

Language Reference Guide

Advantage CA-Easytrieve

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2002 Computer Associates International, Inc. (CA)

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1: Overview
Introduction .. 1–1
About This Guide ... 1–1

Organization ... 1–2
Related Publications... 1–3
Documentation Conventions ... 1–3
Summary of Revisions ... 1–4

CA-Easytrieve/Online Enhancements from CA-Easytrieve Plus 1–4
CA-Easytrieve/Workstation Enhancements from CA-Easytrieve Plus/PC 1–5
CA-Easytrieve/Online 1.1 Enhancements .. 1–6
CA-Easytrieve/Online 1.4 Enhancements .. 1–8
CA-Easytrieve/Workstation 1.2 Enhancements ... 1–9
CA-Easytrieve/Workstation 1.3 Enhancements ... 1–9
CA-Easytrieve 1.3 for UNIX Enhancements.. 1–10
CA-Easytrieve 1.4 for UNIX Enhancements.. 1–10

Syntax Rules... 1–11
Statement Area... 1–11
Character Sets.. 1–11
Multiple Statements .. 1–13
Comments... 1–13
Continuations.. 1–13
Words and Delimiters... 1–14
Keywords ... 1–15
Multiple Parameters .. 1–15
Field Names ... 1–15
Labels... 1–16
Identifiers ... 1–16
Arithmetic Operators ... 1–16
Numeric Literals ... 1–16
Alphanumeric Literals .. 1–16
Font Numbers ... 1–17

Contents iii

Chapter 2: Statement Summaries
Introduction .. 2–1
Alphabetical Statement Summary ... 2–1
Functional Category Summary ... 2–7

Library Definition ... 2–8
File Management.. 2–8
Screen Processing ... 2–9
Report Processing .. 2–10
Graph Processing... 2–11
Generalized Programming .. 2–11
Inter-program Execution .. 2–11
Decision and Branching Logic ... 2–11
Listing Control... 2–12
Assignment and Moves ... 2–13
Macro Processing... 2–13
Native SQL .. 2–13
CA-IDMS Database Processing... 2–13
IMS/DLI Database Processing ... 2–15

Chapter 3: Statements A - C
% (Macro Invocation) Statement .. 3–1

Syntax ... 3–1
Usage Notes .. 3–1

* (Comment) Statement .. 3–1
Syntax ... 3–2
Usage Notes .. 3–2

ACCESS Statement.. 3–2
Syntax ... 3–2
Usage Notes .. 3–2

AFTER-BREAK Report Procedure... 3–3
Syntax ... 3–3
Usage Notes .. 3–3
Example.. 3–3

AFTER-LINE Report Procedure... 3–4
Syntax ... 3–4
Usage Notes .. 3–4
Example.. 3–5

AFTER-SCREEN Screen Procedure.. 3–6
Syntax ... 3–6

Contents iv

Usage Notes .. 3–6
Example.. 3–6

Assignment Statement ... 3–6
Syntax ... 3–6
Usage Notes .. 3–8
Examples... 3–9

ATTR Parameter ... 3–11
Syntax .. 3–11
Usage Notes ... 3–14

BEFORE-BREAK Report Procedure .. 3–14
Syntax .. 3–14
Usage Notes ... 3–15
Example... 3–15

BEFORE-LINE Report Procedure .. 3–16
Syntax .. 3–16
Usage Notes ... 3–16

BEFORE-SCREEN Screen Procedure ... 3–17
Syntax .. 3–17
Usage Notes ... 3–17
Example... 3–17

CALL Statement ... 3–17
Syntax .. 3–17
Usage Notes ... 3–18
Examples.. 3–19

CASE and END-CASE Statements ... 3–19
Syntax .. 3–19
Usage Notes ... 3–21
Example... 3–21

CLOSE Statement .. 3–21
Syntax .. 3–21
Usage Notes ... 3–21
Example... 3–22

COMMIT Statement.. 3–22
Syntax .. 3–22
Usage Notes ... 3–22

Conditional Expressions .. 3–23
Syntax .. 3–23
Usage Notes ... 3–23
Examples.. 3–23

Field Relational Condition .. 3–23
Syntax .. 3–23

Contents v

Alphanumeric Subjects.. 3–24
Numeric Subjects... 3–24
Mixed Subjects ... 3–25
DBCS Subjects ... 3–25
Example... 3–26

Field Series Condition .. 3–27
Syntax .. 3–27
Rules for Evaluation .. 3–27
Example... 3–28

Field Class Condition... 3–29
Syntax .. 3–29
Example... 3–32

Field Bits Condition .. 3–32
Syntax .. 3–32
Example... 3–33

File Presence Condition ... 3–34
Syntax .. 3–34
Usage Notes ... 3–34
Examples.. 3–34

File Relational Condition.. 3–36
Syntax .. 3–36
Example... 3–37

Record Relational Condition... 3–37
Syntax .. 3–37
Example... 3–38

CONTROL Statement .. 3–38
Syntax .. 3–38
Usage Notes ... 3–39
Example... 3–40

COPY Statement ... 3–40
Syntax .. 3–40
Usage Notes ... 3–40
Examples.. 3–41

CURSOR Statement .. 3–41
Syntax .. 3–41
Usage Notes ... 3–42
Example... 3–42

Contents vi

Chapter 4: Statements D - F
DECLARE Statement .. 4–1

Syntax ... 4–1
Usage Notes .. 4–3
Example.. 4–3

DEFAULT Statement .. 4–3
Syntax ... 4–3
Usage Notes .. 4–5
Examples... 4–5

DEFINE Statement .. 4–5
Syntax ... 4–6
Usage Notes ... 4–14
Examples.. 4–16
Record Description ... 4–16
Working Storage Initialization ... 4–17
Varying Length Fields .. 4–17
Alternate Report Headings .. 4–18
Edit Masks .. 4–18
Arrays .. 4–18

DELETE Statement ... 4–18
Syntax .. 4–18
Usage Notes ... 4–19
Example... 4–19

DISPLAY Statement .. 4–19
Syntax .. 4–20
Usage Notes ... 4–22
Examples.. 4–22

DLI Statement ... 4–23
Syntax .. 4–23

DO and END-DO Statements ... 4–27
Syntax .. 4–27
Usage Notes ... 4–28
Examples.. 4–29

DRAW Statement.. 4–30
Syntax .. 4–30
Usage Notes ... 4–30

ELEMENT-RECORD Statement (CA-IDMS) .. 4–30
Syntax .. 4–30
Usage Notes ... 4–31

ENDPAGE Report Procedure ... 4–31

Contents vii

Syntax .. 4–31
Usage Notes ... 4–31
Example .. 4–31

END-PROC Statement ... 4–32
Syntax .. 4–32
Usage Notes ... 4–32

ENDTABLE Statement ... 4–32
Syntax .. 4–32
Usage Notes ... 4–32
Example .. 4–32

EXECUTE Statement ... 4–33
Syntax .. 4–33
Usage Notes ... 4–33
Example .. 4–33

EXIT Statement .. 4–34
Syntax .. 4–34
Usage Notes ... 4–34
Example .. 4–34

FETCH Statement.. 4–34
Syntax .. 4–34
Usage Notes ... 4–35
Example .. 4–35

FILE Statement .. 4–35
Syntax .. 4–36
Usage Notes ... 4–52
Examples.. 4–53

Chapter 5: Statements G - M
GET Statement.. 5–1

Syntax ... 5–1
Usage Notes .. 5–2
Examples... 5–2

GOTO Statement.. 5–3
Syntax ... 5–3
Example.. 5–5

GRAPH Statement .. 5–5
Syntax ... 5–5
Example.. 5–8

HEADING Statement.. 5–8
Syntax ... 5–8

Contents viii

Usage Notes .. 5–9
Examples... 5–9

IDD FILE Statement .. 5–10
Syntax .. 5–10
Usage Notes ... 5–10

IDD NAME Statement .. 5–11
Syntax .. 5–11
Usage Notes ... 5–12

IDD RECORD Statement.. 5–12
Syntax .. 5–12

IDD SUBSCHEMA Statement ... 5–13
Syntax .. 5–13
Usage Notes ... 5–14

IDD VERSION Statement ... 5–14
Syntax .. 5–14
Usage Notes ... 5–15

IDMS ACCEPT DBKEY Statement ... 5–15
Syntax .. 5–15

IDMS ACCEPT PAGE-INFO Statement... 5–16
Syntax .. 5–16

IDMS ACCEPT PROCEDURE Statement ... 5–18
Syntax .. 5–18

IDMS ACCEPT STATISTICS Statement... 5–18
Syntax .. 5–18
Usage Notes ... 5–19

IDMS BIND Statement.. 5–19
Syntax .. 5–19

IDMS BIND FILE Statement ... 5–20
Syntax .. 5–20

IDMS BIND PROCEDURE Statement .. 5–21
Syntax .. 5–21

IDMS COMMIT Statement .. 5–21
Syntax .. 5–21

IDMS CONNECT Statement .. 5–21
Syntax .. 5–22

IDMS DISCONNECT Statement ... 5–22
Syntax .. 5–22

IDMS ERASE Statement .. 5–23
Syntax .. 5–23

IDMS FIND/OBTAIN Statement .. 5–24
Syntax .. 5–25

Contents ix

IDMS FINISH Statement .. 5–28
Syntax .. 5–28

IDMS GET Statement ... 5–28
Syntax .. 5–28

IDMS IF Statement ... 5–29
Syntax .. 5–29
Usage Notes ... 5–30

IDMS KEEP Statement.. 5–30
Syntax .. 5–30

IDMS MODIFY Statement... 5–30
Syntax .. 5–30

IDMS OBTAIN Statement... 5–31
Syntax .. 5–31

IDMS READY Statement.. 5–32
Syntax .. 5–32

IDMS RETURN Statement .. 5–32
Syntax .. 5–32

IDMS ROLLBACK Statement.. 5–34
Syntax .. 5–34

IDMS STORE Statement .. 5–34
Syntax .. 5–34

IF, ELSE-IF, ELSE, and END-IF Statements .. 5–35
Syntax .. 5–35
Usage Notes ... 5–36
Examples.. 5–37

INITIATION Screen Procedure .. 5–38
Syntax .. 5–38
Usage Notes ... 5–38
Example... 5–39

INSERT Statement ... 5–39
Syntax .. 5–39
Usage Notes ... 5–39
Example... 5–39

JOB Statement ... 5–40
Syntax .. 5–40
Usage Notes ... 5–43
Examples.. 5–43

KEY Statement... 5–43
Syntax .. 5–44
Usage Notes ... 5–45
Examples.. 5–46

Contents x

LINE Statement .. 5–47
Syntax .. 5–47
Usage Notes ... 5–49
Example... 5–49

LINK Statement.. 5–49
Syntax .. 5–49
Usage Notes ... 5–50
Example... 5–51

LIST Statement .. 5–51
Syntax .. 5–51
Usage Notes ... 5–51

LOGICAL-RECORD Statement (CA-IDMS) ... 5–52
Syntax .. 5–52
Usage Notes ... 5–52

MACRO Statement... 5–52
Syntax .. 5–52
Examples.. 5–53

MASK Parameter .. 5–54
Syntax .. 5–54
Editing Rules .. 5–55
System Default Masks - Numeric Fields... 5–57
Leading Zeros ... 5–57
Negative Numbers ... 5–58
Examples.. 5–59

MEND Statement .. 5–60
Syntax .. 5–60
Usage Notes ... 5–60

MESSAGE Statement ... 5–60
Syntax .. 5–60
Usage Notes ... 5–61
Example... 5–61

MOVE Statement .. 5–62
Syntax .. 5–62
Usage Notes ... 5–63
Examples.. 5–64

MOVE LIKE Statement ... 5–64
Syntax .. 5–64
Usage Notes ... 5–65
CA-IDMS IDD Processing ... 5–65
Differences Between MOVE LIKE and MOVE ... 5–66
Example... 5–66

Contents xi

MSTART Statement .. 5–66
Syntax .. 5–66

Chapter 6: Statements N - R
NEWPAGE Statement ... 6–1

Syntax ... 6–1
Usage Notes .. 6–1

PARM Statement.. 6–1
Syntax ... 6–1
Usage Notes ... 6–11
Examples.. 6–12

PERFORM Statement... 6–13
Syntax .. 6–13
Usage Notes ... 6–13
Example... 6–13

POINT Statement .. 6–14
Syntax .. 6–14
Usage Notes ... 6–15
Example... 6–15

POP Statement... 6–16
Syntax .. 6–16
Usage Notes ... 6–16

PRINT Statement .. 6–16
Syntax .. 6–16
Usage Notes ... 6–16
Example... 6–17

PROC Statement ... 6–17
Syntax .. 6–17
Usage Notes ... 6–18

PROGRAM Statement .. 6–18
Syntax .. 6–19
Usage Notes ... 6–20
Example... 6–20

PUSH Statement ... 6–21
Syntax .. 6–21
Usage Notes ... 6–21

PUT Statement... 6–21
Syntax .. 6–21
Usage Notes ... 6–22
Example... 6–22

Contents xii

READ Statement ... 6–23
Syntax .. 6–23
Usage Notes ... 6–24
Example... 6–24

RECORD Statement (CA-IDMS and IMS/DLI) .. 6–24
Syntax .. 6–25
Usage Notes ... 6–26

REFRESH Statement.. 6–26
Syntax .. 6–27
Usage Notes ... 6–27
Example... 6–27

RELEASE Statement.. 6–27
Syntax .. 6–28
Usage Notes ... 6–28
Example... 6–28

REPEAT and END-REPEAT Statements .. 6–28
Syntax .. 6–28
Usage Notes ... 6–29
Example... 6–30

REPORT Statement .. 6–30
Syntax .. 6–31
Usage Notes ... 6–38

REPORT-INPUT Report Procedure .. 6–38
Syntax .. 6–38
Usage Notes ... 6–38
Example .. 6–39

RESHOW Statement ... 6–40
Syntax .. 6–40
Usage Notes ... 6–40
Example .. 6–40

RETRIEVE Statement (CA-IDMS and IMS/DLI) .. 6–41
Syntax .. 6–41
Usage Notes ... 6–46

ROLLBACK Statement ... 6–46
Syntax .. 6–47
Usage Notes ... 6–47
Example .. 6–47

ROW Statement ... 6–47
Syntax .. 6–47
Usage Notes ... 6–52
Example .. 6–52

Contents xiii

Chapter 7: Statements S - Z
SCREEN Statement.. 7–1

Syntax ... 7–1
Usage Notes .. 7–4
Example.. 7–5

SEARCH Statement ... 7–5
Syntax ... 7–5
Usage Notes .. 7–6
Example.. 7–7

SELECT Statement (File-based SQL)... 7–7
Syntax ... 7–7
Usage Notes .. 7–8
Examples... 7–9

SELECT Statement (CA-IDMS) ... 7–9
Syntax ... 7–9
Example... 7–11

SELECT Statement (Non-file SQL) ... 7–11
Syntax .. 7–12
Usage Notes ... 7–14
Example... 7–14

SELECT Statement (Report Selection)... 7–14
Syntax .. 7–14
Usage Notes ... 7–15
Example... 7–15

SELECT Statement (Sort Selection) ... 7–15
Syntax .. 7–15
Usage Notes ... 7–15
Example... 7–16

SEQUENCE Statement.. 7–16
Syntax .. 7–16
Usage Notes ... 7–17
Examples.. 7–17

SET Statement ... 7–17
Syntax .. 7–17
Usage Notes ... 7–19
Examples.. 7–20

SKIP Statement .. 7–20
Syntax .. 7–21
Usage Notes ... 7–21

SORT Statement ... 7–21

Contents xiv

Syntax .. 7–21
Usage Notes ... 7–23
Example... 7–24

SQL Statement... 7–24
Syntax .. 7–24
Usage Notes ... 7–24

SQL INCLUDE Statement... 7–28
Syntax .. 7–28
Usage Notes ... 7–29

STOP Statement.. 7–31
Syntax .. 7–31
Usage Notes ... 7–31
Examples.. 7–32

SUM Statement .. 7–33
Syntax .. 7–33
Usage Notes ... 7–33

TERMINATION Report Procedure... 7–33
Syntax .. 7–33
Usage Notes ... 7–33
Example... 7–34

TERMINATION Screen Procedure ... 7–34
Syntax .. 7–34
Usage Notes ... 7–34

TITLE Statement (Graphs)... 7–35
Syntax .. 7–35
Example... 7–35

TITLE Statement (Reports) .. 7–35
Syntax .. 7–36
Usage Notes ... 7–37

TITLE Statement (Screens) .. 7–37
Syntax .. 7–37
Usage Notes ... 7–38
Example... 7–38

TRANSFER Statement .. 7–39
Syntax .. 7–39
Usage Notes ... 7–39
Example... 7–40

UPDATE Statement .. 7–40
Syntax .. 7–40
Usage Notes ... 7–41
Example... 7–41

Contents xv

VALUE Statement.. 7–41
Syntax .. 7–41
Usage Notes ... 7–42
Example... 7–42

WRITE Statement .. 7–43
Syntax .. 7–43
Usage Notes ... 7–44
Example... 7–44

Appendix A: System-Defined Files
Introduction ... A–1
General Fields ... A–1
File Fields ... A–3
Report Fields .. A–6
Screen Fields .. A–7

Appendix B: Symbols and Reserved Words
Introduction..B–1
Symbol References ..B–1
Reserved Words ..B–2

Appendix C: Conversion from CA-Easytrieve Plus (Batch)
Introduction ..C–1
Differences Between Versions ..C–1
Supported Syntax ...C–4
Future Support ...C–5
Environmental Differences ...C–6

Index

Contents xvi

Chapter

1 Overview

Introduction
CA-Easytrieve is an information retrieval and data management system designed
to simplify computer programming. Its English-like language and simple
declarative statements provide the new user with the tools needed to produce
comprehensive reports and screens with ease, while its enhanced facilities provide
the experienced data processor with the capabilities to perform complex
programming tasks.

CA-Easytrieve operates on the IBM 370, 30xx, 43xx, and compatible processors in
the VM, MVS, and VSE environments. Under TSO, CMS, and CICS,
CA-Easytrieve runs interactively for data inquiry, analysis, and reporting. The
output can be either returned to your terminal screen or routed to a printer.

CA-Easytrieve/Workstation operates on the IBM/PC (or 100 percent compatible)
in the PC/DOS and OS/2 environments.

CA-Easytrieve also operates on the HP-9000 Series 700/800 in the HP-UX
environment, and on the IBM RS/6000 in the AIX environment.

About This Guide
The CA-Easytrieve Language Reference Guide is your source for complete language
details. It contains descriptions of the complete syntax of each CA-Easytrieve
statement, organized in easy-to-find alphabetical order. It also provides:

■ A list of system-defined fields.

■ A list of CA-Easytrieve symbols and reserved words.

■ Information for those converting to this version of CA-Easytrieve.

Note: You should review Appendix C, “Conversion from CA-Easytrieve Plus
(Batch),” if you are a current user of CA-Easytrieve Plus (batch environment).

Overview 1–1

About This Guide

This guide is to be used by programmers using the following implementations of
CA-Easytrieve:

■ CA-Easytrieve/Online, version 1.4

■ CA-Easytrieve/Workstation, version 1.3

■ CA-Easytrieve in the UNIX environment, version 1.4.

Organization

This guide is divided into seven chapters and three appendices:

Chapter 1, Overview Introduces you to CA-Easytrieve and the syntax rules for
coding a CA-Easytrieve program.

Chapter 2, Statement Summaries Provides two types of quick reference
summaries:

■ Alphabetical Statement Summary - an alphabetical list of all statements and
an overview of the usage of each statement.

■ Functional Category Summary - a list of the functional categories of
statements, the statements in each function, and their usage.

Chapter 3, Statements A - C Provides the complete syntax of statements
beginning with A through C.

Chapter 4, Statements D - F Provides the complete syntax of statements
beginning with D through F.

Chapter 5, Statements G - M Provides the complete syntax of statements
beginning with G through M.

Chapter 6, Statements N - R Provides the complete syntax of statements
beginning with N through R.

Chapter 7, Statements S - Z Provides the complete syntax of statements
beginning with S through Z.

Appendix A, System-Defined Fields Contains a list of CA-Easytrieve system-
defined fields.

Appendix B, Symbols and Reserved Words Contains a list of CA-Easytrieve
symbols and reserved words.

Appendix C, Conversion from CA-Easytrieve Plus (Batch) Contains information
for converting to this implementation of CA-Easytrieve from prior
implementations.

Overview 1–2

Related Publications

Index Provides a quick way to find references to functions, procedures, and
terms.

Related Publications
The following publications, produced by Computer Associates, are either
referenced in this publication or are recommended reading:

■ CA-Pan/SQL SQL Interface Installation Guide

■ CA-PSI Subsystems DBCS Environment Guide

■ CA-PSI Subsystems Reporting Environment Guide.

The following publications, not produced by Computer Associates, are either
referenced in this publication or are recommended reading:

■ IBM IMS/DL/I Application Programming publications

■ BTRIEVE Reference Manual

■ CICS Programmer's Reference Manual.

Documentation Conventions
The following conventions are used throughout this guide for illustrative
purposes:

Notation Meaning

{braces} Mandatory choice of one of these entries.

[brackets] Optional entry or choice of one of these entries.

| (OR bar) Choice of one of these entries.

(parentheses) Multiple parameters must be enclosed in parentheses.

... Ellipses indicate that you can code the immediately
preceding parameters multiple times.

BOLD Bold text in program code is used to highlight an example of
the use of a statement.

CAPS All capital letters indicate a CA-Easytrieve keyword, or
within text descriptions, indicate a name or field used in a
program example.

lowercase italics Lowercase italics represent variable information in statement

Overview 1–3

Summary of Revisions

Notation Meaning
syntax.

Summary of Revisions
The following lists summarize the technical changes and enhancements provided
in version upgrades of CA-Easytrieve.

CA-Easytrieve/Online Enhancements from CA-Easytrieve Plus
■ Full 31-bit addressing in MVS environments.

■ Environment-independent FILE statements ensure portability between
environments and access methods.

■ The CLOSE statement now allows controlled file opens and closes.

■ A dynamic file name provides the ability to determine the file name at
execution time.

■ Simple read/write access to SQL files provides automated cursor
management with full application capabilities

■ Complete control over SQL units of work using the COMMIT statement and
activity options.

■ 128-character entity names for ANSI standard support.

■ Use of descriptive logical file names greater than 8 characters.

■ Boundary checking of subscripts and indices during execution protects
environment and makes debugging easier.

■ Introduction of the PROGRAM “super” activity that can execute other
activities as logic dictates.

■ Direct access to execution parameters through the PROGRAM statement.

■ Ability to LINK and TRANSFER to other CA-Easytrieve programs.

■ SCREEN activities provide easy creation of online transaction processing
applications. Screen generation and maintenance assisted by Screen Painter.

■ SEARCH of INDEXED table file results in keyed read rather than binary
search.

■ Online Report Display Facility allows browsing of report output.

■ Access to report line and page counters.

■ Ability to modify report lines in BEFORE-LINE procedures.

Overview 1–4

Summary of Revisions

■ Ability to specify column locations for title items in automatically adjusted
reports.

■ Fully integrated support of DISPLAY statements in REPORTs with
page-break handling and consistent production of titles and headings.

■ Integrated syntax-directed editor and interpreter giving compatible
development tools and rapid prototyping abilities.

■ Source program input directly from CA-Panvalet and PIELIB libraries.

■ Access to multiple macro library types during compilation.

■ Issuance of warning messages during compilation provide helpful direction.

■ Enhanced compilation listing.

■ Report Painter provides visual environment for creation and maintenance of
report declarations.

CA-Easytrieve/Workstation Enhancements from CA-Easytrieve Plus/PC
■ Compatibility with mainframe implementations including portable file and

field definition, arithmetic functions, reporting, and screen handling.

■ Generation of EXE modules for significant performance improvement and
decreased memory requirements.

■ Full generation of Intel object code for compatibility with other PC
compilers.

■ Environment-independent FILE statements ensure portability between
environments and access methods.

■ Direct program access to CA-IDMS, CA-Datacom, dBASE, LOTUS,
CA-SuperCalc, and comma-delimited files.

■ Complete control over SQL and CA-IDMS units of work using the COMMIT
statement and activity options.

■ Simple read/write access to SQL files.

■ CLOSE statement allows controlled file opens and closes.

■ Dynamic file name provides ability to determine file name at execution time.

■ 128-character entity names for ANSI standard support.

■ Use of descriptive logical file names greater than 8 characters.

■ Subscripting of arrays.

■ Boundary checking of subscripts and indices during execution protects
environment and makes debugging easier.

■ Introduction of the PROGRAM “super” activity that can execute other
activities as logic dictates.

Overview 1–5

Summary of Revisions

■ Direct access to execution parameters through the PROGRAM statement.

■ Ability to LINK and TRANSFER to other CA-Easytrieve programs as well as
to any operating system command using a command shell.

■ Direct CALLs to subroutines written in C, Assembler, and COBOL.

■ SCREEN activities provide easy creation of online transaction processing
applications.

■ SEARCH of INDEXED table file results in keyed read rather than binary
search.

■ Report Display Facility allows browsing of report output.

■ Access to report line and page counters.

■ Ability to modify report lines in BEFORE-LINE procedures.

■ Ability to specify column locations for title items in automatically adjusted
reports.

■ Fully integrated support of DISPLAY statements in REPORTs with
page-break handling.

■ Enhanced compilation listing.

■ GRAPH subactivities provide business graphics with the ease of
CA-Easytrieve reporting.

■ HLLAPI Host Interface providing automated function shipping to the
mainframe and behind-the-scenes file transfers.

CA-Easytrieve/Online 1.1 Enhancements

Windowed Screens SCREENs can now be any size and have any start location. When
a SCREEN activity executes another SCREEN activity in which the
second screen is smaller than the first, the second screen overlays
the first as a “pop-up” window.

Screens can now have a border built displayed around them, whether they are
full-screen applications or windows.

SET Statement The SET statement provides an easy method to change screen
attributes for a field or to indicate an erroneous field in your
screen procedures.

SCREEN Attributes The CURSOR attribute has been added to the default set of
attributes applied to fields in error. Existing users may want to
add the attribute in their site options.

GET PRIOR Statement The PRIOR parameter on the GET statement allows backwards
browses against VSAM files. In addition, you can load a

Overview 1–6

Summary of Revisions

CA-Easytrieve virtual file and browse forward and backward
through the file.

Working Storage
Reinitialization (DEFINE
RESET)

A RESET parameter on the DEFINE statement allows you to
specify that W working storage fields are initialized automatically
for each execution of a JOB, SORT, or SCREEN statement.

INTEGER/ROUNDED/
TRUNCATED on
Assignment
Statement

These options provide the following capabilities:
■ Automatic dropping of fractional results of calculations or

assigns.
■ Automatic rounding off of fractional results of calculations

■ Truncation of digits during an assignment.

The INTEGER parameter can be used with ROUNDED or TRUNCATED.
Additional calculations and multiple Assignment statements previously required
to perform these functions are no longer needed.

Instream Macros The compiler now supports including macro definition as part of
the source program. This capability is particularly useful for
testing new macros prior to storing them in the macro library.

Multiple Name
Support

CA-Easytrieve/Online now supports multiple entities with the
same name. For example JOBs, FILEs, fields, keywords can all
have the same name.

TRANSFER NOCLEAR The NOCLEAR parameter on the TRANSFER statement tells
CA-Easytrieve to leave the screen displayed as it terminates the
program and transfers control to another program. The terminal
user is able to still see the screen display as the target program
processes and is not left with a blank screen.

Double Byte
Character Set
Support

CA-Easytrieve/Online now supports the IBM Double Byte
Character Set (DBCS). Kanji and mixed fields and literals can be
displayed on and received from the terminal.

Report Painter A Report Painter provides a visual method for creating and
maintaining report declarations. Screens and reports can be
painted online using the same easy-to-use interface.

Screen Painter
Enhancements

A new Field Select window is available to display program fields
for selection from other windows and lists.

The Repeat Definition panel now automatically generates subscript fields on
ROW statements.

A new CAPS command provides a session override of the CA-Easytrieve/ESP
Editor CAPS setting.

Overview 1–7

Summary of Revisions

CASE Statement The CASE statement now supports variable length fields. If field-
name is an alphanumeric literal, it no longer must be 254 or fewer
bytes in length.

CA-Easytrieve/Online 1.4 Enhancements

Extended Reporting CA-Easytrieve/Online now uses the CA-PSI Subsystems
Reporting Environment to generate printer set definitions. The
Reporting Environment provides support for Impact Dot, Ink-Jet,
and Electro-Photographic printers. This facility interacts with
CA-Easytrieve report processing to provide support for many
additional features, such as font control. These are described fully
in the CA-Easytrieve Programmer Guide.

Synchronized File
Processing

The Synchronized File Processing (SFP) facility is now available in
CA-Easytrieve/Online.

File Exits You can now use the EXIT parameter of the FILE statement to
invoke subprograms written in other programming languages for
input/output related events.

Label Reports Label reports are now available in CA-Easytrieve/Online.

Even Precision for
Packed Fields

You can use the EVEN parameter on the DEFINE statement to
indicate that a packed decimal field is to contain an even number
of digits.

MOVE LIKE Statement
for Working Storage

The MOVE LIKE statement now supports moving contents of
fields with identical names to and from working storage.

Static Call Support for
Subroutines

The CALL parameter is now available on the PARM statement.
CALL enables you to specify how subprograms referenced in
CALL statements are linked to your CA-Easytrieve program.

The DECLARE statement specifies how a particular subprogram is linked and
overrides the CALL parameter on the PARM statement.

IF BREAK New IF BREAK/HIGHEST-BREAK class tests can be used as
alternatives in testing report control breaks.

CONTROLSKIP The CONTROLSKIP parameter is available on the REPORT
statement. CONTROLSKIP enables you to define the number of
blank lines to be inserted following CONTROL total lines and the
next detail line.

Identifiers and DBCS Identifiers can now contain DBCS characters.

Overview 1–8

Summary of Revisions

Year 2000 Support A SYSDATE-LONG field is now available that contains the
century. SHORTDATE and LONGDATE options have been
added to the REPORT statement to display the date with or
without the century.

A new Options Table entry has been added called LONGDTE. This specifies the
default date for reports.

CA-Easytrieve/Workstation 1.2 Enhancements

CA-IDMS Processing
(PC/DOS Only)

The CA-Easytrieve interface to CA-IDMS is now available in
CA-Easytrieve/Workstation. This interface provides complete
facilities for information retrieval and maintenance of
CA-IDMS/PC databases.

SQL Processing
(PC/DOS Only)

The CA-Easytrieve SQL interface is now available in
CA-Easytrieve/Workstation. This interface provides complete
facilities for information retrieval and maintenance of SQL tables.
SQL processing for Version 1.2 supports CA-Datacom/PC.

MOVE LIKE Statement
for Working Storage

The MOVE LIKE statement now supports moving contents of
fields with identical names to and from working storage.

OS/2 Support CA-Easytrieve/Workstation now supports OS/2 2.0 and above.
This support includes development and execution of full-screen
and windowed text-based applications. However, there is no
database support.

ASCII Numeric Data CA-Easytrieve/Workstation now supports ASCII data in N type
fields.

Distributable
Applications

Your CA-Easytrieve/Workstation applications are fully
distributable. If you use the Report Display Facility, you must
distribute the EZBR.EXE file with your
CA-Easytrieve/Workstation applications. If you use the Graph
Display Facility, you must distribute the EZGR.EXE file with your
CA-Easytrieve/Workstation applications.

CA-Easytrieve/Workstation 1.3 Enhancements

Year 2000 Compliant Options and system-defined fields let users specify a 4-digit year on report
dates and system dates.

Overview 1–9

Summary of Revisions

Enhanced
CA-Easytrieve/
Workstation Editor

Source files can exceed a file size of 32,768 bytes. A customizable Toolbar
incorporates frequently used editor functions into point-and-click icons.
Program text is color-coded to offset CA-Easytrieve keywords, alpha character
strings, and programmer-defined field names and labels.

CA-Realia File System
Interface

You can write CA-Easytrieve programs to create, read, write, and updates
CA-Realia native-format files with the CA-Realia file system interface available
in CA-Easytrieve Workstation Release 1.3.

CA-Easytrieve 1.3 for UNIX Enhancements

CA-Easytrieve is now available for use in the HP-UX environment and operates on
the HP-9000 Series 700/800.

CA-Ingres
Processing

The CA-Easytrieve SQL Interface now supports CA-Ingres in the
UNIX environment.

Oracle Processing The CA-Easytrieve SQL Interface now supports Oracle in the UNIX
environment.

C-ISAM Processing CA-Easytrieve now supports C-ISAM files as INDEXED file types.

Year 2000 Support A SYSDATE-LONG field is now available that contains the century.
SHORTDATE and LONGDATE options have been added to the
REPORT statement to display the date with or without the century.

A new Options Table entry has been added called LONGDTE. This specifies the
default date for reports.

CA-Easytrieve 1.4 for UNIX Enhancements

CA-Easytrieve now operates on the IBM RS/6000 in AIX.

DB2 Processing The CA-Easytrieve SQL Interface now supports DB2 in the UNIX
environment.

SYBASE Processing The CA-Easytrieve SQL Interface now supports SYBASE in the
UNIX environment.

Extended Reporting A subset of the Extended Reporting feature is now available in
UNIX. See the CA-Easytrieve for UNIX User Guide for details.

Tool Kit Routines A subset of CA-Easytrieve Tool Kit is now available in UNIX.
See the CA-Easytrieve Tool Kit User Guide for details.

Overview 1–10

Syntax Rules

Syntax Rules
The free-form English language structure of CA-Easytrieve makes it easy for you
to develop an efficient, flexible programming style. To avoid programming errors,
follow the simple syntax rules of CA-Easytrieve.

Statement Area

All source statements are records of 80 characters each. A system installation
option establishes a statement area within the 80 available positions. The default
statement area is in columns 1 through 72.

For example, although positions 1 to 80 are available, ‘SCANCOLS 7, SCANCOLE
72’ establishes the statement area as positions 7 to 72. This allows for optional data
(for example, sequence numbers and program identifiers) to be entered on the
record, but still be ignored by CA-Easytrieve. The complete record is always
printed on the statement listing.

 7 7 8
 1....6 7......................................2 3......0

 001000 PRGMNAME

 ignored statement area ignored

Character Sets

CA-Easytrieve/Online supports both Single Byte Character Sets (SBCS) and
Double Byte Character Sets (DBCS). MIXED format is data that contains both
SBCS and DBCS formatted data.

Note: The current release of CA-Easytrieve/Online limits support for alternate
character sets to the IBM (Japanese) character set. Report processing is further
limited to EBCDIC and MIXED data formats for standard reports and to EBCDIC
and DBCS data formats for extended reports. Identifiers (fields names, labels, and
so on) can contain DBCS and MIXED data as part of the name. MIXED data format
is supported only to the extent that data is allowed. CA-Easytrieve provides no
additional formatting based on the alignment of the DBCS portion of the data.
DBCS data is not supported on the workstation or in UNIX.

Both EBCDIC and DBCS data processing are applicable to China (Hanzi
characters), Japan (Kanji, Hiragana, and Katakana characters), and Korea (Haja and
Hangual characters). CA-Easytrieve supports both character sets based upon the
following assumptions and rules:

1. All the syntax rules described in this chapter apply to EBCDIC data only.
DBCS data in the CA-Easytrieve statement area is not processed for
continuation characters, delimiters, words, identifiers, and so on.

Overview 1–11

Syntax Rules

2. A DBCS character occupies two bytes in storage. If not identified as DBCS
characters, these same two bytes would be processed as a pair of single byte
EBCDIC characters. In order to distinguish EBCDIC data from DBCS data,
CA-Easytrieve uses a shift code system. This system, called the Wrapping
shift code system, takes the form of two codes — one code preceding and
the second following the DBCS data. These codes wrap or enclose the DBCS
data, thereby identifying the beginning and end of DBCS data. The term
associated with the code that precedes the DBCS data is a Shift-Out code
(shift-out of EBCDIC). The code that delimits (separates) the DBCS data is
called a Shift-In code (shift-in to EBCDIC). These codes can be one or two
bytes in length.

 The following illustrates the use of the Wrapping shift code system:

3. A shift code is a special one or two byte character contained in the

CA-Easytrieve statement area. Shift code values are defined in the CA-PSI
Subsystems DBCS Options module (see the CA-PSI Subsystems DBCS
Environment Guide for more details on the Options module). Each shift code
value uniquely identifies the DBCS code system of the data. If the system
cannot be uniquely identified, a default is assumed. You can alter this
default at compile time using the PARM statement. See PARM Statement in
the “Statements N–R” chapter for more information.

4. In the statement area, CA-Easytrieve requires shift codes to distinguish
DBCS data from EBCDIC data. Once a CA-Easytrieve word has been
identified, the word is known to be of EBCDIC, DBCS, or MIXED data
format. CA-Easytrieve only maintains shift codes for MIXED words. The
CA-Easytrieve compiler identifies the statement containing the word and
when necessary, performs the required processing to remove the shift codes
and convert EBCDIC data.

Overview 1–12

Syntax Rules

5. Once CA-Easytrieve finds a shift-out code in a word, the data that follows
will not be processed as DBCS data when:

■ The end statement area is reached before the related shift-in code is
found.

■ The shift-in code is found but it is not on a double byte boundary.

■ The shift-out code is found as part of the identified DBCS data.

Multiple Statements

The statement area normally contains a single statement. However, you can enter
multiple statements on a single record. The character string ‘. ’ (period followed by
a space) indicates the end of a statement. Another CA-Easytrieve statement begins
at the next available position of the statement area (after the space). For example,
the following two CA-Easytrieve statements are on one record:
COST = FIXED + VARIABLE. PRICE = COST + PROFIT

Comments

When the first non-blank character of a statement is an ‘*’ (asterisk), the remainder
of that record is a comment statement. (It is ignored by the CA-Easytrieve
compiler.) You can use comment statements at any place within a program, except
within a continued statement. A statement containing all blanks is treated as a
comment.

To place a comment on the same line as a statement, code a period (.), one or more
spaces, an asterisk (*), and then the comment.

Continuations

The last non-blank character of a statement terminates the statement unless that
character is a - (minus) or a + (plus). The - indicates that the statement continues at
the start of the next statement area. The + indicates that the statement continues
with the first non-blank character in the next statement area. The difference
between - and + is important only when continuing words. Continuation between
words is the same for both. The following continued statements produce identical
results:
FIELD-NAME W 6 A +
 VALUE 'ABC-
DEF'

FIELD-NAME W 6 A -
 VALUE 'ABC+
 DEF'

Overview 1–13

Syntax Rules

DBCS Data

To continue a statement defining DBCS data, you must delimit the DBCS data.
This means a shift-in code must precede the continuation character and a shift-out
code must precede the continuing DBCS data on the next record. The following
example illustrates continuing a DBCS literal:
FIELD-NAME W 10 K +
 VALUE '[DBDBDB] +
[DBDB]'

The [and] indicate shift-out and shift-in codes.

Words and Delimiters

One or more words make up each CA-Easytrieve statement. A word can be a
keyword, field name, literal, or symbol. All words begin with a non-blank
character. A delimiter or the end of the statement area terminates these words.
Delimiters make statements readable but are not considered part of the attached
word. CA-Easytrieve word delimiters are:

Delimiter Description

 space The basic delimiter within each statement.

‘ single quote Encloses literals which are alphanumeric.

. period followed
 by a space

Terminates a statement.

, comma Used optionally for readability.

() parentheses Encloses multiple parameters and portions of
arithmetic expressions (the left parenthesis acts as a
basic delimiter).

: colon Used as a delimiter for file, record, and field
qualifications.

At least one space must follow all delimiters except for the ‘(‘ (left parenthesis) and
‘:’ (colon). The word RECORD-COUNT is shown below with various delimiters:
RECORD-COUNT
FILEONE:RECORD-COUNT
(RECORD-COUNT)
‘RECORD-COUNT'
RECORD-COUNT,
RECORD-COUNT.

Overview 1–14

Syntax Rules

Keywords

Keywords are words that have specific meaning to CA-Easytrieve. Some
keywords are reserved words. You can use non-reserved keywords in the
appropriate context as field names, whereas reserved words cannot be used as
field names. For more information on keywords and reserved words, see
Appendix B.

Multiple Parameters

You must enclose multiple parameters within parentheses to indicate group
relationships. If parentheses are not used, only one parameter is assumed. The
following example is a CA-Easytrieve statement with multiple parameters:
CALL PGMNAME USING(FIELDA, FIELDB, FIELDC)

Field Names

Field names are composed of a combination of not more than 128 characters
chosen from the following:

■ Alphabetic characters, A through Z, lowercase as well as uppercase

■ Decimal digits 0 through 9

■ All special characters, except delimiters.

The first character of a field name must be an alphabetic character, a decimal digit,
or a national character (#, @, $). In addition, a field name must contain at least one
alphabetic or special character to distinguish the field name from a number.

All working storage field names must be unique, as well as all field names within a
single file. If you use the same field name in more than one file, or in a file and in
working storage, you must qualify the field name with the file name or the word
WORK. A qualified field name consists of the qualifying word followed by a colon
and the field name. You can use any number of spaces, or no spaces, to separate
the colon from either the qualifying word or the field name. Field names can
contain DBCS characters.

Assume FLD1 occurs in both working storage and the file FILEA. FLD1 can be
qualified in the following ways:
FILEA: FLD1
FILEA:FLD1
FILEA : FLD1
WORK:FLD1

Overview 1–15

Syntax Rules

Labels

Labels identify specific PROGRAMs, JOBs, PROCedures, REPORTs, SCREENs
and statements. Labels can be 128 characters long, can contain any character
other than a delimiter, and can begin with A through Z, 0 through 9, or a
national character (#, @, $); they cannot consist of all numeric characters. Labels
can contain DBCS characters.

Identifiers

Identifiers are words which name things (field names, statement labels, etc.) in
CA-Easytrieve. Identifiers cannot contain these delimiters:
, comma
' single quote
(left parenthesis
) right parenthesis
: colon

Arithmetic Operators

CA-Easytrieve arithmetic expressions use the following arithmetic operators:
* multiplication
/ division
+ addition
- subtraction

The arithmetic operator must lie between two spaces.

Numeric Literals

Numeric literals can contain 18-numeric digits (characters 0 through 9). You can
indicate the algebraic sign of a numeric literal by attaching a + (plus) or a - (minus)
prefix to the numeral. Also, you can use a single decimal point to indicate a
maximum precision of up to 18 decimal positions. The following examples are
valid numeric literals:
123
+123
-123.4321

Alphanumeric Literals

Alphanumeric literals are words enclosed within single quotes, and can be 254
characters long. See Literal and Data Formatting Rules, in the “Coding a
CA-Easytrieve Program” chapter of the CA-Easytrieve Programmer Guide, for
complete information on literals.

Overview 1–16

Syntax Rules

Font Numbers

Font numbers are used by extended report processing to identify which font is
used to display the field name or literal. A font number must begin with a pound
sign (#) and contain only numeric digits. Font numbers can be specified on the
following statements:

■ DEFINE

■ DISPLAY

■ HEADING

■ LINE

■ TITLE

Overview 1–17

Chapter

2 Statement Summaries

Introduction
This chapter provides a quick reference summary of all CA-Easytrieve statements.
Two types of cross-references are provided:

■ Alphabetical Statement Summary - an alphabetical list of all statements and
an overview of the usage of each statement.

■ Functional Category Summary - a list of the functional categories of
statements, the statements in each function, and their usage.

Alphabetical Statement Summary

Statement Usage

% Invoke a macro

* Document comments in a program

ACCESS Access a macro secured against unauthorized access in CA-PANVALET
or VSAM

AFTER-BREAK A REPORT procedure invoked following the printing of summary lines
for a control break

AFTER-LINE A REPORT procedure invoked after printing a detail line on a report

AFTER-SCREEN A SCREEN procedure performed after a SCREEN activity receives data
from the terminal

Assignment Establish a value in a field

BEFORE-BREAK A REPORT procedure invoked before printing the summary lines for a
control break

BEFORE-LINE A REPORT procedure invoked before printing a detail line on a report

BEFORE-SCREEN A SCREEN procedure invoked before a SCREEN activity sends data to

Statement Summaries 2–1

Alphabetical Statement Summary

Statement Usage
the terminal

CALL Invoke subprograms written in other programming languages

CASE Conditionally execute one of several alternative groups of statements
based on the value of a specific field

CLOSE Close a file

COMMIT Commit a logical unit of recoverable work

CONTROL Identify control fields used in a control report

COPY Duplicate field definitions of a named file

CURSOR Set the initial position of the screen cursor

DECLARE Name a set of screen attributes or an input edit pattern, or whether a
program is statically or dynamically linked

DEFAULT Override system-defined screen attributes and message locations

DEFINE Specify a data field within a file or within working storage

DELETE Delete a row from a CA-Easytrieve SQL file

DISPLAY Format and transfer data to the system output device or to a named file

DLI Perform IMS/DLI functions against an IMS/DLI database.

DO UNTIL Control repetitive program logic by evaluating the condition at the
bottom of a group of statements

DO WHILE Control repetitive program logic by evaluating the condition at the top of
a group of statements

DRAW Produce graphic output by initiating a GRAPH subactivity

ELEMENT-RECORD Identify the element records that comprise the logical record

ELSE Identify statements to be executed when IF conditions are false. See IF.

ELSE-IF Identify a conditional expression to be tested when the previous IF or
ELSE-IF conditional expression is false. See IF.

END-CASE Terminate the body of a CASE statement. See CASE.

END-DO Terminate the body of a loop associated with a DO UNTIL or DO WHILE
statement. See DO UNTIL and DO WHILE.

END-IF Terminate the logic associated with the previous IF statement. See IF.

ENDPAGE A REPORT procedure used to produce page footing information

END-PROC Delimit the statements in a procedure. See PROC.

END-REPEAT Terminate the body of a REPEAT statement. See REPEAT.

Statement Summaries 2–2

Alphabetical Statement Summary

Statement Usage

ENDTABLE Delimit instream data used to create small tables

EXECUTE Invoke a JOB, SORT, or SCREEN activity from a PROGRAM or SCREEN
activity

EXIT Terminate a SCREEN activity

FETCH Retrieve a row from a CA-Easytrieve SQL file

FILE Describe a file and database references

GET Place the next sequential record of the named file into the file's record
buffer

GOTO Modify the top to bottom logic flow of statement execution

GOTO JOB Branch to the top of the current JOB activity

GOTO SCREEN Branch to the top of the current SCREEN activity

GRAPH Define the style and characteristics of a graph

HEADING Define an alternate heading for a field on a report or graph

IDD FILE Identify a non-CA-IDMS file in the IDD and build the file and field
definition

IDD NAME Establish the dictionary entity retrieval environment

IDD RECORD Identify and define CA-IDMS and non-CA-IDMS records

IDD SUBSCHEMA Identify the subschema and build the file, record, logical record, element
record, and field definitions

IDD VERSION Set a global override of the Options Table VERFILE, VERREC, and
VERSCHM defaults

IDMS ACCEPT
DBKEY

Transfer database keys to program storage

IDMS ACCEPT
PROCEDURE

Return information from the Application Program Information Block
(APIB) associated with a database procedure to the program

IDMS ACCEPT
STATISTICS

Retrieve the system statistics

IDMS BIND Sign on the activity with the database management system

IDMS BIND FILE Give the database management system access to the record in program
storage

IDMS BIND
PROCEDURE

Establish communications between a program and a DBA-written
database procedure

IDMS COMMIT Request the creation of a checkpoint

Statement Summaries 2–3

Alphabetical Statement Summary

Statement Usage

IDMS CONNECT Establish a record as a member of a set occurrence

IDMS DISCONNECT Cancel the relationship between a record and a set occurrence

IDMS ERASE Make a record or logical record unavailable for further processing and
remove it from all set occurrences in which it participates as a member

IDMS FIND Locate a record

IDMS FINISH Sign off the database management system

IDMS GET Retrieve current data records

IDMS IF Test the status of a set

IDMS KEEP Place a shared or exclusive lock on a record

IDMS MODIFY Update a record or logical record within the database

IDMS OBTAIN Locate and then retrieve a record. For database records, see IDMS
FIND/OBTAIN. For logical records, see IDMS OBTAIN.

IDMS READY Establish area availability with the database manager

IDMS RETURN Retrieve the database key for an indexed record without retrieving the
record

IDMS ROLLBACK Request recovery

IDMS STORE Place a new record or logical record occurrence into a database

IF Control the execution of associated statements by testing conditional
expressions

INITIATION A SCREEN procedure invoked during the start of a SCREEN activity

INSERT Insert a row into a CA-Easytrieve SQL file

JOB Define and initiate processing activities

JOB INPUT Identify automatic input to the activity

JOB INPUT NULL Inhibit automatic input

JOB INPUT SQL Allow CA-Easytrieve to automatically manage the SQL cursor without a
file

KEY Define valid terminal keys for a screen, specify descriptive text, and
assign functions to terminal keys

LINE Define the content of a report line

LINK Transfer control from current program to another named program and
return to current program

LIST Regulate the printing or suppression of all statements in the printed

Statement Summaries 2–4

Alphabetical Statement Summary

Statement Usage
output of a program

LOGICAL-RECORD Identify the logical records available for automatic or controlled
processing of CA-IDMS databases

MACRO Define the parameters of a macro

MEND Terminate a macro

MESSAGE Define message type and text for messages in a SCREEN activity

MOVE Transfer character strings from one storage location to another

MOVE LIKE Move contents of fields with identical names from one file or record to
another

MSTART Begin an instream macro

NEWPAGE Eject the printer to the top of the next page before printing the next line of
source program on a statement listing

PARM Override selected general standards for a program that are set in the Site
Options Table

PERFORM Transfer control to a procedure and return control to next executable
statement in current program

POINT Establish a position within an INDEXED or RELATIVE file from which
subsequent data is sequentially retrieved

POP Restore the previous listing control indicators

PRINT Produce report output

PROC Initiate a CA-Easytrieve procedure

PROGRAM Identify and initiate a processing activity that can optionally initiate JOB,
SORT, and SCREEN activities

PUSH Save the current listing control indicators

PUT Perform sequential file output

READ Provide random access to INDEXED and RELATIVE files

RECORD Identify the CA-IDMS database records available for automatic or
controlled processing

REFRESH Restore the initial screen image by rebuilding it with the current values of
program fields

RELEASE Manually release the hold on any record in an INDEXED or RELATIVE
file

REPEAT Display arrays on a screen

Statement Summaries 2–5

Alphabetical Statement Summary

Statement Usage

REPORT Define the type and characteristics of a report

REPORT-INPUT A REPORT procedure that selects or modifies report input data

RESHOW Re-display a screen image without rebuilding the screen using the
current values of program fields

RETRIEVE Identify the CA-IDMS or IMS/DLI database records that are input to the
JOB activity

ROLLBACK Roll back all recoverable work since the last commit-point

ROW Specify items to be displayed and received on a row of a screen

SCREEN Define and initiate a SCREEN activity

SEARCH Provide access to table data

SELECT
(File-based SQL)

Cause a cursor to be declared and opened for a CA-Easytrieve file

SELECT
(CA-IDMS)

Specify automatic input of logical records from CA-IDMS databases

SELECT
(Non-file SQL)

Identify the rows and columns to be input to a JOB activity when a
CA-Easytrieve file is not used

SELECT
(Report Selection)

Select report input data

SELECT
(Sort Selection)

Select sort input data

SEQUENCE Specify the order of a report or graph based on the content of one or more
fields

SET Dynamically change screen attributes and control the display of screen
errors

SKIP Space the printer a designated number of lines before printing the next
line of a statement listing

SORT Sequence an input file in alphabetical or numerical order based on fields
specified as keys

SQL Indicate a valid SQL statement for any of the supported SQL database
management systems

SQL INCLUDE Indicate SQL table information is used to generate CA-Easytrieve field
definitions

STOP Terminate activities

SUM Specify the quantitative fields which are totaled for a control report

Statement Summaries 2–6

Functional Category Summary

Statement Usage

TERMINATION
(Reports)

A REPORT procedure invoked at the end of a report, commonly used to
print report footing information

TERMINATION
(Screens)

A SCREEN procedure invoked once during the end of a SCREEN
activity, used to perform actions that are executed once at the end of the
activity

TITLE (Graphs) Specify a title to be displayed on a graph

TITLE (Reports) Define an optional report title and its position on a title line

TITLE (Screens) Define and center title items on a screen

TRANSFER Transfer execution to a program without returning to the invoking
program

UPDATE Update a row from a CA-Easytrieve SQL file

VALUE Specify fields used to draw a graph

WRITE Update and delete existing records or add new records to INDEXED and
RELATIVE files

Functional Category Summary
CA-Easytrieve statements are divided into the following functional categories:

■ Library Definition

■ File Management

■ Screen Processing

■ Report Processing

■ Graph Processing

■ Generalized Programming

■ Inter-program Execution

■ Decision and Branching Logic

■ Listing Control

■ Assignment and Moves

■ Macro Processing

■ Native SQL

■ CA-IDMS Database Processing

■ IMS/DLI Database Processing.

Statement Summaries 2–7

Functional Category Summary

Under each category is a list of the statements that belong to each. Also given is a
brief overview of the usage of each statement.

Library Definition

Statement Usage

COPY Duplicate field definitions of a named file

DECLARE Name a set of screen attributes or an input edit pattern, or whether a
program is statically or dynamically linked

DEFINE Specify a data field within a file or within working storage

FILE Describe a file and database references

SQL INCLUDE Indicate SQL table information is used to generate CA-Easytrieve field
definitions

File Management

Statement Usage

CLOSE Close a file

COMMIT Commit a logical unit of recoverable work

DELETE Delete a row from a CA-Easytrieve SQL file

DISPLAY Format and transfer data to the system output device or to a named file

ENDTABLE Delimit instream data used to create small tables

FETCH Retrieve a row from a CA-Easytrieve SQL file

GET Place the next sequential record of the named file into the file's record
buffer

INSERT Insert a row into a CA-Easytrieve SQL file

JOB Define and initiate processing activities

JOB INPUT NULL Inhibit automatic input

JOB INPUT SQL Allow CA-Easytrieve to automatically manage the SQL cursor without a
file

POINT Establish a position within an INDEXED or RELATIVE file from which
subsequent data is sequentially received

PUT Perform sequential file output

Statement Summaries 2–8

Functional Category Summary

Statement Usage

READ Provide random access to INDEXED and RELATIVE files

RELEASE Manually release the hold on any record in an INDEXED or RELATIVE
file

ROLLBACK Roll back all recoverable work since the last commit-point

SELECT
(File-based SQL)

Cause a cursor to be declared and opened for a CA-Easytrieve file

SELECT
(Non-file SQL)

Identify the rows and columns to be input to a JOB activity when a
CA-Easytrieve file is not used

SELECT
(Sort Selection)

Select sort input data

SORT Sequence an input file in alphabetical or numerical order based on fields
specified as keys

UPDATE Update a row from a CA-Easytrieve SQL file

WRITE Update and delete existing records or add new records to INDEXED and
RELATIVE files

Screen Processing

Statement Usage

AFTER-SCREEN A SCREEN procedure performed after a SCREEN activity receives data
from the terminal

BEFORE-SCREEN A SCREEN procedure invoked before a SCREEN activity sends data to
the terminal

CURSOR Set the initial position of the screen cursor

DEFAULT Override system-defined screen attributes and message locations

EXIT Terminate a SCREEN activity

INITIATION A SCREEN procedure invoked once during the start of a SCREEN
activity

KEY Define valid terminal keys for a screen, specify descriptive text, and
assign functions to terminal keys

MESSAGE Define message type and text for messages in a SCREEN activity

REFRESH Restore the initial screen image by rebuilding it with the current values of
program fields

REPEAT Display arrays on a screen

Statement Summaries 2–9

Functional Category Summary

Statement Usage

RESHOW Re-display a screen image without rebuilding the screen using the
current values of program fields

ROW Specify items to be displayed and received on a row of a screen

SCREEN Define and initiate a SCREEN activity

SET Dynamically change screen attributes and control the display of screen
errors

TERMINATION A SCREEN procedure invoked once during the end of a SCREEN
activity, used to perform actions that are executed once at the end of the
activity

TITLE Define and center title items on a screen

Report Processing

Statement Usage

AFTER-BREAK A REPORT procedure invoked following the printing of summary lines
for a control break

AFTER-LINE A REPORT procedure invoked after printing a detail line on a report

BEFORE-BREAK A REPORT procedure invoked before printing the summary lines for a
control break

BEFORE-LINE A REPORT procedure invoked before printing a detail line on a report

CONTROL Identify control fields used in a control report

ENDPAGE A REPORT procedure used to produce page footing information

HEADING Define an alternate heading for a field on a report

LINE Define the content of a report line

PRINT Produce report output

REPORT Define the type and characteristics of a report

REPORT-INPUT A REPORT procedure that selects and/or modifies report input data

SELECT Select report input data

SEQUENCE Specify the order of a report based on the content of one or more fields

SUM Specify the quantitative fields which are totaled for a control report

TERMINATION A REPORT procedure invoked at the end of a report, commonly used to
print report footing information

Statement Summaries 2–10

Functional Category Summary

Statement Usage

TITLE Define an optional report title and its position on a title line

Graph Processing

Statement Usage

DRAW Produce graphic output by initiating a GRAPH subactivity

GRAPH Define the style and characteristics of a graph

HEADING Define an alternate heading for a field on a graph

SEQUENCE Specify the order of a graph based on the content of one or more fields

TITLE Specify a title to be displayed on a graph

VALUE Specify fields used to draw a graph

Generalized Programming

Statement Usage

PARM Override selected general standards for a program that are set in the Site
Options Table

PROGRAM Identify and initiate a processing activity that can optionally initiate JOB,
SORT, and SCREEN activities

Inter-program Execution

Statement Usage

CALL Invoke subprograms written in other programming languages

LINK Transfer control from current program to another named program and
return to current program

TRANSFER Transfer execution to a program without returning to the invoking
program

Decision and Branching Logic

Statement Summaries 2–11

Functional Category Summary

Statement Usage

CASE Conditionally execute one of several alternative groups of statements
based on the value of a specific field

DO UNTIL Control repetitive program logic by evaluating the condition at the
bottom of a group of statements

DO WHILE Control repetitive program logic by evaluating the condition at the top of
a group of statements

ELSE Identify statements to be executed when IF conditions are false. See IF.

ELSE-IF Identify a conditional expression to be tested when the previous IF or
ELSE-IF conditional expression is false. See IF.

END-DO Terminate the body of a loop associated with a DO UNTIL or DO WHILE
statement. See DO UNTIL and DO WHILE.

END-IF Terminate the logic associated with the previous IF statement. See IF.

EXECUTE Invoke a JOB, SORT, or SCREEN activity from a PROGRAM or SCREEN
activity

GOTO Modify the top to bottom logic flow of statement execution

GOTO JOB Branch to the top of the current JOB activity

GOTO SCREEN Branch to the top of the current SCREEN activity

IF Control the execution of associated statements by testing conditional
expressions

PERFORM Transfer control to a procedure and return control to next executable
statement in current program

STOP Terminate activities

Listing Control

Statement Usage

* Document comments in a program

LIST Regulate the printing or suppression of all statements in the printed
output of a program

NEWPAGE Eject the printer to the top of the next page before printing the next line of
source program on a statement listing

POP Restore the previous listing control indicators

PUSH Save the current listing control indicators

Statement Summaries 2–12

Functional Category Summary

Statement Usage

SKIP Space the printer a designated number of lines before printing the next
line of a statement listing

Assignment and Moves

Statement Usage

Assignment Establish a value in a field

MOVE Transfer character strings from one storage location to another

MOVE LIKE Move contents of fields with identical names from one file to another

Macro Processing

Statement Usage

% Invoke a macro

ACCESS Access a macro secured against unauthorized access in CA-PANVALET
or VSAM

MACRO Define the parameters of a macro

MEND Terminate a macro

MSTART Begin an instream macro

Native SQL

Statement Usage

SQL Indicate a valid SQL statement for any of the supported SQL database
management systems

CA-IDMS Database Processing

Statement Usage

ELEMENT-RECORD Identify the element records that comprise the logical record

IDD FILE Identify a non-CA-IDMS file in the IDD and build the file and field

Statement Summaries 2–13

Functional Category Summary

Statement Usage
definition

IDD NAME Establish the dictionary entity retrieval environment

IDD RECORD Identify and define CA-IDMS and non-CA-IDMS records

IDD SUBSCHEMA Identify the subschema and build the file, record, logical record, element
record, and field definitions

IDD VERSION Set a global override of the Options Table VERFILE, VERREC, and
VERSCHM defaults

IDMS ACCEPT
DBKEY

Transfer database keys to program storage

IDMS ACCEPT
PROCEDURE

Return information from the Application Program Information Block
(APIB) associated with a database procedure to the program

IDMS ACCEPT
STATISTICS

Retrieve the system statistics

IDMS BIND Sign on the activity with the database management system

IDMS BIND FILE Give the database management system access to the record in program
storage

IDMS BIND
PROCEDURE

Establish communications between a program and a DBA-written
database procedure

IDMS COMMIT Request the creation of a checkpoint

IDMS CONNECT Establish a record as a member of a set occurrence

IDMS DISCONNECT Cancel the relationship between a record and a set occurrence

IDMS ERASE Make a record or logical record unavailable for further processing and
remove it from all set occurrences in which it participates as a member

IDMS FIND Locate a record

IDMS FINISH Sign off the database management system

IDMS GET Retrieve current data records

IDMS IF Test the status of a set

IDMS KEEP Place a shared or exclusive lock on a record

IDMS MODIFY Update a record or logical record within the database

IDMS OBTAIN Locate and then retrieve a record. For database records, see IDMS
FIND/OBTAIN. For logical records, see IDMS OBTAIN.

IDMS READY Establish area availability with the database manager

IDMS RETURN Retrieve the database key for an indexed record without retrieving the

Statement Summaries 2–14

Functional Category Summary

Statement Usage
record

IDMS ROLLBACK Request recovery

IDMS STORE Place a new record or logical record occurrence into the database

LOGICAL-RECORD Identify the logical records available for automatic or controlled
processing of CA-IDMS databases

RECORD Identify the CA-IDMS database records available for automatic or
controlled processing

RETRIEVE Identify the CA-IDMS database records that are input to the JOB activity

SELECT (CA-IDMS) Specify automatic input of logical records from CA-IDMS databases

IMS/DLI Database Processing

Statement Usage

DLI Perform IMS/DL/I functions against an IMS/DL/I database

Statement Summaries 2–15

Chapter

3 Statements A - C

% (Macro Invocation) Statement
The macro invocation statement consists of a macro name preceded by a percent
(%) sign. Its syntax is:

Syntax
 %macro-name [positional-parameters]...[keyword-parameters]

Parameters

%macro-name Macro-name is the name of a previously stored macro that you
want to invoke.

[positional-parameters] Supply values of positional parameters in the
macro. You must supply positional parameters before any keyword parameters.

[keyword-parameters] Supply both the keyword and values of keyword
parameters in the macro.

Usage Notes

See the MACRO Statement for more information on defining substitutable
parameters in the macro. See the CA-Easytrieve Programmer Guide for complete
information on using macros.

* (Comment) Statement
You can document your CA-Easytrieve programs with a comment statement.
When the first non-blank character of a statement is an asterisk (*), the remainder
of that record is a comment statement.

Statements A - C 3–1

ACCESS Statement

Syntax
 * comment-text

Usage Notes

You can use comment statements any place within a program, except within a
continued statement. A statement containing all blanks is treated as a comment.

If you code comment statements within a SCREEN declaration and maintain the
screen with the CA-Easytrieve/Online Screen Painter, all comment statements are
moved to the top of the declaration.

ACCESS Statement
The ACCESS statement enables you to access a macro secured against
unauthorized access in CA-Panvalet or VSAM.

Syntax

CA-Panvalet
 ACCESS 'eight-byte code'

VSAM
 ACCESS 'eight-byte password'

'eight-byte code' A security access code applies to an individual
CA-Panvalet library member. You must supply the security access code on an
ACCESS record before CA-Easytrieve can retrieve a secured member.

'eight-byte password' VSAM provides the capability of protecting the macro
library through the use of VSAM password protection. Before CA-Easytrieve can
retrieve a macro from a secured library, you must supply the library password on
an ACCESS record prior to the first macro call.

Usage Notes

For both CA-Panvalet and VSAM macro storage access methods, the ACCESS
record can appear anywhere in the CA-Easytrieve program prior to the retrieval of
the macro, and remains in effect until the next ACCESS record is encountered. The
ACCESS record must be on a record by itself. CA-Easytrieve does not print the
ACCESS record.

Statements A - C 3–2

AFTER-BREAK Report Procedure

AFTER-BREAK Report Procedure

Syntax
AFTER-BREAK. PROC

The AFTER-BREAK procedure is invoked once for each level of break. For
example, assume two control fields are specified. When the minor field causes a
control break, the AFTER-BREAK procedure is invoked only once. When the
major field causes a control break, AFTER-BREAK is invoked twice.

The value of LEVEL (a system-defined field) can be used to determine which
control break is being processed. The value of BREAK-LEVEL (a system-defined
field) contains the number of the field causing the control break. TALLY (a
system-defined field) contains the number of records in a particular control group.
See the CONTROL Statement for more information. See the CA-Easytrieve
Programmer Guide for examples of LEVEL and BREAK-LEVEL.

An AFTER-BREAK procedure must be delimited by an END-PROC statement. See
the PROC Statement for more information.

Example

Statements:

 LAST-NAME 1 5 A
 STATE 6 2 A

 PAY-NET 13 5 N 2
 JOB INPUT FILE1 NAME MYPROG

 *
 REPORT REPORT1 LINESIZE 65 +

 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP

 *
 AFTER-BREAK. PROC

An AFTER-BREAK procedure is invoked following the printing of summary lines
for a control break. It can be used to produce special annotation on control reports.

Usage Notes

Note: If NOPRINT is specified on a CONTROL statement, the AFTER-BREAK
procedure is still executed.

In the following example, the total line for the control field STATE receives special
annotation.

 FILE FILE1

 ZIP 8 5 N

 PRINT REPORT1

 SUMMARY SUMCTL DTLCOPY

 LINE 01 LAST-NAME STATE ZIP PAY-NET

Statements A - C 3–3

AFTER-LINE Report Procedure

 IF LEVEL EQ 2
 DISPLAY 'TOTALS FOR THE STATE OF ' STATE
 END-IF

 Data:

BROWNIL6007612345
 BROWNIL6007667890

 JONESIL6007754321
 SMITHTX7521811111

Results:

 LAST-NAME STATE ZIP PAY-NET

 JONES IL 60077 641.97
 IL 1444.32

 SMITH TX 75218 777.77

 TOTALS FOR THE STATE OF TX
 2222.09

An AFTER-LINE procedure is invoked immediately following the printing of each
detail line on a report. An AFTER-LINE procedure is commonly used to print a
literal string after a detail line on the report.

Syntax

Usage Notes

The AFTER-LINE procedure is invoked after each individual line in a line group.
The system-defined field LINE-NUMBER contains the number of the line in the
group being processed.

 END-PROC

 JONESIL6007709876

 SMITHTX7521866666

 BROWN IL 60076 802.35

 TOTALS FOR THE STATE OF IL

 TX 777.77

AFTER-LINE Report Procedure

AFTER-LINE. PROC

Note that when using an AFTER-LINE procedure, the detail line for the report has
already been built. You cannot modify the contents of the detail line with an
AFTER-LINE procedure. (To modify the contents of a detail line on a report, use a
REPORT-INPUT or BEFORE-LINE procedure.)

An AFTER-LINE procedure must be delimited by an END-PROC statement. See
the PROC Statement for more information.

Statements A - C 3–4

AFTER-LINE Report Procedure

Example

The following example illustrates how an AFTER-LINE procedure can cause
information to be printed following a detail line of a report:
Statements:

 FILE FILE1
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 DTLCTL EVERY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET
 *
 AFTER-LINE. PROC
 IF PAY-NET GE 500
 DISPLAY '* EMPLOYEE ' LAST-NAME ' +
 EXCEEDED WEEKLY SALARY GOAL *'
 END-IF
 END-PROC

 Data:

 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Results:

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 678.90
 * EMPLOYEE BROWN EXCEEDED WEEKLY SALARY GOAL *
 BROWN IL 60076 123.45
 IL 60076 802.35

 JONES IL 60077 543.21
 * EMPLOYEE JONES EXCEEDED WEEKLY SALARY GOAL *
 JONES IL 60077 98.76
 IL 60077 641.97

 IL 1444.32

 SMITH TX 75218 666.66
 * EMPLOYEE SMITH EXCEEDED WEEKLY SALARY GOAL *
 SMITH TX 75218 111.11
 TX 75218 777.77

 TX 777.77

 2222.09

Statements A - C 3–5

AFTER-SCREEN Screen Procedure

AFTER-SCREEN Screen Procedure
An AFTER-SCREEN procedure is invoked after the screen activity receives data
from the terminal.

Syntax
AFTER-SCREEN. PROC

Usage Notes

All branch actions (REFRESH, RESHOW, EXIT, GOTO SCREEN) are valid in the
AFTER-SCREEN procedure and any procedure performed by the AFTER-SCREEN
procedure. The AFTER-SCREEN procedure is not executed if the key pressed is
assigned to execute a branch action with a KEY statement. You typically use an
AFTER-SCREEN procedure to perform complex editing and to perform I/O after
data entry.

An AFTER-SCREEN procedure must be delimited by an END-PROC statement.
See the PROC Statement for more information.

Example
SCREEN NAME SCRN1
 KEY F3 NAME 'Exit' EXIT
 KEY F8 NAME 'Forward'
. . .
 AFTER-SCREEN. PROC
 GET PERSNL
 IF EOF PERSNL
 EXIT
 END-IF
 END-PROC

Assignment Statement
The Assignment statement establishes a value in a field. The value can be a copy
of the data in another field or literal, or it can be the result of an arithmetic or
logical expression evaluation.

The two formats of the Assignment statement are:

Syntax

Format 1 (Normal Assignment)

Statements A - C 3–6

Assignment Statement

 [ROUNDED]{= } {send-field-name }
receive-field-name [INTEGER] []{ } {send-literal }
 [TRUNCATED]{EQ} {arithmetic-expression}

Format 2 (Logical Expression)
 {= } {AND} {bit-mask-field-name}
receive-field-name { } send-field-name {OR } { }
 {EQ} {XOR} {bit-mask-literal }

Parameters

Format 1 (Normal Assignment)

receive-field-name Specify the field name to which a value will be assigned.

[INTEGER] Specify INTEGER to ignore the fractional portion of the value being
assigned. INTEGER causes only the numerics to the left of the decimal point to be
transferred during the assignment.
[ROUNDED]
[TRUNCATED]

Specify ROUNDED or TRUNCATED when the receiving field (receive-field-name) is
too small to handle the fractional result of the assignment. TRUNCATED is the
default.

Specify ROUNDED to round off the fractional result of the assignment statement.
The least significant digit of the result (receiving field) has its value increased by
one when the most significant digit of the excess decimal digits is greater than or
equal to five. For example, if 10.75 is the value of the sending field and the
receiving field has one decimal place, ROUNDED causes the receiving field to be
10.8.

Specify TRUNCATED to truncate the result of the assignment statement. Low
order digits are truncated on the right as necessary when the result is moved to the
receiving field.

If INTEGER is used with ROUNDED, the result is rounded to the nearest integer
before the INTEGER function is performed. If INTEGER is used with
TRUNCATED (the default), then only the INTEGER function is performed.

Note: INTEGER, ROUNDED, and TRUNCATED are valid only with numeric
fields.
{= }
{ }
{EQ}

Use EQ or = to indicate equivalency.
{send-field-name }
{send-literal }

Statements A - C 3–7

Assignment Statement

{arithmetic-expression}

Send-field-name names the field that is copied to receive-field-name.

Send-literal contains the literal that is copied to receive-field-name.

Arithmetic-expression contains numeric values separated by arithmetic operators (+,
-, *, /). The result of the arithmetic-expression is placed in receive-field-name.

Format 2 (Logical Expression)

receive-field-name Specify the field name to which a value will be assigned.
{= }
{ }
{EQ}

Use EQ or = to indicate equivalency.

send-field-name Send-field-name names the field that is copied to receive-
field-name.
{AND}
{OR }
{XOR}

Specify AND, OR, or XOR.

■ AND - Zero bits in bit-mask-field-name or bit-mask-literal are carried forward to
send-field-name and the result is placed in receive-field-name.

■ OR - One bits in bit-mask-field-name or bit-mask-literal are carried forward to
send-field-name and the result is placed in receive-field-name.

■ XOR - Corresponding bits of bit-mask-field-name or bit-mask-literal, and send-
field-name must be opposite (zero and one) to result in a one bit in receive-
field-name.

{bit-mask-field-name}
{ }
{bit-mask-literal }

Bit-mask-field-name is the name of a field that is logically combined with send-field-
name, the result of which is carried forward to receive-field-name.

Bit-mask-literal is a literal bit mask that is logically combined with send-field-name,
the result of which is carried forward to receive-field-name.

Usage Notes

Format 1 (Normal Assignment)

Statements A - C 3–8

Assignment Statement

Format 1 sets the value of receive-field-name equal to the value of send-field-name,
send-literal, or the arithmetic expression. See Assignments and Moves in the
“Coding a CA-Easytrieve Program” chapter of the CA-Easytrieve Programmer Guide
for complete rules of the Assignment statement.

Note: See the CA-Easytrieve Programmer Guide for complete Assignment statement
rules for converting from EBCDIC to DBCS.

Format 2 (Logical Expression)

Format 2 of the Assignment statement sets the value of receive-field-name equal to
the result of evaluating a logical expression. The value of send-field-name is
logically acted upon by the value of bit-mask-field-name or bit-mask-literal. The
lengths of all values must be the same and bit-mask-literal must be hexadecimal.

Note: If receive-field-name is nullable, then its indicator is set to zero, indicating
NOT NULL. If any operands on the right-hand side contain NULLs, a runtime
error occurs.

Examples

The following examples of the Assignment statement illustrate its various rules.

The first example shows assignment format 1 when the receive-field-name is
alphanumeric:
Format 1 (Normal Assignment)

DEFINE F1A W 4 A
DEFINE F2A1 W 1 A VALUE 'A'
DEFINE F2A2 W 6 A VALUE 'ABCDEF'
DEFINE F2N1 W 2 N VALUE 12
DEFINE F2N2 W 3 P 1 VALUE 1234.5
 ...
 Resulting Value

F1A = F2A1 'A '
F1A = F2A2 'ABCD'
F1A = F2N1 '0012'
F1A = F2N2 '2345'
F1A = X'FF' X'FF404040'

Note: For an example using varying length alphanumeric fields, see Field
Definition in the CA-Easytrieve Programmer Guide.

This example shows assignment format 1 when the receive-field-name is numeric:
Format 1 (Normal Assignment)

Statements:

DEFINE F1N W 4 N 1
DEFINE F2N1 W 4 N 1 VALUE 1
DEFINE F2N2 W 4 N 1 VALUE 2

Statements A - C 3–9

Assignment Statement

DEFINE F2N3 W 4 N 1 VALUE 3
JOB INPUT NULL NAME MYPROG
 F1N = F2N1 + F2N2 + F2N3
 DISPLAY SKIP 2 +
 'F1N = F2N1 + F2N2 + F2N3 = ' F1N
 F1N = F2N1 + F2N2 / F2N3
 DISPLAY SKIP 2 +
 'F1N = F2N1 + F2N2 / F2N3 = ' F1N
 F1N = (F2N1 + F2N2) / F2N3
 DISPLAY SKIP 2 +
 'F1N = (F2N1 + F2N2) / F2N3 = ' F1N
 F1N = ((F2N1 / F2N2) * 100) + .5
 DISPLAY SKIP 2 +
 'F1N = ((F2N1 / F2N2) * 100) + .5 = ' F1N
STOP

Results:
 Resulting
 Value

 F1N = F2N1 + F2N2 + F2N3 = 6.0
 (1 + 2 + 3)

 F1N = F2N1 + F2N2 / F2N3 = 1.6
 (1 + 2 / 3)
 (1 + 0.6666)

 F1N = (F2N1 + F2N2) / F2N3 = 1.0
 ((1 + 2) / 3)
 (3 / 3)

 F1N = ((F2N1 / F2N2) * 100) + .5 = 50.5
 ((1 / 2) * 100) + .5
 ((0.5 * 100) + .5)
 (50 + .5)

The following example illustrates the use of the INTEGER, ROUNDED, and
TRUNCATED parameters.

If:
SENDFLD W 5 N 2 VALUE(10.75)
RCVFLD W 5 N 1

Then:

Assignment Statement

RCVFLD
Result

RCVFLD INTEGER ROUNDED = SENDFLD 11.0

RCVFLD INTEGER TRUNCATED = SENDFLD 10.0

RCVFLD INTEGER = SENDFLD 10.0

RCVFLD ROUNDED = SENDFLD 10.8

RCVFLD TRUNCATED = SENDFLD 10.7

RCVFLD = SENDFLD 10.7

Statements A - C 3–10

ATTR Parameter

Format 2 (Logical Expression Evaluation)

Statements:

DEFINE F1P W 2 P MASK HEX
DEFINE F2P W 2 P VALUE X'123D'
JOB INPUT NULL NAME MYPROG
 F1P = F2P AND X'FFFE'
 DISPLAY SKIP 2 +
 'F1P = F2P AND X''FFFE'' = ' F1P
 F1P = F2P OR X'000F'
 DISPLAY SKIP 2 +
 'F1P = F2P OR X''000F'' = ' F1P
 F1P = F2P XOR X'FFFF'
 DISPLAY SKIP 2 +
 'F1P = F2P XOR X''FFFF'' = ' F1P
 F1P = F2P XOR F2P
 DISPLAY SKIP 2 +
 'F1P = F2P XOR F2P = ' F1P
STOP

Results:
 Resulting
 Value

 F1P = F2P AND X'FFFE' = 123C

 F1P = F2P OR X'000F' = 123F

 F1P = F2P XOR X'FFFF' = EDC2

 F1P = F2P XOR F2P = 0000

ATTR Parameter
The ATTR parameter is used to assign screen attributes to a field or literal. You
can specify a DECLAREd screen attribute name or a list of attribute keywords.
The ATTR parameter can be used in the following statements:

■ DECLARE

■ DEFAULT

■ ROW

■ TITLE

When used in these statements the ATTR parameter completely overrides any site
or screen default attributes. See the DEFAULT Statement to set default screen
attributes that override site attributes

Syntax
ATTR [attribute-name]
 [(attribute-list)]

Statements A - C 3–11

ATTR Parameter

attribute-list

[SENDONLY] +

[CURSOR] +

[ASKIP] +
[PROTECT]

[NUMERIC] +

[INTENSE] +
[INVISIBLE]

[GREEN]
[RED]
[BLUE]
[TURQ|TURQUOISE] +
[PINK]
[YELLOW]
[BLACK]
[WHITE]

[MUSTFILL] +

[MUSTENTER] +

[TRIGGER] +

[BLINK]
[REVERSE] +
[UNDERLINE]

[ALARM] +

[BOX]
[LEFT]
[RIGHT]
[UNDER]
[OVER]

Parameters

attribute-name Specify a DECLAREd screen attribute name. See the
DECLARE Statement for more information.

[SENDONLY] The SENDONLY parameter specifies that the field is not to be
received. The field is ignored if entered. SENDONLY is implied for literals.

[CURSOR] Specify CURSOR to place the cursor on this field when displayed on
the terminal. If more than one field contains the CURSOR attribute, the cursor is
placed on the first field that contains CURSOR.

CURSOR is ignored for literals.

Note: The cursor cannot be moved into a field that also contains the ASKIP,
PROTECT, or SENDONLY attributes.
[ASKIP]

Statements A - C 3–12

ATTR Parameter

[PROTECT]

ASKIP specifies that the field is an auto-skip field. PROTECT specifies that the
field is protected and not auto-skipped. If neither is specified, the field is
unprotected.

ASKIP is implied for literals.

[NUMERIC] NUMERIC specifies that only numeric data can be entered in this
screen field. Use NUMERIC for permitting only numeric data in alphanumeric
fields. NUMERIC is implied for all numeric data types, and ignored for literals.
[INTENSE]
[INVISIBLE]

INTENSE specifies that the field displays brightly. INVISIBLE specifies that the
field is present on the screen but is not displayed. INVISIBLE is ignored for
literals.

On 3270 extended attribute terminals, INTENSE is ignored when a color attribute
is also specified.
[GREEN]
[RED]
[BLUE]
[TURQ|TURQUOISE]
[PINK]
[YELLOW]
[BLACK]
[WHITE]

The value specified is the color of the field or literal when displayed on a screen. If
no color is specified, hardware defaults apply.

Note: BLACK is valid on the workstation only. It is ignored on the mainframe.
The color BLACK is flagged as an error if the portability switch (/P) is specified for
the workstation compiler.

[MUSTFILL] Specify MUSTFILL to require that all spaces have a non-blank
character typed into them. MUSTFILL is ignored for literals and on terminals that
do not support a mandatory-fill attribute.

[MUSTENTER] Use MUSTENTER to send an error message to the terminal if the
field was not changed. MUSTENTER is ignored for literals and on terminals that
do not support a mandatory-enter attribute. MUSTENTER is ignored for literals.

[TRIGGER] TRIGGER causes the screen to be received as soon as the terminal
operator has modified the field and tries to move the cursor out of the field.
TRIGGER is ignored for literals and on terminals that do not support a trigger
attribute.
[BLINK]
[REVERSE]
[UNDERLINE]

Statements A - C 3–13

BEFORE-BREAK Report Procedure

BLINK displays the item blinking. REVERSE displays the item in reverse video.
UNDERLINE displays the item underlined.

[ALARM] ALARM causes the terminal alarm to sound.

ALARM is ignored for literals.
[BOX]
[LEFT]
[RIGHT]
[UNDER]
[OVER]

BOX specifies that field outlining displays a box surrounding the field.

LEFT specifies that field outlining displays a vertical line to the left of a field.

RIGHT specifies that field outlining displays a vertical line to the right of a field.

UNDER specifies that field outlining displays a horizontal line below a field.

OVER specifies that field outlining displays a horizontal line above a field.

Note: BOX, LEFT, RIGHT, UNDER, and OVER are ignored on terminals that do
not support outlining attributes.

Usage Notes

The ATTR parameter can be specified without an attribute-name or an attribute-list
only on the DECLARE statement. This permits a named attribute to be declared
and then assigned later in the program. A runtime error occurs if a named
attribute is used without any attributes assigned to it. The DEFAULT, ROW, and
TITLE statements require an attribute-name or an attribute-list after the ATTR
keyword.

BEFORE-BREAK Report Procedure
A BEFORE-BREAK procedure is invoked before printing the summary lines for a
control break. It can be used to calculate percentages and average totals. These
values must be calculated immediately before printing.

Syntax
BEFORE-BREAK. PROC

Statements A - C 3–14

BEFORE-BREAK Report Procedure

Usage Notes

The BEFORE-BREAK procedure is invoked once for each level of break. For
example, assume two control fields are specified. When the minor field causes a
control break, the BEFORE-BREAK procedure is invoked only once. When the
major field causes a control break, BEFORE-BREAK is invoked twice.

The value of LEVEL (a system-defined field) can be used to determine which
control break is being processed. The value of BREAK-LEVEL (a system-defined
field) contains the number of the field causing the control break. TALLY (a
system-defined field) contains the number of records in a particular control group.
See the CONTROL Statement for more information. See the CA-Easytrieve
Programmer Guide for examples of LEVEL and BREAK-LEVEL.

Note: If NOPRINT is specified on a CONTROL statement, the BEFORE-BREAK
procedure is still executed.

A BEFORE-BREAK procedure must be delimited by an END-PROC statement.
See the PROC Statement for more information.

Example

Consider the following percentage calculation, paying special attention to when
and how PERCENT is calculated:
FILE FILE1 FB(80 8000)
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
*
PERCENT W 2 N 2
TOTAL-NET S 8 N 2
*
JOB INPUT FILE1 NAME MYPROG
*
 TOTAL-NET = TOTAL-NET + PAY-NET
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 80 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET PERCENT
*
BEFORE-BREAK. PROC
 PERCENT = PAY-NET * 100 / TOTAL-NET
END-PROC

Data:

BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111

Statements A - C 3–15

BEFORE-LINE Report Procedure

SMITHTX7521866666

Results:

LAST-NAME STATE ZIP PAY-NET PERCENT

 BROWN IL 60076 802.35 36.10
 JONES IL 60077 641.97 28.89
 IL 1444.32 64.99

 SMITH TX 75218 777.77 35.00
 TX 777.77 35.00

 2222.09 100.00

The BEFORE-BREAK procedure computes the percentage for each control break
by multiplying the sum of PAY-NET by 100 and then dividing by TOTAL-NET.

Note: TOTAL-NET is a static (S) working storage field summed in the JOB
activity processing.

BEFORE-LINE Report Procedure
A BEFORE-LINE procedure is invoked immediately before the printing of each
detail line on a report. A BEFORE-LINE procedure is commonly used to print a
literal string before a detail line on the report or to change the contents of the detail
line before printing.

Syntax
BEFORE-LINE. PROC

Usage Notes

The BEFORE-LINE procedure is invoked before each individual line in a line
group. The system-defined field LINE-NUMBER contains the number of the line
in the group being processed.

A BEFORE-LINE procedure must be delimited by an END-PROC statement. See
the PROC Statement for more information.

See the AFTER-LINE Report Procedure for an example.

Statements A - C 3–16

BEFORE-SCREEN Screen Procedure

BEFORE-SCREEN Screen Procedure
A BEFORE-SCREEN procedure is invoked before the screen activity sends the data
to the terminal. It precedes building the screen and the terminal I/O process.

Syntax
BEFORE-SCREEN. PROC

Usage Notes

You typically use a BEFORE-SCREEN procedure to perform I/O, initialize screen
fields or set the cursor position.

GOTO SCREEN, REFRESH, and RESHOW are invalid in the BEFORE-SCREEN
procedure, and in any procedure performed by the BEFORE-SCREEN procedure.

A BEFORE-SCREEN procedure must be delimited by an END-PROC statement.
See the PROC Statement for more information.

Example
SCREEN NAME SCRN1
 KEY F3 NAME 'Exit' EXIT
 KEY F8 NAME 'Forward'
. . .
 BEFORE-SCREEN. PROC
 GET PERSNL
 IF EOF PERSNL
 EXIT
 END-IF
 END-PROC

CALL Statement
The CALL statement provides a means to dynamically or statically invoke
subprograms written in other programming languages.

Syntax
 [{field-name}]
CALL program-name [USING ({ } ...)] [RETURNS return-field]
 [{'literal' }]

Statements A - C 3–17

CALL Statement

Parameters

program-name Program-name is the name of the subprogram that you want
invoked. It is loaded into storage as part of an activity initiation.
[{field-name}]
[USING ({ } ...)]
[{'literal' }]

USING specifies the parameter list passed to the subprogram.

Field-name must identify a system-defined field, a working storage field, or a field
defined in an accessible file.

‘Literal’ can be any alphanumeric literal that is passed to the program.

[RETURNS return-field] RETURNS identifies a numeric field that will contain
the return code passed back by a called subprogram. If calling a COBOL
subprogram, the return code is the value in the COBOL RETURN-CODE field. If
calling an Assembler subprogram, the return code is the value contained in register
15 on the mainframe, the AX register on the workstation. If coding a C
subprogram, the return code is the value returned from the function.

Return-field is a numeric CA-Easytrieve field which contains the RETURNed value.
The field can be a user-defined field or you can use the system-defined field,
RETURN-CODE, to pass the return code to the operating system.

Usage Notes

The program being CALLed can either be statically or dynamically bound with
your CA-Easytrieve program. The way that the CALLed program is bound is
determined by the following, in order:

1. If the program was declared on a DECLARE statement, the STATIC or
DYNAMIC keyword on the DECLARE statement determines how it is
bound.

2. If specified, the CALL parameter on the PARM statement supplies the
default for all CALLed programs in your CA-Easytrieve program.

3. The default is determined by the environment. The default on the
mainframe is DYNAMIC. The default on the workstation and UNIX is
STATIC.

COBOL programs cannot be called by CA-Easytrieve programs in the CICS
environment. See the CICS Programmer's Reference Manual for more information.

Any mainframe program being CALLed in a CICS environment must execute in
conversational mode. The task must not be terminated by a CALLed program.

Statements A - C 3–18

CASE and END-CASE Statements

See the CA-Easytrieve Programmer Guide for complete details of subprogram
linkage.

Examples

The first example shows a CALL statement without parms, the second show on
with parms:
CALL ASMPGM

CALL ASMPGM USING ('USERFIL', USERFLD)

CASE and END-CASE Statements
The CASE and END-CASE statements are used to conditionally execute one of
several alternative groups of statements based on the value of a specific field.

Syntax
CASE field-name

 WHEN compare-literal-1 [THRU range-literal-1] [...]
 statement-1

 WHEN compare-literal-n [THRU range-literal-n] [...]
 statement-n

 [OTHERWISE]
 [statement-n+1]

END-CASE

The following diagram illustrates CASE statement logic:

CASE

WHEN' WHEN'
1 n

true

statement-1 statement-n statement-n+1

END-CASE

falsefalse

[OTHERWISE]

false

• • •

• • •

Statements A - C 3–19

CASE and END-CASE Statements

Parameters

field-name Field-name specifies a field that contains a value that is compared to
the values represented by compare-literal [THRU range-literal].

Field-name can be a field of any type. If field-name is numeric, it must have zero or
no decimal places.

WHEN You can specify as many WHEN conditions as necessary. At least one
WHEN condition is required. You cannot code statements between CASE and the
first WHEN condition. You must supply a unique set of values to be compared
with field-name in each WHEN condition.

compare-literal [THRU range-literal] Compare-literal is the value to be
compared with field-name. You can specify a single literal, a series of literals, or a
range of literals. A range is represented by compare-literal THRU range-literal. A
range is satisfied when field-name is greater than or equal to the lesser of compare-
literal and range-literal and is less than or equal to the greater of compare-literal and
range-literal.

When field-name is alphanumeric, compare-literal and range-literal must also be
alphanumeric. The comparison is based on the greater of the length of field-name
and compare-literal or range-literal. The shorter field is padded with spaces to equal
the length of the longer field. When field-name is numeric, compare-literal and range-
literal must also be numeric and must not have any decimal places.

The set of literal values specified for a given WHEN, including the unspecified
values implied by a range, must be unique as compared to the literal values of any
other WHEN for the same CASE.
statement-1
statement-n

Statement-1 and statement-n represent any number of CA-Easytrieve statements
executed when the WHEN comparison is satisfied. Whenever one or more of these
statements is a CASE statement, the CASE statements are considered to be nested.

OTHERWISE OTHERWISE is an optional statement that specifies a group of
statements to be executed if no WHEN comparison was satisfied. If OTHERWISE
is not specified and field-name does not equal any of the specified WHEN
conditions, execution continues with the statement following END-CASE.

statement-n+1 Statement-n+1 represents any number of CA-Easytrieve
statements executed when no WHEN comparisons are equal. Whenever one or
more of these statements is a CASE statement, the CASE statements are considered
to be nested.

END-CASE END-CASE terminates the body of the CASE statement. END-CASE
must be specified after each CASE statement and its associated statements.

Statements A - C 3–20

CLOSE Statement

Usage Notes

A CASE statement can be nested within a CASE statement. Other conditional
execution statements can also be nested within a CASE statement. A CASE
statement can be nested within any other conditional execution statement.

Example

The following example uses CASE to analyze the data to select employees’ years of
service that fall into a range (identified by the WHEN statement) and, as a result,
display 'ONE WEEK VACATION' or 'TWO WEEKS VACATION', or for all other
cases, display 'THREE WEEKS VACATION'.
FILE EMPLOYEE
EMPYRS 5 2 N
...

CASE EMPYRS
 WHEN 0 THRU 4
 DISPLAY 'ONE WEEK VACATION'
 WHEN 5 THRU 10
 DISPLAY 'TWO WEEKS VACATION'
 OTHERWISE
 DISPLAY 'THREE WEEKS VACATION'
END-CASE
...

CLOSE Statement
The CLOSE statement closes a file.

Syntax
CLOSE file-name

Parameters

file-name File-name specifies the file to be closed.

Usage Notes

At the termination of each activity, CA-Easytrieve automatically closes all files
opened during the activity. You can use the CLOSE statement to close the file
before the activity terminates. The next I/O statement using the file re-opens the
file.

Statements A - C 3–21

COMMIT Statement

You can also close an SQL file with the CLOSE statement so that a new cursor can
be created. See SQL Database Processing in the CA-Easytrieve Programmer Guide for
more information.

Note: You cannot use the CLOSE statement to close a printer file or to close an
automatic input or output file. Virtual files without RETAIN are deleted when
closed. CLOSE has no effect on IDMS files.

Example
CLOSE FILEA

COMMIT Statement
The COMMIT statement causes a logical unit of work to be established.

Syntax
COMMIT

Usage Notes

The COMMIT statement establishes the end of the current logical unit of work and
the beginning of the next.

The COMMIT statement establishes a recovery point for updates. The
ROLLBACK statement can then be used to recover any recoverable actions since
the last COMMIT. (The operating environment determines which actions are
recoverable. See the CA-Easytrieve Programmer Guide for details.)

COMMIT terminates any active holds on files. All open SQL cursors are closed
and all updates to databases are committed.

Note: Cursors defined with the HOLD option (DB2 only) are not closed.

Example
WRITE PERSNL ADD
. . .
IF . . .
 COMMIT
 ELSE
 ROLLBACK
END-IF

Statements A - C 3–22

Conditional Expressions

Conditional Expressions
Conditional expressions used as parameters of IF and DO statements offer an
alternative to the normal top to bottom execution of CA-Easytrieve statements.

Syntax
{IF } [{AND}]
{DO WHILE } condition [{ } condition]...
{DO UNTIL } [{OR }]

Usage Notes

CA-Easytrieve accepts seven different conditions: Field Relational, Field Series,
Field Class, Field Bits, File Presence, File Relational, Record Relational.

Examples

The following are skeletal examples of each type of conditional expression used in
an IF statement:

Type Example

Field Relational IF field-1 = field-2

Field Series IF field-1 = field-2, field-3, field-4

Field Class IF field-1 ALPHABETIC

Field Bits IF field-1 ON X'0F4000

File Presence IF EOF file-name

File Relational IF MATCHED file-1, file-2, file-3

Record Relational IF DUPLICATE file-name

Field Relational Condition
The field relational condition compares fields with values.

Syntax
 Relational
 Subject Operator Object

Statements A - C 3–23

Field Relational Condition

{IF } {EQ|= }
{ELSE-IF } {NE|¬=|NQ } {field-name-2 }
{ } field-name-1 {LT|< |LS } {literal }
{DO WHILE} {LE|<=|LQ|¬> } {arithmetic-expression }
{DO UNTIL} {GT|> |GR }
 {GE|>=|GQ|¬< }

Parameters

Subject Field-name-1 is the subject of the comparison.

Relational Operator Code any of the relational operators to control the
condition’s evaluation process.

Object Code field-name-2, a literal, or an arithmetic-expression to designate the
object of the comparison. Note that alphanumeric literals must be enclosed within
single quotes. See the CA-Easytrieve Programmer Guide for a description of how
CA-Easytrieve evaluates arithmetic expressions.

Alphanumeric Subjects

When the condition subject is an alphanumeric field, the following evaluation rules
apply:

1. The object must be either a field or an alphanumeric literal.

2. If necessary, numeric field objects are converted to zoned decimal.
Comparison of VARYING alphanumeric fields with numeric fields is not
permitted.

3. The comparison is based on the greater of the length of the subject and the
length of the object. The shorter item is padded with spaces to the length of
the longer item. For downward compatibility with existing CA-Easytrieve
programs, this rule is subject to the exception below.

4. When a fixed length subject is compared with a longer fixed length object,
the comparison is based on the length of the subject. The object is truncated
to match the length of the subject. A warning message is then generated by
the compiler.

5. Comparison is logical (bit-by-bit).

6. Comparisons of varying length fields (fields which use the VARYING option
of the DEFINE statement) are based on the length of the data at the time of
the comparison.

Numeric Subjects

When the condition subject is a numeric field, the following evaluation rules apply:

Statements A - C 3–24

Field Relational Condition

1. The object must be either a numeric field, a numeric literal, or an arithmetic
expression.

2. Comparison is arithmetic.

Mixed Subjects

When the condition subject is a MIXED field, the following evaluation rules apply:

1. CA-Easytrieve only supports equal (EQ =) and not equal (NE ¬= NQ)
conditions. If you use any of the other conditional operators, an error occurs.

2. The object must be either a field, an alphanumeric literal, a MIXED literal, or
a DBCS literal.

3. CA-Easytrieve does not perform a conversion if the object is an EBCDIC
alphanumeric field or literal.

4. If the object is a MIXED field or literal, CA-Easytrieve converts the DBCS
portion of data into the DBCS code system of the subject. CA-Easytrieve also
converts the shift codes to the values defined for the DBCS code system of
the subject in the DBCS Options module.

5. If the object is a DBCS field or literal, CA-Easytrieve converts the data into
the DBCS code system of the subject. Once converted, the shift codes
defined for the code system of the subject are added to the data.

6. CA-Easytrieve converts numeric field objects to zoned decimal (if necessary).

7. To match the length of the subject, CA-Easytrieve truncates or pads the
object. Padding uses the EBCDIC space character. During truncation, no
DBCS character is split. When truncation occurs within the DBCS portion of
a field, the truncation is adjusted to the nearest double byte boundary.

8. Comparison is logical (bit-by-bit).

DBCS Subjects

When the condition subject is a DBCS field, the following evaluation rules apply:

1. CA-Easytrieve only supports equal (EQ =) and not equal (NE ¬= NQ)
conditions. If you use any of the other conditional operators, an error occurs.

2. The object must be either a field, an alphanumeric literal, a MIXED literal, or
a DBCS literal.

3. If the object is an EBCDIC alphanumeric field or literal, then CA-Easytrieve
converts each character into the DBCS code system of field-name-1.

Statements A - C 3–25

Field Relational Condition

4. If the object is a MIXED field or literal, CA-Easytrieve converts the DBCS
portion of data into the DBCS code system of the subject. CA-Easytrieve also
converts the EBCDIC portion of data to its equivalent DBCS value based on
the code system of the subject. CA-Easytrieve removes shift codes.

5. If the object is a DBCS field or literal, CA-Easytrieve converts the data into
the DBCS code system of the subject.

6. If necessary, CA-Easytrieve converts numeric field objects to zoned decimal
and then converts the EBCDIC result into the equivalent DBCS characters
based on the code system of field-name-1.

7. To match the length of the subject, CA-Easytrieve truncates or pads the
object. Padding uses the DBCS space character.

8. Comparison is logical (bit-by-bit).

Example

This example illustrates various field relational conditions:
FILE PERSNL FB(150 1800)
 EMP# 9 5 N
 EMPNAME 17 20 A
 NAME-LAST EMPNAME 8 A
 NAME-FIRST EMPNAME +8 12 A
 PAY-NET 90 4 P 2
 PAY-GROSS 94 4 P 2
 SEX 127 1 N
TOTAL-EMP# W 3 N VALUE 0
TOTAL-SEX W 3 N VALUE 0
TOTAL-PAY W 3 N VALUE 0
TOTAL-FIRST-NAME W 3 N VALUE 0
MALE W 1 N VALUE 1
JOB INPUT PERSNL NAME MYPROG FINISH FINISH-PROC
 IF EMP# GT 10000
 TOTAL-EMP# = TOTAL-EMP# + 1
 END-IF
 IF SEX NE MALE
 TOTAL-SEX = TOTAL-SEX + 1
 END-IF
 IF PAY-NET LT (PAY-GROSS / 2)
 TOTAL-PAY = TOTAL-PAY + 1
 END-IF
 IF NAME-FIRST EQ 'LINDA'
 TOTAL-FIRST-NAME = TOTAL-FIRST-NAME + 1
 END-IF
*
FINISH-PROC. PROC
 DISPLAY TOTAL-EMP#
 DISPLAY TOTAL-SEX
 DISPLAY TOTAL-PAY
 DISPLAY TOTAL-FIRST-NAME
END-PROC

Statements A - C 3–26

Field Series Condition

Field Series Condition
The field series condition compares a field to a series or a range of values.

Syntax
 Relational
 Subject Operator

{IF }
{ELSE-IF } {EQ | = }
{ } field-name-1 { } +
{DO WHILE } {NE | ¬= | NQ}
{DO UNTIL }

 Object

{field-name-2 [{field-name-3 }] }
{ [THRU { }]...}
{literal-1 [{literal-2 }] }

Parameters

Subject Field-name-1 is the subject of the comparison.

Relational Operator Equal and not equal are the only valid relational operators
for field series conditions.

Object Code field-name-2 or a literal-1 as often as you need to indicate the series
of comparison objects. Field-name-2 THRU field-name-3, field-name-2 THRU literal-2,
literal-1 THRU field-name-3, or literal-1 THRU literal-2 designate a value range. Note
that alphanumeric literals must be enclosed within single quotes.

Rules for Evaluation

Evaluation rules for field series conditions are as follows:

1. Alphanumeric (including DBCS and MIXED format fields) and numeric
fields are evaluated as in the field relational condition.

2. An equal (=) relational operator tests if the subject is equal to or within range
of any of the series of values comprising the object.

3. A not equal (¬=) relational operator tests if the subject is unequal to or
outside the range of all the series of values comprising the object.

Note: A comparison within a range is satisfied if the subject is greater than the
lesser of the two range values and the subject is less than the greater of the two
range values.

Statements A - C 3–27

Field Series Condition

Example

This example illustrates the field series condition:
FILE PERSNL FB(150 1800)
REGION 1 1 N
BRANCH 2 2 N
DEPT 98 3 N
MARITAL-STAT 128 1 A
*
TOTAL-REGION W 3 N VALUE 0
TOTAL-BRANCH W 3 N VALUE 0
TOTAL-DEPT W 3 N VALUE 0
TOTAL-MARITAL W 3 N VALUE 0
WORK-REGION W 2 N VALUE 04
*
JOB INPUT PERSNL NAME MYPROG FINISH FINISH-PROC
 IF REGION = 0, 8, 9
 TOTAL-REGION = TOTAL-REGION + 1
 END-IF
 IF BRANCH NE 01, WORK-REGION
 TOTAL-BRANCH = TOTAL-BRANCH + 1
 END-IF
 IF DEPT EQ 940 THRU 950
 TOTAL-DEPT = TOTAL-DEPT + 1
 END-IF
 IF MARITAL-STAT NE 'M', 'S'
 TOTAL-MARITAL = TOTAL-MARITAL + 1
 END-IF
*
FINISH-PROC. PROC
 DISPLAY TOTAL-REGION
 DISPLAY TOTAL-BRANCH
 DISPLAY TOTAL-DEPT
 DISPLAY TOTAL-MARITAL
END-PROC

Statements A - C 3–28

Field Class Condition

Field Class Condition
The field class condition determines whether:

■ All positions of a field contain alphabetic, numeric, space, or zero characters.

■ A nullable field is null.

■ The cursor is in a specific field on the screen.

■ A field was modified by the terminal user.

■ A field is active in a control break of the current report.

Syntax
 Subject Object

 {ALPHABETIC }
 {BREAK }
 {CURSOR }
 {HIGHEST-BREAK}
{IF } {MODIFIED }
{DO UNTIL } field-name [NOT] {NULL }
{DO WHILE } {NUMERIC }
 {SPACE }
 {SPACES }
 {ZERO }
 {ZEROS }
 {ZEROES }

Parameters

Subject Field-name is the subject of the comparison. Each byte of the field must
pass the test before the test is true. The NOT parameter indicates that the
condition test is reversed.

Field-name can be indexed or subscripted.

Object The object determines the class of data to be tested for.

{ALPHABETIC} ALPHABETIC tests for the characters A through Z or a blank
space in each byte of the subject field.

{BREAK} (Mainframe and UNIX only) BREAK tests whether this field is currently
being processed as a CONTROL break field on a report. The BREAK test is an
alternative to testing the field-name LEVEL for a specific numeric value. Field-name
must be defined on a CONTROL statement or it must be the reserved word
FINAL.

Statements A - C 3–29

Field Class Condition

{CURSOR} CURSOR tests whether the cursor is in the specified field on the
screen. CURSOR can only be used in screen activity procedures.

If CURSOR is used, the condition must refer to a field on a ROW statement within
the screen declaration.

Note: Results are unpredictable if:

■ Field-name contains the ASKIP, PROTECT, or SENDONLY attributes.

■ Field-name occurs more than once in a screen.

■ Two screen fields redefine the same storage area and one of the fields is used
in an IF test.

■ The subject is indexed or subscripted and the value of the index or subscript
has changed since the screen was received.

■ The test is performed after the user presses CLEAR, PA1, PA2, or PA3.

{HIGHEST-BREAK} (Mainframe and UNIX only) HIGHEST-BREAK tests whether
this field caused the CONTROL break on a report. The HIGHEST-BREAK test is
an alternative to testing the field-name BREAK-LEVEL for a specific numeric value.
Field-name must be defined on a CONTROL statement or it must be the reserved
word FINAL.

{MODIFIED} MODIFIED tests whether the terminal operator changed the data in
the field. The field is considered MODIFIED only if the contents of the field upon
receipt of the screen does not equal the contents of the screen at the time the screen
is displayed.

MODIFIED can only be used in screen activity procedures.

If MODIFIED is used, the condition must refer to a field on a ROW statement
within the screen declaration.

Note: Results are unpredictable if:

■ Field-name occurs more than once in a screen.

■ Two screen fields redefine the same storage area and one of the fields is used
in an IF test.

■ The subject is indexed or subscripted and the value of the index or subscript
has changed since the screen was received.

■ The test is performed after the user presses CLEAR, PA1, PA2, or PA3.

{NULL} NULL tests whether a nullable field is NULL.

{NUMERIC} NUMERIC tests for the digits 0 through 9 (in the correct format for
the field’s data type), and for a possible algebraic sign in the low-order position of
type P fields or in the high-order position of type N fields.

Statements A - C 3–30

Field Class Condition

{SPACE} SPACE and SPACES test for the character space in each byte of
EBCDIC.

{ZERO} ZERO, ZEROS, and ZEROES test for the digit 0 (in the correct format for
the field’s data type), and for a possible algebraic sign in the low-order position of
type P fields or in the high-order position of type N fields.

Statements A - C 3–31

Field Bits Condition

Example

This example illustrates the use of the field class condition:
FILE PERSNL FB(150 1800)
REGION 1 1 N
BRANCH 2 2 N
EMPNAME 17 20 A
 NAME-LAST EMPNAME 8 A
 NAME-FIRST EMPNAME +8 12 A
*
TOTAL-NUMERIC W 3 N VALUE 0
TOTAL-NON-ZEROS W 3 N VALUE 0
TOTAL-ALPHABETIC W 3 N VALUE 0
*
JOB INPUT PERSNL NAME MYPROG FINISH FINISH-PROC
 IF REGION NUMERIC
 TOTAL-NUMERIC = TOTAL-NUMERIC + 1
 END-IF
 IF BRANCH NOT ZERO
 TOTAL-NON-ZEROS = TOTAL-NON-ZEROS + 1
 END-IF
 IF EMPNAME ALPHABETIC
 TOTAL-ALPHABETIC = TOTAL-ALPHABETIC + 1
 END-IF
*
FINISH-PROC. PROC
 DISPLAY TOTAL-NUMERIC
 DISPLAY TOTAL-NON-ZEROS
 DISPLAY TOTAL-ALPHABETIC
END-PROC

Field Bits Condition
The field bits condition compares selected bits of a field for on (1) or off (0)
conditions.

Syntax
 Relational
 Subject Operator Object

{IF } {ON } {field-name-2}
{DO WHILE} field-name-1 [NOT] { } { }
{DO UNTIL} �OFF} �literal }

Parameters

Subject Field-name-1 is the subject of the comparison. It can be any field type.
The NOT parameter indicates the condition test is reversed.

Statements A - C 3–32

Field Bits Condition

Relational Operator The relational operators ON and OFF test for bit values of
one or zero respectively.

Object Field-name-2 or a literal establish the bit mask to be tested. CA-Easytrieve
tests only those bits which correspond to one (1) bits in the mask. The length of the
object must equal the length of the subject. When you code literal as the object, it
must be a hexadecimal literal. Indicate a hexadecimal literal by preceding it with
an X and enclosing it in single quotes.

If the subject is a VARYING field, the object must be equal to the length of the data
portion of the subject. The test is performed based on the actual length of the
subject. The object cannot be a VARYING field.

Example

This example illustrates the use of the field bits condition:
DEFINE FIELD-1 W 1 B VALUE X'20'
DEFINE FIELD-NUM W 4 B VALUE X'FF00FF00'
DEFINE PATTERN-8 W 1 B VALUE X'80'
DEFINE LOWER-CASE W 1 A VALUE X'81'
*
JOB INPUT NULL NAME MYPROG
 IF FIELD-1 ON PATTERN-8
 DISPLAY 'PERFORM CODE FOR PATTERN 8'
 END-IF
 IF LOWER-CASE OFF X'40'
 DISPLAY 'THIS LETTER IS LOWER CASE'
 END-IF
 IF FIELD-NUM ON X'FF000000'
 DISPLAY '1ST BYTE HIGH VALUES'
 END-IF
STOP

Statements A - C 3–33

File Presence Condition

File Presence Condition
The file presence condition determines whether a record of the file is currently
available for processing.

Syntax
 Subject

{IF }
{DO WHILE} [NOT] [EOF] {file-name}
{DO UNTIL}

Parameters

Subject File-name designates the subject of the test.

Usage Notes

The object of the test is simply the availability of the record for processing. The file
is available if the last GET or READ operation was successful and there is a record
that can be accessed.

Note: Results are unpredictable if data in a file is referenced after any output
operation.

The optional EOF parameter causes the test to be true when the subject is at
end-of-file. This test can never be true for automatic input files.

The optional NOT parameter reverses the condition test.

See the CA-Easytrieve Programmer Guide for more information on file presence
conditions.

Examples

The first example illustrates the use of the file presence condition:
FILE PERSNL INDEXED
%PERSNL
*
JOB INPUT NULL NAME MYPROG
 READ PERSNL KEY '00970' STATUS
 IF NOT PERSNL
 DISPLAY '00970 NOT ON FILE'
 ELSE
 DISPLAY EMPNAME
 END-IF
 STOP

Statements A - C 3–34

File Presence Condition

The next example illustrates the use of the file presence condition in synchronized
file processing:
FILE PERSNL FB(150 1800)
%PERSNL
FILE INVENT FB(200 3200)
%INVMSTR
FILE SORT1 FB(150 1800) VIRTUAL
COPY PERSNL
FILE SORT2 FB(200 3200) VIRTUAL
COPY INVENT
COUNT-1 W 3 N VALUE 0
COUNT-2 W 3 N VALUE 0
*
SORT PERSNL TO SORT1 USING (ADDR-STATE) NAME MYSORT1
SORT INVENT TO SORT2 USING (LOCATION-STATE) NAME MYSORT2
*
JOB INPUT (SORT1 KEY (ADDR-STATE), +
 SORT2 KEY (LOCATION-STATE)) +
 NAME MYPROG FINISH FINISH-PROC
 IF EOF SORT2
 DISPLAY 'EOF ON SECONDARY'
 STOP
 END-IF
 IF NOT PRIMARY
 DISPLAY 'NO PERSONNEL RECORD- ' LOCATION-STATE
 END-IF
 IF NOT SECONDARY
 DISPLAY 'NO INVENTORY RECORD- ' ADDR-STATE
 END-IF
 IF SORT1
* HOW MANY PERSONNEL RECORDS RETURNED
 COUNT-1 = COUNT-1 + 1
 END-IF
 IF SORT2
* HOW MANY INVENT RECORDS RETURNED
 COUNT-2 = COUNT-2 + 1
 END-IF
*
FINISH-PROC. PROC
 DISPLAY COUNT-1
 DISPLAY COUNT-2
END-PROC

Statements A - C 3–35

File Relational Condition

File Relational Condition
The file relational condition determines file presence and record matching for more
than one file in JOBs with synchronized file input.

Syntax
 Subject

 [file-name]
IF [NOT] MATCHED [PRIMARY] ...
 [SECONDARY]

Parameters

Subject The optional file-name, PRIMARY, and SECONDARY parameters
identify the files to be tested. When you do not code this parameter, the condition
is true only if all input files have matching records.

The optional NOT parameter reverses the condition test.

Statements A - C 3–36

Record Relational Condition

Example

This example illustrates the use of the file relational condition:
FILE PERSNL FB(150 1800)
%PERSNL
FILE INVENT FB(200 3200)
%INVMSTR
FILE SORT1 F(150) VIRTUAL
COPY PERSNL
FILE SORT2 F(200) VIRTUAL
COPY INVENT
COUNT-1 W 3 N VALUE 0
*
SORT PERSNL TO SORT1 USING (ADDR-STATE) NAME MYSORT1
SORT INVENT TO SORT2 USING (LOCATION-STATE) NAME MYSORT2
*
JOB INPUT (SORT1 KEY (ADDR-STATE), +
 SORT2 KEY (LOCATION-STATE)) +
 NAME MYPROG FINISH FINISH-PROC
 IF MATCHED
 COUNT-1 = COUNT-1 + 1
 END-IF
*
FINISH-PROC. PROC
 DISPLAY COUNT-1
END-PROC

Record Relational Condition
The record relational condition determines the relationship of the current record of
a file to the previous and next records of the same file. This test is valid only for
synchronized file processing and single file keyed processing.

Syntax
 Subject

 {DUPLICATE} {file-name}
IF [NOT] {FIRST-DUP} {PRIMARY }
 {LAST-DUP } {SECONDARY}

Parameters

{DUPLICATE} DUPLICATE is true when the previous or next record has the
same key as the current record.

{FIRST-DUP} FIRST-DUP is true for the first of two or more records with the
same key.

Statements A - C 3–37

CONTROL Statement

{LAST-DUP} LAST-DUP is true for the last of two or more records with the same
key.

Subject The file-name, PRIMARY, and SECONDARY parameters identify the file
to be tested.

The optional NOT parameter reverses the condition.

Example

This example illustrates the use of the record relational condition:
FILE PERSNL FB(150 1800)
%PERSNL
FILE INVENT FB(200 3200)
%INVMSTR
FILE SORT1 FB(150 1800) VIRTUAL
COPY PERSNL
FILE SORT2 FB(200 3200) VIRTUAL
COPY INVENT
COUNT-1 W 3 N VALUE 0
COUNT-2 W 3 N VALUE 0
*
SORT PERSNL TO SORT1 USING (ADDR-STATE) NAME MYSORT1
SORT INVENT TO SORT2 USING (LOCATION-STATE) NAME MYSORT2
*
JOB INPUT (SORT1 KEY (ADDR-STATE) +
 SORT2 KEY (LOCATION-STATE)) +
 NAME MYPROG FINISH FINISH-PROC
 IF DUPLICATE PRIMARY
 COUNT-1 = COUNT-1 + 1
 END-IF
 IF DUPLICATE SORT2
 COUNT-2 = COUNT-2 + 1
 END-IF
*
FINISH-PROC. PROC
 DISPLAY COUNT-1
 DISPLAY COUNT-2
END-PROC

CONTROL Statement
The CONTROL statement identifies control fields used for a control report. A
control break occurs whenever the value of any control field changes or
end-of-report occurs. The control break at end-of-report is equivalent to the final
break. A break level is also assigned to each control field. Comparison of control
fields is a logical compare.

Syntax
 [field-name] [NEWPAGE]
CONTROL [] [] [NOPRINT] ...

Statements A - C 3–38

CONTROL Statement

 [FINAL] [RENUM]

Parameters
[field-name]
[FINAL]

Prior to the first field-name, you can code FINAL to specify options for the control
break at end-of-report. Field-name specifies any non-quantitative field located in an
active file or in a W-type working storage field.

Specify control fields in major to minor order.

Note: Varying length, K (DBCS/Kanji), and M (MIXED) fields cannot be specified
on a CONTROL statement.

The following three options alter normal processing of a control break:

[NEWPAGE] NEWPAGE causes a skip to top-of-page after control break
processing is complete for the specified field.

[RENUM] RENUM performs the same function as NEWPAGE, and also resets the
page number to 1 on the page following the control break.

[NOPRINT] NOPRINT suppresses printing the summary line group for the
specified control break. All other control break processing for the specified control
break is performed as usual.

Usage Notes

You can specify one or more control breaks. If you do not specify any control
breaks, a FINAL break is implied.

A break level is assigned to each control field. The system-defined field LEVEL
contains the break level used in the BEFORE-BREAK and AFTER-BREAK report
procedures. LEVEL has a value of 1 when processing the minor field break.
LEVEL contains the number of control fields (n) when processing the major field
break. LEVEL contains the number of control fields plus one (n+1) when
processing the FINAL control break. The system-defined field BREAK-LEVEL
contains the break level of the highest field to break.

Statements A - C 3–39

COPY Statement

An alternative to testing the LEVEL and BREAK-LEVEL fields is to use the IF
BREAK and IF HIGHEST-BREAK tests (mainframe and UNIX only). Coding IF
BREAK field-name is equivalent to coding IF LEVEL = x, where x is the break level
assigned to field-name. IF HIGHEST-BREAK performs the same function against
the BREAK-LEVEL field. IF BREAK and IF HIGHEST-BREAK have the advantage
of dynamically changing the LEVEL value if fields are added to or removed from
the CONTROL statement. See the CA-Easytrieve Programmer Guide for examples
using LEVEL, BREAK-LEVEL, IF BREAK, and IF HIGHEST-BREAK.

Control fields are compared logically, rather than bit-by-bit. For example, packed
fields containing zero with a C sign are logically equal to zero with an F sign.

See Report Processing in the CA-Easytrieve Programmer Guide for detailed examples
of the CONTROL statement.

Example
CONTROL FINAL NEWPAGE REGION NEWPAGE BRANCH DEPT

COPY Statement
The COPY statement duplicates the field definitions of a named file.

Syntax
 {file-name }
COPY { }
 {[database-file-name]:record-name}

Parameters

file-name File-name is the name of a previously defined file whose fields you
want to duplicate.

[database-file-name]:record-name Record-name is the name of a previously
defined database record whose fields you want to duplicate. Optionally, code
database-file-name for qualification.

Usage Notes

You can code an unlimited number of COPY statements for any one file.
CA-Easytrieve duplicates the fields as if they were coded at the place
CA-Easytrieve encounters the COPY statement.

Statements A - C 3–40

CURSOR Statement

The same rules of field definition apply when using the COPY statement (that is,
field names must be unique in a given file).

Examples

The following is a COPY statement example:
FILE PERSNL FB(150 1800)
 EMPNAME 17 20 A HEADING ('EMPLOYEE NAME')
 NAME-LAST EMPNAME 8 A HEADING ('LAST' 'NAME')
 NAME-FIRST EMPNAME +8 12 A HEADING ('FIRST' 'NAME')
FILE SORTWRK FB(150 1800) VIRTUAL
COPY PERSNL
SORT PERSNL TO SORTWRK USING +
 (NAME-LAST NAME-FIRST) NAME MYSORT
JOB INPUT SORTWRK NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1
LINE NAME-FIRST NAME-LAST

The next example shows a COPY with IDMS:
FILE DBASE IDMS(DEMOSS03)
RECORD CUSTOMER 104 KEY(CUST-NO)
 CUST-NO 1 10 A
 CUST-NAME 11 20 A
RECORD SALES 28
 SLS-CUST-NO 1 10 A
FILE DDBASE FB(28 280)
COPY SALES (fields from RECORD SALES copied)
JOB INPUT (DNASE) NAME MYPROG
 RETRIEVE DBASE +
 SELECT (CUSTOMER AREA 'CUSTOMER-REGION' +
 SALES ID 'SA' SET 'CUSTOMER-SALES')
 IF PATH-ID EQ 'SA'
 MOVE LIKE SALES TO DDBASE
 PUT DDBASE
 ELSE
 GO TO JOB
 END-IF

CURSOR Statement
The CURSOR statement is used within a screen procedure to set the initial position
of the cursor in a field for the next display of the screen.

Syntax
CURSOR AT field-name

Statements A - C 3–41

CURSOR Statement

Parameters

field-name Field-name refers to a field on a ROW statement within the screen
declaration.

Usage Notes

You can use the CURSOR statement only within screen procedures
(AFTER-SCREEN, BEFORE-SCREEN, INITIATION, TERMINATION), or within
any procedure performed from a screen procedure.

The CURSOR statement must refer to a field on a ROW statement within the
screen declaration.

Note: Results are unpredictable if:

■ Field-name contains the ASKIP, PROTECT, or SENDONLY attributes

■ Field-name occurs more than once in screen

■ Two screen fields redefine the same storage area and one is used in the
CURSOR statement.

Field-name can be subscripted or indexed. However, if the value of the subscript or
index changes between the time the CURSOR statement is executed and the time
the screen is actually displayed, the CURSOR positioning is ignored. The
CURSOR statement:

■ Overrides cursor placement if a screen field contains the CURSOR attribute.

■ Can be executed any number of times before displaying the screen. The last
CURSOR statement executed determines the cursor placement.

■ Cannot be moved into an auto-skip (ASKIP) field.

See the CA-Easytrieve Programmer Guide for cursor placement hierarchy.

Example
SCREEN NAME SCRN1
 ROW 3 WORK-DESCRIPTION
 ROW 5 EMP#
. . .
 BEFORE-SCREEN. PROC
 CURSOR AT EMP#
 END-PROC

Statements A - C 3–42

Chapter

4 Statements D - F

DECLARE Statement
The DECLARE statement enables you to declare named screen attributes and
input edit patterns, and to specify how a subprogram is to be linked. Use of
declared attributes provides the ability to dynamically change screen attributes
during program execution. Use of declared attributes and edit patterns saves
you coding time when the set of attributes or edit patterns are used many times.

Syntax
 {ATTR [(attribute-list)] }
DECLARE name {PATTERN 'pattern' }
 {PROGRAM {STATIC|DYNAMIC}}

Parameters

name Specify a name up to 128 characters for the set of declared screen attributes or
set of declared pattern characters.

ATTR [(attribute-list)] Specify a list of attribute values. The attribute list
must be enclosed in parentheses. See the ATTR Parameter for a list and
explanations of valid attributes.

PATTERN 'pattern' PATTERN enables you to specify a sequence of characters
that describe the format of the data in the field. The character string must be
enclosed in single quotes.

Note: Use PATTERN to edit complex combinations of data types and character
sequences. Use the MASK parameter to edit numeric data.

The valid pattern characters and their meanings are listed below.

Character Meaning

Statements D - F 4–1

DECLARE Statement

Character Meaning

A Represents a lowercase or an uppercase letter

B Represents a single blank

D Represents a digit

E Represents an empty string

L Represents a lowercase letter

N Represents an uppercase letter or a national character

U Represents an uppercase letter

X Represents any character

"x" Double quotes surrounding a character or a sequence of
characters literally represent the character or sequence of
characters contained within. The x represents any character.
To literally represent single or double quotes, use two sets of
quotes within the surrounding set of double quotes (‘""""‘ or
‘"x""x"‘, ‘"‘‘"‘ or ‘"x’‘x"‘).

blank Blanks (unless contained in double quotes) serve as
delimiters but are otherwise ignored. They can be inserted
into the pattern to increase readability.

() Represents grouping to control the precedence of operators.

 or | or , Represents a choice (or alternation operator).

(m) or (m..n) or
(m..*) or (*) or *

Represents the repetition of the preceding pattern expression.
The m and n represent numbers and m must be less than n.
A single number with parentheses indicates the exact
number of repetitions. (m..n) represents a range of
repetitions, minimum to maximum. An asterisk in a range,
(m..*), represents an infinite maximum. An asterisk by itself,
(*) or *, represents a range from 0 to infinity.

or /-/ Represents the remove (or toss) operation. This operation
applies only to a single character set at a time and must
immediately follow that character set in the pattern. This
operation removes the character that matched the character
set from the data.

+ Represents character set addition to form another character
set.

- Represents character set difference to form another character
set.

concatenation Concatenation is implied by proximity. For example, DDDU
means 3 digits followed by an uppercase letter.

Statements D - F 4–2

DEFAULT Statement

The precedence of operators from highest to lowest:
Grouping: () " "
Set construction: + -
Actions: #
Repetition: (n) (m..n) (m..*) (*)
Concatenation: proximity
Choice: |

The edit pattern is evaluated from left to right, (the data from the screen is
processed from left to right). Patterns examine only one character at a time. They
do not look ahead and they do not back track. See the CA-Easytrieve Programmer
Guide for more information.

PROGRAM {STATIC|DYNAMIC} (Mainframe and UNIX only) PROGRAM enables
you to specify how you want to link a subprogram. Specify STATIC to indicate
that you want the subprogram to be linked with your CA-Easytrieve program.
Specify DYNAMIC to indicate that you want the subprogram to be dynamically
loaded. The default is taken from the PARM CALL statement.

Usage Notes

An attribute field can be assigned to another attribute field. Patterns and programs
cannot be assigned.

Other than the assignment, DECLAREd screen attributes can only be used on
DEFAULT, TITLE, and ROW statements.

Attributes can also be dynamically changed using the SET statement.

Example
DECLARE PROTECT-FIELD ATTR (TURQ PROTECT)
DECLARE VARYING-ATTR ATTR
DECLARE PART-ID PATTERN 'A"-"DDA'

DEFAULT Statement
The DEFAULT statement enables you to specify screen-level overrides of system-
defined attributes (Format 1) and message attributes and locations (Format 2).

Syntax

Format 1
 {TITLE }
 {FIELD {attribute-name } }
DEFAULT { [ERROR] ATTR { } }

Statements D - F 4–3

DEFAULT Statement

 {LITERAL {(attribute-list)} }
 {KEY }

Format 2
 { {attribute-name } }
 [INFORMATION] {ATTR { } }
DEFAULT MESSAGE ([WARNING]...) { {(attribute-list)} }...
 [ACTION] { }
 {ROW row-number }

Parameters

TITLE Use TITLE to override attributes for all screen titles (fields and literals) in a
screen activity.

Note: You can also override attributes at a title item level. See the TITLE
Statement.

LITERAL Use LITERAL to override attributes for all row literals in a screen
activity.

Note: You can also override attributes at a screen item level. See the ROW
Statement.

FIELD [ERROR] Use FIELD to override attributes for all row fields in a screen
activity. Optionally, specify ERROR to override attributes for fields flagged in
error by the automatic edit process.

Note: You can also override attributes at a screen item level. See the ROW
Statement.

KEY Use KEY to override attributes for a function key display area in a screen
activity.
 {attribute-name }
ATTR { }
 {(attribute-list)}

Specify either a DECLAREd screen attribute name or one or more attribute
keywords. See the ATTR Parameter for a list of attributes. See the DECLARE
Statement for how to declare screen attributes.

MESSAGE Use MESSAGE to override attributes for any or all message levels
(INFORMATION, WARNING, ACTION).

ROW row-number Use ROW to override the placement of the message level
(INFORMATION, WARNING, ACTION). Row-number must be an unsigned
integer that does not exceed the maximum screen size (SCREEN ROWCOUNT)
and specifies the row number on which the message is displayed.

Statements D - F 4–4

DEFINE Statement

If ROW is not specified, all messages are displayed one line above the key display
area, if used. See the KEY Statement.

Usage Notes

If used, DEFAULT statements must be the first statements coded in a screen
activity.

You cannot code overlapping overrides. For example, the following code is in
error because the attribute for INFORMATION level messages is coded twice:
DEFAULT MESSAGE INFORMATION ATTR BLUE
DEFAULT MESSAGE (INFORMATION WARNING) ATTR GREEN

The following attributes are ignored for TITLE, LITERAL, and KEY:

CURSOR
NUMERIC
INVISIBLE
MUSTFILL
MUSTENTER
TRIGGER
ALARM

If coded, CA-Easytrieve issues a warning message during compilation. All of the
above attributes are also ignored for MESSAGE, except for ALARM.

Examples

You can use MESSAGE to display INFORMATION level messages in yellow and
all other levels of messages in red:
DEFAULT MESSAGE INFORMATION ATTR YELLOW
DEFAULT MESSAGE (WARNING ACTION) ATTR (RED INTENSE)

You can override the placement of messages on a screen using the ROW
parameter:
SCREEN NAME MENU-SCREEN
 DEFAULT FIELD ATTR (TURQ PROTECT)
 DEFAULT FIELD ERROR ATTR (RED BLINK ALARM)
 DEFAULT MESSAGE (INFORMATION WARNING) ATTR YELLOW ROW 23
 DEFAULT MESSAGE (ACTION) ATTR RED ROW 24

DEFINE Statement
The DEFINE statement specifies data fields within a file or within working storage.

Statements D - F 4–5

DEFINE Statement

Syntax
DEFINE +

[file-qualifier:] field-name + } Field Name

{start-location } }
{* [+offset-value] } }
{W } + } Location
{S } }
{[file-qualifier:] overlay-field-name [+offset-value]} }

{field-length {A|M|K|N|P|B|U|I|F|S|D} [decimal-positions] [EVEN]} }
{ } + } Attributes
{[VARYING] [file-qualifier:] model-field-name } }

[UPDATE] + }
 }
[HEADING ([#font-number] 'heading-literal' ...)] + }
 }
[INDEX (index-field-name)] + }
 } Character-
[MASK ({[mask-identifier][BWZ]['mask-literal']|HEX})] + } istics
 }
[OCCURS maximum-occurrences] + }
 }
[VALUE initial-value] + }
 }
[RESET] }

Parameters

DEFINE You can omit the DEFINE keyword for fields defined after the associated
FILE statement or for working storage fields defined after any FILE statement. For
definitions outside the library, the DEFINE keyword must precede each field
definition.

[file-qualifier:] field-name File-qualifier: identifies the appropriate file,
record, or working storage for the field you are defining.

Field-name is the name of the field you are defining.

■ Can be from 1 to 128 alphanumeric characters in length

■ Can contain any character other than a delimiter

■ Must begin with A-Z, 0-9, or a national character (#, @, $)

■ Cannot be all numeric characters.

Location

You must establish the location of the field’s left-most (starting) position in one of
the following ways:

{start-location} Start-location specifies the starting position relative to
position one of the current file or record.

Statements D - F 4–6

DEFINE Statement

Note: Start-location must be specified as an unsigned integer.

{* [+offset-value]} The * (asterisk) indicates that the field begins in the next
available starting position (highest location defined so far, plus 1). The optional
+offset-value is an offset you want added to the * value. There must be at least one
blank between the * and the optional +offset-value.

Note: +offset-value must be specified as a positive literal.

{W} or {S} Coding W or S establishes a working storage field; S indicates a
static working storage field. CA-Easytrieve spools W fields to report (work) files; it
does not spool S fields. See the CA-Easytrieve Programmer Guide for more
information.

{[file-qualifier:] overlay-field-name [+offset-value]} Specify
overlay-field-name if you want an overlay redefinition. If you use overlay
redefinition, make sure that field-name fits within the storage boundaries of
overlay-field-name. Any indexes associated with overlay-field-name also apply to
field-name.

Specify the optional file-qualifier: if the redefined field is in a file or record other
than the file or record currently being defined.

The optional +offset-value allows you to offset the field from the beginning of
overlay-field-name.

Attributes

For each field-name you define, you must specify the following attributes:

■ Field length in bytes

■ Data format

■ Number (if any) decimal positions

■ The optional VARYING parameter for varying length alphanumeric fields.

{field-length} Field-length specifies the length (in bytes) of the defined field.
Field-length must be an unsigned integer.

{A|M|K|N|P|B|U|I|F|S|D} Specify the data format by selecting one of the
following:

■ A (alphanumeric)—Use when none of the numeric data types applies to the
associated field. A type fields in files are EBCDIC format unless the
associated file was declared ASCII on the CODE parameter of the PARM or
FILE statement. A type fields in working storage are either EBCDIC or
ASCII, depending on the PARM CODE PROCESS value.

Statements D - F 4–7

DEFINE Statement

■ M (MIXED alphanumeric)—(mainframe only) Use when you know the data
in the associated field is EBCDIC, DBCS, or a mixture of both. CA-Easytrieve
processes the field assuming that it contains EBCDIC data. The DBCS data
in this field must be identified by the shift codes in the field’s DBCS code
system. CA-Easytrieve assumes that the field’s DBCS code system is the
CA-PSI/DBCS processing code system unless the field belongs to a file that
has the CODE parameter specified on its FILE statement. This field type is
invalid for those DBCS code systems that do not have an assigned shift code
system and cannot support a MIXED field type.

■ K (DBCS alphanumeric)—(mainframe only) Use when you know the data in
the field is in DBCS format. The length of the field must be a multiple of
two. The data in this field is associated with the DBCS code system defined
as the CA-PSI/DBCS processing code unless the field belongs to a file that
has the CODE parameter specified on its FILE statement.

■ N (zoned decimal)—The field contains digits 0 through 9 in external decimal
form (for example, 0 = X′F0′).

■ P (packed decimal)—The field contains numbers that meet IBM’s definition
of internal packed decimal. For instance, the two-byte packed field
containing 123 looks like X′123F′.

■ B (binary)—The fields contain binary data. In a quantitative binary field (a
field with zero or more decimal places specified), the high order bit is the
sign bit. In a non-quantitative binary field (a field with no decimal place
specification), the high order bit is a binary digit.

 For example, in a one-byte quantitative binary field the following is true:
(HEX) 7F = (BIN) 0111 1111 = (DECIMAL) 127

(HEX) 80 = (BIN) 1000 0000 = (DECIMAL) 128-

 For a one-byte non-quantitative binary field, the following is true:
(HEX) 7F = (BIN) 0111 1111 = (DECIMAL) 127
(HEX) 80 = (BIN) 1000 0000 = (DECIMAL) 128

 The table below shows the length equivalent and maximum possible values
for signed binary fields:

Field Length in
Bytes

Digits

Maximum
Value

Minimum
Value

 1 3 127 128-

 2 5 32,767 32,768-

 3 7 8,388,607 8,388,608-

 4 10 2,147,483,647 2,147,483,648-

 The next table shows the length equivalent and maximum possible values for
unsigned binary fields:

Statements D - F 4–8

DEFINE Statement

Field Length in
Bytes

Digits

Maximum
Unsigned Value

 1 3 255

 2 5 65,535

 3 8 16,777,215

 4 10 2,147,483,648

■ U (unsigned packed decimal)—Use this parameter for packed data where a
sign is not needed. For example, a two-byte unsigned packed field
containing 123 looks like X′0123′.

■ I (integer)—The field contains integer formatted data in the native format of
the host environment. The length of an I field must be two or four bytes.
Decimal places must be blank or zero.

 Numeric field capacities for signed I fields (quantitative) are:

Field Length
in Bytes

Maximum Value

Minimum Value

2 32,767 -32,768

4 2,147,483,647 -2,147,483,648

 Numeric field capacities for unsigned I fields (non-quantitative) are:

Field Length in Bytes Maximum Unsigned Value

2 65,535

4 4,294,967,295

■ F (fixed point ASCII)—(workstation only) The field contains signed ASCII
numeric data with or without a decimal point. The sign and the decimal
point each use one byte. The maximum length of an F field is 20 bytes. The
number of decimal places can be from 0 to 18.

 Numeric field capacities for F fields are:

Field Length
in Bytes

Maximum Value

Minimum Value

1 9 0

2 99 -9

Statements D - F 4–9

DEFINE Statement

Field Length
in Bytes

Maximum Value

Minimum Value

19 999,999,999,999,999,999 -999,999,999,999,999,999

■ S (single precision)—(workstation only) Use this field type if you need to
reference single precision IEEE floating point data in your program. This
field must be four bytes in length and can contain zero to seven decimal
places.

 Numeric field capacities for S fields are:

Field Length
in Bytes

Maximum Value

Minimum Value

4 9,999,999 -9,999,999

 Note: When arithmetic is performed using an S type field:

– If the source is an S type field, it is converted into a four byte packed
decimal temporary field.

– All arithmetic is performed in packed decimal.

– If the result is an S type field, the packed decimal result is converted into
an S type field.

■ D (double precision) - (workstation only) Use this field type if you need to
reference double precision IEEE floating point data in your program. This
field must be eight bytes in length and can contain zero to fifteen decimal
places.

 Numeric field capacities for D fields are:

Field Length
in Bytes

Maximum Value

Minimum Value

4 999,999,999,999,999 -999,999,999,999,999

 Note: When arithmetic is performed using a D type field:

– If the source is a D type field, it is converted into an eight byte packed
decimal temporary field.

– All arithmetic is performed in packed decimal.

– If the result is a D type field, the packed decimal result is converted into
a D type field.

Statements D - F 4–10

DEFINE Statement

{[decimal-positions]} Decimal-positions is an option that specifies the desired
number of decimal positions for field-name. Decimal-positions must be specified as
an unsigned integer. If decimal-positions is specified (even if 0), the field is
considered to be quantitative. Otherwise, the field is considered non-quantitative.
Quantitative fields are automatically summed on reports. Decimal-positions cannot
be specified for data type A.

Note: See the table below under Usage Notes for maximum lengths and number
of decimal positions for data types.

[EVEN] Use EVEN to indicate that a packed decimal field (P) is to contain an
even number of digits. The high order digit is zero. For example, a two-byte
packed even field can only contain two digits, such as X‘012F’.

Note: EVEN is valid only for P fields.

[VARYING] Use VARYING to indicate that field-name is a varying length field.
This means that the length of the data in this field, for each occurrence in separate
records, is unique. Varying length fields are alphanumeric and consist of a
two-byte length value followed by the data.

Note: The VARYING parameter is not supported for M or K fields.

You can specify VARYING on type A fields. When VARYING is specified, the
length attribute (field-length) is the total number of bytes the varying length field
can occupy (two-byte length plus maximum size of data).

You can specify VARYING for file fields or working storage fields. For file fields
the starting position (start-location) points to the two-byte indicator. For both file
fields and working storage fields, overlay redefinition begins with the two-byte
length indicator.

When referencing a VARYING field in your program, field-name can be used alone
or suffixed as shown below.

Assume field-name is ‘FLDA’:

■ FLDA references the entire field (both length and data) as a variable length
field

■ FLDA:LENGTH references only the length (first two bytes) as a two-byte
binary field

■ FLDA:DATA references the data portion of the field (from byte three on) as
an alphanumeric field.

When a VARYING field is displayed in your output, the data window is based on
the maximum length of the field (field-length minus two). The length indicator does
not display in output unless DISPLAY HEX is specified.

Statements D - F 4–11

DEFINE Statement

Length restrictions for varying length fields is as follows:

Field Type Minimum Length Maximum Length

A 3 32769

The default value for a varying field is a string of zero length. However, if the
VALUE option is coded, its value and length become the default for the field.

Note: On the workstation, field-length is a two byte integer (I type) if the file for
this field has an ASCII code system. If not, field-length is a two byte binary field (B
type).

{[file-qualifier:] model-field-name} Optionally, you can specify a field
name to use as a model for the field you are defining (field-name). The attributes
used in model-field-name are duplicated for field-name. If model-field-name is in a
different file or record, specify the name of that file. If you use this option, you
need not specify attributes for field-name.

Characteristics

[UPDATE] Specify UPDATE for each SQL field to be modified. You can specify
UPDATE only for fields defined in a CA-Easytrieve SQL file. Only SQL fields
specified as UPDATE can be modified by the UPDATE statement.

If UPDATE is specified on the FILE statement, UPDATE is used for all fields
defined in the file.

Note: You must have UPDATE authorization for the column in the SQL table that
this file references.

[HEADING ([#font-number] 'heading-literal'...)] The HEADING option
specifies an alternate report heading for field-name (the default is the actual
field-name).

#Font-number (mainframe only) defines the number of the font to be used to format
‘heading-literal’ when you use field-name in a report directed to an extended
reporting printer. If the report is directed to a normal printer, CA-Easytrieve
ignores this value.

‘Heading-literal’ specifies an alternate heading and can be up to 128 characters long.
‘Heading-literal’ must be enclosed in single quotes. Multiple ‘heading-literal’s, each
between single quote marks (‘ ‘), enclosed in the parentheses are stacked vertically
over the corresponding field when printed.

Statements D - F 4–12

DEFINE Statement

You can use a unique font number for each ‘heading-literal’ by coding the # sign
and a value for font-number before ‘heading-literal’. Any ‘heading-literal’ that does
not have a font assigned uses the default font identified in the printer set definition
module. See your system administrator for information about default fonts for an
extended reporting printer. See the CA-PSI Subsystems Reporting Environment Guide
for more information about extended reporting.

Note: HEADING can be used in the CA-Easytrieve/Online Screen Painter as a
default prompt for field-name. See the CA-Easytrieve/Online User Guide for details.

[INDEX (index-field-name ...)] The INDEX option establishes indexes for
field-name. You can specify multiple indexes by coding a list of index names
(index-field-name) enclosed in parentheses.

CA-Easytrieve automatically allocates a four-byte quantitative binary field for each
index (two-byte on the Workstation). Any references you make to a field with the
INDEX option cause that field’s location to be adjusted by the amount contained in
index-field-name. See the CA-Easytrieve Programmer Guide for more information.

[MASK ({[mask-identifier][BWZ]['mask-literal']|HEX})] The optional
MASK parameter is used to format field-name for display.

Any letter from A through Y can be used as an optional mask-identifier. You can use
the letter to identify a new mask or to retrieve a mask that was previously defined
either in the Options Table or by a mask parameter on a previous field definition.
If the new mask that you identify does not already exist, CA-Easytrieve retains the
mask for future reference. If you subsequently reference field-name for display,
CA-Easytrieve automatically uses the associated letter identifier to determine the
edit mask. Do not use the same identifier to establish more than one mask.

The BWZ (blank when zero) option suppresses the display of field-name when it
contains all zeros. BWZ can be used by itself or with other options on the MASK
parameter.

‘Mask-literal’ defines an edit mask and must be enclosed within single quotes. The
actual edit mask is coded according to the rules specified under the MASK
Parameter. See MASK Parameter in the “Statements G–M” chapter.

HEX is a special edit mask that instructs CA-Easytrieve to display the contents of
field-name in double-digit hexadecimal format. You can display fields of up to 50
bytes with the HEX mask.

Note: HEX edit masks are not allowed for VARYING fields.

[OCCURS maximum-occurrences] The OCCURS option establishes an array for
field-name.

Statements D - F 4–13

DEFINE Statement

Maximum-occurrences specifies the number of elements in the array (the number of
occurrences of field-name). Maximum-occurrence must be specified as an unsigned
integer. You can reference the elements of this array by manipulating the INDEX
defined for field-name or by using subscripts. See the CA-Easytrieve Programmer
Guide for more information.

[VALUE initial-value] The VALUE option initializes the contents of a field in
working storage.

Initial-value can be any valid literal whose type matches the field-name type. If
initial-value is non-numeric, it must be enclosed in single quotes. The maximum
length for initial-value is 254 bytes.

If the initial-value does not match the length of field-name, it is truncated or padded
according to Assignment rules.

[RESET] Use RESET only for W working storage fields. When you code RESET
on the field definition for a W field, RESET returns the field to its initial value
whenever a JOB, SCREEN, or SORT is executed. You can use RESET with
OCCURS for array fields but not for redefined fields (fields having overlay
redefinition). When you use RESET on multiple fields, the fields are reset in the
order of the field definitions.

Note: When W working fields are referenced in report processing, a RESET is not
performed during the printing of spooled reports.

Usage Notes

DEFINE statements can be automatically generated using the SQL INCLUDE or
IDD statements.

Use the following table when specifying field-length and decimal-positions.
 Data Maximum Number of
 Format Length Decimal
 Code (bytes) Positions

 A 32,767* not valid
 K 32,766* not valid
 M 32,767* not valid
 N 18 0 - 18
 P 10 0 - 18
 B 4 0 - 10
 U 9 0 - 18
 I 4 0
 F 20 0 - 18
 S 4 0 - 7
 D 8 0 - 15

 * For table file fields, ARG (argument) and DESC
 (description), the maximum length is 254 bytes.

Statements D - F 4–14

DEFINE Statement

Note: In CICS, the maximum total field length (field-length multiplied by
maximum-occurrences) is 32,759.

See the CA-Easytrieve Programmer Guide for complete rules for working with signed
(quantitative) and unsigned (non-quantitative) fields.

Statements D - F 4–15

DEFINE Statement

Examples

The DEFINE statement specifies data fields within a file or within working storage.
You usually specify file fields and work fields in your CA-Easytrieve library
section, but you can also define them within an activity as the following examples
illustrate. The first example shows fields defined in the library:
 { FILE PERSNL FB(150 1800)
Library { DEFINE EMP# 9 5 N
 { DEFINE EMPNAME 17 20 A
 { DEFINE EMP-COUNT W 4 N
 *
 { JOB INPUT PERSNL NAME MYPROG
 { EMP-COUNT = EMP-COUNT + 1
Activities { PRINT REPORT1
 *
 { REPORT REPORT1
 { LINE EMP# EMPNAME EMP-COUNT

The second example shows fields defined in an activity:
 { FILE PERSNL FB(150 1800)
Library { SALARY-CODE 134 2 N
 { *

 { JOB INPUT PERSNL NAME MYPROG
 { DEFINE EMP# 9 5 N
 { DEFINE EMPNAME 17 20 A
Activities { PRINT REPORT1
 { *
 { REPORT REPORT1
 { LINE EMP# EMPNAME SALARY-CODE

When fields are defined in an activity, each field definition must start with the
DEFINE keyword and physically be defined before the field is referenced. In the
library section, the use of the DEFINE keyword is optional.

Record Description

The examples below illustrate two ways of describing a record from a personnel
file. The first method uses an asterisk (*) to define the starting location of the fields.
The second method uses absolute starting positions. In this case, both methods
result in the same description. The DEFINE keyword is not needed when the field
definitions immediately follow the FILE statement.

Statements D - F 4–16

DEFINE Statement

 Method 1
 FILE PERSNL FB(150 1800)
 REGION * 1 N
 BRANCH * 2 N
 SSN * 5 P
 EMP# * 5 N
 JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1
 LINE EMP# REGION BRANCH

 Method 2
 FILE PERSNL FB(150 1800)
 REGION 1 1 N
 BRANCH 2 2 N
 SSN 4 5 P
 EMP# 9 5 N
 JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1
 LINE EMP# REGION BRANCH

Working Storage Initialization

CA-Easytrieve initializes numeric work fields to zeros and alphabetic work fields
to blanks. To initialize these fields to other values, use the VALUE parameter, as
shown below:
DEFINE CURRENT-MONTH W 10 A VALUE 'JANUARY'

Add the RESET parameter to reinitialize the field each time a JOB, SORT, or
SCREEN activity is executed.

Varying Length Fields

The VARYING parameter on the DEFINE statement designates varying length
fields. An example of a varying length field definition is shown below:
FLDA W 250 A VARYING

Because VARYING is used, this W type work field has two parts that are internally
defined as follows:
W 2 B 0 for the two-byte field length
W 248 A for the data

Statements D - F 4–17

DELETE Statement

Alternate Report Headings

The default report heading for a field is the field name. You can override this
default by using the HEADING parameter, as shown in the following example:
FILE PERSNL FB(150 1800)
 EMP# 9 5 N HEADING('EMPLOYEE' 'NUMBER')
 PAY-NET 90 4 P2 HEADING('NET' 'PAY')
 PAY-GROSS 94 4 P2 HEADING('GROSS' 'PAY')
 WORK-FIELD W 4 P2 HEADING('AMOUNT' 'OF' 'TAXES')

Edit Masks

To add an edit mask to a telephone number, use the MASK parameter:
DEFINE PHONE S 10 N MASK '(999) 999-9999'

Arrays

The following example defines an array. There are 10 occurrences of the 2-byte
numeric field, ELEMENT, in the array. When the array field is used to define the
entire array, ARRAY can be used to refer to the entire storage area.
DEFINE ARRAY W 20 A
DEFINE ELEMENT ARRAY 2 N 0 OCCURS 10

See the CA-Easytrieve Programmer Guide for more information on array processing.

DELETE Statement
The DELETE statement is used to delete a specific row from a CA-Easytrieve SQL
file.

Syntax
DELETE [FROM] file-name

Parameters

[FROM] Optionally, code FROM for statement readability.

[file-name] File-name must be the name of a CA-Easytrieve SQL file.

Statements D - F 4–18

DISPLAY Statement

Usage Notes

DELETE performs a DELETE WHERE CURRENT OF cursor. The file must be
defined with the UPDATE parameter. See the “SQL Database Processing” chapter
in the CA-Easytrieve Programmer Guide for more information.

Note: DELETE WHERE CURRENT OF cursor cannot be dynamically processed
by the SQL interface for CA-IDMS. To perform SQL deletes, you must code native
SQL statements using a searched delete statement.

Example

The following example selects a specific row from the table, then deletes it.
FILE PERSNL SQL (PERSONNEL) UPDATE
EMPNAME * 20 A
WORKDEPT * 2 P O
EMPPHONE * 3 P O
PROGRAM NAME RETRIEVE-PERSONNEL
 SELECT FROM PERSNL WHERE EMPNAME = 'ROGERS PAT'
 FETCH FROM PERSNL
 IF EOF PERSNL
 DISPLAY 'EMPLOYEE NOT FOUND'
 ELSE
 DELETE FROM PERSNL
 END-IF

DISPLAY Statement
The DISPLAY statement formats and transfers data to the system output device or
to a named file. You can code DISPLAY to transfer printed data to the system
output device, or you can optionally code a file name after DISPLAY to cause data
to be printed to the named file. The DISPLAY statement has three formats; Format
3 can only be used when the file is associated with an extended reporting printer.

Statements D - F 4–19

DISPLAY Statement

Syntax

Format 1
 [display-file-name] [{TITLE|NOTITLE}]
DISPLAY [] [SKIP skip-integer] +
 [SYSPRINT] [CONTROL 'carriage-control-character']

 [[]field-name]
 [[#font-number]]
 [[]'literal']
 [+offset] ...
 [-offset]
 [COL column-number]
 [POS position-number]

Format 2
 [display-file-name] [{TITLE|NOTITLE}]
DISPLAY [] [SKIP skip-integer] +
 [SYSPRINT] [CONTROL 'carriage-control-character']

 {file-name }
 HEX {field-name }
 {record-name}

Format 3
 [display-file-name] []
DISPLAY [] [CONTROL 'control-literal']
 [SYSPRINT] []

Parameters

Format 1
[display-file-name]
[SYSPRINT]

When you specify display-file-name, CA-Easytrieve prints data to the named file.
The named file should be designated as a PRINTER file or unpredictable results
can occur. If you do not specify display-file-name, the default is SYSPRINT.
SYSPRINT implies the system output device. The actual destination of SYSPRINT
is determined by the environment or a site option. See your system administrator
for more information.

[{TITLE|NOTITLE}] The TITLE option specifies that a skip to a new page occurs
before the data is printed. It also produces any titles and headings if coded in a
report procedure. NOTITLE specifies that a skip to a new page occurs but titles
and headings are not produced.

[SKIP skip-integer] The SKIP skip-integer option specifies the number of lines
skipped before printing data. When skip-integer is zero, the current line being
DISPLAYed overlays the previous line output to display-file-name.

Statements D - F 4–20

DISPLAY Statement

[CONTROL 'carriage-control-character'] The CONTROL
‘carriage-control-character’ option sets the print carriage control character for the
print line. Valid alphanumeric values for ‘carriage-control-character’ are 0 through 9,
+, -, A, B, or C. Depending on the make and model of impact printer used, these
characters select a precoded channel on a carriage control tape that determines
print line positions associated with the form to be printed.

When display-file-name is associated with an extended reporting printer, the printer
must support ANSI or machine carriage controls. See the CA-PSI Subsystems
Reporting Environment Guide for more information.

Note: This parameter is not valid for use in REPORT procedures.

[#font-number] (Mainframe and UNIX only) #Font-number identifies the font
that CA-Easytrieve uses for the next display item. You can only specify this option
if display-file-name has been associated with an extended reporting printer.
#Font-number identifies the number of a font defined for the extended reporting
printer assigned to receive the print output. If you do not code the font index, then
the next display item uses the default font for the assigned extended reporting
printer.
[field-name]
['literal']

Code field-name or ‘literal’ in the order you want them to appear on the printed line.

Note: K fields are not valid on a DISPLAY statement.
[+offset]
[-offset]

The space adjustment options, +offset adds or -offset subtract horizontal line spaces
preceding the next display item.

Note: ±Offset does not extend space beyond the left and right margin set points.

[COL column-number] The COL column-number option specifies the absolute
print column number on which CA-Easytrieve begins to print the next display
item. Column-number can be any value that does not extend beyond the line
margins.

When using an extended reporting printer, an error occurs if two or more fields or
literals overlap. See the CA-PSI Subsystems Reporting Environment Guide for more
information.

[POS position-number] The POS position-number option coded in a DISPLAY
statement within report procedures causes the next display item to be left-justified
under the corresponding position-number item in the LINE 01 statement.

When using an extended reporting printer, an error occurs if two or more fields or
literals overlap. See the CA-PSI Subsystems Reporting Environment Guide for more
information.

Statements D - F 4–21

DISPLAY Statement

Format 2
 {file-name }
HEX {field-name }
 {record-name}

CA-Easytrieve produces a hexadecimal- and character-dump of the current
file-name or field-name, whichever you specify. For CA-IDMS files, record-name
refers to any record (segment); file-name refers to all records (segments).

Note: HEX file-name cannot be used in REPORT procedures.

Format 3 (Mainframe and UNIX only)

You can only use this format of the DISPLAY statement when display-file-name is
associated with an extended reporting printer. A syntax error occurs if display-
file-name is not an extended reporting printer. See the CA-PSI Subsystems Reporting
Environment Guide, or the CA-Easytrieve for UNIX User Guide for more information
about extended reporting.

[CONTROL 'control-literal'] You can use the CONTROL parameter to
output printer control records. ‘Control-literal’ can be an alphanumeric or
hexadecimal literal that CA-Easytrieve outputs to the print file without paper
control information. These control cards contain instructions to extended
reporting printers. Print control records for some printing systems define the
specification of the font sets that CA-Easytrieve uses for a particular report. These
control cards can be output to the print data set before a report that uses the loaded
font sets.

Usage Notes

Unless you specify relative or absolute positioning, the first data entry of each
DISPLAY statement begins in column 1 of the print line. Each data entry that
follows is printed next to the preceding entry. For HEX displays, the output is
printed five lines per 100 bytes of the record or field.

When you use DISPLAY in REPORT procedures, output is always in the
appropriate place in the report. However, when you use DISPLAY in a JOB
activity, the output can be interspersed with the first unSEQUENCED report if no
file-name is specified.

Data displayed to an output file is in an edited format. DISPLAY is not valid for
nullable fields, but DISPLAY HEX is valid.

Statements D - F 4–22

DLI Statement

Examples

Format 1

The following example illustrates the use of Format 1 of the DISPLAY statement.
FILE BADKEYS FB(150 1800) TERMINAL
FILE PERSNL INDEXED
%PERSNL
FILE INKEYS
WHO * 5 N
JOB INPUT INKEYS NAME MYPROG
 READ PERSNL KEY WHO STATUS
 IF NOT PERSNL
 DISPLAY BADKEYS 'BAD KEY =' +1 WHO
 GOTO JOB
 END-IF

When executed, the statements in this example produce the following output:
BAD KEY = 00973

Format 2

The following example illustrates the use of Format 2 of the DISPLAY statement.
FILE PERSNL INDEXED
%PERSNL
FILE INKEYS
WHO * 5 N
JOB INPUT INKEYS NAME MYPROG
 READ PERSNL KEY WHO
 DISPLAY SKIP 2 HEX PERSNL

When executed, the statements in this example produce the following output:
 CHAR 104 G 01963 7ARNOLD LINDA 1569 COLONIAL TERR ANEW YORK NY10012 @ 911
 ZONE FFF21683FFFFF44FCDDDDC44DCDCC4444444FFFF4CDDDDCCD4ECDD4CDCE4EDDD4444DEFFFFF4444444444444403670450FFF
 NUMR 1048327C019630071956340039541000000015690363659130359901556086920000581001200000000000000058C045C911
 1...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80...85...90...95..100

 CHAR 082942 21245140401S 1001101968
 ZONE 44FFFFFF44444444FFFFFFFFFFFE444FFFFFFFFFF444444444
 NUMR 00082942000000002124514040120001001101968000000000
 101...5...10...15...20...25...30...35...40...45...50

DLI Statement
The DLI statement provides controlled input/output of an IMS/DLI database.
You can use the DLI statement in conjunction with (or independently of) the
automatic input associated with RETRIEVE. You can code the DLI statement at
any place in a JOB activity that an input/output statement for any other file can
be coded. This statement provides complete control over the creation and
maintenance of a database.

Statements D - F 4–23

DLI Statement

Syntax

Format 1
 {io-record-name} {'function-literal' }
 DLI file-name { } { } +
 {io-field-name } {function-field-name}

 [] [{'search-value-literal' }]
 [SSANO ssa-number] [SSA { }] ...
 [] [{search-value-field-name}]

Format 2
 {CHKP} {'seg-len-literal' }
 DLI { } { } id-field-name +
 {XRST} {seg-len-field-name}

 [{'checkpoint-len-literal' }]
 [{ } checkpoint-field-name] ...
 [{checkpoint-len-field-name}]

Format 3
 DLI CHKP id-field-name

Format 4
 DLI file-name FOR ACCESS

Format 5
 {'psb-name-literal' }
 DLI PCB { }
 {psb-name-field-name}

Format 6
 DLI TERM

Parameters

Format 1

file-name File-name identifies the database being processed. File-name is the
same as the name coded on the FILE file-name statement that identifies the DBD
to be processed.
{io-record-name}
{ }
{io-field-name }

Io-record-name or io-field-name identifies the input/output area that is to receive
the data. Io-record-name must be the same as a corresponding segment-name
coded on a RECORD statement. Io-field-name can only be a working storage field.
In either case, the area specified must be large enough to contain the longest
segment retrieved from the database.
{'function-literal' }
{ }
{function-field-name}

Statements D - F 4–24

DLI Statement

You can specify any IMS/DL/I function code whose parameter requirements
conform to Format 1. The function code can be specified as either an EBCDIC
alphabetic literal (‘function-literal’) or an alphanumeric function-field-name that
contains a four-byte alphabetic code. Valid function codes (for example, GNP)
are described in IBM’s IMS/DL/I Application Programming publications.
[] [{'search-value-literal' }]
[SSANO ssa-number] [SSA { }]
[] [{search-value-field-name}]

Code the optional SSANO and SSA parameters when the database activity to be
performed cannot be satisfied without using segment search arguments. SSANO
identifies a function-field-name that represents a four-byte binary field.
Function-field-name can be set dynamically to control the number of SSAs used in
database system calls. This value overrides the assumed number which is equal
to the count of SSA parameter entries. The SSA parameter supplies segment
search argument values. You can code the SSA values as search-value-field-name
or an alphabetic literal (‘search-value-literal’). The SSA value must contain the
segment search argument in the exact form required by IMS/DL/I. If
search-value-field-name contains DBCS data, the DBCS code system of search-value-
field-name must equal the DBCS code system of file-name.

Format 2

Use Format 2 of the DLI statement to perform a symbolic checkpoint/restart.
You must specify the compatibility option (COMPAT=YES) for the PSB being
processed; this option generates a dummy PCB that acts as an I/O PCB during
checkpoint/restart processing. Test CHKP-STATUS to determine the results of
the call. For more information on CHKP-STATUS, see the “File Processing”
chapter in the CA-Easytrieve Programmer Guide. See IBM’s IMS/DL/I Application
Programming publications for more information on symbolic checkpoint/restart.
{CHKP}
{ }
{XRST}

Code CHKP to perform symbolic checkpoint or XRST to perform a symbolic
restart.
{'seg-len-literal' }
{ }
{seg-len-field-name}

‘Seg-len-literal’ or seg-len-field-name specifies the length of the longest segment (or
path of segments) in the PSB. ‘Seg-len-literal’ must be a four-byte binary field.

[id-field-name] Id-field-name must identify a 12-byte area in working storage.
The first eight bytes of this area contain the checkpoint-ID. You should set the
12-byte area to spaces before performing the DLI XRST operation, then test it
after performing the operation. If your program is being started normally, the
area will still contain spaces. If your program is being restarted from a
checkpoint, the area will contain the checkpoint-ID that you supplied during the
DLI CHKP operation and in the restart JCL.

Statements D - F 4–25

DLI Statement

Optionally, you can also specify up to seven checkpoint areas in working storage
that are saved during each checkpoint and restored during a restart.
{'checkpoint-len-literal' }
{ }
{checkpoint-len-field-name}

‘Checkpoint-len-literal’ or checkpoint-len-field-name specifies the length of the
checkpoint area defined by checkpoint-field-name. Checkpoint-len-field-name must
be a four-byte binary field.

[checkpoint-field-name] Checkpoint-field-name must identify a field in
working storage. The length of this checkpoint area is specified by checkpoint-len-
field-name or ‘checkpoint-len-literal’.

A checkpoint can be taken on a maximum of seven areas.

Format 3

Use Format 3 of the DLI statement to perform a basic checkpoint. For IMS, you
must specify the compatibility option (COMPAT=YES) for the PSB being
processed; this option generates a dummy PCB that acts as an I/O PCB during
checkpoint processing. Test CHKP-STATUS to determine the results of the call.
For more information of CHKP-STATUS, see the “File Processing” chapter in the
CA-Easytrieve Programmer Guide. For additional information on basic checkpoint,
see IBM’s IMS/DL/I Application Programming publications.

CHKP CHKP causes a basic checkpoint to be performed.

id-field-name Id-field-name must identify an 8-byte area in working storage.
This area contains the checkpoint-ID.

Format 4

Use Format 4 of the DLI statement when you are calling a subprogram (such as a
COBOL program) which accesses DL/I records. Coding this statement before
referencing DLI fields causes the fields to become available for processing.

DLI file-name FOR ACCESS File-name refers to a CA-Easytrieve file definition
containing the appropriate PCB field, record and record field definitions.

Format 5

Use Format 5 to schedule a PSB. Format 5 is used for CICS execution only. In
other environments, it is ignored. Any program that executes under CICS must
schedule the PSB before accessing any PSB, including programs that are
accessing DL/I with the RETRIEVE statement. For activities that use the
RETRIEVE statement, the PSB must be scheduled in a JOB START proc, or in a
previously-executed activity. When a PSB is scheduled, it stays scheduled until
one of the following occurs:

Statements D - F 4–26

DO and END-DO Statements

■ Task termination

■ Syncpoint

■ Execution of the DLI TERM statement (see Format 6).

Test the UIBFCTR and UIBDLTR system-defined fields to determine the results
of the operation. See IBM’s IMS/DL/I Application Programming publications
for more information about scheduling PSBs and the values of UIBFCTR and
UIBDLTR.
{'psb-name-literal'}
{ }
{sb-name-field-name}

‘Psb-name-literal’ or psb-name-field-name specifies the PSB to be scheduled. The
maximum length of a PSB name is eight bytes.

Format 6

Use Format 6 to terminate a PSB. Format 6 is used only for CICS execution. In
other environments, it is ignored. Test the UIBFCTR and UIBDLTR system-
defined fields to determine the results of the operation. See IBM’s IMS/DL/I
Application Programming publications for more information about scheduling
PSBs and the values of UIBFCTR and UIBDLTR.

DO and END-DO Statements
The loop control statements DO and END-DO control and delimit repetitive
program logic.

Syntax
 {WHILE}
 DO { } conditional-expression
 {UNTIL}

 statement-1
 ...
 statement-n

 END-DO

Statements D - F 4–27

DO and END-DO Statements

The following diagram illustrates DO and END-DO statement logic:

DO WHILE

conditional
expression

true

statement-1
 • • •

statement-n

END-DO

statement-1
 • • •

statement-n

conditional
expression

END-DO

true

false

false

DO UNTIL

Parameters
{WHILE}
{ }
{UNTIL}

A WHILE loop evaluates the condition at the top of a group of statements. The
UNTIL loop evaluates the condition at the bottom of a group of statements.

conditional-expression Specify the condition that is the basis for the
continuing execution of the loop. See Conditional Expressions for conditional
expression syntax.

END-DO END-DO terminates the body of the loop associated with the DO
statement. An END-DO statement must be specified after each DO statement
and its associated statements.

Usage Notes

DO WHILE

Statements D - F 4–28

DO and END-DO Statements

The truth value of the conditional expression determines whether statement-1
through statement-n are executed. Statement-1 ... statement-n represents any
number of CA-Easytrieve statements. When the conditional expression is true,
the statements are executed and the program branches back to test the
conditional expression. The program continues to loop as long as the conditional
expression is true. When the conditional expression is false, the program
branches to the statement following END-DO.

DO UNTIL

Statement-1 through statement-n are executed. The truth value of the
conditional expression determines whether the group of statements are executed
again. When the conditional expression is true, the program branches to the
statement following the END-DO. When the conditional expression is false, the
program branches back to execute the statements. The program continues to
loop until the conditional expression is true.

Examples

DO UNTIL statement example:
FILE FILEA
ELEMENT 1 10 A OCCURS 10
CTR W 2 N
JOB INPUT FILEA
 CTR = 1
 DO UNTIL CTR > 10
 DISPLAY ELEMENT (CTR)
 CTR = CTR + 1
 END-DO

DO WHILE loop nesting example:
 DEFINE COUNT-1 W 3 N VALUE 0
 DEFINE COUNT-2 W 3 N VALUE 0
 DEFINE RESULT W 3 N VALUE 0
 *
 JOB INPUT NULL NAME MYPROG
 DO WHILE COUNT-1 LT 10
 COUNT-1 = COUNT-1 + 1
 COUNT-2 = 0
 DO WHILE COUNT-2 < 10
 COUNT-2 = COUNT-2 + 1
 RESULT = COUNT-1 * COUNT-2
 DISPLAY 'COUNT-1= ' COUNT-1 ' COUNT-2= ' COUNT-2 +
 ' RESULT= ' RESULT
 END-DO
 END-DO
 STOP

Statements D - F 4–29

DRAW Statement

DRAW Statement
(Workstation only) The DRAW statement produces graphic output by initiating a
GRAPH subactivity.

Syntax
DRAW [graph-name]

Parameters

[graph-name] Graph-name is the name of the graph as specified on a GRAPH
statement. If not specified, CA-Easytrieve assumes graph-name is the first graph
in the JOB activity.

Usage Notes

All graph output is scheduled for deferred formatting and display, following
re-sequencing of the graph data. The data is written to an intermediate file
(referred to as a graph work file).

See the “Graph Processing” chapter in the CA-Easytrieve Programmer Guide for
detailed examples of the use of the DRAW statement in graph processing.

ELEMENT-RECORD Statement (CA-IDMS)
(Workstation only) Code ELEMENT-RECORD statements after a
LOGICAL-RECORD statement to identify the element records that comprise the
logical record.

Syntax
ELEMENT-RECORD record-name

Parameters

record-name Record-name is the one-to 16-character name of the element record
as defined within the logical record.

Statements D - F 4–30

ENDPAGE Report Procedure

Usage Notes

The name of each field must be unique within the element record. However, it is
not necessary for the field to be unique within the logical record that contains the
element record being defined. If a field defined in another element record has
the same name as a field in the named element record, then all references to
either field must be qualified with the name of the field’s containing element
record. See the “CA-IDMS Database Processing” chapter in the CA-Easytrieve
Programmer Guide for more information.

You can use the IDD SUBSCHEMA statement to automatically generate
LOGICAL-RECORD, ELEMENT-RECORD, and DEFINE statements.

ENDPAGE Report Procedure
An ENDPAGE procedure can be used to produce page footing information. It is
invoked whenever end-of-page is detected.

Syntax
ENDPAGE. PROC

Usage Notes

A ENDPAGE procedure must be delimited by an END-PROC statement. See the
PROC Statement for more information.

Example

ENDPAGE is typically used to produce page totals or other annotations, as in the
following example of page footer annotation:
FILE FILE1
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
*
ENDPAGE. PROC
 DISPLAY SKIP 2 '* CONFIDENTIAL - FOR INTERNAL USE ONLY *'

Statements D - F 4–31

END-PROC Statement

END-PROC
*

END-PROC Statement
The END-PROC statement delimits the statements in a procedure. A procedure
is a group of user-written CA-Easytrieve statements designed to accomplish a
particular objective.

Syntax
END-PROC

Usage Notes

See the PROC Statement for more information.

ENDTABLE Statement
ENDTABLE is used to delimit instream data used to create small tables.
ENDTABLE must be coded in the first eight positions of the source statement.
The ninth position must be blank.

Syntax
ENDTABLE

Usage Notes

All data required to create an instream table file must be coded between the
definition statements and the ENDTABLE statement.

If the table data is to be stored in a macro, you must store the entire table
definition from the FILE statement through the ENDTABLE statement.

Example
FILE DAYTABL TABLE INSTREAM
 ARG 1 1 A. DESC 3 9 A
1 SUNDAY
2 MONDAY
 ...
7 SATURDAY
ENDTABLE

Statements D - F 4–32

EXECUTE Statement

EXECUTE Statement
The EXECUTE statement invokes a JOB, SORT, or SCREEN activity from either a
PROGRAM or SCREEN activity.

Syntax
EXECUTE {job-name|sort-name|screen-name}

Parameters

{job-name|sort-name|screen-name} Name the JOB, SORT or SCREEN
activity to be executed.

Usage Notes

The EXECUTE statement transfers control to an activity. After the activity is
executed, control returns to the next executable statement following the
EXECUTE. You cannot invoke a JOB, SORT or SCREEN activity in a JOB or
SORT activity.

EXECUTE statements in a SCREEN activity can invoke other activities. This is
called activity nesting. However, recursion is not permitted. That is, ACTIVITY
A can EXECUTE ACTIVITY B, but ACTIVITY B cannot then EXECUTE
ACTIVITY A.

Note: Recursion cannot be detected in the program. If it is attempted,
unpredictable results can occur.

You can use the EXECUTE statement to invoke multiple stacked windows from a
SCREEN activity. When each stacked window terminates with an EXIT, the full
screen image is restored to the screen image that existed before the EXECUTE.
An EXIT from the primary screen does not restore the screen.

Example
PARM-FIELD W 5 A
PROGRAM NAME SAMPLE-PROGRAM USING PARM-FIELD
 IF PARM-FIELD = 'DAILY'
 EXECUTE DAILY-JOB
 ELSE
 EXECUTE WEEKLY-JOB
 END-IF
 JOB NAME DAILY-JOB
 . . .
 JOB NAME WEEKLY-JOB

Statements D - F 4–33

EXIT Statement

EXIT Statement
The EXIT statement terminates a SCREEN activity.

Syntax
EXIT

Usage Notes

When an EXIT statement is encountered and the SCREEN activity was invoked
from a PROGRAM or SCREEN activity, control is returned to the statement
following the EXECUTE statement.

If a SCREEN activity was invoked by an implied PROGRAM activity, EXIT
terminates the program.

EXIT is a branch action that can be invoked directly by pressing a particular
attention key. See the KEY Statement for more information.

Example
 SCREEN NAME MENU
 KEY F3
 ...
 AFTER-SCREEN. PROC
 IF KEY-PRESSED = F3
 EXIT
 END-IF
 END-PROC

FETCH Statement
The FETCH statement is used to retrieve rows from a CA-Easytrieve SQL file.

Syntax
FETCH [FROM] file-name

Parameters

[FROM] Optionally, code FROM for statement readability.

file-name File-name is the name of a CA-Easytrieve SQL file.

Statements D - F 4–34

FILE Statement

Usage Notes

The FETCH statement retrieves rows from the open cursor and places the data in
the file’s data area. If the file does not have an open cursor associated with it, the
cursor previously SELECTed is reopened. If no cursor was previously selected,
the default cursor (SELECT all defined fields FROM table) is opened.

You cannot use controlled statements (SELECT, FETCH, CLOSE) in a SORT or
REPORT procedure.

The FETCH statement cannot reference an automatic input file in the same JOB
activity. You can FETCH from a file other than the automatic input file.

Example

Following is an example of a PROGRAM activity that uses a default cursor.
FILE PERSNL SQL (PERSONNEL)
EMPNAME * 20 A
WORKDEPT * 2 P 0
PROGRAM NAME RETRIEVE-PERSONNEL
 FETCH FROM PERSNL
 DO UNTIL EOF PERSNL
 DISPLAY EMPNAME +2 WORKDEPT
 FETCH FROM PERSNL
 END-DO

The above PROGRAM activity simply fetches each row of the table and displays
the fields. The DO loop repeats the process until end-of-file.

FILE Statement
FILE statements must describe all files that your program references. You can
also access SQL, CA-IDMS, and IMS/DL/I databases using CA-Easytrieve files.
Code FILE statements at the beginning of a program after the PARM statement,
if one is used. Not all parameters are necessary (or valid) for describing any one
file. A review of all parameters will quickly indicate those required for any
particular file.

Code the optional parameters and subparameters of the FILE statement in any
order following the file-name. As shown, you must code multiple
subparameters within parentheses. The complete syntax of the FILE statement is
shown below:

Statements D - F 4–35

FILE Statement

Syntax
FILE file-name +

 [SEQUENTIAL [CREATE [RESET]]] }
 [INDEXED [UPDATE]] + }
 [RELATIVE] }
 [SQL ([owner-name.] table-name [correlation-name]{,}...)] } File
 [IDMS (subschema-name [RESET])] } Type
 [{relative-position }] }
 [DLI ({ }[RESET])] }
 [{dbd-name[relative-occurrence]}] }

 [{'password-literal' }]
 [PASSWORD { }] +
 [{password-field-name}]

 [NOVERIFY] +

 [[{parm-literal }]]
 [EXIT (program-name [USING ({ } ...)] [MODIFY])] +
 [[{parm-field-name}]]

 [CARD] }
 [PUNCH] }Device
 [PRINTER [([PAGESIZE (line-page-size [display-page-size]) +] }Type
 [[LINESIZE line-length])]] }

 [F [record-length]] }
 [] }
 [V [record-length]] }
 [] }
 [[block-length]] }
 [U [FULLTRK]] }
 [] }
 [FB [(record-length [block-length])] + }Record
 [[[FULLTRK]]] }Format
 [] }
 [VB [(record-length [block-length])]] }
 [[[FULLTRK]]] }
 [}
 [VBS [(record-length [block-length])]] }
 [[[FULLTRK]]] }

 [WORKAREA area-length] +

 [[INSTREAM]]
 [TABLE []] +
 [[max-table-entries]]

 [BUFNO buffers] +

 [DEFER] +

 [ASA] +

 [EXTENDED xrpt-printer] +

 [CODE {EBCDIC|ASCII|dbcs-code-name}] +

 [KEY key-field-name] +

 [[SYSTEM (system-id [PATH path-specification] +]
 []
 [[ACCESS {BTRIEVE }]]
 [[{DBASE }]]
 [[{DELIMITED }]]
 [[{HOST }] +]
 [[{SUPERCALC }]]
 [[{LOTUS }]]
 [[{RRDS }]]
 []
 [[KEY (key-start-pos key-length)] +]
 []
 [[INDEX index-file-specification] +] +
 []
 [[ACCESS-PATH access-path-number] +]
 []
 [[CREATE-PATH (access-path-number +]]
 [[KEY (key-start-pos key-length key-type) +] +]
 [[[DUPLICATE] [MODIFIABLE]) ...]]
 []
 [[OWNER 'owner-id'] +]
 []

Statements D - F 4–36

FILE Statement

 [[CREATE-MODE create-mode-literal] +]
 []
 [[PAGESIZE page-size-literal])]

 [{'file-identifier' }] }
 [SYSNAME { }] }
 [{file-identifier-field-name}] }
 [] }
 [[MEMORY]] }
 [VIRTUAL ([RETAIN] [DISK])] }
 [] }
 [[{'terminal-id-literal' }]] }
 [TERMINAL ([ID { }] +] }
 [[{terminal-id-field-name}]] }
 [] }
 [[NOFORMFEED] +] }
 [] }
 [[[BEFORE]]] } Data
 [[NEWPAGE [AFTER]]...)] } Set
 [] } Type
 [[{'spool-class-literal' }]] }
 [SPOOL ([CLASS { }] +] }
 [[{spool-class-field-name}]] }
 [] }
 [[{'destination-literal' }]] }
 [[NODE { }] +] }
 [[{destination-field-name}]] }
 [] }
 [[{'user-id-literal' }]] }
 [[USERID { }])] }
 [[{user-id-field-name}]] }

Parameters

file-name File-name is a one to 128-character name used to define the file to
CA-Easytrieve. All statements that operate on the file refer to this name. Every
FILE statement must have a file-name immediately following the FILE keyword.
File-names must be unique in the program (that is, the programmer can use a
given file-name for only one file). The first three characters of file-name must be
different from the value of the work data set name prefix specified in the Site
Options Table (normally EZT).

See the SYSNAME parameter for the relationship between a FILE statement and
an external data set.

File Types

CA-Easytrieve processes all standard file types available in the operating
environment. On a mainframe, this includes QSAM (Queued Sequential Access
Method), VSAM (Virtual Storage Access Method), SQL, printer files directed to
an online printer, terminal, or to the operating system spooling subsystem (JES2
or JES3 in MVS and POWER in VSE), CA-IDMS and IMS/DL/I database files,
and the CA-Easytrieve Virtual File Manager (VFM). On a workstation, these
include fixed and variable length sequential, ISAM (Indexed Sequential Access
Method), relative, random, VFM, SQL, and CA-IDMS database files. On UNIX,
these include fixed length sequential, variable length sequential (new-line
delimited), relative, VFM, SQL, and CA-IDMS database files. If you do not
specify a file type, CA-Easytrieve assumes the file is sequential.

Statements D - F 4–37

FILE Statement

[SEQUENTIAL] SEQUENTIAL designates a QSAM or VSAM Entry Sequenced
Data Set (ESDS) on a mainframe. On a workstation, the file can be a fixed or
variable (CR/LF) file. On UNIX, the file can be a fixed length or a variable length
(new-line delimited) file. SEQUENTIAL is the default file type if a file type is not
specified.

Note: When SEQUENTIAL is specified, FILE-STATUS (a system-defined field)
is available for the file.

[INDEXED] INDEXED designates a VSAM Key Sequenced Data Set (KSDS), a
workstation ISAM file, or a UNIX ISAM file.

[RELATIVE] RELATIVE designates a mainframe VSAM Relative Record Data
Set (RRDS), or a relative file on a workstation or on UNIX.

[SQL] ([owner-name.]] table-name [correlation-name] {,} ...) The
SQL parameter designates an SQL file. This parameter enables CA-Easytrieve to
manage the SQL cursor.

Note: Only UPDATE, DEFER, and CODE are valid FILE statement parameters
for an SQL file.

Table-name is the name of the SQL table to be accessed. Optionally, qualify the
table with owner-name. Table-name must be enclosed in parentheses.

Correlation-name is the name used to clarify or simplify the table to which a
column belongs. If you specify owner-name and your DBMS does not permit
more than one level of qualification (CA-IDMS, CA-Ingres, or ORACLE), you
should code a correlation-name for each table.

Note: The comma is a required separator.

When you specify SQL, the file can be used as the subject of either automatic
input or controlled processing using the SELECT, FETCH, CLOSE, INSERT,
UPDATE, and DELETE statements. These statements support full read-write
access to the tables but you do not have to declare, open, and close cursors to
manage the tables. Multiple tables for a single file are joined for inquiry only.

[IDMS (subschema-name [RESET]) IDMS designates the file as a CA-IDMS
database file.

Subschema-name is a one to eight-character name that specifies the subschema to
be processed.

The optional RESET subparameter requests that all records under control of
RETRIEVE be reset to binary zero immediately prior to retrieving each root
record.

Statements D - F 4–38

FILE Statement

When the first IDMS FILE statement is encountered, a CA-IDMS
Communications Block is created in working storage.

See the “CA-IDMS Database Processing” chapter in the CA-Easytrieve Programmer
Guide for more information.

Note: Fields cannot be defined in association with the IDMS FILE statement.
Fields are defined following the RECORD or ELEMENT-RECORD statement.
 {relative-position }
DLI ({ } [RESET])
 {dbd-name[relative-occurrence]}

(Mainframe only) DLI designates the file as an IMS/DL/I database file.

Relative-position is a positive numeric literal that identifies the relative position of
the PCB within the PSB to be processed.

Dbd-name specifies the name of the DBD. Relative-occurrence is the relative
occurrence of like-name DBDs in the PSB. It is only required if two or more
DBDs have the same name.

The optional RESET subparameter requests that all records under control of
RETRIEVE be reset to binary zero immediately prior to retrieving each root
record.

See the “IMS/DL/I Database Processing” chapter in the CA-Easytrieve
Programmer Guide for more information.

[CREATE [RESET]] Use CREATE to load the associated file.

(Mainframe only) If you specify RESET, CA-Easytrieve overwrites an existing
data set with the REUSE attribute. If RESET is not specified, or if RESET is
specified and the associated VSAM data set does not have the REUSE attribute,
then CA-Easytrieve receives an error condition when the OPEN is executed.

Note: In CICS, the use of RESET results in an execution error.

(UNIX only) If you specify RESET, CA-Easytrieve deletes an existing data set
before creation. If RESET is not specified, new records are appended.

[UPDATE] Use UPDATE to permit the file to be updated.

For SQL, code UPDATE to specify that all columns defined for the file can be
updated. If you do not specify UPDATE for an SQL file, only those columns
defined with the UPDATE parameter can be updated. UPDATE is required to
DELETE from or INSERT to an SQL file.

Note: You must have UPDATE, INSERT, or DELETE authorization for the SQL
table that this file references.

Statements D - F 4–39

FILE Statement

[{'password-literal' }]
[PASSWORD { }]
[{password-field-name}]

‘Password-literal’ is the optional password for the file. You can specify the
password as an alphabetic literal or a hexadecimal quoted literal.

Password-field-name is a field you define that contains the password for the file.
CA-Easytrieve accesses the value in password-field-name when the file is opened.
Any valid password is accepted.

[NOVERIFY] Code NOVERIFY to ignore a VSAM open error code of 116(X'74').
This error indicates that a previous job terminated without properly closing the
associated VSAM data set. It could also indicate that a job executing on another
CPU is using the associated VSAM data set.

CAUTION: Indiscriminate use of NOVERIFY can cause loss of data records.

[EXIT] EXIT invokes a user written program for each CA-Easytrieve operation
on the file. EXIT is not valid for VFM, SQL, DL/I, or IDMS.

program-name Specify the name of the user program.
[{parm-literal }]
[USING ({ } ...)]
[{parm-field-name}]

USING appends the associated parameters (parm-literal or parm-field-name) to the
standard parameter list passed to the exit program. Field names must be
working storage or system defined fields and must be defined in the library
section. There is a limit of 62 fields that can be passed to the exit program.

[MODIFY] MODIFY specifies that CA-Easytrieve provides input or output
services, but that the exit can inspect and modify each record after input and
before output.

Device Types

The optional parameters CARD, PUNCH, and PRINTER specify the device type
for SEQUENTIAL files. For MVS, if you do not specify one of these parameters,
the device type is determined by your JCL.

[CARD] (TSO and CMS only) The CARD option retrieves the file data from the
system input stream (SYSIN). Only one file in a CA-Easytrieve execution can use
the CARD option. Files using this option must be 80-character unblocked
records.

Note: In TSO and CMS, you cannot use a CARD file if you want to execute your
program interpretively.

Statements D - F 4–40

FILE Statement

(Workstation only) The CARD option indicates the file is a variable length file
(carriage-return, line-feed delimited) using an 80-character record buffer.

(UNIX only) The CARD option indicates the file is “stdin.” It is treated as a
variable length file (new-line delimited) with a maximum record length of 256.

[PUNCH] (TSO and CMS only) The PUNCH option indicates punched card
output. Files created with this option are 80-character unblocked records.

[PRINTER] PRINTER indicates that the file receives printed output routed to
either a file, online printer, terminal, or to a subsystem (JES/POWER) data set.
Although normal input/output statements (GET, PUT, READ, WRITE) cannot
reference PRINTER files, the DISPLAY statement and the PRINTER parameter of
the REPORT statement can reference PRINTER files.

[PAGESIZE (line-page-size [display-page-size]) Specify PAGESIZE to
define the logical print length of a printed page. See the REPORT Statement for
complete rules for specifying PAGESIZE.

[LINESIZE line-length] Code the LINESIZE parameter to specify the
maximum number of data characters that can be printed on a line. Line-length
must be an unsigned integer from 1 to 32767.

Line-length must be at least one less than the length of the data portion of the
file’s logical record. If the FILE definition does not provide the file’s format and
logical record length, then no compile time verification of the line-length is done.

Line-length provides the default value for any REPORT specifying this file as its
PRINTER file.

The default value of LINESIZE is calculated as one less than the data portion of
the logical record if the file format and record length are known at compile time.
Otherwise, the default is taken from the LINESIZE site option.

There are additional control characters (forms control information) that also must
be stored in a logical record. If one of the record format parameters is specified,
it must be large enough to hold both the forms control information and the data
characters. The value of line-length must be less than or equal to the maximum
record length minus the size of the forms control information.

Statements D - F 4–41

FILE Statement

Record Format

You can optionally code the record format of non-VSAM files for MVS programs.
If you do not code a record format in MVS, CA-Easytrieve obtains it from the
operating system when the file is opened. For input files, CA-Easytrieve always
obtains the record format from MVS. The record format and length are required
for VSE and workstation FILE statements.
[F [record-length]]
[]
[V [record-length]]
[]
[U [block-length]]
[[FULLTRK]]
[]
[FB [(record-length [block-length])]]
[[[FULLTRK]]]
[]
[VB [(record-length [block-length])]]
[[[FULLTRK]]]
[]
[VBS [(record-length [block-length])]]
[[[FULLTRK]]]

CA-Easytrieve supports fixed (F), variable (V), and undefined (U) formats. Fixed
and variable length records can be blocked (FB,VB).

[VBS] (MVS only) MVS systems can process Variable Block Spanned (VBS)
records using BFTEK=A processing.

[record-length] Record-length specifies the maximum record length.

[block-length] Block-length specifies the file’s maximum block length.

For mainframe variable format files, allow four bytes of the record length for the
Record Description Word (RDW) and, if the file is blocked, four bytes of the
block size for the Block Description Word (BDW).

Note: To obtain an MVS/DFP system determined block size within
CA-Easytrieve on the mainframe, you can do one of the following:

■ Include the DSORG, LRECL and RECFM parameters in the original JCL or
TSO dynamic allocation. This forces SMS to establish the block size before
CA-Easytrieve gets control in OPEN processing. This is only applicable for
disk data sets.

 OR

■ Define a value of zero for the block length value. If you want CA-Easytrieve
to pick up the logical record length from your JCL, code a zero for record-
length. You must also code a BLKSIZE=0 in your JCL or code no BLKSIZE
parameter at all.

Statements D - F 4–42

FILE Statement

 Examples:
FILE file-name FB(0 0)

 This tells CA-Easytrieve to pick up the LRECL from the JCL and to utilize the
block size set by SMS.
FILE file-name FB(150 0)

 This tells CA-Easytrieve to pick up the LRECL from this definition and to
utilize the block size set by SMS.
FILE file-name FB(150 3000)

 This tells CA-Easytrieve to pick up this definition and ignore both the JCL
and the SMS-determined block size.

 Note: If you code a zero block size within CA-Easytrieve and/or in your
JCL, and your data set is not SMS managed, your program will abend with a
013 open problem.

[FULLTRK] A block length designation of FULLTRK establishes an output
block size that equals the maximum track capacity of the direct access device, or
the next lower multiple of record size for FB files.

[WORKAREA area-length] The WORKAREA option establishes the number of
bytes to be allocated as a workarea for the file. WORKAREA cannot be coded if
the CARD parameter is specified. Area-length specifies the number of bytes to be
allocated and must be large enough to contain the longest record processed.

WORKAREA allows you to reference the fields in a file prior to the normal
allocation of a file’s data buffer. See the “File Processing” chapter in the
CA-Easytrieve Programmer Guide for more information.

Note: WORKAREAs are not initialized by CA-Easytrieve.

[TABLE] The TABLE option declares the file as the source for a SEARCH
statement to access a table.

Note: VARYING length fields cannot be used for TABLE files.
[INSTREAM]
[max-table-entries]

The INSTREAM option indicates that the table file immediately follows the file
description. The size of an INSTREAM table is limited only by the amount of
available memory. Max-table-entries specifies the maximum number of entries in
an external table. If INSTREAM or max-table-entries is not specified, the file is an
external table whose maximum number of entries is limited by the site option
TBLMAX.

[BUFNO buffers] BUFNO establishes the number of buffers allocated for the
file. Buffers can be 1 through 255 for MVS programs. The default value is
obtained from the Site Options Table. BUFNO is ignored on the workstation.

Statements D - F 4–43

FILE Statement

[DEFER] Coding the DEFER option instructs CA-Easytrieve to delay the
opening of the file until the first input or output operation for the file occurs. The
default opens all referenced files at the beginning of each CA-Easytrieve activity.

[ASA] (MVS and UNIX only) For MVS, the optional ASA parameter sets the
DCB A option for RECFM. ASA is ignored on the workstation.

For UNIX, the optional ASA parameter causes output records to be written using
the set of mainframe ASA characters in column one. Without ASA, all records
are formatted using ASCII printer control characters.

[EXTENDED xrpt-printer] (Mainframe and UNIX only) The EXTENDED
parameter indicates that the file is to be associated with an extended reporting
printer. This means that input/output statements (GET, PUT, READ, WRITE)
cannot reference these printer files. However, the DISPLAY statement and
REPORT statements can reference these printer files. Unless you code them,
record length and blocksize default to those defined for the printer in the printer
set definition module.

Xrpt-printer identifies the extended reporting printer whose characteristics are to
be associated with this file. You must define the xrpt-printer in the printer set
definition module.

See the CA-PSI Subsystems Reporting Environment Guide or the CA-Easytrieve for
UNIX User Guide for more information.

[CODE {EBCDIC|ASCII|dbcs-code-name}] (Workstation only) Use CODE to
define the processing code system (EBCDIC or ASCII) CA-Easytrieve uses for all
fields in this file.

If not specified, the default is taken from the program’s CODE parameter on the
PARM statement. If not specified on the PARM statement, the default is taken
from the CA-Easytrieve/Workstation Site Options.

(Mainframe only) Use CODE dbcs-code-name to define the DBCS code system to
be used for all K and M fields for this file. If not specified, the default is taken
from the CODE parameter on the PARM statement for this program. If not
specified on the PARM statement, then the default is taken from the processing
code system as defined in the CA-PSI Subsystems DBCS Options table.

[KEY key-field-name] Use the KEY parameter to specify the key field for
your UNIX ISAM file. CA-Easytrieve uses this parameter only when the file is
created. After the file is created, this parameter is ignored and key information is
obtained from the access method. If KEY is not specified during creation, the
first field defined in the file is used as the key field.

Statements D - F 4–44

FILE Statement

[SYSTEM (system-id) (Workstation only) Code the SYSTEM parameter to
specify information that is specific to a particular operating system or
environment. The SYSTEM parameter is ignored on the mainframe and in
UNIX.

Use system-id to specify the operating system or environment. System-id must be
PC for the workstation.

[PATH path-specification] Use the PATH parameter to specify the physical
filename to be associated with this file. Path-specification must be a valid physical
file name for the operating environment. You can optionally enclose path-
specification in single quotes if spaces or special characters exist in the physical file
name.

Path-specification overrides the SYSNAME file-identifier when the program is
executed on the workstation. This enables you to code the external data set name
for execution on the mainframe and the path-specification for the workstation.
[ACCESS {BTRIEVE }]
[{DBASE }]
[{DELIMITED }]
[{HOST }]
[{SUPERCALC }]
[{LOTUS }]
[{RRDS }]

Code the ACCESS parameter to specify the access mode of file type to be
associated with this file.

{BTRIEVE} Specify BTRIEVE if the file is a BTRIEVE file. BTRIEVE is valid
only if the file type is INDEXED.

Note: The BTRIEVE Manager must be loaded before you can run a program that
accesses a BTRIEVE file.

{DBASE} Specify DBASE if the file is a dBASE III, IV, or 5.0 (.DBF) file. DBASE
is valid only if the file type is SEQUENTIAL or unspecified and the record
format is fixed.

Note: CA-Easytrieve reads only dBase data files. dBase indexed files cannot be
accessed.

{DELIMITED} Specify DELIMITED if the file is a comma-delimited file.
DELIMITED is valid only if the file type is SEQUENTIAL or unspecified and the
record format is variable.

{HOST} Specify HOST if the file is to be accessed using the IBM High Level
Applications Program Interface (HLLAPI). HOST is valid only if the file type is
SEQUENTIAL or unspecified.

To use this access mode, you must:

Statements D - F 4–45

FILE Statement

■ Specify the HOST transfer operating system (CMS or TSO) and the correct
emulator type in the options table. Ensure that you have compiled your
program with the desired options in effect.

■ Have the appropriate hardware connection the your mainframe.

■ Have the mainframe emulator resident or ready for use.

■ Have SEND.EXE in your current directory.

■ Have the High Level Applications Program Interface (HLLAPI) resident or
available for use.

■ Have IND$FILE on your mainframe ready to accept workstation file transfer
commands.

■ OS/2 only—define the .DEF file for the program accessing the HOST.

{SUPERCALC} Specify SUPERCALC if the file is a CA-SuperCalc 5 (.CAL) file.
SUPERCALC is valid only if the file type is SEQUENTIAL or unspecified and the
record format is fixed.

{LOTUS} Specify LOTUS if the file is a Lotus 123 (.WKS or .WK1) file. The
default access mode for a Lotus file is .WKS format. To override the default,
include the extension of the file to be accessed in the PATH parameter if the file
is a .WK1 file.

LOTUS is valid only if the file type is SEQUENTIAL or unspecified and the
record format is fixed.

{RRDS} Specify RRDS if you coded VS as the file type and you want the
workstation file to function as a VSAM RRDS file. A VSAM RRDS file is then
emulated instead of a KSDS file. Use this parameter to maintain portability
between the workstation and the mainframe. See Usage Notes for more
information.

RRDS is valid only if the file type is RELATIVE or VS.

[KEY (key-start-pos key-length)] Use the KEY parameter to specify the
start position and length of the key for your indexed (workstation ISAM) file.
Use this parameter only when the file is initially created and then ignored. If you
do not code KEY, the first field defined in the file is used as the key field.

KEY can only be coded once for each indexed (workstation ISAM) file, and is
ignored if the file is not an indexed file.

Note: Workstation ISAM file keys are always stored in character format and the
key length cannot exceed 100 bytes in length. Only alphanumeric and zoned
numeric data should be used for the key on the workstation.

Statements D - F 4–46

FILE Statement

[INDEX index-file-specification] Use the INDEX parameter to specify
the index file name to be used by the ISAM handler. Index-file-specification must
be a valid file name for the target operating system, and, optionally, can be
enclosed in single quotes if spaces or special characters exist in the physical file
name. If you do not code INDEX, the index filename is filename.IDX.

INDEX can only be coded once for each indexed (workstation ISAM) file, and is
ignored if the file is not an indexed file.

[ACCESS-PATH access-path-number] Use the ACCESS-PATH parameter to
specify the access path used for record retrieval in a BTRIEVE file. The access
path you specify defines the access path for the JOB INPUT, GET, and READ
statements.

Access-path-number must be an integer from 0 to 23 and must correspond to an
access path that currently exists in the BTRIEVE file. If an access path is not
coded, an access path of 0 is used.

ACCESS-PATH can only be coded once for each BTRIEVE file and is ignored if
the file is not a BTRIEVE file. See your BTRIEVE Reference Manual for more
information.
[CREATE-PATH (access-path-number +
 KEY (key-start-pos key-length key type) +
 [DUPLICATE] [MODIFIABLE]) ...]

Use the CREATE-PATH parameter to specify the access paths to be created for
record operations in a BTRIEVE file. The access paths you specify are created for
use on the JOB INPUT, GET, and READ statements.

You can code multiple CREATE-PATH parameters to create multiple access
paths for a single BTRIEVE file. CREATE-PATH is ignored if the file is not a
BTRIEVE file. See your BTRIEVE Reference Manual for more information.

Access-path-number must be an integer from 0 to 23. Each access-path-number you
specify must be unique.

Use the KEY parameter to specify the start position, length, and type of key to be
created in a BTRIEVE file. Key-start-pos and key-length must be integers. Key-
length cannot exceed 255 bytes. Key-type can be any valid CA-Easytrieve data
type.

Statements D - F 4–47

FILE Statement

CA-Easytrieve data types are mapped to BTRIEVE key types as follows:

CA-Easytrieve data type BTRIEVE key type

 A STRING

 N STRING

 P DECIMAL

 B STRING

 U STRING

 I INTEGER

 F STRING

 S FLOAT

 D FLOAT

Use DUPLICATE if you want to permit duplicate keys for this access path.

Use MODIFIABLE if the contents of the key can be changed during a WRITE
UPDATE operation.

[OWNER 'owner-id'] Use the OWNER parameter to restrict access to your
BTRIEVE file. ‘Owner-id’ must be an alphanumeric literal up to eight characters
in length. ‘Owner-id’ is required to access your BTRIEVE file after it has been
created.

[CREATE-MODE create-mode-literal] Use CREATE-MODE to set access
rights and encryption to be performed on a BTRIEVE file. This parameter is
ignored if the OWNER parameter is not coded.

Create-mode-literal must be an integer from zero to three and is defined as follows:

create-mode-literal Description

 0 Requires an owner ID for any file access (no data
encryption)

 1 Permits read-only access without an owner ID
(no data encryption)

 2 Requires an owner ID for any file access (with
data encryption)

 3 Permits read-only access without an owner ID
(with data encryption)

Statements D - F 4–48

FILE Statement

Note: If the CREATE-MODE parameter is not coded and the OWNER
parameter is coded, the file is created with CREATE-MODE 0.

[PAGESIZE page-size-literal] Use the PAGESIZE parameter to set the data
page size used by BTRIEVE to create the file.

Page-size-literal must be an integer from 512 to 4096 and must be a multiple of
512. CA-Easytrieve defaults to a page size of 2560.

The value you select for page-size-literal can have performance and disk space
implications. See your BTRIEVE Reference Manual for more information.

Data Set Types
SYSNAME {'file-identifier' }
 { }
 {file-identifier-field-name}

Code SYSNAME to associate a CA-Easytrieve file with an external data set. ‘File-
identifier’ must be an alphanumeric string. File-identifier-field-name must be
defined as an alphanumeric field of the required length. CA-Easytrieve accesses
the value of file-identifier-field-name when the file is opened. The required length
and the set of valid characters depend on the file type, the implementation, and
the operating system.

Note: If SYSNAME is not specified, then the file-name specified after the FILE
keyword is used. The length of file-name must conform to operating system
standards.

CICS:

■ For file types SEQUENTIAL, INDEXED, and RELATIVE, this is the FCT
name of the associated VSAM data set. The requirements for the format of
the file-identifier character string are the same as the requirements for the FCT
name. If fewer than eight characters are provided, the value is padded with
blanks on the right to obtain a string of eight characters. File-identifier-field-
name must be an eight-byte sequential alphanumeric field of any format.
Only uppercase alphabetic and numeric digits are allowed. The first
character must not be a digit.

■ For device type PRINTER, the SYSNAME parameter cannot be used. An
execution error occurs.

Statements D - F 4–49

FILE Statement

TSO:

■ For file types SEQUENTIAL, INDEXED and RELATIVE, and device type
PRINTER, this is the DDname of the associated data set. The requirements
for the format of the file-identifier character string are the same as the
requirements for the DDname. If fewer than eight characters are provided,
the value is padded with blanks on the right to obtain a string of eight
characters. File-identifier-field-name must be an eight-byte alphanumeric field
of any format. Only uppercase alphabetic and numeric digits are allowed.
The first character must not be a digit.

■ For data set type VIRTUAL, the SYSNAME parameter is ignored.

CMS:

■ For file types SEQUENTIAL, INDEXED and RELATIVE, and device type
PRINTER, this is the FILEDEF or DLBL name of the associated data set. The
requirements for the format of the file-identifier character string are the same
as the requirements for the FILEDEF or DLBL name. If fewer than eight
characters are provided, the value is padded with blanks on the right to
obtain a string of eight characters. File-identifier-field-name must be an eight-
byte alphanumeric field of any format. Only uppercase alphabetic and
numeric digits are allowed. The first character must not be a digit.

Workstation:

■ For file types SEQUENTIAL, INDEXED and RELATIVE, and device type
PRINTER, this is the 64-character fully-qualified file specification of the
physical file. See the FILE SYSTEM parameter and the
CA-Easytrieve/Workstation User Guide for more information.

■ For file type INDEXED, if the physical data file is defined with an extension,
then the indexed file associated with that data file must be explicitly defined
on the FILE statement.

■ On the workstation, SYSNAME is the 63-character file specification of the
physical file name. To maintain portability to the mainframe, use the
SYSTEM parameter to specify the physical file name.

UNIX:

■ For SEQUENTIAL, INDEXED, and RELATIVE file types and the PRINTER
device type, SYSNAME is either a file description string or an environment
variable specifying the file description string. If the value of SYSNAME
contains a path separator (/), it is treated as a file description string. If it
does not contain a path separator, CA-Easytrieve searches for an
environment variable with the same name. If found, the value of the variable
is used as the file description string. If the variable is not found, the
SYSNAME value is used as the path.

 See File Description String in the CA-Easytrieve for UNIX User Guide.

Statements D - F 4–50

FILE Statement

 The length of SYSNAME is limited to the lesser of 256 characters or the
maximum path length supported by your UNIX system.

[VIRTUAL] VIRTUAL identifies a file as a CA-Easytrieve Virtual File Manager
(VFM) file. CA-Easytrieve virtual files are temporary sequential work files that
are normally deleted after the file is read and closed.

[RETAIN] RETAIN inhibits the automatic deletion of a VFM file after it is read.
The file is deleted if it is opened for OUTPUT or CREATE in a subsequent JOB
activity or at program termination.
[MEMORY]
[DISK]

MEMORY and DISK indicate the type of CICS temporary storage that
CA-Easytrieve is to use for storing this file. MEMORY indicates a main storage
resident temporary storage queue in CICS. DISK indicates an auxiliary storage
resident temporary storage queue. DISK is the default.

[TERMINAL] Code the TERMINAL parameter to route the output for this
printer file to an online terminal. The TERMINAL parameter is mutually
exclusive with the SPOOL, VIRTUAL, and SYSNAME parameters.

A device type of PRINTER is implied.
[{'terminal-id-literal' }]
[ID { }]
[{terminal-id-field-name}]

(CICS only) Specify the name of the destination terminal in ‘terminal-id-literal’ or
terminal-id-field-name. This terminal can be either a display terminal or an online
printer. Any valid terminal ID is accepted.

When ID is not specified, output directed to this file is spooled until the file is
closed. The output can then be browsed at the originating terminal using the
Report Display Facility. You can also then print the file.

[NOFORMFEED] Code NOFORMFEED to indicate that the formfeed character
cannot be used to start a new page. If NOFORMFEED is not specified, then
CA-Easytrieve can use the formfeed character to start a new page.
NEWPAGE [BEFORE]
 [AFTER]

Code NEWPAGE to eject the page each time the file is opened and each time it is
closed. Specify NEWPAGE BEFORE to eject the page each time the file is
opened. Specify NEWPAGE AFTER to eject the page each time the file is closed.

If NEWPAGE is not specified, CA-Easytrieve does nothing to position the page.

Statements D - F 4–51

FILE Statement

[SPOOL] Code the SPOOL parameter to route the output for this printer file to
the operating system spooling subsystem. The SPOOL parameter is mutually
exclusive with the VIRTUAL, TERMINAL and SYSNAME parameters. In CMS,
the printer device must be spooled to RSCS. SPOOL is ignored on the
workstation and in UNIX.

A device type of PRINTER is implied.
CLASS {'spool-class-literal' }
 { }
 {spool-class-field-name}

Code CLASS to specify the spool class for the file. CLASS can be specified as a
literal or as a field name. Any valid class is accepted.

The default is CLASS ‘A’.
NODE {'destination-literal' }
 { }
 {destination-field-name}

Code NODE to specify the destination for the file. This destination is usually a
local or remote printer device name or a network node name, but can be
anything meaningful to the operating system spooling subsystem.

NODE can be specified as a literal or as a field name. Any valid node is
accepted.

Note: If NODE is not specified, the destination for the file is not passed to the
operating system spooling subsystem.
 {'user-id-literal' }
USERID { }
 {user-id-field-name}

Code USERID to specify the user of the printed output. The NODE
subparameter must also be specified and must contain a network node name.

USERID can be specified as a literal or as a field name. Any valid userid is
accepted.

Note: If the USERID subparameter is not specified, the userid is not passed to
the operating system spooling subsystem.

Usage Notes

For compatibility with CA-Easytrieve Plus (batch) programs using VSAM files,
both CA-Easytrieve/Online and CA-Easytrieve/Workstation support FILE
statements containing VS and its related keywords (shown below).
FILE file-name VS ([ES] [F] [PASSWORD 'literal'] +
 CREATE [RESET|UPDATE] [NOVERIFY]

Statements D - F 4–52

FILE Statement

See the “File Processing” chapter and the “SQL Database Processing” chapter in
the CA-Easytrieve Programmer Guide for more information about using the FILE
statement.

Examples

The following examples illustrate FILE statements for various files.

Define a Sequential (SAM) File in MVS:
FILE SEQFILE

Load an Entry-sequenced, Fixed-length VSAM File:
FILE ENTSEQ SEQUENTIAL F CREATE RESET

Define a Virtual File with RETAIN:
FILE VRTFILE V(200) +
 VIRTUAL RETAIN

Define a Printer File to be Viewed at the Terminal:
FILE PRTFILE PRINTER (PAGESIZE 20 LINESIZE 80) +
 TERMINAL

Statements D - F 4–53

Statements G - M 5–1

Chapter

5 Statements G - M

GET Statement

 [HOLD]

Parameters

Note: The access method of the operating system must support retrieval of
previous records or an execution error occurs.

Except in CICS, CA-Easytrieve automatically issues a hold request for records
when UPDATE is specified on the FILE statement. You use NOHOLD to override
this process. In CICS, NOHOLD is the default.

GET places the next or previous sequential record of the named file into the file’s
record buffer.

Syntax
GET file-name [PRIOR] [] [STATUS]
 [OHOLD]

file-name File-name identifies the input file defined in the library section. File-
name can be any file type except SQL.

[PRIOR] Specify PRIOR to place the previous sequential record of the named file
into the file’s record buffer. If you specify PRIOR and the position in the file is not
established, the last record in the file is placed in the file’s record buffer.

[HOLD]
[NOHOLD]

Specify HOLD to hold a record for update. HOLD is invalid if UPDATE is not
specified on the FILE statement. HOLD does not mean you are required to
perform the update. It holds the position in the file and can also lock the record
(workstation LANs). Records are automatically released when the update
operation completes or a commit point is taken. You can also manually release the
hold on any record with the RELEASE statement.

GET Statement

Statements G - M 5–2

NOHOLD specifies that a record is not held for update.

Note: You cannot browse (GET) a file in CICS if you specify HOLD. An execution
error occurs. When you want to update a record, use the READ statement.

Note: FILE-STATUS is not defined if you do not specify a file type parameter on
the FILE statement.

You must test for end-of-file (EOF) or file presence (IF file-name) when using the
GET statement to ensure record availability. If you specified GET PRIOR, an EOF
means you have reached the beginning of the file.

When you reverse the direction of a GET statement by using GET PRIOR, the
record returned is the record immediately preceding the record previously placed
in the file’s record buffer. When you reverse the direction of a GET PRIOR
statement by using only GET, the record returned is the record immediately
following the record previously placed in the field’s record buffer.

You cannot issue a GET PRIOR statement following a POINT statement, or a GET
statement following a POINT PRIOR statement. See the POINT Statement for
more information.

You can use GET to access a secondary file while automatically accessing a
primary file.

Examples

The following code illustrates the use of the GET statement.
FILE PERSNL INDEXED

[STATUS] Specify STATUS whenever the possibility exists for an unsatisfactory
completion of the input/output request.

STATUS checks input/output processing to see if it was performed properly.
STATUS causes the file’s FILE-STATUS field to be set with the appropriate return
code. See Appendix A, “System-Defined Fields,” to determine the meaning of the
contents of FILE-STATUS. Normally, a zero or non-zero test is sufficient.

If you do not code STATUS and the operating system returns a non-zero status,
CA-Easytrieve issues an appropriate diagnostic message.

Usage Notes

You cannot use GET for a file designated as automatic input. To inhibit automatic
input, specify INPUT NULL on the JOB statement:
JOB INPUT NULL

GOTO Statement

Statements G - M 5–3

%PERSNL
PROGRAM NAME MYPROG
 GET PERSNL STATUS
 IF PERSNL:FILE-STATUS NE 0
 DISPLAY PERSNL:FILE-STATUS
 ELSE
 DISPLAY HEX PERSNL
 END-IF

The following code illustrates testing for EOF when using the GET statement.
FILE MASTER
...
GET MASTER
 IF EOF MASTER
 STOP
 END-IF
...

GOTO Statement
The GOTO statement allows you to modify the natural top to bottom logic flow of
statement execution.

Syntax
{GOTO } {label }
{ } {JOB }
{GO TO} {SCREEN}

Parameters

{label} Specify label to immediately transfer execution control to the first
statement following the associated label. Processing then continues in a top-to-
bottom sequence. The label must be contained in the same activity or procedure.

A label can:

■ Be up to 128 alphanumeric characters in length

■ Contain any character other than a delimiter

■ Begin with A-Z, 0-9, or a national character (#, @, $)

■ Not consist of all numeric characters.

A statement label is a complete CA-Easytrieve statement that you can code before
the following statements:

Assignment CALL
CASE CLOSE
COMMIT CURSOR

GOTO Statement

Statements G - M 5–4

DELETE DISPLAY
DLI DO
END-DO END-IF
END-PROC EXECUTE
EXIT FETCH
GET GOTO
IDMS IF
INSERT MESSAGE
MOVE MOVE LIKE
PERFORM POINT
PRINT PUT
READ REFRESH
RELEASE RESHOW
ROLLBACK SEARCH
SELECT (except non-file SQL) SET
SQL Statement label
STOP TRANSFER
UPDATE WRITE

{JOB} GOTO JOB causes an immediate branch to the top of the current JOB
activity. It does not include execution of the START procedure. When used in a
START procedure, GOTO JOB terminates the START procedure. When used in a
FINISH procedure, GOTO JOB terminates the FINISH procedure.

{SCREEN} GOTO SCREEN branches immediately to the top of the current
SCREEN activity, including execution of the BEFORE-SCREEN procedure. It does
not include execution of the INITIATION procedure. When used in an
INITIATION procedure, GOTO SCREEN terminates the INITIATION procedure.

GOTO SCREEN cannot be coded in a BEFORE-SCREEN procedure. If GOTO
SCREEN is coded in a TERMINATION procedure, GOTO SCREEN terminates the
screen activity.

GRAPH Statement

 Statements G - M 5–5

Example

The following example illustrates the use of GOTO in a program. The arrows
indicate that control is passed to the first executable statement following the label
or job statement.

GRAPH Statement
The GRAPH statement defines the style and characteristics of a graph.

Note: Graph processing is available only when using
CA-Easytrieve/Workstation.

Syntax
 [{'LOW' }]
GRAPH [graph-name] [SUMMARY] [MODE {'HIGH' }] +
 [{mode-field-name}]

 [{'PIE' }]
 [{'VBAR' }]
 [{'SVBAR' }]
 [{'HBAR' }]
 [STYLE {'SHBAR' }] [NOHEADING]
 [{'LINE' }]
 [{'XY' }]
 [{'SCATTER' }]
 [{style-field-name}]

GRAPH Statement

Statements G - M 5–6

Parameters

[graph-name] Specify the name of the graph. Graph-name is optional when there
is only one graph coded in a JOB activity. If you code multiple graphs, only the
first graph can be unnamed. Each graph-name must be unique in the JOB activity.

At least one graph-name must be coded for each DRAW graph-name statement. For
unnamed graphs, you can code the DRAW statement without the graph-name
parameter.

[SUMMARY] Specify SUMMARY to automatically sum all values (y-value) for
each category (x-value) before the graph is displayed.
[{'LOW' }]
[MODE{'HIGH' }]
[{mode-field-name}]

MODE determines the display resolution of the graph.

‘LOW’ specifies a resolution of 640 x 200 in black and white. ‘LOW’ resolution
mode is compatible with the CGA, EGA, VGA and MCGA video adapter boards.
‘LOW’ is recommended if you are going to print the graph.

‘HIGH’ specifies a resolution of 640 x 350 in 16 colors and is compatible with the
EGA and VGA video adapter boards.

‘Mode-field-name’ is a field you can define that contains ‘LOW’ or ‘HIGH.’

If not specified, MODE defaults to the highest resolution supported by the video
adapter board.
[{'PIE' }]
[{'VBAR' }]
[{'SVBAR' }]
[{'HBAR' }]
[STYLE {'SHBAR' }]
[{'LINE' }]
[{'XY' }]
[{'SCATTER' }]
[{style-field-name}]

STYLE specifies the style of graph to be displayed.

Specify ‘PIE’ to display a pie chart. ‘PIE’ is the default if the graph style is not
coded. The y-value for this graph determines the size of the pie slice. The x-value
for this graph determines the category for the y-value. If you code SUMMARY, all
y-values for each identical x-value are summed producing a slice that is the size of
the sum of all of the y-values for this category.

Specify ‘VBAR’ or ‘SVBAR’ to display a vertical bar graph. The y-value determines
the height of the vertical bar. The x-value determines the category for the y-value.
If you code SUMMARY, all y-values for each identical x-value are summed,
producing a vertical bar that is the sum of all of the y-values for this category.

GRAPH Statement

Statements G - M 5–7

‘VBAR’ produces side-by-side vertical bars if multiple y-values are coded on the
VALUE statement. ‘SVBAR’ produces stacked vertical bars if multiple y-values are
coded on the VALUE statement.

Specify ‘HBAR’ or ‘SHBAR’ to display a horizontal bar graph. The y-value
determines the length of the horizontal bar. The x-value determines the category
for the y-value. If you code SUMMARY, all y-values for each identical x-value are
summed producing a horizontal bar that is the sum of all of the y-values for this
category.

‘HBAR’ produces side-by-side horizontal bars if multiple y-values are coded on the
VALUE statement. ‘SHBAR’ produces stacked horizontal bars if multiple y-values
are coded on the VALUE statement.

Specify ‘LINE’ to display a line graph. The y-value determines the height of the
data point on the graph. The x-value determines the category for the y-value. If
you code SUMMARY, all y-values for each identical x-value are summed
producing a data point that is the sum of all of the y-values for this category.

Specify ‘XY’ to display an XY graph in which values are connected by lines. The
y-value determines position of the data point on the y-axis. The x-value
determines the position of the data point on the x-axis. If you code SUMMARY, all
y-values for each identical x-value are summed producing a data point that is the
sum of all of the y-values for this x-value.

Specify ‘SCATTER’ to display a scatter graph. Values are not connected by lines
and a y-axis grid is displayed. The y-value determines position of the data point
on the y-axis. The x-value determines the position of the data point on the x-axis.
If you code SUMMARY, all y-values for each identical x-value are summed
producing a data point that is the sum of all of the y-values for this x-value..

‘Style-field-name’ is a field you can define that contains the graph type (one of the
style literals described above).

See the “Graph Processing” chapter in the CA-Easytrieve Programmer Guide, for an
example of each type of graph.

[NOHEADING] Specify NOHEADING to inhibit the display of X and Y headings.
The default is for X and Y field headings to be displayed on the graph. Headings
are ignored for PIE graphs.

HEADING Statement

Statements G - M 5–8

Example

The following program code produces a vertical bar graph in low resolution mode
that displays the sum of the gross pay for each region without axis headings.

FILE PERSNL F(150)
%PERSNL
JOB INPUT PERSNL NAME DRAW-GRAPH
 DRAW GRAPH1
GRAPH GRAPH1 STYLE 'VBAR' MODE 'LOW' SUMMARY NOHEADING
 TITLE 'GROSS PAY BY REGION'
 VALUE REGION PAY-GROSS

HEADING Statement
The HEADING statement optionally defines an alternate heading for a field.
When defining a field, you specify the default heading. Using the HEADING
statement in a report or on a graph allows you to override the default field
headings for that report or graph.

Syntax
HEADING field-name ([#font-number] 'heading-literal'...)

Parameters

field-name For reports, field-name specifies a field in your program. The
heading you define is used for fields identified on LINE 01 of your report
declaration.

For graphs, field-name specifies a field defined on the VALUE statement of your
graph declaration.

[#font-number] (Mainframe and UNIX only) #Font-number defines the number of
a font that CA-Easytrieve uses to format ‘heading-literal’ in the heading area of a
report. You can only specify #font-number if you direct the report to an extended
reporting printer. If you direct the report to a normal printer, a syntax error occurs
when you code #font-number. You can specify a unique font index for each
‘heading-literal’ by coding the # sign and a value for #font-number before ‘heading-
literal’. Any ‘heading-literal’ that does not have a font index assigned uses the
default font for the assigned extended reporting printer.

('heading-literal'...) ‘Heading-literal’ can be up to 128 characters in length.

HEADING Statement

Statements G - M 5–9

For reports, a single line of alphanumeric text replaces the default header and
prints as a header over a column or field. Multiple literals, each enclosed within
single quotes (‘‘) and separated by one or more blanks within the parentheses, are
stacked vertically over the column or field when printed.

For graphs, specify the text for the heading to be displayed for the field on the
VALUE statement. Multiple literals, each enclosed within single quotes (‘‘) and
separated by one or more blanks within the parentheses, are displayed on a single
line with a space between each literal.

Usage Notes

The HEADING statement overrides default field headings defined in the library
section. The HEADING statement also provides alternate heading capabilities for
system-defined fields such as TALLY and LEVEL.

The HEADING statement is ignored for PIE graphs.

Examples

The following example illustrates various report heading options:
Statements:

FILE PERSNL FB(150 1800)
 SSN 4 5 P MASK '999-99-9999' +
 HEADING('SOCIAL' 'SECURITY' 'NUMBER')
 EMPNAME 17 20 A
 NAME-LAST EMPNAME 8 A
 NAME-FIRST EMPNAME +8 12 A
 PAY-NET 90 4 P 2
JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65
 HEADING PAY-NET ('NET', 'PAY')
 LINE EMPNAME SSN '* NO OVERTIME *' PAY-NET

Results:

 SOCIAL
 SECURITY NET
 EMPNAME NUMBER PAY

 WIMN GLORIA 025-30-5228 * NO OVERTIME * 251.65
 BERG NANCY 121-16-6413 * NO OVERTIME * 547.88

The next example produces a vertical bar graph that displays the sum of the gross
pay for each region with user-specified headings:

 FILE PERSNL F(150)
 %PERSNL
 JOB INPUT PERSNL NAME DRAW-GRAPH
 DRAW GRAPH1

IDD FILE Statement

Statements G - M 5–10

 GRAPH VBAR GRAPH1 SUMMARY MODE('HIGH') TYPE('VBAR')
 SEQUENCE REGION
 HEADING REGION ('Region')
 HEADING PAY-GROSS ('Gross' 'Pay')
 TITLE COL 1 SYSDATE 'GROSS PAY BY REGION' COL 73 SYSTIME
 VALUE REGION PAY-GROSS

IDD FILE Statement
The IDD FILE statement identifies a non-CA-IDMS file in the IDD and builds file
and field definitions.

Syntax
 [{HIGHEST}]
IDD FILE file-name [VERSION {LOWEST }] +
 [{nnnn }]

 [SELECT (record-name...)] +

 [FILENAME new-file-name]

Parameters

file-name File-name is the one to 32-character name that specifies the IDD file.
File-name becomes the name of the FILE created by the IDD FILE statement. To
override this name, see the FILENAME parameter.
[{HIGHEST}]
[VERSION {LOWEST }]
[{nnnn }]

Specify HIGHEST, LOWEST, or nnnn (a positive integer) as the version of the file.

[SELECT (record-name ...)] Record-name is a one to 32-character name that
identifies a record of the file-name defined. Repeat the record-name to identify as
many records as needed. Omit the SELECT clause if you want to define all the
field definitions for the file-name.

[FILENAME new-file-name] New-file-name is a one to 128-character name
specifying the name of the file created by the IDD FILE statement.

Usage Notes

The file-name can be qualified by the file-name’s version. All records defined within
the file are used to generate the file’s field definitions unless the optional SELECT
parameter identifies specific records to be used.

IDD NAME Statement

Statements G - M 5–11

IDD NAME Statement
The IDD NAME statement establishes or re-establishes the dictionary entity
retrieval environment. The IDD NAME statement specifies the program name, the
database name of the data dictionary, the Central Version Node, and the
Secondary Load Area’s dictionary name and dictionary node.

Syntax
 IDD NAME [PROGRAM-NAME 'program-literal'] +

 [DBNAME 'db-name-table-literal'] +

 [NODE 'node-literal'] +

 [DICTNAME 'dictionary-literal'] +

 [DICTNODE 'dictionary-node-literal']

Parameters

[PROGRAM-NAME 'program-literal'] ‘Program-literal’ identifies the Program
Name used to access an authorized subschema. ‘Program-literal’ must be
alphanumeric and is padded to the right (if necessary) to create an eight-byte
value.

[DBNAME 'db-name-table-literal'] ‘Db-name-table-literal’ identifies the DB
Name Table of the data dictionary that contains definitions of schema, subschema,
records, and fields. ‘Db-name-table-literal’ must be alphanumeric and is padded to
the right (if necessary) to create an eight-byte value.

[NODE 'node-literal'] ‘Node-literal’ specifies the CA-IDMS Central Version
NODE that will process CA-Easytrieve IDD requests. ‘Node-literal’ must be
alphanumeric and is padded to the right (if necessary) to create an eight-byte
value.

[DICTNAME 'dictionary-literal'] ‘Dictionary-literal’ identifies the Secondary
Load Area dictionary name. ‘Dictionary-literal’ must be alphanumeric and is
padded to the right (if necessary) to create an eight-byte value.

[DICTNODE 'dictionary-node-literal'] ‘Dictionary-node-literal’ identifies the
Secondary Load Area dictionary node. ‘Dictionary-node-literal’ must be
alphanumeric and is padded to the right (if necessary) to create an eight-byte
value.

IDD RECORD Statement

Statements G - M 5–12

Usage Notes

IDD entities are retrieved from the designated dictionary/node until the
environment is altered by issuing another IDD NAME statement. You can use the
IDD NAME statement as many times as required and before any other IDD
statement. However, the PROGRAM-NAME parameter can be used only once.

IDD RECORD Statement
The IDD RECORD statement identifies and defines CA-IDMS and non-CA-IDMS
records. The record-name can be qualified by the record’s version. The elements
defined within the record are used to generate field definitions at the location
specified.

Syntax
 [{HIGHEST}]
IDD RECORD record-name [VERSION {LOWEST }] +
 [{nnnn }]

 [{start-position}]
 [{* [+offset] }]
 [LOCATION { }]
 [{W }]
 [{S }]

Parameters

record-name The record-name is the one to 32-character name that specifies the
IDD logical record or the IDD standard record.
[{HIGHEST}]
[VERSION {LOWEST }]
[{nnnn }]

Specify HIGHEST, LOWEST, or nnnn (a positive integer) as the version of the file.

[LOCATION] Use this optional parameter to specify the location at which the field
definitions will be generated. If you do not specify LOCATION, W (a W-type
working storage field) is the default.

{start-position} Start-position specifies the starting position relative to
position one of the record.

{* [+offset]} The * (asterisk) indicates that the field begins in the next
available starting position (highest position assigned so far, plus 1). The optional
+offset is an offset you want added to the * value. There must be at least one blank
between the * and the optional +offset.

IDD SUBSCHEMA Statement

Statements G - M 5–13

{W or S} Coding W or S establishes a working storage field. W fields are
spooled to report (work) files; S fields are not. W is the default location if the
LOCATION parameter is not coded.

IDD SUBSCHEMA Statement
The IDD SUBSCHEMA statement identifies the subschema and builds the file,
record, logical record, element record, and field definitions for a subschema. The
subschema can be qualified by the schema and schema’s version.

Syntax
IDD SUBSCHEMA subschema-name +

 [[{HIGHEST}]]
 [SCHEMA schema-name [VERSION {LOWEST }]] +
 [[{nnnn }]]

 [RESET] +

 [SELECT (record-name...)] +

 [FILENAME file-name]

Parameters

subschema-name Subschema-name is a one to eight-character name specifying the
SUBSCHEMA that contains the record and field definitions to be retrieved.
Subschema-name becomes the name of the FILE created by the IDD SUBSCHEMA
statement. To override this name, see the FILENAME parameter.
[[{HIGHEST}]]
[SCHEMA schema-name [VERSION {LOWEST }]]
[[{nnnn }]]

Schema-name is the one to eight-character name that specifies the schema that owns
the subschema (when a subschema can be owned by multiple schemas). The
optional VERSION parameter specifies the version of the schema.

[RESET] The optional RESET parameter requests that all element records under
control of RETRIEVE be reset to binary zero immediately prior to retrieving each
root record.

[SELECT (record-name ...)] The optional SELECT clause identifies specific
subschema records. Record-name is a one to 32-character name that identifies a
record for which the definition is accessed. Repeat record-name to specifically
identify all the records you need. You can omit the SELECT parameter to access all
the database records (but not logical records) defined for the subschema.

IDD VERSION Statement

Statements G - M 5–14

[FILENAME file-name] File-name is a one to 128-character name specifying the
name of the file created by the IDD SUBSCHEMA statement.

Usage Notes

You can use the optional SELECT parameter to request that only specific records
be defined. If the SELECT parameter is omitted, the definitions of logical records
are not generated. Only database records can be defined in this way. The SELECT
parameter must be used to generate logical record definitions.

IDD VERSION Statement
Use the IDD VERSION statement to set a global override of the Site Options Table
VERFILE, VERREC, and VERSCHM defaults.

Syntax

 [{nnnn }]

 [FILE {LOWEST }] +

 [{HIGHEST}]

Parameters

[{nnnn }]

[FILE {LOWEST }]
[{nnnn }]

 [{HIGHEST}]
 IDD VERSION [SCHEMA {LOWEST }] +

 [{HIGHEST}]

 [{nnnn }]

 [RECORD {LOWEST }]
 [{nnnn }]

[{HIGHEST}]
[SCHEMA {LOWEST }]

Specify HIGHEST, LOWEST, or a positive integer (nnnn) to identify the default
version of the SCHEMA. Any request to retrieve a subschema that specifies a
schema but not a version uses this value.
[{HIGHEST}]

Specify HIGHEST, LOWEST, or a positive integer (nnnn) to identify the default
version of any FILE to be retrieved when the version is not specified on the IDD
FILE statement.
[{HIGHEST}]
[RECORD {LOWEST }]
[{nnnn }]

IDMS ACCEPT DBKEY Statement

Statements G - M 5–15

Specify HIGHEST, LOWEST, or a positive integer (nnnn) to identify the default
version of any RECORD to be retrieved when the version is not specified on the
IDD RECORD statement.

Usage Notes

Other IDD statements appearing after the IDD VERSION statement, that have
VERSION parameters as part of their syntax but no VERSION parameter coded,
default to the version specified in the IDD VERSION statement. IDD statements
that have a VERSION parameter coded override the VERSION statement. The
defaults specified by the IDD VERSION statement remain in effect until another
IDD VERSION statement is issued.

You can code as many IDD VERSION statements as you require. If the IDD
VERSION statement is not used, the default versions are retrieved from the Site
Options Table.

IDMS ACCEPT DBKEY Statement
The IDMS ACCEPT DBKEY statement transfers database keys to program storage.
The IDMS ACCEPT DBKEY statement has two formats. Format 1 returns the
current database key for the record, set, or area specified. Format 2 returns the
database key that is the next, prior, or owner of the specified set.

Syntax

Format 1
 [{RECORD} {currency-field-name}]
 IDMS ACCEPT DBKEY receive-field-name [{AREA } { }]
 [{SET } {'currency-literal' }]

Format 2
 {NEXT } {set-field-name}
 IDMS ACCEPT DBKEY receive-field-name {PRIOR} { }
 {OWNER} {'set-literal' }

Parameters

Format 1

receive-field-name Receive-field-name identifies the four-byte binary field to
receive the specified database key.
{RECORD}
{AREA }
{SET }

IDMS ACCEPT PAGE-INFO Statement

Statements G - M 5–16

Specify RECORD, SET, or AREA.
{currency-field-name}
{ }
{'currency-literal' }

Currency-field-name or ‘currency-literal’ identifies the currency for the desired key.
Currency-field-name must be a 16-byte alphanumeric field. ‘Currency-literal’ must be
alphanumeric and is padded to the right (if necessary) to create a 16-byte value.
The default is the current record of the run-unit.

Format 2

receive-field-name Receive-field-name identifies the four-byte binary field to
receive the specified database key.
{NEXT }
{PRIOR}
�OWNER}

Specify NEXT, PRIOR, or OWNER.
{set-field-name}
{ }
{'set-literal' }

Set-field-name or ‘set-literal’ identifies the name of the desired set. Set-field-name
must be a 16-byte alphanumeric field. ‘Set-literal’ must be alphanumeric and is
padded to the right (if necessary) to create a 16-byte value.

IDMS ACCEPT PAGE-INFO Statement
The IDMS ACCEPT PAGE-INFO statement transfers database page information to
program storage.

Syntax
 { } {currency-field-name}
 IDMS ACCEPT PAGE-INFO receive-field-name {RECORD} { }
 { } {'currency-literal' }

Parameters

receive-field-name Receive-field-name identifies the four-byte binary field to
receive the page information.

{currency-field-name}
{ }
{'currency-literal' }

IDMS ACCEPT PAGE-INFO Statement

Statements G - M 5–17

Currency-field-name or ‘currency-literal’ identifies the record name for the desired
key. Currency-field-name must be a 16-byte alphanumeric field. ‘Currency-literal’
must be alphanumeric and is padded to the right (if necessary) to create a 16-byte
value.

IDMS ACCEPT PROCEDURE Statement

Statements G - M 5–18

IDMS ACCEPT PROCEDURE Statement
The IDMS ACCEPT PROCEDURE statement returns information from the
Application Program Information Block (APIB) associated with a database
procedure to the program.

Syntax
 {proc-field-name}
 IDMS ACCEPT PROCEDURE { } TO apib-field-name
 {'proc-literal' }

Parameters
{proc-field-name}
{ }
{'proc-literal' }

Proc-field-name or ‘proc-literal’ identifies the name of a DBA-written database
procedure. Proc-field-name must be an eight-byte alphanumeric field. ‘Proc-literal’
must be alphanumeric and is padded to the right (if necessary) to create an
eight-byte value.

TO apib-field-name Apib-field-name is a 256-byte alphanumeric area of storage
to which the APIB is copied.

IDMS ACCEPT STATISTICS Statement
The IDMS ACCEPT STATISTICS statement retrieves the system statistics.

Syntax
 IDMS ACCEPT STATISTICS stat-field-name

Parameters

stat-field-name Stat-field-name identifies a 100-byte field that you must define
in working storage to receive the current system runtime statistical information.

IDMS BIND Statement

Statements G - M 5–19

Usage Notes

See your CA-IDMS documentation for more information about the statistics
produced.

IDMS BIND Statement
The IDMS BIND statement signs on the activity with the database management
system.

Syntax
 {subschema-name }
 IDMS BIND { } +
 {'subschema-literal'}

 [{program-name }]
 [PROGRAM-NAME { }] +
 [{'program-literal'}]

 [{db-name-table-name }]
 [DBNAME { }] +
 [{'db-name-table-literal'}]

 [{node-name }]
 [NODE { }] +
 [{'node-literal'}]

 [{dictionary-name }]
 [DICTNAME { }] +
 [{'dictionary-literal'}]

 [{dictionary-node-name }]
 [DICTNODE { }]
 [{'dictionary-node-literal'}]

Parameters
{subschema-name }
{ }
{'subschema-literal'}

Subschema-name identifies the subschema to be processed with CA-IDMS.
Subschema-name must be an eight-byte alphanumeric field. ‘Subschema-literal’ must
be alphanumeric and is padded to the right (if necessary) to create an eight-byte
value.

IDMS BIND FILE Statement

Statements G - M 5–20

[{program-name }]
[PROGRAM-NAME { }]
[{'program-literal'}]

Program-name or ‘program-literal’ specifies the name used to identify the program to
CA-IDMS during execution. Program-name must be an eight-byte alphanumeric
field. ‘Program-literal’ must be alphanumeric and is padded to the right (if
necessary) to create an eight-byte value.
[{db-name-table-name }]
[DBNAME { }]
[{'db-name-table-literal'}]

Db-name-table-name or ‘db-name-table-literal’ specifies a DB Name Table. Data
retrieved during execution of the user's program will be from the named database.
Db-name-table-name must be an eight-byte alphanumeric field. ‘Db-name-table-
literal’ must be alphanumeric and is padded to the right (if necessary) to create an
eight-byte value.
[{node-name }]
[NODE { }]
[{'node-literal'}]

Node-name or ‘node-literal’ specifies the Central Version Node that will host the
CA-IDMS activity generated by the user’s program. Node-name must be an
eight-byte alphanumeric field. ‘Node-literal’ must be alphanumeric and is padded
to the right (if necessary) to create an eight-byte value.
[{dictionary-name }]
[DICTNAME { }]
[{'dictionary-literal'}]

Dictionary-name or ‘dictionary-literal’ specifies the Dictionary Name of a Secondary
Load Area. Dictionary-name must be an eight-byte alphanumeric field. ‘Dictionary-
literal’ must be alphanumeric and is padded to the right (if necessary) to create an
eight-byte value.
[{dictionary-node-name }]
[DICTNODE { }]
[{'dictionary-node-literal'}]

Dictionary-node-name or ‘dictionary-node-literal’ specifies the Dictionary Node of a
Secondary Load Area. Dictionary-node-name must be an eight-byte alphanumeric
field. ‘Dictionary-node-literal’ must be alphanumeric and is padded to the right (if
necessary) to create an eight-byte value.

IDMS BIND FILE Statement
The IDMS BIND FILE statement gives the database management system access to
the record in program storage.

Syntax
 IDMS BIND FILE file-name RECORD record-name

IDMS BIND PROCEDURE Statement

Statements G - M 5–21

Parameters

file-name File-name identifies the file where the record-area is to be allocated.

RECORD record-name Record-name identifies the record to be bound with
CA-IDMS.

IDMS BIND PROCEDURE Statement
The IDMS BIND PROCEDURE statement establishes communications between a
program and a DBA-written database procedure.

Syntax
 {proc-field-name}
 IDMS BIND PROCEDURE { } TO receive-field-name
 {'proc-literal' }

Parameters
{proc-field-name}
{ }
{'proc-literal' }

Proc-field-name or ‘proc-literal’ identifies the name of a DBA-written database
procedure. Proc-field-name must be an eight-byte alphanumeric field. ‘Proc-literal’
must be alphanumeric and is padded to the right (if necessary) to create an
eight-byte value.

TO receive-field-name Receive-field-name must be a 256-byte alphanumeric
field. The contents of receive-field-name are copied to the APIB as part of the
execution of the IDMS BIND PROCEDURE statement.

IDMS COMMIT Statement

Statements G - M 5–22

IDMS COMMIT Statement
The IDMS COMMIT statement requests the creation of a checkpoint.

Syntax
 IDMS COMMIT [ALL]

Parameters

[ALL] This optional parameter controls which locks are released. The default is
ALL EXCEPT THOSE HELD.

IDMS CONNECT Statement
The IDMS CONNECT statement establishes a record as a member of a set
occurrence.

Syntax
 {record-field-name} {set-field-name}
 IDMS CONNECT RECORD { } SET { }
 {'record-literal' } {'set-literal' }

Parameters
{record-field-name}
{ }
{'record-literal' }

Record-field-name or ‘record-literal’ identifies the record to be connected. Record-
field-name must be a 16-byte alphanumeric field. ‘Record-literal’ must be
alphanumeric and is padded to the right (if necessary) to create a 16-byte value.
{set-field-name}
{ }
{'set-literal' }

Set-field-name or ‘set-literal’ specifies the set to which the record is to be connected.
Set-field-name must be a 16-byte alphanumeric field. ‘Set-literal’ must be
alphanumeric and is padded to the right (if necessary) to create a 16-byte value.

IDMS DISCONNECT Statement

Statements G - M 5–23

IDMS DISCONNECT Statement
The IDMS DISCONNECT statement cancels the relationship between a record and
a set occurrence.

Syntax
 {record-field-name} {set-field-name}
 IDMS DISCONNECT RECORD { } SET { }
 {'record-literal' } {'set-literal' }

Parameters
 {record-field-name}
RECORD { }
 {'record-literal' }

Record-field-name or ‘record-literal’ identifies the record to be disconnected. Record-
field-name must be a 16-byte alphanumeric field. ‘Record-literal’ must be
alphanumeric and is padded to the right (if necessary) to create a 16-byte value.
 {set-field-name}
SET { }
 {'set-literal' }

Set-field-name or ‘set-literal’ specifies the set from which the record is to be
disconnected. Set-field-name must be a 16-byte alphanumeric field. ‘Set-literal’ must
be alphanumeric and is padded to the right (if necessary) to create a 16-byte value.

IDMS ERASE Statement
Format 1 of the IDMS ERASE statement makes a record unavailable for further
processing and removes it from all set occurrences in which it participates as a
member. Format 2 makes a logical record unavailable for further processing.

Syntax

Format 1
 [MEMBERS]
 {record-field-name} [PERMANENT]
 IDMS ERASE RECORD { } []
 {'record-literal' } [SELECTIVE]
 [ALL]

Format 2

 IDMS ERASE RECORD logical-record-name [WHERE (boolean-expression)]

IDMS FIND/OBTAIN Statement

Statements G - M 5–24

Parameters

Format 1
 {record-field-name}
RECORD { }
 {'record-literal' }

Record-field-name or ‘record-literal’ identifies the record to be erased.
Record-field-name must be a 16-byte alphanumeric field. ‘Record-literal’ must be
alphanumeric and is padded to the right (if necessary) to create a 16-byte value.
[MEMBERS]
[PERMANENT]
[]
[SELECTIVE]
[ALL]

This optional parameter controls the type of erasure. The default is MEMBERS.

Format 2

RECORD logical-record-name Logical-record-name is a one to sixteen-character
name that identifies the logical record to be erased. Logical-record-name must be the
name of a logical record defined by a LOGICAL-RECORD statement.

[WHERE (boolean-expression)] Code the optional WHERE clause to provide a
Boolean expression CA-IDMS uses to select the logical records to be erased.

IDMS FIND/OBTAIN Statement
The IDMS FIND and IDMS OBTAIN statements are described together because
their formats are the same. The IDMS FIND statement only locates (positions to) a
record; the IDMS OBTAIN statement locates and then retrieves a record. These
statements have six formats:

■ Format 1 locates/retrieves a record based on its DBKEY

■ Format 2 locates/retrieves the current occurrence of the record type, set, or
area

■ Format 3 locates/retrieves a record within a set or area

■ Format 4 locates/retrieves the owner record within the set

■ Format 5 locates/retrieves a record based on its CALC key

■ Format 6 locates retrieves an ordered (sorted) record from a set.

Note: To retrieve logical records, see the IDMS OBTAIN Statement, described
separately later in this chapter.

IDMS FIND/OBTAIN Statement

Statements G - M 5–25

Syntax

Format 1
 [{record-field-name}]
 [RECORD { }]
 {FIND } {key-field-name} [{'record-literal' }] [SHARE|SHR]
IDMS { } DBKEY { } [] []
 {OBTAIN} {'key-literal' } [{page-field-name }] [EXCLUSIVE|EXC]
 [PAGE-INFO { }]
 [{'page-literal' }]

Format 2
 {FIND } [{RECORD} {field-name}] [SHARE|SHR]
 IDMS { } CURRENT [{SET } { }] []
 {OBTAIN} [{AREA } {'literal' }] [EXCLUSIVE|EXC]

Format 3
 {FIND }� {NEXT } [{record-field-name}]
 IDMS { }� {PRIOR } [RECORD { }] +
 {OBTAIN}� {FIRST } [{'record-literal' }]
 {LAST }
 { {nth-field-name} }
 {NTH { } }
 { {nth-literal } }

 {SET } {search-field-name} [SHARE|SHR]
 { } { } []
 {AREA} {'search-literal' } [EXCLUSIVE|EXC]

Format 4
 {FIND } {set-field-name} [SHARE|SHR]
 IDMS { } OWNER SET { } []
 {OBTAIN} {'set-literal' } [EXCLUSIVE|EXC]

Format 5
 {FIND } {CALC } {record-field-name} [SHARE|SHR]
 IDMS { } { } RECORD { } []
 {OBTAIN} {DUPLICATE} {'record-literal' } [EXCLUSIVE|EXC]

 Format 6

 {FIND } {record-field-name} {set-field-name}
 IDMS { } [CURRENT] RECORD { } SET { } +
 {OBTAIN} {'record-literal' } {'set-literal' }

 {control-field-name} [SHARE|SHR]
 USING ({ }...) []
 {'control-literal' } [EXCLUSIVE|EXC]

Parameters

Format 1
 {key-field-name}
DBKEY { }
 {'key-literal' }

IDMS FIND/OBTAIN Statement

Statements G - M 5–26

Key-field-name or ‘key-literal’ identifies the key of the database record. Key-field-name
must be a four-byte binary field. ‘Key-literal’ must be a four-byte hexadecimal
value.
[{record-field-name}]
[RECORD{ }]
[{'record-literal' }]

Record-field-name or ‘record-literal’ identifies the record to be located/retrieved.
Record-field-name must be a 16-byte alphanumeric field. ‘Record-literal’ must be
alphanumeric and is padded to the right (if necessary) to create a 16-byte value.
The default is any record type that satisfies the DBKEY.
[{page-field-name}]
[PAGE-INFO { }]
[{'page-literal' }]

Page-field-name or ‘page-literal’ identifies the record to be located/retrieved by its
page information. Page-field-name must be a 4-byte binary field. ‘Page-literal’ must
be a 4-byte hexadecimal value.
[SHARE|SHR]
[]
[EXCLUSIVE|EXC]

These optional parameters determine the type of lock to be placed on the object
record.

Format 2
[{RECORD} {field-name}]
[{SET } { }]
[{AREA } {'literal' }]

Field-name or ‘literal’ identifies the record, set, or area to be located/retrieved.
Field-name must be a 16-byte alphanumeric field. ‘Literal’ must be alphanumeric
and is padded to the right (if necessary) to create a 16-byte value. The default
locates/retrieves the current record of the run-unit.
[SHARE|SHR]
[]
[EXCLUSIVE|EXC]

These optional parameters determine the type of lock to be placed on the object
record.

Format 3
{NEXT }
{PRIOR }
{FIRST }
{LAST }
{ {nth-field-name} }
{NTH { } }
{ {nth-literal } }

Nth-field-name or nth-literal identifies the record occurrence of the set or area to be
located/retrieved. Nth-field-name must be a four-byte binary integer. Nth-literal
must be a positive or negative integer.
[{record-field-name}]
[RECORD { }]
[{'record-literal' }]

IDMS FIND/OBTAIN Statement

Statements G - M 5–27

Record-field-name or ‘record-literal’ identifies the record to be located/retrieved.
Record-field-name must be a 16-byte alphanumeric field. ‘Record-literal’ must be
alphanumeric and is padded to the right (if necessary) to create a 16-byte value.
The default is the record that otherwise satisfies the search criteria.
{SET }{search-field-name}
{ }{ }
{AREA}{'search-literal' }

Search-field-name or ‘search-literal’ identifies the set or area that determines the scope
of the search. Search-field-name must be a 16-byte alphanumeric field. ‘Search-literal’
must be alphanumeric and is padded to the right (if necessary) to create a 16-byte
value.
[SHARE|SHR]
[]
[EXCLUSIVE|EXC]

These optional parameters determine the type of lock to be placed on the object
record.

Format 4
 {set-field-name}
OWNER SET { }
 {'set-literal' }

Set-field-name or ‘set-literal’ identifies the set to search. Set-field-name must be a
16-byte alphanumeric field. ‘Set-literal’ must be alphanumeric and is padded to the
right (if necessary) to create a 16-byte value.
[SHARE|SHR]
[]
[EXCLUSIVE|EXC]

These optional parameters determine the type of lock to be placed on the object
record.
{CALC }
{ }
{DUPLICATE}

This parameter determines whether the first (CALC) or next (DUPLICATE) record
is located/retrieved.
 {record-field-name}
RECORD { }
 {'record-literal' }

Record-field-name or ‘record-literal’ identifies the record to locate/retrieve. Record-
field-name must be a 16-byte alphanumeric field. ‘Record-literal’ must be
alphanumeric and is padded to the right (if necessary) to create a 16-byte value.
[SHARE|SHR]
[]
[EXCLUSIVE|EXC]

These optional parameters determine the type of lock to be placed on the object
record.

IDMS FINISH Statement

Statements G - M 5–28

Format 6

[CURRENT] This optional parameter controls the start of the search. The default
begins with the owner of the current record within the set.
 {record-field-name}

Record-field-name or ‘record-literal’ identifies the record to locate/retrieve. Record-
field-name must be a 16-byte alphanumeric field. ‘Record-literal’ must be
alphanumeric and is padded to the right (if necessary) to create a 16-byte value.

 {'set-literal' }

USING ({ } ...)

[SHARE|SHR]

These optional parameters determine the type of lock to be placed on the object
record.

Syntax

The IDMS GET statement retrieves current data records.

 IDMS GET [RECORD { }]

RECORD { }
 {'record-literal' }

 {set-field-name}
SET { }

Set-field-name or ‘set-literal’ identifies the set to search. Set-field-name must be a
16-byte alphanumeric field. ‘Set-literal’ must be alphanumeric and is padded to the
right (if necessary) to create a 16-byte value.
 {control-field-name}

 {'control-literal' }

Control-field-name or ‘control-literal’ identifies the control data item. The length and
code system of the control data item must match that in the database.

[]
[EXCLUSIVE|EXC]

IDMS FINISH Statement
The IDMS FINISH statement signs off the database management system.

 IDMS FINISH

IDMS GET Statement

Syntax
 [{record-field-name}]

 [{'record-literal' }]

IDMS IF Statement

Statements G - M 5–29

Parameters
[{record-field-name}]
[RECORD { }]
[{'record-literal' }]

Record-field-name or ‘record-literal’ identifies the record to retrieve. Record-field-name
must be a 16-byte alphanumeric field. ‘Record-literal’ must be alphanumeric and is
padded to the right (if necessary) to create a 16-byte value. The default record is
the current record type of the run-unit.

IDMS IF Statement
The IDMS IF statement tests the status of a set.

Syntax
 {MEMBER }
 {set-field-name} {NOMEMBER}
 IDMS IF SET { } { }
 {'set-literal' } {EMPTY }
 {NOEMPTY }

Parameters
 {set-field-name}
SET { }
 {'set-literal' }

Set-field-name or ‘set-literal’ identifies the set to be tested. Set-field-name must be a
16-byte alphanumeric field. ‘Set-literal’ must be alphanumeric and is padded to the
right (if necessary) to create a 16-byte value.
{MEMBER }
{NOMEMBER}
{ }
{EMPTY }
{NOEMPTY }

This parameter determines the type of test:

■ Specify MEMBER if the current record is a member of specified set

■ Specify NOMEMBER if the current record is not a member of specified set

■ Specify EMPTY if no member record occurrences exist

■ Specify NOEMPTY if member record occurrences exist.

IDMS KEEP Statement

Statements G - M 5–30

Usage Notes

The IDMS IF statement is similar to the CA-Easytrieve IF statement in that a
corresponding END-IF statement is required and the ELSE statement is optional.
See the IF, ELSE-IF, ELSE, and END-IF Statements later in this chapter for more
information.

IDMS KEEP Statement
The IDMS KEEP statement places a shared or exclusive lock on a record.

Syntax
 [{RECORD} {field-name}]
 IDMS KEEP [{SET } { }] [EXCLUSIVE]
 [{AREA } {'literal' }]

Parameters
[{RECORD} {field-name}]
[{SET } { }]
[{AREA } {'literal' }]

Field-name or ‘literal’ identifies the desired record, set, or area to be locked.
Field-name must be a 16-byte alphanumeric field. ‘Literal’ must be alphanumeric
and is padded to the right (if necessary) to create a 16-byte value.

[EXCLUSIVE] This optional parameter controls the lock for the record. The
default is SHARED LOCK.

IDMS MODIFY Statement
Format 1 of the IDMS MODIFY statement updates a record within the database.
Format 2 updates a logical record within the database.

Syntax

Format 1
 {record-field-name}
 IDMS MODIFY RECORD { }
 {'record-literal' }

Format 2
 IDMS MODIFY RECORD logical-record-name [WHERE (boolean-expression)]

IDMS OBTAIN Statement

Statements G - M 5–31

Parameters

Format 1
 {record-field-name}
RECORD { }
 {'record-literal' }

Record-field-name or ‘record-literal’ identifies the record to be modified. Record-
field-name must be a 16-byte alphanumeric field. ‘Record-literal’ must be
alphanumeric and is padded to the right (if necessary) to create a 16-byte value.

Format 2

RECORD logical-record-name Logical-record-name is a one to sixteen-character
name that identifies the logical record to be modified by CA-IDMS.

[WHERE (boolean-expression)] Code the optional WHERE clause to provide a
Boolean expression to CA-IDMS to select the logical records to be modified.

IDMS OBTAIN Statement
The IDMS OBTAIN statement is used to retrieve logical records.

Note: To retrieve database records, see the IDMS FIND/OBTAIN Statement,
described separately in this chapter.

Syntax
 {FIRST}
IDMS OBTAIN { } RECORD logical-record-name [WHERE(boolean-expression)]
 {NEXT }

Parameters
{FIRST}
{ }
{NEXT }

Specify FIRST to retrieve the first occurrence of the logical record. Specify NEXT to
retrieve subsequent occurrences.

RECORD logical-record-name Logical-record-name is a one to sixteen-character
name that identifies the logical record to be retrieved. Logical-record-name must be
the name of a logical record defined by a LOGICAL-RECORD statement.

IDMS READY Statement

Statements G - M 5–32

[WHERE (boolean-expression)] Code the optional WHERE clause to provide a
Boolean expression CA-IDMS uses to select the logical records to be retrieved.

IDMS READY Statement
The IDMS READY statement establishes area availability with the database
manager.

Syntax
 [{area-field-name}] [{RETRIEVAL} [PROTECTED]]
 IDMS READY [AREA { }] [{ } []]
 [{'area-literal' }] [{UPDATE } [EXCLUSIVE]]

Parameters
[{area-field-name}]
[AREA { }]
[{'area-literal' }]

Area-field-name or ‘area-literal’ identifies the area to be made available for
processing. Area-field-name must be a 16-byte alphanumeric field. ‘Area-literal’
must be alphanumeric and is padded to the right (if necessary) to create a 16-byte
value. If not specified, all areas in the subschema are readied.
[{RETRIEVAL} [PROTECTED]]
[{ } []]
[{UPDATE } [EXCLUSIVE]]

These optional parameters determine the type of access. The default is
RETRIEVAL.

IDMS RETURN Statement
The IDMS RETURN statement retrieves the database key for an indexed record
without retrieving the record itself.

Syntax
 {set-field-name}
 IDMS RETURN DBKEY receive-field-name FROM { } +
 {'set-literal' }

 [KEY symbolic-key] +

 { }
 {CURRENCY }
 {FIRST [CURRENCY] }
 {LAST [CURRENCY] }

IDMS RETURN Statement

Statements G - M 5–33

 {NEXT [CURRENCY] }
 {PRIOR [CURRENCY] }
 { }
 { {key-field-name} }
 {USING ({ }...)}
 { {'key-literal' } }

Parameters

DBKEY receive-field-name This is a four-byte binary field with zero (0)
decimal places. This field receives the DBKEY of the indexed record.
 {set-field-name}
FROM { }
 {'set-literal' }

Set-field-name or ‘set-literal’ identifies the index set to be accessed. Set-field-name
must be a 16-byte alphanumeric field. ‘Set-literal’ must be alphanumeric and is
padded to the right (if necessary) to create a 16-byte value.

[KEY symbolic-key] This parameter retrieves the record’s symbolic key into
symbolic-key. Symbolic-key is the name of an alphanumeric field that is large enough
to contain the record’s symbolic key.
{ }
{CURRENCY }
{FIRST [CURRENCY] }
{LAST [CURRENCY] }
{NEXT [CURRENCY] }
{PRIOR [CURRENCY] }
{ }
{ {key-field-name} }
{USING ({ }...)}
{ {'key-literal' } }

These parameters determine the record for which the database key is returned:

■ CURRENCY— the current index entry

■ FIRST [CURRENCY]—the first entry in the index

■ LAST [CURRENCY]— the last entry in the index

■ NEXT [CURRENCY]— the entry following current of index. If the current of
index is the last entry, an error status of 1707 (END OF INDEX) is returned.

■ PRIOR [CURRENCY]— the entry before current of index

■ USING— the first index entry whose symbolic key matches the key-field-name
or ‘key-literal’. If no such entry exists, a status code of 1726 (INDEX ENTRY
NOT FOUND) is returned. The attributes of key-field-name or ‘key-literal’
must match the symbolic key of the index.

IDMS ROLLBACK Statement

Statements G - M 5–34

IDMS ROLLBACK Statement
The IDMS ROLLBACK statement requests recovery.

Syntax
 IDMS ROLLBACK [CONTINUE]

Parameters

[CONTINUE] This optional parameter specifies the action taken after the recovery.
The default is to terminate the run-unit.

IDMS STORE Statement
Format 1 of the IDMS STORE statement places a new record occurrence into the
database. Format 2 places a new logical record occurrence into the database.

Syntax

Format 1
 {record-field-name}
 IDMS STORE RECORD { }
 {'record-literal' }

Format 2
 IDMS STORE RECORD logical-record-name [WHERE (boolean-expression)]

Parameters

Format 1
 {record-field-name}
RECORD { }
 {'record-literal' }

Record-field-name or ‘record-literal’ identifies the record to store. Record-field-name
must be a 16-byte alphanumeric field. ‘Record-literal’ must be alphanumeric and is
padded to the right (if necessary) to create a 16-byte value.

Format 2

RECORD logical-record-name Logical-record-name is a one to sixteen-character
name that identifies the logical record that CA-IDMS stores.

IF, ELSE-IF, ELSE, and END-IF Statements

 Statements G - M 5–35

[WHERE (boolean-expression)] Code the optional WHERE clause to provide a
Boolean expression CA-IDMS uses to select the logical records to be stored.

IF, ELSE-IF, ELSE, and END-IF Statements
The IF statement controls the execution of its associated statements. Associated
statements are those that are coded between IF and END-IF.

Syntax
IF conditional-expression-1
 [statement-1]

[ELSE-IF conditional-expression-2] [. . .]
[[statement-2]] []

[ELSE]
[[statement-3]]

END-IF

The following diagram illustrates IF, ELSE-IF, ELSE, and END-IF logic:

statement-1 statement-2 statement-3

false

true

false

true

• • •

• • •

END-IF

IF [ELSE-IF] [ELSE]

conditional
expression

conditional
expression

Parameters

conditional-expression See Conditional Expressions for conditional
expression syntax.

ELSE-IF ELSE-IF is optional and identifies a conditional expression to be tested
when the previous conditional expression is false. ELSE-IF statements allow
multiple conditions to be nested without requiring an END-IF statement or each
condition. You can code as many ELSE-IF statements as necessary.

IF, ELSE-IF, ELSE, and END-IF Statements

Statements G - M 5–36

ELSE ELSE is optional and identifies the statements to be executed when
conditions are false. When the conditions of the preceding IF or ELSE-IF are not
satisfied, CA-Easytrieve continues execution with the statement following ELSE.

Note: ELSE must be on a source statement by itself unless it is followed by a
period and a space.

END-IF END-IF terminates the logic associated with the previous IF statement.
An END-IF statement must be specified after each IF statement and its associated
statements. You do not specify an END-IF for an ELSE-IF.

Usage Notes

The truth value of the conditional-expression-1 determines whether statement-1 is
executed. CA-Easytrieve executes statements designated by statement-1 when
conditional-expression-1 is true. When conditional-expression-1 is false, CA-Easytrieve
tests conditional-expression-2 if ELSE-IF is specified.

If ELSE-IF is specified, the truth value of conditional-expression-2 determines
whether statement-2 is executed. CA-Easytrieve executes statements designated
by statement-2 when conditional-expression-2 is true. When conditional-expression-2
is false, CA-Easytrieve tests the conditional expression of the next ELSE-IF, if
specified. If the last ELSE-IF statements conditional expression is also false,
CA-Easytrieve executes statements designated by statement-3. You can nest as
many ELSE-IF statements within the IF as necessary. You must terminate the IF
statement with a single END-IF.

If ELSE-IF is not specified and conditional-expression-1 is false, CA-Easytrieve
executes statements designated by statement-3.

If the ELSE statement is not specified and the conditional-expression is false, no
statements are executed and control passes to the statement following END-IF.

Statement-1, statement-2, and statement-3 each represent any number of
CA-Easytrieve statements. Whenever one or more of these statements is an IF
statement, the IF statements are considered to be nested. The format of nested IF
statements is that statement-1, statement-2, and statement-3 of any IF can be an IF
statement.

IF, ELSE-IF, ELSE, and END-IF Statements

Statements G - M 5–37

Examples

The following three examples illustrate the IF statement usage. In each of the
illustrated cases, the field XMAS-BONUS is computed to be three or five percent
over PAY-GROSS. When the field PAY-GROSS is non-numeric, a warning
message is issued and the record is bypassed from further processing.

Example 1, without nested IF statements:
FILE PERSNL FB(150 1800)
%PERSNL
XMAS-BONUS W 4 P 2 VALUE 0
TOT-XMAS-BONUS W 6 P 2 VALUE 0
*
JOB INPUT PERSNL NAME MYPROG FINISH FINISH-PROC
 IF PAY-GROSS NOT NUMERIC
 DISPLAY EMP# ' PERSONNEL RECORD IS DAMAGED'
 GO TO JOB
 END-IF
 IF PAY-GROSS > 500.00
 XMAS-BONUS = PAY-GROSS * 1.03
 ELSE
 XMAS-BONUS = PAY-GROSS * 1.05
 END-IF
 TOT-XMAS-BONUS = TOT-XMAS-BONUS +
 + XMAS-BONUS
 PRINT MYREPORT
*
FINISH-PROC. PROC
DISPLAY
DISPLAY 'TOTAL $ SPENT IN BONUS ' +
 'MONEY ====> ' TOT-XMAS-BONUS
END-PROC
*
REPORT MYREPORT
LINE NAME-LAST XMAS-BONUS

Example 2, with nested IF statements:
FILE PERSNL FB(150 1800)
%PERSNL
XMAS-BONUS W 4 P 2 VALUE 0
TOT-XMAS-BONUS W 6 P 2 VALUE 0
*
JOB INPUT PERSNL NAME MYPROG FINISH FINISH-PROC
 IF PAY-GROSS NOT NUMERIC
 DISPLAY EMP# ' PERSONNEL RECORD IS DAMAGED'
 GOTO JOB
 ELSE
 IF PAY-GROSS > 500.00
 XMAS-BONUS = PAY-GROSS * 1.03
 ELSE
 XMAS-BONUS = PAY-GROSS * 1.05
 END-IF
 END-IF
 TOT-XMAS-BONUS = TOT-XMAS-BONUS + XMAS-BONUS
 PRINT MYREPORT
*
FINISH-PROC. PROC
DISPLAY
DISPLAY 'TOTAL $ SPENT IN BONUS ' +
 'MONEY ====> ' TOT-XMAS-BONUS
END-PROC

INITIATION Screen Procedure

Statements G - M 5–38

*
REPORT MYREPORT
LINE NAME-LAST XMAS-BONUS

Example 3, with ELSE-IF statements:
FILE PERSNL FB(150 1800)
%PERSNL
XMAS-BONUS W 4 P 2 VALUE 0
TOT-XMAS-BONUS W 6 P 2 VALUE 0
*
JOB INPUT PERSNL NAME MYPROG FINISH FINISH-PROC
 IF PAY-GROSS NOT NUMERIC
 DISPLAY EMP# ' PERSONNEL RECORD IS DAMAGED'
 GOTO JOB
 ELSE-IF PAY-GROSS > 500.00
 XMAS-BONUS = PAY-GROSS * 1.03
 ELSE
 XMAS-BONUS = PAY-GROSS * 1.05
 END-IF
 TOT-XMAS-BONUS = TOT-XMAS-BONUS + XMAS-BONUS
 PRINT MYREPORT
*
FINISH-PROC. PROC
DISPLAY
DISPLAY 'TOTAL $ SPENT IN BONUS ' +
 'MONEY ====> ' TOT-XMAS-BONUS
END-PROC
*
REPORT MYREPORT
LINE NAME-LAST XMAS-BONUS

INITIATION Screen Procedure
An INITIATION procedure is invoked once during the start of the screen activity.

Syntax
INITIATION. PROC

Usage Notes

You use INITIATION to perform actions that are to be executed only once.
Typically you use INITIATION to initialize a field or position a file at a specific
starting position.

REFRESH and RESHOW are invalid in an INITIATION procedure.

If GOTO SCREEN is executed in an INITIATION procedure, the INITIATION
procedure is terminated and the BEFORE-SCREEN procedure is invoked.

An INITIATION procedure must be delimited by an END-PROC statement. See
the PROC Statement for more information.

INSERT Statement

Statements G - M 5–39

Example
INITIATION. PROC
 MESSAGE 'Enter an employee number.' LEVEL INFORMATION
 MOVE ZERO TO EMP-NO
 MOVE SPACES TO EMPNAME
END-PROC

INSERT Statement
The INSERT statement is used to insert a row into a CA-Easytrieve SQL file.

Syntax
INSERT [INTO] file-name

Parameters

[INTO] Optionally, code INTO for statement readability.

file-name File-name is a CA-Easytrieve SQL file.

Usage Notes

INSERT does not require an open cursor. If a cursor for the file is not open, one is
not opened automatically. If a cursor is open, the inserted record does not appear
in the cursor’s result set until the cursor is closed and re-opened with a new
SELECT statement.

The file must be specified with the UPDATE parameter.

Example

The following example inserts a new row into a table.
FILE PERSNL SQL (PERSONNEL) UPDATE
EMPNAME * 20 A
WORKDEPT * 2 P 0
EMPPHONE * 3 P 0
PROGRAM NAME RETRIEVE-PERSONNEL
 EMPNAME = 'WIMN GLORIA'
 WORKDEPT = 921
 EMPPHONE = 3478
 INSERT INTO PERSNL

JOB Statement

Statements G - M 5–40

JOB Statement
The JOB statement defines and initiates a processing activity. In a JOB activity,
statements can specify various processing tasks:

■ Retrieval of input files and databases

■ Examination and manipulation of data

■ Initiation of printed reports

■ Production of output files and databases.

Syntax
JOB +

[{(file-name [KEY field-name-1...)]...)}]
[INPUT {NULL }] +
[{SQL }]

[START start-proc-name] +

[FINISH finish-proc-name] +

[NAME job-name] +

[[ACTIVITY] [TERMINAL]]
[COMMIT ([] [])]
[[NOACTIVITY] [NOTERMINAL]]

Parameters

[INPUT] The optional INPUT parameter identifies the automatic input to the
activity.

When you do not specify INPUT, CA-Easytrieve automatically provides an input
file. If a SORT activity immediately preceded the current JOB activity, the default
input is the output file from that SORT activity. Otherwise, the default input is the
first file named in the library section.

{file-name} File-name identifies the automatic input file. File-name identifies
any file defined in the library section of the program eligible for sequential input
processing. When CA-Easytrieve processes the last automatic input record,
CA-Easytrieve terminates the job activity.

Note: Except in CICS, CA-Easytrieve issues a GET HOLD for a VSAM file with
the UPDATE parameter as automatic input. This allows you to update an
automatic input file in all environments except CICS.

JOB Statement

Statements G - M 5–41

Coding an SQL filename in the JOB statement causes an SQL cursor to be opened at
the start of the job activity. An SQL FETCH command or statement is executed for
each execution of the JOB statement (including the first). See the “SQL Database
Processing” chapter in the CA-Easytrieve Programmer Guide for more information.

Coding a CA-IDMS file name on the JOB statement requires a RETRIEVE or
SELECT statement to follow. See the “CA-IDMS Database Processing” chapter in
the CA-Easytrieve Programmer Guide for more information.

Coding an IMS/DLI file name on the JOB statement requires a RETRIEVE
statement to follow. See the “IMS/DLI Database Processing” chapter in the
CA-Easytrieve Programmer Guide for more information.

{[KEY (key-field-name ...)]} Specify key fields for JOB statement activities.

Code KEY (key-field-name) for each file-name of a synchronized file input process.
During synchronized file processing, CA-Easytrieve sequentially processes the
file(s) using KEY fields. KEY fields can be any fields from the associated file. The
only exceptions are varying length fields, which cannot be used as keys. For more
detailed information about synchronized file processing, see the CA-Easytrieve
Programmer Guide.

Note: Synchronized file processing is not allowed for CA-IDMS and IMS/DLI
database files.

{NULL} Code NULL as a file-name to inhibit automatic input. Use this when no
input is required or when input is retrieved by statements in the activity. When
using NULL, a STOP or TRANSFER statement must be executed in the JOB
activity, otherwise the activity executes indefinitely.

{SQL} Code SQL instead of a filename to use automatic retrieval of an SQL
database without a file. The selection criteria for the input is specified on the non-
file SQL SELECT statement that must immediately follow the JOB statement. See
the “SQL Database Processing” chapter in the CA-Easytrieve Programmer Guide for
more information about automatic retrieval without a file.

[START start-proc-name] The optional START start-proc-name parameter
identifies a procedure to be executed during the initiation of the JOB.

CA-Easytrieve optionally performs the procedure coded in start-proc-name before it
retrieves the first automatic input record. A typical START procedure sets
working storage fields to an initial value or positions a file to a specific record. You
cannot reference fields in automatic input files because no records have been
retrieved at this stage of processing.

If GOTO JOB is executed in a START procedure, the START procedure is
terminated.

JOB Statement

Statements G - M 5–42

[FINISH finish-proc-name] The optional FINISH finish-proc-name parameter
identifies a procedure to be executed during the normal termination of the JOB.
After CA-Easytrieve processes the last automatic input record, it performs the
finish-proc-name procedure. A typical finish-proc-name procedure displays control
information accumulated during the activity.

If GOTO JOB is executed in a FINISH procedure, the FINISH procedure is
terminated at that point.

[NAME job-name] The NAME parameter names the JOB activity. Job-name can:

■ Be up to 128 characters in length

■ Contain any character other than a delimiter

■ Begin with A-Z, 0-9, or a national character (#, @, $)

■ Not consist of all numeric characters.

This parameter is used for documentation purposes or to identify this JOB on an
EXECUTE statement.
[[ACTIVITY] [TERMINAL]]
[COMMIT ([] [])]
[[NOACTIVITY] [NOTERMINAL]]

Specify the COMMIT parameter to control the logical unit of work. COMMIT
indicates when the activity commits recoverable work. Each commit point posts
all updates, additions and deletions, terminates holds, and closes SQL cursors.

Specify ACTIVITY to commit all recoverable work during the normal termination
of the activity. Specify NOACTIVITY to tell CA-Easytrieve not to commit at the
end of the activity. NOACTIVITY is the default.

Specify TERMINAL to commit all recoverable work during any terminal I/O
operation. In CICS, this results in terminal I/O being performed in a
pseudo-conversational mode. Specify NOTERMINAL to tell CA-Easytrieve not to
commit during a terminal I/O. TERMINAL is the default.

If this activity is executed by an activity that has NOTERMINAL specified, this
activity performs terminal I/O as if NOTERMINAL was specified.

Note: You can also issue your own COMMIT and ROLLBACK statements to
commit or recover work on a controlled basis.

See the CA-Easytrieve Programmer Guide for more information.

KEY Statement

 Statements G - M 5–43

Usage Notes

The JOB statement can also identify the name of an automatic input file (which can
be any file or database that is processed sequentially).

JOB activities can be EXECUTEd by PROGRAM or SCREEN activities. If a
PROGRAM activity is not coded, JOB and SORT activities are automatically
executed sequentially until a SCREEN activity is encountered.

The following example illustrates the position of the JOB activities in a
CA-Easytrieve program.
Environment
...
Library
...
Activities {JOB...
... {...
JOB, SCREEN { job procedures
and/or { ...
SORT { ...
... { reports
... { ...

See the CA-Easytrieve Programmer Guide for a discussion of JOB Activity Flow
Control.

Examples

The first example illustrates a JOB statement that automatically reads a sequential
file.

JOB INPUT PERSNL NAME SCAN-PERSONNEL-RECORDS

The second example illustrates synchronized file processing. It shows a JOB
statement for matching a transaction file (TRANFILE) with a master file
(MASTFILE). The JOB uses the FINISH parameter to execute a procedure when all
the input records have been recorded.

JOB NAME MATCH-FILES INPUT (TRANFILE KEY TRAN-EMP-NO +
 MASTFILE KEY MAST-EMP-NO) +
 FINISH DISPLAY-EOJ-MESSAGE

KEY Statement
The KEY statement is used to:

■ Define valid keys for a screen

■ Specify descriptive text to be displayed for each valid key

■ Assign automatic functions to be executed for each valid key.

KEY Statement

Statements G - M 5–44

Syntax
 [EXIT]
KEY key-name [THRU key-name]...[NAME 'literal'] [] [IMMEDIATE]
 [REFRESH]

Parameters

key-name Specify a symbolic name for a terminal key as described by the
system-defined field, KEY-PRESSED.

KEY-PRESSED is a two-byte binary field that contains a value representing the
most recent terminal key pressed by the terminal user.

CA-Easytrieve automatically defines symbolic names that correspond to values for
the most common keys.

Terminal Key Symbolic Name Constant Value

Enter ENTER 1

Clear CLEAR 11

PA1 thru PA3 PA1 thru PA3 12 thru 14

PF1 thru PF24 F1 thru F24 21 thru 44

F1 thru F12 F1 thru F12 21 thru 32

Note: Only terminal keys with a KEY-PRESSED symbolic name can be used on a
KEY statement. If other terminal keys (such as test request) are required, you must
test KEY-PRESSED using the constant value of the terminal key in your program
code. If you test for terminal keys without a symbolic name, you cannot code KEY
statements in your program.

[THRU key-name] Use THRU key-name to specify a range of key-names. A range
of key-names includes all keys whose constant values for KEY-PRESSED fall
between the constant values of the keys you specify for the range. For example, if
you code:
KEY CLEAR THRU F12

the PA1, PA2, and PA3 keys are also valid. The constant values of the PA keys (12,
13, 14) fall between the value for CLEAR (11) and F12 (32).

Note: You can also specify a series of non-consecutive key-names by omitting
THRU. You can optionally separate a series of key-names with commas for
readability. You can specify a range of key-names and a series of key-names on the
same KEY statement. See the examples below.

KEY Statement

Statements G - M 5–45

[NAME 'literal'] The optional NAME parameter allows you to specify
descriptive text to be displayed with the key on the screen. The format displayed
on the screen is:
key-name=literal

For example:
 F1=Help F3=Exit F12=Cancel

‘Literal’ can contain a maximum of 20 characters.

To display only the key-name on a screen, code NAME ‘literal’ with a blank space
between single quotes (‘ ‘).

If you do not code NAME, no display is created for the key.
[EXIT]
[REFRESH]

Optionally, you can code EXIT or REFRESH to specify the branch action taken
when a user presses key-name. If EXIT or REFRESH is specified, the action is
automatically executed by CA-Easytrieve and the AFTER-SCREEN procedure (if
any) is not executed.

Specify EXIT to terminate the screen activity after editing and extracting data from
screen fields into program fields.

Specify REFRESH to restore the initial screen image by rebuilding it with current
values of the program fields. Data in screen fields is edited and extracted into
program fields.

If an action is not specified for key-name, you can test for key-name in your SCREEN
activity procedures with the system-defined field, KEY-PRESSED.

[IMMEDIATE] Specify IMMEDIATE to execute a branch action, or the AFTER-
SCREEN procedure if no action is specified, without editing data in screen fields
and moving it into the program fields.

Usage Notes

If a key that is not defined on a KEY statement is pressed, an error message is
displayed on the terminal prompting the user to press a valid key.

If no KEY statements are coded, all keys are valid and you must provide code for
all keys in your SCREEN activity procedures.

The function key area is built depending on the sequence of keys specified in KEY
statements. You must specify keys in the order you want them displayed.

KEY Statement

Statements G - M 5–46

The key display area is built on the bottom line of a screen. If the key display area
requires additional lines because of the number of keys and the length of the
descriptive text, additional lines at the bottom of the screen are used.

When used as the result of pressing an IMMEDIATE key, REFRESH re-displays
the screen image with the original data displayed on the screen. This is useful
when the terminal user enters erroneous data on the screen and wants to restore
the screen with its original data.

When used as the result of a non-IMMEDIATE key, REFRESH can be used to
rebuild the screen using current data from the screen.

REFRESH can also be invoked by using the REFRESH statement. See the
REFRESH Statement for more information.

EXIT can also be invoked indirectly by executing it in a screen procedure. See the
EXIT Statement for more information.

Note: If you specify that one or more message areas use the same screen row as
the function key area, messages might overlap the function key area. The default
for the message area is the row immediately preceding the key display area.

Note: The CLEAR, PA1, PA2, and PA3 keys do not transmit data from the screen
to the program. Also, cursor positioning cannot be ascertained when these keys
are pressed.

Examples

The following table shows KEY statement examples:

Code Meaning

KEY F1 F1 is valid, but nothing is displayed on the screen. You must
provide code.

KEY F1 THRU F24 F1 through F24 are valid keys, but nothing is displayed on the
screen. You must provide code for all keys.

KEY F1 NAME ‘Help’ F1 is valid. F1=Help is displayed on the screen. You must
provide code.

KEY F1 F4 F1 and F4 are valid keys, but nothing is displayed on the screen.
You must provide code.

KEY F1 THRU F4, F8 F1, F2, F3, F4, and F8 are valid keys, but nothing is displayed on
the screen. You must provide code for all keys.

KEY F12 EXIT NAME +
‘CANCEL’ IMMEDIATE

F12 terminates the screen activity without moving data from
screen fields into program fields. The AFTER-SCREEN

LINE Statement

Statements G - M 5–47

Code Meaning
procedure (if any) is not executed. F12=CANCEL is displayed on
the screen.

KEY F3 IMMEDIATE The AFTER-SCREEN procedure (if any) is executed without
editing or moving data in screen fields to program fields.
Nothing is displayed on the screen. You must provide code for
F3.

KEY F3 EXIT F3 terminates the activity after editing and moving data from the
screen.

KEY F5 IMMEDIATE + REFRESH
NAME + ‘Refresh’

F5 ignores the data on the screen and rebuilds the screen with the
values currently in memory. F5=Refresh is displayed on the
screen.

LINE Statement
The LINE statement defines the contents of a report line. One or more field values
or literals can be contained on a report line; each one is a line item. The data
format of the field or literal remains unchanged.

Syntax
 {[] field-name }
 {[#font-number] }
 {[] 'literal' }
LINE [line-number] {+offset } ...
 {-offset }
 {COL column-number }
 {POS position-number }

Parameters

[line-number] Specify the optional line number with line-number. The line
number specifies the position of the line in the line group. The value must be from
1 to 99; the default is 1. You can omit line-number for the first LINE. You must
specify the line numbers for multiple LINE statements in ascending order with no
duplicates. Specify at least one data item (field-name or literal) on each LINE
statement.

LINE Statement

Statements G - M 5–48

[#font-number] (Mainframe and UNIX only) #Font-number identifies the font
specifications to be used for the next display item. You can only specify this option
if the report has been associated with an extended reporting printer. #Font-number
identifies the number of a font defined for the associated extended reporting
printer. If you do not code the font, the next display item uses the default font for
the assigned extended reporting printer.

{field-name} Field-name can specify any field contained in an active file or in
working storage. If the field is contained in a file or W storage, data is transferred
to the print line at the time the PRINT statement is executed. If the field is
contained in S storage, data is transferred to the print line at the time the line is
printed.

Note: Field-name cannot specify a K field.

{'literal'} ‘Literal’ defines a static value for a line item. It must be a numeric
literal, hexadecimal literal, or an alphanumeric literal. Alphanumeric literals must
be enclosed within single quotes.
{+offset}
{ }
{-offset}

The space adjustment parameters, +offset or -offset, modify the spacing between line
items. The offset value is added to or subtracted from the SPACE value on the
REPORT statement to give the absolute spacing between line items. The absolute
space value can range from zero to any amount that still allows the next line item
to fit in the line defined by LINESIZE on the REPORT statement.

{COL column-number} COL specifies the column number where the next line
item is placed. The value of column-number has a valid range of 1 to ‘nnn,’ where
‘nnn’ cannot be so large that the following line item extends beyond the end of the
line defined by LINESIZE.

Note: You must specify the NOADJUST parameter on the REPORT statement to
use the COL parameter.

When the report is associated with an extended reporting printer, an error results if
two or more fields and/or literals overlap.

{POS position-number} The POS parameter enables you to position line items
on lines 2 through 99 so that they line up under particular line items on the first
line. Position-number corresponds to the line item number of LINE 01 under which
the line item is placed.

LINK Statement

Statements G - M 5–49

Usage Notes

For control reports, any quantitative field on the LINE statement is automatically
totaled on each summary line. This feature can be overridden on the SUM
statement.

Example
LINE 1 REGION BRANCH +5 DEPT EMPNAME
LINE 2 POS 4 ADDRESS
LINE 3 'NET==>' -2 PAY-NET POS 4 CITY ST ZIP

LINK Statement
The LINK statement is used to transfer control from the current program (parent
program) to another named program (child program). When the child program
terminates, execution is then returned to the statement following the LINK
statement in the parent program.

Syntax
 {program-field-name}
LINK { } +
 {'program-name' }

 [{field-name}]
 [USING { }] +
 [{'literal' }]

 [GIVING field-name] +

 [HOST] +

 [WAIT wait-time] +

Parameters

 [NOENTER]

{program-field-name}
{ }
{'program-name' }

Program-field-name is the name of the field that contains the name of the program to
which you want to LINK.

‘Program-name’ is the name of the program to which you want to LINK.
 {field-name}
USING { }
 {'literal' }

LINK Statement

Statements G - M 5–50

Code USING to pass a single parameter to the child program.

Field-name is the name of a field containing the parameter you want to pass to the
child program.

‘Literal’ is a literal value you want to pass to the child program.

[GIVING field-name] Specify GIVING to indicate that the parent program can
accept a return parameter from the child program. Field-name is the name of a field
to which the returned parameter is written. See the CA-Easytrieve Programmer
Guide for more information.

Note: If the child program returns a value, but the GIVING parameter is not
specified, the value is ignored. Not all operating systems allow the child program
to return data to the parent program.

[HOST] (Workstation only) Specify HOST if you want to send a command to the
mainframe. HOST sends the program name and the using field as an EBCDIC
string directly to the host using an HLLAPI. You must have the appropriate
hardware, emulator and HLLAPI to use this parameter. See the “Coding a
CA-Easytrieve Program” chapter in the CA-Easytrieve Programmer Guide for more
information.

[WAIT wait-time] (Workstation only) The WAIT parameter allows you to
specify the time in seconds to wait before sending the command to the host. This
parameter can be coded only if HOST has been specified.

Wait-time must be an integer from 0 to 32767.

[NOENTER] (Workstation only) The NOENTER parameter inhibits the automatic
Enter (@E) sequence at the end of the command. This is useful if you want to send
your own AID key sequence to the host. See the EEHLLAPI manual for more
information about AID keys.

Usage Notes

LINK can be used to invoke any program written in any language that is
supported by the operating system in which the program is executing, including
CA-Easytrieve. Similarly, the program can issue any command supported by the
operating system.

A program invoked using the LINK statement can issue terminal I/O or display
reports, but only in fully-conversational mode. See the CA-Easytrieve Programmer
Guide for more information.

LIST Statement

Statements G - M 5–51

Note: If you code the USING or GIVING parameter on the LINK statement, you
must code a PROGRAM statement to handle the parameters in the child program
when it is written in CA-Easytrieve.

Example
LINK 'PROGB' USING EMP# GIVING PROGB-RETURN

LIST Statement
LIST regulates the printing or suppression of all statements in the printed output.

Syntax
 [ON] [MACROS]
LIST [] []
 [OFF] [NOMACROS]

Parameters
[ON]
[OFF]

ON specifies that all subsequent statements are to be printed. OFF suppresses the
printing of all subsequent statements.
[MACROS]
[NOMACROS]

MACROS specifies that macro statements are to be printed if a LIST ON is in effect.
NOMACROS suppresses the printing of macro statements.

The default is LIST ON MACROS.

Usage Notes

You can place a LIST statement anywhere in CA-Easytrieve source code. LIST
must be on a record by itself.

LIST does not appear in the printed output.

To suppress all CA-Easytrieve listing information, use the following:
LIST OFF
PARM LIST(NOPARM)

See the PARM Statement for more information.

LOGICAL-RECORD Statement (CA-IDMS)

Statements G - M 5–52

LOGICAL-RECORD Statement (CA-IDMS)
(Workstation only) Code LOGICAL-RECORD statements following the FILE
statement to identify the logical records available for automatic or controlled
processing of CA-IDMS databases.

Parameters

The LOGICAL-RECORD statement cannot be used to define database records. To
define a database record, use the RECORD statement. In addition, fields cannot be
defined in association with the LOGICAL-RECORD statement. Fields are defined
following the ELEMENT-RECORD statement.

The MACRO prototype statement must be the first statement of a macro. It
optionally defines the parameters of a macro. Positional and keyword parameters
can be used.

MACRO MACRO must be the first word on a prototype statement.

Syntax
 LOGICAL-RECORD record-name

record-name Record-name is the one to sixteen-character name of the logical
record as defined in the subschema.

Usage Notes

You can use IDD statements to automatically generate LOGICAL-RECORD,
ELEMENT-RECORD, and DEFINE statements.

MACRO Statement

Syntax
MACRO [positional-count] +

 [positional-parameters] ... [keyword-parameters] ...

Parameters

MACRO Statement

Statements G - M 5–53

[positional-count] Positional-count is an optional parameter that specifies the
number of positional-parameters on the prototype statement. It is required only
when you use keyword-parameters and positional-parameters. You must code the
value as zero when you specify only keyword-parameters on the prototype
statement.

[positional-parameters] Use positional-parameters when a value is always
required for the parameters each time the macro is invoked. Frequently-used
parameters are often positional, because you need only code the value of the
parameter.

You must code positional-parameters before any keyword-parameters. The positional
values are substituted according to their position on the prototype statement.

■ For optionally-used parameters

Examples

[keyword-parameters] Use keyword-parameters:

■ To help keep track of a large number of parameters

■ To specify a default value for parameters.

Keyword-parameters have two parts: the keyword name and the default value.

The following series of examples depict the coding of macro prototype statements.
See the “System Services” chapter in the CA-Easytrieve Programmer Guide for more
information.

Macro with No Substitution Parameters
MACRO
...
...

Macro with only positional parameters
MACRO POS1 POS2
...
...

The number of positional-parameters is not indicated. You could have coded the
optional positional-count parameter as a ‘2.’

Macro with only keyword parameters
MACRO 0 KEY1 VALUE1 KEY2 VALUE2
...
...

Code the number of positional-parameters as zero. Positional-count is a required
parameter when you use keyword-parameters.

MASK Parameter

Statements G - M 5–54

Macro with positional and keyword parameters
MACRO 1 POS1 KEY1 VALUE1
...
...

Macros with both positional and keyword-parameters require that you supply
positional-parameters first, and also supply a positional-count.

MASK Parameter
The optional MASK parameter establishes a pattern (edit mask) for a field name.
The MASK parameter can be coded in the syntax of the following CA-Easytrieve
statements:

■ DEFINE

■ ROW

Syntax
[MASK ({[mask-identifier][BWZ]['mask-literal']|HEX })]

[mask-identifier] Any letter from A through Y can be used as an optional
mask-identifier. You can use the letter to identify a new mask or to retrieve a mask
that was previously defined in the Site Options Table or by a mask parameter on a
previous field definition. If the new mask that you identify does not already exist,
CA-Easytrieve retains the mask for future reference. If you subsequently reference
a field-name for display, CA-Easytrieve automatically uses the associated letter
identifier to determine the edit mask. Do not use the same identifier to establish
more than one mask. You can define 192 unidentified edit masks and 25 identified
edit masks for a total of 217 edit masks.

[BWZ] The BWZ (blank when zero) option suppresses the display of field-name
when it contains all zeros. BWZ can be used by itself or with other options on the
MASK parameter.

['mask-literal'] ‘Mask-literal’ defines an edit mask and must be enclosed
within single quotes. The actual edit mask is coded according to the rules specified
below under Editing Rules.

HEX HEX is a special edit mask that instructs CA-Easytrieve to display the
contents of field-name in double-digit hexadecimal format. You can display fields
of up to 50 bytes with the HEX mask.

Note: HEX edit masks are not allowed for VARYING fields.

MASK Parameter

Statements G - M 5–55

Editing Rules
■ CA-Easytrieve edits field data only at the time of display and according to a

specified edit mask pattern.

■ The MASK parameter of the DEFINE and ROW statements specifies the edit
mask pattern.

■ Each digit of the field must be designated in the mask by an edit mask
character:

Symbol Meaning

 9 Prints a digit.

 Z Prints a digit, except for leading zeros.

 * Prints asterisks instead of leading zeros.

 – Prints a minus sign prior to the first non-zero digit of a
negative number.

 $ Prints a currency symbol prior to the first non-zero digit. The
type of currency symbol ($, ¥, £, _, etc.) is determined by the
MONEY Site Option.

 x Insertion symbol - prints any character with the edited data.

Decimal Digits

■ When you display data, there is no implied relationship between the number
of decimal digits in the edit mask and the number of decimal digits in the
field definition. You must code the correct number of decimal digits in the
mask.

■ When screen data is edited against a mask, the decimal point is automatically
aligned.

■ The currency symbol indicator is recognized in the input edit mask and
appears in the output edit mask. For example, if the currency symbol is set
to #, a valid edit mask is ‘###,##9.99.’

Alphanumeric Fields

■ Alphanumeric fields cannot be edited. (The exception is MASK HEX.)

Currency Symbols

MASK Parameter

Statements G - M 5–56

Insertion Symbols

■ Z, $, -, and * print digits only when coded as the first symbol of the edit
mask, and only up to the first 9 symbols.

 All other symbols before the last digit position are treated as insertion
symbols, including Z, $, -, and *. The symbols , (comma) and . (period) can
also be used as insertion symbols.

– If the symbol that prints a digit following the insertion symbol is a 9, the
insertion characters always print.

Fill Characters

Negative Indicators

 Insertion symbols before the first digit position always print.

■ Insertion symbols between digit positions print according to the following
rules:

– If the digit position following the insertion symbols is a Z, $, -, or *, the
insertion symbols print only if the digit position prints. If the digit
position does not print, the insertion symbols are replaced by fill
symbols.

For example, in the mask ‘ZZZ,999.99,’ the comma always prints. In the mask
‘ZZZ,Z99,99,’ the comma prints only if the digit prior to the comma is non-zero.

■ The default fill character for an edit mask is a blank, unless an * (asterisk) is
specified.

Mask Display Length

■ When the first symbol of an edit mask is a - (dash) or a currency symbol, the
display length of the mask is the length of the mask plus one.

■ The mask for a SUM field in a report is automatically increased by the
number of digits specified by the SUMSPACE parameter on the REPORT
statement. CA-Easytrieve duplicates the first digit position the required
number of times.

■ Symbols following the last digit position specify the negative indicator. The
symbols print if the value edited is negative. If the value edited is positive,
the symbols are replaced by fill characters.

MASK Parameter

Statements G - M 5–57

System Default Masks - Numeric Fields

When you do not specify a mask, the following defaults apply:
 Number of
 Decimals Mask

 1 ZZ,ZZZ,ZZZ,ZZZ,ZZZ,ZZZ.9-

 4 ZZ,ZZZ,ZZZ,ZZZ,ZZZ.9999-

 7 ZZ,ZZZ,ZZZ,ZZZ.9999999-

 10 ZZ,ZZZ,ZZZ.9999999999-

 15 ZZZ.999999999999999-

* For zoned decimal fields with no decimals, the default mask

Leading Zeros

When leading zeros are an important part of the number (such as social security
numbers and part numbers) an edit mask that displays these zeroes is essential.
Following are examples of edit masks that display leading zeros:

 Field Contents

 none ZZZZZZZZZZZZZZZZZZ *
 0 ZZZ,ZZZ,ZZZ,ZZZ,ZZZ,ZZZ-

 2 Z,ZZZ,ZZZ,ZZZ,ZZZ,ZZZ.99-
 3 ZZZ,ZZZ,ZZZ,ZZZ,ZZZ.999-

 5 Z,ZZZ,ZZZ,ZZZ,ZZZ.99999-
 6 ZZZ,ZZZ,ZZZ,ZZZ.999999-

 8 Z,ZZZ,ZZZ,ZZZ.99999999-
 9 ZZZ,ZZZ,ZZZ.999999999-

 11 Z,ZZZ,ZZZ.99999999999-
 12 ZZZ,ZZZ.999999999999-
 13 ZZ,ZZZ.9999999999999-
 14 Z,ZZZ.99999999999999-

 16 ZZ.9999999999999999-
 17 Z.99999999999999999-
 18 .999999999999999999-

 is '999999999999999999'.

Your system administrator can define additional edit masks in the Site Options
Table when CA-Easytrieve is installed.

CA-Easytrieve provides a number of methods for dealing with leading zeros by
displaying, suppressing, or replacing them.

Displaying

Mask Displayed Results

999-99-9999 053707163 053-70-7163

(99)-9999 006421 (00)-6421

MASK Parameter

Statements G - M 5–58

Suppressing

In some instances, leading zeros add unnecessary information and can confuse the
reader. You can suppress the display of leading zeros by using one of the
following masks:

Displayed
Results

Mask Field Contents

$$,$$9 01234 $1,234

$$,$$9 00008 $8

$$,$$9.99 0123456 $1,234.56

ZZZ,ZZ9 000123 123

---,--9 +001234 1,234

---,--9 -001234 -1,234

Replacing

 Field Contents

In cases where fields need to be protected (such as check amounts), you can use
edit masks that replace leading zeros with other symbols:

Mask Displayed Results

**9 001 **1

,9 01234 *1,234

,9.99 0123456 *1,234.56

Negative Numbers

CA-Easytrieve displays the symbols used as negative number indicators to the
right of the last digit of the negative data that you edit. You can use any symbols as
negative number indicators, although the most typical indicators are the minus
sign (-) and the credit indicator (CR). If the number is positive, CA-Easytrieve
inhibits the display of these symbol(s); however, when the field contents turns
negative, the negative number indicators are edited into the displayed output by
CA-Easytrieve:

Displayed Results Mask Field Contents

ZZZ- -123 123-

MASK Parameter

Statements G - M 5–59

Mask Field Contents Displayed Results

ZZZ- +123 123

ZZZ CR -123 123 CR

ZZZ CR +123 123

ZZZ IS MINUS -123 123 IS MINUS

Examples

The following edit mask examples illustrate editing mask rules:

 Mask Field Contents Displayed Results
 ‘Z,ZZZ,ZZZ.99’ .01 .01

 ‘ZZHELLOZZ9.99’ 123.01 123.01

 ‘ZZHELLOZZ9.99’ 1234.01 1HELLO234.01

 ‘**HELLO**9.99’ 11.01 ********11.01

 ‘**HELLO**9.99’ 123.99 *******123.99

 ‘**HELLO**9.99’ 1234.99 *1HELLO234.99

 ‘$$99$$99.99’ 1234.99 $02$$34.99

 ‘999Z999.99’ 12345.99 012Z345.99

‘SSN 999-99-9999’ 123456789 SSN 123-45-6789

 ‘ZZZ.99 MINUS’ 12.45 12.45

 ‘ZZZ.99 MINUS’ -12.45 12.45
MINUS

 ‘***.99 MINUS’ 12.45
*12.45******

 ‘***.99 MINUS’ -12.45 *12.45
MINUS

 ‘---.99’ 123.45 123.45

 ‘---.99’ -123.45 -123.45

MEND Statement

Statements G - M 5–60

MEND Statement
The MEND statement is an optional macro termination command used at the end
of a macro. MEND is required at the end of an instream macro. See the MSTART
Statement.

Syntax
MEND

Usage Notes

MEND must be coded on a line by itself.

MESSAGE Statement
The MESSAGE statement allows you to issue your own specific messages for a
screen activity. You define the message type and specify the message text using
the MESSAGE statement.

Syntax
MESSAGE {'literal' }
 { } ... +
 {field-name}

 [{INFORMATION}]
 [LEVEL {WARNING }]
 [{ACTION }]

Parameters
{'literal' }
{ }
{field-name}

Use ‘literal’ to define the text you want displayed in the message. Use field-name to
specify a field whose contents you want displayed as part of the message. A
message can consist of a combination of literals and field-names.

The maximum length of a message is 130 characters. If the message exceeds the
message area for the screen on which it is displayed, the message is truncated.
[{INFORMATION}]
[LEVEL {WARNING }]
[{ACTION }]

Use LEVEL to specify the type of message you are defining.

MESSAGE Statement

Statements G - M 5–61

INFORMATION messages typically inform a user that processing is proceeding
normally.

WARNING messages tell the user that a potentially undesirable condition could
occur or has occurred even though he can ignore the error.

ACTION messages are the most severe. They tell a user that an error has occurred
and an action is required to correct the error before he can continue. ACTION is
the default message level if no level is specified.

Usage Notes

You can code the MESSAGE statement in a screen procedure or in another activity.

You can determine where messages of a particular level are displayed on the
screen by overriding the default message area on a DEFAULT statement. (The
default message area is one line above the function key display area at the bottom
of the screen.) You can also use the DEFAULT statement to override default
message attributes.

CA-Easytrieve maintains an internal message area for each type of message. The
MESSAGE statement updates the pending message area. When the next screen is
displayed, the screen message area is built from the pending message.

If different levels of messages are displayed on the same line (by default or
override), then the message displayed is controlled by message precedence. If two
messages are sent to the same line on the screen, the message with the highest
severity is displayed. The severity precedence from highest to lowest is:

■ ACTION

■ WARNING

■ INFORMATION

If multiple MESSAGE statements of the same precedence are issued before
displaying the screen, the last message issued is displayed. There are Site Options
that determine the display attributes for the three levels of messages. You can
override these attributes on a DEFAULT statement.

Example
MESSAGE 'Department of ' EMP-DEPT ' not 900-999.' LEVEL ACTION

MOVE Statement

Statements G - M 5–62

MOVE Statement
MOVE transfers character strings from one storage location to another. The MOVE
statement is especially useful for moving data without conversion and for moving
variable length data strings.

Syntax

Format 1
 {send-file-name }
 {send-record-name} [send-length-field]
MOVE { } [] +
 {send-field-name } [send-length-literal]
 {send-literal }

 {receive-file-name } [receive-length-field]
 TO {receive-record-name} [] [FILL fill-character]
 {receive-field-name } [receive-length-literal]

 {SPACE }

{ }

The first parameter after the MOVE keyword (send-file-name, send-record-name, send-
field-name or send-literal) identifies the sending data area. Send-file-name or send-
record-name can be any file or database record with current data availability. When
send-file-name is a CA-IDMS file, all records in the file are moved.

[send-length-field]

{receive-file-name }

Format 2
 {NULL }

 {SPACES}
MOVE { } TO receive-field-name ...
 {ZERO }
 {ZEROS }
 {ZEROES}

Parameters

Format 1
{send-file-name }
{send-record-name}

{send-field-name }
{send-literal }

The default length of send-file-name is the current value of the system-defined
RECORD-LENGTH field.

Note: If send-literal is non-numeric, it must be enclosed within single quotes.

[send-length-literal]

You can override the length of the sending field with the current value of
send-length-field or send-length-literal.

MOVE Statement

Statements G - M 5–63

{receive-record-name}
{receive-field-name }

The above parameters identify the receiving data area. Receive-file-name or receive-
record-name can be any file or database record with current data availability. The
default length of receive-file-name is the current value of the system-defined
RECORD-LENGTH field.

You can override the length of the receiving field with the current value of receive-
length-field or receive-length-literal.

Format 2

{SPACES}

{ZEROS }

receive-field-name Receive-field-name identifies the receiving data area.
Multiple receive-field-names can be specified. Receive-field-names are set to the
appropriate data format, such as packed zero for fields with a type of P.

When you process an SQL table as a CA-Easytrieve file, CA-Easytrieve knows
which fields are nullable. This information is obtained automatically from the SQL
catalog when used to generate CA-Easytrieve field definitions.

[receive-length-field]
[receive-length-literal]

[FILL fill-character] CA-Easytrieve truncates longer sending fields on the
right. Longer receiving fields are padded on the right with spaces or a character
you specify in fill-character.

Fill-character must be one or two bytes. Non-numeric characters must be enclosed
within single quotes. When fill-character contains numeric characters, they are
treated as a zoned decimal value.

{NULL }
{SPACE }

{ }
{ZERO }

{ZEROES}

The first parameter after the MOVE keyword (NULL, SPACE, SPACES, ZERO,
ZEROS, or ZEROES) identifies the sending data area. The default length of the
field is the defined length of receive-field-name. Moving spaces or zeros to a field
fills the entire field with the selected character. Moving nulls sets a nullable field to
NULL. Moving spaces or zeros sets a nullable field to NOT NULL.

Usage Notes

When you specify Format 1 parameters, data moves from left to right as if both
areas were alphanumeric. The data moved is unconverted. Send-file-name and
receive-file-name can be any file in which data is currently available. See
Assignment and Moves in the “Coding a CA-Easytrieve Program” chapter of the
CA-Easytrieve Programmer Guide for MOVE statement specification rules.

MOVE LIKE Statement

Statements G - M 5–64

Examples

Move statement example 1
FILE PERSNL SQL (PERSONNEL)

DEFINE CTR2 W 2 N

MOVE ZEROS TO CTR1, CTR2

Move statement example 2

 DEFINE ASTERISK-LINE W 10 A VALUE '=========='

 PROGRAM NAME MYPROG

 DISPLAY COUNTER-1 +2 COUNTER-2

 DISPLAY ASTERISK-LINE

 ==========

The MOVE LIKE statement moves the contents of fields with identical names from
one file, record, or working storage to another. Data movement and conversion
follow the rules of the Assignment statement.

MOVE LIKE { } TO { }

{send-file-name }

Send-file-name or send-record-name identifies the sending data area.

SQL INCLUDE (EMP#) FROM PERSONNEL LOCATION * NULLABLE
DEFINE CTR1 W 10 N

DEFINE PLINE W 130 A
. . .

MOVE SPACES TO PLINE
MOVE NULL TO EMP#

Statements:

 DEFINE COUNTER-1 W 10 N VALUE 99
 DEFINE COUNTER-2 W 2 N VALUE 66

 DISPLAY COUNTER-1 +2 COUNTER-2
 MOVE ZEROS TO COUNTER-1 COUNTER-2

 DISPLAY ASTERISK-LINE
 MOVE '*' TO ASTERISK-LINE FILL '*'

Results:

 0000000099 66
 0000000000 00

MOVE LIKE Statement

Syntax
 {send-file-name } {receive-file-name }

 {send-record-name} {receive-record-name}

Parameters

{ }
{send-record-name}

MOVE LIKE Statement

Statements G - M 5–65

{receive-file-name }
{ }
{receive-record-name}

When you issue a MOVE LIKE statement, the contents of fields in send-file-name or
send-record-name replace the contents of fields with identical names in receive-
file-name or receive-record-name. When receive-file-name or receive-record-name
contains overlapping fields, the order in which the fields are defined is important.
The moves occur starting with the first identically-named field in receive-file-name
or receive-record-name and ending with the last identically-named field in the file.

CA-IDMS IDD Processing

■ The sending and receiving fields have matching names

Record name qualifiers do not participate in the process of matching qualifiers
between two fields. For example, in a MOVE LIKE from a record to a file (that
owns the record), no matching is done between the record names of the receiving
file and qualifiers of source (record) fields. Therefore, source fields can be matched
to a field under one record and another source field can be matched to a field
under a different record.

Receive-file-name or receive-record-name identifies the receiving data area.

Usage Notes

Note: The order in which fields are processed differs from previous versions of
CA-Easytrieve. In previous versions, the moves occurred starting with the last
identically-named field in receive-file-name or receive-record-name and ended with
the first identically-named field in the file.

If you want to move identically-named fields to or from working storage, you can
use the keyword WORK as the send-file-name or receive-file-name.

In CA-IDMS IDD processing, the fields of a file defined by an IDD statement are
organized into group item structures. A group item is a field subdivided by
smaller fields. The smaller fields can themselves be group items and, therefore,
subdivided by even smaller fields. A group item “owns” its subdividing fields. A
field without subdivision is called an elementary field.

In IDD processing, MOVE LIKE assigns a new value to the receiving field if all of
the following conditions are met:

■ The sending and receiving fields have matching qualifier (group item) names

■ Either the sending or receiving field is an elementary field.

MSTART Statement

Statements G - M 5–66

Differences Between MOVE LIKE and MOVE

The differences between the MOVE LIKE statement and the MOVE statement are
as follows:

■ The MOVE LIKE statement generates an Assignment statement that provides
data conversion according to data type. See Assignment and Moves in the
“Coding a CA-Easytrieve Program” chapter of the CA-Easytrieve Programmer
Guide for Assignment statement specification rules.

 FILE PERSNL FB(150 1800)

 NAME 17 16 A

 FILE MYFILE FB(150 1800)

 MOVE LIKE PERSNL TO MYFILE

 MYFILE:NAME-FIRST = PERSNL:NAME-FIRST

 MYFILE:BRANCH = PERSNL:BRANCH

MSTART Statement

MSTART macro-name

■ The MOVE statement moves data without converting it.

Example

 REGION 1 1 N
 BRANCH 2 2 N

 NAME-LAST 17 8 A
 NAME-FIRST 25 8 A

 COPY PERSNL
 JOB INPUT PERSONL NAME MYPROG

 PUT MYFILE

In the above example, MOVE LIKE generates the following Assignment
statements:

 MYFILE:NAME-LAST = PERSNL:NAME-LAST
 MYFILE:NAME = PERSNL:NAME

 MYFILE:REGION = PERSNL:REGION

Whatever values were in the fields of the file PERSNL are now found in the fields
of the file MYFILE.

The MSTART statement is used to begin an instream macro. MSTART must be the
first statement in the program.

Syntax

MSTART Statement

Statements G - M 5–67

Parameters

macro-name Specify the name of the macro. Macro-name must be from one to
eight characters in length. The first character must be alphabetic.

Statements N - R 6–1

[{DYNAMIC }]
[BIND {STATIC-ONLY}] +
[{ANY }]

[{STATIC]]

Chapter

6 Statements N - R

NEWPAGE Statement
NEWPAGE is a listing control statement that ejects the printer to the top of the
next page before printing the next line of the source program on the statement
listing.

Syntax
NEWPAGE

Usage Notes

You can code a NEWPAGE statement anywhere in CA-Easytrieve source code.
NEWPAGE must be on a record by itself. NEWPAGE does not appear in the
printed output.

PARM Statement
The PARM statement allows you to override selected general standards for a
program that are set in the Site Options Table. Alteration of the environment with
the PARM statement lasts for only as long as the program is running.

Syntax
PARM +

[{SNAP }]
[ABEXIT {NOSNAP}] +
[{NO }]

PARM Statement

Statements N - R 6–2

[{YES}]
[WORKFILE ({ } [BLOCKMAX])]
[{NO }]

[CALL {]] +
[{DYNAMIC]]

[{EBCDIC }]
[CODE PROCESS {ASCII }] +
[{dbcs-code-name}]

[COMPILE] +

[[CLIST] [PMAP] [DMAP] [FLDCHK] [FLOW]
[DEBUG ([] [] [] [] [] +
[[NOCLIST] [NOPMAP] [NODMAP] [NOFLDCHK] [NOFLOW]

 [STATE] [XREF {LONG }]]
 [FLOWSIZ number-of-table-entries] [] [{ }])] +
 [NOSTATE] [NOXREF {SHORT}]]

[LINK (program-name [R])] +

[{PARM }]
[LIST { }] +
[{NOPARM}]

[PLAN (planname [command-program-name])] +

[PLANOPTS 'plan-options-module'] +

[PREPNAME (SQL-access-module ['access-userid'])] +

[SORT +

 [{NO }]
 ([ALTSEQ { }] +
 [{(YES [alt-sort-table])}]

 [DEVICE device-type] +

 [{storage-amount }]
 [MEMORY { }] +
 [{(MAX [-storage-released])}]

 [{ALL [CONSOLE] }]
 [{ [PRINTER] }]
 [{ }]
 [MSG ({CRITICAL [CONSOLE] })] +
 [{ [PRINTER] }]
 [{DEFAULT }]
 [{NO }]

 [RELEASE core-storage-amount] +

 [WORK number-of-work-data-sets])] +

[SQLID 'auth-id'] +

[{FULL }]
[SQLSYNTAX {PARTIAL}] +
[{NONE }]

[SSID 'ssid'] +

[SYNTAX] +

[TRANSID 'transid'] +

[USERID ('connect-userid' ['password'])] +

[[{DISK }]]
[VFM ([buffer-core-storage] [DEVICE { }])] +
[[{MEMORY}]]

PARM Statement

Parameters
[{SNAP }]
[ABEXIT {NOSNAP}]
[{NO }]

ABEXIT indicates the level of control exercised over program interrupt codes 1
through 11. SNAP prints a formatted dump of CA-Easytrieve storage areas along
with an error analysis report. NOSNAP prints only an error analysis report. NO
inhibits CA-Easytrieve interception of program interrupts. ABEXIT is ignored on
the workstation.
[{DYNAMIC }]
[BIND {STATIC-ONLY}]
[{ANY }]

BIND is an SQL-related parameter that identifies the type of SQL bind that you
want for the execution of your application program. BIND is currently only used
by the mainframe DB2 SQL interface. It is ignored in other environments.

BIND DYNAMIC results in the dynamic execution of the SQL statements in your
program. Dynamic processing requires SQL statements to be dynamically
“prepared” before they can be executed. The SQL interface controls the SQL
environment and does not prepare SQL statements repeatedly unless a syncpoint
has been taken.

BIND STATIC-ONLY indicates that your application program is to execute
statically. This option requires the creation of a “static-command-program” that is
then processed by the DB2 preprocessor. The DB2 preprocessor generates a DBRM
and finally a PLAN. During the execution of your application program, the SQL
interface processes the SQL statements in the “static-command-program.” If any
errors are found in the “static-command-program” or its PLAN, SQL processing is
terminated.

BIND ANY indicates that a “static-command-program” is to be generated and a
PLAN created, as with an option of STATIC-ONLY. However, if the SQL interface
encounters any errors with the “static-command-program” or its PLAN during the
execution of your application program, it switches to dynamic processing.

BIND STATIC-ONLY or BIND ANY requires a value for the PLAN and LINK
parameters. PLAN specifies the name of the “static-command-program” and its
DB2 PLAN name. LINK identifies the load module name of your link-edited
CA-Easytrieve program. Your CA-Easytrieve application program must run as a
link-edited program for static SQL processing.

Note: Regardless of the option you specify for the BIND parameter, your program
is dynamically processed when being processed by the interpreter, that is,
whenever the CHECK or RUN commands are executed.

Statements N - R 6–3

PARM Statement

DYNAMIC is the default mode of execution if no value is specified for the BIND
parameter in the program or in the Options Table. Otherwise, the BIND value in
the Options Table becomes the default. The following table illustrates the use of
the BIND parameter with values specified in the Options Table.

BIND Parameter Value Specified in the Options Table

Value Specified blank A S D

No BIND
parameter
specified

BIND defaults to
DYNAMIC

BIND defaults to
ANY

BIND defaults to
STATIC-ONLY

BIND defaults
to DYNAMIC

ANY ANY is the BIND
parameter

ANY is the BIND
parameter

Invalid - an error
occurs

Invalid - an
error occurs

STATIC-ONLY STATIC-ONLY is
the BIND
parameter

STATIC-ONLY is
the BIND
parameter

STATIC-ONLY is
the BIND
parameter

Invalid - an
error occurs

DYNAMIC DYNAMIC is the
BIND parameter

Invalid - an error
occurs

Invalid - an error
occurs

DYNAMIC is
the BIND
parameter

[{STATIC }]
[CALL { }]
[{DYNAMIC}]

CALL enables you to specify how subprograms referenced in CALL statements are
linked to your CA-Easytrieve program. STATIC indicates that you want the
subprogram to be linked with your CA-Easytrieve program. DYNAMIC indicates
that you want the subprogram to be dynamically loaded. The default is STATIC.
CALL is invalid on the Workstation and mainframe.
[{EBCDIC }]
[CODE PROCESS {ASCII }]
[{dbcs-code-name}]

(Workstation) CODE defines the processing code system (EBCDIC or ASCII)
CA-Easytrieve uses for working storage and for all files on which the CODE
parameter was not specified on the FILE statement.

If not specified, the default is taken from the CA-Easytrieve/Workstation Site
Options.

(Mainframe DBCS) Use CODE dbcs-code-name to define the DBCS code system to
be used for all K and M fields for this file. If not specified here, the default is taken
from the processing code system as defined in the CA-PSI Subsystems DBCS
Options Table.

Statements N - R 6–4

Note: Using multiple code systems in a program can result in a longer execution
time due to code system conversions.

PARM Statement

Statements N - R 6–5

[{ }]
[NOXREF {SHORT}]

[COMPILE] COMPILE terminates execution after the completion of the syntax
check and compile operations. Use COMPILE to review the code generated on the
CA-Easytrieve Program Map (PMAP).

[DEBUG] DEBUG and its subparameters control generation of certain system
outputs. These outputs are used to analyze programming errors that cause
abnormal execution termination.
[CLIST]
[NOCLIST]

CLIST creates a condensed listing of the executable program produced by the
compiler. NOCLIST inhibits this operation.
[PMAP]
[NOPMAP]

PMAP creates a complete listing of the executable program produced by the
compiler. NOPMAP inhibits this operation.

CLIST and PMAP are mutually exclusive subparameters.
[DMAP]
[NODMAP]

DMAP creates a listing of the data map for each file and its associated fields.
NODMAP inhibits this operation.
[FLDCHK]
[NOFLDCHK]

FLDCHK validates all data references during program execution. A data reference
is invalid if a field-name was referenced in a file which had no active record. Invalid
references (for example, data reference after end-of-file) might otherwise cause a
program interruption or incorrect program results. NOFLDCHK inhibits this
operation.
[FLOW]
[NOFLOW]

FLOW activates a trace of the statements being executed. The statement numbers
are printed in the associated analysis report. NOFLOW inhibits this operation.
FLOW and NOFLOW are ignored on the workstation.
[FLOWSIZ number-of-table-entries]

FLOWSIZ establishes the number of entries in the trace table for the flow option.
Number-of-table-entries is a numeric value from 1 to 4096. FLOWSIZ is ignored on
the workstation.
[STATE]
[NOSTATE]

STATE saves the statement number of the statement currently being executed. The
statement number is then printed in the associated abnormal termination
messages. NOSTATE inhibits this operation.
[XREF {LONG }]

PARM Statement

Statements N - R 6–6

PLAN are performed outside the control of CA-Easytrieve, you must specify the
correct names on the batch JCL to ensure successful execution of your program.

XREF causes the creation of a cross reference listing of each field name, file name,
procedure name, screen name, report name, and statement label. LONG implies
that entries are listed even though they are not referenced. SHORT causes only
referenced entries to be listed. NOXREF inhibits this operation. XREF and
NOXREF are ignored on the workstation.
[LINK (program-name [R])]

LINK terminates execution after the completion of syntax check and compile
operations. On the mainframe, program-name is used to create the link edit
control statement that names the program. In MVS systems, the optional
subparameter R specifies that the program replaces an existing program with the
same name. On the workstation, program-name names the file containing the
object module (.OBJ).

Note: On the mainframe, if COMPILE, LINK, or SYNTAX is not specified, the
object deck is generated without a NAME (MVS) or PHASE (VSE) card. For batch
compilation, PARM LINK is not recommended because the program-name is
generated from the batch compile JCL. In VSE systems, PARM LINK causes two
PHASE cards to be generated for the object deck, which results in a non-executable
load module. On the workstation, the object module file is named the same as the
source program (program.OBJ).
[{PARM }]
[LIST { }]
[{NOPARM}]

LIST controls the printing of certain system outputs.

PARM prints a compile summary and system parameters at the conclusion of the
syntax check operation. NOPARM inhibits this operation.
[PLAN (planname [command-program-name])]

PLAN is an SQL parameter. Currently, it is used only by the mainframe DB2 SQL
interface.

The PLAN parameter enables you to specify values for the
“static-command-program” and its DB2 PLAN. The name you specify for the
“static-command-program” must be a valid load module name. This name must
be different from the program-name specified for the LINK parameter.

The value specified for planname must be the name of the DB2 PLAN that identifies
the DBRM of the given “static-command-program.” See the “SQL Database
Processing” chapter in the CA-Easytrieve Programmer Guide for information about
how to generate the “static-command-program.”

If not specified, command-program-name defaults to planname.

Because the link-edit of the “static-command-program” and the bind of the DB2

PARM Statement

Statements N - R 6–7

allocated sort work data sets. Device-type can be any valid unit name or generic
device type. DEVICE is ignored on the workstation.

[PLANOPTS 'plan-options-module'] PLANOPTS is an SQL parameter.
Currently, this parameter is only used by the CA-Datacom/DB SQL interface.

Use PLANOPTS to specify the name of the plan options module that is to override
the default CA-Pan/SQL plan options module, DQSMPLN@. See the CA-Pan/SQL
SQL Interface Installation Guide for more information about generating a plan
options module.

[PREPNAME (SQL-access-module ['access-userid'])] PREPNAME is an SQL
parameter. Currently, it is used by the SQL/DS and CA-Datacom SQL interfaces.

For the SQL/DS SQL interface, the PREPNAME parameter enables you to specify
the name of the access module or “package” that is to be associated with the SQL
statements for this application program.

For the CA-Datacom SQL interface, PREPNAME enables you to specify the access
plan.

For either database, The PREPNAME parameter also enables you to specify an
owner ID (‘access-userid’) for the access module or access plan. See your specific
database documentation for information about obtaining an authorization ID.

If PREPNAME is not specified, SQL-access-module defaults to program-name on the
LINK parameter. If the LINK parameter is not specified, SQL-access-module
defaults to the value specified in the Site Options Table.

Note: You should specify a unique value for the SQL-access-module for each
CA-Easytrieve program. If you use the same name for either parameter value,
database catalog contention can occur, or an existing access module could be
replaced with another one. See your database administrator for information about
establishing naming conventions.

PREPNAME can be abbreviated to PREP.

[SORT] SORT overrides the default parameters used to interface with your
installation’s sort program. See the installation procedures on your product tape for
details of these SORT parameters.
[{NO }]
[ALTSEQ { }]
[{(YES [alt-sort-table])}]

ALTSEQ identifies the collating sequence table for the sort process. NO indicates
usage of the standard table. YES identifies an alternate table. Alt-sort-table specifies
the name of the table that you provide. When you omit alt-sort-table, the default
name is EZTPAQTT.
[DEVICE device-type] DEVICE specifies the device type for dynamically

PARM Statement

[{storage-amount }]
[MEMORY { }]
[{(MAX [-storage-released])}]

MEMORY specifies the maximum amount of core storage used by the sort
program. Storage-amount is the amount of storage made available for the sort and
must be a value from 16 to 4096. MAX allows the sort program to obtain
maximum storage available. Storage-released is the amount of storage released (for
system use) after the MAX amount has been reserved. A minus sign must
immediately precede storage-released. Storage-amount and storage-released values
represent 1024-byte units of storage. MEMORY is ignored on the workstation.
[{ALL [CONSOLE] }]
[{ [PRINTER] }]
[{ }]
[MSG ({CRITICAL [CONSOLE] })]
[{ [PRINTER] }]
[{DEFAULT }]
[{NO }]

Specify the level of messages to be output by the sort program.

ALL outputs all messages. CRITICAL outputs only critical level messages.
DEFAULT outputs messages at the level specified when the sort program was
installed. NO outputs no messages.

For ALL or CRITICAL messages, specify the location at which messages are
received: PRINTER or CONSOLE.

MSG is ignored on the workstation.

[RELEASE core-storage-amount] RELEASE determines the amount of core
storage reserved from the sort program. The value of core-storage-amount should be
set large enough to supply all of the core storage needs of any exits used as a part
of the sort process. Core-storage-amount must be a numeric value from 0 to 1024.
The value represents 1024-byte units of storage.

RELEASE is ignored on the workstation.

[WORK number-of-work-data-sets])] WORK specifies the type and number
of work data sets used by the sort.

The value of number-of-work-data-sets controls the allocation of work data sets.
When number-of-work-data-sets is zero, you must supply DD statements for all work
data sets (none are dynamically allocated). A number-of-work-data-sets value from 1
to 31 specifies the number of work data sets dynamically allocated by the sort
program.

WORK is ignored on the workstation.

Statements N - R 6–8

[SQLID 'auth-id'] SQLID is an SQL parameter. Currently, this parameter is
used only by the mainframe DB2 SQL interface.

PARM Statement

Statements N - R 6–9

performed.

SQLID enables you to change the authorization ID of your SQL session. If you
specify a value for ‘auth-id’, the DB2 SET CURRENT SQLID command is executed
by the DB2 SQL interface at compile time. For the SET CURRENT SQLID
command to execute successfully, you must have installed the CA-Pan/SQL SQL
Interface for a DB2 release of 2.1 or greater. You must also have the correct DB2
authorization to execute the SET CURRENT SQLID command. See your DB2
documentation for more information about the SET CURRENT SQLID command.

This parameter is in effect only for the compilation of your application program,
unless your program is coded using automatic processing. If your program is
coded using automatic processing, the SET CURRENT SQLID command is
executed again at the start of runtime. For native SQL processing, you must code
the SET CURRENT SQLID command in your program if you want to change the
value for the current authorization ID.

See the “SQL Database Processing” chapter in the CA-Easytrieve Programmer Guide
for more information.
[{FULL }]
[SQLSYNTAX {PARTIAL}]
[{NONE }]

Use SQLSYNTAX to specify the level of SQL syntax checking that is to be
performed on the SQL statements coded in your program.

Specify FULL to indicate that detail level syntax checking should be performed.
An SQL PREPARE statement is executed by the CA-Pan/SQL SQL Interface for
those SQL statements that can be dynamically prepared. If you specify FULL, your
DBMS catalog must be available to CA-Easytrieve.

Specify PARTIAL to indicate that SQL statements in your program should be
syntax checked for valid commands and secondary keywords. No connection is
made to the DBMS catalog unless you have coded the SQL INCLUDE statement.
If you coded an SQL INCLUDE statement, your DBMS catalog must be available
to CA-Easytrieve. Your program cannot be executed until it has been fully syntax
checked, as described above.

Specify NONE with a BIND STATIC-ONLY parameter if you want syntax
checking to be performed by the DB2 preprocessor in a batch environment. NONE
causes partial syntax checking, as described above. If no compile errors are found,
your program executes, unless CA-Easytrieve errors are found. No connection is
made to the DBMS catalog unless you have coded the SQL INCLUDE statement.
If you coded an SQL INCLUDE statement, your DBMS catalog must be available
to CA-Easytrieve.

If you specify NONE for a non-DB2 environment, partial syntax checking is
performed, but the program is not executed until full syntax checking is

PARM Statement

When running under the CA-Easytrieve interpreter, dynamic processing is always
performed. An option of NONE is only effective for the batch compilation and
execution of your program.

[SSID 'ssid'] SSID is an SQL parameter. Currently, SSID is used only by the
DB2 , SYBASE, and CA-Ingres interfaces.

For mainframe DB2:

You can use SSID to specify the DB2 subsystem ID. If you specify this value, it is
used at both compile and runtime. If you do not specify the DB2 subsystem ID, the
subsystem ID from the Site Options Table is used.

If no DB2 subsystem ID is specified in the Site Options Table, the SQL interface
uses the ID from the DB2 system default module DSNHDECP. The value of the
subsystem ID is obtained at compile and runtime dynamically, therefore, there is
no need to recompile your program to change the ID. See your DB2 systems
programmer or administrator for the default values defined for your DB2 system.

For CA-Ingres, SYBASE, and UNIX DB2:

You can use SSID to specify the name of the database to which this session will
connect. If you do not specify the subsystem ID, the subsystem ID from the Site
Options Table is used. If no DB2 subsystem ID is specified in the site options table,
DB2 uses the ID in the DB2DBDFT environment variable.

SSID is ignored in CICS and on the workstation.

[SYNTAX] SYNTAX terminates CA-Easytrieve processing after the syntax check
operation.

[TRANSID 'transid'] (CICS only) Use TRANSID to specify the transaction
identifier of a program to which control is transferred when the application user
presses an attention key after a pseudo-conversational terminal I/O.

[USERID ('connect-userid' ['password'])] USERID is an SQL parameter.
Currently, USERID is used by the SQL/DS, CA-IDMS, and UNIX SQL interfaces.
USERID is used by the SQL interface to establish a connection to the database for
compilation of the application program.

For SQL/DS:

You can use USERID to specify a valid userid and password for an explicit
CONNECT.

Statements N - R 6–10

PARM Statement

For CA-IDMS:

You can use ‘connect-userid’ to specify the CA-IDMS dictionary name for an explicit
CONNECT. If you do not specify USERID, an implicit connection occurs
according to the rules of the given database system.

For UNIX SQL interfaces:

You can use ‘connect-userid’ to specify the user identifier under which this session
will run. If you do not specify USERID, an explicit connection occurs without an
‘identified-by’ clause. ‘Password’ is ignored.

USERID is ignored on the workstation.

Note: USERID can be abbreviated as USER.
[[{DISK }]]
[VFM ([buffer-core-storage] [DEVICE { }])]
[[{MEMORY}]]

VFM establishes the work area parameters used by the CA-Easytrieve Virtual File
Manager access method.

Buffer-core-storage specifies the amount of core storage made available for the buffer
pool. Valid numeric values for buffer-core-storage are 6 to 4096. Buffer-core-storage
represents 1024-byte units of storage.

DEVICE DISK reverts to disk device usage when the site option default is DEVICE
MEMORY. DEVICE MEMORY inhibits the use of an overflow device.

VFM is ignored on the workstation.
[{YES}]
[WORKFILE ({ } [BLOCKMAX])]
[{NO }]

Use WORKFILE YES instead of VFM if you have multiple large reports in your
program. NO is the default. In MVS systems that take advantage of the system-
defined blocksize feature, use BLOCKMAX to automatically set the blocksize in
your JCL to the largest possible blocksize for the track. See PRINT Statement
Processing in the “Report Processing” chapter in the CA-Easytrieve Programmer
Guide for more information.

Usage Notes

Specification of the PARM statement is optional. Code the PARM statement only
to modify the environment for your program. If used, the PARM statement must
be the first statement in your CA-Easytrieve job.

Statements N - R 6–11

 Environment <============== PARM
 ...
 Library

PARM Statement

 ...
 Activities

Code PARM statement parameters and their subparameters in any order. You
must code multiple subparameters within parentheses.

PARM establishes program level parameters in the following areas:

■ SYNTAX, COMPILE, and LINK determine the mode of execution.

■ ABEXIT, DEBUG, and LIST establish control over system facilities associated
with compiler output and execution error handling.

■ VFM establishes system control parameters.

■ SORT controls the interface to your installation’s sort program.

■ BIND, PLAN, PREPNAME, SQLID, SSID, USERID, PLANOPTS, and
SQLSYNTAX establish parameters for SQL execution.

■ TRANSID controls CICS execution.

See the CA-Easytrieve/Online User Guide for more information on controlling
CA-Easytrieve with the PARM statement.

Examples

The following examples illustrate typical uses of the PARM statement:
PARM for production ...

 PARM LINK(MYPROG) DEBUG(CLIST, DMAP) +
 SORT (MSG (ALL, PRINTER))
 FILE PERSNL FB(150 1800)
 %PERSNL
 JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1
 LINE EMPNAME DEPT

PARM for program testing ...

 PARM ABEXIT (SNAP) +
 DEBUG (PMAP, DMAP, FLDCHK, FLOW, +
 FLOWSIZ (20), STATE)
 FILE PERSNL FB(150 1800)
 %PERSNL
 JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1
 LINE EMPNAME DEPT SALARY-COD

Statements N - R 6–12

PERFORM Statement

Statements N - R 6–13

*
STANDARD-BONUS. PROC
 XMAS-BONUS = PAY-GROSS * 1.05
END-PROC

PERFORM Statement
PERFORM transfers control to a procedure and, after the procedure has been
executed, returns control to the next executable statement after the PERFORM
statement.

Syntax
PERFORM proc-name

Parameters

proc-name Specify the name of the procedure to be executed.

Usage Notes

When CA-Easytrieve encounters the PERFORM statement, it immediately
branches to the named procedure. After exiting from the procedure, program
execution continues with the next executable statement following the just-executed
PERFORM statement.

PERFORM statements in a procedure can invoke other procedures; this is called
procedure nesting. However, recursion is not permitted. That is, procedure A can
invoke procedure B, but procedure B cannot then invoke procedure A. If recursion
is attempted, unpredictable results can occur.

Example

The following example illustrates the use of the PERFORM statement in executing
a user procedure:
FILE PERSNL FB(150 1800)
%PERSNL
XMAS-BONUS W 4 P 2 VALUE 0
*
JOB INPUT PERSNL NAME MYPROG
 IF PAY-GROSS < 300.99
 PERFORM SPECIAL-BONUS
 ELSE
 PERFORM STANDARD-BONUS
 END-IF
 PRINT MYREPORT
*
SPECIAL-BONUS. PROC
 XMAS-BONUS = PAY-GROSS * 1.20
END-PROC

POINT Statement

*
REPORT MYREPORT
LINE NAME-LAST XMAS-BONUS

POINT Statement
The POINT statement enables you to establish the position in an INDEXED or
RELATIVE file from which subsequent data is sequentially retrieved. Data in the
file becomes available only after the next successful sequential retrieval by either
automatic file input or a GET statement.

Syntax
 {= }
 {EQ} {field-name}
POINT file-name [PRIOR] {GE} { } [STATUS]
 {GQ} {literal }
 {>=}

Parameters

file-name File-name must be the same as on a FILE statement that describes an
INDEXED or RELATIVE file.

[PRIOR] Specify PRIOR if you want to use PRIOR on the GET statement. See the
GET Statement for more information.
{= }
{EQ}
{GE}
{GQ}
{>=}

Equal operators (= and EQ) initiate a file position search, based on an exact match
between the file’s keys and the search value. The greater-than operators (GE, GQ,
and >=) initiate a file position search, based on a file’s key being equal to or greater
than the search value.
{field-name}
{ }
{literal }

The search value can be any valid field-name or literal. Alphanumeric literals must
be enclosed within single quotes. CA-Easytrieve does not change the data format
of field-name or literal. The search value must have the same length as the file’s key.
RELATIVE files require field-name to be a 4-byte binary integer field. Field-name
cannot be nullable. Literal is not allowed for a RELATIVE file.

Statements N - R 6–14

[STATUS] Specify the STATUS parameter whenever the possibility exists for an
unsatisfactory completion of the input/output request..

POINT Statement

Statements N - R 6–15

examples on the use of POINT in file processing.

STATUS checks input/output processing to see if it was performed correctly.
STATUS causes the file’s FILE-STATUS field to be set with the appropriate return
code. Refer to Appendix A, “System-Defined Fields,” to determine the meaning of
the contents of FILE-STATUS. Normally, a zero or non-zero test is sufficient.

Note: FILE-STATUS is not defined if you do not specify a file type parameter on
the FILE statement.

If you do not code STATUS and the operating system returns a non-zero status,
CA-Easytrieve issues an appropriate diagnostic message.

In addition to FILE-STATUS, IF EOF file-name is true when the search value is
greater than the highest key in the file.

Note: CICS does not set EOF.

Usage Notes

You cannot use a file presence test (IF file-name) to test the success of a POINT.

You cannot issue a GET PRIOR statement following a POINT statement, or a GET
statement following a POINT PRIOR statement. See the GET Statement for more
information.

GE is not supported for POINT PRIOR when the underlying access method does
not support it.

Example

The following example illustrates the use of POINT:
FILE PERSNL INDEXED
%PERSNL
JOB INPUT NULL NAME MYPROG
 POINT PERSNL GE '01963' STATUS
 IF FILE-STATUS NE 0 OR EOF PERSNL
 DISPLAY 'BAD POINT...FILE STATUS= ' FILE-STATUS
 STOP
 END-IF
 GET PERSNL STATUS
 IF FILE-STATUS NE 0
 DISPLAY 'BAD GET...FILE STATUS= ' FILE-STATUS
 ELSE
 DISPLAY HEX PERSNL
 END-IF
 STOP

See File Processing in the CA-Easytrieve Programmer Guide for more detailed

POP Statement

POP Statement
POP is a listing control statement that restores previous listing control indicators.

Syntax
POP

Usage Notes

POP is especially useful in macros to control the listing of the macro expansion
without affecting listing control indicators outside the macro. Use the PUSH
statement to save the current indicators. You can then set listing control indicators
for use during macro expansion. The POP statement restores the saved indicators.

Note: Use the LIST statement to set listing control indicators.

You can place POP statements anywhere in the CA-Easytrieve source code. POP
must be on a record by itself. POP does not appear in the printed output.

PRINT Statement
The PRINT statement produces report output. Issue the PRINT statement to
initiate a printed line.

Syntax
PRINT [report-name]

Parameters

[report-name] Report-name is the name of the report as specified on a REPORT
statement. If not given, it is assumed to be the first report in the JOB activity.

Usage Notes

In general, report output is not written directly to a report’s printer file as with
DISPLAY, but is scheduled for deferred formatting and writing to the report’s
printer file, perhaps following re-sequencing of an intermediate file.

Statements N - R 6–16

See Report Processing in the CA-Easytrieve Programmer Guide for detailed examples
on the use of PRINT in report processing.

PROC Statement

Statements N - R 6–17

proc-name

■ Be up to 128 characters in length

When you require an intermediate file (referred to as a report work file) for a
report, executing PRINT causes fixed format records (called spool records) to be
output to the work file. CA-Easytrieve determines the format of these records,
which includes all the fields required to produce the report except those in S type
working storage.

Example
FILE PERSNL FB(150 1800)
%PERSNL
JOB INPUT PERSNL NAME PRINT-RPT
 PRINT REPORT1
 REPORT REPORT1
 TITLE 'PERSONNEL REPORT'
 LINE EMP# SSN EMPNAME

PROC Statement
The PROC statement is used to begin a CA-Easytrieve procedure. A procedure is a
group of user-written CA-Easytrieve statements designed to accomplish a
particular objective. The syntax of a procedure has two statements:

■ A label naming the procedure

■ The PROC statement.

Syntax

Format 1
proc-name. PROC
 statement-1
 ...
 statement-n
END-PROC

Format 2
proc-name
PROC
 statement-1
 ...
 statement-n
END-PROC

Parameters

Proc-name is a label that identifies the procedure. A label can:

PROGRAM Statement

■ Contain any character other than a delimiter

■ Begin with A-Z, 0-9, or a national character (#, @, $)

■ Not consist of all numeric characters.

Proc-name must be followed by the keyword PROC as a separate statement.

statement-1...n Statement-1 through statement-n are the statements that
accomplish your procedure’s task.

END-PROC The END-PROC statement delimits the statements contained in the
procedure.

Usage Notes

In most cases, you can code any statement in a procedure. However, you cannot
code certain input/output statements (such as GET, PUT) in procedures invoked
during SORT or REPORT processing.

PERFORM statements within a procedure can invoke other procedures; this is
called procedure nesting. However, recursion is not permitted. That is, procedure
A can invoke procedure B, but procedure B cannot then invoke procedure A. If
recursion is attempted, unpredictable results can occur.

Screens and reports can contain special-named procedures. Each procedure is
explained separately in this manual.

Screen Procedures Report Procedures

AFTER-SCREEN AFTER-BREAK

BEFORE-SCREEN AFTER-LINE

INITIATION BEFORE-BREAK

TERMINATION BEFORE-LINE

 ENDPAGE

 REPORT-INPUT

 TERMINATION

PROGRAM Statement

Statements N - R 6–18

The PROGRAM statement identifies and initiates a processing activity that can
optionally initiate JOB, SORT, and SCREEN activities.

PROGRAM Statement

Statements N - R 6–19

commit during a terminal I/O. TERMINAL is the default.

A PROGRAM statement is required when:

■ A program is the target of a TRANSFER from another program and
parameters are passed between programs. See the TRANSFER Statement.

■ A program is the child program LINKed to from a parent program and
parameters are passed between programs. See the LINK Statement.

■ A parameter is passed to a program invoked from the operating system.

■ You want to selectively execute other activities or execute a single activity
multiple times.

Syntax
 [[ACTIVITY] [TERMINAL]]
PROGRAM [NAME program-name] [COMMIT ([] [])] +
 [[NOACTIVITY] [NOTERMINAL]]

 [USING field-name] [GIVING field-name]

Parameters

[NAME program-name] The NAME parameter names the processing activity.
Program-name identifies the program. Program-name can:

■ Be up to 128 characters in length

■ Contain any character other than a delimiter

■ Begin with A-Z, 0-9, or a national character (#, @, $)

■ Not consist of all numeric characters.

This parameter is used for documentation purposes.
 [ACTIVITY] [TERMINAL]]
COMMIT ([] [])]
 [NOACTIVITY] [NOTERMINAL]]

Specify the COMMIT parameter to control the logical unit of work. COMMIT
indicates when the activity commits recoverable work. Each commit point posts
all updates, additions and deletions, terminates holds, and closes SQL cursors.

Specify ACTIVITY to commit all recoverable work during the normal termination
of the activity. Specify NOACTIVITY to tell CA-Easytrieve not to commit at the
end of the activity. ACTIVITY is the default.

Specify TERMINAL to commit all recoverable work during any terminal I/O
operation. In CICS, this results in terminal I/O being performed in a
pseudo-conversational mode. Specify NOTERMINAL to tell CA-Easytrieve not to

PROGRAM Statement

Statements N - R 6–20

SCREEN NAME PANEL1
 ...

is equivalent to:

If this program is linked to by another CA-Easytrieve program, this program
performs terminal I/O as if NOTERMINAL was specified.

Note: You can also issue your own COMMIT and ROLLBACK statements to
commit or recover work on a controlled basis.

See the CA-Easytrieve Programmer Guide for more information about commit
processing.

[USING field-name] Specify USING to indicate that this program (child
program) can accept a parameter from the parent program or operating system.
Field-name is the name of a field to which the parameter is passed.

[GIVING field-name] Code GIVING to return a single parameter to the parent
program. Field-name is the name of a field containing the parameter you want to
return to the parent program.

Usage Notes

A PROGRAM statement defines an activity in which JOB, SORT, and SCREEN
activities can be conditionally invoked. If a PROGRAM statement is not present,
any JOB or SORT activities are sequentially executed until a SCREEN activity is
detected. The SCREEN activity is then executed. The sequential execution of
activities does not proceed past the first SCREEN activity. Any remaining
activities must be executed by the first SCREEN activity.

A program terminates when:

■ The bottom of the activity is reached

■ A STOP EXECUTE statement is executed

■ A TRANSFER statement is executed.

A PROGRAM statement can be used to execute a sequence of statements. You can
also use a JOB INPUT NULL statement, however, you must then execute a STOP
statement to terminate the activity.

Example
FILE ...
 ...
PROGRAM NAME EXAMPLE1
 EXECUTE JOB1
 EXECUTE PANEL1
JOB NAME JOB1
 ...

PUSH Statement

FILE ...
 ...
JOB NAME JOB1
 ...
SCREEN NAME PANEL1
 ...

PUSH Statement
PUSH is a listing control statement that saves the current listing control indicators.

Syntax
PUSH

Usage Notes

PUSH is useful in macros to control the listing of the macro expansion without
affecting the listing control indicators outside the macro. PUSH saves the current
indicators. You can then set the listing control indicators for use during macro
expansion. Use the POP statement to restore the saved indicators.

Note: Use the LIST statement to set listing control indicators.

You can code a PUSH statement anywhere in CA-Easytrieve source code. PUSH
must be on a record by itself. PUSH does not appear in the printed output.

PUT Statement
The PUT statement performs sequential file output. PUT outputs records to
SEQUENTIAL files and also adds consecutive records (mass sequential insertion)
to an INDEXED or RELATIVE file.

Syntax
 [{input-file-name] }]
PUT output-file-name [FROM { }][STATUS]
 [{input-record-name}]

Parameters

Statements N - R 6–21

output-file-name The output-file-name parameter identifies the output file.

PUT Statement

Statements N - R 6–22

COPY FILEA
JOB INPUT PERSNL NAME MYPROG
 PUT FILEA FROM PERSNL STATUS
 IF FILE-STATUS NE 0

[{input-file-name }]
[FROM { }]
[{input-record-name}]

FROM identifies the file or record from which the current record is copied.

When input-file-name is specified, the length of the output data is the same as
output-file-name:RECORD-LENGTH. The current value of
input-file-name:RECORD-LENGTH is equal to the length of the input data.
However, if the length of the output file is greater than the length of the input file,
the excess storage is not initialized. Also, use of the FROM parameter does not
update the data area of the output file.

For more information about RECORD-LENGTH, see File Processing in the
CA-Easytrieve Programmer Guide.

[STATUS] Specify the STATUS parameter whenever the possibility exists for an
unsatisfactory completion of the input/output request.

STATUS checks input/output processing to see if it was performed properly.
STATUS causes the file’s FILE-STATUS field to be set with the appropriate return
code. See Appendix A, “System-Defined Fields,” to determine the meaning of the
contents of FILE-STATUS. Normally, a zero or non-zero test is sufficient.

Note: FILE-STATUS is not defined if you do not specify a file type parameter on
the FILE statement.

If you do not code STATUS and the operating system returns a non-zero status,
CA-Easytrieve issues an appropriate diagnostic message.

Usage Notes

To take advantage of VSAM’s mass-sequential-insertion capabilities, you can use
the PUT statement to add many records to the same place in any established
VSAM file.

If you use the PUT statement, you must include the UPDATE parameter on the
FILE statement for RELATIVE or INDEXED files. You must specify CREATE for
SEQUENTIAL files. UPDATE informs CA-Easytrieve that all input records can
potentially be updated or deleted.

Example
FILE FILEA INDEXED UPDATE
%PERSNL
FILE PERSNL

READ Statement

 DISPLAY 'ADD FAILED'
 DISPLAY HEX PERSNL
 STOP
 END-IF

READ Statement
READ provides random access to INDEXED and RELATIVE files.

Syntax
 {key-field-name} [HOLD]
READ file-name KEY { } [] [STATUS]
 {'key-literal' } [NOHOLD]

Parameters

file-name Specify the file-name of the INDEXED or RELATIVE file to be
randomly accessed.
 {key-field-name}
KEY { }
 {'key-literal' }

You must provide the key to the desired record. CA-Easytrieve uses the contents of
key-field-name or ‘key-literal’ in a search for a corresponding record in the file.
Alphanumeric literals must be enclosed within single quotes. CA-Easytrieve does
not change the data format of key-field-name or ‘key-literal.’ The access method can
require that the search value have the same length as the file’s key. Key-field-name
cannot be nullable.

RELATIVE files require key-field-name to be a 4-byte binary integer field. ‘Key-
literal’ is not allowed for a RELATIVE file.
[HOLD]
[NOHOLD]

CA-Easytrieve automatically issues a hold request for records when UPDATE is
specified on the FILE statement. You use NOHOLD to override this process.

Specify HOLD to hold a record for update. This is the default when UPDATE is
specified for the file. HOLD is invalid if UPDATE is not specified on the FILE
statement. HOLD does not mean you are required to perform the update. It holds
the position of the file and can also lock the record (CICS and workstation LANs).
Records are automatically released when the update operation completes or a
commit point is taken. You can also manually release the hold on any record with
the RELEASE statement.

Statements N - R 6–23

NOHOLD specifies that a record is not held for update.

RECORD Statement (CA-IDMS and IMS/DLI)

Statements N - R 6–24

CA-IDMS database records available for automatic or controlled processing.

[STATUS] Specify the STATUS parameter whenever the possibility exists for an
unsatisfactory completion of the input/output request.

STATUS checks input/output processing to see if it was performed properly.
STATUS causes the file’s FILE-STATUS field to be set with the appropriate return
code. See Appendix A, “System-Defined Fields,” to determine the meaning of the
contents of FILE-STATUS. Normally, a zero or non-zero test is sufficient.

Note: FILE-STATUS is not defined if you do not specify a file type parameter on
the FILE statement.

If you do not code STATUS and the operating system returns a non-zero status,
CA-Easytrieve issues an appropriate diagnostic message.

Usage Notes

The key specified is normally a working storage field or a field in another file. It
cannot be the file’s key field unless WORKAREA is specified to make the field
available prior to the READ.

You can use a file presence test (IF file-name) to determine the success of the READ.
The test is true when the last GET or READ was successful.

Example
FILE PERSNL INDEXED
%PERSNL
FILE INKEYS SEQUENTIAL
 WHO 1 5 N
 TOTAL-NET W 5 P 2
JOB INPUT INKEYS NAME MYPROG FINISH DISPLAY-TOTAL
 READ PERSNL KEY WHO STATUS
 IF PERSNL:FILE-STATUS NE 0
 DISPLAY 'UNSUCCESSFUL READ +
 PERFORMED ON FILE PERSNL' +
 +2 'KEY= ' WHO
 ELSE
 TOTAL-NET = TOTAL-NET + PAY-NET
 END-IF
 DISPLAY-TOTAL. PROC
 DISPLAY 'TOTAL NET PAY' TOTAL-NET
 END-PROC

RECORD Statement (CA-IDMS and IMS/DLI)
Code RECORD statements (Format 1) following the FILE statement to identify the

RECORD Statement (CA-IDMS and IMS/DLI)

Statements N - R 6–25

segment, but it is required for all other segments.

[KEY] The optional KEY parameter identifies the sequence field for the segment.

RECORD statements (Format 2) identify the IMS/DLI database segments that are
to be available for processing.

Syntax

Format 1 (CA-IDMS)
 RECORD record-name record-length [KEY (field-name ...)]

Format 2 (IMS/DLI)
 RECORD segment-name segment-length [parent-segment-name] +

 [KEY (key-field-name, key-field-location, key-field-length)]

Parameters

Format 1 (CA-IDMS)

record-name Record-name is the one to sixteen-character name of the record as
defined in the subschema.

record-length Record-length is a positive integer that designates the length of
the record as defined in the subschema.

[KEY (field-name ...)] KEY is an optional parameter that identifies the
CALC key(s) of the record. The KEY parameter is required only for the root record
when using the tickler file. Field-name is the one to thirty-character name used to
designate one of the record’s CALC keys. Field-name must correspond to a CALC
key field defined with the DDL for the record. You must code the field-name
parameter for each CALC key defined for the record.

In addition, a DEFINE statement for each field-name must be coded following the
RECORD statement. The DEFINE statement can be intermingled with DEFINE
statements for other non-key fields of the record.

Format 2 (IMS/DLI)

segment-name Segment-name is the one to eight-character name of the segment.
This name must correspond to the name of a segment in the DBD.

segment-length Segment-length is a positive numeric integer that designates the
length of the segment.

[parent-segment-name] Parent-segment-name is an optional parameter which
designates the parent of segment-name. This parameter is not coded for the root

REFRESH Statement

Statements N - R 6–26

initial screen image by rebuilding it with the current values of the program fields.

The KEY parameter is not necessary for the RECORD statement that defines the
lowest segment in a path. The KEY parameter is required for the root segment
when using the tickler file.

(key-field-name) Key-field-name is the one to eight-character name used to
designate the keyfield to the IMS/DLI database. The name must correspond to the
sequence field named in the DBD.

(key-field-location) Key-field-location is a positive numeric integer that
specifies the location of the keyfield within the segment.

(key-field-length) Key-field-length is a positive numeric integer that specifies
the length of the keyfield.

Usage Notes

CA-IDMS

All fields defined following the RECORD statement are part of this record. The
name of each field must be unique within the record. However, the field does not
have to be unique within the file that contains the record being defined. If a field
defined in another record has the same name as a field defined in this record, then
all references to either field must be qualified with the name of the field’s
containing record.

Note: The RECORD statement cannot be used to define logical records. To define
a logical record, use the LOGICAL-RECORD statement. To define an element
record within a logical record, use the ELEMENT-RECORD statement.

IMS/DLI

RECORD allocates a work space which contains the segment data during
execution. Field definition statements, coded immediately following a RECORD
statement, relate to data fields within that segment. One RECORD statement must
be coded for each segment of the database to be processed. They must be coded in
the same order as in the PSB which defines the database. All segments of a
database need not be defined, but the parent segment of each RECORD must be
coded because incomplete paths are not supported.

REFRESH Statement
The REFRESH statement is used in the AFTER-SCREEN procedure to restore the

RELEASE Statement

Syntax
REFRESH

Usage Notes

When used as the result of pressing an IMMEDIATE key, REFRESH re-displays
the screen image with the original data displayed on the screen. This is useful
when the terminal user enters erroneous data on the screen and wants to restore
the screen with its original data.

When used as the result of a non-IMMEDIATE key, REFRESH can be used to
rebuild the screen using current data from the screen.

REFRESH can also be invoked directly by pressing a particular attention key. See
the KEY Statement for more information.

Example

The following example illustrates the REFRESH statement being invoked when F6
is pressed. Because F6 is not an IMMEDIATE key, the current values of QTY and
PRICE are used to compute the extended price. F5 is used to clear erroneous data
from the screen.
DEFINE EXT-PRICE W 4 P 2
DEFINE QTY W 4 P 0
DEFINE PRICE W 4 P 2
SCREEN NAME TEST-REFRESH
 KEY F2 NAME 'Reset to zero'
 KEY F3 EXIT NAME 'Exit'
 KEY F5 IMMEDIATE REFRESH NAME 'Refresh screen'
 KEY F6 NAME 'Compute Ext Price'
 TITLE 'TEST REFRESH'
 ROW 3 'Quantity . .' QTY
 ROW 5 'Price . . .' PRICE
 ROW 7 'Ext Price .' EXT-PRICE
 BEFORE SCREEN. PROC
 MOVE ZERO TO QTY, PRICE, EXT-PRICE
 END-PROC
 AFTER-SCREEN. PROC
 IF KEY-PRESSED = F6
 EXT-PRICE = QTY * PRICE
 REFRESH
 END-IF
 END-PROC

RELEASE Statement

Statements N - R 6–27

The RELEASE statement explicitly releases the hold on any record in a file.

REPEAT and END-REPEAT Statements

Syntax
RELEASE file-name

Parameters

file-name File-name is the name of a file.

Usage Notes

CA-Easytrieve automatically issues a hold request for GETs and READs when
UPDATE is specified on the FILE statement. Records are automatically released
when the update operation completes or a commit point is taken. Alternatively,
you can use the RELEASE statement to manually release the hold on a record. If
HOLD is not specified, RELEASE is ignored.

Example
READ PERSNL KEY '01193' HOLD
...
IF ...
 WRITE PERSNL UPDATE
ELSE
 RELEASE PERSNL
END-IF

REPEAT and END-REPEAT Statements
The REPEAT/END-REPEAT construct is used to display arrays on a screen.

Syntax
 [[{start-field-name}]]
REPEAT number [TIMES] [VARYING subscript [FROM { }]] +
 [[{start-integer }]]

 [ROW row-number]

ROW statements

END-REPEAT

Parameters

Statements N - R 6–28

number Number is the number of times the group of ROW statements in the
REPEAT construct is repeated.

REPEAT and END-REPEAT Statements

[TIMES] Optionally, code TIMES for statement readability.

[VARYING subscript] VARYING is an optional parameter that causes
CA-Easytrieve to automatically increment a subscript field (subscript).

The subscript is incremented by 1 the number of times specified by number.

Subscript can be the name of a previously defined field. However, if not defined,
CA-Easytrieve automatically defines the field as a 2 B 0 field. If you defined the
field, you must have defined it as numeric (N, P, U, B, I) with zero or no decimal
places.
[{start-field-name}]
[FROM { }]
[{start-integer }]

FROM is an optional parameter that defines the initial value for the REPEAT
subscript. Subscript is automatically incremented by 1 from either start-field-name
or start-integer for each iteration of the group of ROW statements. If FROM is
omitted, the subscript starts at 1.

[ROW row-number] Specify the row-number on which the REPEATing group of
rows starts. If not specified, the REPEATing group of rows starts on the last screen
row specified plus one.

ROW statements Code one or more ROW statements to be repeated. ROW
statements are coded in a REPEAT/END-REPEAT construct. See the ROW
Statement.

Note: ROW statements to be repeated cannot specify explicit row-numbers.

END-REPEAT END-REPEAT terminates the body of the REPEAT statement.
END-REPEAT must be specified after each REPEAT statement and its associated
ROW statements.

Usage Notes

Each array field on a ROW statement can be subscripted by the subscript specified
in the VARYING parameter. Optionally, array fields on ROW statements can
contain a subscript for a second dimension. However, CA-Easytrieve does not
automatically increment this second subscript.

Statements N - R 6–29

REPORT Statement

Statements N - R 6–30

■

■ Testing aid parameters.

Example

The following example illustrates how to display an array on a screen. The
REPEAT construct displays both a one-dimensional array (WS-NAME), and a two-
dimensional array (WS-STAT). Starting at row 4, CA-Easytrieve displays the first
occurrence of the fields. The second dimension of WS-STAT is stated explicitly.
CA-Easytrieve increments USER-SUB and displays the next occurrence until 15
occurrences are displayed.

This code:
...
WS-EMPLOYEE W 33 A OCCURS 30 . * 2-DIMENSIONAL TABLE OF
 WS-NAME WS-EMPLOYEE 30 A . * 30 EMPLOYEES CONTAINING:
 WS-STATUSES WS-EMPLOYEE +30 3 A . * EMPLOYEE NAME AND
 WS-STAT WS-STATUSES 1 A OCCURS 3. * 3 STATUSES
...
SCREEN NAME EMPLOYEE-LIST
 TITLE 'List of Employees'
 ROW 3 'Name' COL 30 'Statuses'
 REPEAT 15 TIMES VARYING USER-SUB
 ROW WS-NAME (USER-SUB) +
 WS-STAT (USER-SUB, 1) WS-STAT (USER-SUB, 2) WS-STAT (USER-SUB, 3)
 END-REPEAT

Produces:

 List of Employees

 Name Statuses
 WIMN, GLORIA F G O
 BERG, NANCY C
 CORNING, GEORGE I T
 ...

REPORT Statement
The REPORT statement allows you to define the type and characteristics of a
report. Although you can specify a large number of REPORT statement
parameters, you will probably produce most reports using default parameter
values specified in the Site Options Table.

REPORT statement parameters fall into five basic groups:

■ Format determination parameters

■ Label parameters

■ File directing parameters

 Spacing control parameters

REPORT Statement

Syntax
REPORT [report-name] +

[SUMMARY] + }
[SUMFILE summary-file-name] + }
[SUMSPACE sumfield-addition] + }
[TALLYSIZE tally-print-size] + }
 }
[{EVERY}] }
[DTLCTL {FIRST}] + } Format
[{NONE }] } Determination
 } Parameters
[{ [ALL] }] }
[SUMCTL { ([HIAR] [DTLCOPY]) }] + }
[{ [NONE] [DTLCOPYALL] }] }
[{ [TAG] }] }
 }

[[ACROSS number-of-labels]] }
[LABELS ([DOWN number-of-lines])] + } Label
[[SIZE label-length]] } Parameters
[[NEWPAGE]] }

 }
[FILE work-file-name] + } File Directing
[PRINTER receive-file-name] + } Parameters

[PAGESIZE (line-page-size [display-page-size])] + }
[LINESIZE line-length] + }
[SKIP number-of-lines] + }
[SPACE number-of-spaces] + }
[TITLESKIP number-of-lines] + }
[CONTROLSKIP number-of-lines] + }
 }
[SPREAD] + }
[NOSPREAD] } Spacing Control
 } Parameters
[NOADJUST] + }
 }
[NODATE] }
[LONGDATE] + }
[SHORTDATE] }
 }
[NOPAGE] + }
[NOHEADING] + }

 }
[LIMIT number-of-records] + } Testing Aid
[EVERY n-number-of-lines] } Parameters

Format Determination Parameters

[report-name] Report-name identifies the report. It is optional when there is
only one report in a JOB activity. If you code multiple reports, the first report
can be unnamed but all others must be named. Each report-name must be unique
in the JOB activity. At least one report-name must be coded on a PRINT
report-name statement. For unnamed reports, code the PRINT statement without
a report-name parameter.

Report-name can:

Statements N - R 6–31

■ Be up to 128 characters in length

■ Contain any character other than a delimiter

REPORT Statement

■ Begin with A-Z, 0-9, or a national character (#, @, $)

■ Not consist of all numeric characters.

[SUMMARY] On control reports, SUMMARY inhibits printing of detail data.
Only control totals are printed.

[SUMFILE summary-file-name] Optionally, use SUMFILE to generate a
summary file that contains the control and summary field values. Summary-
file-name identifies the file to contain the summary data.

[SUMSPACE sumfield-addition] Use SUMSPACE to define the print size for
total fields on a control report. Sumfield-addition is added to the length (in digits)
of the field to define its print size. This expansion is necessary to prevent the loss
of significant data due to overflow conditions. The resulting print length is
limited to a maximum of 18 digits. Valid values for sumfield-addition are 0
through 9. No additional numeric edit characters are included in the resulting
edit mask. For example, totals such as 55555,555.55 can appear.

[TALLYSIZE tally-print-size] Use TALLYSIZE to set the print size for the
field TALLY. Valid values for tally-print-size are 1 through 18. The number of
digits used for TALLY on a summary line are the sum of the values of
TALLYSIZE and SUMSPACE.
[{EVERY}]
[DTLCTL {FIRST}]
[{NONE }]

DTLCTL optionally defines detail line printing characteristics.

Specify EVERY to print the value of all control fields on every detail line.

Specify FIRST to print the value of all control fields on the first detail line of a
page and on the first detail line after each control break. Control field values are
not printed on all other detail lines.

Specify NONE to inhibit the printing of control field values on detail lines.
[{ [ALL] }]
[SUMCTL { ([HIAR] [DTLCOPY]) }] +
[{ [NONE] [DTLCOPYALL] }]
[{ [TAG] }]

SUMCTL optionally defines total line printing characteristics.

Specify ALL to print control field values on every total line.

Specify HIAR to print control field values in a hierarchical fashion on total lines.
Only values for control fields on the same hierarchical level, or higher than the
breaking control field, are printed on the associated total line.

Statements N - R 6–32

Specify NONE to inhibit printing of control field values on total lines.

REPORT Statement

Specify TAG to print control-field-name TOTAL as an annotation to the left of the
associated total line where control-field-name is the field-name for the breaking
control field. There must be sufficient unused space on the left side of the total
line for this annotation.

Specify DTLCOPY to print detail information on total lines. Normally, only
control field values and associated totals are printed on total lines. Coding
DTLCOPY prints the detail field contents, prior to the break, on the total line.
These fields are printed only when LEVEL is one (1).

Specify DTLCOPYALL to print detail fields for all control breaks.

Label Parameters
[[ACROSS number-of-labels]]
[LABELS ([DOWN number-of-lines])] +
[[SIZE label-length]]
[[NEWPAGE]]

Specify LABELS to indicate that the report is a label report.

Note: The NOHEADING and NOADJUST options are automatically activated
when you specify LABELS; therefore, you cannot specify TITLE and HEADING
statements. You cannot use LABELS with SUMMARY.

Specify ACROSS number-of-labels to define the number of labels printed across
the print line.

Specify DOWN to define the number of lines in a label. The value of number-of-
lines is the number of lines reserved for each label. The value range for number-
of-lines is 1 through ‘nnn,’ where ‘nnn’ is at least as large as the largest
corresponding ‘LINE nnn’ value.

Specify SIZE to set the length of each label. The value of label-length is the
number of print positions on a label. Label-length has a value range from 1 to
‘nnn,’ where ‘nnn’ is the length of the label.

Note: LABELS cannot be specified for extended reporting printers.

NEWPAGE controls the printing of the first line (LINE 01) of each label. When
coded, NEWPAGE associates a printer top-of-form request with the first line of
each label.

The following algorithm confines the overall size of labels:
LINESIZE >= (ACROSS - 1) * SIZE + (number of print positions on an
 individual label)

Statements N - R 6–33

REPORT Statement

File Directing Parameters

[FILE work-file-name] Optionally, specify FILE to identify the work file
used for very large reports. Code this parameter when the default VFM work
file is too small to contain the report data. Work-file-name identifies the FILE that
receives the work file data.

Note: You should not use the FILE parameter in CICS. An execution error
occurs when work-file-name is not a virtual file.

Note: Instead of coding the FILE parameter for each report in your program,
you can use the WORKFILE YES parameter on the PARM statement. See PARM
Statement earlier in this chapter, and PRINT Statement Processing in the “Report
Processing” chapter in the CA-Easytrieve Programmer Guide for more information.

[PRINTER receive-file-name] Optionally, specify PRINTER to direct the
report’s printed output. Receive-file-name identifies the FILE that receives the
report. This file must have the PRINTER or EXTENDED attribute specified. The
default is the CA-Easytrieve standard print output file: SYSPRINT. The actual
destination of SYSPRINT is determined by a site option. See your system
administrator for more information. See the CA-Easytrieve Programmer Guide for
more information about PRINTER files.

If the system print output file or receive-file-name has been associated with an
extended reporting printer, then CA-Easytrieve automatically formats the report
to satisfy the requirements defined for that extended reporting printer.
CA-Easytrieve restricts the support of extended reporting facilities to those
reports that are output to printer files that have been associated with an extended
reporting printer.

Spacing Control Parameters

Each of the following parameters modifies the default spacing of a report page.
You normally do not use these parameters; however, they are available to
support unique report spacing requirements.

[PAGESIZE (line-page-size [display-page-size])] Specify PAGESIZE to
define the logical print length of a printed page. Line-page-size must be an
unsigned integer from 1 to 32767, and must be at least as large as the sum of:

■ Title-number of the last TITLE statement

■ Number-of-lines of TITLESKIP

■ Number of HEADING lines plus one

Statements N - R 6–34

■ Line-number of the last LINE statement

■ Number-of-lines of SKIP.

REPORT Statement

Statements N - R 6–35

the logical record if the file format and record length are known at compile time.
Otherwise, the default is taken from the LINESIZE site option.

In other words, at least one line group must fit on a report page.

Specify an asterisk (*) for line-page-size if you want to change display-page-size
without changing the default line-page-size.

Display-page-size must be zero or greater than or equal to the line-page-size.

When CA-Easytrieve processes a LINE statement, it compares the line count to
line-page-size. If the line count is less than line-page-size, the LINE statement
performs the BEFORE-LINE procedure and then prints the line. If the line count
is greater than or equal to line-page-size, the LINE statement performs the
ENDPAGE procedure, processes TITLEs, performs the BEFORE-LINE
procedure, and finally prints the line. The line count is not compared again to
line-page-size after the LINE statement performs the BEFORE-LINE procedure.

Specify a value greater than zero for display-page-size to allow the DISPLAY
statement to generate page breaks. When display-page-size is greater than zero,
the line count is compared to display-page-size. If the line count is greater than
display-page-size then the DISPLAY statement performs the ENDPAGE procedure
and generates a page break with TITLEs.

Specify zero for display-page-size to inhibit DISPLAY statement generated page
breaks. When display-page-size is zero, the DISPLAY statement does not compare
line count to display-page-size, and a page break is not generated.

The DISPLAY statement always increases line count, regardless of the
display-page-size value.

When the report is directed to an extended reporting printer that does not
support a Forms Control Block (FCB), then CA-Easytrieve multiplies line-page-
size by the default height of the assigned extended reporting printer. This enables
CA-Easytrieve to compare PAGESIZE with the heights of fonts used on the
report as they are both in the same base unit (the H-unit). The value of line-page-
size multiplied by the default height of the assigned extended reporting printer
cannot exceed the maximum page length of that extended reporting printer.

[LINESIZE line-length] Code the LINESIZE parameter to specify the
maximum number of data characters that can be printed on a line. Line-length
must be an unsigned integer from 1 to 32767.

Line-length must be at least one less than the length of the data portion of the
file’s logical record. If the FILE definition does not provide the file’s format and
logical record length, then no compile time verification of the line-length is done.

The default value of LINESIZE is calculated as one less than the data portion of

REPORT Statement

There are additional control characters (forms control information) that also must
be stored in a logical record. If one of the record format parameters is specified,
it must be large enough to hold both the forms control information and the data
characters. The value of line-length must be less than or equal to the maximum
record length minus the size of the forms control information.

The first character in a PRINTER file contains the ASA carriage control
information.

When the report is assigned to an extended reporting printer that is not a
standard line printer, the maximum value of line-length is not dependent upon
the record size of the print data set. The insertion of Overprint and Function
Codes into print records plus the support of different fonts on the same print line
all impact the relationship between LINESIZE and print data set record size.
CA-Easytrieve supports any LINESIZE provided line-length multiplied by the
value of the assigned extended reporting printers default width does not exceed
the maximum page width of that extended reporting printer.

Line-length overrides the value defined in the Site Options Table. If the report is
directed to an extended reporting printer, CA-Easytrieve multiplies line-length by
the default width of the assigned extended reporting printer. This value defines
the width of the print line in terms of the extended reporting printer’s W-unit.

[SKIP number-of-lines] Specify SKIP to define the number of blank lines to
be inserted between line groups (between the last ‘LINE nnn’ and the next LINE
01). Number-of-lines has a valid range of 0 to ‘nnn,’ where ‘nnn’ allows for the
printing of at least one line group on each page. When you specify a value of 0, a
line group containing multiple lines can be spanned across a page break. A
non-zero value inhibits this spanning.

When the report is directed to an extended reporting printer that does not
support a Forms Control Block (FCB), the default height of the assigned extended
reporting printer defines the height of each line.

[SPACE number-of-spaces] Specify SPACE to adjust the default number of
blanks (space characters) inserted between fields on TITLE and LINE statement
items. The value of number-of-spaces has a valid range of 0 to ‘nnn’ (default is 3),
where ‘nnn’ does not cause line overflow.

When the report is directed to an extended reporting printer, CA-Easytrieve
multiplies number-of-spaces by the default width of the assigned extended
reporting printer. This operation expresses number-of-lines in terms of the
printer’s W-unit.

Note: The SPREAD parameter overrides this parameter.

Statements N - R 6–36

REPORT Statement

[TITLESKIP number-of-lines] Specify TITLESKIP to insert blank lines
between the last title line and the first heading line (or LINE 01) of a report. The
value of number-of-lines has a valid range of 0 to ‘nnn,’ where ‘nnn’ allows for the
printing of at least one line group on each page.

When the report is directed to an extended reporting printer that does not
support a Forms Control Block (FCB), the height of each line is defined by the
default height of the assigned extended reporting printer. This operation
converts number-of-lines into the H-units applicable to the printer.

[CONTROLSKIP number-of-lines] (Mainframe and UNIX only) Specify
CONTROLSKIP to define the number of blank lines to be inserted following
CONTROL total lines and the next detail line. Number-of-lines must be between 0
and 32767. If CONTROLSKIP is not specified, one blank line plus the SKIP value
is inserted after the CONTROL total line.
[SPREAD]
[NOSPREAD]

Specify SPREAD to insert the maximum number of spaces between each column
of a report. NOSPREAD deactivates SPREAD when it is the default specified in
the Site Options Table. SPREAD and NOADJUST are mutually exclusive. See
Report Processing in the CA-Easytrieve Programmer Guide for more information
and examples of this parameter.

Note: SPREAD overrides the SPACE parameter.

[NOADJUST] Specify NOADJUST to left-justify the title lines and report on the
page. The default is centered on the page. SPREAD and NOADJUST are
mutually exclusive.
[NODATE]
[LONGDATE]
[SHORTDATE]

Specify NODATE to inhibit the printing of the date value on the first title line
(TITLE 01).

LONGDATE specifies that SYSDATE-LONG appears on the first title line.

SHORTDATE specifies that SYSDATE appears on the first title line.

[NOPAGE] Specify NOPAGE to inhibit the printing of the value of PAGEWRD
(in the Site Options Table) and the current page number in the report title.

[NOHEADING] Specify NOHEADING to inhibit the printing of column
headings. The default is that each field’s HEADING value is printed as a column
heading.

Statements N - R 6–37

REPORT-INPUT Report Procedure

Testing Aid Parameters

LIMIT and EVERY are used as testing aids for report development. These
parameters control the amount of data output on a report.

[LIMIT number-of-records] Specify LIMIT to limit the number of records
processed by the report. The value of number-of-records has a valid range of 1 to
32,767.

[EVERY n-number-of-lines] Specify EVERY to indicate that only every n line
is printed in the report. The value of n-number-of-lines has a valid range of 1 to
32,767.

Usage Notes

The data window for fields with VARYING specified on the DEFINE statement
is based on the maximum length of the field. The window is padded to the right
with blanks for VARYING fields less than the maximum.

You need not code the SUMMARY parameter to use SUMFILE.

See the CA-Easytrieve Programmer Guide for a complete explanation of
CA-Easytrieve reporting facilities.

REPORT-INPUT Report Procedure
A REPORT-INPUT procedure selects or modifies report input data.

Syntax
REPORT-INPUT. PROC

Usage Notes

This procedure is performed for each PRINT statement (report input). To cause
the data to continue into report processing, you must execute a SELECT
statement for the associated input data. In other words, input that does not get
SELECTed is bypassed for continued processing.

Although you can code the logic to select records in the JOB activity itself, you
can occasionally place the logic in a REPORT-INPUT procedure.

Statements N - R 6–38

REPORT-INPUT Report Procedure

When the report data has been spooled (because the report had been
SEQUENCEd or the printer file was in use), the REPORT-INPUT procedure is
invoked as each spooled record is read to produce this report. This means that
all records PRINTed are spooled and sorted (if SEQUENCE is specified). The
REPORT-INPUT procedure is then invoked. For performance reasons, you
should select the records in a JOB activity, if possible.

A REPORT-INPUT procedure must be delimited by an END-PROC statement.
See the PROC Statement for more information.

Example

The following example illustrates use of the REPORT-INPUT procedure in final
report input selection. Only the first record in each ZIP code is selected.

Statements:

FILE FILE1
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
HOLD-ZIP S 5 N VALUE 00000
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
*
REPORT-INPUT. PROC
 IF ZIP NE HOLD-ZIP
 HOLD-ZIP = ZIP
 SELECT
 END-IF
END-PROC
*

Data:

BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

Statements N - R 6–39

RESHOW Statement

Statements N - R 6–40

 TITLE...
 ROW...
 AFTER-SCREEN. PROC
 IF KEY-PRESSED = F1
 EXECUTE MENU-HELP

Results:

 11/23/86 REPORT FOR THE STATE OF IL PAGE 1

 LAST-NAME STATE ZIP PAY-NET
 BROWN IL 60076 123.45
 JONES IL 60077 98.76
 IL 222.21

 11/23/86 REPORT FOR THE STATE OF TX PAGE 2

 LAST-NAME STATE ZIP PAY-NET
 SMITH TX 75218 111.11
 TX 111.11

 333.43

RESHOW Statement
The RESHOW statement is used in an AFTER-SCREEN procedure to re-display
the screen image with user-entered data intact. In contrast to the REFRESH
statement, the screen image is not rebuilt using the current values of program
fields.

Syntax
RESHOW

Usage Notes

Upon receiving the screen, CA-Easytrieve saves a copy of the screen image. The
RESHOW statement restores the saved image.

Example

As shown in the following example, RESHOW can be used to re-display a screen
following a request for help. The data that the user entered on the screen before
he requested help is re-displayed intact. When RESHOW is used with an
IMMEDIATE KEY, original screen data is retained, but not edited or saved into
program fields.
...
SCREEN NAME MENU UPPERCASE
 KEY ENTER
 KEY F1 NAME 'Help' IMMEDIATE
 KEY F3 NAME 'Exit' EXIT

RETRIEVE Statement (CA-IDMS and IMS/DLI)

Statements N - R 6–41

 [LIMIT number-of-records] +

 [WHILE (condition)] +

 RESHOW
 END-IF
 CASE OPTION
 ...
 END-PROC
SCREEN NAME MENU-HELP
 KEY F3 NAME 'Exit' EXIT
 TITLE...
 ROW...

RETRIEVE Statement (CA-IDMS and IMS/DLI)
The RETRIEVE statement identifies the database records that are automatically
input to the JOB activity. Code the RETRIEVE statement immediately following
a JOB statement to specify automatic input. You can code only one RETRIEVE
statement in each JOB activity. CA-Easytrieve processes the automatic input the
same way as non-database input.

Syntax

Format 1 (CA-IDMS)
RETRIEVE file-name +

 [{program-name }]
 [PROGRAM-NAME { }] +
 [{'program-literal'}]

 [{db-name-table-name }]
 [DBNAME { }] +
 [{'db-name-table-literal'}]

 [{node-name }]
 [NODE { }] +
 [{'node-literal'}]

 [{dictionary-name }]
 [DICTNAME { }] +
 [{'dictionary-literal'}]

 [{dictionary-node-name }]
 [DICTNODE { }] +
 [{'dictionary-node-literal'}]

 [KEYFILE tickler-file-name +]]
 [KEYVALUE (calc-key-field-name EQ calc-value-field-name ...)] +]
 [] +
 [DUPS]
 [NODUPS]

 SELECT (record-name +

 [AREA 'area-literal' +]
 [SET 'set-literal' +] +
 [INDEX 'index-set-literal' [USING ('index-key-literal' ...)]]

 [ID 'path-literal'] +

RETRIEVE Statement (CA-IDMS and IMS/DLI)

Statements N - R 6–42

[{'dictionary-literal'}]

 ...)

Format 2 (IMS/DLI)
RETRIEVE file-name +

 [KEYFILE tickler-file-name KEYVALUE key-field-name] +

 SELECT (record-name +

 [ID 'path-literal'] +

 [LIMIT number-of-records] +

 [SSA 'segment-literal'] +

 [WHILE (condition)] +

 ...)

Parameters

Format 1 (CA-IDMS)

file-name File-name is the same as the name coded in the FILE file-name IDMS
and JOB INPUT (file-name) statements.
[{program-name }]
[PROGRAM-NAME { }]
[{'program-literal'}]

Program-name or ‘program-literal’ specifies the name used to identify the program
to CA-IDMS during execution. Program-name must be an eight-byte
alphanumeric field. ‘Program-literal’ must be alphanumeric and is padded to the
right (if necessary) to create an eight-byte value.
[{db-name-table-name }]
[DBNAME { }]
[{'db-name-table-literal'}]

Db-name-table-name or ‘db-name-table-literal’ specifies a DB Name Table. Data
retrieved during execution of the user’s program is from the named CA-IDMS
database. Db-name-table-name must be an eight-byte alphanumeric field. ‘Db-
name-table-literal’ must be alphanumeric and is padded to the right (if necessary)
to create an eight-byte value.
[{node-name }]
[NODE { }]
[{'node-literal'}]

Node-name or ‘node-literal’ specifies the Central Version Node that hosts the
CA-IDMS activity generated by the user’s program. Node-name must be an
eight-byte alphanumeric field. ‘Node-literal’ must be alphanumeric and is
padded to the right (if necessary) to create an eight-byte value.
[{dictionary-name }]
[DICTNAME { }]

RETRIEVE Statement (CA-IDMS and IMS/DLI)

Statements N - R 6–43

■

tickler file, or integrated index.

Dictionary-name or ‘dictionary-literal’ specifies the Dictionary Name of a
Secondary Load Area. Dictionary-name must be an eight-byte alphanumeric field.
‘Dictionary-literal’ must be alphanumeric and is padded to the right (if necessary)
to create an eight-byte value.
[{dictionary-node-name }]
[DICTNODE { }]
[{'dictionary-node-literal' }]

Dictionary-node-name or ‘dictionary-node-literal’ specifies the Dictionary Node of a
Secondary Load Area. Dictionary-node-name must be an eight-byte alphanumeric
field. ‘Dictionary-node-literal’ must be alphanumeric and is padded to the right (if
necessary) to create an eight-byte value.

[KEYFILE tickler-file-name +]]
[KEYVALUE (calc-key-field-name EQ calc-value-field-name ...)] +]
[]
[DUPS]]
[NODUPS]]

The optional tickler file is designated by coding the KEYFILE and KEYVALUE
parameters. Tickler-file-name is the name of a file that is sequentially processed to
obtain the keys of the root records to be retrieved. The DBCS code system of
tickler-file-name must equal the DBCS code system of file-name.

Calc-value-field-name is a data field from tickler-file-name that contains a value for
one of the CALC keys of the root record. Calc-key-field-name is a CALC key field
defined in the RECORD statement for the root record that is to receive the value
of calc-value-field-name. Calc-value-field-name is assigned to calc-key-field-name
using the rules in the “Coding a CA-Easytrieve Program” chapter in the
CA-Easytrieve Programmer Guide.

You must code one calc-value-field-name for each key field defined in the KEY
parameter of the RECORD statement for the root record.

The key values are used in the CALC retrieval of root records. Therefore, only
CALC records can be root records when the tickler file is used. The optional
keywords, DUPS and NODUPS, are used to specify whether CALC records with
duplicate keys are also retrieved. The OPTIONS table parameter CALCDUP has
the default value. The JOB activity is terminated at end-of-file for tickler-
file-name.

The KEY parameter for the root record retrieved by the tickler file option must be
specified on the RECORD statement.

[SELECT (record-name ...)] The SELECT parameter identifies which paths
are retrieved. Record-name must be the same as coded on a RECORD statement.
Any number of records and paths can be coded under control of the following
rules of network structure:

 The first record-name coded is the root. It is retrieved by an area sweep,

RETRIEVE Statement (CA-IDMS and IMS/DLI)

■ A repeated record-name denotes a node in the network. A node is a
record-type that is common in multiple paths. The optional subparameters
are not allowed when a record-name is repeated as a node.

■ Paths are retrieved in the order in which they are identified.

[AREA 'area-literal'] The optional AREA subparameter is coded to supply
the sweep area. This subparameter can be specified only if record-name is a root
record. AREA is not allowed if INDEX has already been specified for this record.
The one to sixteen-character CA-IDMS area name (‘area-literal’) controls retrieval
within area of root records. ‘Area-literal’ must be alphanumeric (non-DBCS), and
is padded to the right (if necessary) to create a 16-byte value.

If the AREA subparameter is coded, CA-Easytrieve uses OBTAIN NEXT
record-name WITHIN AREA calls to retrieve occurrences of this record. If this
subparameter is omitted, CA-Easytrieve uses OBTAIN NEXT record-name calls
instead.

[SET 'set-literal'] The SET subparameter specifies the name of the set
used for retrieving the named record (record-name). This subparameter is not
allowed if record-name is the root record or if record-name is a node. SET is
required for all other records. ‘Set-literal’ must be alphanumeric (non-DBCS),
and is padded to the right (if necessary) to create a 16-byte value.

If this record is a member of the specified set, CA-Easytrieve uses OBTAIN
NEXT record-name WITHIN SET calls to retrieve occurrence of this record. If this
record is the owner of the specified set, CA-Easytrieve uses OBTAIN OWNER
calls instead.

[INDEX 'index-set-literal'[USING ('index-key-literal' ...)]] Code
the optional INDEX subparameter to designate the index set (‘index-set-literal’)
that controls root retrieval by integrated indexing. This subparameter can be
specified only if record-name is a root record. INDEX is not allowed if AREA has
already been specified for this record. ‘Index-key-literal’ must be a alphanumeric
(non-DBCS), and is padded to the right (if necessary) to create a 16-byte value.

Note: The INDEX subparameter cannot be used with the tickler file.

The optional USING subparameter (‘index-key-literal’) designates the
alphanumeric literals used to constrain the index. You can code as many
occurrences of ‘index-key-literal’ as are required to fully specify the index key
value. The values are concatenated in the order specified and form the index key
value that is passed to CA-IDMS. The cumulative length of all literals specified
must match the length of the index known to integrated indexing. The code
system of the data must also match.

Statements N - R 6–44

RETRIEVE Statement (CA-IDMS and IMS/DLI)

When the INDEX subparameter is coded, CA-Easytrieve uses OBTAIN NEXT
WITHIN SET calls to retrieve all occurrences of the root record except for the first
occurrence. The retrieval of the first occurrence is determined by the optional
USING subparameter. If the USING subparameter is coded, CA-Easytrieve
retrieves the first root record occurrence using an OBTAIN WITHIN SET USING
SORT KEY call. If the USING subparameter is omitted, an OBTAIN FIRST
WITHIN SET call is used. CA-Easytrieve uses the USING subparameter to
establish the initial position within the index set. Once this initial position has
been established, retrieval of the root record proceeds until the end of the index
set is reached.

[ID 'path-literal'] Code the optional ID subparameter to establish the
identity of retrieved paths. The system-defined field file-name:PATH-ID is set to
the value of ‘path-literal’ for the lowest record retrieved in the current path.
‘Path-literal’ can be an alphanumeric value of one or two characters. It cannot
contain any DBCS data. The default is spaces. Whenever a key of the tickler file
does not correspond to a root record in the database, file-name:PATH-ID is set to
NF (Not Found).

[LIMIT 'number-of-records'] The optional LIMIT subparameter controls
the number of record occurrences to be retrieved. The limit applies to the
specific record in the path. ‘Number-of-records’ must be a positive integer. When
this subparameter is not coded, all occurrences of the record are retrieved.

[WHILE (condition)] Code the optional WHILE subparameter to pre-screen
input records. The syntax of the condition is exactly the same as the conditional
expressions described in the “Coding a CA-Easytrieve Program” chapter in the
CA-Easytrieve Programmer Guide. When the associated record is retrieved from
CA-IDMS, the condition is evaluated. Records are accepted for input only if the
condition is true.

Format 2 (IMS/DLI)

file-name File-name identifies the database being accessed. File-name is the
same as the name coded in JOB INPUT file-name and FILE file-name statements.

[KEYFILE tickler-file-name KEYVALUE key-field-name] You can
designate the tickler file option by coding both the KEYFILE and the KEYVALUE
parameters. Tickler-file-name is the name of the file that is sequentially processed
to get the keys of the root segments to be retrieved. Key-field-name is a data field
from tickler-file-name that contains the keys. The key values are used in the
segment search argument for the root segment. CA-Easytrieve issues GU (get
unique) calls at the root level for each key found in tickler-file-name. Automatic
input is terminated at end-of-file for tickler-file-name.

Statements N - R 6–45

The DBCS code system assigned to tickler-file-name must match the DBCS code
system of file-name.

ROLLBACK Statement

[SELECT (record-name ...)] The SELECT parameter identifies which
segments (record-name) CA-Easytrieve retrieves. Record-name must be the same
as the segment-name coded on a RECORD statement. You can identify any
number of record-names for input; however, the parent of all selected segments
must also be selected.

[ID 'path-literal'] Code the optional ID subparameter to establish the
identity of retrieved paths. The system-defined field PATH-ID is set to the value
of ‘path-literal’ for the lowest segment retrieved in the current path. PATH-ID is a
two-byte alphabetic field. ‘Path-literal’ can be an alphabetic value of one or two
bytes. It cannot contain any DBCS data. The default value for PATH-ID is
spaces. When a key of the tickler file does not correspond to a root record in the
database, PATH-ID is set to NF (Not Found).

[LIMIT 'number-of-records'] The optional LIMIT subparameter controls
the number of segment occurrences to be retrieved. The limit applies to each
path. ‘Number-of-records’ must be a positive integer. When this subparameter is
not coded, all occurrences of the segment are retrieved.

[SSA 'segment-literal'] You can code the optional Segment Search
Argument (SSA) parameter for the root segment. ‘Segment-literal’ is used in the
creation of the SSA to qualify segment retrieval. This parameter is not valid
when you use a tickler file. The value supplied with SSA is enclosed within
parentheses and concatenated with the segment-name to produce the root
segment’s SSA. ‘Segment-literal’ cannot contain any DBCS data.

[WHILE (condition)] Code the optional WHILE subparameter to pre-screen
input segments. The syntax of the condition is exactly the same as the
conditional expressions described in the “Coding a CA-Easytrieve Program”
chapter in the CA-Easytrieve Programmer Guide. When the associated record is
returned by IMS/DLI, the condition is evaluated. Segments are accepted for
input only if the condition is true.

Usage Notes

See the CA-Easytrieve Programmer Guide for RETRIEVE statement examples.

ROLLBACK Statement
The ROLLBACK statement causes all uncommitted updates in the current logical
unit of work to be rolled back.

Statements N - R 6–46

ROW Statement

Statements N - R 6–47

[{pattern-name}]
[PATTERN { }] +
[{'pattern' }]

Syntax
ROLLBACK

Usage Notes

See the CA-Easytrieve Programmer Guide for more information about types of
work that are recoverable. Use the COMMIT statement to commit any pending
changes.

Example
WRITE PERSNL ADD
...
IF ...
 ROLLBACK
ELSE
 COMMIT
END-IF

ROW Statement
The ROW statement specifies the items (fields or literals) to be displayed or
received on a row of a screen. Multiple items can be coded on each ROW
statement. Attributes can be specified for each literal coded on the ROW
statement. Attributes and editing criteria can be specified for each field-name
coded on the ROW statement.

Syntax
ROW [row-number] +

[+offset-value] {field-name }
[] { } +
[COL column-number] {'row-literal'}

[{attribute-name }]
[ATTR { }] +
[{(attribute-list)}]

[{RIGHT}]
[JUSTIFY { }] +
[{LEFT }]

[FILL {'fill-character'|NULL}] +

[MASK ({[mask-identifier] [BWZ] ['mask-literal']|HEX})] +
[NOMASK]

ROW Statement

[UPPERCASE] +

[VALUE (literal [THRU literal] [...])] +

[[{attribute-name }]]]
[ERROR ([ATTR { }] +]]
[[{(attribute-list)}]]]
[]] ...
[[{'literal' [] }]]]
[[{ [...] }])]]
[[{field-name [] }]]]

Parameters

[row-number] Row-number specifies the line on which the item on the screen is
displayed. A ROW without a row-number is assigned the next row number on the
screen. Next is defined as the previous row-number plus one, not the highest
number used as yet.

A ROW without any fields or literals displays a blank line on the screen at the
corresponding row-number.

Row-number cannot exceed the default ROWCOUNT value set in the site options
or the value of the ROWCOUNT parameter specified on the SCREEN statement,
if coded.
[+offset-value] {field-name }
[] { }
[COL column-number] {'row-literal'}

The +offset-value or the COL column-number parameter allows you to control
positioning of an item on the row.

+Offset-value is the number of columns (spaces) preceding a screen item. The
default +offset-value is +1 because the space preceding each screen item is
reserved for screen attributes. +Offset-value must be a signed positive integer and
can only be used for items other than the first in the row.

Use column-number to explicitly specify the column at which the screen item is
displayed.

If you do not code an +offset-value or column-number, the next field-name or ‘row-
literal’ is displayed one column after the end of the previous field-name or ‘row-
literal.’ If no previous item exists in the row, the item is displayed in column one.

Field-name can be any DEFINEd field in your program.

‘Row-literal’ can be any text you want to display on the screen.

Statements N - R 6–48

ROW Statement

The sum of the length of all screen items (fields and literals) plus offset-values and
column-numbers (if used) cannot exceed the value of the default LINESIZE set in
the site options, or the value of the LINESIZE parameter on the SCREEN
statement, if coded.
[{attribute-name }]
[ATTR { }]
[{(attribute-list)}]

ATTR specifies either a DECLAREd screen attribute name or one or more
attribute keywords. See the ATTR Parameter for a list of attributes. See the
DECLARE Statement for more information on DECLAREd screen attributes.

The following attributes are invalid for literals and system-defined read-only
fields:

■ CURSOR

■ NUMERIC

■ INVISIBLE

■ MUSTFILL

■ MUSTENTER

■ TRIGGER

■ ALARM

They are ignored if used, but CA-Easytrieve issues a warning message during
compilation.

SENDONLY and ASKIP are assumed for literals and system-defined read-only
fields.
[{RIGHT}]
[JUSTIFY { }]
[{LEFT }]

Use the JUSTIFY parameter to specify whether the data in the field is left or right
justified when displayed at the terminal.

[FILL {'fill-character'|NULL}] Specify FILL to translate trailing blanks
into either ‘fill-character’ or NULL. ‘Fill-character’ must be a one-byte
alphanumeric literal.

Upon receiving data from the screen, CA-Easytrieve translates all remaining fill
characters to spaces.

You can use the FILL parameter to fill a field with underscores to illustrate the
total length of the field. You can fill a field with NULL on a 3270 display to allow
insertion of characters.

Statements N - R 6–49

ROW Statement

Varying length fields with FILL NULL do not have trailing nulls translated to
spaces. The first trailing null terminates the varying length field, and then sets
its length.

[MASK ({[mask-identifier] [BWZ] ['mask-literal']|HEX})]
[NOMASK]

The optional MASK parameter is used to format the field for display.

If MASK is not coded, the MASK coded on the field’s definition is used. Use
NOMASK to specify that the field’s default MASK is to be used instead of the
field’s definition MASK.

Any letter from A through Y can be used as an optional mask-identifier. You can
use the letter to identify a new mask or to retrieve a mask that was previously
defined either in the Site Options Table or by a mask parameter on a previous
field definition or ROW usage. If the new mask that you identify does not
already exist, CA-Easytrieve retains the mask for future reference. Do not use
the same identifier to establish more than one mask.

The BWZ (blank when zero) option suppresses the display of field-name when it
contains all zeros. BWZ can be used by itself or with other options on the MASK
parameter.

‘Mask-literal’ defines an edit mask and must be enclosed within single quotes.
The actual edit mask is coded according to the rules specified under the MASK
Parameter.

Specify HEX to display the field in double-digit hexadecimal format. You can
display fields of up to 50 bytes with the HEX mask.

When fields are received from the terminal, the mask is used as an editing
template also. Special characters in the MASK are stripped from the data before
it is moved into the field data area. See the CA-Easytrieve Programmer Guide for
more information.

Note: HEX edit masks are not allowed for VARYING fields.
[{pattern-name}]
[PATTERN { }]
[{'pattern' }]

PATTERN allows you to specify a pattern against which each input character is
edited. The pattern can be specified as a literal or as the name of a DECLAREd
pattern. See the DECLARE Statement.

The valid pattern characters and their meanings are shown in the following table.

Character Meaning

Statements N - R 6–50

A Represents a lower-case or an upper-case letter

ROW Statement

Character Meaning

B Represents a single blank

D Represents a digit

E Represents an empty string

L Represents a lower-case letter

N Represents an upper-case letter or a national character

U Represents an upper-case letter

X Represents any character

"x" Double quotes surrounding a character or a sequence of characters
literally represent the character or sequence of characters contained
within. The x represents any character. To literally represent single
or double quotes, use two sets of quotes within the surrounding set of
double quotes (‘""""‘ or ‘"x""x"‘, ‘"‘‘"‘, or ‘"x’‘x"‘).

blank Blanks (unless contained in double quotes) serve as delimiters but are
otherwise ignored. They can be inserted into the pattern to increase
readability.

() Represents grouping to control the precedence of operators.

 or | or , Represents a choice (or alternation operator).

(m) or (m..n)
or (m..*)
or (*)
or *

Represents the repetition of the preceding pattern expression. The m
and n represent numbers and m must be less than n. A single
number with parentheses indicates the exact number of repetitions.
(m..n) represents a range of repetitions, minimum to maximum. An
asterisk in a range, (m..*), represents an infinite maximum. An
asterisk by itself, (*) or *, represents a range from 0 to infinity.

or /-/ Represents the remove (or toss) operation. This operation applies
only to a single character set at a time and must immediately follow
that character set in the pattern. This operation removes the character
that matched the character set from the data.

+ Represents character set addition to form another character set.

- Represents character set difference to form another character set.

concatenation Concatenation is implied by proximity. For example, DDDU means 3
digits followed by an upper-case letter.

Statements N - R 6–51

ROW Statement

The precedence of operators from highest to lowest:
Grouping: () " "
Set construction: + -
Actions: #
Repetition: (n) (m..n) (m..*) (*)
Concatenation: proximity
Choice: |

The edit pattern is evaluated from left to right (the data from the screen is
processed from left to right). Patterns examine only one character at a time.
They do not look ahead and they do not back track. See the CA-Easytrieve
Programmer Guide for more information.

[UPPERCASE] Specify UPPERCASE to translate the field coming from the
terminal to upper case before placing it in the field data area.

[VALUE (literal [THRU literal] [...])] Use VALUE to specify a value, a
series of values, or a range of values (or a combination) that constrain the
values accepted in the field. Values must be specified as literals of the correct
type for the field. See Conditional Expressions in the “Statements A–C” chapter
for more information.
[[{attribute-name }]
[ERROR ([ATTR { } +]
[[{(attribute-list)}]
[]
[[{'literal' [] }]]
[[{ [...] }])]
[[{field-name [] }]]

ERROR specifies one or more fields or alphanumeric literals to be used as the
error message issued by CA-Easytrieve in case of an automatically-detected error
condition. The total length of the message text cannot exceed the current screen
size less two or the compiler issues an error message. Optionally, you can
specify the screen attribute to be used for the field in error.

Usage Notes

See the CA-Easytrieve Programmer Guide for more information.

Example
ROW 5 'Number' COL 20 EMP-NUMBER ATTR PROTECT MASK 'ZZ9'
ROW 'Name' COL 20 EMP-NAME UPPERCASE
ROW 'Dept' COL 20 EMP-DEPT VALUE (900 THRU 999) +
 ERROR 'Invalid Department'

Statements N - R 6–52

Chapter

7 Statements S - Z

SCREEN Statement
The SCREEN statement defines and initiates a SCREEN activity. A SCREEN
activity defines a transaction-oriented processing activity under the control of keys
pressed by the terminal operator. Statements can also be inserted in screen
procedures to retrieve and maintain files and databases.

Note: Screen processing is not available in the UNIX environment.

Syntax
 [[ACTIVITY] [TERMINAL]]
SCREEN [NAME screen-name] [COMMIT ([] [])] +
 [[NOACTIVITY] [NOTERMINAL]]

 [UPPERCASE] [ROWCOUNT rows] [LINESIZE columns] +

 [ROW screen-start-row] [COL screen-start-column] +

 [{attribute-name }]
 [BACKGROUND ATTR { }] +
 [{(attribute-list)}]

 [{SINGLE }]
 [{DOUBLE } [{attribute-name }]]
 [BORDER ({ } [ATTR { }]] +
 [{WIDE } [{(attribute-list)}]]
 [{'border literal'}]

 [SHADOW]

Parameters

[NAME screen-name] Optionally, specify a name for the SCREEN activity.
Screen-name can:

■ Be up to 128 characters in length

■ Contain any character other than a delimiter

Statements S - Z 7–1

SCREEN Statement

■ Begin with A-Z, 0-9, or a national character (#, @, $)

■ Not consist of all numeric characters.

The screen-name can be used to identify the screen in an EXECUTE statement.
[[ACTIVITY] [TERMINAL]]
[COMMIT ([] [])]
[[NOACTIVITY] [NOTERMINAL]]

Specify the COMMIT parameter to control the logical unit of work. COMMIT
indicates when the activity commits recoverable work. Each commit point posts
all updates, additions and deletions, terminates holds, and closes SQL cursors.

Specify ACTIVITY to commit all recoverable work during the normal termination
of the activity. Specify NOACTIVITY to tell CA-Easytrieve not to commit at the
end of the activity. NOACTIVITY is the default.

Specify TERMINAL to commit all recoverable work during any terminal I/O
operation. In CICS, this results in terminal I/O being performed in a
pseudo-conversational mode. Specify NOTERMINAL to tell CA-Easytrieve not to
commit during a terminal I/O. TERMINAL is the default.

If this activity is executed by an activity that has NOTERMINAL specified, this
activity performs terminal I/O as if NOTERMINAL was specified.

Note: You can also issue your own COMMIT and ROLLBACK statements to
commit or recover on a controlled basis.

[UPPERCASE] Specify UPPERCASE to translate the data received from the
terminal to upper case before it is processed. If UPPERCASE is not specified, the
data is processed as the user enters it.

[ROWCOUNT rows] ROWCOUNT rows allows you to override the default number
of terminal rows for the screen display. The default is set in the Site Options Table.
See LINESIZE columns, below, for valid ROWCOUNT-LINESIZE combinations.

[LINESIZE columns] LINESIZE columns allows you to override the default
number of columns for the screen display. The default is set in the Site Options
Table.

On the mainframe, ROWCOUNT can be any value from 1 to 255. LINESIZE can
be any value from 1 to 255. If the dimensions of the screen exceed the screen size
available on the display terminal, only a portion of the screen is displayed.

On the workstation, ROWCOUNT can be any value from 1 to 25. LINESIZE can
be any value from 1 to 80. A ROWCOUNT of 25 is flagged as an error if the
portability compiler switch (/P) is specified. See the “Compiling From the
Command Line” chapter in the CA-Easytrieve/Workstation User Guide for more
information.

Statements S - Z 7–2

SCREEN Statement

[ROW screen-start-row] [COL screen-start-column] Screen-start-row
specifies the starting row of the screen. The default is 1.

Screen-start-column specifies the starting column of the screen. The default is 1.
[{attribute-name }]
[BACKGROUND ATTR { }]
[{(attribute-list)}]

(Workstation only) Use BACKGROUND to specify a DECLAREd screen attribute
name or a list of attribute keywords for the background of the workstation screen
display. All attributes except colors and INTENSE are ignored. If not specified,
the default background color is BLACK. See the ATTR Parameter for a list of
attribute keywords. See the DECLARE Statement for more information on
DECLAREd screen attributes.

BACKGROUND is ignored on the mainframe.
[{SINGLE }]
[{DOUBLE } [{attribute-name }]]
[BORDER ({ } [ATTR { }]]
[{WIDE } [{(attribute-list)}]]
[{'border literal'}]

Use BORDER to specify that the screen has a border.

SINGLE, DOUBLE, or WIDE specify that the border is built from a pre-defined
line-drawing character set.

Borders on the workstation are:

Borders on the mainframe are:

‘Border literal’ specifies the character to be used for the screen border. This value
must be a single character enclosed in single quotes.

Statements S - Z 7–3

SCREEN Statement

Optionally, specify a DECLAREd screen attribute name or a list of attribute
keywords for the screen border. The following attributes are ignored for BORDER:

■ CURSOR

■ NUMERIC

■ INVISIBLE

■ MUSTFILL

■ MUSTENTER

■ TRIGGER

■ ALARM

See the ATTR Parameter for a list of attribute keywords. See the DECLARE
Statement for more information on DECLAREd screen attributes.

[SHADOW] (Workstation only) Specify SHADOW to display a shadow on the
bottom and right of the screen, as shown:

SHADOW is ignored on the mainframe.

Usage Notes

The structure of a SCREEN activity is as follows:
SCREEN statement
 Screen declaration statements:
 DEFAULTs (first in declaration section)
 KEYs, TITLEs, ROWs (in any order)
 Screen procedures (both special-named and user-defined, in any
order)

SCREEN activities can be EXECUTEd by PROGRAM or other SCREEN activities.
If a PROGRAM activity is not present, the first SCREEN activity detected is
automatically executed. A SCREEN activity continues processing until an EXIT,
STOP, or TRANSFER statement is executed. CA-Easytrieve issues an error
message when compiling a screen activity that does not contain one of these
statements.

If the LINESIZE and ROWCOUNT for a screen are less than the line size and
number of rows on the terminal, the screen is displayed as a pop-up window. Any
fields from previous screens that are still displayed are given the ASKIP attribute
to prevent data entry on those screens.

Statements S - Z 7–4

SEARCH Statement

When executing in TSO and CMS, if the terminal supports two presentation sizes,
CA-Easytrieve selects the presentation size based on the size of the screen. When a
pop-up window is displayed, the presentation space is based on the larger of the
previous display size or the size of the pop-up window.

Example
 DEFINE WS-REPLY W 1 A
 SCREEN NAME MAIN-MENU
 TITLE 'Employee File Main Menu'
 ROW 6 COL 10 'Type an option, then press Enter.'
 ROW 8 COL 10 'Option ===>' WS-REPLY VALUE ('V' 'E' 'D' 'X') +
 ERROR 'Please type V, E, D, or X'
 ROW 10 COL 22 'V View employee'
 ROW COL 22 'E Edit employee'
 ROW COL 22 'D Delete employee'
 ROW COL 22 'X Exit'
 KEY F1 NAME 'Help' IMMEDIATE
 KEY F3 NAME 'Exit' EXIT
 KEY F12 NAME 'Cancel' EXIT IMMEDIATE

The following illustrates the screen created from the example screen declaration:

 Employee File Main Menu

 Type an option, then press Enter.

 Option ===>

 V View employee
 E Edit employee
 D Delete employee
 X Exit

 F1=Help F3=Exit F12=Cancel

SEARCH Statement
The SEARCH statement provides access to table information. Special conditions of
the IF statement can be used to validate the results of SEARCH operations.

Syntax
SEARCH file-name WITH search-field GIVING result-field

Statements S - Z 7–5

SEARCH Statement

Parameters

The length and field type of search-field must match the length and field type of the
ARG field defined for file-name. Search-field cannot be a varying length field or a
nullable field.

Usage Notes

file-name File-name is the name of the file that describes the table and its source.
The file must have the TABLE parameter on its FILE statement and must be a fixed
length.

WITH search-field Search-field identifies the field containing the search
argument for the binary search. This parameter is defined in any file, except for
files with the TABLE parameter or it can be defined in working storage.

GIVING result-field Result-field identifies the receiving field for the results of
the table search. This parameter is defined in any file, except for files with the
TABLE parameter or it can be defined in working storage.

The length and field type of result-field must match the length and field type of the
DESC field defined for file-name. Result-field cannot be a varying length field or a
nullable field.

After each SEARCH statement, you can code an IF file-name test to determine the
success of the table search. When the search is successful (IF file-name is true),
result-field contains the table’s descriptive data corresponding to the search
argument of search-field. When the search is unsuccessful (IF file-name is false), the
contents of result-field are unchanged.

You can code SEARCH statements any place in a PROGRAM, SCREEN, or JOB
activity, and issue any number of SEARCHes against any number of tables.

The file must be in ARG sequence and cannot contain any duplicates. The
compare between the WITH field and the ARG field in the table is a logical
compare, that is, the compare ignores the data type and treats both fields as if they
have a data type of A.

When the table file is also an INDEXED file and the ARG field is the key,
CA-Easytrieve performs a keyed read of the file. Otherwise, the entire file is read
into memory and a binary search is performed. See the CA-Easytrieve Programmer
Guide for more information on table processing.

Statements S - Z 7–6

SELECT Statement (File-based SQL)

Example

The following example illustrates the retrieval of high school class descriptions
based upon class identification codes.

Statements:
DEFINE CODE W 4 A
DEFINE DESCRIPTION W 40 A
FILE CLASSES TABLE INSTREAM
ARG 1 4 A
DESC 10 40 A
1011 ENGLISH I
1012 ENGLISH II
1013 ENGLISH III
1014 ENGLISH IV
ENDTABLE
PROGRAM NAME MYPROG
 MOVE '1012' TO CODE
 SEARCH CLASSES WITH CODE, GIVING DESCRIPTION
 IF CLASSES
 DISPLAY DESCRIPTION
 ELSE
 DISPLAY 'CLASS NOT FOUND'
 END-IF

Results:
 ENGLISH II

SELECT Statement (File-based SQL)
A SELECT statement issued for an SQL file causes a cursor to be automatically
declared and opened as a CA-Easytrieve file. The resulting cursor can then be
fetched and updated by subsequent commands for the file. The cursor can also be
the subject of automatic input using the JOB statement.

Syntax
SELECT [DISTINCT] [FROM] file-name +

 [WHERE search-condition] +

 [GROUP BY column-name +] +
 [[, column-name ...]]

 [HAVING search-condition] +

 [{column-name} [ASC]]
 [ORDER BY { } [] +]
 [{integer } [DESC]]
 []
 [[{column-name} [ASC]]]
 [[, { } [] ...]] +
 [[{integer } [DESC]]]

Statements S - Z 7–7

SELECT Statement (File-based SQL)

 [FOR UPDATE]

Parameters

[DISTINCT] DISTINCT eliminates duplicate rows. If DISTINCT is not specified,
all rows are retrieved.

[FROM] file-name Optionally, code FROM for statement readability.

File-name must be the name of a CA-Easytrieve SQL file.

[WHERE search-condition] Search-condition is used to specify conditions for the
retrieval of data. The search-condition is applied to create the result set for the file.
Refer to your SQL vendor manuals for a description of the search-condition.

[GROUP BY column-name] GROUP BY is used to group data which is FETCHed
into the file. See your SQL vendor’s guide for column-name syntax.

[HAVING search-condition] Search-condition is used to specify the data to be
provided to the user. HAVING can be used to compare the results of all the
returned data with a specific value in the data provided (such as the minimum or
maximum value). Refer to your SQL vendor manuals for a description of the
search-condition.
[{column-name} [ASC]]
[ORDER BY { } []]
[{integer } [DESC]]

ORDER BY returns the rows of the result table in the order of the values of the
specified column-names. Integer references a column by its position in the result
table rather than by a column-name. ASC returns the rows in ascending order and
is the default. DESC returns the rows in descending order.

[FOR UPDATE] Specify FOR UPDATE to allow updates of the updatable fields
defined in file-name. If used, FOR UPDATE must be the last parameter specified on
the SELECT statement. If FOR UPDATE is not coded and you attempt to update
file-name, you receive an error at execution.

Usage Notes
■ If no SELECT statement is issued for an SQL file, a default SELECT is used

(SELECT all defined columns FROM file-name).

■ If SELECT is the first statement in a JOB activity, the following happens:

– If the SELECT is for an automatic input file, the SELECT overrides the
default SELECT.

Statements S - Z 7–8

SELECT Statement (CA-IDMS)

– If the SELECT is for a file not used for automatic input, a DEFER should
be coded on the SQL FILE statement. If DEFER is not coded, the default
SELECT is opened during the initialization processing, then closed, and
the coded SELECT processed. This causes unnecessary processing to
occur.

■ If a SELECT is specified for a file that has already been opened, either by the
default SELECT or another coded SELECT, then the existing SELECT for the
file is closed and the new SELECT is used to open the file again.

■ SELECT can be coded in a JOB’s START procedure. However, since a file is
normally opened before invoking the START procedure, you should specify
DEFER on the FILE statement. Otherwise, the default SELECT is opened
before the START procedure, and then the SELECT in the START procedure
closes the default SELECT before it opens. This causes extra processing that
is not needed.

Examples

The following is a file-based SQL SELECT statement example:
FILE PERSNL SQL (PERSONNEL)
EMPNAME * 20 A
WORKDEPT * 2 P 0
JOB NAME RETRIEVE-PERSONNEL INPUT PERSNL
 SELECT FROM PERSNL WHERE WORKDEPT = 921
 DISPLAY EMPNAME +2 WORKDEPT

The next example shows a file-based SQL SELECT statement with DEFER:
FILE PERSNL SQL (PERSONNEL) DEFER
EMPNAME * 20 A
WORKDEPT * 2 P 0
JOB NAME RETRIEVE-PERSONNEL INPUT PERSNL START START-PROC
 DISPLAY EMPNAME +2 WORKDEPT
START-PROC. PROC
 SELECT FROM PERSNL WHERE WORKDEPT = 921
END-PROC

SELECT Statement (CA-IDMS)
(Workstation only) Code a SELECT statement immediately following a JOB
statement to specify automatic input of logical records from CA-IDMS databases.
You can code only one SELECT statement in each JOB activity. This statement
identifies the logical record that is input to the JOB activity. The arguments of the
WHERE parameter are passed to CA-IDMS for evaluation.

Syntax
 SELECT logical-record-name +

Statements S - Z 7–9

SELECT Statement (CA-IDMS)

 [WHERE (boolean-expression)] +

 [LIMIT record-literal] +

 [{program-name }]
 [PROGRAM-NAME { }] +
 [{'program-literal'}]

 [{db-name-table-name }]
 [DBNAME { }] +
 [{'db-name-table-literal'}]

 [{node-name }]
 [NODE { }] +
 [{'node-literal'}]

 [{dictionary-name }]
 [DICTNAME { }] +
 [{'dictionary-literal'}]

 [{dictionary-node-name }]
 [DICTNODE { }]
 [{'dictionary-node-literal'}]

Parameters

logical-record-name Logical-record-name is a one to sixteen-character name that
identifies the logical record to be retrieved. Logical-record-name must be the name
of a logical record defined by a LOGICAL-RECORD statement.

[WHERE (boolean-expression)] Code the optional WHERE clause to provide a
Boolean expression that CA-IDMS evaluates before selecting logical records for
CA-Easytrieve. Records are sent to CA-Easytrieve only if the Boolean expression is
true.

[LIMIT record-literal] The optional LIMIT subparameter controls the
number of occurrences of the logical record to be retrieved. Record-literal must be a
positive integer. When this subparameter is not coded, all occurrences of the
logical record are retrieved.
[{program-name }]
[PROGRAM-NAME { }]
[{'program-literal'}]

Program-name or ‘program-literal’ specifies the name used to identify the program to
CA-IDMS during execution. Program-name must be an eight-byte alphanumeric
field. ‘Program-literal’ must be alphanumeric and is padded to the right (if
necessary) to create an eight-byte value.
[{db-name-table-name }]
[DBNAME { }]
[{'db-name-table-literal'}]

Statements S - Z 7–10

SELECT Statement (Non-file SQL)

Db-name-table-name or ‘db-name-table-literal’ specifies a DB Name Table. Data
retrieved during execution of the user’s program is from the named database. Db-
name-table-name must be an eight-byte alphanumeric field. ‘Db-name-table-literal’
must be alphanumeric and is padded to the right (if necessary) to create an
eight-byte value.
[{node-name }]
[NODE { }]
[{'node-literal'}]

Node-name or ‘node-literal’ specifies the Central Version Node that hosts the
CA-IDMS activity generated by the user’s program. Node-name must be an
eight-byte alphanumeric field. ‘Node-literal’ must be alphanumeric and is padded
to the right (if necessary) to create an eight-byte value.
[{dictionary-name }]
[DICTNAME { }]
[{'dictionary-literal'}]

Dictionary-name or ‘dictionary-literal’ specifies the Dictionary Name of a Secondary
Load Area. Dictionary-name must be an eight-byte alphanumeric field. ‘Dictionary-
literal’ must be alphanumeric and is padded to the right (if necessary) to create an
eight-byte value.
[{dictionary-node-name }]
[DICTNODE { }]
[{'dictionary-node-literal'}]

Dictionary-node-name or ‘dictionary-node-literal’ specifies the Dictionary Node of a
Secondary Load Area. Dictionary-node-name must be an eight-byte alphanumeric
field. ‘Dictionary-node-literal’ must be alphanumeric and is padded to the right (if
necessary) to create an eight-byte value.

Example
 *
 IDD SUBSCHEMA DEMOSSLR SCHEMA DEMOSCHM +
 SELECT (CUST-SALES-LR)
 *
 JOB INPUT DEMOSSLR
 SELECT CUST-SALES-LR
 *
 DISPLAY CUST-NAME +2 SLS-CUST-NO +2 PROD-DESC

SELECT Statement (Non-file SQL)
The non-file SQL SELECT statement allows CA-Easytrieve to retrieve rows
without a file. This read-only method is retained from previous versions of
CA-Easytrieve.

The SELECT statement identifies the rows and columns that are to be input to the
JOB activity. Only one SELECT statement can be coded in each JOB activity, and it
must be coded as the first statement in the JOB activity.

Statements S - Z 7–11

SELECT Statement (Non-file SQL)

Syntax
 { {* }
 [DISTINCT] { {expression }
SELECT [] { { } +
 [ALL] { {table-name.* }
 { {correlation-name.*}

 }
 [{expression }] }
 [, {table-name.* } . ..] } +
 [{correlation-name.*}] }
 }

 FROM table-name [correlation-name] +
 [,table-name [correlation-name] ...] +

 [WHERE search-condition] +

 [GROUP BY column-name +] +
 [[, column-name ...]]

 [HAVING search-condition] +

 [{ {* }]
 [[DISTINCT] { {expression }]
 [UNION SELECT [] { { } +]
 [[ALL] { {table-name.* }]
 [{ {correlation-name.*}]
 []
 [}]
 [[{expression }] }]
 [[, {table-name.* } ...] } +]
 [[{correlation-name.*}] }]
 [}]
 []
 [FROM table-name [correlation-name] +]
 [[,table-name [correlation-name] ...] +] +
 []
 [[WHERE search-condition] +]
 []
 [[GROUP BY column-name +] +]
 [[[, column-name ...]]]
 []
 [[HAVING search-condition]]

 [{column-name} [ASC]]
 [ORDER BY { } [] +]
 [{integer } [DESC]]
 []
 [[{column-name} [ASC]]]
 [[, { } [] ...]] +
 [[{integer } [DESC]]]

 INTO :host-variable [, :host-variable...]

Statements S - Z 7–12

SELECT Statement (Non-file SQL)

Parameters
[DISTINCT]
[]
[ALL]

Specify DISTINCT to eliminate duplicate rows. ALL specifies that duplicate rows
are not eliminated. ALL is the default.
{* }
{expression }
{ }
{table-name.* }
{correlation-name.*}

The above parameters are used to identify the columns to be retrieved from the
specified table.

FROM table-name [correlation-name] Table-name specifies the table from
which data is to be retrieved. Correlation-name can be used to specify an alternate
qualifier for the table-name that immediately precedes it.

[WHERE search-condition] Search-condition is used to specify conditions for the
retrieval of data. The search-condition is applied to the result of the FROM clause.
Refer to your SQL vendor manuals for a description of the search-condition.

[GROUP BY column-name] GROUP BY is used to group data that is FETCHed
into the file. Column-name must name a column in the file-name.

[HAVING search-condition] Search-condition is used to specify the data to be
provided to the user. HAVING can be used to compare the results of all the
returned data with a specific value in the data provided (such as the minimum or
maximum value). Refer to your SQL vendor manuals for a description of the
search-condition.

[UNION...] The UNION clause is used to include rows from another table.
[{column-name} [ASC]]
[ORDER BY { } []]
[{integer } [DESC]]

ORDER BY returns the rows of the result table in the order of the values of the
specified column-names. Integer references a column by its position in the result
table rather than by a column-name. ASC returns the rows in ascending order and
is the default. DESC returns the rows in descending order.

INTO :host-variable [, :host-variable...] INTO identifies where the
column values are to be placed. The INTO clause must be the last clause coded on
the SELECT statement.

Statements S - Z 7–13

SELECT Statement (Report Selection)

Usage Notes

Code the SELECT statement immediately following the JOB INPUT SQL
statement.

If this execution is for an SQL/DS system, a CONNECT statement is generated and
executed by CA-Easytrieve. This means that the user does not need to include an
SQL CONNECT statement when using CA-Easytrieve automatic processing. The
user ID and password parameters are those that were specified in the USERID
parameter of the PARM statement.

CA-Easytrieve checks the SQLCODE field following each execution of the
select-clause. If the SQLCODE indicates an error, CA-Easytrieve issues an error
message based on the SQL error and terminates execution. An SQLCODE value
indicating end of data causes CA-Easytrieve to initiate end of input processing: the
FINISH PROC (if any) executes, spooled reports are printed, and the current JOB
activity ends. Refer to your SQL vendor’s manuals for a description of SQL codes.

The SQL cursor that is automatically defined by a SELECT statement is closed
following the JOB activity referencing it.

Example

The pseudo-code generated for automatic SQL processing is:
* IF SQL/DS
 SQL CONNECT :user-id IDENTIFIED BY :password
* END-IF
 SQL DECLARE cursor CURSOR FOR select clause
 SQL OPEN cursor
 DO WHILE SQLCODE NE 100
 SQL FETCH cursor INTO :host-variable-1 +
 [, :host-variable-2...]
 process CA-Easytrieve code
 END-DO
 SQL CLOSE cursor

SELECT Statement (Report Selection)
A SELECT statement can be executed in a REPORT-INPUT procedure to select
report input data. If the REPORT-INPUT procedure is not coded, all records
selected with a PRINT statement are used in the report.

Syntax
SELECT

Statements S - Z 7–14

SELECT Statement (Sort Selection)

Usage Notes

SELECT only sets a switch to cause record selection at a later time. If you SELECT
a record twice, it only appears once on the PRINTEDed report.

If coded, a REPORT-INPUT procedure is performed for each PRINT statement
(report input). To cause the data to continue into report processing, you must
execute a SELECT statement for the associated input data. In other words, input
that does not get SELECTed is bypassed for continued processing. See the
REPORT-INPUT Report Procedure for more information.

Example
REPORT-INPUT. PROC
 IF ZIP NE HOLD-ZIP
 HOLD-ZIP = ZIP
 SELECT
 END-IF
END-PROC

SELECT Statement (Sort Selection)
CA-Easytrieve supplies input records to your optional sort procedure one at a
time. If a BEFORE procedure is used, a SELECT statement must be executed for
each record that you want to sort.

Syntax
SELECT

Usage Notes

SELECT only sets a switch to cause record selection at a later time. If you SELECT
a record twice, it only appears once on the SORTed file. If you SELECT a record
and then issue a STOP, the record is not selected.

Statements S - Z 7–15

SEQUENCE Statement

Example

The following example of a SORT activity shows an output file that contains only a
reordered subset of the input file. The output file contains only those records for
which the SELECT statement is executed.
FILE PERSNL FB(150 1800)
%PERSNL
FILE SORTWRK FB(150 1800) VIRTUAL
COPY PERSNL
SORT PERSNL TO SORTWRK USING +
 (REGION, BRANCH, DEPT, +
 NAME-LAST, NAME-FIRST) +
 NAME MYSORT BEFORE SCREENER
*
SCREENER. PROC
 IF MARITAL-STAT = 'S' AND SEX = 1
 SELECT
 END-IF
END-PROC

SEQUENCE Statement
The SEQUENCE statement optionally specifies the order of a report or the values
on a graph. You can order any report or graph based on the content of one or
more fields.

Syntax
SEQUENCE field-name [D] ...

Parameters

field-name For reports, field-name identifies a field on which a report is ordered.
You can specify multiple field-names for a report.

For graphs, field-name identifies a field on which graph values are sequenced. Only
one field-name is permitted for a graph.

Field-name must be in an active file or W type working storage. Each field must be
less than 256 bytes. The fields specified are used as sort keys processed in major to
minor order.

Note: Varying length, K, and M fields cannot be specified on a SEQUENCE
statement.

[D] An optional D following a field-name indicates that the field is sequenced into
descending order. If you do not code D after a field-name, by default the field is
sorted in ascending order.

Statements S - Z 7–16

SET Statement

Usage Notes

The fields used to SEQUENCE a report or graph do not have to be part of the
printed report or displayed graph.

Examples

The following example illustrates using the SEQUENCE statement in a report
declaration.
REPORT PERSNL-REPORT
 SEQUENCE REGION BRANCH PAY-NET D
 CONTROL REGION BRANCH
 TITLE 'PERSONNEL REPORT'
 LINE REGION BRANCH EMPNAME PAY-NET

The next example illustrates using the SEQUENCE statement in a graph
declaration.
FILE PERSNL F(150)
%PERSNL
JOB INPUT PERSNL NAME DRAW-GRAPH
 DRAW GRAPH1
GRAPH GRAPH1 SUMMARY
 SEQUENCE BRANCH
 TITLE 'GROSS PAY BY BRANCH'
 VALUE BRANCH PAY-GROSS

The above graph declaration produces a pie graph that displays the sum of the
gross pay for each branch sequenced by branch.

SET Statement
The SET statement allows you to dynamically change screen attributes and to
control the display of screen errors.

Syntax

Format 1
SET field-name ERROR +

 [[{attribute-name }] [{'literal' [] }]]
 [[ATTR { }] [{ [...] }]]
 [[{(attribute-list)}] [{field-name [] }]]

Format 2
 {attribute-name }
SET field-name ATTR { }
 {(attribute-list)}

Statements S - Z 7–17

SET Statement

Parameters

field-name Field-name specifies a field on a ROW statement in your screen
declaration. Field-name can be indexed or subscripted. If the index or subscript of
field-name is evaluated and is not on the screen, the SET statement is ignored.

ERROR Use ERROR to indicate that you want to flag field-name as being in error
and to specify attributes or messages for field-name.

When you specify ERROR, the attributes or messages for field-name are determined
by the hierarchy in the following table. The priority is from highest to lowest.

Statement/ Area Attributes Message

1. SET statement ATTR parameter literal or field-name parameter(s)

2. ROW statement ERROR ATTR parameter ERROR ‘literal’ or field-name
parameter(s)

3. DEFAULT
statement

FIELD ERROR ATTR
parameter

Default system message:
Value entered is not allowed. Type an
acceptable value.

4. Site Options Table FIELD ERROR ATTR
parameter

Default system message: Value entered
is not allowed. Type an acceptable
value.

Note: If you code SET ERROR without the ATTR or ‘literal’/field-name parameters,
the attributes and messages are determined by the next statement or area in the
above hierarchy.
[{attribute-name }]
[ATTR { }]
[{(attribute-list)}]

ATTR specifies either a DECLAREd screen attribute name or one or more attribute
keywords. See the ATTR Parameter for a list of attributes. See the DECLARE
Statement for more information on DECLAREd screen attributes.

The following attributes are invalid for literals and system-defined read-only
fields:

 CURSOR MUSTENTER
NUMERIC TRIGGER
INVISIBLE ALARM
MUSTFILL

They are ignored if used, but CA-Easytrieve/Online issues a warning message
during compilation.

Statements S - Z 7–18

SET Statement

SENDONLY and ASKIP are assumed for literals and system-defined read-only
fields.
{'literal' }
{ }
{field-name}

Use ‘literal’ to define the text you want displayed in the message. Use field-name to
specify a field whose contents you want displayed as part of the message. A
message can consist of a combination of literals and field-names.

The maximum length of a message is 130 characters. If the message exceeds the
message area for the screen on which it is displayed, the message is truncated.

Usage Notes

You can code the SET statement in a screen procedure or in any procedure
PERFORMed from a screen procedure, except for SCREEN TERMINATION. If
coded in a SCREEN TERMINATION procedure or if coded in a procedure called
from a SCREEN TERMINATION procedure, the SET statement is ignored at
execution time.

The SET statement can be executed any number of times before displaying the
screen. The last SET statement for field-name determines the attributes or messages
for that field.

The attributes or error message established by a SET statement remain only for one
iteration of the SCREEN activity. After the SCREEN is displayed, the attribute
returns to its default as coded on the ROW statement. For changing field attributes
until they are modified further, a declared attribute should be used. For an
example, see Using Dynamic Screen Attributes in the Programmer Guide.

When multiple SET statements are coded for multiple field-names before the next
display of a screen, the field-name that is physically displayed first on the screen has
its message displayed on the screen. All other field-names only have their attributes
displayed.

The SET statement overrides any ACTION messages defined in the MESSAGE
statement, even if the MESSAGE statement is executed after all SET statements.

The attributes and messages specified on the SET statement are evaluated when
the statement is executed. If the attributes or messages are variable, the value is
saved and bound to the field-name when the SET statement is executed. If the
variables are later modified, the attributes or messages are not changed when the
screen is re-displayed.

Statements S - Z 7–19

SKIP Statement

If you code SET field-name ERROR without any other parameters, the attributes
and messages for field-name are determined by the ROW statement. If the
attributes and messages on the ROW statement are variable, the values displayed
for the SET statement are the same as the values determined when the ROW
statement is evaluated.

When you execute a RESHOW, REFRESH, or GOTO SCREEN statement after a
SET statement, the attributes or messages specified in the SET statement are not
affected.

Examples

In the following example, when the department number is not found in the table,
the field is flagged in error.
ROW DEPT ERROR 'Department in error'
...
AFTER-SCREEN. PROC
 SEARCH DEPTBL WITH DEPT GIVING DEPT-DESC
 IF NOT DEPTBL
 SET DEPT ERROR
 END-IF
END-PROC

In the next example, when a user types a value greater than 50,000 into PAY-
GROSS, PAY-GROSS is displayed in yellow, otherwise PAY-GROSS is displayed
in turquoise.
ROW PAY-GROSS
...
AFTER-SCREEN. PROC
 IF PAY-GROSS > 50,000
 SET PAY-GROSS ATTR (YELLOW)
 ELSE
 SET PAY-GROSS ATTR (TURQ)
 END-IF
END-PROC

In the last example, five rows are displayed when the screen is displayed. Row 1 is
displayed in BLUE and the cursor is positioned in AFIELD. Rows 2-5 are
displayed in YELLOW.
REPEAT 5 TIMES VARYING SUB1 FROM 1
 ROW AFIELD(SUB1) ATTR (YELLOW)
END-REPEAT
...
BEFORE-SCREEN. PROC
 SET AFIELD(1) ATTR (BLUE CURSOR)
END-PROC

SKIP Statement
SKIP is a listing control statement that spaces the printer a designated number of
lines before printing the next line of the statement listing.

Statements S - Z 7–20

SORT Statement

Syntax
SKIP skip-amount

Parameters

skip-amount Skip-amount must be an unsigned integer.

Usage Notes

You can code a SKIP statement anywhere in CA-Easytrieve source code. SKIP
must be on a record by itself. SKIP does not appear in the printed output.
However, the requested blank line appears.

SORT Statement
The SORT statement defines and initiates an activity that sorts any file that can be
processed sequentially. SORT sequences an input file in alphabetical or numerical
order based on fields specified as keys.

Syntax
SORT input-file-name TO sorted-file-name +

 USING (sort-key-field-name [D] ...) +

 [[ACTIVITY] [TERMINAL]]
 [COMMIT ([] [])] +
 [[NOACTIVITY] [NOTERMINAL]]

 [SIZE record-count] +

 [WORK number-of-work-data-sets] +

 [BEFORE proc-name] +

 [NAME sort-name]

Parameters

input-file-name Input-file-name is the name of the input file for the SORT
activity.

Input-file-name must reference a FILE statement that defines a SEQUENTIAL,
INDEXED, RELATIVE, or VFM file. The record length of input-file-name controls
the length of records to be sorted, except when both files are fixed length. When
this occurs, the length of the records is equal to that of input-file-name or
sorted-file-name, whichever is shorter.

Statements S - Z 7–21

SORT Statement

TO sorted-file-name Sorted-file-name designates the name of the output file of
the sort activity. Sorted-file-name must reference a FILE statement that defines a
SEQUENTIAL, INDEXED, RELATIVE, or VFM file.

If sorted-file-name is the same file name as input-file-name, the SORTed output is
written over the input file.

USING (sort-key-field-name [D] ...) USING (sort-key-field-name) specifies
key fields for sorting input-file-name.

You can code any number of fields up to the input limit of your installation’s sort
program. Up to 10 key fields can be used on the workstation. Sort-key-field-name
can be any field less than 256 bytes long in the sort input file. (The only exceptions
are variable length fields, which cannot be used as keys.) Sort-key-field-name cannot
be a nullable field.

Code D to sort output in descending order. The default is ascending order.

Note: Varying length, K, and M fields cannot be specified as sort keys.
[[ACTIVITY] [TERMINAL]]
[COMMIT ([] [])]
[[NOACTIVITY] [NOTERMINAL]]

Specify the COMMIT parameter to control the logical unit of work. COMMIT
indicates when the activity commits recoverable work. Each commit point posts
all updates, additions and deletions, and terminates holds. SQL cursors may or
may not be closed, depending on the underlying database and the cursor
definition.

Specify ACTIVITY to commit all recoverable work during the normal termination
of the activity. Specify NOACTIVITY to tell CA-Easytrieve not to commit at the
end of the activity. NOACTIVITY is the default.

Specify TERMINAL to commit all recoverable work during any terminal I/O
operation. In CICS, this results in terminal I/O being performed in a
pseudo-conversational mode. Specify NOTERMINAL to tell CA-Easytrieve not to
commit during a terminal I/O. TERMINAL is the default.

If this activity is executed by an activity that has NOTERMINAL specified, this
activity performs terminal I/O as if NOTERMINAL was specified.

See the CA-Easytrieve Programmer Guide for more information.

[SIZE record-count] Because CA-Easytrieve knows the number of records in
files created by previous activities, it automatically supplies that information to the
sort program. If the file was not created by a previous activity, you can enhance
sort efficiency by supplying the approximate number of records as record-count on
the optional SIZE parameter. Record-count must be an unsigned integer.

Statements S - Z 7–22

SORT Statement

[WORK number-of-work-data-sets] Specify the number of work data sets used
by the sort program. Number-of-work-data-sets must be one of the following:

■ A zero − to indicate that DD statements are supplied

■ A value from 1 to 31 − to indicate the number of work data sets that the sort
program dynamically allocates.

This parameter overrides the number of work data sets set in the Site Options
Table. WORK is ignored on the workstation.

[BEFORE proc-name] Optionally, specify proc-name to identify your procedure
that pre-screens, modifies, and selects input records for the sort. See the SELECT
(Sort Selection) Statement for more information.

If you do not specify BEFORE proc-name, CA-Easytrieve sorts all records in
input-file-name and writes them to sorted-file-name.

[NAME sort-name] Optionally, specify sort-name to identify the SORT activity.
Sort-name can:

■ Be up to 128 characters in length

■ Contain any character other than a delimiter

■ Begin with A-Z, 0-9, or a national character (#, @, $)

■ Not consist of all numeric characters.

The sort-name can be used to identify the sort in an EXECUTE statement.

Usage Notes

CA-Easytrieve supplies input records to your sort procedure one at a time. If a
BEFORE proc-name procedure is used:

■ You must execute a SELECT statement for each record that you want
returned to the output file.

■ A SELECTed record is written only once, even if SELECTed more than once
in the procedure.

■ Any record not SELECTed does not get written to the sorted file.

■ If the file being sorted is a variable length record file, the output file is
generated with a record length equal to the maximum record length that is
specified in the FILE statement.

SORT activities can be EXECUTEd by PROGRAM and SCREEN activities. If a
PROGRAM activity is not coded, JOB and SORT activities are automatically
executed sequentially until a SCREEN activity is encountered.

Statements S - Z 7–23

SQL Statement

See the CA-Easytrieve Programmer Guide for more information on sorting files.

Example

In the following example, the output file contains all of the records of the input file
sorted into ascending sequence by the values of fields REGION and BRANCH.
FILE PERSNL FB(150 1800)
%PERSNL
FILE SORTWRK FB(150 1800) VIRTUAL
COPY PERSNL
SORT PERSNL TO SORTWRK USING +
 (REGION, BRANCH) NAME MYSORT

SQL Statement
The SQL statement supports the SQL statements of the following database
management systems:

■ DB2

■ SQL/DS

■ CA-Datacom/DB SQL

■ CA-IDMS SQL

■ CA-Ingres

■ Oracle

■ SYBASE

Syntax
SQL native-sql-statement

Usage Notes

See the specific database management system manual information about syntax for
native database statements. Listed below are the SQL statements currently
supported by the SQL interface. See the CA-Easytrieve Programmer Guide for more
information about coding native SQL statements.

DB2 SQL Statements:

ALTER
CLOSE cursor-name
COMMENT ON
COMMIT {work}

Statements S - Z 7–24

SQL Statement

CONNECT
CREATE
DECLARE cursor-name {with hold}
DELETE {where current of cursor-name}
DROP
EXPLAIN
FETCH cursor-name
GRANT
INSERT
LABEL
LOCK
OPEN cursor-name
RELEASE
REVOKE
ROLLBACK {work}
SELECT INTO *(for static-only processing)
SET CONNECTION
SET CURRENT DEGREE
SET CURRENT PACKAGESET
SET CURRENT SQLID
SET host-variable
UPDATE {where current of cursor-name}

*Note: Refer to SQLSYNTAX in the PARM statement.

SQL/DS SQL Statements:

ACQUIRE
ALTER
CLOSE cursor-name
COMMENT
COMMIT {work}
CONNECT userid
CONNECT TO database
CREATE
DECLARE CURSOR-NAME
DELETE {where current of cursor-name}
DROP
EXPLAIN
FETCH cursor-name
GRANT
INSERT
LABEL
LOCK
OPEN cursor-name

ROLLBACK {work}

PUT
REVOKE

UPDATE {where current of cursor-name}

Statements S - Z 7–25

SQL Statement

CA-Datacom/DB SQL Statements:

ALTER
CLOSE cursor-name
COMMENT
COMMIT {work}
CREATE
DECLARE cursor-name
DELETE {where current of cursor-name}
DROP
FETCH cursor-name
GRANT
INSERT
LOCK
OPEN cursor-name
REVOKE
ROLLBACK {work}
SELECT INTO
UPDATE {where current of cursor-name}

CA-IDMS SQL Statements:

ALTER
CLOSE cursor-name
COMMIT {work} {continue} {release}
CONNECT TO dictionary-name
CREATE
DECLARE cursor-name
DELETE*
DROP
EXPLAIN
FETCH cursor-name
GRANT
INSERT
OPEN cursor-name
RELEASE
RESUME
REVOKE
ROLLBACK {work}
SUSPEND
UPDATE*

* Note: WHERE CURRENT OF cursor cannot be dynamically processed by the
SQL interface for CA-IDMS. To perform SQL updates, you must code native
SQL statements using a search WHERE clause.

CA-Ingres SQL Statements:

CLOSE cursor-name

Statements S - Z 7–26

SQL Statement

COMMIT {work}
CONNECT
CREATE
DECLARE cursor-name

DROP

OPEN cursor-name

Oracle SQL Statements:

CONNECT

DELETE

FETCH cursor-name

ROLLBACK {work}

CLOSE cursor-name

DELETE
DISCONNECT

FETCH cursor-name
INSERT

ROLLBACK {work}
UPDATE

CLOSE cursor-name
COMMIT {work}

CREATE
DECLARE cursor-name

DISCONNECT
DROP

INSERT
OPEN cursor-name

UPDATE

SYBASE SQL Statements:

COMMIT {work}
CONNECT
CREATE
DECLARE cursor-name
DELETE
DISCONNECT
DROP
FETCH cursor-name
INSERT
OPEN cursor-name
ROLLBACK {work}
UPDATE
USE

Statements S - Z 7–27

SQL INCLUDE Statement

SQL INCLUDE Statement
The CA-Easytrieve SQL INCLUDE statement indicates that SQL table information
is to be used to generate CA-Easytrieve field definitions. It names the table and
gives the location where the field definitions are generated.

Syntax
SQL INCLUDE +

 [(column ...)] +

 [{starting-position}]
 [{* [+offset] }]
 [LOCATION { }] +
 [{W }]
 [{S }]

 [HEADING] +

 [UPDATE] +

 [NULLABLE] +

 FROM [owner.] table

Parameters

[(column ...)] Specify a list of one or more column names for which field
definitions are to be generated. The column name(s) must be enclosed within
parentheses. If no column names are specified, all columns from the table are
used.
[{starting-position}]
[{* [+offset] }]
[LOCATION { }]
[{W }]
[{S }]

Use this optional parameter to specify the location at which the field definitions are
to be generated.

Starting-position specifies the starting position relative to position one of the record
or file.

The * (asterisk) indicates that the field begins in the next available starting position
(highest position assigned so far, plus 1). The optional +offset is an offset you want
added to the * value. There must be at least one blank between the * and the
optional +offset.

Coding W or S establishes a working storage field. W fields are spooled to report
(work) files, S fields are not. W is the default location if the LOCATION parameter
is not coded.

Statements S - Z 7–28

SQL INCLUDE Statement

[HEADING] Optionally, code HEADING to cause remarks in the DBMS system
catalog entry for a column to be copied into a HEADING parameter on the
generated DEFINE statement for the column. This parameter is ignored for
CA-Ingres.

[UPDATE] Code UPDATE to designate a modifiable column.

When a CA-Easytrieve SQL file does not contain the UPDATE parameter, only the
specific columns defined with UPDATE can be modified with an UPDATE
statement. If UPDATE is coded on the FILE statement, all columns in the file can
be modified.

Note: You can only use UPDATE when the field definitions are generated for a
CA-Easytrieve file.

[NULLABLE] Optionally code NULLABLE to cause default indicator fields to be
defined for columns that contain NULL. The indicator field is defined as a 2 B 0
field preceding the field being defined. The default null indicator is automatically
used by CA-Easytrieve whenever the associated column is referenced. You can
override the use of the default null indicator by explicitly coding and referencing
another indicator variable.

The indicator variable precedes the data portion of the field in storage. This field
cannot be directly referenced. To check this indicator variable, you must use the IF
NULL statement.

FROM [owner.] table FROM identifies the table definition to be defined to
CA-Easytrieve. Owner is the optional 1 to 18-character alphanumeric qualifier, and
table is the 1 to 32-character alphanumeric name. The period must be used as the
qualification separator for owner-qualified tables.

Note: If the owner is not specified, the current authorization ID is used.

Usage Notes

When used, the SQL INCLUDE statement(s) must precede any other SQL or
SELECT statements and must be coded in the library definition section of your
CA-Easytrieve program.

The generated CA-Easytrieve field names are the same as the SQL column names.
If a name matches a reserved word, the field definition is allowed, but all
references to it must be qualified using any applicable qualification.

Mask information is not retrieved from the DBMS system catalog.

Statements S - Z 7–29

SQL INCLUDE Statement

Group qualification structures of owner.table are defined prior to the first
INCLUDEd definition. The fields are defined under the table entity, which is in
turn under the owner level entity. This ensures that multiple tables with duplicate
column names do not produce duplicate field names.

Fields with SQL data types that do not have equivalent CA-Easytrieve data types
are defined as shown in the following table. Fields of DATE, TIME, TIMESTAMP,
and BINARY cannot be used in arithmetic operations. Fields of FLOAT,
DOUBLEPRECISION, REAL, and LONGINTEGER are defined as packed decimal
fields. Non-zero FILE-STATUS and SQLCODE values are returned if the data is
truncated.

SQL Data Type

CA-Easytrieve
Data Type

Length

Decimals

DATE Alphanumeric 10

Alphanumeric 8

TIMESTAMP Alphanumeric 26

BINARY Alphanumeric Length
of SQL
field

FLOAT Packed Numeric 10 3

DOUBLEPRECISION Packed Numeric 10 3

Packed Numeric 10

LONGINTEGER Packed Numeric 10

TIME

REAL 3

 0

The DBMS system catalog must be referenced each time the program is compiled
or interpreted. Therefore, to reduce catalog contention and to improve
performance, you should always create link-edited programs.

Field Reference

One of the advantages of using the SQL INCLUDE interface is the ability to
reference host-variables (CA-Easytrieve fields) using the group level TABLE
definition.

When specifying the INTO clause on a native SQL FETCH or non-file SQL SELECT
statement or the VALUES clause of the native SQL INSERT statement, the host
variable TABLE definition can be substituted in place of coding all host-variables
in the table.

Statements S - Z 7–30

STOP Statement

If you require access to an indicator variable other than its use for NULL checking,
you must define your own variable and reference it with its host-variable. For
some DBMSs, the indicator variable is examined to detect truncation.

When the host-variable is a CA-Easytrieve group level definition of a table name,
an array of type 2 B 0 should be specified immediately following the host-table-
name-variable. The number of array elements should match the number of fields
in the CA-Easytrieve table name definition. Array elements are matched
one-to-one with the fields defined in the table name.

Syntax

[EXECUTE] EXECUTE immediately terminates all CA-Easytrieve execution.
STOP without EXECUTE terminates the current activity only.

Note: Use the EXIT statement to normally terminate SCREEN activities.

When COMMIT ACTIVITY is specified for the activity, a STOP statement causes a
COMMIT of all recoverable work. A STOP EXECUTE causes a ROLLBACK.

STOP Statement
The STOP statement terminates activities.

STOP [EXECUTE]

Parameters

Usage Notes

In CA-Easytrieve, activities with automatic file input automatically terminate
when all input records have been processed. You can terminate activities
prematurely, however, with a STOP statement. You must use STOP to terminate
JOB activities without automatic file input (for example, JOB INPUT NULL).

When used in a JOB activity, STOP completes all reports and executes a FINISH
procedure, if coded. If you code STOP EXECUTE, all CA-Easytrieve activity
procedures are immediately terminated. If STOP is coded in the START or FINISH
procedure, the procedure is terminated.

When used in a SORT activity procedure, a STOP terminates the record selection
process and executes the sort program. If you SELECTed a record, the record is
not accepted.

Statements S - Z 7–31

STOP Statement

Examples

The following example illustrates STOP in a SORT activity to limit the number of
records being sorted. In this example, only the first 50 records from PERSNL are
sorted since the STOP statement simulates end-of-file on PERSNL.
FILE PERSNL FB(150 1800)

*

 NAME MYSORT BEFORE SORT1-PROC

 IF PERSNL:RECORD-COUNT GT 50

 SELECT

%INVMSTR

*

*

 DISPLAY 'INPUT FILE NOT AVAILABLE'

 END-IF

REPORT MYREPORT

 (LOCATION-STATE, +

JOB INPUT SORTWRK NAME MYPROG2

REPORT MYREPORT

%PERSNL
FILE SORTOUT FB(150 1800) VIRTUAL
COPY PERSNL

SORT PERSNL TO SORTOUT +
 USING (PAY-GROSS D) +

*
SORT1-PROC. PROC

 STOP
 ELSE

 END-IF
END-PROC

Under certain circumstances, you might want to completely terminate all activities
using a STOP EXECUTE statement, as in the next example.
FILE INVENT FB(200 3200)

FILE SORTWRK F(200) VIRTUAL
COPY INVENT

JOB INPUT INVENT NAME MYPROG1 FINISH FINISH-PROC
 PRINT MYREPORT

FINISH-PROC. PROC
 IF RECORD-COUNT = 0

 DISPLAY 'HALTING EXECUTION...'
 STOP EXECUTE

END-PROC
*

LINE PART-NUMBER PART-DESCRIPTION
*
SORT INVENT TO SORTWRK USING +

 LOCATION-CITY) NAME MYSORT
*

 PRINT MYREPORT
*

LINE PART-NUMBER LOCATION-CITY LOCATION-STATE

Statements S - Z 7–32

SUM Statement

SUM Statement
The SUM statement is a report definition statement that explicitly specifies the
quantitative fields that are totaled for a control report.

Syntax
SUM field-name ...

Usage Notes

A TERMINATION procedure is invoked at the end of the report. This procedure
can be used to print report footing information, including control totals and
distribution information.

Usage Notes

Parameters

field-name Field-name is any quantitative field contained in an active file or W
storage. You can specify multiple fields.

Normally, CA-Easytrieve automatically totals all quantitative fields specified on
LINE statements. The SUM statement overrides this process; only the fields
specified on the SUM statement are totaled. The fields specified on a SUM
statement do not have to be specified on a LINE statement. The SUM statement is
only valid in a Control Report.

TERMINATION Report Procedure

Syntax
TERMINATION. PROC

A TERMINATION procedure must be delimited by an END-PROC statement. See
the PROC Statement for more information.

Statements S - Z 7–33

TERMINATION Screen Procedure

Example

The following is an example of report footing:
FILE FILE1
LAST-NAME 1 5 A
STATE 6 2 A

TOTAL-NET S 8 N 2

 PRINT REPORT1

 SUMMARY SUMCTL DTLCOPY

ZIP 8 5 N
PAY-NET 13 5 N 2

JOB INPUT FILE1 NAME MYPROG
 TOTAL-NET = TOTAL-NET + PAY-NET

*
REPORT REPORT1 LINESIZE 65 +

 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
*
TERMINATION. PROC
 DISPLAY TITLE
 DISPLAY SKIP 5 TOTAL-NET 'IS THE Y-T-D COMPANY NET PAY'
 DISPLAY SKIP 5 'PLEASE ROUTE THIS REPORT TO CORPORATE OFFICERS'
END-PROC

TERMINATION Screen Procedure
A TERMINATION procedure is invoked once during the end of the screen
activity.

Syntax
TERMINATION. PROC

Usage Notes

The TERMINATION procedure is performed when an EXIT action has been
executed either from being assigned to a key or being executed in another screen
procedure. It is used to perform actions that are to be executed only at the end of
the activity.

If GOTO SCREEN or EXIT are executed in a TERMINATION procedure, the
activity is stopped at that point. REFRESH and RESHOW are invalid in a
TERMINATION activity.

A TERMINATION procedure must be delimited by an END-PROC statement. See
the PROC Statement for more information.

Statements S - Z 7–34

TITLE Statement (Graphs)

TITLE Statement (Graphs)
The TITLE statement specifies the title to be displayed on the graph.

Syntax
 [[COL column-number] {'title-literal' }]
TITLE [[] { }] ...
 [[+offset] {title-field-name}]

Parameters
[COL column-number]
[+offset]

Use COL to display a title at a specific column (column-number) on the graph.
Graphs are 80 columns wide when text is displayed.

Title items are separated by one space. Use +offset to add additional spaces
between title items.
{'title-literal' }
{ }
{title-field-name}

‘Title-literal’ specifies a character string to be used for the graph title.

Title-field-name identifies an alphanumeric field to be used for the graph title. The
title-field-name must be in an active file or W type working storage.

Example

The following program code produces a horizontal bar graph that displays the
sum of the gross pay for each region with the title GROSS PAY BY REGION.
FILE PERSNL F(150)
%PERSNL
JOB INPUT PERSNL NAME DRAW-GRAPH
 DRAW GRAPH1
GRAPH VBAR GRAPH1 SUMMARY STYLE 'HBAR'
 SEQUENCE REGION
 TITLE COL 1 SYSDATE 'GROSS PAY BY REGION' COL 73 SYSTIME
 VALUE REGION PAY-GROSS

TITLE Statement (Reports)
One or more TITLE statements define an optional report title. The TITLE
statement defines the title items and their position on the title line.

Statements S - Z 7–35

TITLE Statement (Reports)

Syntax
 {[] field-name}
 {[#font-number] }

 {-offset }

[title-number] Title-number specifies the position of the title line in the title
area. Title-number must be from 1 to 99 (default is 1). You must specify title
numbers in ascending order with no duplicates. The title-number of the first TITLE
statement must be 1 or unspecified.

{'literal'} ‘Literal’ specifies a character string for a title item. It must be either
a numeric literal, hexadecimal literal, or an alphanumeric literal. Alphanumeric
literals must be enclosed in single quotes.

{+offset}

The space adjustment parameters, +offset or -offset, modify the normal spacing
between title items. Offset is added to or subtracted from the SPACE parameter on
the REPORT statement to get the absolute space between title items. The absolute
space value can range from zero to any amount that still allows the title line to fit
within the current LINESIZE value on the REPORT statement.

TITLE [title-number] {[] 'literal' } ...
 {+offset }

 {COL column-number }

Parameters

[#font-number] (Mainframe and UNIX only) #Font-number defines a font index.
The value of #font-number identifies a font whose specifications are to be used for
the next display item. You can only specify this option if the report has been
associated with an extended reporting printer. #Font-number identifies the font
number of a font defined for the associated extended reporting printer. If you do
not code the font number, then the next display item uses the default font for the
assigned extended reporting printer.

{field-name} Field-name specifies a field in any active file, working storage field,
or system-defined field.

By default, each title line is formatted as a list of title items that are separated by
the number of spaces defined by the SPACE parameter of the REPORT statement.
The +, -, and COL parameters modify this positioning.

Note: You must code at least one title item, specified by field-name or 'literal’, on
each TITLE statement.

{ }
{-offset}

Statements S - Z 7–36

TITLE Statement (Screens)

{COL column-number} The COL parameter specifies the print column number
where the next title item is placed. The value of column-number has a valid range of
1 to ‘nnn,’ where ‘nnn’ cannot force the following title item beyond the end of the
title line LINESIZE.

Each title line is centered within the title area of the report unless you specify
NOADJUST.

When the report is associated with an extended reporting printer, an error results if
two or more fields and/or literals overlap.

TITLE Statement (Screens)

Usage Notes

CA-Easytrieve automatically positions the system date and current page count on
title line one. This can be overridden by options on the REPORT statement
(NODATE and NOPAGE).

The TITLE statement is used to automatically center items on a screen.

Syntax
 [[COL column-number] {field-name}
TITLE [row-number] [[] { } +
 [[+offset] {'literal' }

 [{attribute-name }]]
 [ATTR { }]] ...
 [{(attribute-list)}]]

Parameters

[row-number] Specify the row-number on which you want the TITLE to be
displayed. If row-number is not specified, the next screen row is used for the title.
The next screen row is not the highest row used, but the previously-specified row
plus one. If no rows are previously specified, row one is used.
[COL column-number]
[+offset]

Use COL to display a title item at a specific column (column-number) on the screen.

Titles are separated by one space on a screen. Use +offset to add additional spaces
between titles.

Note: A syntax error occurs when a TITLE overlays another screen item.

Statements S - Z 7–37

TITLE Statement (Screens)

{field-name}
{ }
{'literal' }

Specify a field-name or a ‘literal’ for the title. Field-name is the name of a field to be
displayed as a title on the screen. ‘Literal’ is an alphanumeric string to be displayed
as a title on the screen.
[{attribute-name }
[ATTR { }
[{(attribute-list)}

Specify a DECLAREd screen attribute name or a list of attribute keywords. See the
ATTR Parameter for a list of attributes. See the DECLARE Statement for
procedures to DECLARE screen attributes.

Note: The following attributes are invalid for TITLEs:

CURSOR
NUMERIC
INVISIBLE
MUSTFILL
MUSTENTER
TRIGGER
ALARM

These attributes are ignored if used, but CA-Easytrieve issues a warning message
during compilation. SENDONLY and ASKIP are assumed for TITLE items.

Usage Notes

TITLE items that are not located at a specific column (COL) are centered in the row
based on the LINESIZE parameter of the SCREEN statement.

Example

The following TITLE statement:
TITLE 1 COL 1 'Date:' COL 7 SYSDATE 'Employee Master' +
 COL 67 'Time:' COL 73 SYSTIME

produces:

Date: 12/31/89 Employee Master Time: 12:00:00

SYSDATE and SYSTIME are displayed starting in specific columns by using the
COL parameter. ‘Employee Master’ is automatically centered.

Statements S - Z 7–38

TRANSFER Statement

TRANSFER Statement
The TRANSFER statement is used to transfer execution to a target program
without returning to the invoking program.

Syntax
 {field-name } [{field-name}]
TRANSFER { } [USING { }] [NOCLEAR]
 {'program-name'} [{'literal' }]

Parameters
{field-name }
{ }
{'program-name'}

Specify the field-name that contains the name of the target program, or specify the
name of the target program as a ‘literal’ within single quotes. Field-name cannot be
nullable.
[{field-name}]
[USING { }]
[{'literal' }]

Optionally, specify USING to pass a single parameter to the target program.

Specify the name of a field that contains the value to pass to the target program, or
specify a ‘literal’ to pass to the target program. Field-name cannot be nullable.

[NOCLEAR] Use NOCLEAR to specify that you do not want to clear the terminal
screen when exiting a CA-Easytrieve program in CICS or on the workstation.

Usage Notes

The TRANSFER statement completely terminates the current CA-Easytrieve
program and invokes the program specified by program-name or the program field-
name using the linkage conventions of the operating system in which the program
is executing. Issuing a TRANSFER statement is similar to issuing a STOP
statement: reports are completed and a JOB FINISH procedure is executed (if
coded).

The screen is automatically cleared when the current program terminates. In CICS
and on the workstation, you can request that the screen remains displayed on the
terminal by using the NOCLEAR parameter. In other environments, NOCLEAR is
ignored and the screen is cleared and left in a ready mode.

Note: The target program inherits the execution environment of the program
issuing the TRANSFER statement.

Statements S - Z 7–39

UPDATE Statement

TRANSFER can be used to invoke any program written in any language that is
supported by the operating system in which the program is executing; similarly,
the program can issue any command supported by the operating system.

When the target program is another CA-Easytrieve program and you want to pass
a parameter, you must specify the USING parameter on the target program’s
PROGRAM statement.

 WHEN 'D'

 NEXT-PGM = 'ADD-CUST'

UPDATE Statement

UPDATE file-name

When transferring to another CA-Easytrieve program in a CICS
pseudo-conversational environment, you must specify the TRANSID parameter on
the target program’s PARM statement.

Note: Use of the TRANSFER statement in interpretive execution causes the
program execution to terminate.

See the CA-Easytrieve Programmer Guide for more information.

Example
CASE OPTION
 WHEN 'V'
 NEXT-PGM = 'VIEWCUST'
 WHEN 'E'
 NEXT-PGM = 'EDIT-CUST

 NEXT-PGM - 'DEL-CUST'
 WHEN 'A'

END-CASE
TRANSFER NEXT-PGM USING EMP#

The UPDATE statement is used to update a row from a CA-Easytrieve SQL file.

Syntax

Parameters

file-name File-name is the name of a CA-Easytrieve SQL file.

Statements S - Z 7–40

VALUE Statement

Usage Notes

Note: UPDATE WHERE CURRENT OF cursor cannot be dynamically processed
by the SQL interface for CA-IDMS. To perform SQL updates, you must code
native SQL statements using a searched update statement.

FILE PERSNL SQL PERSONNEL UPDATE

EMPPHONE * 3 P 0

 WORKDEPT = 921

The VALUE statement specifies the fields to be used to draw a graph.

Parameters

You can code a maximum of eight y-values to produce a multi-series graph. PIE
charts are limited to one y-value.

UPDATE issues an UPDATE WHERE CURRENT OF cursor.

When the file is defined with the UPDATE parameter, all defined columns are
updated. Otherwise, only the columns that contain the UPDATE parameter are
updated. See the SQL INCLUDE Statement or the DEFINE Statement.

Example

The following example changes all employees in department 901 to department
921.

EMPNAME * 20 A
WORKDEPT * 2 P 0

JOB NAME RETRIEVE-PERSONNEL INPUT PERSNL
 SELECT FROM PERSNL WHERE WORKDEPT = 901 FOR UPDATE

 UPDATE PERSNL

VALUE Statement

Syntax
VALUE x-value {y-value [...]}

x-value X-value specifies the field or literal to be used for drawing the horizontal
axis of the graph. X-value must be a numeric field or literal if you are drawing an
XY or SCATTER graph.

{y-value [...] } Y-value specifies the field and or literal to be used for
drawing the vertical axis of the graph. Each field or literal must be numeric.

Statements S - Z 7–41

VALUE Statement

Usage Notes

You can use a literal value to count occurrences. For example, the statement
VALUE DEPT 1 counts the number of records within each department.

All graphs are automatically scaled; any data that is too long to be displayed is
truncated.

The y-value for a PIE graph determines the size of the pie slice. The x-value for a
PIE graph determines the category for the y-value. If SUMMARY is coded on the
GRAPH statement, all y-values for each identical x-value are summed producing a
slice that is the size of the sum of all of the y-values for this category.

For XY and SCATTER graphs, the y-value determines position of the data point on
the y-axis. The x-value determines the position of the data point on the x-axis. If
SUMMARY is coded on the GRAPH statement, all y-values for each identical
x-value are summed producing a data point that is the sum of all of the y-values for
this x-value.

FILE PERSNL F(150)

 DRAW GRAPH1

 HEADING REGION ('Region')

 VALUE REGION PAY-GROSS PAY-NET

S type working storage fields cannot be used in a VALUE statement.

All graphs are de-spooled before REPORTs/SYSPRINT.

For VBAR (vertical bar) and HBAR (horizontal bar) graphs, the x-value determines
the category for the y-value. If SUMMARY is coded on the GRAPH statement, all
y-values for each identical x-value are summed producing a vertical or horizontal
bar that is the sum of all of the y-values for this category.

For LINE graphs, the x-value determines the category for the y-value. If
SUMMARY is coded on the GRAPH statement, all y-values for each identical
x-value are summed producing a data point that is the sum of all of the y-values for
this category.

Example

The following code produces a stacked vertical bar graph that displays the sum of
the gross pay and net pay for each region.

%PERSNL
JOB INPUT PERSNL NAME DRAW-GRAPH

GRAPH VBAR GRAPH1 SUMMARY MODE('HIGH') TYPE('SVBAR')
 SEQUENCE REGION

 HEADING PAY-GROSS ('Gross' 'Pay')
 TITLE COL 1 SYSDATE 'GROSS/NET PAY BY REGION' COL 73 SYSTIME

Statements S - Z 7–42

WRITE Statement

WRITE Statement
WRITE is used in the maintenance of SEQUENTIAL, INDEXED, and RELATIVE
files (when allowed by the underlying access method). During random processing
of these files, WRITE updates and deletes existing records and adds new records.
Its syntax has two formats.

Syntax

WRITE output-file-name [] [FROM { }][STATUS]

WRITE output-file-name DELETE [STATUS]

[UPDATE]

Specify UPDATE, ADD, or DELETE to designate the type of file maintenance
activity to be performed. UPDATE is the default.

[FROM { }]

When input-file-name is specified, the current value of
output-file-name:RECORD-LENGTH is the length of the output data. However, if
the output file length is greater than the input file or record length, the excess
storage is not initialized. Also, using the FROM parameter does not update the
data area of the output file.

Format 1
 [UPDATE] [{input-file-name }]

 [ADD] [{input-record-name}]

Format 2

Parameters

output-file-name Specify the name of the SEQUENTIAL, INDEXED or
RELATIVE file to be updated, added, or deleted. You must also code UPDATE on
the FILE statement for output-file-name.

[ADD]
[DELETE]

For SEQUENTIAL files, only UPDATE is allowed. For RELATIVE files, only
UPDATE and DELETE are allowed.
[{input-file-name }]

[{input-record-name}]

Specify input-file-name or input-record-name to identify an alternate data source for
file UPDATE and ADD operations. FROM is similar to coding a MOVE statement
prior to a WRITE statement.

[STATUS] Specify the STATUS parameter whenever the possibility exists for an
unsatisfactory completion of the input/output request.

Statements S - Z 7–43

WRITE Statement

STATUS checks input/output processing to see if it was performed properly.
STATUS causes the file’s FILE-STATUS field to be set with the appropriate return
code. See Appendix A, “System-Defined Fields,” to determine the meaning of the
contents of FILE-STATUS. Normally, a zero or non-zero test is sufficient.

Note: FILE-STATUS is not defined if you do not specify a file type parameter on
the FILE statement.

Format 1

Format 2 of the WRITE statement deletes the current active record for the file.

FILE PERSNL INDEXED UPDATE

 READ PERSNL KEY '05807' STATUS

 DISPLAY 'UNSUCCESSFUL READ ON PERSNL FILE'

 MOVE '3125059599' TO TELEPHONE

 DISPLAY 'FILE-STATUS= ' PERSNL:FILE-STATUS

 END-IF

If you do not code STATUS and the operating system returns a non-zero status,
CA-Easytrieve issues an appropriate diagnostic message.

Usage Notes

Format 1 of the WRITE statement updates an existing record or adds a new record
to the file. When updating, which is the default, the updated record is the current
active record for the file.

Format 2

Example

The following example illustrates the use of WRITE:

%PERSNL
PROGRAM NAME MYPROG

 IF PERSNL:FILE-STATUS NE 0
 DISPLAY 'FILE-STATUS= ' PERSNL:FILE-STATUS

 ELSE
 DISPLAY HEX PERSNL

 WRITE PERSNL UPDATE
 IF PERSNL:FILE-STATUS NE 0

 DISPLAY 'UNSUCCESSFUL UPDATE ON PERSNL FILE'
 END-IF

Statements S - Z 7–44

System-Defined Files A–1

SYSDATE-LONG is MM/DD/YYYY.

Appendix

A System-Defined Files

Introduction
CA-Easytrieve automatically provides four categories of system-defined fields:

■ General

■ File-related

■ Report-related

■ Screen-related.

The fields in each of these categories are described next.

Note: Many system-defined fields are defined in the integer format. On the
mainframe and in UNIX, the integer format is equivalent to binary format.

General Fields

SYSDATE

SYSDATE is a field that contains the system date at the start of CA-Easytrieve
execution. SYSDATE is refreshed with the current date during each terminal I/O
associated with a SCREEN statement. The DATE option set in the site options
determines the format of the date. A slash (/) normally separates the month, day,
and year components of the date (such as MM/DD/YY).

SYSDATE-LONG

SYSDATE-LONG is a field is similar to SYSDATE except that it includes the
century in the system date at the start of CA-Easytrieve execution. An example of

General Fields

SYSTIME

SYSTIME is a field that contains the system time at the start of CA-Easytrieve
execution. SYSTIME is refreshed with the current time during each terminal I/O
associated with a SCREEN statement. A colon (:) normally separates the data into
hours, minutes, and seconds (such as HH:MM:SS).

SYSUSERID

SYSUSERID is a field identifying the terminal user.

In CICS, you must first log onto CICS because this field is updated from the EIB.

RETURN-CODE

RETURN-CODE is a field whose contents are returned to the MVS operating
system in register 15 when CA-Easytrieve terminates. RETURN-CODE is
initialized to zero, but you can set it to any value.

UIBFCTR

When processing an IMS/DLI database in a CICS environment, UIBFCTR contains
the values from the UIBFCTR fields in the CICS UIB. See the CICS Application
Programmer’s Reference manual for a description of the UIBFCTR fields.

UIBDLTR

When processing an IMS/DLI database in a CICS environment, UIBDLTR contains
the values from the UIBDLTR fields in the CICS UIB. See the CICS Application
Programmer’s Reference manual for a description of the UIBDLTR fields.

UIB-ADDRESS

When processing an IMS/DLI database in a CICS environment, UIB-ADDRESS
contains the address of the CICS UIB. It only contains the UIB- ADDRESS
following the execution of a Format 5 DL/I statement.

See the CICS Application Programmer’s Reference Manual for a description of the UIB.

System-Defined Files A–2

File Fields

File Fields
CA-Easytrieve automatically provides the special data fields listed below for each
of your files. These fields are stored as part of working storage but can be qualified
by file-name. As working storage fields, they are not subject to invalid file
reference errors.

RECORD-LENGTH

RECORD-LENGTH is a field used for all file types to determine or establish the
length of the current data record. For variable-length records, this field contains
only the length of the record’s data. CA-Easytrieve automatically adjusts the field
to account for the four-byte record-control-word and four-byte block-control-word.
For variable-length files, assign the length of the record to the RECORD-LENGTH
field before the PUT or WRITE statement is executed.

For SQL files, RECORD-LENGTH contains the sum of the maximum lengths of all
fields in the file. For CA-IDMS and IMS/DLI files, RECORD-LENGTH contains
the sum of the maximum lengths of all records in the file.

RECORD-COUNT

RECORD-COUNT is a read-only field that contains the number of logical input
operations performed to the file.

For CA-IDMS and IMS/DLI files, only automatic input increments
RECORD-COUNT.

FILE-STATUS

FILE-STATUS is a read-only field that contains the results of the most recent I/O
operation on a file. FILE-STATUS is available when you code STATUS on the I/O
statement. If you do not code STATUS, an appropriate error message is generated.
The error message contains one of these codes.

For CA-IDMS files using automatic input, FILE-STATUS contains IDMSSTATUS.
For IMS/DLI files, FILE-STATUS contains the status code from the PCB.

FILE-STATUS codes and their meanings are:

0000 Operation successful.

System-Defined Files A–3

Explanation: This is not an error condition. It indicates that the last I/O operation
was successful. No additional information is required.

File Fields

System-Defined Files A–4

record already present in the file. For a RELATIVE file, it indicates that the slot
designated by the relative record number already contains a record (the slot is not
empty).

0004 End of file.

Explanation: This is not an error condition. It indicates that the file position has
been moved beyond the last record in the file.

Cause: This condition occurs following a GET statement when the current record
is the last record in the file. It can occur for SEQUENTIAL, INDEXED, and
RELATIVE files.

Following a GET PRIOR statement, this condition could also indicate the
beginning of a file.

0008 Record with a duplicate alternate key exists.

Explanation: This is not an error condition. It indicates that the key of this record
matches the key of the record that follows it in the sequential order of this file.

Cause: This condition can occur following a GET or READ statement for an
INDEXED file that does not have unique keys.

Following a GET statement, this condition indicates that at least one more record
with a matching key is waiting to be processed.

Following a READ statement, this condition indicates that there is at least one
more record in the file with a matching key (a GET statement must be used to
retrieve any remaining records).

In CICS/VS, MVS (batch and TSO), and CMS/OS, an INDEXED file can have non-
unique keys if the associated data set is a VSAM PATH and the auxiliary index
data set was defined with non-unique keys.

Note: There is no alternate or primary index on the workstation, in BTRIEVE, in
UNIX, or in ISAM/VSAM, therefore, a status code of 8 is never encountered.
However, if you move the application to the mainframe, you should test for this
condition.

0012 Duplicate key.

Explanation: This error condition indicates that an attempt was made to store a
record with a duplicate key, or there is a duplicate record for an alternate index
with the Unique Key option.

Cause: This condition can occur following a PUT or WRITE ADD statement for an
INDEXED file, or a PUT statement for a RELATIVE file.

For an INDEXED file, it indicates that the key of the record matches the key of a

File Fields

This condition can also occur following a WRITE UPDATE statement for a
SEQUENTIAL or INDEXED file. It indicates that:
■ There is at least one alternate index associated with this file.
■ The alternate index was defined with the unique key and the upgrade

option.
■ The updated record caused a duplicate key condition to occur when the

alternate index was updated.

0016 Record not found.

Explanation: This error condition indicates that the record designated by the KEY
parameter is not found in the file.

Cause: This condition can occur following a READ or POINT statement for an
INDEXED or RELATIVE file. For an INDEXED file, it indicates that no record in
the file matches the key specified by the statement. For a RELATIVE file, this
condition indicates that the slot designated by the relative record number is empty.

0020 Record locked.

Explanation: This error condition indicates that an attempt was made to access or
update a record that has a lock placed on it by another process.

Cause: Condition is only possible on the workstation or in UNIX.

0024 Logical or physical error condition.

Explanation: This error condition indicates that a logical or physical error
condition was detected by the access method routines used to access the file. The
specific cause of the error is displayed in a runtime abend message. See Appendix
A of the CA-Easytrieve/Online User Guide for a list of the feedback codes.

PATH-ID

For CA-IDMS and IMS/DLI files, PATH-ID is a field that contains the ID value of
the lowest record retrieved in a path using the RETRIEVE statement. See the
CA-Easytrieve Programmer Guide for more information.

IDMSCOM

IDMSCOM contains a set of fields defined for the CA-IDMS Communications
Block. See the CA-Easytrieve Programmer Guide for more information.

System-Defined Files A–5

Report Fields

SLC

SLC contains a set of fields defined for a logical record communications block.

See the CA-Easytrieve Programmer Guide for more information.

SQLCA

SQLCA contains a set of fields defined for the SQL Communications Block. See the
CA-Easytrieve Programmer Guide for more information.

Report Fields
CA-Easytrieve automatically provides the special data fields listed below for your
reports. These fields are stored as part of working storage and are read-only.

LINE-COUNT

LINE-COUNT is a field that contains the number of lines printed on the page.

LINE-NUMBER

LINE-NUMBER is a field that contains the number of the line being printed within
the line group.

PAGE-COUNT

PAGE-COUNT is a field that contains the number of pages printed.

PAGE-NUMBER

PAGE-NUMBER is a field that contains the number of the page being printed.

TALLY

TALLY is a field that contains the number of detail records in a control break.

System-Defined Files A–6

Screen Fields

LEVEL

LEVEL is a field that indicates the control break level. See the CONTROL
Statement.

BREAK-LEVEL

BREAK-LEVEL is a field that indicates the highest field in the break.

Screen Fields
CA-Easytrieve automatically provides the special data fields listed below for your
screens. These fields are stored as part of working storage and are read-only.

KEY-PRESSED

KEY-PRESSED is a field that contains a value representing the most recent
terminal key pressed by the terminal user.

CA-Easytrieve automatically defines symbolic names that correspond to values for
the most common keys. Only keys with symbolic names can be used on a KEY
statement.

Terminal Key Symbolic Name Constant Value

Unknown 0

Enter ENTER 1

Clear CLEAR 11

PA1 thru PA3 PA1 thru PA3 12 thru 14

PF1 thru PF24 F1 thru F24 21 thru 44

F1 thru F12 F1 thru F12 21 thru 32

Test Request 220

Op ID card Reader 222

Magnetic Slot Reader 223

Trigger Action 224

Structured Field 230

System-Defined Files A–7

Clear Partition 231

Screen Fields

Terminal Key Symbolic Name Constant Value

Read Partition 232

No Aid Generated 255

TERM-COLUMNS

TERM-COLUMNS is a field that contains the maximum number of columns the
screen supports. You can test TERM-COLUMNS to execute a SCREEN activity
designed specifically for the terminal being used.

TERM-ROWS

TERM-ROWS is a field containing the maximum number of rows the screen
supports. You can test TERM-ROWS to execute a SCREEN activity designed
specifically for the terminal being used.

TERM-NAME

TERM-NAME is a field containing the terminal identification. This field is set only
in CICS environments.

System-Defined Files A–8

Appendix

B Symbols and Reserved Words

Introduction
This appendix contains a list of CA-Easytrieve symbols and reserved words. The
reserved words are listed in alphabetical order. Associated with each symbol is
one or more references. The references describe the various ways you can use
the symbol. An R in the column after the symbol indicates it is reserved.

Symbol References

Special
Symbol

Reserved Reference

 . Syntax delimiter (period)
Macro parameter concatenation (period)

 < Conditional expression

 <= Conditional expression

 (Syntax delimiter (left parenthesis)

 : Syntax delimiter (colon)

 + Assignment
Continuation of statements and words
DISPLAY
LINE
TITLE

 & Macro variable prefix

 * Assignment
Comment statement
DEFINE

Symbols and Reserved Words B–1

) Syntax delimiter (right parenthesis)

 ¬< Conditional expression POINT

Reserved Words

Special
Symbol

Reserved Reference

Symbols and Reserved Words B–2

CHKP-STATUS
CLEAR
CLOSE
COL
COLOR

GO
GOTO
GQ
GR
GRAPH

NOTITLE
NOVERIFY
NQ
NULL
OF

STOP
SUM
SYSDATE
SYSDATE-LONG
SYSIN

 ¬> Conditional expression

 ¬= Conditional expression

 - Assignment
Continuation of statements and words
DISPLAY
LINE
TITLE

 ** R Reserved for future use

 / Assignment

 ' Syntax delimiter (single quote)

 % Macro invocation

 > Conditional expression

 >= Conditional expression
POINT

 , Syntax delimiter (comma)

 = Assignment
Conditional expression
POINT

 @ R Reserved for future use

Reserved Words
The following list includes all CA-Easytrieve reserved words.

ACCESS
AFTER-BREAK
AFTER-LINE
AFTER-SCREEN
AND
ATTR
BEFORE
BEFORE-BREAK
BEFORE-LINE
BEFORE-SCREEN
BREAK-LEVEL
BUSHU
BY
CALL
CASE
CHECKPOINT
CHKP

EOF
EQ
ERROR
EXECUTE
EXIT
EXTERNAL
F1, F2,..F24
FETCH
FILE
FILE-STATUS
FILL
FINAL
FIRST
FIRST-DUP
FOR
GE
GET

LIST
LOW-VALUES
LQ
LS
LT
MASK
MATCHED
MEND
MESSAGE
MOVE
MSTART
NE
NEWPAGE
NOMASK
NOPRINT
NOT
NOTE

RESTART
RETRIEVE
RETURN-CODE
ROLLBACK
ROW
S
SCREEN
SEARCH
SECONDARY
SELECT
SEQUENCE
SET
SIZE
SKIP
SOKAKU
SORT
SQL

Reserved Words

COMMIT
CONTROL
COPY
CURSOR
D
DECLARE
DEFAULT
DEFINE
DELETE
DENWA
DISPLAY
DLI
DO
DRAW
DUPLICATE
E
ELSE
ELSE-IF
END
END-CASE
END-DO
END-IF
END-PROC
ENDPAGE
END-REPEAT
ENDTABLE
ENTER

GT
HEADING
HEX
HIGH-VALUES
IDD
IDMS
IF
IN
INITIATION
INSERT
JOB
JUSTIFY
KANJI-DATE
KANJI-TIME
KANJI-DATE-LONG
KEY
KEY-PRESSED
KOKUGO
KUN
LAST-DUP
LE
LEVEL
LIKE
LINE
LINE-COUNT
LINE-NUMBER
LINK

OR
OTHERWISE
PA1..PA3
PAGE-COUNT
PAGE-NUMBER
PARM-REGISTER
PATH-ID
PATTERN
PERFORM
POINT
POS
PRIMARY
PRINT
PROC
PROCEDURE
PROGRAM
PUT
READ
RECORD
RECORD-COUNT
RECORD-LENGTH
REFRESH
RELEASE
RENUM
REPEAT
REPORT
REPORT-INPUT
RESHOW

SYSIPT
SYSLST
SYSPRINT
SYSSNAP
SYSTIME
SYSUSERID
TALLY
TERM-COLUMNS
TERM-NAME
TERM-ROWS
TERMINATION
TITLE
TO
TRANSFER
TRC
UNIQUE
UNTIL
UPDATE
UPPERCASE
VALUE
VERIFY
W
WHEN
WORK
WRITE
X
XRST

Symbols and Reserved Words B–3

Appendix

C
Conversion from CA-Easytrieve
Plus (Batch)

Introduction

In this version of CA-Easytrieve, the syntax of several statements have been
enhanced for future use. Wherever possible, older versions of the syntax are
supported to allow your current file definitions and programs to operate.

■ Syntax from older versions still supported

See Summary of Revisions in the “Overview” chapter for a list of enhancements in
these versions from CA-Easytrieve Plus.

This appendix contains information for sites converting from batch mainframe
versions of CA-Easytrieve Plus (Releases 4.0 through 6.2) to the current versions of
CA-Easytrieve/Online, CA-Easytrieve for UNIX, and CA-Easytrieve/Workstation.

This appendix also contains a table that helps you easily identify differences in
CA-Easytrieve for different environments (mainframe, PC, and UNIX). These
differences will be resolved in future versions of the CA-Easytrieve language. See
Environmental Differences at the end of this appendix.

This appendix provides information on the following topics:

■ Differences between CA-Easytrieve versions

■ A list of features not supported in this version of CA-Easytrieve, but
intended for future releases

■ A table that identifies differences in CA-Easytrieve for different
environments.

Differences Between Versions
You should be aware of the following differences between CA-Easytrieve versions.

Conversion from CA-Easytrieve Plus (Batch) C–1

Differences Between Versions

BEFORE-LINE Procedure

You can use the BEFORE-LINE report procedure to modify detail line information
in the new version. In previous versions, you could only use the REPORT-INPUT
procedure to modify the detail line.

Bounds Checking

CA-Easytrieve now checks to ensure that your indexes and subscripts do not refer
past the end of the field.

Conditional Expressions

Comparisons involving a VARYING alphanumeric field as the subject or object use
the longer of the subject or object for the comparison and pad the shorter with
spaces. Previous versions of CA-Easytrieve use the current length of the subject
field as the length of the comparison.

DBCS Support

CA-Easytrieve/Online uses the CA-PSI Subsystems DBCS environment to define
DBCS. CA-Easytrieve/Online supports only the IBM (Japanese) code system.
Report processing is limited to EBCDIC and MIXED data formats for standard
reports and DBCS data formats for extended reports. No spacing considerations
are made for DBCS characters.

Note: CA-Easytrieve/Workstation and CA-Easytrieve for UNIX do not support
DBCS.

DEFINE Statement

If you define the same field more than once with different attributes, an error
occurs during compilation.

Fields whose storage location exceeds the file length are now flagged in error.

When you redefine a field that contains an OCCURS value, the field inherits the
OCCURS value. This allows the field to be subscripted. If the field’s length exceeds
the redefined field’s length, a warning message results when you define the field
and subscripting is not allowed at reference. If a multi-dimensional array is
defined, all occurrences of secondary dimensions must fit into a single occurrence
of the corresponding primary dimension. A warning message results when you
define the field and subscripting of secondary dimensions is not allowed at
reference.

Conversion from CA-Easytrieve Plus (Batch) C–2

Differences Between Versions

Fields referenced in activities in which no file I/O is specified now receive warning
messages instead of error messages.

Varying length alphanumeric fields can now be modeled. If you use a varying
length alphanumeric field as a model, the VARYING keyword is included in the
length and type.

You cannot use the VALUE parameter for a varying length alphanumeric field
unless the VARYING keyword precedes the VALUE parameter.

Extended Reporting

A program is provided to convert the CA-Easytrieve Plus (batch) extended
reporting printer definition (EZTPXRPT) to the format used by
CA-Easytrieve/Online (PSIXRPRT). The program (X020A) is in the sample PIELIB
and includes sample JCL to be used for execution.

FILE Statement

The system-defined fields, FILE-STATUS, RECORD-LENGTH, and
RECORD-COUNT are four-byte binary fields for files with SEQUENTIAL,
INDEXED, RELATIVE or SQL specified on their FILE statement. Other file types
use two-byte binary fields.

The FILE-STATUS field for files with SEQUENTIAL, INDEXED, or RELATIVE
specified contains codes that are generic across access methods. Other file types
use a FILE-STATUS obtained from the underlying access method.

Names

All entity names (files, fields, activities, reports, procedures, statement labels) can
be up to 128 characters, rather than 40.

REPORTs

PARM Statement

Compile-and-go execution is not supported in the new version of CA-Easytrieve.
Therefore, if neither the COMPILE, SYNTAX, nor LINK parameter of the PARM
statement is specified, an object module is produced to SYSLIN│SYSLNK without
a NAME│PHASE parameter.

The DISPLAY statement now ensures that printed output remains within the
physical page size you specify.

Conversion from CA-Easytrieve Plus (Batch) C–3

Supported Syntax

Items on the title are now always refreshed with the current value of fields when
produced. Older versions only refreshed title fields when printing titles as the
result of a detail line.

Special-named break procedures now refer to the last detail record of the control
group having the break. Older versions referred to the first record of the new
control group.

Reserved Words

The SYSDATE and SYSTIME fields no longer use a space in place of a leading zero
for month.

CALL Statement

The algorithm used to center ADJUSTed reports does not use the sum control tag
literal. The report items are used to center the report, then the tag literal is placed
on the report.

You can use the COL parameter on the TITLE statement without specifying the
ADJUST parameter on the REPORT statement.

There may be new reserved words in this version of CA-Easytrieve. See
Appendix B for a complete list.

SYSDATE/SYSTIME

Supported Syntax
Following are discussions of syntax that is still supported but is not documented in
the syntax diagrams contained in this manual. Refer to Batch CA-Easytrieve
documentation for details. Some of the items in this chapter are ignored in this
implementation, while others still function as before but are replaced by new
syntax in this guide.

The NR parameter is ignored.

Conversion from CA-Easytrieve Plus (Batch) C–4

Future Support

DISPLAY Statement

The DISPLAY NEWPAGE function has been replaced by the DISPLAY TITLE and
DISPLAY NOTITLE functions. The reason for this change is that previous versions
of DISPLAY NEWPAGE did not consistently produce report titles and headings.
For source compatibility, DISPLAY NEWPAGE is accepted and functions the same
as DISPLAY TITLE.

END Statement

The END statement is effectively ignored because CARD input cannot be compiled
with the program.

The SQL SELECT parameter is replaced with the more powerful SQL file type.
SQL SELECT is still supported.

 LIST FILE│NOFILE

 SORT DIAG│NODIAG

 SORT TP│NOTP

 PRESIZE

Future Support

FILE Statement

The VS parameter is replaced with SEQUENTIAL, INDEXED, and RELATIVE.
The underlying access method is determined at execution time. However, VS is
still accepted as valid syntax.

PARM Statement

Current versions of CA-Easytrieve ignore the following:

 DEVICE
 VFM DEVICE (except DISK│MEMORY)

 SORT ERASE│NOERASE
 SORT SYS

 SORT VIRTUAL│REAL
 SORT WORK DA

 EXITSTR

The DBCSCODE parameter is replaced by the CODE parameter, but still
supported as valid syntax.

The current versions of CA-Easytrieve do not support the following items; they are
intended for future releases.

Conversion from CA-Easytrieve Plus (Batch) C–5

Environmental Differences

VSE Batch Execution Support

VSE batch execution is not supported.

END Statement

The DBCSCODE parameter of FILE is not supported.

Macros

The ENVIRONMENT and RESTARTABLE parameters of the PARM statement are
not supported.

DBCS Support

Multiple code systems and DBCS extended reporting are not supported.

Card input cannot reside with the source program.

FILE Statement

JOB Statement

The ENVIRONMENT, CHECKPOINT, and RESTART parameters of the JOB
statement are not supported.

VSE libraries are not supported as macro libraries.

PARM Statement

Environmental Differences
The following table identifies differences in CA-Easytrieve for different
environments (mainframe, PC, and UNIX). These differences will be resolved in
future versions.

Conversion from CA-Easytrieve Plus (Batch) C–6

Environmental Differences

Feature Mainframe PC/DOS UNIX

 X X

DECLARE Statement:
 PROGRAM Parameter

 X

 X

Graph Processing X

 X

 X
 X

LINK Statement:
 HOST parameter
 WAIT parameter
 NOENTER parameter

 X
 X
 X

PARM Statement:
 CODE parameter
 CALL parameter

 X

 X

 X

Report Processing:
 CONTROLSKIP parameter

 X

 X

 X

CALL Statement:
 DYNAMIC execution

 X

 X

Conditional Expressions:
Field Class Condition:
BREAK parameter
HIGHEST-BREAK parameter

 X
 X

 X
 X

Screen Processing

FILE Statement:
 CODE parameter
 SYSTEM parameter
 KEY parameter

 X

Double Byte Character Set (DBCS)
Support

Conversion from CA-Easytrieve Plus (Batch) C–7

 Index–1

Alphanumeric fields in masks 5-55

Alphanumeric literals 1-16

Average totals on a report 3-14

 Index

- (minus sign) 5-58

%

% (macro invocation) statement 3-1

*

* (comment) statement 3-1

+

+/- continuation characters 1-13

A

A - alphanumeric data 4-7

Access codes
CA-Panvalet 3-2

ACCESS statement 3-2

ACTION messages 4-4

AFTER-BREAK report procedure 3-3, 3-39

AFTER-LINE report procedure 3-4

AFTER-SCREEN screen procedure 3-6, 6-40

Alarm, terminal 3-14

Alphanumeric comparisons 3-24

Alternate report headings 4-18

Annotations
end-of-page 4-31

Apostrophe delimiter 1-14

Arithmetic
averages 3-14
operators 1-16
percentages 3-14

Arrays
defining 4-13, 4-18
displaying on a screen 6-28
second dimension 6-29

ASCII data 6-4

Assignment statements 2-13, 3-6, 5-66

Asterisk, arithmetic operator 1-16

Attention key 4-34

ATTR parameter 3-11, 4-1, 6-49, 7-18, 7-38

Attribute fields 4-3

Attributes
assigning 3-11, 4-3
default 3-11
function keys 4-4
messages 4-4, 5-61
overriding defaults 3-11
row fields 4-4
row literals 4-4
screen titles 4-4
system-defined, overriding 4-3

Automatic input 4-35, 4-38, 5-40, 5-41, 6-14
inhibiting 5-41
SQL data base 5-41

Auto-skip fields 3-13

 Index–2

macro storage 3-2
security access codes 3-2

CA-PSI subsystems

Concatenation 4-3

Conditional execution of statements 3-19

B

B - binary data 4-8

Backing out of changes 6-46

Bar graph 5-6, 5-8

BEFORE-BREAK report procedure 3-14, 3-39

BEFORE-LINE report procedure 3-16, C-2

BEFORE-SCREEN screen procedure 3-17

BIND (SQL) parameter 6-3

Bit manipulation 3-32

Bit mask 3-8

Bit mask testing 3-33

Blinking fields 3-14

Block Description Word (BDW) 4-42

Block length 4-42

Bounds checking C-2

Branching logic 2-11, 4-27

BREAK-LEVEL field 3-3, 3-15, 3-39, A-7

Browse termination 3-22

Buffer allocation 4-43

BUFNO parameter 4-43

BWZ (blank when zero) 4-13, 5-54, 6-50

C

CA-Easytrieve SQL files 4-12
deleting rows 4-18
inserting a row 5-39
retrieving rows 4-34

CA-IDMS databases
accessing 4-35
IDD processing 5-65
processing statements 2-13
subschema name 4-38

CALL statement 3-17, C-4

CA-Panvalet

DBCS options module 1-12
DBCS options table 6-4

Carriage control character 4-21

CASE and END-CASE statements 3-19

Centering screen items 7-37

Central version node 7-11
IDD interface 5-11
IDMS interface 5-20, 7-11

Century
report dating A-1

Character sets 1-11
DBCS 1-11

Character string moves 5-62, 5-64

Child programs 5-49, 6-19

CICS environment
calling a subprogram 3-19
transaction identifier 6-10

CLOSE statement 3-21

Closing a file 3-21

CODE parameter
FILE statement 4-44
PARM statement 6-4

Colon delimiter 1-14

Comma delimiter 1-14

Command summary 2-1

Commenting a program 1-13, 3-1

COMMIT parameter 5-42, 6-19, 7-2, 7-22

COMMIT statement 3-22, 6-47

Comparisons 3-19, 3-23, 3-27
alphanumeric 3-24, 3-27
field with series or range 3-27
fields with values 3-23
numeric 3-24
numeric 3-27
selected bits of a field 3-32

Compile summary 6-6

Compile-and-go execution C-3

Complex data edit 4-1

Conditional expressions 3-23
alphanumeric subjects 3-24
DBCS subjects 3-25
MIXED subjects 3-25
numeric subjects 3-24

Conditional Expressions
IF statement 5-35

Continuations 1-13

Control breaks 3-3, 3-15, 3-38, C-4

Control characters 4-41

Control fields 3-3, 3-15, 3-38

Control reports 3-38, 5-49, 6-32, 7-33
special annotation 3-3

CONTROL statement 3-38

Controlled processing 4-38

Conventions, documentation 1-3

Conversational mode
CICS 3-19

COPY statement 3-40

CR (Credit indicator) 5-58

CREATE parameter 4-39

Credit indicator (CR) 5-58

Cross reference listing 6-6

Currency symbols in masks 5-55

Cursor
default 4-35
initial position 3-41

Cursor placement 3-17
determination 3-29
hierarchy 3-42
in a field 3-12, 3-41
overriding 3-42

CURSOR statement 3-41

D

D - double precision data 4-10

Data base retrieval 5-40

defining 4-5
working storage 4-7

Data formats 4-7
field 4-1

Data map listing 6-5

Data reference validation 6-5

Data set types 4-49
CICS 4-49
CMS 4-50
TSO 4-50
UNIX 4-50
workstation 4-50

Data transferring and formatting 4-19

Database access 4-35

Date See SYSDATE field

DBCS data 1-11, 3-25, 4-8, 4-44, 6-4, C-2

DBMS system catalog 7-30

DDname 4-50

DEBUG parameter
PARM statement 6-5

Decimal digits in masks 5-55

Decimal positions 4-11

Decision and branching logic statements 2-11

DECLARE statement 4-1

DECLAREd screen
attribute name 7-18, 7-38
attributes 3-11, 4-1, 4-4

Default attributes
overriding 3-11

Default cursor 4-35

DEFAULT statement 4-3, 5-61

DEFINE statement 4-5, 5-55, 6-25, C-2

DELETE statement 4-18

DELETE WHERE CURRENT OF cursor 4-19

Delimiters 1-14

Delimiting instream data 4-32

Delimiting procedure statements 4-32

 Index–3

Data edit, complex 4-1

Data fields

Determining if a field
contains alphabetic characters 3-29

 Index–4

decimal digits 5-55
display lengths 5-56
fill characters 5-56

FILE statement 4-44
HEADING statement 5-8
LINE statement 5-48

contains numeric characters 3-29
contains spaces 3-29
contains the cursor 3-29
contains zeros 3-29
is null 3-29
was modified by the user 3-29

Device types 4-40

Dictionary name 5-20, 7-11

Display attributes for messages 5-61

Display resolution, graph 5-6

DISPLAY statement 4-19, C-3

Displaying a field
blinking 3-14
brightly 3-13
in colors 3-13
in reverse video 3-14
outlined 3-14
underlined 3-14

Distributable applications 1-9

DLBL name 4-50

DLI statement 4-23

DO and END-DO statements 4-27
conditional expressions 3-23

DO UNTIL statement 4-27

DO WHILE statement 4-27

Documenting a program 3-1

Double Byte Character Set (DBCS) 1-11

DRAW statement 4-30, 5-6

Dump, hexadecimal 4-22

Duplicating field definitions 3-40

Dynamic subprograms 4-3

E

EBCDIC data 1-11, 6-4

Edit masks 4-18, 5-54
alphanumeric fields 5-55
currency symbols 5-55

HEX 4-13, 5-54
insertion symbols 5-56
leading zeros 5-57
negative indicators 5-56
negative numbers 5-58
numeric system defaults 5-57
rules 5-55

Edit patterns 4-1
evaluation 4-3

Eject printer 6-1

Element records 4-30

ELEMENT-RECORD statement (CA-IDMS) 4-30

ELSE statement 5-35
used with IDMS IF 5-30

ELSE-IF statement 5-35

END statement C-5, C-6

END-CASE statement 3-19

END-DO statement 4-27

END-IF statement 5-35
used with IDMS IF 5-30

End-of-file (EOF) testing 3-34, 5-2

End-of-page annotations 4-31

ENDPAGE report procedure 4-31

END-PROC statement 4-32

END-REPEAT statement 6-28

ENDTABLE statement 4-32

Environmental differences C-6

EXECUTE statement 4-33, 5-43

Execution mode 6-12

Execution statements, inter-program 2-11

EXIT statement 4-34

Exiting a screen 5-45

Exits, user-written 4-40

Extended reporting C-3
DEFINE statement 4-12

Extended reporting printer
DISPLAY statement 4-19, 4-21, 4-22

 Index–5

File destination 4-52

File I/O, checking 5-2

GRAPH statement 5-5

Graphic output 4-30

REPORT statement 6-34, 6-35, 6-36
TITLE statement 7-36, 7-37

F

F - fixed point ASCII data 4-9

FCT name 4-49

FETCH statement 4-34

Field attributes 3-11, 4-1

Field bits condition 3-32

Field class condition 3-29

Field compares 3-23

Field data format 4-1

Field definitions 4-5
binary 4-8
copying 3-40
duplication 3-40
IDD interface 5-10
in an activity 4-16
in library section 4-16
system-defined fields A-3
unsigned packed 4-9

Field determinations
contains alphabetic characters 3-29
contains numeric characters 3-29
contains spaces 3-29
contains the cursor 3-29
contains zeros 3-29
is null 3-29
was modified by the user 3-29

Field display, formatting 4-13

Field length, varying 4-17

Field names 1-15

Field relational condition 3-23

Field series condition 3-27

Field value, assigning 3-6

Fields of varying length 3-24

File buffers 4-43

File definition 4-35

File keys 6-23

File management statements 2-8

File presence condition 3-34
synchronized file processing example 3-35

File presence determinition 3-36

File processing, synchronized 3-35

File relational condition 3-36

File search
checking I/O 6-14
position 6-14
status 6-14

FILE statement 4-35, C-5, C-6
CODE parameter 4-8

File types 4-35, 4-37

FILEDEF 4-50

FILE-STATUS field 5-2, 6-15, 6-22, 6-24, 7-44, A-3, C-3
codes A-3

Fill characters 5-63
in masks 5-56
on screens 6-49

Final report break 3-38

Finish procedure 5-42

Font numbers 1-17, 4-12, 4-21, 5-8, 5-48, 7-36

Footers, page 4-31

Formatting and transferring data 4-19

Formfeed character 4-51

Forms control information 4-41, 6-36

Function key display area 5-45

Function keys 5-43
attributes 4-4

G

Generalized programming statements 2-11

GET statement 5-1, 6-14

GOTO statement 5-3, 5-38, 5-41, 5-42

 Index–6

record definitions 5-10
secondary load area 5-11

IDD NAME statement 5-11

IDMS OBTAIN statement 5-31

IDMS READY statement 5-32

Graphs
"drawing" the values on 4-30
defining titles 7-35
display resolution 5-6
fields used to draw 7-41
horizontal bar 5-7, 7-42
initiating GRAPH subactivity 4-30
line 5-7, 7-42
pie chart 5-6
scatter 5-7, 7-41
specifying sequence 7-16
summing values 5-6
vertical bar 5-6, 5-8, 5-9, 7-42
XY 5-7, 7-41

H

Haja characters 1-11

Hangual characters 1-11

Hanzi characters 1-11

HEADING statement 5-8

HEX display 5-54

HEX dump 4-22

HEX edit mask 4-13

Hiragana characters 1-11

HLLAPI 4-45, 4-46, 5-50

Hold record for update 5-1

HOLD|NOHOLD parameter 5-1, 6-23

Horizontal bar graph 5-7, 7-42

Hyphen, arithmetic operator 1-16

I

I - integer formatted data 4-9

IDD FILE statement 5-10

IDD interface
central version node 5-11
field definitions 5-10
program name 5-11

IDD processing
elementary field 5-65
group items 5-65

IDD RECORD statement 5-12

IDD SUBSCHEMA statement 5-13

IDD VERSION statement 5-14

Identifiers 1-16

IDMS ACCEPT DBKEY statement 5-15

IDMS ACCEPT PAGE-INFO statement 5-16

IDMS ACCEPT PROCEDURE statement 5-18

IDMS ACCEPT STATISTICS statement 5-18

IDMS BIND FILE statement 5-20

IDMS BIND PROCEDURE statement 5-21

IDMS BIND statement 5-19

IDMS COMMIT statement 5-21

IDMS CONNECT statement 5-21

IDMS databases
accessing 4-35
subschema name 4-38

IDMS DISCONNECT statement 5-22

IDMS ERASE statement 5-23

IDMS FIND/OBTAIN statement 5-24

IDMS FINISH statement 5-28

IDMS GET statement 5-28

IDMS IF statement 5-29

IDMS interface
automatic input of logical records 7-9
central version node 5-20, 6-43, 7-11
data base name table 7-11
dictionary name 5-20, 7-11
FILE statement 6-42
identifying element records 4-30
identifying records 6-24, 6-41
program name 5-20, 6-42, 7-11
secondary load area 5-20, 6-43, 7-11
SELECT statement 7-9

IDMS KEEP statement 5-30

IDMS MODIFY statement 5-30

 Index–7

STOP 7-31

JOB statement 5-40, C-6

Literal bit mask 3-8

Literals

IDMS RETURN statement 5-32

IDMS ROLLBACK statement 5-34

IDMS STORE statement 5-34

IEEE floating point data 4-10

IF statement 5-35
conditional expressions 3-23

IMMEDIATE function keys 5-45

IMS/DLI
database processing statements 2-15
identifying records 6-41
identifying segments 6-24
input/output 4-23

INDEXED parameter 4-38

Indexes, bounds checking C-2

INFORMATION messages 4-4

Initializing a field 5-38

Initializing screen fields 3-17

INITIATION screen procedure 5-38

Input file retrieval 5-40

INSERT statement 5-39

Insertion symbols in masks 5-56

Instream macros 5-66

Instream tables 4-32, 4-43

Integer formatted data 4-9

Inter-program execution statements 2-11

Invisible fields 3-13

Invoking a macro 3-1

Invoking an activity 4-33

Invoking subprograms 3-17

J

JOB activity 5-6, 6-18, 6-20
flow control 5-43
input to 7-11
invoking 4-33

K

K - DBCS alphanumeric data 4-8

Kanji characters 1-11

Katakana characters 1-11

Key fields 5-41

KEY parameter
FILE statement 4-44

KEY statement 5-43, 6-27

Keyed processing, single file 3-37

KEY-PRESSED field 4-34, 5-44, A-7

Keys
display area 5-45
IMMEDIATE 5-45
specifying descriptive text 5-45

Keyword parameters 5-52

L

Label, statement 5-3

Labels 1-16
label report 6-33

LEVEL field 3-3, 3-15, 3-39, 5-9, 6-33, A-7

Library definition statements 2-8

Line graph 5-7, 7-42

Line numbers on report 5-47

LINE statement 5-47

LINE-COUNT field A-6

LINE-NUMBER field 3-4, 3-16, A-6

LINESIZE parameter 4-41, 5-48, 6-35

LINK statement 5-49

LIST statement 5-51

Listing control indicators 6-21

Listing control statements 2-12, 6-16

Literal attributes 3-11, 4-1

 Index–8

placement on screen 4-4

Message locations 4-3 Operating environment

alphanumeric 1-16
numeric 1-16

Logical unit of work
committing 3-22

LOGICAL-RECORD statement
CA-IDMS 5-52

LONGDATE 6-37

Loop control statements 4-27

Loops, program 4-27

LOTUS parameter
FILE statement 4-46

M

M - MIXED alphanumeric data 4-8

MACRO statement 5-52

Macros
CA-Panvalet 3-2
controlling expansion 6-16, 6-21
definition parameters 5-52
instream 5-66
invoking 3-1
keyword parameters 3-1
positional parameters 3-1
processing statements 2-13
protection of 3-2
prototype statement 5-52
secured 3-2
termination 5-60
VSE libraries C-6

Mainframe, sending commands 5-50

Mainframe/workstation portability 4-46, 4-50

Mandatory fill fields 3-13

MASK parameter 4-13, 5-54, 6-50

Masks See Edit masks

MEND statement 5-60

Message area 5-46, 5-61

Message attributes 4-3, 5-61

Message levels 5-60

MESSAGE statement 5-60, 7-19

Minus sign (-) 5-58

Minus sign, arithmetic operator 1-16

MIXED data 1-11, 3-25, 4-8, 4-44

Model fields 4-11

MOVE LIKE statement 5-64

MOVE statement 5-62

Move statements 2-13

Moving data 5-62, 5-64

MSTART statement 5-66

Multiple parameters 1-15

Multiple statements 1-13

N

N - zoned decimal data 4-8

Name length C-3

native SQL 7-24

Native SQL 2-13

Nested statements 3-20, 5-36

New-line delimited files 4-38, 4-41

NEWPAGE statement 6-1

NOHOLD parameter 5-1, 6-23

Non-quantitative fields 3-39, 4-8, 4-11

Non-received fields 3-12

NOPRINT
AFTER-BREAK procedure 3-3
BEFORE-BREAK procedure 3-15

NOTITLE parameter 4-20

Nullable fields 3-29, 4-22, 5-63

Numeric literals 1-16

Numeric-only fields 3-13

O

 Index–9

POP statement 6-16

Portability between mainframe and workstation 4-46
PROGRAM statement 5-51, 6-18

Program termination 6-20

altering 6-1

OTHERWISE parameter 3-20

Outlining attributes 3-14

Output
report 6-16
to sequential files 6-21

Overlay redefinition 4-7, 4-11

Overriding default attributes 3-11

Overriding system-defined attributes 4-3

P

P - packed decimal data 4-8
even number of digits 4-11

Page footers 4-31

Page totals 4-31

PAGE-COUNT field A-6

PAGE-NUMBER field A-6

PAGESIZE parameter 4-41

Parent programs 5-49, 6-19, 6-20

Parentheses delimiter 1-14

PARM statement 1-12, 4-35, 4-44, 5-51, 6-1, C-5, C-6

PASSWORD parameter 4-40

Password protection
VSAM 3-2

Path specification 4-50

Pattern characters 4-1

Percent, calculating 3-14

Percentages on a report 3-14

PERFORM statement 6-13

Period delimiter 1-14

Pie chart 5-6, 7-41

Plus sign, arithmetic operator 1-16

POINT statement 6-14

Positional parameters 5-52

Print data to system output device 4-19

PRINT statement 5-48, 6-16, 6-38

Printer eject 6-1

Printer files 4-37

Printer spacing 7-20

Printing
data to a file 4-19
program statements 5-51
suppressing statement print 5-51

Printing literal strings on a report
after a detail line 3-4
before a detail line 3-16

PROC statement 6-17

Procedure
beginning 6-17
nesting 6-13, 6-18
special-named 6-18
statement label 6-17
transferring control to 6-13

Procedure, delimiting 4-32

Processing activities
code system 6-4
definition 5-40
identifying and initiating 6-18

Processing code system 4-44

Program branching 5-4

Program comments 3-1

Program control transfer 5-49

Program execution trace 6-5

Program level parameters 6-12

Program listing 6-5

Program logic 4-27, 5-3, 5-50

Program loops 4-27

Program name
IDD interface 5-11
IDMS interface 5-20

Program standards override 6-1

 Index–10

Records
automatic input 6-41
availability 5-2

title refresh C-4
totaling quantitative fields 7-33

Reserved words B-2

Programming statements, generalized 2-11

Protected fields 3-13

Prototype statement (macros) 5-52

PUNCH files 4-41

PUSH statement 6-21

PUT statement 6-21

Q

QSAM (Queued Sequential Access Method) 4-37

QSAM Entry Sequenced Data Set (ESDS) 4-38

Quantitative fields 4-8, 4-11, 7-33

R

Random file access 6-23

Random file processing 7-43

Range comparison 3-27

READ statement 6-23

Record definitions
IDD interface 5-10

Record description 4-16

Record Description Word (RDW) 4-42

Record format 4-42

Record keys 3-37

Record length 4-42

Record matching 3-36

Record relational condition 3-37

RECORD statement
CA-IDMS and IMS/DLI 6-24

RECORD-COUNT field A-3, C-3

RECORD-LENGTH field 5-62, 5-63, 7-43, A-3, C-3

records
adding, updating, deleting 7-43

consecutive record add 6-21
duplicate keys 6-43
hold release 6-27
hold request 5-1, 6-23
mass sequential insertion 6-21
selecting for a sort 7-15

Recovering updates 3-22

REFRESH statement 6-26

Refreshing a screen 5-45

RELATIVE parameter 4-38

RELEASE statement 6-27

Releasing hold on record 5-1

REPEAT and END-REPEAT statements 6-28

Repetitive program logic 4-27

Report headings
alternate 4-18

Report processing statements 2-10

REPORT statement 5-48, 6-30

REPORT-INPUT report procedure 6-38, 7-15, C-2

Reports
alternate headings 4-12, 5-8
calculating average totals 3-14
calculating percentages 3-14
changing detail line 3-16
column headings 5-8
controlling output amount 6-38
defining 6-30
defining line content 5-47
defining titles 7-35
formatting 6-30
label 6-33
line numbers 5-47
modifying data 6-38
printing footers 7-33
producing output 6-16
selecting and modifying input data 6-38
selecting input data 7-14
spacing 6-34, 6-36, 6-37
specifying sequence 7-16
summary 6-32
system-defined fields A-6
TALLY 3-14, 6-32
testing aids 6-38

 Index–11

reverse video 3-14
trigger attribute 3-13
underlined 3-14

wrapping 1-12

Shift-In code 1-12, 1-13

RESET parameter 4-39

RESHOW statement 6-40

Resolution, graph display 5-6

RETRIEVE statement
CA-IDMS and IMS/DLI 6-41
INDEX subparameter 6-44

RETURN-CODE field A-2

Reverse video fields 3-14

Revision summary 1-4

ROLLBACK statement 3-22, 6-46

ROW statement 6-28, 6-47

S

S - single precision data 4-10

S working storage fields 3-14, 4-7, 5-48

SBCS data 1-11

Scatter graph 5-7, 7-41

SCREEN activity 6-18, 6-20
defining 7-1
invoking 4-33
messages 5-60
structure 7-4
terminating 4-34, 7-34

Screen attributes
assigning 3-11

Screen editing, complex 3-6

Screen fields
auto-skip 3-13
blinking 3-14
brightly displayed 3-13
colors 3-13
cursor placement 3-17
initializing 3-17
invisible 3-13
mandatory fill 3-13
non-received 3-12
numeric-only 3-13
outlined 3-14
protected 3-13

Screen I/O, performing 3-6, 3-17

Screen painter 4-13

Screen processing statements 2-9

SCREEN statement 7-1

Screen titles
attributes 4-4

Screens
background color 7-3
borders 7-3
controlling error display 7-17
defining titles 7-37
displaying arrays 6-28
displaying messages 6-52
displaying shadow 7-4
dynamically changing attributes 4-1, 7-17
exiting 5-45
initiating procedures 5-38
justifying data 6-49
re-displaying image 6-40
refreshing 5-45, 6-26
restoring initial 5-45
sizes 7-2
specifying row items 6-47
system-defined fields A-7
translating field to uppercase 6-52
uppercase display 7-2

SEARCH statement 7-5

Secondary load area
IDD interface 5-11
IDMS interface 5-20, 7-11

Security access codes
CA-Panvalet 3-2

SELECT statement
CA-IDMS 7-9
file-based SQL 7-7
Non-file SQL 5-41, 7-11, 7-30
report selection 7-14
sort selection 7-15

SEQUENCE statement 7-16

SEQUENTIAL parameter 4-38

Series comparison 3-27

SET statement 7-17

Shift code systems 1-12

 Index–12

SQL INSERT statement 7-30

SQL parameter 4-38

multiple parameters 1-15
multiple statements 1-13
undocumented C-4

Shift-Out code 1-12, 1-13

SHORTDATE 6-37

Single Byte Character Set (SBCS) 1-11

Single file keyed processing 3-37

SKIP statement 7-20

Slash, division symbol 1-16

SORT activity 6-18, 6-20, 7-21
collating sequence table 6-7
executing 6-18
invoking 4-33
messages 6-8
overriding default parameters 6-7
reserved core storage 6-8
selecting records to sort 7-15
STOP 7-31
work data sets 6-8

SORT statement 7-21

Space delimiter 1-14

Spool class 4-52

Spooling subsystem 4-37, 4-52

SQL BIND parameter 6-3

SQL cursor 5-39, 5-41, 7-14
creating 3-22
declaring and opening 7-7

SQL databases
accessing 4-35
arrays 7-31
data types 7-30
host variables 7-30
static-command-program 6-6
syntax checking 6-9

SQL FETCH statement 7-30

SQL files
closing 3-22
deleting rows 4-18
inserting a row 5-39
managing the cursor 4-38
retrieving rows 4-34
updating a row 7-40
updating CA-Easytrieve 4-12

SQL INCLUDE statement 7-28

SQL statement 7-24

SQL/DS
generating field definitions 7-28
system execution 7-14

SQLCODE field 7-14

Start procedure 5-41

Statement area 1-11

Statement execution, controlling 5-35

Statement flow 5-3

Statement label 5-3

Statement nesting 5-36

Statement summary 2-1

Status of a file 5-2, 6-22, 6-24

STATUS parameter 5-2, 6-14, 6-22, 6-24, 7-43

STOP statement 5-41, 7-31

Subprograms
dynamic 4-3, 6-4
invoking 3-17
linking 4-1, 4-3
static 4-3, 6-4

Subschema name
CA-IDMS databases 4-38

Subscripts 4-14, 6-29
bounds checking C-2

SUM statement 5-49, 7-33

Summary of revisions 1-4

SUPERCALC parameter
FILE statement 4-46

Symbol references B-1

Synchronized file processing 5-41
file presence condition example 3-35
file relational condition 3-36
input 3-36
record relational condition 3-37

Syntax rules 1-11
comments 1-13
continuations 1-13
field names 1-15
labels 1-15

words and delimiters 1-14

SYSDATE field 6-37, 7-38, A-1

SYSDATE-LONG 6-37, A-1

SYSIN 4-40

SYSNAME parameter 4-49
FILE statement 4-37

SYSPRINT 4-20, 6-34

System-defined attributes, overriding 4-3

System-defined fields
file A-3
general A-1
report A-6
screen A-7
working storage A-3

SYSTIME field 7-38, A-2

SYSUSERID field A-2

T

Tables
access to 4-43, 7-5
instream 4-43
instream delimit 4-32
searching 7-6
storing data in macro 4-32

TALLY field 3-3, 3-15, 5-9, 6-32, A-6

Target program 7-39

TERM-COLUMNS field A-8

Terminal alarm 3-14

Terminal keys 5-44
display area 5-45
IMMEDIATE 5-45, 5-46, 6-27, 6-40
KEY-PRESSED field A-7
specifying descriptive text 5-45

TERMINAL parameter 4-51

Terminating browses 3-22

Terminating VSAM file holds 3-22

TERMINATION report procedure 7-33

TERM-ROWS field A-8

Testing a bit mask 3-33

Testing for end-of-file (EOF) 3-34

Time See SYSTIME field

TITLE statement
reports C-4
screens 7-37

TITLE Statement
graphs 7-35
reports 7-35

TITLE|NOTITLE parameter 4-20

TRANSFER statement 5-41, 7-39

Transferring and formatting data 4-19

Transferring control to an activity 4-33

Trigger attribute for fields 3-13

Truncation fill character 5-63

U

U - unsigned packed decimal data 4-9

UIBDLTR field A-2

UIBFCTR field A-2

Underlined fields 3-14

UNIX
data set types 4-50
file types 4-37

Unsigned packed binary fields 4-8

UPDATE parameter 4-12, 4-19, 4-39, 5-39

Update recovery 3-22

UPDATE statement 7-40

User exits 4-40

User written programs 4-40

USERID parameter 4-52

USING parameter 5-50

 Index–13

TERMINATION screen procedure 7-34

TERM-NAME field A-8

V

VALUE statement 5-7, 5-8, 7-41

Variable Block Spanned (VBS) records 4-42

Varying length fields 3-24, 3-39, 4-11, 4-17, 5-41

Version differences C-1

Vertical bar graph 5-6, 5-8, 5-9, 7-42

Virtual File Manager (VFM) 4-37
access method 6-11
files 4-51

VSAM (Virtual Storage Access Method) 4-37
files 6-22

VSAM Entry Sequenced Data Set (ESDS) 4-38

VSAM file hold
terminating 3-22

VSAM password protection 3-2

VSE batch execution C-6

W

W working storage fields 4-7, 5-48

WARNING messages 4-4

WHEN parameter 3-20

WORKAREA parameter 4-43, 6-24

Working storage fields
defining 4-7
initializing 4-14, 4-17
overlay redefinition 4-11
resetting 4-14

Wrapping shift code system 1-12

WRITE statement 7-43

X

XY graph 5-7, 7-41

 Index–14

	Language Reference Guide
	Contents
	Overview
	Introduction
	About This Guide
	Organization

	Related Publications
	Documentation Conventions
	Summary of Revisions
	CA-Easytrieve/Online Enhancements from CA-Easytrieve Plus
	CA-Easytrieve/Workstation Enhancements from CA-Easytrieve Plus/PC
	CA-Easytrieve/Online 1.1 Enhancements
	CA-Easytrieve/Online 1.4 Enhancements
	CA-Easytrieve/Workstation 1.2 Enhancements
	CA-Easytrieve/Workstation 1.3 Enhancements
	CA-Easytrieve 1.3 for UNIX Enhancements
	CA-Easytrieve 1.4 for UNIX Enhancements

	Syntax Rules
	Statement Area
	Character Sets
	Multiple Statements
	Comments
	Continuations
	Words and Delimiters
	Keywords
	Multiple Parameters
	Field Names
	Labels
	Identifiers
	Arithmetic Operators
	Numeric Literals
	Alphanumeric Literals
	Font Numbers

	Statement Summaries
	Introduction
	Alphabetical Statement Summary
	Functional Category Summary
	Library Definition
	File Management
	Screen Processing
	Report Processing
	Graph Processing
	Generalized Programming
	Inter-program Execution
	Decision and Branching Logic
	Listing Control
	Assignment and Moves
	Macro Processing
	Native SQL
	CA-IDMS Database Processing
	IMS/DLI Database Processing

	Statements A - C
	% (Macro Invocation) Statement
	Syntax
	Usage Notes

	* (Comment) Statement
	Syntax
	Usage Notes

	ACCESS Statement
	Syntax
	Usage Notes

	AFTER-BREAK Report Procedure
	Syntax
	Usage Notes
	Example

	AFTER-LINE Report Procedure
	Syntax
	Usage Notes
	Example

	AFTER-SCREEN Screen Procedure
	Syntax
	Usage Notes
	Example

	Assignment Statement
	Syntax
	Usage Notes
	Examples

	ATTR Parameter
	Syntax
	Usage Notes

	BEFORE-BREAK Report Procedure
	Syntax
	Usage Notes
	Example

	BEFORE-LINE Report Procedure
	Syntax
	Usage Notes

	BEFORE-SCREEN Screen Procedure
	Syntax
	Usage Notes
	Example

	CALL Statement
	Syntax
	Usage Notes
	Examples

	CASE and END-CASE Statements
	Syntax
	Usage Notes
	Example

	CLOSE Statement
	Syntax
	Usage Notes
	Example

	COMMIT Statement
	Syntax
	Usage Notes

	Conditional Expressions
	Syntax
	Usage Notes
	Examples

	Field Relational Condition
	Syntax
	Alphanumeric Subjects
	Numeric Subjects
	Mixed Subjects
	DBCS Subjects
	Example

	Field Series Condition
	Syntax
	Rules for Evaluation
	Example

	Field Class Condition
	Syntax
	Example

	Field Bits Condition
	Syntax
	Example

	File Presence Condition
	Syntax
	Usage Notes
	Examples

	File Relational Condition
	Syntax
	Example

	Record Relational Condition
	Syntax
	Example

	CONTROL Statement
	Syntax
	Usage Notes
	Example

	COPY Statement
	Syntax
	Usage Notes
	Examples

	CURSOR Statement
	Syntax
	Usage Notes
	Example

	Statements D - F
	DECLARE Statement
	Syntax
	Usage Notes
	Example

	DEFAULT Statement
	Syntax
	Usage Notes
	Examples

	DEFINE Statement
	Syntax
	Usage Notes
	Examples
	Record Description
	Working Storage Initialization
	Varying Length Fields
	Alternate Report Headings
	Edit Masks
	Arrays

	DELETE Statement
	Syntax
	Usage Notes
	Example

	DISPLAY Statement
	Syntax
	Usage Notes
	Examples

	DLI Statement
	Syntax

	DO and END-DO Statements
	Syntax
	Usage Notes
	Examples

	DRAW Statement
	Syntax
	Usage Notes

	ELEMENT-RECORD Statement (CA-IDMS)
	Syntax
	Usage Notes

	ENDPAGE Report Procedure
	Syntax
	Usage Notes
	Example

	END-PROC Statement
	Syntax
	Usage Notes

	ENDTABLE Statement
	Syntax
	Usage Notes
	Example

	EXECUTE Statement
	Syntax
	Usage Notes
	Example

	EXIT Statement
	Syntax
	Usage Notes
	Example

	FETCH Statement
	Syntax
	Usage Notes
	Example

	FILE Statement
	Syntax
	Usage Notes
	Examples

	Statements G - M
	GET Statement
	Syntax
	Usage Notes
	Examples

	GOTO Statement
	Syntax
	Example

	GRAPH Statement
	Syntax
	Example

	HEADING Statement
	Syntax
	Usage Notes
	Examples

	IDD FILE Statement
	Syntax
	Usage Notes

	IDD NAME Statement
	Syntax
	Usage Notes

	IDD RECORD Statement
	Syntax

	IDD SUBSCHEMA Statement
	Syntax
	Usage Notes

	IDD VERSION Statement
	Syntax
	Usage Notes

	IDMS ACCEPT DBKEY Statement
	Syntax

	IDMS ACCEPT PAGE-INFO Statement
	Syntax

	IDMS ACCEPT PROCEDURE Statement
	Syntax

	IDMS ACCEPT STATISTICS Statement
	Syntax
	Usage Notes

	IDMS BIND Statement
	Syntax

	IDMS BIND FILE Statement
	Syntax

	IDMS BIND PROCEDURE Statement
	Syntax

	IDMS COMMIT Statement
	Syntax

	IDMS CONNECT Statement
	Syntax

	IDMS DISCONNECT Statement
	Syntax

	IDMS ERASE Statement
	Syntax

	IDMS FIND/OBTAIN Statement
	Syntax

	IDMS FINISH Statement
	Syntax

	IDMS GET Statement
	Syntax

	IDMS IF Statement
	Syntax
	Usage Notes

	IDMS KEEP Statement
	Syntax

	IDMS MODIFY Statement
	Syntax

	IDMS OBTAIN Statement
	Syntax

	IDMS READY Statement
	Syntax

	IDMS RETURN Statement
	Syntax

	IDMS ROLLBACK Statement
	Syntax

	IDMS STORE Statement
	Syntax

	IF, ELSE-IF, ELSE, and END-IF Statements
	Syntax
	Usage Notes
	Examples

	INITIATION Screen Procedure
	Syntax
	Usage Notes
	Example

	INSERT Statement
	Syntax
	Usage Notes
	Example

	JOB Statement
	Syntax
	Usage Notes
	Examples

	KEY Statement
	Syntax
	Usage Notes
	Examples

	LINE Statement
	Syntax
	Usage Notes
	Example

	LINK Statement
	Syntax
	Usage Notes
	Example

	LIST Statement
	Syntax
	Usage Notes

	LOGICAL-RECORD Statement (CA-IDMS)
	Syntax
	Usage Notes

	MACRO Statement
	Syntax
	Examples

	MASK Parameter
	Syntax
	Editing Rules
	System Default Masks - Numeric Fields
	Leading Zeros
	Negative Numbers
	Examples

	MEND Statement
	Syntax
	Usage Notes

	MESSAGE Statement
	Syntax
	Usage Notes
	Example

	MOVE Statement
	Syntax
	Usage Notes
	Examples

	MOVE LIKE Statement
	Syntax
	Usage Notes
	CA-IDMS IDD Processing
	Differences Between MOVE LIKE and MOVE
	Example

	MSTART Statement
	Syntax

	Statements N - R
	NEWPAGE Statement
	Syntax
	Usage Notes

	PARM Statement
	Syntax
	Usage Notes
	Examples

	PERFORM Statement
	Syntax
	Usage Notes
	Example

	POINT Statement
	Syntax
	Usage Notes
	Example

	POP Statement
	Syntax
	Usage Notes

	PRINT Statement
	Syntax
	Usage Notes
	Example

	PROC Statement
	Syntax
	Usage Notes

	PROGRAM Statement
	Syntax
	Usage Notes
	Example

	PUSH Statement
	Syntax
	Usage Notes

	PUT Statement
	Syntax
	Usage Notes
	Example

	READ Statement
	Syntax
	Usage Notes
	Example

	RECORD Statement (CA-IDMS and IMS/DLI)
	Syntax
	Usage Notes

	REFRESH Statement
	Syntax
	Usage Notes
	Example

	RELEASE Statement
	Syntax
	Usage Notes
	Example

	REPEAT and END-REPEAT Statements
	Syntax
	Usage Notes
	Example

	REPORT Statement
	Syntax
	Usage Notes

	REPORT-INPUT Report Procedure
	Syntax
	Usage Notes
	Example

	RESHOW Statement
	Syntax
	Usage Notes
	Example

	RETRIEVE Statement (CA-IDMS and IMS/DLI)
	Syntax
	Usage Notes

	ROLLBACK Statement
	Syntax
	Usage Notes
	Example

	ROW Statement
	Syntax
	Usage Notes
	Example

	Statements S - Z
	SCREEN Statement
	Syntax
	Usage Notes
	Example

	SEARCH Statement
	Syntax
	Usage Notes
	Example

	SELECT Statement (File-based SQL)
	Syntax
	Usage Notes
	Examples

	SELECT Statement (CA-IDMS)
	Syntax
	Example

	SELECT Statement (Non-file SQL)
	Syntax
	Usage Notes
	Example

	SELECT Statement (Report Selection)
	Syntax
	Usage Notes
	Example

	SELECT Statement (Sort Selection)
	Syntax
	Usage Notes
	Example

	SEQUENCE Statement
	Syntax
	Usage Notes
	Examples

	SET Statement
	Syntax
	Usage Notes
	Examples

	SKIP Statement
	Syntax
	Usage Notes

	SORT Statement
	Syntax
	Usage Notes
	Example

	SQL Statement
	Syntax
	Usage Notes

	SQL INCLUDE Statement
	Syntax
	Usage Notes

	STOP Statement
	Syntax
	Usage Notes
	Examples

	SUM Statement
	Syntax
	Usage Notes

	TERMINATION Report Procedure
	Syntax
	Usage Notes
	Example

	TERMINATION Screen Procedure
	Syntax
	Usage Notes

	TITLE Statement (Graphs)
	Syntax
	Example

	TITLE Statement (Reports)
	Syntax
	Usage Notes

	TITLE Statement (Screens)
	Syntax
	Usage Notes
	Example

	TRANSFER Statement
	Syntax
	Usage Notes
	Example

	UPDATE Statement
	Syntax
	Usage Notes
	Example

	VALUE Statement
	Syntax
	Usage Notes
	Example

	WRITE Statement
	Syntax
	Usage Notes
	Example

	System-Defined Files
	Introduction
	General Fields
	File Fields
	Report Fields
	Screen Fields

	Symbols and Reserved Words
	Introduction
	Symbol References
	Reserved Words

	Conversion from CA-Easytrieve Plus (Batch)
	Introduction
	Differences Between Versions
	Supported Syntax
	Future Support
	Environmental Differences

	Index

