procedures
The execution of a SCREEN activity is actually a collection of procedures that
CA-Easytrieve performs in a certain sequence. There are four points in a
SCREEN activity in which CA-Easytrieve invokes special-named procedures.
You can code these special-named procedures to perform customized actions
specific to your application. The special-named screen procedures are:

■ INITIATION

■ BEFORE-SCREEN

■ AFTER-SCREEN

■ TERMINATION

You are not required to code these procedures. If not coded, CA-Easytrieve
simply proceeds to the next step in the activity.

Screen Processing 8–31

Screen Procedures

The following exhibit illustrates the SCREEN activity process that CA-Easytrieve
performs and when the special-named procedures, if coded, are executed.

Step 1: Reset working storage then perform INITIATION procedure, processing
any branch actions.

Step 2: Reset working storage then perform BEFORE-SCREEN procedure,
processing any branch actions.

Step 3: Build the screen using program fields, pending messages, and pending
cursor placement. Clear the internal pending message buffer.

Step 4: Send the screen to the terminal. Terminate and resume the program (if
pseudo-conversational). Receive the screen from the terminal

Step 5: If KEY-PRESSED is an IMMEDIATE key, go to step 7.

Step 6: If KEY-PRESSED is not an IMMEDIATE key, edit input data. If any
errors, go to step 4. If no errors, move the data into the program fields.

Step 7: If KEY-PRESSED has an associated branch action, perform it.

Step 8: Perform AFTER-SCREEN procedure, processing any branch actions.

Step 9: Go to Step 2.

Step 10: When EXIT is requested, reset working storage, then perform
TERMINATION procedure, processing any branch actions.

INITIATION

The INITIATION procedure is performed one time during the initiation of the
activity. Use INITIATION to perform actions that can only be executed once, for
example, setting a field to an initial value or positioning a file at a specific
starting location. Work fields with the RESET parameter specified are
automatically initialized before the INITIATION procedure is invoked.

The REFRESH and RESHOW branch actions are invalid in an INITIATION
procedure. See Branch Actions, later in this chapter, for details.

8–32 Programmer Guide

Screen Procedures

BEFORE-SCREEN

The BEFORE-SCREEN procedure is invoked during each iteration of the
SCREEN activity. It precedes building the screen and the terminal I/O process.
Typically, BEFORE-SCREEN is used to perform file I/O, initialize fields, or set
the cursor position. Work fields with the RESET parameter specified are
automatically initialized before the BEFORE-SCREEN procedure is invoked.

GOTO SCREEN, REFRESH, and RESHOW are invalid in a BEFORE-SCREEN
procedure. See Branch Actions, later in this chapter, for details.

AFTER-SCREEN

The AFTER-SCREEN procedure is performed during each iteration of the
activity after the terminal I/O processes. It is not executed if the key pressed is
assigned to execute a branch action. An AFTER-SCREEN procedure can be used
to perform complex editing and to update files with data entered on the screen.

All branch actions are valid in the AFTER-SCREEN procedure. See Branch
Actions later in this chapter, for details.

TERMINATION

The TERMINATION procedure is performed when an EXIT action is executed,
either from a key pressed or from another screen procedure. It is used to
perform actions that are to be executed only at the end of the activity. Work
fields with the RESET parameter specified are automatically initialized before
the TERMINATION procedure is invoked.

If GOTO SCREEN or EXIT are executed in a TERMINATION procedure, the
activity is terminated. REFRESH and RESHOW are invalid in a TERMINATION
procedure. See Branch Actions later in this chapter, for details.

Programmer-Defined Procedures

You can code your own procedures in a SCREEN activity and perform them
from the special-named screen procedures. Procedures you code are local to the
screen activity and cannot be performed from other activities.

Branch Actions

There are four actions that cause the program execution to branch to specific
steps in the SCREEN activity process:

Screen Processing 8–33

Screen Procedures

Action Step Effect

GOTO SCREEN 2 Repeat the activity process.

REFRESH 3 Restore the initial condition of the
screen.

RESHOW 4 Re-display the screen as it was
received.

EXIT 10 Terminate the activity.

GOTO SCREEN

You can use the GOTO SCREEN statement to repeat the activity process. The
default action of a SCREEN activity is to repeat the process until an EXIT action
is executed. If the bottom of the process (the end of the AFTER-SCREEN
procedure) is reached, the activity simply repeats, starting with the
BEFORE-SCREEN procedure. (The INITIATION procedure is a one-time-only
procedure).

You can code the GOTO SCREEN statement to cause an immediate branch to the
top of the activity. This is similar to the way in which GOTO JOB branches to the
top of a JOB activity.

REFRESH

REFRESH causes the screen to be restored to its initial condition or updated to
reflect the current status of information. CA-Easytrieve rebuilds the screen using
the current value of the fields specified on the screen.

When REFRESH is coded on an IMMEDIATE key, CA-Easytrieve ignores data
entered on the screen and refreshes the screen just as it was originally sent to the
user. When REFRESH is coded on a non-IMMEDIATE key, it causes data
entered to be edited and moved into the program field areas, but no
special-named procedure is invoked. This enables you to assign a key solely to
allow the user to edit data. The data entered is edited against the automatic edits
you code and no additional code is required in the AFTER-SCREEN procedure.
When the user wants to actually update the file with the data, he could press
another key to invoke the AFTER-SCREEN procedure. This is illustrated in the
following example.
SCREEN NAME MYSCREEN
 TITLE 'Inventory Control'
 KEY F5 NAME 'Refresh' IMMEDIATE REFRESH
 KEY F6 NAME 'Edit input' REFRESH
 KEY F10 NAME 'Update'
 ...

8–34 Programmer Guide

Screen Procedures

When the user presses F5, data currently on the screen is ignored and the screen
is rebuilt from the original field contents. When the user presses F6, the data
entered is edited as specified on the ROW statements. Pressing F10 also edits the
data but then performs an AFTER-SCREEN procedure that updates the file.

You can also use REFRESH to update the screen contents with the current data
available. For example, a user enters a quantity and a price and wants to see the
extended price (price times quantity). You can use a REFRESH coded in an
AFTER-SCREEN procedure to compute the extended price as shown in the next
example.
SCREEN NAME MYSCREEN
 TITLE 'Inventory Control'
 KEY F2 NAME 'Reset to zero'
 KEY F6 NAME 'Refresh' IMMEDIATE REFRESH
 KEY F9 NAME 'Show Extended Price'
 KEY F10 NAME 'Update'
 ROW 3 'Quantity . .' QUANTITY
 ROW 5 'Price' PRICE
 ROW 7 'Ext Price . .' EXT-PRICE ATTR (TURQ ASKIP)
 ...
 BEFORE-SCREEN. PROC
 MOVE ZEROS TO QUANTITY, PRICE, EXT-PRICE
 END-PROC
 AFTER-SCREEN. PROC
 IF KEY-PRESSED = F9
 EXT-PRICE = PRICE * QUANTITY
 REFRESH
 END-IF
 ...
 END-PROC

When the user types the quantity and price and presses F9, the quantity and
price are received, and the extended price is computed. The REFRESH then
re-displays the screen using the current value of the program fields, and the
newly-computed extended price is displayed.

RESHOW

RESHOW can be used in an AFTER-SCREEN procedure to re-display the screen
after the screen has been received. CA-Easytrieve saves a copy of the screen
image it receives. You can then EXECUTE another SCREEN activity. When the
program returns to the first activity, use RESHOW to re-display the saved image
of the first screen.

When associated indirectly with an IMMEDIATE key, you can ignore any data
entered on the screen, display a second screen, then RESHOW the first screen
intact. For example, you can permit the user to view a help screen, then return to
the screen on which the user requested help. See Providing Help Screens later in
this chapter, for an example of program code.

When associated indirectly with a non-IMMEDIATE key, you can permit the
user to display a selection list, accept and process the user’s selection(s), then
re-display the original screen.

Screen Processing 8–35

Screen Procedures

EXIT

EXIT terminates the SCREEN activity and returns control to the activity from
which it was EXECUTEd. If the current SCREEN activity was not EXECUTEd
from another activity, EXIT terminates the program. Associating EXIT with an
IMMEDIATE key is equivalent to a cancel function. Any data on the screen is
ignored and the activity terminates. Associating EXIT with a non-IMMEDIATE
key saves the data into the program fields after editing it.

Note: It is your responsibility to save the data to a file if your application
requires it. Data saved into the program fields is lost when the program
terminates unless written to a file.

CICS Pseudo-conversational Programs

The SCREEN activity process illustrated in the ten steps under Screen
Procedures earlier in this chapter shows how CA-Easytrieve handles
pseudo-conversational programs. In Step 4, CA-Easytrieve sends the screen to
the terminal. If your SCREEN activity is executing in a pseudo-conversational
mode (COMMIT NOTERMINAL is not specified for a CICS program),
CA-Easytrieve then terminates the task and returns to CICS. When the terminal
user presses a programmable terminal key, CICS executes the program again,
and CA-Easytrieve resumes the task and receives the screen. See Commit
Processing later in this chapter, for more information.

Also see Units of Work/Commit Processing and Coding Programs That Run
Under CICS in “Coding a CA-Easytrieve Program” chapter for additional
information.

Sending Messages

CA-Easytrieve maintains an internal message area for each message area defined
on your screen. The MESSAGE statement can be executed anywhere in your
program to update the pending message area. When the next screen is
displayed, the screen message area is built from the pending message. The
pending message area is then cleared.

You can use these pending messages across activities to prepare messages in one
activity for display on a screen in another activity. The following example shows
how to code messages in a SCREEN activity, and show the resulting screen.

 FILE PERSNL INDEXED WORKAREA 150
 %PERSNL
 SCREEN NAME VIEW-UTILITY
 KEY ENTER
 KEY F3 NAME 'Exit' EXIT
 TITLE 1 'Employee View Utility'
 ROW 3 'Employee Number . .' EMP#
 ROW 5 'Employee Name . . .' EMPNAME
 INITIATION. PROC

8–36 Programmer Guide

Screen Procedures

 MESSAGE 'Enter an employee number.' LEVEL INFORMATION
 MOVE ZERO TO EMP-NO
 MOVE SPACES TO EMPNAME
 END-PROC
 AFTER-SCREEN. PROC
 READ PERSNL KEY EMP# STATUS
 IF NOT PERSNL
 MESSAGE 'Employee not found. Enter another number.' LEVEL ACTION
 ELSE
 MESSAGE 'Employee found. Enter another number.' LEVEL INFORMATION
 END-IF
 END-PROC

 Employee View Utility

 Employee Number . . _

 Employee Name . . .

 ...

 Enter an employee number.
 F3=Exit

An introductory message (message level INFORMATION) is issued to the
terminal user from an INITIATION procedure. After the user enters an
employee number and presses the Enter key, the AFTER-SCREEN procedure is
performed and issues an appropriate message describing the results of the file
I/O. If the record is found, the user receives an INFORMATIONal message. If
not found, an ACTION message is issued, flagging an error condition that must
be corrected before the process can continue.

Using Message Levels

CA-Easytrieve allows you to automatically manage different levels of messages.
For example, you can issue INFORMATION or WARNING messages in your
program, but discover later in the process that a severe error condition that
requires an ACTION message could arise. If the message areas for the different
message levels are located on the same screen row, coding the ACTION message
overlays any previous or subsequent INFORMATION or WARNING messages
because of the severity hierarchy of the messages levels. When you issue
multiple messages of the same level, the last one issued for the highest level is
displayed.

Screen Processing 8–37

Screen Procedures

Determining the Cursor Location

You can determine the position of the cursor when the screen is received by
using the special IF CURSOR statement in a screen procedure. You use the IF
CURSOR statement to test whether the cursor is present within a specified field.
The following example illustrates the IF CURSOR statement testing for cursor
placement on any of four subscripted array elements on the screen.

 DEFINE OPTION W 1 A OCCURS 4
 SCREEN NAME MENU
 KEY F2 NAME 'Select'
 KEY F3 NAME 'Exit' EXIT
 TITLE 1 'Employee System Main Menu'
 ROW 3 'Position the cursor by your selection, press F2 to select.'
 ROW 5 COL 10 OPTION (1) 'View employee'
 ROW COL 10 OPTION (2) 'Edit employee'
 ROW COL 10 OPTION (3) 'Delete employee'
 ROW COL 10 OPTION (4) 'Add employee'
 AFTER-SCREEN. PROC
 IF OPTION (1) CURSOR
 EXECUTE VIEW-EMPLOYEE
 ELSE-IF OPTION (2) CURSOR
 EXECUTE EDIT-EMPLOYEE
 ELSE-IF OPTION (3) CURSOR
 EXECUTE DELETE-EMPLOYEE
 ELSE-IF OPTION (4) CURSOR
 EXECUTE ADD-EMPLOYEE
 ELSE
 MESSAGE 'Position cursor by a menu selection.'
 END-IF
 END-PROC
 ...

 Employee System Main Menu

 Position the cursor by your selection, press F2 to select.

 _ View employee
 Edit employee
 Delete employee
 Add employee
 ...
 F2=Select F3=Exit

Testing for Field Modification

You can use the IF MODIFIED statement to test whether a field was modified by
the terminal user. Following are the rules for using the IF MODIFIED statement:

■ The test for modification determines whether the value of the field actually
changed. If the user types the same value in the field as was originally
displayed, the modification test is false.

■ The results of the IF MODIFIED test are set at the time the screen is received.
If the value of the input data is not equal to the value of the program field,
the field was modified. If the input data is equal to the program field, the
field is considered not modified.

■ The IF MODIFIED comparison is performed logically for both alphanumeric
fields and numeric fields.

8–38 Programmer Guide

Screen Procedures

■ If the screen is received as the result of an IMMEDIATE key, PA key, or
CLEAR key, the IF MODIFIED test is always false.

Using the IF MODIFIED test can help you write more efficient programs. For
example, you may not want to perform complex editing on a field unless it was
changed by the user. The following is an example of the IF MODIFIED test.

 SCREEN NAME EDIT-EMPLOYEE
 KEY ENTER
 KEY F3 NAME 'Exit' EXIT
 TITLE 1 'Employee Edit Utility'
 ROW 3 'Enter the employee number and new job category.'
 ROW 5 'Employee number . .' EMP#
 ROW 7 'Job Category' JOB-CATEGORY
 AFTER-SCREEN. PROC
 IF JOB-CATEGORY MODIFIED
 PERFORM SEARCH-JOB-CATEGORY-TABLE
 IF NOT JOBTABLE
 MESSAGE 'Job category is invalid. Please reenter.'
 ELSE
 PERFORM UPDATE-EMPLOYEE
 MESSAGE 'Job category updated.' LEVEL INFORMATION
 MOVE ZERO TO EMP# JOB-CATEGORY
 END-IF
 ELSE
 MESSAGE 'Job category not modified.' LEVEL WARNING
 JOB-CATEGORY = 0
 END-IF
 END-PROC
 ...

The IF MODIFIED test of the JOB-CATEGORY field determines whether or not
to look up the field in a table and to update the record. If the user does not
modify the screen contents, these I/O operations are not performed.

Setting Errors

When you can determine the validity of user input with a simple IF statement,
such as IF DEPT = 901 THRU 999, the VALUE parameter on the ROW statement
provides easy automatic error handling. Often, however, you must provide
more complex logic to determine the validity of a value. For example, you may
need to perform cross-field editing where the value of one field on the screen
determines acceptable values for another field on the screen, or you may have to
perform a table look-up or other advanced processing to determine validity.

You can use the SET statement to extend automatic error handling in screen
procedures. When you execute a SET statement for a field, CA-Easytrieve uses
the SET information the next time the screen is displayed. You can simply
change the field’s screen attributes; however, if you code the ERROR parameter,
the screen process treats the field as if automatic editing detected the error. The
field’s error attributes and error message are used by default but you can even
override these with a SET statement. See Sample Screen Applications later in
this chapter, and the SET Statement in the CA-Easytrieve Language Reference Guide
for more information.

Screen Processing 8–39

Commit Processing

Commit Processing
You can use CA-Easytrieve commit processing in screen activities to provide file
integrity during update operations.

See the following topics in this guide for additional information on how
CA-Easytrieve performs commit processing:

■ Controlling Program Flow: Units of Work/Commit Processing in the
“Coding a CA-Easytrieve Program” chapter for information on instructing
CA-Easytrieve to use either automatic or controlled commit processing
during program execution.

■ Overview: Hold/Release Processing in the “File Processing” chapter for
how CA-Easytrieve processes requests to update records during file
processing.

SCREEN COMMIT Parameter

The COMMIT parameter of the SCREEN statement controls the way CA-Easytrieve
automatically issues commit points during screen processing. The
TERMINAL|NOTERMINAL subparameter controls whether records are held
during terminal I/O operations. In multi-user environments such as CICS or
workstation networks, it is important to fully understand the use of
TERMINAL|NOTERMINAL.

COMMIT TERMINAL tells CA-Easytrieve to commit during each terminal I/O. A
commit point releases any holds you have active. Before the program can update a
record, it must re-read the record after the user returns the screen to the program for
processing. A user cannot inadvertently lock a record from being accessed by other
users as he contemplates updating a record. COMMIT TERMINAL is the default
for CA-Easytrieve screen activities. In a CICS environment, this is called running the
program pseudo-conversationally.

COMMIT NOTERMINAL tells CA-Easytrieve not to commit during terminal I/O.
In CICS, this is called running conversationally. The advantage of running
conversationally is that the program needs to read a record only once, display it on
the screen, then simply update it when instructed by the terminal user. The
disadvantage is that the record is held until the user presses an attention key, the
update is performed, or a commit point is explicitly issued.

8–40 Programmer Guide

Commit Processing

Conversational Processing Example

The following example program illustrates using COMMIT NOTERMINAL to keep
CA-Easytrieve from issuing a commit point during terminal I/O. The terminal user
types an employee number then presses F5 to find the employee’s record. When he
modifies the social security number and presses F6, the employee’s record is
updated. Because UPDATE is coded on the FILE statement, the READ statement
automatically holds the record until it is updated. This hold is in effect the entire
time the user contemplates the change. The hold prohibits other users in a
multi-user environment from accessing the record during this time. Not issuing a
commit point also keeps the system from freeing system resources while the
program is running.

FILE KPERSNL INDEXED UPDATE
%PERSNL
WORK-EMP# W 5 N
SCREEN NAME UPDATE-KPERSNL COMMIT NOTERMINAL
 KEY F3 NAME 'Exit' EXIT
 KEY F5 NAME 'Find employee'
 KEY F6 NAME 'Update employee'
 TITLE 'Update Social Security Number'
 ROW 5 'Employee Number.' WORK-EMP#
 ROW 7 'Social Security Number . .' SSN
 INITIATION. PROC
 SSN = 0
 MESSAGE 'ENTER EMPLOYEE NUMBER. PRESS F5 TO FIND.' +
 LEVEL INFORMATION
 END-PROC
 AFTER-SCREEN. PROC
 CASE KEY-PRESSED
 WHEN F5
 READ KPERSNL KEY WORK-EMP# STATUS
 IF NOT KPERSNL
 MESSAGE 'EMPLOYEE NOT FOUND. ENTER NEXT EMPLOYEE.'
 MOVE ZERO TO SSN
 ELSE
 MESSAGE 'ENTER NEW SSN. PRESS F6.' LEVEL INFORMATION
 CURSOR AT SSN
 END-IF
 WHEN F6
 WRITE KPERSNL UPDATE STATUS
 IF FILE-STATUS NE 0
 MESSAGE 'EMPLOYEE NOT UPDATED. REASON=' FILE-STATUS
 ELSE
 MESSAGE 'SSN UPDATED. ENTER NEXT EMPLOYEE. PRESS F5.' +
 LEVEL INFORMATION
 END-IF
 END-CASE
 END-PROC

Pseudo-Conversational Processing Example

The next example shows the same program using COMMIT TERMINAL to tell
CA-Easytrieve to issue a commit point during terminal I/O. COMMIT TERMINAL
is the default if not specified. The commit point issued between the time the user
sees the record and finally updates it allows other users to access the record. It also
frees valuable system resources each time a terminal operation is performed.

Screen Processing 8–41

Commit Processing

The program must read the record again following the user’s request to update it
(F6). Any hold issued during the read for the find request (F5) is lost when the
employee record is displayed on the terminal. The program specifically states
NOHOLD on the READ statement for finding the record and HOLD on the READ
statement for updating the record. If NOHOLD had not been specified, a hold
would have been issued but released when the screen was displayed.

Re-reading the record presents an additional complexity. If the actual record is used
as the screen data area (as in this example), the second READ statement causes the
data entered by the terminal user to be lost. To handle this condition, simply define
a work area to hold the record contents during the read operation. Restore the
contents before the update takes place.

FILE KPERSNL INDEXED UPDATE
%PERSNL
WORK-EMP# W 5 N
WORK-AREA W 150 A
SCREEN NAME UPDATE-KPERSNL COMMIT TERMINAL
 KEY F3 NAME 'Exit' EXIT
 KEY F5 NAME 'Find employee'
 KEY F6 NAME 'Update employee'
 TITLE 'Update Social Security Number'
 ROW 5 'Employee Number.' WORK-EMP#
 ROW 7 'Social Security Number . .' SSN
 INITIATION. PROC
 SSN = 0
 MESSAGE 'ENTER EMPLOYEE NUMBER. PRESS F5 TO FIND.' +
 LEVEL INFORMATION
 END-PROC
 AFTER-SCREEN. PROC
 CASE KEY-PRESSED
 WHEN F5
 READ KPERSNL KEY WORK-EMP# NOHOLD STATUS
 IF NOT KPERSNL
 MESSAGE 'EMPLOYEE NOT FOUND. ENTER NEXT EMPLOYEE.'
 MOVE ZERO TO SSN
 ELSE
 MESSAGE 'ENTER NEW SSN. PRESS F6.' LEVEL INFORMATION
 CURSOR AT SSN
 END-IF
 WHEN F6
 MOVE KPERSNL TO WORK-AREA
 READ KPERSNL KEY WORK-EMP# HOLD
 MOVE WORK-AREA TO KPERSNL
 WRITE KPERSNL UPDATE STATUS
 IF FILE-STATUS NE 0
 MESSAGE 'EMPLOYEE NOT UPDATED. REASON=' FILE-STATUS
 ELSE
 MESSAGE 'SSN UPDATED. ENTER NEXT EMPLOYEE. PRESS F5.' +
 LEVEL INFORMATION
 END-IF
 END-CASE
 END-PROC

8–42 Programmer Guide

Commit Processing

Concurrent Updates

When many users concurrently update the same file in a pseudo-conversational
environment, your program must handle certain conditions. During the time the
terminal user is contemplating modifying a record, the record could be deleted or
updated by another user. For example, when a user is shown the quantity of an
item in inventory, by the time he deducts his order’s quantity, another user may
have depleted the stock. If you do not re-evaluate the quantity when you re-read
the record for update, the user could sell stock he does not really have.

There are several coding conventions to handle these conditions. Two of the more
common are:

■ Set a flag in the record that is under consideration for update. All programs
accessing the file must test the flag before allowing any update access.

■ Save a copy of the data that is displayed to the user. Before updating it,
compare the current data to the saved copy. If any changes are detected,
display the current data and warn the user that there was an intermittent
change to the record.

The next example contains the previous program in which code has been added to
handle intermittent updates. A copy of the social security number displayed to the
user is saved in the working storage field, SAVE-SSN. Code has been added to
detect when the record is deleted by another user. When the read is successful, the
social security number in the record is compared to that originally displayed to the
user. If it is not the same, the user is warned that another user already changed the
number, and he is asked to process the change again.

FILE KPERSNL INDEXED UPDATE
%PERSNL
WORK-EMP# W 5 N
WORK-AREA W 150 A
SAVE-SSN W SSN
SCREEN NAME UPDATE-KPERSNL COMMIT TERMINAL
 KEY F3 NAME 'Exit' EXIT
 KEY F5 NAME 'Find Employee'
 KEY F6 NAME 'Update employee'
 TITLE 'Update Social Security Number'
 ROW 5 'Employee Number.' WORK-EMP#
 ROW 7 'Social Security Number . .' SSN
 INITIATION. PROC
 SSN = 0
 MESSAGE 'ENTER EMPLOYEE NUMBER. PRESS F5 TO FIND.' +
 LEVEL INFORMATION
 END-PROC
 AFTER-SCREEN. PROC
 CASE KEY-PRESSED
 WHEN F5
 READ KPERSNL KEY WORK-EMP# NOHOLD STATUS
 IF NOT KPERSNL
 MESSAGE 'EMPLOYEE NOT FOUND. ENTER NEXT EMPLOYEE.'
 MOVE ZERO TO SSN
 ELSE
 SAVE-SSN = SSN
 MESSAGE 'ENTER NEW SSN. PRESS F6.' LEVEL INFORMATION
 CURSOR AT SSN
 END-IF
 WHEN F6
 MOVE KPERSNL TO WORK-AREA
 READ KPERSNL KEY WORK-EMP# HOLD STATUS

Screen Processing 8–43

Commit Processing

 IF NOT KPERSNL
 MESSAGE 'EMPLOYEE ' WORK-EMP# ' NO LONGER ON FILE. +
 ENTER NEW EMPLOYEE. PRESS F5.'
 MOVE ZERO TO SSN
 GOTO SCREEN
 ELSE-IF SSN NE SAVE-SSN
 MESSAGE 'INTERMITTENT CHANGE DETECTED! RETYPE NEW VALUE +
 AND PRESS F6 TO UPDATE.' LEVEL WARNING
 SAVE-SSN = SSN
 GOTO SCREEN
 END-IF
 MOVE WORK-AREA TO KPERSNL
 WRITE KPERSNL UPDATE STATUS
 IF FILE-STATUS NE 0
 MESSAGE 'EMPLOYEE NOT UPDATED. REASON=' FILE-STATUS
 ELSE
 MESSAGE 'SSN UPDATED. ENTER NEXT EMPLOYEE. PRESS F5.' +
 LEVEL INFORMATION
 END-IF
 END-CASE
 END-PROC

SQL Processing Example

The programs in the previous examples process an indexed file. This next example
illustrates how the previous program (Concurrent Updates) looks when an SQL
table is processed instead.

FILE KPERSNL SQL(SSRPRS0.PERSNL) UPDATE
 SQL INCLUDE (EMP#, SSN) FROM SSRPRS0.PERSNL LOCATION *
MASK-SSN SSN SSN MASK('999-99-9999')
WORK-EMP# W EMP# MASK('99999')
WORK-AREA W 8 A
SAVE-SSN W SSN
SCREEN NAME UPDATE-PERSNL COMMIT TERMINAL
 KEY F3 NAME 'Exit' EXIT
 KEY F5 NAME 'Find Employee'
 KEY F6 NAME 'Update employee'
 TITLE 'Update Social Security Number'
 ROW 5 'Employee Number.' WORK-EMP#
 ROW 7 'Social Security Number . .' MASK-SSN
 INITIATION. PROC
 MASK-SSN = 0
 MESSAGE 'ENTER EMPLOYEE NUMBER. PRESS F5 TO FIND.' +
 LEVEL INFORMATION
 END-PROC
 AFTER-SCREEN. PROC
 CASE KEY-PRESSED
 WHEN F5
 SELECT FROM KPERSNL +
 WHERE EMP# = :WORK-EMP#
 FETCH FROM KPERSNL
 IF NOT KPERSNL
 MESSAGE 'EMPLOYEE NOT FOUND. ENTER NEXT EMPLOYEE.'
 MOVE ZERO TO MASK-SSN
 ELSE
 SAVE-SSN = SSN
 MESSAGE 'ENTER NEW SSN. PRESS F6.' LEVEL INFORMATION
 CURSOR AT MASK-SSN
 END-IF
 WHEN F6
 MOVE KPERSNL TO WORK-AREA
 SELECT FROM KPERSNL +
 WHERE EMP# = :WORK-EMP# +
 FOR UPDATE
 FETCH FROM KPERSNL
 IF NOT KPERSNL
 MESSAGE 'EMPLOYEE ' WORK-EMP# ' NO LONGER ON FILE. +
 ENTER NEW EMPLOYEE. PRESS F5.'
 MOVE ZERO TO MASK-SSN

8–44 Programmer Guide

Sample Screen Applications

 GOTO SCREEN
 ELSE-IF SSN NE SAVE-SSN
 MESSAGE 'INTERMITTENT CHANGE DETECTED! RETYPE NEW +
 VALUE AND PRESS F6 TO UPDATE.' LEVEL WARNING
 SAVE-SSN=SNN
 GOTO SCREEN
 END-IF
 MOVE WORK-AREA TO KPERSNL
 UPDATE KPERSNL
 IF FILE-STATUS NE 0
 MESSAGE 'EMPLOYEE NOT UPDATED. REASON=' FILE-STATUS
 ELSE
 MESSAGE 'SSN UPDATED. ENTER NEXT EMPLOYEE. PRESS F5.' +
 LEVEL INFORMATION
 END-IF
 END-CASE
 END-PROC

Sample Screen Applications
Following are coding examples for several common screen applications. Included
application examples are:

■ Editing data and setting errors

■ Using dynamic screen attributes

■ Invoking other screen activities from a menu

■ Providing help screens for the terminal user

■ Providing field-specific help

■ Windowed screens

■ Action bar pull-downs.

Screen Processing 8–45

Sample Screen Applications

Editing Data and Setting Errors

CA-Easytrieve ROW statements provide automatic editing and error handling.
However, complex edits may require logic in the screen procedures. The next
example illustrates using an instream table file to verify the value typed for an
employee’s job category. When the search fails, the SET statement is used to
indicate the field as being in error and an appropriate error message is issued.
FILE KPERSNL INDEXED UPDATE WORKAREA 150
%PERSNL
FILE JOBTABLE TABLE INSTREAM
ARG 1 2 N
DESC 3 1 A
10X
25X
30X
...
ENDTABLE
SCREEN NAME EDIT-EMPLOYEE LINESIZE 80 ROWCOUNT 24
 KEY ENTER
 KEY F3 NAME 'Exit' EXIT
 TITLE 1 'Employee Edit Utility'
 ROW 3 'Enter the employee number and new job category.'
 ROW 5 'Employee number . .' EMP#
 ROW 7 'Job Category' JOB-CATEGORY
...
AFTER-SCREEN. PROC
 IF JOB-CATEGORY MODIFIED
 PERFORM SEARCH-JOB-CATEGORY-TABLE
 IF NOT JOBTABLE
 SET JOB-CATEGORY ERROR +
 'Job category is invalid. Please reenter.'
 ELSE
 PERFORM UPDATE-EMPLOYEE
 MESSAGE 'Job category updated.' LEVEL INFORMATION
 MOVE ZERO TO EMP# JOB-CATEGORY
 END-IF
 ELSE
 MESSAGE 'Job category not modified.' LEVEL WARNING
 JOB-CATEGORY = 0
 END-IF
END-PROC
SEARCH-JOB-CATEGORY-TABLE. PROC
 DEFINE WCAT W 1 A
 SEARCH JOBTABLE WITH JOB-CATEGORY GIVING WCAT
END-PROC
...

Using Dynamic Screen Attributes

The following example illustrates a screen activity that uses dynamic screen
attributes. DECLAREd attributes are used for the job category prompt text and
JOB-CATEGORY field. These DECLAREd attributes are initialized when created
with the DECLARE statement. When an error occurs, the attributes of both the
prompt text and field are changed to highlight the condition. When an error
condition does not exist, the normal attributes are used.

DECLARE TEXT-ATTR ATTR (GREEN ASKIP)
DECLARE FIELD-ATTR ATTR (TURQ)
DECLARE NORMAL-TEXT-ATTR ATTR (GREEN ASKIP)
DECLARE ERROR-TEXT-ATTR ATTR (YELLOW INTENSE REVERSE ASKIP ALARM)
DECLARE NORMAL-FIELD-ATTR ATTR (TURQ)
DECLARE ERROR-FIELD-ATTR ATTR (YELLOW INTENSE REVERSE ALARM)
SCREEN NAME EDIT-EMPLOYEE
 KEY ENTER

8–46 Programmer Guide

Sample Screen Applications

 KEY F3 NAME 'Exit' EXIT
 TITLE 1 'Employee Edit Utility'
 ROW 3 'Enter the employee number and new job category.'
 ROW 5 'Employee number . .' EMP#
 ROW 7 'Job Category' ATTR TEXT-ATTR +
 JOB-CATEGORY ATTR FIELD-ATTR
INITIATION. PROC
 EMP# = 0
 JOB-CATEGORY = 0
END-PROC
AFTER-SCREEN. PROC
 IF JOB-CATEGORY MODIFIED
 PERFORM SEARCH-JOB-CATEGORY-TABLE
 IF NOT JOBTABLE
 MESSAGE 'Job category is invalid. Please reenter.'
 TEXT-ATTR = ERROR-TEXT-ATTR
 FIELD-ATTR = ERROR-FIELD-ATTR
 ELSE
 PERFORM UPDATE-EMPLOYEE
 MESSAGE 'Job category updated.' LEVEL INFORMATION
 MOVE ZERO TO EMP# JOB-CATEGORY
 TEXT-ATTR = NORMAL-TEXT-ATTR
 FIELD-ATTR = NORMAL-FIELD-ATTR
 END-IF
 ELSE
 MESSAGE 'Job category not modified.' LEVEL WARNING
 JOB-CATEGORY = 0
 TEXT-ATTR = NORMAL-TEXT-ATTR
 FIELD-ATTR = NORMAL-FIELD-ATTR
 END-IF
END-PROC
...

Using a Menu

CA-Easytrieve allows you to implement a menu application by coding multiple
SCREEN activities within one CA-Easytrieve program. This example shows how
you can create a menu that executes other SCREEN activities as child screens. When
the child screen terminates due to an EXIT, the parent screen executes until the next
EXIT. This example also demonstrates the ability for the child screen to send a
message to be displayed on the parent screen.

Screen Processing 8–47

Sample Screen Applications

 FILE PERSNL INDEXED UPDATE WORKAREA 150
 %PERSNL
 DEFINE OPTION W 1 A
 SCREEN NAME MENU UPPERCASE
 KEY ENTER
 KEY F3 NAME 'Exit' EXIT
 TITLE 1 'Employee System Main Menu'
 ROW 3 'Type an option and an employee number, then press Enter.'
 ROW 5 'Option ' OPTION VALUE ('V', 'E', 'X') +
 ERROR 'Please type V, E, or X.'
 ROW 7 COL 25 'V View employee'
 ROW COL 25 'E Edit employee'
 ROW 11 'Employee Number . .' EMP# ATTR MUSTENTER +
 ERROR 'Please enter an employee name.'
 INITIATION. PROC
 EMP# = 0
 END-PROC
 AFTER-SCREEN. PROC
 CASE OPTION
 WHEN 'V'
 EXECUTE VIEW-EMPLOYEE
 WHEN 'E'
 EXECUTE EDIT-EMPLOYEE
 END-CASE
 END-PROC

 SCREEN NAME VIEW-EMPLOYEE
 DEFAULT FIELD ATTR (TURQ PROTECT)
 KEY F3 NAME 'Exit' EXIT
 TITLE 'Employee View Utility'
 ROW 3 'Number . .' EMP#
 ROW 'Name . . .' EMPNAME
 ROW 'SSN . . .' SSN
 ROW 'Dept . . .' DEPT
 ROW 'Phone . .' TELEPHONE
 BEFORE-SCREEN. PROC
 READ PERSNL KEY EMP# STATUS
 IF NOT PERSNL
 MESSAGE 'Employee number not found. Please re-enter.'
 EXIT
 END-IF
 END-PROC
 SCREEN NAME EDIT-EMPLOYEE COMMIT NOTERMINAL
 KEY ENTER
 KEY F3 NAME 'Exit' EXIT
 TITLE 'Employee Edit Utility'
 ROW 3 'Number . .' EMP#
 ROW 'Name . . .' EMPNAME
 ROW 'SSN . . .' SSN
 ROW 'Dept . . .' DEPT
 ROW 'Phone . .' TELEPHONE
 BEFORE-SCREEN. PROC
 READ PERSNL KEY EMP# STATUS
 IF NOT PERSNL
 MESSAGE 'Employee number not found. Please re-enter.'
 EXIT
 END-IF
 END-PROC
 AFTER-SCREEN. PROC
 WRITE PERSNL UPDATE
 MESSAGE 'Employee updated successfully.' LEVEL INFORMATION
 END-PROC

Providing Help Screens

CA-Easytrieve allows you to provide help screens for your terminal users. The
example in this topic illustrates how you can display a help screen from the main
menu used in the previous example.

8–48 Programmer Guide

Sample Screen Applications

The requirements to add a help screen to the menu are:

■ Add a KEY statement to the menu screen for F1. F1 is designated as an
IMMEDIATE key. This allows the user to request help even though the data
on the screen is in error. If IMMEDIATE is not specified, the user continues
to receive editing errors when he presses F1. He could never display the
help screen for the help needed to continue with the application.

■ In the AFTER-SCREEN procedure, test for when F1 is pressed. When true,
EXECUTE the screen activity, MENU-HELP.

■ After the EXECUTE statement, code a RESHOW statement. RESHOW tells
CA-Easytrieve to re-display the contents of the screen as it was received
when F1 was pressed. If the terminal user had entered data on the screen
then requested help, RESHOW allows your program to display the help
screen then re-display the original screen after the user exits the help screen.
If REFRESH or GOTO SCREEN are used here, the user’s data is lost.

■ Add the MENU-HELP SCREEN activity. Since the KEY statement for F3
automatically exits the screen and no other processing is required, you do
not need to code any screen procedures.

...
SCREEN NAME MENU UPPERCASE
 KEY ENTER
 KEY F1 NAME 'Help' IMMEDIATE
 KEY F3 NAME 'Exit' EXIT
 TITLE 1 'Employee System Main Menu'
 ROW 3 'Type an option and an employee number, then press Enter.'
 ROW 5 'Option ' OPTION VALUE ('V', 'E', 'X') +
 ERROR 'Please type V, E, or X.'
 ROW 7 COL 25 'V View employee'
 ROW COL 25 'E Edit employee'
 ROW 11 'Employee Number . .' EMP# ATTR MUSTENTER +
 ERROR 'Please enter an employee name.'
 AFTER-SCREEN. PROC
 IF KEY-PRESSED = F1
 EXECUTE MENU-HELP
 RESHOW
 END-IF
 CASE OPTION
 ...
 END-PROC
SCREEN NAME MENU-HELP
 KEY F3 NAME 'Exit' EXIT
 TITLE 'Employee Menu Help'
 ROW 3 COL 10 'The Employee System Menu provides the ability to view'
 ROW COL 10 'or edit an employee''s name, social security number,'
 ROW COL 10 'department, or telephone number.'
 ROW 7 COL 10 'Type V to view the employee data.'
 ROW 9 COL 10 'Type E to edit the employee data.'
 ROW 11 COL 10 'You must also type the employee''s number.'

Screen Processing 8–49

Sample Screen Applications

 Employee Menu Help

 The Employee System Menu provides the ability to view
 or edit an employee's name, social security number,
 department, or telephone number.

 Type V to view the employee data.

 Type E to edit the employee data.

 You must also type the employee's number.

F3=Exit

Field-specific Help

You can easily implement field-specific help screens using code similar to the
previous example combined with the IF CURSOR test:

■ The terminal user could press a function key while the cursor is in the field
for which he wants help.

■ Test each field on your screen to determine the position of the cursor in an
AFTER-SCREEN procedure.

■ EXECUTE a specific SCREEN activity that displays help for the specific field.

Code the AFTER-SCREEN procedure like this:
AFTER-SCREEN. PROC
 IF KEY-PRESSED = F1
 IF EMP# CURSOR
 EXECUTE EMP#-HELP
 ELSE-IF CURSOR NAME
 EXECUTE NAME-HELP
 ELSE-IF CURSOR SSN
 EXECUTE SSN-HELP
 ELSE-IF CURSOR TELEPHONE
 EXECUTE TELEPHONE-HELP
 END-IF
 RESHOW
 END-IF

8–50 Programmer Guide

Sample Screen Applications

Windowed Screens

CA-Easytrieve allows you to code pop-up windows or dialog boxes in your screen
declarations. Windows are easily coded by executing one screen activity from
another in which the second screen is smaller than the first. The following example
illustrates a pop-up window in which the terminal user is asked to confirm an
update request before the update is actually performed.

...
SCREEN NAME EMPLOYEE-UPDATE LINESIZE 80 ROWCOUNT 24
 KEY F3 NAME 'Exit' EXIT
 KEY F6 NAME 'Update'
 TITLE 1 'EMPLOYEE RECORD'
 ROW 3 'EMPLOYEE NUMBER' COL 24 EMP#
 ROW 6 'SOCIAL SECURITY NUMBER' SSN
 ROW 8 'LAST NAME' COL 24 NAME-LAST
 ROW 10 'FIRST NAME' COL 24 NAME-FIRST
 ...
 AFTER-SCREEN. PROC
 EXECUTE CONFIRM-WINDOW
 END-PROC
SCREEN NAME CONFIRM-WINDOW LINESIZE 40 ROWCOUNT 10 ROW 12 COL 20 +
 BORDER (SINGLE)
 KEY F6 NAME 'Update'
 KEY F12 NAME 'Cancel' EXIT IMMEDIATE
 TITLE 1 'Confirm Update'
 ROW 3 'Are you sure?'
 ROW 5 'Press F6 to update record'
 ROW 6 'Press F12 to cancel update'
 AFTER-SCREEN. PROC
 MOVE PERSNL TO WORK-AREA
 READ PERSNL KEY EMP#
 MOVE WORK-AREA TO PERSNL
 WRITE PERSNL UPDATE
 MESSAGE 'Record updated.' LEVEL INFORMATION
 EXIT
 END-PROC

Screen Processing 8–51

Sample Screen Applications

The first screen is defined as 24 rows by 80 columns. When the user presses F6 to
update the record, a second SCREEN activity, CONFIRM-WINDOW, is executed.
CONFIRM-ACTIVITY is defined as 10 rows by 40 columns and the upper-left
corner is located in row 12 column 20. This second screen overlays the first and
waits for the user to confirm the request before updating the record. The screen
looks like this:

 EMPLOYEE RECORD

 EMPLOYEE NUMBER 00370

 SOCIAL SECURITY NUMBER 256-52-8737

 LAST NAME NAGLE

 FIRST NAME MARY

 Confirm Update

 Are you sure?

 Press F6 to update record
 Press F12 to cancel update

 F6=Update F12=Cancel

 F3=Exit F6=Update

Action Bar Pull-Downs

You can use an action bar with a pull-down menu in your application by invoking
overlay screens. The following screen has an action bar at the top of the screen:

 EMPLOYEE RECORD

 Options
 +---------------+

 EMPLOYEE NUMBER 00370
 SOCIAL SECURITY NUMBER 256-52-8737

 LAST NAME NAGLE

 FIRST NAME MARY

 ...

 F3=Exit F10=Pulldown options

8–52 Programmer Guide

Sample Screen Applications

When the user presses F10, the following pull-down menu is displayed:

 EMPLOYEE RECORD

 Options
 +---------------+
 | Find>> |
 | Print | 00370
 | | BER 256-52-8737
 | |
 | F3=Exit | NAGLE
 +---------------+

 FIRST NAME MARY

 ...

 F3=Exit F10=Pulldown options

The following is the program code used for this example.
FILE PERSNL F(150) INDEXED UPDATE
%PERSNL
ACTION-BAR S 7 A VALUE 'Options'
DASH-LINE S 17 A VALUE '+---------------+'
FIND-ACTION W 8 A VALUE 'Find>>' RESET
PRINT-ACTION W 8 A VALUE 'Print' RESET
SCREEN LINESIZE 80 ROWCOUNT 24
 KEY F3 NAME 'Exit' EXIT
 KEY F10 NAME 'Pulldown options'
 TITLE 1 'EMPLOYEE RECORD'
 ROW 3 COL 2 ACTION-BAR ATTR (WHITE PROTECT)
 ROW 4 COL 2 DASH-LINE ATTR (WHITE PROTECT)
 ROW 6 'EMPLOYEE NUMBER' COL 24 EMP#
...
 AFTER-SCREEN. PROC
 EXECUTE PULLDOWN-WINDOW
 END-PROC
SCREEN NAME PULLDOWN-WINDOW LINESIZE 17 ROWCOUNT 7 ROW 4 COL 2 +
 BORDER (SINGLE ATTR (WHITE))
 KEY ENTER
 KEY F3 NAME 'Exit' EXIT IMMEDIATE
 ROW 1 FIND-ACTION
 ROW 2 PRINT-ACTION
 AFTER-SCREEN. PROC
 IF FIND-ACTION CURSOR
 EXECUTE FIND-WINDOW
 ELSE
 EXECUTE PRINT-JOB
 END-IF
 EXIT
 END-PROC

SCREEN-NAME FIND-WINDOW LINESIZE 27 ROWCOUNT 10 ROW 4 COL 18 +
 BORDER (SINGLE ATTR (WHITE))
 KEY ENTER
 KEY F3 NAME 'Exit' EXIT IMMEDIATE
 TITLE 'Find'
 ROW 3
 'Key. . .' EMP#
 AFTER-SCREEN. PROC
 READ PERSNL KEY EMP# STATUS
...

Screen Processing 8–53

Chapter

9 Graph Processing

Overview
CA-Easytrieve provides a facility for producing bit-mapped presentation graphs
with a non-procedural technique similar to reporting. The styles of graphs
available include pie charts, bar charts, line graphs, and scatter diagrams. The
graph facility controls graph format making assumptions based on best-fit.

Note: Graph processing is available only when using
CA-Easytrieve/Workstation.

Basic Structure

The CA-Easytrieve graph facility is fully declarative; you need only define the
style and content of the graph, and CA-Easytrieve creates the necessary
instructions to produce it. The following exhibit illustrates the basic structure of
a CA-Easytrieve JOB with graph processing. You can define one or more graphs
for each JOB activity.
 CA-Easytrieve Program

 FILE
 (library)
INPUT
DATA JOB
 (job activity)
 DRAW GRAPH1
 DRAW GRAPH2

 GRAPH GRAPH1

 GRAPH GRAPH2

Graph Processing 9–1

Overview

DRAW Statement Processing

The DRAW statement activates the graph logic defined by GRAPH declarations.
CA-Easytrieve extracts the data required for the requested graph, formats it in
the specified manner, and sends it to the terminal for display and, optionally,
printing.

The immediate result of a DRAW statement is to store the data in a work or
spool file. The normal termination of each JOB activity includes the processing
of any graph work files created during the JOB activity. At this time, each graph
is displayed at the terminal in the order in which the GRAPH subactivity is
defined. If the JOB activity abends or terminates due to a STOP EXECUTE
statement, the graph work files are not processed.

Graph Format

The CA-Easytrieve graph display format is illustrated below:

 Title Area

 Work Area

 Function Key Area

Title Area

The optional title area consists of a single line designated as the title by a TITLE
statement in the graph declaration.

Work Area

The work area contains the display of data points specified on the VALUE
statement. The y-value data points are optionally summarized and categorized
by x-value. The work area also displays a legend identifying the data.
CA-Easytrieve fields are identified by their headings. The following rules
control the heading; the order in which they are listed indicates the hierarchy of
override:

9–2 Programmer Guide

Overview

1. The NOHEADING parameter of the GRAPH statement inhibits the printing
of any headings.

2. The HEADING statement sets the item heading content.

3. The HEADING parameter of the DEFINE statement sets the item heading
content.

4. The field-name of the DEFINE statement sets the item heading content.

5. Numeric literals used as graph values do not have headings. Numeric
literals are useful for displaying a graph having a count of categorized
records.

Function Key Area

The function key area shows the system-defined function key assignments for
the graph view facility. Using these keys you can receive help, exit the view, or
print the graph to the default print device.

GRAPH Statement

You define a graph in CA-Easytrieve by coding a GRAPH statement followed by
a series of graph definition statements. You must code the GRAPH statement
first in a GRAPH declarative. The GRAPH statement establishes the style and
characteristics of the graph. See Graph Statement in the CA-Easytrieve Language
Reference Guide for complete explanations of GRAPH statement parameters.

Graph Definition Statements

A set of graph definition statements defines every CA-Easytrieve graph. The
statements define the graph style, format, sequence, and data content. Graph
definition statements are the last statements coded in a JOB activity. The
statements are combined to make a subactivity. All subactivities (REPORTs and
GRAPHs) must appear at the end of the JOB activity. The graph definition
statements must be coded in the order as shown below.
 ...
 JOB ...
 ...
 DRAW ...
 ...
 GRAPH
Graph {SEQUENCE
Definition {TITLE
Statements {HEADING
 {VALUE

■ SEQUENCE - optionally specifies the order of the graph values. You would
normally sequence the values by the x-value.

Graph Processing 9–3

Processing a Graph

■ TITLE - defines optional title items and their position on the title line.

■ HEADING - optionally defines an alternative heading or label for a field.

■ VALUE - defines the content of the graph. The x-value is used as the
horizontal axis of the graph. One or more numeric y-values are used on the
vertical axis of the graph.

See the CA-Easytrieve Language Reference Guide for complete syntax.

Processing a Graph
CA-Easytrieve performs the following steps to produce graphs:

Step 1: For each DRAW statement executed, a spool file record is written to a
temporary work file. The spool file record contains the contents of all the fields
coded in the GRAPH subactivity.

Step 2: At normal termination of the JOB activity, each graph spool file is closed,
optionally sequenced, and re-opened.

Step 3: A temporary graph metafile is created. This file becomes the input to the
Graph Display Facility. The Graph Display Facility actually displays the graph.

Step 4: Each record from the spool is read and the sequence and title fields are
discarded. The x-value and y-value fields are written to the metafile.

Step 5: The graph spool file is closed and deleted.

Step 6: The metafile is closed.

Step 7: The Graph Display Facility is invoked to display the graph via an
MS-DOS shell. This facility reads the metafile and performs the summation of
the y-values for duplicate x-values if SUMMARY is specified on the GRAPH
statement.

Step 8: The graph is displayed on the terminal.

Step 9: If you press F6, the graph is printed to the default printer device.

Note: The MS-DOS GRAPHICS.COM program must be loaded before printing
a graph.

Step 10: When you press F3, the Graph Display Facility terminates and deletes
the metafile.

Step 11: Program execution continues.

9–4 Programmer Guide

Sample Graph Applications

Sample Graph Applications
Following are coding examples for several common graph applications.
Included application examples are:

■ Pie chart

■ Bar charts

■ Line chart

■ Scatter diagram.

Pie Chart

The following program produces a pie chart showing the summary of gross pay
categorized by region. If you do not specify a STYLE on the GRAPH statement,
CA-Easytrieve defaults to a pie chart.
FILE PERSNL
%PERSNL
JOB INPUT PERSNL NAME DISPLAY-GRAPH
 DRAW PAY-BY-REGION
GRAPH PAY-BY-REGION SUMMARY
 SEQUENCE REGION
 TITLE ‘Gross Pay By Region’
 VALUE REGION PAY-GROSS

The chart created appears below:

Graph Processing 9–5

Sample Graph Applications

Vertical Bar Chart

The following program produces a vertical bar chart showing the summary of
gross pay categorized by region.
FILE PERSNL
%PERSNL
JOB INPUT PERSNL NAME DISPLAY-GRAPH
 DRAW PAY-BY-REGION
GRAPH PAY-BY-REGION SUMMARY STYLE ‘VBAR’
 TITLE ‘Gross Pay By Region’
 VALUE REGION PAY-GROSS

The chart created appears below:

9–6 Programmer Guide

Sample Graph Applications

Horizontal Bar Chart

The following program produces a horizontal bar chart showing the count of
employees by department. The numeric literal 1 is used to count the employees.
FILE PERSNL
%PERSNL
JOB INPUT PERSNL NAME DISPLAY-GRAPH
 DRAW EMPLOYEES-BY-DEPARTMENT
GRAPH EMPLOYEES-BY-DEPARTMENT SUMMARY STYLE ‘HBAR’
 TITLE ‘Employees By Department’
 VALUE DEPT 1

The chart created appears below:

Graph Processing 9–7

Sample Graph Applications

Line Chart

The following program produces a line chart showing the summary of gross pay
categorized by region.
FILE PERSNL
%PERSNL
JOB INPUT PERSNL NAME DISPLAY-GRAPH
 DRAW PAY-BY-REGION
GRAPH PAY-BY-REGION SUMMARY STYLE ‘LINE’
 TITLE ‘Gross Pay By Region’
 VALUE REGION PAY-GROSS

The chart created appears below:

9–8 Programmer Guide

Sample Graph Applications

Scatter Diagram

The following program produces a scatter diagram showing the correlation
between gross pay and salary code.
FILE PERSNL
%PERSNL
JOB INPUT PERSNL NAME DISPLAY-GRAPH
 DRAW GROSS-VS-SALARY-CODE
GRAPH GROSS-VS-SALARY-CODE STYLE ‘SCATTER’
 TITLE ‘Correlation of Gross Pay and Salary Code’
 VALUE SALARY-CODE PAY-GROSS

The diagram created appears below:

Graph Processing 9–9

Chapter

10 System Services

CA-Easytrieve Macro Facility
The Macro Facility permits you to easily duplicate often-repeated source
statements in any program. This enables you to tailor CA-Easytrieve to the
programming standards of your installation.

Even the most inexperienced programmer can effectively use CA-Easytrieve
macros. The macro library allows you to store the data definition statements of
frequently used files using standardized data-naming conventions.

This chapter first discusses how macros are invoked using the macro invocation
statement. Second, it discusses the two parts of a macro:

■ The macro prototype statement

■ The macro body.

This chapter concludes with a description of macro processing and parameter
substitution.

Macro Invocation Statement

The macro invocation statement consists of a macro name preceded by a percent
(%) sign.

Syntax
%macro-name [positional-parameters]...[keyword-parameters]

macro-name Supply the name of a previously stored macro that you want to
invoke.

positional-parameter Supply values of positional parameters in the macro.
You must supply positional parameters before any keyword parameters.

System Services 10–1

CA-Easytrieve Macro Facility

keyword-parameter Supply both the keyword and values of keyword
parameters in the macro.

Invoking Macros

To invoke a macro, you code a macro invocation statement anyplace within the
CA-Easytrieve source program. Macro invocation statements cause a series of
statements to be retrieved from the macro library and included as source
statements in the CA-Easytrieve program. The series of statements can be
modified by parameters supplied on the macro invocation statement.
Source Input Macro Library

 macro-1
...
macro-1 invocation series of
... macro-1
macro-2 invocation statements
...
 ...
 macro-2

 series of
 macro-2
 statements

 ...
 Produces

 CA-Easytrieve input

 ...
 macro-1
 expanded
 statements
 ...
 macro-2
 expanded
 statements
 ...

Macro Library

Mainframe macro statements are stored and maintained in a macro library. Each
macro library is connected by your system administrator. You can enable or
disable the libraries as required. See the CA-Easytrieve/ESP User Guide for more
information.

Macro Files

UNIX and Workstation macro statements are stored as files. Each macro is
stored in a file named xxxxxxxx.mac where xxxxxxxx is the macro’s name. See
the CA-Easytrieve/Workstation User Guide or the CA-Easytrieve for UNIX User
Guide for more information.

10–2 Programmer Guide

CA-Easytrieve Macro Facility

Macro Library Security

CA-Easytrieve allows you to protect your macro statements with the use of an
ACCESS record. For both CA-Panvalet and VSAM macro storage access
methods, the ACCESS record can appear anywhere in the CA-Easytrieve
program prior to the retrieval of the macro, and remains in effect until the next
ACCESS record is encountered. The ACCESS record must be on a record by
itself. CA-Easytrieve does not print the ACCESS record. Refer to the
CA-Easytrieve/Online Administrator Guide for detailed information about creating
and maintaining macro libraries.

CA-Panvalet

In addition to having the maintenance and backup capabilities provided by
CA-Panvalet, CA-Easytrieve gives you the ability to secure the macro against
unauthorized access. This is accomplished through a security access code which
can be applied to a CA-Panvalet member.

A security access code applies to an individual CA-Panvalet library member.
You must supply the security access code on an ACCESS record before
CA-Easytrieve can retrieve a secured member. The syntax is:
ACCESS 'eight-byte code'

VSAM

VSAM provides the capability of protecting the macro library through the use of
VSAM password protection. Before CA-Easytrieve can retrieve a macro from a
secured library, you must supply the library password on an ACCESS record
prior to the first macro call. The syntax is:
ACCESS 'eight-byte password'

Macro Definition

Macros consist of three parts:

1. The macro prototype, which defines the parameters of the macro.
2. The macro body, which contains the CA-Easytrieve statements to be

generated by a macro invocation statement.
3. The optional macro termination command.

System Services 10–3

CA-Easytrieve Macro Facility

A macro’s name is the same as the member name in the macro storage library.
The following illustrates the parts of a macro:

 PROTOTYPE
 STATEMENT MACRO 2 NUMBER RESULT

 **
 * *
 * NAME: MACRO EXAMPLE *
 * CALCULATE THE CUBE OF A NUMBER *
 * *
 BODY * FUNCTION: THIS MACRO CALCULATES THE CUBE OF A NUMBER.*
 * *
 **
 DEFINE CUBE_NUMBER_ S 6 N VALUE 000000
 CUBE_NUMBER_ = &NUMBER * &NUMBER * &NUMBER
 &RESULT = CUBE_NUMBER_

 Optional
 Termination MEND
 Command

Macro Prototype Statement

The prototype statement must be the first statement of a macro. It optionally
defines the parameters of the macro. Either positional and/or keyword
parameters can be used.

Positional Parameters

Use positional parameters when a value is always required for the parameter
each time the macro is invoked. Frequently used parameters are often
positional, since you need to code only the value of the parameter.

Keyword Parameters

Use keyword parameters:

■ To help keep track of a large number of parameters

■ To specify optionally-used parameters

■ To specify a default value for parameters.

Prototype Examples

Following are examples of macro prototype statements. The first example shows
a macro with no substitution parameters:
MACRO
...
...

This example shows a macro with only positional parameters. The number of
positional parameters is not indicated. You could have coded the optional
parameter as a 2.

10–4 Programmer Guide

CA-Easytrieve Macro Facility

MACRO POS1 POS2
...
...

This example shows a macro with only keyword parameters. Here you code the
number of positional parameters as zero. This is a required parameter when you
use keyword parameters.
MACRO 0 KEY1 VALUE1 KEY2 VALUE2
...
...

This example shows a macro with positional and keyword parameters. Here
you code the number of positional parameters as a 1.
MACRO 1 POS1 KEY1 VALUE1
...
...

Macro Body

The macro body consists of a series of model and actual CA-Easytrieve
statements. The model statements contain one or more parameters that are
replaced by the values of corresponding parameters on the prototype statement.

Macro Termination Command

The optional macro termination command is used at the end of a macro. Its
syntax is:
MEND

Macro Processing

Macro processing occurs whenever a macro invocation statement appears in a
CA-Easytrieve program. You designate a macro invocation by prefixing a ‘%’
(percent sign) to the macro name. Each macro invocation retrieves a copy of the
macro from the library and, if necessary, replaces parameters with their
corresponding values from the macro invocation statement or the prototype
statement.

Parameter Substitution

The rules for substituting macro parameters are the basic rules-of-syntax and the
following:

■ You must specify positional parameter values on the macro invocation
statement in the same order that they appear on the prototype statement.

System Services 10–5

CA-Easytrieve Macro Facility

■ CA-Easytrieve gives the value of a null string to unsupplied positional
parameter values. The parameter is treated as nonexistent.

■ You can specify keyword parameter values in any order on the macro
invocation statement.

■ CA-Easytrieve gives unsupplied keyword parameter values the default
value from the prototype statement.

■ Within the body of a macro, the ampersand (&) is the prefix concatenated to
parameter substitution words. You must spell parameter substitution words
exactly like their counterparts on the macro prototype except for the leading
ampersand. Delimit parameter substitution words with a space or a period
(.). Use a period when the substituted value is to be concatenated with
another word. CA-Easytrieve deletes the period when the parameter is
replaced by its value. When you want to use an ampersand in the body of
the macro, you must code two consecutive ampersands (&&).

CA-Easytrieve treats a macro invocation statement within the body of a macro
(nested) as if it were outside of the macro. Any number of nesting levels can be
used.

Examples

The following example illustrates positional parameter substitution. The second
parameter value (‘ ‘) is supplied only to maintain correct positioning for the third
parameter (‘FB (150 1800)’).

 Macro invocation Macro member = FILE

 ... MACRO NAME TYPE FORMAT
 %FILE TESTIN ' ' + FILE &NAME &TYPE &FORMAT
 'FB (150 1800)'
 ...

 Produces
 ...
 FILE TESTIN FB (150 1800)
 ...

The next example illustrates keyword parameter substitution. The default value
of a space for the second keyword entry (TYPE) is an efficient way to code
parameters that are used infrequently.

 Macro invocation Macro member = FILE

 MACRO 0 NAME FILEA +
 %FILE NAME TESTIN + TYPE ' ' +
 FORMAT 'V (1000)' + FORMAT 'FB(150 1800)'
 TYPE VIRTUAL
 ... FILE &NAME &TYPE &FORMAT

 Produces
 ...
 FILE TESTIN VIRTUAL V (1000)
 ...

10–6 Programmer Guide

CA-Easytrieve Macro Facility

Parameter Substitution in a Macro

This example illustrates the use of the ampersand within a macro body statement
and concatenated substitution words. The extra ampersand and the periods used
for concatenation are not part of the resulting statements.

 Macro invocation Macro member = FILE

 ... MACRO NAME PREFIX
 %FILE TESTIN NEW FILE &NAME
 ... &PREFIX.-SSN 1 9 N
 &PREFIX.-MAIL 10 75 A, +
 HEADING 'NAME && ADDRESS'

 Produces
 ...
 FILE TESTIN
 NEW-SSN 1 9 N
 NEW-MAIL 10 75 A, +
 HEADING 'NAME & ADDRESS'
 ...

Instream Macros

Macro statements can also be included in the source input to CA-Easytrieve.
This capability is particularly useful for testing new macros prior to storing them
in the macro library. When an instream macro has the same name as a macro in
the library, the instream macro is used.

Instream macros are placed at the beginning of the source input prior to any
other statements. Each instream macro is bounded by an MSTART and MEND
statement. The format of these statements is:

 MSTART macro-name
 MACRO 2 NUMBER RESULT
 **
 * *
 * NAME: MACRO EXAMPLE *
 * CALCULATE THE CUBE OF A NUMBER *
 * *
 * FUNCTION: THIS MACRO CALCULATES THE CUBE OF A NUMBER. *
 * *
 **
 DEFINE CUBE_NUMBER_ S 6 N VALUE 00000
 CUBE_NUMBER_ = &NUMBER * &NUMBER * &NUMBER
 &RESULT = CUBE_NUMBER_
 MEND

Macro-name is the name of the macro. It can be from one to eight characters long.
The first character must be alphabetic.

System Services 10–7

CA-Easytrieve Macro Facility

Example

This example illustrates the use of instream macros.
Statements:

 MSTART EXMACRO
 MACRO 2 NUMBER RESULT
 PUSH
 SKIP 1
 SKIP 1
 LIST OFF

 * *
 * NAME: MACRO EXAMPLE *
 * CALCULATE THE CUBE OF A NUMBER *
 * *
 * FUNCTION: THIS MACRO CALCULATES THE CUBE OF A NUMBER. *
 * *

 POP
 SKIP 1
 DEFINE CUBE_NUMBER_ S 6 N VALUE 000000
 SKIP 1
 CUBE_NUMBER_ = &NUMBER * &NUMBER * &NUMBER
 &RESULT = CUBE_NUMBER_
 SKIP 1
 MEND
 *
 DEFINE CUBED_RESULT W 6 N VALUE 000000 MASK (J 'ZZZZZ9')
 JOB INPUT NULL NAME MACROI
 %EXMACRO 3 CUBED_RESULT
 DISPLAY CUBED_RESULT
 STOP

Produce:

 27

10–8 Programmer Guide

 Glossary

activity section
A required section of a CA-Easytrieve program
in which the executable statements (procedural
or declarative) that process your data are coded.

alphanumeric literal
A word enclosed in single quotes, up to 254
characters long, consisting of alphabetic
characters A through Z, and numeric characters
0 through 9.

arithmetic expression
An expression that enables two or more numeric
quantities to be combined to produce a single
value.

array
A series of consecutive memory locations in one
or more dimensions.

assignment
Establishing the value of a field as a result of
simple data movements, an arithmetic
expression, or logical bit manipulation.

bounds checking
A process that automatically checks that indexes
and subscripts do not reference data outside the
storage boundary of the field being referenced.

commit point
A point at which updates are committed to the
operating system.

commit processing
A process that issues commands to the
operating environment signifying the end of one
unit of work and the start of the next.

conditional expression
Program logic using a statement that offers an
alternative to the normal top-to-bottom
execution of a program.

control report
A report that automatically accumulates and
prints totals of quantitative report information.

conversational program
In a CICS environment, a program in which
CA-Easytrieve does not issue a commit point
during each terminal I/O. See SCREEN
COMMIT Parameter in the “Screen Processing”
chapter for more information.

decision/branching logic
Controlling the execution of a program by
coding statements that govern the flow of a
program depending on the truth value of a
conditional expression.

double-byte character set (DBCS)
A character representation for a national
language, such as Japanese, where the number
of characters used by the national language
cannot be represented by a single byte character
set (SBCS), such as EBCDIC or ASCII.

environment section
An optional section of a CA-Easytrieve program
that enables you to customize the operating
environment for the duration of a program’s
compilation and execution by overriding
selected general standards. See the PARM
Statement.

 Glossary–1

external table
Table data that is located in a file external to the
program. An external table is established just
before use.

graph definition statements
A set of CA-Easytrieve statements that defines a
graph style, format, sequence, and data content.

graph format
The display format of a CA-Easytrieve graph,
consisting of a title area, work area, and
function key area.

GRAPH subactivity
An area in a JOB activity where graphs are
described.

hexadecimal literal
A word used to code a value that contains
characters not available on standard data entry
keyboards. A hexadecimal literal must be
prefixed with X’, and terminated with a single
quote, and can contain digits 0 through 9, and
letters A through F.

indexing
A data reference that results from
CA-Easytrieve deriving a displacement value to
correspond to a particular occurrence in a field
name defined with OCCURS. See Array
Processing for more information.

input edit pattern
A sequence of characters that describes the
format of the data in the field.

instream macro
Macro statements that are included in the source
program input to CA-Easytrieve.

instream table
Table data within the program immediately
following the argument (ARG) and description
(DESC) fields for the file. An instream table is
established at the time the program is compiled.

JOB activity
An activity in a CA-Easytrieve program that
reads information from files, examines and
manipulates data, writes information to files,
and initiates reports and graphs.

label report format
An alternate CA-Easytrieve report format that is
used to prints labels.

library section
An optional section of a CA-Easytrieve program
that describes the data to be processed by the
program. A library section is optional only if a
program is not doing any input or output of
files.

macro
One or more often-repeated CA-Easytrieve
source statements that you can save to use in
more than one program or multiple times within
a program.

mask
A user-supplied sequence of characters against
which CA-Easytrieve edits data input into a
numeric field.

MIXED format literal
A word that contains both DBCS and SBCS
characters.

native SQL statements
CA-Easytrieve SQL statements, prefixed by the
SQL keyword, that are equivalent to many of
those available in COBOL.

null data value
A value that denotes the absence of a known
value for a field.

pattern
A user-supplied sequence of characters that
describes the format of data in a field. Used to
edit complex combinations of data types and
character sequences.

Glossary–2 Programmer Guide

standard report format

PROGRAM activity
An activity in a CA-Easytrieve program that is a
simple top-down sequence of instructions.

pseudo-conversational program
In a CICS environment, a program in which
CA-Easytrieve issues a commit point during
each terminal I/O. See SCREEN COMMIT
Parameter in the “Screen Processing” chapter
for more information.

report definition statements
A set of CA-Easytrieve statements that define
the report type, format, sequence, and data
content of a report.

report procedures
Routines provided in CA-Easytrieve that
perform special data manipulation for a report.

REPORT subactivity
An area in a JOB activity where reports are
described.

rollback
A process that recovers the updates made since
the last commit point.

S (static) working storage field
A field that is stored in a static working storage
area and is not copied onto report work files.

screen attributes
Information that controls the display of screen
items, such as color and brightness.

screen definition statements
A set of CA-Easytrieve statements that define
screen format and data content.

screen format
The layout of a CA-Easytrieve screen that
consists of a title area, work area, message area,
function key area, and border. The size of the
screen defaults to the values specifies in the Site
Options Table.

screen item
A field or literal that you want to display to or
receive from the terminal user.

screen procedures
Routines provided in CA-Easytrieve that
perform customized actions specific to your
screen application.

SCREEN activity
An activity in a CA-Easytrieve program that
defines a screen-oriented transaction.

segmented data
A common data structure in which each record
contains a fixed portion of data and multiple
occurrences of data segments.

sequenced report
A report in which data items used in the report
are sorted.

signed (quantitative) field
A numeric field with decimal positions (0 to 18).

single-byte character set (SBCS)
A character representation where each character
occupies a single byte of storage.

Site Options Table
A table installed with CA-Easytrieve containing
options that control the compilation and
execution of your programs. You can customize
the Site Options Table to your specific
requirements.

SORT activity
An activity in a CA-Easytrieve program that
creates sequenced or ordered files.

standard report format
The CA-Easytrieve default format of a report
that consists of a top margin, an optional title
area, an optional heading area, the report body,
and a bottom margin.

 Glossary–3

state tables
Examine each character in a string to determine
if the string is acceptable or not. Each character
examined causes a transition from one state to
the next. Most compilers use state tables for
recognizing tokens, such as labels or identifiers.

subscript
An integer (or a field containing an integer) that
represents the occurrence number of the element
within the array to be referenced.

Synchronized File Processing (SFP)
A facility in CA-Easytrieve that performs
match/merge operations on multiple files, or
compares the contents of a key field or fields
from one record to the next in a single file.

SYSPRINT
The default CA-Easytrieve system output
printer, whose actual destination is set in the
Site Options Table.

system default masks
Edit masks supplied by CA-Easytrieve.

system-defined fields
Special read-only data fields provided by
CA-Easytrieve that are stored as part of working
storage.

table
A collection of uniform data records. The
argument uniquely identifies a table entry; the
description is the remainder of the table entry.

unsigned (non-quantitative) field
A numeric field with no decimal positions.

Virtual File Manager (VFM)
A CA-Easytrieve sequential access method that
processes work files needed by a program.

W (work) working storage field
A field that is copied onto the report work files
at the time a PRINT statement is executed.

Glossary–4 Programmer Guide

 Index–1

 Index

%

% (percent sign) 10-5

%macro-name 10-1

&

& (ampersand) 10-6, 10-7

/

/C (compiler) compiler switch 2-73, 2-76

/FR (Far Reference) compiler switch 2-73, 2-76, 2-77

A

ACCESS record 10-3

ACTION message level 8-26, 8-28

ACTIVITY parameter 2-26

Activity section 2-3

AFTER-BREAK report procedure 7-40

AFTER-LINE report procedure 7-38

AFTER-SCREEN screen procedure 8-31, 8-33, 8-34,
8-35

Alphanumeric editing 8-17

Alphanumeric literals 2-14

Arithmetic expressions 2-32

evaluating 2-33

Arithmetic operators 2-32

Array processing 2-44
bounds checking 2-45
multiple dimension arrays 2-46
single dimension arrays 2-45
subscripting 2-49, 2-50
subscripts 2-78

Arrays
displaying on a screen 8-27
two-dimensional 8-28

ASCII
alpha (A) data format 2-17
alphanumeric literals 2-14
data formats 2-15
hexadecimal literals 2-14

Assembler calling convention 2-60

Assembler subprogram linkage 2-57

Assignment statement 2-7, 2-31, 2-35
mainframe EBCDIC to DBCS conversion 2-36
rules 2-36

Assignments and moves 2-31

ATTR parameter 2-12, 8-5, 8-8, 8-26

Automatic editing
against values 8-25
alphanumeric 8-16
numeric 8-15

Automatic file input 3-3
IDMS interface 5-1
IMS/DLI interface 6-1, 6-4

Axis, graph 9-4

B

Bar chart example 9-6, 9-7

Index–2 Programmer Guide

BASIC calling convention 2-60

BEFORE procedure 3-22

BEFORE-BREAK report procedure 7-39

BEFORE-LINE report procedure 7-38

BEFORE-SCREEN screen procedure 8-31, 8-33

Binary fields 2-78

Binary numbers 2-7, 2-8

Borders, screen 8-3

Bounds checking 2-45
on the workstation 2-79

Branch actions 8-33

Branching logic 2-29

BREAK-LEVEL field 7-8

BTRIEVE 3-33

BWZ (blank when zero) 8-16

C

C calling convention 2-60

CA-Easytrieve publications 1-3

CA-Easytrieve/ESP interactive execution 2-77

CA-IDMS See IDMS interface

CALL statement 2-55
stack usage on workstation 2-61

CA-Panvalet member security 10-3

CARD files 3-4

CARD input of sequential files 3-11

CA-SuperCalc 3-10, 3-35

Child programs 2-71

CICS
coding efficient programs 2-79
printer files 3-28
pseudo-conversational programs 8-36
sort program 3-21
SYNCPOINT command 2-28
SYNCPOINT ROLLBACK command 2-28
terminal identification 8-7

C-ISAM files 2-29, 3-38

CLOSE statement 4-18

COBOL subprogram linkage 2-58

Code system 2-15, 2-16
DBCS 2-18, 2-19, 2-20

Comma-delimited files 3-10, 3-35

Commit processing 2-25, 8-40
automatic 2-26
commit points 2-25

COMMIT statement 4-4

Communications block (IDMS interface) 5-11

Compiler options, efficient use 2-78

Compiler switches 2-76
/C (compiler) 2-73
/FR (Far Reference) 2-73

Conditional expressions 2-30
combining 2-31
DBCS and MIXED field support 2-31
EBCDIC to DBCS conversion 2-31
synchronized file processing 3-26

CONNECT statement 4-18, 4-24

Control break 7-18

CONTROL reports
summary file 7-32

CONTROL Reports
annotating 7-40
referencing data 7-18

CONTROL statement 7-7, 7-17
label reports 7-16

Controlled file input
IMS/DLI interface 6-9

Controlled input processing 3-3

Controlled processing, IDMS interface 5-1

Conventions, syntax 1-5

Conversion rules
mainframe 2-18
workstation 2-14

COPY statement 5-15

Create mode 3-7

CURSOR attribute 8-26

CURSOR statement 8-26

Customization, environment 2-3

 Index–3

D

Data availability tests 3-6

Data buffering mode 3-3

Data description 2-3

Data formatting
ASCII 2-15
EBCDIC 2-15
rules 2-13

Data references 2-8

Data strings, evaluating 2-53

Data, segmented 2-51

Database records
use of 5-15

DBASE 3-10, 3-33

DBCS
code system 2-18, 2-19
data format 2-20
format literals 2-22

Decision and branching logic 2-29

DECLARE statement 2-12, 2-13, 8-5

DEFAULT FIELD ERROR statement 8-26

DEFAULT FIELD statement 8-10

DEFAULT KEY statement 8-30

DEFAULT LITERAL statement 8-10

DEFAULT MESSAGE statement 8-29

DEFAULT TITLE statement 8-8

DEFINE statement 2-5, 4-17, 4-23, 8-13, 9-3
HEADING parameter 7-11

Defining fields 2-5

Defining files 2-5

Development process 2-1

Device types 3-28

Direct access mode 3-8

DISPLAY HEX 2-11

DISPLAY statement 7-1, 7-35

Distributable applications 1-11

DO statement 2-30

Documentation conventions 1-5

DRAW statement 9-2, 9-4

DTLCOPY subparameter 7-27

DTLCOPYALL subparameter 7-28

DTLCTL parameter 7-23

Dynamic access mode 3-8, 3-9

E

EBCDIC
alpha (A) data format 2-17
alphanumeric literals 2-14
data formats 2-15
hexadecimal literals 2-14

Edit masks 8-13, 8-15, 8-16
hexadecimal 8-14
patterns 8-16

Edit patterns 2-13

Element record definitions, IDD interface 5-8

Element records, use of 5-10, 5-15

ENDPAGE report procedure 7-41

END-REPEAT statement 8-2, 8-10, 8-27

ENDTABLE statement 2-43

Environment section 2-3

EOF processing 4-13

Error condition handling
mainframe 2-59
workstation 2-65, 2-70

Error conditions 3-6
screens 8-25

Error messages, subprogram exits 2-65

EXIT action 8-30, 8-33, 8-36

Exit parameter list 2-62

Exits 2-62
error condition handling 2-59
file 2-54, 2-55
FILE EXIT Linkage 2-66
file exits example 2-63

Explicit connect 4-7

Index–4 Programmer Guide

Expressions, arithmetic 2-32

Extended reporting 7-46

F

FABS ISAM files 3-14
on the workstation 3-32

FAR PASCAL calling convention 2-60

FETCH statement 4-20

Field definitions 2-5
IDD interface 5-8

Fields
assigning and moving 2-11
binary 2-78
comparing 2-12
copying 2-32
defining 2-5
file fields 2-6
integer 2-78
packed decimal 2-78
quantitative 2-7
unsigned (non-quantitative) 2-8
varying length 2-10, 2-11, 2-40
working storage 2-6

File access modes 3-8

File browse mode 3-9

File buffers 3-3

File definitions 2-5, 3-2
IDD interface 5-8

FILE EXIT linkage
MODIFY file exit 2-69

FILE EXIT Linkage 2-66

File exits 2-54, 2-55
example 2-63

File fields 2-6

File input, synchronized 3-22

File processing
modes 3-7
rules 3-3

FILE statement 2-5, 3-2, 3-13, 3-15, 3-28, 7-32
CODE parameter 3-31
EXIT parameter 2-54, 2-59, 2-62
MODIFY subparameter 2-63

on the workstation 3-29
PRINTER device type 3-28
SYSTEM parameter 3-2, 3-29
WORKAREA parameter 3-4, 3-6

Files
BTRIEVE 3-33
CA-SuperCalc 3-35
C-ISAM 3-38
closing 3-7
comma-delimited 3-35
DBASE 3-33
host mainframe 3-36
LOTUS 3-34, 3-36
opening 3-7
UNIX 3-37

FILE-STATUS field 3-5, 3-6

FILL parameter 8-12

Fonts
defined 7-46
font codes 7-49
identification 7-49

Footers
page 7-41
report 7-42

Format relationship rules
mainframe 2-20
workstation 2-15

Format rules
mainframe 2-18
workstation 2-14

FORTRAN calling convention 2-60

Function keys 8-30
branch actions 8-30
IMMEDIATE 8-31
symbolic names 8-31

G

GIVING parameter 2-72, 2-74

GOTO JOB statement 2-2

GOTO SCREEN statement 2-2, 8-33, 8-34

Graph definition statements 9-3

Graph Display Facility 9-4

Graph format

 Index–5

function key area 9-3
title area 9-2
work area 9-2

Graph processing
display format 9-2
graph definition statements 9-3
metafile 9-4
printing 9-4
sample applications 9-5
steps 9-4

GRAPH statement 9-3, 9-4
NOHEADING parameter 9-3

GRAPH subactivity 2-4, 2-23, 9-1, 9-4

GRAPHICS.COM program 9-4

H

HEADING statement 7-11, 9-3, 9-4

Hexadecimal literals 2-14

HLLAPI 2-74, 3-10, 3-36

Hold/release processing 3-9

Horizontal axis on graph 9-4

Horizontal bar chart example 9-7

Host interface, workstation 2-74

Host mainframe files 3-36

Host variables 4-7, 4-12

I

IDD interface 5-8
array definitions 5-9
default INDEX name 5-9
element record definitions 5-2, 5-8
field definitions 5-2, 5-8
file definitions 5-2, 5-8
logical record definitions 5-2, 5-8
program name 5-9
qualification 5-9
record definitions 5-2, 5-8
segmented data 5-9

IDMS databases See IDMS interface

IDMS interface 5-10
automatic input 5-15
COMMIT command 2-28, 2-29
communications block 5-11
control statements 5-22
FINISH command 2-28, 2-29
IDD control statements 5-8
processing on the workstation 5-3
ROLLBACK command 2-28, 2-29
sample database 5-5
sample logical record 5-7
Sequential Processing Facility (SPF) 5-1
tickler file 5-1, 5-16

IF CURSOR statement 8-38, 8-50

IF MODIFIED statement 8-38

IF statement 2-30
synchronized file processing 3-25

IMMEDIATE keys 8-31, 8-34, 8-35, 8-36, 8-39

Implicit connect 4-7

IMS/DLI interface 6-1
automatic file input 6-1, 6-4
automatic input 6-4
complete path processing 6-10
control statements 6-1, 6-4
controlled processing 6-9
database maintenance 6-11
input definition 6-5
PCB and PSB processing 6-3
sweep of database 6-4
tickler file control 6-4
typical path examples 6-5

INDEX attribute 2-45

Index manipulation 2-44

Indexed files
adding records to 3-15
creating 3-16
deleting a record 3-16
random input 3-15
updating a record 3-17

INDEXED files 3-14

Indexes 2-78

Indexing 2-10

INFORMATION message level 8-28

INITIATION screen procedure 8-31, 8-32

Input edit patterns 2-13

Index–6 Programmer Guide

Input mode 3-7

Input/output exits 2-62

Instream macros 10-7

Instream tables 2-42, 2-43

Integer fields 2-78

Integer numbers 2-8

Interprogram linkage 2-54

Invoking programs 2-71
other CA-Easytrieve programs 2-54
subprograms in other languages 2-55

J

JOB activity 2-4
graph subactivity 9-2
print file processing 7-4

Job flow 2-24

JOB INPUT SQL statement 4-13, 4-23

JOB INPUT statement 3-27

JOB statement 3-23, 3-24, 4-18
synchronized file processing 3-24

JUSTIFY parameter 8-13

K

KEY statement 8-3, 8-6, 8-30

KEY-PRESSED field 8-6, 8-31

L

Label reports 7-15
CONTROL statement 7-16
truncating 7-16

LEVEL field 7-8, 7-19, 7-40

Library section 2-3
definition 4-7

Line chart example 9-8

LINE statement 7-12

LINE-COUNT field 7-8

LINE-NUMBER field 7-8

LINK statement 2-55
HOST parameter 2-74
implementation 2-73
vs. CALL statement 2-71
workstation 2-73

Linkage conventions
mainframe 2-57
workstation 2-60, 2-66

Linking subprograms 2-13

Literals
alphanumeric 2-14
DBCS format 2-22
hexadecimal 2-14
MIXED format 2-22
types of 2-13

Local Area Networks (LANs) 3-10

Logical record definitions, IDD interface 5-8

Logical records 5-11
use of 5-10, 5-15

Logical unit of work 2-26

LOTUS 3-10, 3-34, 3-36

M

Macro facility 10-1

Macros 10-1
body of 10-5
defining 10-3
instream 10-7
invocation statement 10-1
invoking 10-2
keyword parameters 10-2
library 10-2
nesting 10-6
parameter substitution 10-5, 10-6
positional parameters 10-1
processing 10-5
protecting 10-3
prototype statement 10-4
termination command 10-5
three parts of 10-3

Mailing labels 7-15

 Index–7

Mainframe
files 3-36
format and conversion rules 2-18
format relationship rules 2-20
portability 3-2
program load 2-55

MASK parameter 8-13

Masks 8-13, 8-15, 8-16
hexadecimal 8-14
patterns 8-16

Match/merge operations 3-23

MATCHED test 3-25

MEND macro statement 10-5, 10-7

Message levels 8-28, 8-37

MESSAGE statement 8-2, 8-29, 8-36

Messages
programmer-issued 8-29
sending 8-28, 8-36
system-issued 8-29

MIXED
data format 2-20
format literals 2-22

MODIFIED testing 8-38

MODIFY file exit, FILE EXIT linkage 2-69

MODIFY subparameter 2-63

MOVE LIKE statement 2-32, 2-42, 5-15

MOVE statement 2-32, 2-41, 5-15

MSTART macro statement 10-7

Multiple dimension arrays 2-46

MVS printer 7-53

N

Native SQL processing 4-25
reassigning departments 4-28
retrieving all columns 4-28
supported commands 4-26
unsupported commands 4-27
updating phone numbers 4-29

Newline character
in UNIX files 3-37

NOACTIVITY parameter 2-26

NOTERMINAL parameter 2-26

Null, definitionf 4-8

Numbers
binary 2-7, 2-8
integer 2-8
packed decimal 2-7, 2-8
unsigned packed decimal 2-8
zoned decimal 2-7, 2-8

Numeric editing 8-15

Numeric literals
graph values 9-3

O

Operators, arithmetic 2-32

Output mode 3-7

P

Packed decimal fields 2-78

Packed decimal numbers 2-7, 2-8

Page footers 7-41

PAGE-COUNT field 7-8

PAGE-NUMBER field 7-8

Parameter lists 2-59
exit 2-62

Parameters, macro 10-4

Parent programs 2-72

Parentheses, in arithmetic expressions 2-33

PARM statement
SQL parameters 4-4, 4-5
WORKFILE parameter 2-79

PASCAL calling convention 2-60

PATTERN parameter 2-13, 8-16
valid characters 8-17

PCB and PSB processing 6-3

Pie chart example 9-5

Index–8 Programmer Guide

POINT statement 3-23

Portability between mainframe and workstation 3-2

PRINT statement 2-7, 7-1, 7-2

Printed output 3-28

Printer files 3-28

PRINTER parameter 7-43

Procedure
AFTER-BREAK 7-34
AFTER-LINE 7-34
AFTER-SCREEN 8-31
BEFORE 3-22
BEFORE-BREAK 7-34
BEFORE-LINE 7-34
BEFORE-SCREEN 8-31
ENDPAGE 7-34
INITIATION 8-31
programmer-defined 8-33
REPORT-INPUT 7-34
sort 3-21
START 3-23
TERMINATION 7-34
TERMINATION 8-31

Program
activities 2-23
activity section 2-3
development 2-1
efficiencies 2-77
flow control 2-22, 2-23
library section 2-3
statement order 2-5

PROGRAM activity 2-4

Program name, IDD interface 5-9

Pseudo-conversational CICS programs 8-36

Publications, related 1-4

PUNCH files 3-4, 3-13

PUT statement 3-12, 3-15, 3-19, 5-15

Q

Qualification
automatic rules 2-9
group level 5-9

Quantitative fields 2-7

R

READ statement 3-15

Record address 3-5

Record definitions, IDD interface 5-8

Record format 3-4
on the workstation 3-30

Record key 3-14, 3-17, 3-27

RECORD-COUNT field 3-6, 4-13

RECORD-LENGTH field 3-5, 4-13

REFRESH action 8-30, 8-33, 8-34

Registers 2-57

Relative files 3-17
adding records to 3-19
creating 3-19
deleting a record 3-19
random input 3-18
skip-sequential processing 3-18
updating a record 3-20

REPEAT statement 8-2, 8-10, 8-27

Report footers 7-42

Report procedures 7-33

REPORT procedures
coding 7-35
static working storage 7-36

Report processing
accumulating report data 7-17
accumulators 7-18
annotating reports 7-38, 7-40
basic structure 7-2
calculating percentages and averages 7-39
control field values in titles 7-28
defining a report 7-7
detail line 7-18
display data map 7-3
extended reporting 7-46
headings 7-11
label reports 7-6, 7-15
lines spacing 7-15
mixing character sets 7-46
multiple fonts 7-47
ordering a report 7-7
overflow of total values 7-29
overriding title defaults 7-10
page footers 7-41

 Index–9

pre-printed forms 7-14
quantitative fields 7-7
report definition statements 7-7
report display facility 7-43
report footers 7-42
report formats 7-5
report line 7-12
report line special positioning 7-13
report title 7-9
routing printer output 7-43
sequenced reports 7-17
sorting data 7-17
standard report format 7-5
standard reports 7-9
system-defined fields 7-8
terminal output 7-44
total line 7-18
work file records 7-3

REPORT statement 7-3, 7-4, 7-7
DTLCTL parameter 7-23
PRINTER parameter 7-43
SPREAD parameter 7-15
SUMCTL parameter 7-24
SUMFILE parameter 7-32
SUMSPACE parameter 7-31

REPORT subactivity 2-4

REPORT-INPUT report procedure 7-37

RESHOW action 8-26, 8-33, 8-35

RETAIN option 3-13

RETRIEVE statement, IMS/DLI 6-1, 6-4

Revision summary 1-5

ROLLBACK statement 4-4

Rollbacks 2-25

ROW statement 8-2, 8-27
ALL parameter 8-11
ATTR parameter 8-5, 8-8, 8-10
COL parameter 8-9
ERROR parameter 8-26, 8-29
FILL parameter 8-12
JUSTIFY parameter 8-12
MASK parameter 8-12, 8-15
PATTERN parameter 8-16
UPPERCASE parameter 8-15
VALUE parameter 8-25

ROWID 4-27

S

S (static) working storage fields 2-7

SBCS, data format 2-20

Scatter diagram example 9-9

SCREEN activity 2-4, 8-1
terminating 8-36

Screen format
function key area 8-3
message area 8-2
screen items 8-4
title area 8-2
work area 8-2

Screen Painter 8-2

Screen procedures 8-31

Screen processing 8-1
action bars 8-52
activity flow 2-24
attributes 2-12, 8-8
basic structure 8-1
borders 8-3
branch actions 8-33
character set 8-20
cursor placement 8-26
decimal alignment 8-16
declared attributes 8-5
determining cursor location 8-38
dialog boxes 8-51
displaying arrays 8-27
dynamic screen attributes 8-46
edit masks 8-14
edit masks for display 8-13
error conditions 8-25
field attributes 8-10
field-specific help screens 8-50
fill characters 8-12
formatting item for display 8-11
function key area 8-29
function keys 8-6, 8-30
HEX format display 8-14
input data edit 8-14
instream table example 8-46
justifying field contents 8-13
message area 8-28
message attributes 8-29
null entry field 8-12
overriding default justification 8-13
pattern 8-20
pop-up windows 8-51

Index–10 Programmer Guide

providing help screens 8-48
pull-down menus 8-52
re-displaying 8-35
repeating data rows 8-27
restoring screen 8-34
rows 8-9
sample applications 8-45
screen format 8-2
setting errors procedure 8-39
state tables 8-22
subscripts 8-27
system-defined fields 8-6
terminal keys 8-6, 8-30
title area 8-7
title attributes 8-8
two-dimensional arrays 8-28
underscore entry field 8-12
uppercase convert 8-15
using a menu 8-47
value checking 8-25
work area 8-9

SCREEN statement 8-2, 8-4
LINESIZE parameter 8-7

SEARCH statement 2-43, 2-44

Security access code for macros 10-3

Segmented data 5-9

SELECT statement 3-22, 4-17, 4-18, 4-24

SEQUENCE statement 7-7, 7-17, 7-37, 9-3

Sequential access mode 3-8

Sequential files
automatic processing 3-11
CARD input 3-11
controlled processing 3-11
fixed length 3-12
variable-length 3-12, 3-13

SEQUENTIAL files 3-10

SET statement 8-2, 8-10, 8-15, 8-27, 8-29, 8-39
example 8-46

Shift codes 2-22

Signed (quantitative) fields 2-7

Single dimension arrays 2-45

Single file keyed processing 3-22, 3-27

Skip-sequential processing, relative files 3-18

SORT activity 2-4

Sort flow 2-25

Sort procedures 3-21

SORT statement 3-20

Sorting files 3-20

Spooling subsystem 3-28

SQL data types 4-9

SQL databases
accessing data 4-18
automatic cursor management 4-2
automatic processing 4-18
automatic retrieval without file 4-3
CA-Easytrieve SQL files 4-17
catalog INCLUDE facility 4-8
COMMMIT command 2-28, 2-29
communications area fields (SQLCA) 4-13, 4-25
controlled processing 4-20
deleting from SQL file 4-23
inserting SQL row 4-23
joining tables 4-20
library section definition 4-7
native processing 4-25
NULLable field processing 4-19
NULLable fields 4-8
overriding default SELECT statement 4-19
PARM statement parameters 4-4
programming methods 4-2
random processing 4-21
retrieval without a file 4-23
ROLLBACK command 2-28, 2-29
syntax checking 4-12
system-defined fields 4-13
updating CA-Easytrieve SQL files 4-22

SQL DECLARE statement 4-25

SQL INCLUDE statement 4-8, 4-17, 4-23, 4-26

SQL SET CURRENT SQLID statement 4-5

SQL statement rules 4-3

SQLCODE field 4-18, 4-24, 4-26

SQLSYNTAX, in PARM statement 1-9

Stack usage 2-61

START procedure 3-23

Statement order 2-5

STATUS parameter 3-5

STOP EXECUTE statement 7-4

Storage management

 Index–11

mainframe 2-56
workstation 2-60, 2-66

Structured programming 2-1

Subject element 2-15, 2-16, 2-18, 2-20

subprogram linkage
Assembler 2-57

Subprogram linkage 2-13, 2-57
COBOL 2-58

Subscripting 2-44
one-dimensional arrays 2-49
three-dimensional arrays 2-50
two-dimensional arrays 2-49

Subscripts 2-10, 2-78
system-defined 8-27

SUM statement 7-7
label reports 7-15

SUMCTL parameter 7-24
DTLCOPY subparameter 7-27
DTLCOPYALL subparameter 7-28
TAG subparameter 7-26

SUMFILE data 7-18

SUMFILE parameter 7-32

SUMSPACE parameter 7-31

Synchronized File Processing (SFP) 3-22
conditional expressions 3-26
input process 3-24
record availability 3-24
special IF statements 3-25
updating a master file 3-27

Syntax conventions 1-5

SYSPRINT 3-29, 7-43, 7-44

System-defined file fields 3-5

SYSUSERID field 8-7

T

Table processing 2-42, 2-78
argument 2-42
defining tables 2-42
external tables 2-42
instream tables 2-42, 2-43
search arguments 2-43
SEARCH statement 2-43, 2-44

Tables and arrays, IDD interface 5-9

TAG subparameter 7-26

TALLY field 7-8, 7-19, 7-40

Target programs 2-75

TERM-COLUMNS field 8-6

Terminal ID 3-28

TERMINAL parameter 2-26

TERMINATION report procedure 7-42

TERMINATION screen procedure 8-31, 8-33

TERM-NAME field 8-7

TERM-ROWS field 8-7

TITLE statement 7-9, 8-2, 9-2, 9-4
COL parameter 8-7

TRANSFER statement 2-55, 2-75
implementation 2-76
workstation 2-77

TRANSFER Statement
CA-Easytrieve/ESP interactive execution 2-77

Truncation 2-34

U

Unit of work 2-25
SQL 4-4

UNIX files 3-37
newline character 3-37

Unsigned (non-quantitative) fields 2-8

Unsigned packed decimal numbers 2-8

Update mode 3-8

USING parameter 2-59, 2-71, 2-74, 2-75

V

VALUE parameter 8-25

VALUE statement 9-2, 9-4

Varying length fields 2-10
assigning and moving 2-11
comparing 2-12

Index–12 Programmer Guide

rules 2-40

Vertical axis on graph 9-4

Vertical bar chart example 9-6

Virtual File Manager (VFM) 2-79, 3-13, 7-4, 7-44

VSAM ESDS files 3-10

VSAM files 3-4
creation 3-12
KSDS files 3-14

VSAM password protection 10-3

VSAM RRDS 3-17

VSE printer 7-54

W

W (work) working storage fields 2-6

WARNING message level 8-28

WORKAREA parameter 3-3

WORKFILE parameter, PARM statement 2-79

Working storage fields 2-6, 2-7

Workstation
allowed field types 3-31
bounds checking 2-45, 2-79
CALL statement 2-60
CARD files 3-11
compiler switches 2-76
compiler switches 2-73
data types supported (SQL) 4-30
error condition handling 2-65, 2-70
error conditions 8-26

executing on 2-78
exit parameter list 2-62
FABS ISAM files 3-14
file code system 3-31
file exits 2-54, 2-59
FILE statement 3-29
file types 3-30
files 3-29
fixed length relative files 3-17
format and conversion rules 2-14
format relationship rules 2-15
HLLAPI 2-74
host interface 2-74
invoking subprograms in other languages 2-62
LINK statement 2-73
linkage conventions 2-60, 2-66
Local Area Networks (LANs) 3-10
logical record length 3-31
MODIFY exits 2-63
program linking 2-60, 2-65
PROGRAM statement 2-76
record format 3-30
Relative files 3-17
SEQUENTIAL files 3-10
sort program 3-21
standard return code convention 2-61
storage management 2-60, 2-66
supported file types 3-32
synchronized file processing 3-22
TRANSFER statement 2-76

WRITE statement 3-15, 3-16, 3-17, 5-15

Z

Zoned decimal numbers 2-7, 2-8

	Programmer Guide
	Contents
	Overview
	Introduction
	About This Guide
	Organization

	Other CA-Easytrieve Publications
	Related Publications
	Documentation Conventions
	Summary of Revisions
	CA-Easytrieve/Online Enhancements from CA-Easytrieve Plus
	CA-Easytrieve/Workstation Enhancements from CA-Easytrieve Plus/PC
	CA-Easytrieve/Online 1.1 Enhancements
	CA-Easytrieve/Online 1.4 Enhancements
	CA-Easytrieve/Workstation 1.2 Enhancements
	CA-Easytrieve 1.3 for UNIX Enhancements
	CA-Easytrieve 1.4 for UNIX Enhancements

	Coding a CA-Easytrieve Program
	Steps in the Application Development Process
	Structured Programming Using CA-Easytrieve
	CA-Easytrieve Program Sections
	Environment Section
	Library Section
	Activity Section

	Defining Files
	Defining Fields
	File Fields
	Working Storage Fields
	Signed/Unsigned Field Rules
	Data Reference
	Indexing
	Subscripts
	Varying Length Fields

	Declaring Screen Item Attributes
	Declaring Input Edit Patterns
	Declaring Subprogram Linkage
	Literal and Data Formatting Rules
	ASCII and EBCDIC Alphanumeric Literals
	Hexadecimal Literals
	UNIX Data Format
	Format and Conversion Rules (Workstation Only)
	Format Relationship Rules (Workstation Only)
	Format and Conversion Rules (Mainframe Only)
	Format Relationship Rules (Mainframe Only)
	DBCS Format Literals
	MIXED Format Literals

	Controlling Program Flow
	Activities
	Units of Work/Commit Processing
	Decision and Branching Logic

	Assignments and Moves
	Arithmetic Expressions
	Assignment Statement
	MOVE Statement
	MOVE LIKE Statement

	Table Processing
	Defining Tables
	Searching Tables

	Array Processing
	Bounds Checking
	Indexing
	Single Dimension Arrays
	Multiple Dimension Arrays
	Subscripts
	Subscripting a One-Dimensional Array
	Subscripting a Two-Dimensional Array
	Subscripting a Three-Dimensional Array
	Segmented Data
	Data Strings

	Interprogram Linkage
	CALL Statement on the Mainframe
	CALL Statement on the Workstation
	CALL Statement in UNIX
	LINK Statement
	TRANSFER Statement

	Coding Efficient CA-Easytrieve Programs
	Data Usage
	Table Processing
	Compiler Site and Program Options
	Report Processing

	Coding Programs That Run Under CICS

	File Processing
	Overview
	File Definition
	Controlled vs. Automatic Processing
	Data Buffering Mode
	Record Format
	Record Address
	STATUS Parameter
	System-Defined File Fields
	Error Conditions
	Data Availability Tests
	Opening Files
	Closing Files
	File Processing Modes
	File Access Mode
	File Browse Mode
	Hold/Release Processing

	SEQUENTIAL Files
	SEQUENTIAL File Processing Rules
	SEQUENTIAL Input
	SEQUENTIAL Output

	Virtual File Manager
	INDEXED Files
	INDEXED Sequential Input
	Adding Records to an INDEXED File
	File Creation
	Deleting a Record
	Updating a Record

	RELATIVE Files
	RELATIVE File Sequential Input
	Random Input
	Adding Records to a RELATIVE file
	Deleting a Record
	Updating a Record

	Sorting Files
	Sort Procedures
	Sorting a Selected Portion of a File

	Synchronized File Processing
	Synchronized File Input
	Special IF Statements
	Updating a Master File
	Single File Keyed Processing

	PRINTER Files
	Defining a PRINTER File

	Workstation Files
	Coding FILE Statements
	Supported File Structures

	UNIX Files
	File Type
	Record Format
	Logical Record Length
	C-ISAM

	SQL Database Processing
	Overview
	Programming Methods
	CA-Easytrieve SQL Statement Rules

	Program Environment
	Units of Work
	PARM Statement Parameters

	Library Section Definition
	SQL Catalog INCLUDE Facility
	Processing NULLable Fields
	SQL Data Types
	System-Defined File Fields
	EOF Processing
	SQL Communications Area Fields
	Sample Database

	CA-Easytrieve SQL Files
	Processing Requirements
	Operation
	Input Processing
	Update Processing

	Automatic Retrieval without a File
	Processing Requirements
	Operation
	Retrieving All Columns
	Selected Columns
	Multiple Tables

	Native SQL Processing
	Processing Requirements
	Operation
	Supported Commands
	Unsupported SQL Commands
	Retrieving All Columns

	Data Types Supported on the Workstation

	CA-IDMS Database Processing
	Introduction
	CA-IDMS Interface
	IDD Interface
	CA-IDMS Functionality
	CA-Easytrieve CA-IDMS Statements
	Processing Overview

	CA-IDMS Processing on the Workstation
	Data Code System
	Field Data Types
	CA-IDMS Entity Names

	Sample CA-IDMS Database
	Field Definitions

	Sample Logical Record
	Logical Record Definition

	IDD Interface
	Program Name
	Conforming IDD Item Descriptions to CA-Easytrieve Standards
	Handling of Group Item Definition
	Examples

	IDMS Interface
	Communications Block
	Logical Record Communications Block
	Using Logical and Element Records in Non-CA-IDMS Statements
	Automatic Input
	Controlled Processing

	IMS/DLI Database Processing
	Introduction
	Test Database
	DBD Source Statements
	PSB Source Statements
	Test Database Structure

	PCB and PSB Processing
	PCB Specification and Access
	PSB Specification
	Status Information

	Automatic Input
	Sweep of Database
	Tickler File Control
	Input Definition (Paths)
	Typical Path Examples

	Controlled Processing
	Complete Path Processing
	Database Maintenance

	Report Processing
	Overview
	Basic Report Structure
	PRINT Statement Processing
	PRINT Workfile Processing
	Report Formats
	REPORT Statement
	Report Definition Structure
	System-Defined Fields

	Standard Reports
	Titles
	Headings
	Line Group
	Line Item Positioning
	Special Positioning
	Pre-printed Form Production
	SPREAD Parameter

	Label Reports
	CONTROL Statement

	Sequenced Reports
	CONTROL Reports
	Terminology
	Data Reference
	TALLY
	LEVEL
	BREAK-LEVEL
	Control Report Contents
	DTLCTL
	SUMCTL
	DTLCOPY
	Control Field Values in Titles
	Overflow of Total Values
	Controlling Overflow
	Summary File

	Report Procedures
	Special-name Report Procedures
	Coding Techniques
	Static Working Storage
	REPORT-INPUT
	BEFORE-LINE and AFTER-LINE
	BEFORE-BREAK
	AFTER-BREAK
	ENDPAGE
	TERMINATION

	Routing Printer Output
	Reporting to the Terminal

	Extended Reporting
	Reporting Environment Example
	Printer Support
	CA-Easytrieve Printer Definitions

	Screen Processing
	Overview
	Basic Structure
	Screen Format
	SCREEN Statement
	Screen Definition Statements
	Screen Items
	System-Defined Fields

	Screen Title Area
	Title Rules
	Title Examples

	Screen Work Area
	Item Location

	Formatting an Item for Display
	Filling an Item for Display
	Justifying a Field’s Contents
	Using Edit Masks for Display
	Automatic Editing of Input
	UPPERCASE
	MASK
	PATTERN
	VALUE
	Edit Error Messages
	Cursor Placement
	Repeating Rows of Data

	Screen Message Area
	Message Area Location
	Message Attributes
	Message Text

	Screen Function Key Area
	Location
	Attributes

	Screen Key Processing
	3270 Display Station Keys

	Screen Procedures
	Programmer-Defined Procedures
	Branch Actions
	CICS Pseudo-conversational Programs
	Sending Messages
	Determining the Cursor Location
	Testing for Field Modification
	Setting Errors

	Commit Processing
	SCREEN COMMIT Parameter
	Conversational Processing Example
	Pseudo-Conversational Processing Example
	Concurrent Updates
	SQL Processing Example

	Sample Screen Applications
	Editing Data and Setting Errors
	Using Dynamic Screen Attributes
	Using a Menu
	Providing Help Screens
	Field-specific Help
	Windowed Screens
	Action Bar Pull-Downs

	Graph Processing
	Overview
	Basic Structure
	DRAW Statement Processing
	Graph Format
	GRAPH Statement

	Processing a Graph
	Sample Graph Applications
	Pie Chart
	Vertical Bar Chart
	Horizontal Bar Chart
	Line Chart
	Scatter Diagram

	System Services
	CA-Easytrieve Macro Facility
	Macro Invocation Statement
	Invoking Macros
	Macro Library
	Macro Files
	Macro Library Security
	Macro Definition
	Macro Processing
	Instream Macros

	Glossary
	Index

