

Developer Guide
Version 7.5.1

CA LISA

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

CA LISA Fix Strategy

CA LISA Release 7.5 Fix Strategy

Installation and Maintenance Methodology

CA LISA uses Install4J to install the base product. We deliver fixes in the form of
individual Java JARs that you add to the $LISA_HOME/bin/patches directory.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Maintenance Delivery and Time Frames

CA LISA provides maintenance using the previously mentioned delivery methods. The
goal of the CA LISA product team is to generate these deliveries using the following
guidelines:

■ Individual Fixes: As necessary

■ Maintenance Releases: Every 3 to 4 months

Maintenance releases are provided as new, full installations that mirror the GA release.

For the GA-1 version of CA LISA, maintenance is provided on an as-necessary basis.

Note: In accordance with the CA Corporate Support Policy on the CA Support web page,
CA defines supported releases as (A) the latest major generally available (GA) release
and (B) one previous major release (GA-1).

For the current CA LISA product line, CA LISA 7.5 represents the GA version and CA LISA
7.1 represents the GA-1 release.

Delivery Definitions

Individual Fix

A published fix, which addresses the product defect as documented in the original
test fix. An individual fix can contain binary patches, or one or more cumulative
replacement components or elements, and must be applied to an existing product
environment. The individual fixes are included in and superseded by the next
applicable cumulative fix or cumulative release.

Maintenance Release

A release of the product that does not add new features or content. A maintenance
release contains an accumulation of fixes from the GA release to a given point in
time.

https://support.ca.com/phpdocs/0/common/techsupp_policy.pdf
https://support.ca.com/phpdocs/0/common/techsupp_policy.pdf

Contents 5

Contents

CA LISA Fix Strategy .. 3

CA LISA Release 7.5 Fix Strategy ... 3

Chapter 1: Developer Guide Overview 9

Examples and API Documentation ... 9

Chapter 2: The Integration API 11

Integration API Concepts .. 12

Integration Flow ... 13

The Integration Process.. 13

Chapter 3: Integrating Components 15

Integrate Server-Side Components .. 16

Collect Transaction Information ... 19

Integrators .. 20

Handle Integrated Output .. 21

Chapter 4: Testing Integrated Components 23

Integration Filters ... 24

Integration Assertions .. 25

Check Integrator Response ... 26

Check Integrator Component Content Response ... 27

Check Integrator Reporting Missing Data ... 27

Chapter 5: Extending LISA Software 29

Reasons to Extend the LISA Software... 29

LISA Extension Concepts .. 29

lisaextensions File ... 30

wizards.xml File ... 32

The NamedType Interface ... 33

Parameters and Parameter Lists ... 34

The Test Exec Class .. 35

Test Exceptions ... 35

6 Developer Guide

Chapter 6: Extending Test Steps 37

Custom Java Test Steps .. 38

Create a Custom Java Test Step .. 39

Deploy a Custom Java Test Step .. 41

Define a Custom Java Test Step .. 42

Native Test Steps .. 43

Create a Native Test Step .. 44

Deploy a Native Test Step ... 45

Define a Native Test Step .. 45

Chapter 7: Extending Assertions 47

Create a New Assertion .. 48

Deploy a New Assertion ... 50

Define and Teste a New Assertion ... 51

Chapter 8: Extending Filters 53

Create a New Filter ... 54

Deploy a New Filter .. 57

Define and Test a New Filter .. 58

Chapter 9: Custom Reports 59

Create a New Report Generator .. 60

Deploy a New Report Generator .. 61

Use a New Report Generator ... 61

Chapter 10: Custom Report Metrics 63

Create a New Report Metric .. 64

Deploy a New Report Metric .. 65

Chapter 11: Custom Companions 67

Create a New Companion .. 68

Deploy a New Companion .. 69

Chapter 12: Using Hooks 71

Create a New Hook .. 72

Deploy a New Hook .. 72

Contents 7

Chapter 13: Custom Data Sets 73

Data Set Characteristics ... 73

Create a New Data Set ... 74

Deploy a New Data Set ... 76

Chapter 14: Java .NET Bridge 77

com.itko.lisa.jdbridge.JDInvoker .. 77

com.itko.lisa.jdbridge.JDProxy ... 78

com.itko.lisa.jdbridge.JDProxyEventListener ... 79

Glossary 83

Chapter 1: Developer Guide Overview 9

Chapter 1: Developer Guide Overview

LISA functionality allows for a high amount of customization. Programmers can extend
this functionality through the Software Development Kit (SDK).

Note: The SDK was previously known as the LISA Extension Kit (LEK).

This section contains the following topics:

Examples and API Documentation (see page 9)

Examples and API Documentation

The examples_src.zip file contains the examples that are referenced in this guide. This
zip file is included with the LISA installer and is located in the LISA_HOME\examples_src
directory.

The SDK JavaDocs file contains the API documentation. The SDK JavaDocs are available
from the Reference Documentation section of the CA LISA Bookshelf. You can download
the JavaDocs as a zip file or view them in an HTML format.

Chapter 2: The Integration API 11

Chapter 2: The Integration API

LISA provides an integration Application Programmer Interface (API) that lets you
manage LISA test execution within Java-based server-side components. This chapter
details the basic concepts central to the LISA integration API.

This section contains the following topics:

Integration API Concepts (see page 12)
Integration Flow (see page 13)
The Integration Process (see page 13)

Integration API Concepts

12 Developer Guide

Integration API Concepts

The LISA software provides a powerful framework for testing server-side components.
However, if a test fails, the framework provides little information about why the test
failed. In addition, the component under test often calculates information that is of
interest to the tester, but is difficult to retrieve.

The LISA integration API provides several elements for getting information out of
server-side components. These elements include:

■ Integrators: The application-specific Java classes that coordinate communication
with the running test. For example, an EJB Integrator informs an EJB component
whether LISA integration is turned on. For more information about integrators, see
Integrating Components (see page 15).

■ TransInfo Class: Abbreviation for Transaction Information. The integrated
component uses this class to indicate testing events, such as a test failure or
success. For more information about using the TransInfo class, see Integrating
Components (see page 15).

■ HasLisaIntegrator Interface: Implemented by object types that are returned by
methods that are integrated using Java-based integrators. These object types
provide the running test with the information it needs about how the test has
changed while testing the component. For more information about implementing
the HasLisaIntegrator interface, see Constructing a Response Object (see page 21).

■ Integration Filters: Application-specific LISA filters that coordinate communication
with the integrated component. For example, the Servlet Filter turns on integration
support for a servlet component and specifies a node to execute if the servlet
returns specific values. For more information about integration filters, see
Integration Filters (see page 15).

■ Integration Assertions: Special assertion elements that take advantage of the
additional information that integrated server-side components provide. For
example, a Check Integrator Response (see page 26) assertion can set the next test
step based on the build status reported by the integrated component. For more
information about integration assertions, see Integration Assertions (see page 15).

Integration Flow

Chapter 2: The Integration API 13

Integration Flow

The integration flow includes the following steps.

1. The test case developer adds an application-specific integration filter to a test case.
When the test is run, the filter turns on integration support for the type of
application indicated. For example, the test case developer adds a Servlet Filter to
test an integrated servlet.

2. When the server is invoked, test-enabled server components use the
application-specific integrator class and the TransInfo class to establish the
communication with the running LISA test case. For example, if a servlet fails in
some way, it can call TransInfo.setBuildStatus() to note the failure to LISA. For
more information about the TransInfo class, see the LISA Javadoc.

3. The filter automatically processes responses from the system-under-test. The filter
logs important information and processes any commands from the tested
component.

The Integration Process

To integrate to the LISA integration API:

1. Make sure lisaint2.0.jar is in your classpath.

You can find lisaint2.0.jar in the LISA_HOME/lib directory.

2. Add LISA integration to the method.

For more information about integrating LISA into a server-side component, see
Integrate Server-Side Components (see page 16).

3. Handle the output from the integrated method.
For more information about handling integrated output, see Handle Integrated
Output (see page 21).

4. Use integration filters in the test case that tests the server-side component.

For more information about integration filters, see Integration Filters (see page 15).

5. Use integration assertions in the test case that tests the server-side component.

For more information about integration Assertions, see Integration Assertions (see
page 15).

Chapter 3: Integrating Components 15

Chapter 3: Integrating Components

This chapter explains how to integrate server-side components using the LISA
integration API.

This section contains the following topics:

Integrate Server-Side Components (see page 16)
Collect Transaction Information (see page 19)
Integrators (see page 20)
Handle Integrated Output (see page 21)

Integrate Server-Side Components

16 Developer Guide

Integrate Server-Side Components

This procedure describes how to LISA-enable a server-side component.

Follow these steps:

1. Import the necessary classes.

The component must at least import the appropriate integrator and the TransInfo
class. For example, to import the classes necessary to integrate a servlet, add the
following import statements:

import com.itko.lisaint.servlet.ServletIntegrator;

import com.itko.lisaint.TransInfo;

For more information about the TransInfo class, see the LISA Javadoc.

2. Declare local variables to hold state.

The integrated component needs at least an integrator and a TransInfo variable, as
seen in the following code:

ServletIntegrator si = null;

TransInfo ti = null;

3. Start a transaction.

The LISA integration API lets you control when the integrated component begins to
communicate with the LISA software. All the communication must happen in
context of a transaction. Therefore, before beginning to communicate, start a
transaction using the application-specific integrator. You can ensure that LISA is on
before that by checking with the application-specific integrator class. The following
code checks if LISA is on, then retrieves the servlet integrator from the integrator
class and stores it in the variable si. The code then starts the transaction using the
servlet integrator and stores the result in the TransInfo object.

if(ServletIntegrator.isLisaOn(request)) {

 si = ServletIntegrator.getServletIntegrator(request);

 ti = si.startTransaction("Hello World");

}

4. Interact with the test case.

Report component status. The TransInfo class provides a method, setBuildStatus(),
that allows you to specify information that LISA can use to determine how to run
the test. For example, to tell LISA that the component has failed, set the build status
to STATUS_FAILED, as seen in the following code:

if(/* component failed */) {

 // ...

 ti.setBuildStatus(TransInfo.STATUS_FAILED, failMsg);

}

For more information about valid build status codes, see Build Status.

Integrate Server-Side Components

Chapter 3: Integrating Components 17

■ Set LISA properties. The TransInfo class provides a method, setLISAProp(), that
allows you to set an arbitrary LISA property. This method is a useful mechanism
for getting information out of an integrated component, especially when used
with the Ensure Property Matches Expression assertion.

For example, if your application calculates the Dow average, you could store
that value in a LISA property that can be checked while testing. The following
code creates a LISA property named DOW_AVERAGE and assigns the value
CalculatedDowAverage.

ti.setLISAProp("DOW_AVERAGE", CalculatedDowAverage);

This mechanism can be used to send data cache data from the system under
test to the Test Manager as LISA property values. These property values can be
any serializable object, including strings, any of the Java object wrappers for
primitive types, or even your own classes as long as the LISA class path contains
the proper classes to deserialize the data.

■ Make assertions. The TransInfo class provides several methods that make
assertions, and then take some action if the assertion fails. For example, the
assertFailTest() method takes a Boolean value and makes an assertion that the
value is true. If the value is false, the method instructs LISA to fail the test and
passes the string message that is logged.

ti.assertFailTest(boolean_assertion, "ASSERT FAILED");

For more information about TransInfo assertion methods, see Assertion
Methods (see page 19).

■ Force the next node. On rare occasions, it is difficult to get information from
the server-side component back to the test case. In this situation, it is helpful to
be able to force the test case to visit a specific test step if the condition arises.
The TransInfo class provides a method, setForcedNode(), that overrides the
next test step as determined by the Integrating Components test case. In the
following code, the developer forces LISA to make specialStep the next test
step if the special_condition is true.

if (special_condition)

ti.setForcedNode("specialStep");

5. Send the response back to LISA.

For more information about sending responses back to LISA, see Handling
Integrated Output (see page 21).

JSP Tag Library

In addition to the Java API shown previously, LISA provides a JSP tag library for Java web
development. This API makes using the Integration API easy for JSP developers.

Integrate Server-Side Components

18 Developer Guide

Pure XML Integration

ITKO makes available a pure XML form of the Integration for web applications on an
as-needed basis. If you require this form of integration, contact your sales or support
representative.

Test Components

Sometimes a server-side application has a number of checks and it is not clear where
the test step failed. You can separate out parts of the transaction using subcomponents
and can report their individual statuses. The com.itko.lisaint.CompInfo class represents
a subcomponent.

For example, the following code creates a subcomponent of the transaction and sets its
build status to STATUS_SUCCESS:

CompInfo ci = ti.newChildComp("SUBCOMP");

ci.setBuildStatus(CompInfo.STATUS_SUCCESS, "");

ci.finished();

Subcomponents are treated as part of the overall transaction. If one subcomponent
fails, the entire transaction fails. The following code creates a subcomponent and sets
the build status to STATUS_FAILED. In this case, the entire transaction fails.

CompInfo ci = ti.newChildComp("SUBCOMP");

ci.setBuildStatus(CompInfo.STATUS_FAILED, "");

For more information about the CompInfo class, see the LISA Javadoc.

Collect Transaction Information

Chapter 3: Integrating Components 19

Collect Transaction Information

The TransInfo class encapsulates all the information that is gathered about the
execution of a specific "transaction" of the system under test. This class informs the
running test case of the status of this transaction. The LISA instance requesting this
transaction works with this object. A transaction is a round trip from a test instance to
the system under test and back. Transactions can be broken up into subcomponents and
reported at that level with the CompInfo object.

To construct a TransInfo object, call the startTransaction method on the appropriate
integrator. For example, the following code creates a TransInfo in a servlet:

TransInfo ti = si.startTransaction("Hello World");

For more information about the TransInfo class, see the LISA Javadoc.

Build Status

The TransInfo class provides a method, setBuildStatus, that lets you specify information
that LISA can use to determine how to run the test. The setBuildStatus method takes a
string constant whose possible values are defined on the TransInfo class. Status
constants include:

■ S - STATUS_SUCCESS: The component executed as expected.

■ U - STATUS_UNKNOWN: The status is not known.

■ R - STATUS_REDIRECT: The component issued a redirect (only valid for some
systems).

■ I - STATUS_INPUTERROR: The component failed due to bad inputs.

■ E - STATUS_EXTERNALERROR: The component failed due to external resource
errors.

■ F - STATUS_FAILED: The component failed, presumably not because of inputs or
external resources.

For more information about the TransInfo class, see the LISA Javadoc.

Assertion Methods

The TransInfo class provides several methods that make assertions, and then take some
action if the assertion fails. The Assertion methods include:

■ assertLog(boolean expr, String msg): If the assertion expr is false, the message is
written to the log.

Integrators

20 Developer Guide

■ assertEndTest(boolean expr, String msg): If the assertion expr is false, tell LISA to
end the test normally, and write the message to the log.

■ assertFailTest(boolean expr, String msg): If the assertion expr is false, tell LISA to
fail the test, and write the message to the log.

■ assertFailTrans(boolean expr, String msg): If the assertion expr is false, tell LISA to
consider the transaction as failed, and write the message to the log.

■ assertGotoNode(boolean expr, String stepName): If the assertion expr is false, tell
LISA to execute the stepName test step next. This can also be a property name in a
double curly brace (x) notation.

For more information about the TransInfo class, see the LISA Javadoc.

Integrators

An integrator is an application-specific Java class that coordinates the communication
with the running test. For example, an EJB Integrator informs an EJB component
whether LISA integration is turned on.

The com.itko.lisaint.Integrator abstract class provides the base set of functionality for
the following integrators:

■ Java Integrator

■ EJB Integrator

■ Servlet Integrator

Each integrator coordinates with the running test on whether LISA and LISA integration
is turned on. After this is determined, the primary responsibility of the integrator is to
start a transaction and provide access to the TransInfo object.

For more information about creating a TransInfo object, see Collect Transaction
Information (see page 19).

For more information about the Integrator class, see the LISA Javadoc.

Handle Integrated Output

Chapter 3: Integrating Components 21

Handle Integrated Output

In addition to the transaction information, the integrated component must return the
results of the component to the LISA software. For servlets, this involves wrapping
servlet responses. For Java-based components, this involves constructing a response
object.

Wrapping Servlet Responses

The LISA software integrates with web-based applications by embedding a streamed
version of the integrator into the HTML output of the web server. The ServletIntegrator
object is converted to ASCII text and wrapped in an HTML comment. The
ServletIntegrator class provides a method, report, that takes an output stream and
performs the described wrapping before sending it back to the LISA software.

The following code wraps the servlet response and sends it back to the LISA software if
the ServletIntegrator indicates that LISA is on:

if(ServletIntegrator.isLisaOn(request))

si.report(out);

For more information about the ServletIntegrator class, see the LISA Javadoc.

Constructing a Response Object

The LISA software integrates with Java-based applications by enforcing that either the
method returns value types or the class you are executing itself implements the
com.itko.lisaint.java.HasLisaIntegrator interface.

For example, assume you have implemented an object with a LoginInfo object as a
return value to the login (String uid, String pwd). The LoginInfo object maintains the
information about whether the test succeeded or failed. To test that method, a LISA test
case author executes the login method, then queries the returned LoginInfo object to
determine the success or failed state.

To implement the com.itko.lisaint.java.HasLisaIntegrator interface, implement the
getLisaIntegrator() method to provide an XML representation of your integration object
to LISA.

Most implementations also provide a setLisaIntegrator() method and store the state in
a member variable, as in the following code:

public class LoginInfo implements HasLisaIntegrator {

 private JavaIntegrator lisa;

Handle Integrated Output

22 Developer Guide

 public String getLisaIntegrator() {

 return lisa.toXML();

 }

 public void setLisaIntegrator(JavaIntegrator obj) {

 lisa = obj;

 }

}

For more information about the HasLisaIntegrator and LoginInfo classes, see the LISA
Javadoc.

Chapter 4: Testing Integrated Components 23

Chapter 4: Testing Integrated Components

This chapter explains how to test integrated server-side components using LISA
integration filters and assertions.

This section contains the following topics:

Integration Filters (see page 24)
Integration Assertions (see page 25)

Integration Filters

24 Developer Guide

Integration Filters

An integration filter is an application-specific LISA filter that coordinates the
communication with the integrated component. The inclusion of an integration filter
indicates two things:

■ The LISA software must turn on support for integration with that type of server-side
component.

■ When an integrated server-side component returns results that match the
attributes of the filter, execute a specific test step as the next test step.

For example, the Servlet Filter turns on integration support for a servlet component and
specifies a test step to execute if the servlet returns specific values. A test case
developer typically defines multiple integration filters of a single type. Each filter checks
a specific condition and sets the next test step accordingly.

The model editor provides built-in support for three integration filter types:

■ LISA Integration Filter for Java Applications

■ LISA Integration Filter for Servlet Applications

■ LISA Integration Filter for EJB Applications

Defining an integration filter in a test case indicates that LISA wants to turn on
integration for that type and to listen for responses of that type. To define an
integration filter, create the filter, select the type, and set the attributes.

■ Trans Build Status: The server-side component has set the build status on the
TransInfo to a specific value. This field takes one or more build status code letters.
For example, to define a filter that fires if the build status is set to any terminating
status, enter the value IEF.

■ Trans Build Message Expression: The server-side component has supplied a string
as the message parameter to the setBuildStatus method of the TransInfo that
matches the specified regular expression.

■ Component Name Match: The server-side component created a subcomponent
with a name that matches the value of this field. Possible values for the field
include:

■ empty: Do not evaluate, meaning that there is never a match.

■ *: Match anything except a null.

■ anything else: Evaluated as a regular expression.

■ Component Build Status: The server-side component has set the build status on the
CompInfo to a specific value. This field takes one or more build status code letters.
For example, to define a filter that fires if the build status is set to any terminating
status, enter the value IEF.

Integration Assertions

Chapter 4: Testing Integrated Components 25

■ Component Build Message Expression: The server-side component has supplied a
string as the message parameter to the setBuildStatus method of the TransInfo that
matches the specified regular expression.

■ Exception Type Match: The server-side component threw an exception with a type
that matches the value of this field. Possible values for the field include:

■ empty: Do not evaluate, meaning that there is never a match.

■ *: Match anything except a null.

■ anything else: Evaluated as a regular expression.

■ Max Build Time (millis): The time to execute the server-side component took less
than the number of milliseconds specified.

■ On Transaction Error Node: If the server-side component matches the specified
attributes, then execute the node that was specified.

■ Report Component Content: If this box is selected, the servlet application tested
includes the actual content of the components in the output.

Note: Only select the Report Component Content box if necessary, as it can be very
bandwidth intensive. Also, the check box is only a request. Servlet applications can
ignore the request and not provide the component content.

For more information about filters, see the User Guide.

Integration Assertions

An integration assertion is an application-specific LISA assertion that executes a specific
test case as the next test case if an integrated server-side component returns results
that match the attributes of the assertion.

For example, the Check Integrator Response (see page 26) assertion specifies a node to
execute if the server-side component returns specific values. A test case developer
typically defines multiple integration assertions of a single type. Each assertion checks a
specific condition and sets the next node accordingly.

The model editor provides built-in support for three integration assertion types:

■ Check LISA Integrator Response (see page 26)

■ Check LISA Integrator Component Content Response (see page 27)

■ Check LISA Integrator Reporting Missing Data (see page 27)

To define an integration assertion, create the assertion and set the attributes based on
the type of assertion, as outlined in the referenced assertion types.

Integration Assertions

26 Developer Guide

Check Integrator Response

The Check LISA Integrator Response assertion specifies a test case to execute if the
server-side component returns specific values. Attributes include:

■ Trans Build Status: The server-side component has set the build status on the
TransInfo to a specific value. This field takes one or more build status code letters.
For example, to define an assertion that executes if the build status is set to any
terminating status, enter the value IEF.

■ Trans Build Message Expression: The server-side component has supplied a string
as the message parameter to the setBuildStatus method of the TransInfo that
matches the specified regular expression.

■ Component Name Match:The server-side component created a subcomponent
with a name that matches the value of this field. Possible values for the field
include:

■ empty: Do not evaluate, meaning that there is never a match.

■ *: Match anything except a null.

■ anything else: Evaluated as a regular expression.

■ Component Build Status: the server-side component has set the build status on the
CompInfo to a specific value. This field takes one or more build status code letters.
For example, to define an assertion that executes if the build status is set to any
terminating status, enter the value IEF.

■ Component Build Message Expression: the server-side component has supplied a
String as the message parameter to the setBuildStatus method of the TransInfo that
matches the specified regular expression.

■ Exception Type Match:The server-side component threw and exception with a type
that matches the value of this field. Possible values for the field include:

■ empty: Do not evaluate, meaning that there is never a match.

■ *: Match anything except a null.

■ anything else: Evaluated as a regular expression.

■ Max Build Time (millis): The time to execute the server-side component took less
than the number of milliseconds specified.

For more information about assertions, see the User Guide.

Integration Assertions

Chapter 4: Testing Integrated Components 27

Check Integrator Component Content Response

The Check LISA Integrator Component Content Response assertion specifies a test case
to execute if the server-side component returns content that matches a regular
expression. Not every server-side component can return component-level content.
HTTP-based applications generally return the HTTP response.

Attributes include:

■ Component Name Spec: The expression that selects the component whose content
to search.

■ Expression: The expression to search the component content. For both fields, the
expressions are evaluated in the following way:

■ A null component value is not a hit, regardless of the expression.

■ An empty expression is never a hit.

■ A * matches any not null value.

■ Any other expression is considered a regular expression.

Note: The entire transaction is itself a component, so its name and content are
evaluated as part of this execution.

Check Integrator Reporting Missing Data

The Check LISA Integrator Reporting Missing Data assertion specifies a test case to
execute if the server-side component does not return expected content. Not every
server-side component can return component-level content. HTTP-based applications
generally return the HTTP response.

Attributes include:

■ Component Name Spec: The expression that selects the component whose content
to search. The expression is evaluated in the following way:

■ An empty expression is never a hit.

■ A * matches any not null value.

■ Any other expression is considered a regular expression.

Note: The entire transaction is itself a component, so its name and content are
evaluated as part of this execution.

For more information about assertions, see the User Guide.

Chapter 5: Extending LISA Software 29

Chapter 5: Extending LISA Software

This chapter explains the main concepts that are involved in extending the LISA
software.

This section contains the following topics:

Reasons to Extend the LISA Software (see page 29)
LISA Extension Concepts (see page 29)

Reasons to Extend the LISA Software

The LISA software provides most of the elements that are required to test enterprise
software components. However, you can create your own elements to solve specific
problems. For example, the LISA software does not provide built-in support for testing
FTP clients. If you write an FTP client, you could create the following:

■ Custom node to test the transfer of files

■ Custom node to verify the contents of transferred files

■ Custom filter to store portions of the file in LISA properties

You can create custom types of other LISA elements, such as data sets and companions.
For more information about extending other LISA elements, see the LISA Javadoc.

LISA Extension Concepts

The following concepts are common to all LISA customization scenarios:

■ lisaextensions File (see page 30)

■ wizards.xml File (see page 32)

■ Named Types (see page 33)

■ Parameters and Parameter Lists (see page 34)

■ The Test Exec Class (see page 35)

■ Test Exceptions (see page 35)

LISA Extension Concepts

30 Developer Guide

lisaextensions File

The lisaextensions file is where you define the extension points for LISA.

One or more custom extensions (filters, assertions, test steps, and reports, for example)
are declared in a file whose extension is .lisaextensions. The name must be unique
relative to any other lisaextensions files in the same environment. For example, there
could be two lisaextensions files with the names library-A.lisaextensions and
library-B.lisaextensions.

The lisaextensions file must be included in a JAR with the classes that do the custom
extension implementation. The JAR must be placed in the LISA classpath. At the time of
startup, LISA looks for all files with the extension .lisaextensions and tries to read the
custom extension points from them.

Note: Using the typemap.properties file to define extensions is supported only for
backward compatibility.

All custom extensions in LISA must provide a controller, viewer (frequently called an
editor), and an implementation. These are often three different classes. Often, LISA
provides defaults for the controller and the viewer that you can use to avoid having to
write your own. You can create custom versions if these defaults are not suitable for
your needs.

Use of the lisaextensions file

The custom element is registered in the lisaextensions file. This subsection shows how
that is accomplished. For LISA to connect a given implementation to its authoring-time
controller and editor, the lisaextensions file is used.

Implementation Objects

Here is an example of the portion of the contents of a lisaextensions file for custom
assertions:

asserts=com.mycompany.lisa.AssertFileStartsWith

The class name on the right side of the equal sign represents the location of the classes
that implement the appropriate node logic. If more than one assertion is defined, all
corresponding classes are mentioned in the same line, separated by commas, as in:

asserts=com.mycompany.lisa.AssertFileStartsWith,com.mycompany.lisa.AnotherAss

ert

LISA Extension Concepts

Chapter 5: Extending LISA Software 31

Controller and Editor Objects

LISA performs a lookup on each element that is declared as an implementation object to
get the controller and the editor to associate with that implementation. For example,
the assertion in the previous example has the following extra entry in the lisaextensions
file:

com.mycompany.lisa.AssertFileStartsWith=com.itko.lisa.editor.DefaultAssertCon

troller,com.itko.lisa.editor.DefaultAssertEditor

The format of this properties file entry is

implementation_class_name=controller_class_name,editor_class_name

In this example, the default controller and editor are used. The defaults are adequate
for most cases. However, you can encounter situations in which custom controllers or,
more frequently, custom editors must be provided. A lisaextensions file is the place to
declare the classes corresponding to them.

LISA Extension Concepts

32 Developer Guide

wizards.xml File

The LISA_HOME home directory contains a file named wizards.xml. This file drives
many of the wizards that are rendered in LISA. Any wizard that prompts the user with
frequently accessed test elements (assertions, test steps, filters, and so on) consults this
file for the information to display in the tree view. You can add your custom LISA
extensions to this file to make them easily available to users. You can also remove
built-in elements that are not used frequently. The wizards.xml file itself provides some
useful information about how to read and modify its contents, but the concepts are
here.

Wizard Tag

The wizard tag is used to provide a list of elements for a given type of test element and
a given type of use. For example:

<Wizard element="assert" type="http">

LISA predefines the element values (in this case "assert") and the types (in this case
"http"). New element values or types are ignored. The type is the short name for the
kind of elements that is described in the contained Entry tags. In this example, the Entry
tags are documenting assertions. The type attribute drives when LISA renders the given
list. For common testing needs (like web testing, XML testing, Java testing), LISA allows
the wizards.xml file to contain different assertions and filters that are appropriate.

Entry Tag

Here is a sample Entry tag:

<Entry>

 <Name>Make Diff-like Comparisons on the HTML Result</Name>

 <Help>This is the right assertion to use when you have a HTML result and you

wish to perform diff-like operations on it. It lets you define simply what portions

of the text may change, what may not change, and what portions must match current

property values.</Help>

 <Type>com.itko.lisa.web.WebHTMLComparisonAssert</Type>

</Entry>

The following child tags are required to define a wizard entry:

■ Name: The label that is used in the wizard itself, shown as an option button in the
current version of LISA.

■ Help: At the bottom of the wizard panel, there is an area for more text. This text is
shown when this entry has been selected.

■ Type: The actual test case element implementation class name.

LISA Extension Concepts

Chapter 5: Extending LISA Software 33

The NamedType Interface

The com.itko.lisa.test.NamedType interface specifies that an implementing class is an
object that is associated with a LISA object viewer. Every class that you create to extend
the LISA software implements this interface if it can be edited in the LISA Test Manager.
It exposes one method, getTypeName, which provides the text that is associated with
the element in the model editor. For example, notice the text "File First Line Filter" in
the following image.

A method in the class that defines the filter provides the text. That class must
implement the com.itko.lisa.test.NamedType interface, and must implement the
getTypeName method:

public String getTypeName()

{

 return "File First Line Filter";

}

LISA Extension Concepts

34 Developer Guide

Parameters and Parameter Lists

Parameters (represented by com.itko.lisa.test.Parameter objects) are the attributes
that define and support LISA elements.

A ParameterList (represented by an object of type com.itko.lisa.test.ParameterList) is a
collection of such parameters. In a way, ParameterList can be treated as an extension of
java.util.HashMap.

The class that defines a LISA element defines the parameters that the element exposes
in a callback method that returns a com.itko.lisa.test.ParameterList. For example, the
getParameters() method below defines the parameters for the Parse Property Value As
Argument String filter:

public ParameterList getParameters()

{

 ParameterList p = new ParameterList();

 p.addParameter(new Parameter("Existing Property", PROPKEY_PARAM, propkey,

TestExec.PROPERTY_PARAM_TYPE));

 p.addParameter(new Parameter("IsURL", ISURL_PARAM, new

Boolean(isurl).toString(), Boolean.class));

 p.addParameter(new Parameter("Attribute", ATTRIB_PARAM, attrib,

TestExec.ATTRIB_PARAM_TYPE));

 p.addParameter(new Parameter("New Property", PROP_PARAM, prop,

TestExec.PROPERTY_PARAM_TYPE));

 return p;

}

For each parameter exposed, the method creates a com.itko.lisa.test.Parameter. The
previous example defined the following parameters:

■ A LISA property value for Existing Property

■ A Boolean value for IsURL

■ A LISA attribute value for Attribute

■ A LISA property for New Property

The parameters to the constructor of Parameter are:

■ The string that provides the label for the parameter in the model editor

■ A string key that is used to store the value of the parameter in a Java Map

■ A variable that stores the value of the parameter

■ The fully qualified type of the parameter

The model editor uses the last parameter to determine the user interface element that
is associated with the parameter. For example, passing Boolean.class renders the
parameter as a check box. Passing TestExec.PROPERTY_PARAM_TYPE renders the
parameter as a drop-down list containing the keys of all existing properties.

LISA Extension Concepts

Chapter 5: Extending LISA Software 35

For more information about the com.itko.lisa.test.Parameter and
com.itko.lisa.test.ParameterList classes, see the LISA Javadoc.

The Test Exec Class

The com.itko.lisa.test.TestExec class provides access to the state of the test and
convenience functions for performing common tasks within LISA elements. A TestExec
parameter is passed to most LISA element methods. Some of the most useful methods
that the TestExec class provides include:

■ log: Fires a EVENT_LOGMSG TestEvent including the string parameter.

■ getStateObject: Takes a string LISA property key and returns the value of that
property.

■ setStateValue: Takes a string LISA property key and an Object and sets the value of
that property to the specified Object value.

■ setNextNode: Takes the string name of a LISA node and sets the next test case to
fire to that test case.

■ raiseEvent: Allows you to fire an arbitrary LISA event.

For more information about the com.itko.lisa.test.TestExec class, see the LISA Javadoc.

Test Exceptions

The LISA software provides two main exception classes for handling errors in test case
components:

■ TestRunException: Indicates a problem in how the test was run. For example, trying
to access a parameter that does not have an expected value would throw this type
of exception.

■ TestDefException: Indicates a problem in how the test was defined. For example,
trying to reference a data set that was not defined would throw this type of
exception.

For more information about LISA exception classes, see the LISA Javadoc.

Chapter 6: Extending Test Steps 37

Chapter 6: Extending Test Steps

The test steps that LISA provides include most of the logic that is required to test
enterprise software. However, you can create your own test step to accommodate a
specific situation.

Each existing test step provides a step-specific Swing user interface to help users
develop that type of test step. You can provide this same support by creating a Java
class that extends com.itko.lisa.test.TestNode and providing a Swing user interface.
However, there is a much simpler way to provide a custom test step.

A set of name-value pairs can adequately represent many testing situations. For
example, assume that you want to test a File Transfer Protocol (FTP) client package you
have written. You do not need a complex wizard to collect the information that is
required to test. You need only:

■ The FTP host

■ The full path and name of the file

■ The username and password that is used to access the FTP host

A name-value pair can represent each of these values.

LISA provides built-in support for custom test steps that fit this profile. To create a
custom test step, you create a Java class that implements
com.itko.lisa.test.CustJavaNodeInterface. This class specifies the name-value pairs that
are associated with the test step and the logic to run when the test step executes. At
runtime, the model editor searches the classpath for classes that implement
CustJavaNodeInterface. The model editor makes these classes available under the
Custom Test Step Execution test step type.

The LISA SDK provides two ways to enable you to augment the functionality of LISA with
new test cases:

■ Custom Java Test Steps: This type of test step is faster and easier to develop, so it is
often the preferred method that developers use.

■ Native Test Steps: These test steps are created in precisely the way that ITKO
develops test steps within LISA and can appear in their own categories.

This section contains the following topics:

Custom Java Test Steps (see page 38)
Native Test Steps (see page 43)

Custom Java Test Steps

38 Developer Guide

Custom Java Test Steps

This section explains how to create a custom Java test step and use it in the model
editor.

This type of test step is created by extending an abstract base class that LISA provides in
the Lisa.jar. A custom Java test step is faster and easier than the native test step
because it does not require you to build a user interface for the Test Manager. Instead,
one is auto-generated for you by invoking the calls on this class. This efficiency comes at
the cost of control over how the user interacts with your test step at the time the test is
being authored. Most parameters are rendered in an appropriate manner, but some
parameters could require a customized editor. For those needs, consider creating a
native test step.

Topics include:

■ Create a Custom Java Test Step (see page 39)

■ Deploy a Custom Java Test Step (see page 41)

■ Define a Custom Java Test Step (see page 42)

Custom Java Test Steps

Chapter 6: Extending Test Steps 39

Create a Custom Java Test Step

Follow these steps:

1. Create a Java class that implements com.itko.lisa.test.CustJavaNodeInterface.

This tells the LISA software that your class is a custom Java test step.

public class FTPCustJavaNode implements CustJavaNodeInterface

{

}

2. Implement the required initialize method.

This method is called when the LISA software first loads a custom test step during
testing.

In this example, the test step needs no initialization, so it simply logs the fact that
the initialize method was called.

static protected Log cat = LogFactory.getLog(

"com.mycompany.lisa.ext.node.FTPCustJavaNode");

public void initialize(TestCase test, Element node) throws TestDefException

{

 cat.debug("called initialize");

}

3. Implement the required getParameters method.

This method specifies the name-value pairs that define the parameters to the
custom test step. The simplest way to define the parameter list is to pass one long
string of all parameters, with each parameter separated by an ampersand (&).
Values that are specified here are used as the default values when the node is
defined in the model editor.

public ParameterList getParameters()

{

 ParameterList pl = new ParameterList(

"username=&password=&host=ftp.suse.com&path=/pub&file=INDEX");

 return pl;

}

The previous example uses ftp.suse.com/pub/INDEX as the file to retrieve. This is a
publicly available FTP host that allows an anonymous login. Limit unnecessary hits
on the SuSE FTP site.

4. Implement the required executeNodeLogic method.

This method defines the logic that runs when the test step executes. Typically, this
method is used to instantiate and validate components of the system under test.

Custom Java Test Steps

40 Developer Guide

The TestExec parameter provides access to the test environment, such as logs and
events. The Map parameter provides access to the current value of the test step
parameters. The Object return type allows you to pass data back to the running
test, so that you can run assertions and filters on it.

public Object executeNodeLogic(TestExec ts, Map params) throws TestRunException

{

 ts.log("We got called with: " + params.toString());

 String host = (String)params.get("host");

 String username = (String)params.get("username");

 String password = (String)params.get("password");

 String path = (String)params.get("path");

 String file = (String)params.get("file");

 String storedFile = runFTP(ts,host,username,password,path,file);

 FileDataObject fdo = new FileDataObject(storedFile);

 return fdo;

}

Using a custom data object for the return value is common. This strategy has two
benefits:

■ It encourages proper resource handling. Do not pass common resources, such
as files and JDBC connections, as results. Doing so prevents the node
performing a cleanup by calling a close method. If you construct your own data
object, you can store and pass only the information you need from the
resource. Then close the resource before returning the data object.

■ It allows you to perform conditional filtering and result-checking based on the
type of the data object. For more information about using data objects to
perform conditional filtering, see Create a New Filter (see page 53).

The previous code uses the FileDataObject custom data object to store only the
path to the stored file, rather than passing an open File or FileInputStream. Any
filters can perform conditional processing by checking that the type of the result
object is FileDataObject.

Custom Java Test Steps

Chapter 6: Extending Test Steps 41

Deploy a Custom Java Test Step

You must make a custom Java test step available to the model editor before you can use
it in a test case.

To deploy a custom Java test step:

1. Create a lisaextensions file or use an existing one if one exists.

In the lisaextensions file, mention this class against the simpleNodes element.

simpleNodes=com.mycompany.lisa.FTPCustJavaNode

2. Copy the JAR file that contains your custom Java test step and the lisaextensions file
to the LISA_HOME/hotDeploy directory.

If your custom Java test step depends on any third-party libraries, copy those
libraries to the LISA_HOME/hotDeploy directory.

For this example, the FTPCustJavaNode described previously has been packaged for
you at LISA_HOME/doc/DevGuide/lisaint-examples.jar. This custom Java test step
depends on the FTP client that is packaged at
LISA_HOME/doc/DevGuide/lib/ftp.jar.

Copy both of these files to the LISA_HOME/hotDeploy directory.

Note: The FTP client that is used in the sample code is provided by
www.amoebacode.com/.

This client puts the given class name in a convenient drop-down list for users when
authoring a test case. This is optional because LISA can be given the class name at
authoring time by typing or using the Class Path Navigator.

If you are already running LISA, exit and restart the program for this new setting to
take effect.

http://www.amoebacode.com/
http://www.amoebacode.com/

Custom Java Test Steps

42 Developer Guide

Define a Custom Java Test Step

This procedure describes defining a custom Java test step in the model editor.

Follow these steps:

1. Change the Type of the node to Custom Test Step Execution.

2. Specify the custom test step to test.

Enter or select the fully qualified name of the Java class in the Class Name field.

To specify a custom Java test step class easily, click the ellipsis (...) next to the Class
Name field to launch the Class Path Navigator. The Path Navigator only looks for
custom test steps. Select the test step class that you want to test and click OK.

Native Test Steps

Chapter 6: Extending Test Steps 43

3. Set the parameters to the custom test step.

For each parameter in the Parameters list, supply a value.

Native Test Steps

This section explains how to create a native test step and use it in the model editor. The
native test step is the way to provide 100 percent customized test step authoring and
execution for your test steps. In this test step, you are responsible for providing the
editing environment and the complete execution engine for your test step. This process
is precisely how native test steps provided as built-in within LISA are developed.

Topics include:

■ Create a Native Test Step (see page 44)

■ Deploy a Native Test Step (see page 45)

■ Define a Native Test Step (see page 45)

Native Test Steps

44 Developer Guide

Create a Native Test Step

This procedure describes creating a native test step.

Follow these steps:

1. Create a Java class that extends com.itko.lisa.test.TestNode.

This class implements the runtime logic of the test step. See the Javadoc for
TestNode and the sample code that is provided for FTPTestNode in the samples
that accompany this document. The following calls are important for the
construction of a test step:

public void initialize(TestCase test, Element node) throws TestDefException

LISA invokes this call for you to read the parameters you require for the operation
from the test case XML DOM. As the test case is constructed, it is passed with the
DOM Element of the step that represents this node in the test case XML.

public void execute(TestExec ts) throws TestRunException

This is called when your test step logic is invoked. The LISA workflow and state
engines manage most of the control flow and data requirements for you. You can
access the TestExec given as a parameter to perform various tasks. See the Javadoc
on TestExec and the description of this class in Integrating Components (see
page 15).

2. Create a Java class that extends com.itko.lisa.editor.TestNodeInfo.

To create and edit your node, provide a controller and viewer in the MVC pattern.
The TestNodeInfo class is the base class for all test steps that are developed for
LISA. The authoring framework executes this class to interact with your test step
data and logic. See the Javadoc for TestNodeInfo and review the example class that
is provided, named FTPTestNodeController.

3. Create a Java class that extends com.itko.lisa.editor.CustomEditor.

This class provides LISA with the actual user interface for viewing and editing your
node data. The authoring framework constructs and calls this class to display your
parameters, verify their validity, and save your changes back into the TestNodeInfo
extension. This CustomEditor extends JPanel in the Java Swing API. See the Javadoc
for CustomEditor and view the sample code for help writing your own editors.

4. Perform the following method overrides if you want to control how the default
name of the step is generated.

■ Override the generateName method in the class that extends TestNode. In this
method, add the logic to create the default name. The following example is for
the FTPTestNode sample class. When the user creates an FTP custom step, the
default name consists of FTP followed by the file name.

public String generateName()

{

 return "FTP " + getFile();

}

Native Test Steps

Chapter 6: Extending Test Steps 45

■ Override the generateName method in the class that extends TestNodeInfo. In
this method, add a call to the generateName method in the class that extends
TestNode. The following example is for the FTPTestNodeController sample
class.

public String generateName()

{

 FTPTestNode ftp = (FTPTestNode)getAttribute(FTP_KEY);

 return ftp.generateName()

}

Deploy a Native Test Step

Native test steps must be explicitly declared to LISA at startup of the Test Manager. This
declaration allows the authoring framework to associate the three classes that were
defined previously. This declaration is done in the lisaextensions file against the nodes
element. The classes themselves do not refer to one another. They are connected in the
lisaextensions file.

The following example defines a new category for the custom test step. This example is
used in the tree of the user interface. Precede any spaces in a node category with the
backslash character.

nodes=com.mycompany.lisa.node.FTPTestNode

 nodeCategories=FTP\ Stuff

 FTP\ Stuff=com.mycompany.lisa.node.FTPTestNode

com.mycompany.lisa.node.FTPTestNode=com.mycompany.lisa.node.FTPTestNodeContro

ller,com.mycompany.lisa.node.FTPTestNodeEditor

For more information about the lisaextensions file, see Extending the LISA Software (see
page 29) in the Developer Guide.

Define a Native Test Step

Your native test step can be accessed the same way that existing, built-in steps are
made available in LISA. See the User Guide for information about how to access a test
step.

Chapter 7: Extending Assertions 47

Chapter 7: Extending Assertions

This chapter explains how to extend the LISA software with a new assertion.

This section contains the following topics:

Create a New Assertion (see page 48)
Deploy a New Assertion (see page 50)
Define and Teste a New Assertion (see page 51)

Create a New Assertion

48 Developer Guide

Create a New Assertion

The assertions that the LISA software provides contain most of the logic that is required
to test enterprise software. However, you can create your own assertion to handle a
specific situation.

LISA provides built-in support for custom assertions. To create a custom assertion, you
create a Java class that extends com.itko.lisa.test.CheckResult. This class handles most
of the behind-the-scenes logic that is required to execute the assertion, and provides a
nice user interface in the model editor.

Follow these steps:

1. Create a Java class that extends com.itko.lisa.test.CheckResult.

This class tells the LISA software that your class is a custom assertion and provides
you with the needed assertion functionality.

public class AssertionFileStartsWith extends CheckResult

{

}

2. Implement the required getTypeName method.

This method provides the name that is used to identify the custom assertion in the
model editor.

public String getTypeName()

{

 return "Results File Starts With Given String";

}

The string that the getTypeName method returns is the default name of a new
assertion.

3. Handle custom parameters to the assertion.

Some assertions require more information than is provided in the node execution
result. In this case, provide a parameter that allows the user to specify that
information in the Assertions tab of the model editor.

Implement the abstract getCustomParameters method. In this method, you create
a ParameterList and add a Parameter for each parameter to the assertion. The
constructor for the Parameter takes the following:

■ A string that provides the label for the parameter in the user interface.

■ A string that provides the key to store the value of the parameter in a Map.

■ A string representing the value of the parameter.

■ The type of the parameter.

In this example, the custom assertion takes one parameter, the string to find in the
file. The rest of the code provides support for the parameter.

Create a New Assertion

Chapter 7: Extending Assertions 49

public static final String PARAM = "param";

private String param = "";

...

public String getParam()

{

 return param;

}

public ParameterList getCustomParameters()

{

 ParameterList pl = new ParameterList();

 pl.addParameter(new Parameter("Starts With String", PARAM, param,

String.class));

 return pl;

}

4. Initialize the custom assertion object with the value of the DOM Element.

When LISA tries to execute an assertion, it first creates an instance of the custom
class. It then calls the initialize method, passing the XML element that defined the
assertion. You must store the values of the parameter child elements in the new
instance.

For example, the test case XML can include an assertion that looks like the following
example:

<CheckResult name="CheckThatFile"

 log="Check if the node FTP'd a file that starts with 'All Visitors'"

 type="com.mycompany.lisa.AssertFileStartsWith" >

<then>finalNode</then>

<param>All Visitors</param>

</Assertion>

In the initialize method, you must get the text "All Visitors" into the param member
variable. The following code grabs the text from the child element named param
and checks to ensure that it is not null.

public void initialize(Element rNode) throws TestDefException

{

 param = XMLUtils.getChildText(XMLUtils.findChildElement(rNode, PARAM));

 if(param == null)

 throw new TestDefException(rNode.getAttribute("name"),

 "File Starts With results must have a Starts With String parameter

specified.", null);

}

You are free to use whatever means you prefer to read from the DOM Element. You
can use a convenience class named XMLUtils, as seen in the previous example.

5. Implement the checking logic with the evaluate method.

Deploy a New Assertion

50 Developer Guide

The TestExec parameter provides access to the test environment, such as logs and
events. The Object parameter provides access to results returned from executing
the node. The Boolean return type returns true if the assertion is true. Otherwise it
returns false.

The following code verifies that the first line of the file that is passed from the node
contains the string that is stored in the param parameter. This code returns true
only if the file starts with that string.

public boolean evaluate(TestExec ts, Object oresult)

{

 if(oresult == null)

 return false;

 FileDataObject fdo = (FileDataObject)oresult;

 String firstline = fdo.getFileFirstLine();

 return firstline.startsWith(param);

}

As an author of an assertion, simply declare whether the assertion as defined is true
or false. Do not worry about the steps to execute after the state is returned. The
LISA workflow engine evaluates whether that is considered a fired assertion or not.

Deploy a New Assertion

You must make a custom assertion available to the model editor before you can use it in
a LISA test case.

To deploy a custom assertion:

1. Tell LISA to look for a new custom assertion in the lisaextensions file, as:

asserts=com.mycompany.lisa.AssertFileStartsWith

com.mycompany.lisa.AssertFileStartsWith=com.itko.lisa.editor.DefaultAssertCon

troller,com.itko.lisa.editor.DefaultAssertEditor

You can also add this assertion to the wizards in the wizards.xml file.

2. Copy the JAR file that contains your custom assertion and lisaextensions file to the
LISA_HOME/hotDeploy directory.

If your custom assertion depends on any third-party libraries, copy those libraries to
the LISA_HOME/hotDeploy directory.

In this example, the AssertionFileStartsWith described previously has already been
packaged for you at LISA_HOME/doc/DevGuide/lisaint-examples.jar. This custom
assertion does not depend on any third-party libraries.

3. If you are already running LISA, exit and restart the program for this new setting to
take effect.

Define and Teste a New Assertion

Chapter 7: Extending Assertions 51

Define and Teste a New Assertion

This procedure describes defining a custom assertion.

Follow these steps:

1. Change the Type of the assertion, selecting the text that you specified in the
getTypeName method.

2. Set the parameters to the custom assertion.

For each parameter in the Assertion Param Attributes section, supply a value.

3. Use a custom assertion like you would any built-in assertion.

Chapter 8: Extending Filters 53

Chapter 8: Extending Filters

This chapter explains how to extend the LISA software with a new filter.

This section contains the following topics:

Create a New Filter (see page 54)
Deploy a New Filter (see page 57)
Define and Test a New Filter (see page 58)

Create a New Filter

54 Developer Guide

Create a New Filter

The filters that the LISA software provides includes most of the logic that is required to
test enterprise software. However, you can create your own filter to handle a specific
situation. The LISA software provides built-in support for custom filters.

Follow these steps:

1. Create a Java class that implements com.itko.lisa.test.FilterInterface.

This class tells the LISA software that your class is a custom filter.

public class FilterFileFirstLine implements FilterInterface

{

}

2. Implement the required getTypeName method.

This method provides the name that is used to identify the custom filter in the
model editor.

public String getTypeName()

{

 return "File First Line Filter";

}

3. Define the parameters to the filter.

For each item in the Filter Attributes section of the Filters tab in the model editor,
add a Parameter to the ParameterList for the filter. In this example, the custom
filter takes two parameters:

■ A check box to identify whether the text in the first line of the file represents
an FTP host

■ A text box to identify the parameter in which the line is stored

The following code creates the two parameters:

public ParameterList getParameters()

{

 ParameterList p = new ParameterList();

 p.addParameter(new Parameter("Is FTP", ISFTP_PARAM, new

Boolean(isftp).toString(), Boolean.class));

 p.addParameter(new Parameter("New Property", PROP_PARAM, prop,

TestExec.PROPERTY_PARAM_TYPE));

 return p;

}

4. Initialize the custom filter object with the value of the DOM Element.

Create a New Filter

Chapter 8: Extending Filters 55

When LISA tries to execute a filter, it first creates an instance of the custom class.
LISA then calls the initialize method, passing the XML element that defined the
filter. You must store the values of the parameter child elements in the new
instance.

For example, the test case can include a filter that looks like the following example:

<Filter type="com.mycompany.lisa.ext.filter.FilterFileFirstLine"

 isftp="true" prop="THE_LINE" />

In the initialize method, set the isftp variable to true and set the prop variable to
THE_LINE.

static private String ISFTP_PARAM = "isftp";

static private String PROP_PARAM = "prop";

private String prop;

private boolean isftp;

//...

public void initialize(Element e) throws TestDefException

{

 try {

 String s = XMLUtils.findChildGetItsText(e, ISFTP_PARAM).toLowerCase();

 if(s.charAt(0) == 'y' || s.charAt(0) == 't')

 isftp = true;

 else

 isftp = false;

 }

 catch(Exception ex) {

 isftp = false;

 }

 prop = XMLUtils.findChildGetItsText(e, PROP_PARAM);

 if(prop == null || prop.length() == 0)

 prop = "FILE_FIRST_LINE";

}

This code uses a utility class in lisa.jar named com.itko.util.XMLUtils. This class
finds child tags of the given parent tag and reads the child text of the tag. This
approach is useful because LISA automatically writes the XML representation of
filters by making each of the Parameter objects in getParameters a child tag of the
Filter tag. Each parameter key becomes the tag name and the child text of the tag is
the value.

If a filter defines the prop key, then the default name of the filter is {{propValue}}.
propValue is the value of the prop parameter. If a filter does not define the prop
key, then the default name of the filter is the string that the getTypeName method
returned. The FilterFileFirstLine sample class defines this key as:

static private String PROP_PARAM = "prop";

5. Because the filters execute before and after the test step, you get two chances to
implement the filter logic.

Create a New Filter

56 Developer Guide

Implement the filter logic before node execution with the preFilter method. The
TestExec parameter provides access to the test environment, such as logs and
events. If the filter set a new node to execute, the Boolean return type returns true.
Otherwise, it returns false.

In this example, we are not interested in filtering before the node executes, so the
preFilter method does nothing.

public boolean preFilter(TestExec ts) throws TestRunException

{

 // don't have anything to do...

 return false;

}

Implement the filter logic after node execution with the postFilter method. The
TestExec parameter provides access to the test environment, such as logs and
events. If the test should continue as normal, the Boolean return type returns false.
Otherwise, it returns true.

In this example, we store the first line of the file that is returned from the node in
the new property. ftp:// is prepended if the isFTP box is selected.

A LISA user can use a filter at either the test step level or the test case level. Add
logic to the filter that verifies whether the result is the proper state to run the filter.
For example, if your filter assumes that the LASTRESPONSE holds a FileDataObject,
then verify that before executing the filter logic.

public boolean postFilter(TestExec ts) throws TestRunException

{

 try {

 Object oresponse = ts.getStateObject("LASTRESPONSE");

 if (!(oresponse instanceof FileDataObject))

 return false;

 FileDataObject fdo = (FileDataObject)oresponse;

 String firstline = fdo.getFileFirstLine();

 if((firstline ==null) || (firstline.equals(""))) {

 ts.setStateValue(prop, "");

 return false;

 }

 if(isftp)

 firstline="ftp://" + firstline;

 ts.setStateValue(prop, firstline);

 return false;

 }

 catch(Exception e)

 {

 throw new TestRunException("Error executing FilterFileFirstLine", e);

 }

}

Deploy a New Filter

Chapter 8: Extending Filters 57

6. Implement the getNodeConnections method. This method is used at test case
authoring time to inform LISA of what possible test case nodes this filter can
reference. For example, a filter that would set the next node to "fail" on a given
condition would make a NodeConnection object to encapsulate that reference. See
com.itko.lisa.test.NodeConnection in the Javadoc for more on this class. This
method is also how test elements are informed when the name of a test step is
changed.

public Collection getFilterNodeConnections()

{

 return null;

}

Deploy a New Filter

You must make a custom filter available in the model editor before you can use it in a
test case.

Follow these steps:

1. Tell LISA to look for a new custom filter in a lisaextensions file, as:

filters=com.mycompany.lisa.FilterFileFirstLine

com.mycompany.lisa.FilterFileFirstLine=com.itko.lisa.editor.FilterController,

com.itko.lisa.editor.DefaultFilterEditor

You can also add this filter to the wizards in the wizards.xml file.

2. Copy the JAR file that contains your custom filter and lisaextensions file to the
LISA_HOME/hotDeploy directory.

If your custom filter depends on any third-party libraries, copy those libraries to the
LISA_HOME/hotDeploy directory.

In this example, the FilterFileFirstLine described previously has already been
packaged for you at LISA_HOME/doc/DevGuide/lisaint-examples.jar. This custom
filter does not depend on any third-party libraries.

3. If you are already running LISA, exit and restart the program for this new setting to
take effect.

Define and Test a New Filter

58 Developer Guide

Define and Test a New Filter

This procedure describes defining a new LISA filter.

Follow these steps:

1. Change the Type of the filter, selecting the text that you specified in the
getTypeName method.

2. Set the parameters to the custom filter.

For each parameter in the Filter Attributes section, supply a value.

3. Test a custom filter like you would any built-in filter.

Chapter 9: Custom Reports 59

Chapter 9: Custom Reports

This chapter explains how to extend LISA with new reports.

This section contains the following topics:

Create a New Report Generator (see page 60)
Deploy a New Report Generator (see page 61)
Use a New Report Generator (see page 61)

Create a New Report Generator

60 Developer Guide

Create a New Report Generator

The report generators that LISA provide include most of the output required. However,
you can create your own report to handle a specific situation. LISA provides built-in
support for custom report generators.

To create a report generator:

1. Create a Java class that extends com.itko.lisa.coordinator.ReportGenerator.

This class tells LISA that your class is a custom report.

public class ReportEventsToFile extends ReportGenerator

{

}

2. Implement the required getTypeName method.

This method provides the name that is used to identify the custom report in the
Staging Document Editor.

public String getTypeName()

{

 return "Report Events To a File";

}

3. Define the parameters to the report.

For each item in the Report Attributes section of the Reports tab in the Staging
Document Editor. Add a Parameter to the ParameterList for the report.

4. Initialize the custom report generator object with the ParameterList given.

When LISA tries to execute a report, it first creates an instance of the custom class.
It then calls the initialize method, passing the ParameterList that was read from the
XML of the staging document. LISA automatically reads and writes the XML
representation of report attributes by making each of the Parameter objects in
getParameters a child tag of the report XML tag. Each parameter key becomes the
tag name and the child text of the tag is the value.

5. While the test is running, LISA invokes the pushEvent method for every event you
have not filtered.

6. Implement the finished method.

When LISA has finished the test, it invokes this method on your report generator.
This invocation is your opportunity to complete your processing, like saving the
document that you have been writing.

Deploy a New Report Generator

Chapter 9: Custom Reports 61

Deploy a New Report Generator

You must make a custom report available before you can use it in a staging document.

Follow these steps:

1. Tell LISA to look for a new custom report generator in a lisaextensions file, as:

reportGenerators=com.mycompany.lisa.ReportEventsToFile

You can also add the report through the lisa.properties file, using
lisa.editor.reportGenerators key.

2. Copy the JAR file that contains your custom report and the lisaextensions file to the
LISA_HOME/hotDeploy directory.

If your custom report depends on any third-party libraries, copy those libraries to
the LISA_HOME/hotDeploy directory.

3. If you are already running LISA, exit and restart the program for this new setting to
take effect.

Use a New Report Generator

To use a custom report in the Staging Document Editor, access it the same way as any
built-in report.

Chapter 10: Custom Report Metrics 63

Chapter 10: Custom Report Metrics

This chapter explains how to extend the LISA software with a new reporting metric.

This section contains the following topics:

Create a New Report Metric (see page 64)
Deploy a New Report Metric (see page 65)

Create a New Report Metric

64 Developer Guide

Create a New Report Metric

When a test case is staged, a subsystem within LISA samples metric values. LISA then
reports them in the ways that are defined in the staging document. The staging
document includes the metrics to be collected. Users can also add them as the test runs.

Two classes must be created for the metric collection:

■ The Metric Integrator provides LISA with a way to view and edit the metrics that
you want to collect.

■ The Metric Collector is the engine that samples values while a test is running.

Follow these steps:

1. Create a Java class that implements com.itko.lisa.stats.MetricIntegration.

This class gives LISA the metrics that you want to access during the staging of a test.

public class RandomizerMetricIntegration implements MetricIntegration

{

}

2. Implement the required getTypeName method.

This method that provides the name that is used to identify the custom report
metric type in the Staging Document Editor.

public String getTypeName()

{

 return "Randomizer Metric";

}

3. Implement the public MetricCollector[] addNewCollectors(Component parent)
method so that at design time your code can define the requested metrics to be
collected.

4. Create a Java class that extends com.itko.lisa.stats.MetricCollector.

LISA calls on instances of this class to collect the requested metrics. The class must
also implement Serializable.

public class RandomMetricCollector extends MetricCollector implements

java.io.Serializable

{

}

5. Complete the implementation of your MetricIntegration and MetricCollector
objects.

See the Javadoc of those classes and the sample code for
RandomizerMetricIntegration and RandomMetricCollector for more information
about the individual methods available to extend.

Deploy a New Report Metric

Chapter 10: Custom Report Metrics 65

Deploy a New Report Metric

You must make a custom report metric available before you can use it in a staging
document.

Follow these steps:

1. Tell LISA to look for a new custom report metric in a lisaextensions file, as:

metrics=com.mycompany.lisa.metric.RandomizerMetricIntegration

You can also add the report metric through the lisa.properties file, using
stats.metrics.types key.

2. Copy the JAR file that contains your metric and the lisaextensions file to the LISA
hotDeploy directory at LISA_HOME/hotDeploy.

If your custom metric depends on any third-party libraries, copy those libraries to
the LISA hotDeploy directory.

3. If you are already running LISA, exit and restart the program for this new setting to
take effect.

Chapter 11: Custom Companions 67

Chapter 11: Custom Companions

This chapter explains how to extend the LISA software with a new companion.

You can create custom companions for LISA in two different ways. Native companions
are created in much the same way that Native test steps are created. And somewhat
like the Custom Java test step, there is a simpler way in which LISA shields you from
most of the editor and serialization overhead. That approach is documented here.

Note: If a companion contains duplicate parameter values, the duplicates are filtered
out when you save the test case. You must close the test case and then reopen it to see
the change in the user interface. This problem is specific to custom companions because
of an issue with the implementation of the lifecycle of custom companions.

If you have a test case containing a custom companion that wrote duplicate parameters
into the .tst file, there is a workaround. Reopen the .tst file, click save, close the .tst file,
and then reopen it. The duplicates are removed during the save, but the companion UI
does not update to reflect this change. The close and reopen step is required to see the
change.

This section contains the following topics:

Create a New Companion (see page 68)
Deploy a New Companion (see page 69)

Create a New Companion

68 Developer Guide

Create a New Companion

Follow these steps:

1. Create a Java class that extends com.itko.lisa.test.SimpleCompanion.

This class provides LISA all the information that is required to create, edit, and
execute your companion logic.

public class AllowedExecDaysCompanion extends SimpleCompanion implements

Serializable

{

}

Ensure that you implement Serializable. This is important when your companion is
used in remotely staged tests.

2. Implement the required getTypeName method.

This method provides the name that is used to identify the companion in the model
editor.

public String getTypeName()

{

 return "Execute Only on Certain Days";

}

3. Implement the getParameters method.

This method that provides LISA with the parameters you need for your companion
to be executed. Also call the superclass implementation of this method. The model
editor allows you to edit the parameters that are shown here. These parameters
are given to you at the time of execution. You do not have to implement this
method if your companion does not require parameters.

public ParameterList getParameters()

{

 ParameterList pl = super.getParameters();

 pl.addParameter(new Parameter("Allowed Days (1=Sunday): ", DAYS,

"2,3,4,5,6", String.class));

 return pl;

}

4. Implement the testStarting method.

LISA calls this method with the parameters you requested. If an error occurs or you
otherwise want to prevent the test from executing normally, throw a
TestRunException.

protected void testStarting(ParameterList pl, TestExec testExec)

 throws TestRunException

5. Implement the testEnded method.

Deploy a New Companion

Chapter 11: Custom Companions 69

LISA calls this method with the parameters you requested. You have an opportunity
to perform any post-execution logic for the test.

protected void testEnded(ParameterList pl, TestExec testExec)

 throws TestRunException

Deploy a New Companion

Companions must be explicitly declared to LISA at startup so that the authoring
framework can make the companion available for use in test cases.

Like the Native Test test step, three classes are required for companions, but LISA
provides default implementations for the two classes that are not documented here.
The default controller is com.itko.lisa.editor.CompanionController and the editor is
named com.itko.lisa.editor.SimpleCompanionEditor. Notice that the built-in LISA
companion named Set Final Step to Execute Companion is defined with these classes.
Use the registration for that companion as a sample. They are connected in the
lisaextensions file.

companions=com.mycompany.lisa.AllowedExecDaysCompanion

com.mycompany.lisa.AllowedExecDaysCompanion=com.itko.lisa.editor.CompanionCon

troller,com.itko.lisa.editor.SimpleCompanionEditor

For more information about the lisaextensions file, see Extending the LISA Software
(see page 29).

As with all custom LISA test elements, you must make the classes that you have
developed and the lisaextensions file available to LISA. The most common way to do
make them available is to put a JAR file in the LISA_HOME/lib directory.

Note: A custom companion can implement the StepNameChangeListener interface and
can receive notification when the name of any step is changed. An SDK developer
implements this if your custom companion renders a drop-down list of the steps in the
test. An example is the Final Step to Execute companion, which lists the step names so a
test author can select the teardown step. This code change was added to enable
notifying the Final Step to Execute companion when a step name changes.

Chapter 12: Using Hooks 71

Chapter 12: Using Hooks

This chapter explains how to extend the LISA software with a new hook.

A hook is a mechanism that allows for the automatic inclusion of test setup or teardown
logic for all the tests running in LISA. An alternate definition of a hook is a system-wide
companion.

Hooks are used as follows:

■ To configure test environments.

■ To prevent tests that are not properly configured or do not follow defined best
practices from executing.

■ To provide common operations.

Anything that a hook can perform can also be modeled as a companion in LISA.
However, there are several differences between hooks and companions:

■ Hooks are global in scope. Users do not specifically include a hook in their test case
as is the required practice for companions. If you need every test to include the
logic and want to prevent users from accidentally not including it, a hook is
preferable.

■ Companions can have custom parameters and are rendered in the model editor.
Hooks are practically invisible to the user and therefore can request no special
parameters. Hooks get their parameters from properties in the configuration or
from the system.

■ Hooks are deployed at the LISA install level, not at the test case level. Assume a test
is run on two computers. One computer has a hook that is registered, and the other
does not. The hook runs only when the test is staged on the computer where it is
explicitly deployed. The defined companions execute regardless of any install-level
configuration.

This section contains the following topics:

Create a New Hook (see page 72)
Deploy a New Hook (see page 72)

Create a New Hook

72 Developer Guide

Create a New Hook

Follow these steps:

1. Create a Java class that extends com.itko.lisa.test.Hook.

This class gives LISA all the information that is required to execute the logic for your
hook.

public class HeadlineHook extends Hook

{

}

2. Implement the startupHook method.

LISA calls this method when the test starts. If an error occurs or you otherwise want
to prevent the test from executing normally, throw a TestRunException.

public void startupHook(TestExec testExec) throws TestRunException

3. Implement the endHook method.

You have an opportunity to perform any post-execution logic for the test.

public void endHook(TestExec testExec)

Deploy a New Hook

Hooks are deployed when a class name in the lisa.properties file registers them. The
system property key that is used for hooks is lisa.hooks. An example follows:

to register hooks with LISA, these are comma-separated

lisa.hooks=com.itko.lisa.files.SampleHook,com.mycompany.lisa.HeadlineHook

The preceding lisa.properties entry deploys two hooks to be run on every test.

Chapter 13: Custom Data Sets 73

Chapter 13: Custom Data Sets

This chapter explains how to extend LISA with a new data set.

Data sets are created in much the same way that test steps are created. LISA provides a
simpler way that shields you from most of the editor and serialization overhead. This
approach uses default class implementations for the controller and editor. This simpler
approach is documented here.

This section contains the following topics:

Data Set Characteristics (see page 73)
Create a New Data Set (see page 74)
Deploy a New Data Set (see page 76)

Data Set Characteristics

Data sets are different from every other extension mechanism in LISA in that they are
inherently remote server objects. Consider a load test that has thousands of virtual
users all trying to access the same spreadsheet file. LISA must create a single object that
is serving the spreadsheet for all those virtual users to read.

LISA provides the infrastructure for remoting your custom data set automatically. There
are typically no specific issues that are related to this unique characteristic other than
the following: Because they are shared, they have no access to an individual test case or
test execution state. This means that you do not have access to a TestCase or TestExec
object. Your class is run in the address space of the coordinator that is staging the test,
not necessarily the simulator that is communicating with the system under test.

Create a New Data Set

74 Developer Guide

Create a New Data Set

Follow these steps:

1. Create a Java class that extends com.itko.lisa.test.DataSetImpl.

This class gives LISA all the information that is required to execute your data set
logic.

public class SomeDataSet extends DataSetImpl

 {

 }

Your data set object is a Remote RMI object, and is therefore able to throw a
RemoteException from its constructor and some methods.

2. Implement the required getTypeName method.

This method provides the name that is used to identify the companion in the LISA
Test Case Editor.

public String getTypeName()

 {

 return "Nifty Data Set";

 }

The string that the getTypeName method returns is the default name of a new data
set.

3. Implement the getParameters method.

This method provides LISA with the parameters you need for your companion to be
executed. You must also call the super class implementation of this method. The
LISA Test Case Editor allows you to edit the parameters that are shown here. The
parameters are given to you at the time of execution. You do not have to
implement this method if your companion does not require parameters.

public ParameterList getParameters() throws RemoteException

{

ParameterList pl = super.getParameters();

// ...

return pl;

}

For more information about Parameters and ParameterLists, see Extending the LISA
Software (see page 29).

4. Implement the two required initialize methods.

These methods are provided so that the data set can be initialized from either XML
or the ParameterList system within LISA.

public void initialize(Element dataset)

 throws TestDefException

 public void initialize(ParameterList pl, TestExec ts)

 throws TestDefException

Create a New Data Set

Chapter 13: Custom Data Sets 75

5. Implement the getRecord method.

LISA calls this method when another row is needed from the data source for the
data set. If an error occurs or you otherwise want to prevent the test from
executing normally, throw a TestRunException.

synchronized public Map getRecord()

 throws TestRunException, RemoteException

If you are out of rows in the data source, you must specifically code for the two
possible conditions that the user wants:

■ Restart reading the data source from the top again automatically, or

■ Return a null from this method to indicate the data source is out of rows so
that the test workflow reflects the condition.

The following example shows possible psuedo-code for this function:

Read next row

 If no-next-row, Then

 If there is no "at end" parameter specified, Then

 Re-open the data source

 Read next row

 Else

 Return null

 Return row values

Note: The API for the DataSet interface includes the public String getType() method.
This method returns the classname of the class implementing this interface.

Deploy a New Data Set

76 Developer Guide

Deploy a New Data Set

Data sets must be explicitly declared to LISA at startup of LISA Workstation so that the
authoring framework can make the data set available for use in test cases. Like the
Native Test Node, three classes are required for data sets. LISA provides default
implementations for the two classes that are not documented here. The default
controller is com.itko.lisa.editor.DataSetController and the editor is named
com.itko.lisa.editor.DefaultDataSetEditor. Notice that some of LISA's built-in data sets
use these classes.

They are connected in the lisaextensions file, as follows:

datasets=com.itko.examples.dataset.CSVDataSet

com.itko.examples.dataset.CSVDataSet=com.itko.lisa.editor.DataSetController,c

om.itko.lisa.editor.DefaultDataSetEditor

See the information about the lisaextensions file in Extending the LISA Software (see
page 29) for more details on how to register your data set.

As with all custom LISA test elements, make the classes that you have developed and
the lisaextensions file available to LISA. The most common way to make them available
is to bundle them in a jar file that is placed in the LISA hot deploy directory.

Chapter 14: Java .NET Bridge 77

Chapter 14: Java .NET Bridge

On Windows, LISA embeds a library that enables in-process, bi-directional
communication between the Java VM and the CLR (.NET). This library is named jdbridge
(as in java dotnet bridge) and is made of three components:

■ jdbridge.jar (the Java-side stubs)

■ djbridge.dll (the .NET-side stubs)

■ #jdglue.dll(the glue between the two)

These components can be found in the usual LISA locations (the bin and lib directories).

The easiest way to take advantage of this bridge is by using the custom JavaScript step,
but extensions are also possible. This section covers only the Java -> .NET API because it
is the natural usage from LISA. The following classes are the three central classes:

■ com.itko.lisa.jdbridge.JDInvoker

■ com.itko.lisa.jdbridge.JDProxy

■ com.itko.lisa.jdbridge.JDProxyEventListener

This section contains the following topics:

com.itko.lisa.jdbridge.JDInvoker (see page 77)
com.itko.lisa.jdbridge.JDProxy (see page 78)
com.itko.lisa.jdbridge.JDProxyEventListener (see page 79)

com.itko.lisa.jdbridge.JDInvoker

/** Loads the .NET CLR in the Java process */

public static native void startCLR();

/** Stops and unloads the .NET CLR from the Java process */

public static native void stopCLR();

/**

 * Invokes a methods in the specified .NET assembly (.dll or .exe).

 * @param assembly the full path to the assembly the type resides in

 * @param type the fully qualified name of the type on which to invoke

 * @param method the name of the method to invoke

 * @param args an array of arguments expected by the method

 * @return the return value of the .NET method

 */

public static Object invoke(String assembly, String type, String method, Object ...

args)

com.itko.lisa.jdbridge.JDProxy

78 Developer Guide

com.itko.lisa.jdbridge.JDProxy

/**

 * Returns a proxy to a .NET instance that exists in the CLR after invoking its

constructor.

 * @param assembly the full path to the assembly the type resides in

 * @param type the type to instantiate

 * @param args an array of arguments expected by the constructor

 * @return a proxy to the .NET instantiated type

 */

public static JDProxy newInstance(String assembly, String type, Object ... args)

/**

 * Invokes the specified method on the object represented by this proxy

 * @param method the name of the method to invoke

 * @param args an array of arguments expected by the method

 * @return the return value of the method

 */

public Object invoke(String method, Object ... args)

/**

 * If the object represented by this proxy exposes .NET event delegates, this method

enables the Java

 * program to register event listeners in Java code.

 * @param event the name of the event to listen for

 * @param l the listener interface whose onEvent method gets invoked when the event

is fired.

 */

public void addListener(String event, JDProxyEventListener l)

/**

 * Removes an event listener previously added via addListener.

 * @param event the name of the event to listen for

 * @param l the listener interface whose onEvent method gets invoked when the event

is fired.

 */

public void removeListener(String event, JDProxyEventListener l)

/**

 * Method to invoke to release resources when done with the proxy.

 */

public void destroy()

com.itko.lisa.jdbridge.JDProxyEventListener

Chapter 14: Java .NET Bridge 79

com.itko.lisa.jdbridge.JDProxyEventListener

/**

 * This method gets invoked (from .NET) on all listeners registered via JDProxy's

addListener method.

 * @param source the proxy to the object raising the event (on which addListener was

called)

 * @param evt the name of the event being raised

 * @param arg a string representation of event data

 */

public void onEvent(JDProxy source, String evt, Object arg)

As usual when two technologies communicate with each other, it is important to
understand the marshaling mechanism for arguments and return values. The approach
that jdbridge takes is similar to RMI and .NET remoting in that there is marshaling by
value or by reference.

All primitive types (Boolean, byte, short, char, int, long, float, double) and Strings are
marshaled by value and map one-to-one between Java and .NET. No special handling is
required.

Similarly, framework collections classes are mapped one-to-one (Java Lists to .NET Lists
and Java Maps to .NET Dictionaries).

For general objects, if the .NET object implements the IXmlSerializable interface, it is
marshaled back to Java by value. This means that a Java class with the exact same
format (package, name, methods, and so on) must exist in the classpath. Otherwise it is
marshaled by reference as a JDProxy. This lets you chain JDProxy calls and pass a
JDProxy as an argument to another JDProxy call.

Exceptions that are raised in .NET are also propagated to Java and thrown as
RuntimeExceptions with a stack trace spanning both Java and .NET code.

Example

Here is a simple example. Assume there is a .NET dll named AcmeUtils.dll in the LISA bin
directory. This dll contains the type com.acme.Calculator that has all the usual
arithmetic functions: Add, Subtract, and so on. You want to invoke those functions from
a JavaScript step. Here is a script that does invokes them:

import com.itko.lisa.jdbridge.JDInvoker;

import com.itko.lisa.jdbridge.JDProxy;

JDInvoker.startCLR();

JDProxy calc = JDProxy.newInstance(Environment.LISA_HOME +

"bin\\AcmeUtils.dll", "com.acme.Calculator", new Object[0]);

com.itko.lisa.jdbridge.JDProxyEventListener

80 Developer Guide

Integer sum = (Integer) calc.invoke("Add", new Object[] { 3, 4 });

Double ratio = (Double) calc.invoke("Divide", new Object[] { 3.0, 4.0 });

Integer square = (Integer) calc.invoke("Square", new Object[] { 5 });

...

The arguments are passed explicitly into an array of Objects because the LISA BeanShell
does not support the varargs (...) notation. If you were to code this in an extension, the
syntax becomes less cumbersome.

Suppose the Calculator object exposes the OnCalculationStart and OnCalculationEnd
events and you want to subscribe to those events to measure the duration of the
calculation:

...

JDProxy calc = JDProxy.newInstance(Environment.LISA_HOME +

"bin\\AcmeUtils.dll", "com.acme.Calculator", new Object[0]);

calc.addListener("OnCalculationStart", new JDProxyEventListener() {

 public void onEvent(JDProxy source, String evt, Object arg) {

 //capture timestamp here

 }

});

calc.addListener("OnCalculationEnd", new JDProxyEventListener() {

 public void onEvent(JDProxy source, String evt, Object arg) {

 //capture timestamp here

 }

});

Long fact = (Long) calc.invoke("Factorial", new Object[] { 30 });

...

// diff the timestamps here

...

If your project involves extensive use of .NET assemblies, it is a good idea to wrap all
interactions with .NET code inside compiled extensions. In this case, the standard
pattern would look like the following:

package com.acme;

import com.itko.lisa.jdbridge.JDInvoker;

import com.itko.lisa.jdbridge.JDProxy;

import com.itko.lisa.jdbridge.JDProxyEventListener;

public class Calculator {

 static {

 JDInvoker.startCLR();

 }

com.itko.lisa.jdbridge.JDProxyEventListener

Chapter 14: Java .NET Bridge 81

 private JDProxy m_proxy = JDProxy.newInstance(Environment.LISA_HOME +

"bin\\AcmeUtils.dll", "com.acme.Calculator");

 public int add(int x, int y) {

 return ((Integer) m_proxy.invoke("Add", new Object[] { x, y

})).intValue();

 }

 ...

}

This extension can be invoked from a custom JavaScript step or even the Complex
Object Editor (COE).

Glossary 83

Glossary

assertion
An assertion is an element that runs after a step and all its filters have run. An assertion
verifies that the results from running the step match the expectations. An assertion is
typically used to alter the flow of a test case or virtual service model. Global assertions
apply to each step in a test case or virtual service model. For more information, see
Assertions in the User Guide.

asset
An asset is a set of configuration properties that are grouped into a logical unit. For
more information, see Assets in the User Guide.

audit document
An audit document lets you set success criteria for a test, or for a set of tests in a suite.
For more information, see Building Audit Documents in the User Guide.

companion
A companion is an element that runs before and after every test case execution.
Companions can be understood as filters applicable to the entire test case as opposed
to individual test steps. Companions are used to configure global (to the test case)
behavior in the test case. For more information, see Companions in the User Guide.

configuration
A configuration is a named collection of properties that usually specify
environment-specific values for the system under test. Removing hard-coded
environment data enables you to run a test case or virtual service model against
different environments simply by changing configurations. The default configuration in a
project is named project.config. A project can have many configurations, but only one
configuration is active at a given time. For more information, see Configurations in the
User Guide.

Continuous Service Validation (CVS) Dashboard
The Continuous Validation Service (CVS) Dashboard lets you schedule test cases and test
suites to run regularly, over an extended time period. For more information, see
Continuous Validation Service (CVS) in the User Guide.

conversation tree
A conversation tree is a set of linked nodes that represent conversation paths for the
stateful transactions in a virtual service image. Each node is labeled with an operation
name, such as withdrawMoney. An example of a conversation path for a banking system
is getNewToken, getAccount, withdrawMoney, deleteToken. For more information, see
Conversation Editor Tree View in the Virtual Services Environment Guide.

84 Developer Guide

coordinator
A coordinator receives the test run information in the form of documents, and
coordinates the tests that are run on one or more simulator servers. For more
information, see Coordinator Server in the User Guide.

data protocol
A data protocol is also known as a data handler. In LISA Virtual Services Environment, it
is responsible for handling the parsing of requests. Some transport protocols allow (or
require) a data protocol to which the job of creating requests is delegated. As a result,
the protocol has to know the request payload. For more information, see Using Data
Protocols in the Virtual Services Environment Guide.

data set
A data set is a collection of values that can be used to set properties in a test case or
virtual service model at runtime. Data sets provide a mechanism to introduce external
test data into a test case or virtual service model. Data sets can be created internal to
LISA, or externally (for example, in a file or a database table). For more information, see
Data Sets in the User Guide.

desensitize
Desensitizing is used to convert sensitive data to user-defined substitutes. Credit card
numbers and Social Security numbers are examples of sensitive data. For more
information, see Desensitizing Data in the Virtual Services Environment Guide.

event
An event is a message about an action that has occurred. You can configure events at
the test case or virtual service model level. For more information, see Understanding
Events in the User Guide.

filter
A filter is an element that runs before and after a step. A filter gives you the opportunity
to process the data in the result, or store values in properties. Global filters apply to
each step in a test case or virtual service model. For more information, see Filters in the
User Guide.

group
A group, or a virtual service group, is a collection of virtual services that have been
tagged with the same group tag so they can be monitored together in the VSE Console.

Interactive Test Run (ITR)
The Interactive Test Run (ITR) utility lets you execute a test case or virtual service model
step by step. You can modify the test case or virtual service model at runtime and rerun
to verify the results. For more information, see Using the Interactive Test Run (ITR)
Utility in the User Guide.

lab
A lab is a logical container for one or more lab members. For more information, see Labs
and Lab Members in the User Guide.

Glossary 85

magic date
During a recording, a date parser scans requests and responses. A value matching a
wide definition of date formats is translated into a magic date. Magic dates are used to
verify that the virtual service model provides meaningful date values in responses. An
example of a magic date is
{{=doDateDeltaFromCurrent("yyyy-MM-dd","10");/*2012-08-14*/}. For more
information, see Magic Strings and Dates in the Virtual Services Environment Guide.

magic string
A magic string is a string that is generated during the creation of a service image. A
magic string is used to verify that the virtual service model provides meaningful string
values in the responses. An example of a magic string is {{=request_fname;/chris/}}. For
more information, see Magic Strings and Dates in the Virtual Services Environment
Guide.

match tolerance
Match tolerance is a setting that controls how LISA Virtual Services Environment
compares an incoming request with the requests in a service image. The options are
EXACT, SIGNATURE, and OPERATION. For more information, see Match Tolerance in the
User Guide.

metrics
Metrics let you apply quantitative methods and measurements to the performance and
functional aspects of your tests, and the system under test. For more information, see
Generating Metrics in the User Guide.

Model Archive (MAR)
A Model Archive (MAR) is the main deployment artifact in LISA. MAR files contain a
primary asset, all secondary files that are required to run the primary asset, an info file,
and an audit file. For more information, see Working with Model Archives (MARs) in the
User Guide.

Model Archive (MAR) Info
A Model Archive (MAR) Info file is a file that contains information that is required to
create a MAR. For more information, see Working with Model Archives (MARs) in the
User Guide.

navigation tolerance
Navigation tolerance is a setting that controls how LISA Virtual Services Environment
searches a conversation tree for the next transaction. The options are CLOSE, WIDE, and
LOOSE. For more information, see Navigation Tolerance in the Virtual Services
Environment Guide.

network graph
The network graph is an area of the Server Console that displays a graphical
representation of the DevTest Cloud Manager and the associated labs. For more
information, see Start a Lab in the User Guide.

86 Developer Guide

node
Internal to LISA, a test step can also be referred to as a node, explaining why some
events have node in the EventID.

path
A path contains information about a transaction that the LISA Java Agent captured. For
more information, see Pathfinder Console - Paths Tab in the Pathfinder Guide.

path graph
The path graph is an area of the LISA Pathfinder Console that contains a graphical
representation of a path and its components. For more information, see Path Graph in
the Pathfinder Guide.

project
A project is a collection of related LISA files. The files can include test cases, suites,
virtual service models, service images, configurations, audit documents, staging
documents, data sets, monitors, and MAR info files. For more information, see Project
Panel in the User Guide.

property
A property is a key/value pair that can be used as a runtime variable. Properties can
store many different types of data. Some common properties include LISA_HOME,
LISA_PROJ_ROOT, and LISA_PROJ_NAME. A configuration is a named collection of
properties. For more information, see Properties in the User Guide.

quick test
The quick test feature lets you run a test case with minimal setup. For more information,
see Stage a Quick Test in the User Guide.

registry
The registry provides a central location for the registration of all LISA Server and LISA
Workstation components. For more information, see Registry in the User Guide.

service image (SI)
A service image is a normalized version of transactions that have been recorded in LISA
Virtual Services Environment. Each transaction can be stateful (conversational) or
stateless. One way to create a service image is by using the Virtual Service Image
Recorder. Service images are stored in a project. A service image is also referred to as a
virtual service image (VSI). For more information, see Service Images in the Virtual
Services Environment Guide.

simulator
A simulator runs the tests under the supervision of the coordinator server. For more
information, see Simulator Server in the User Guide.

staging document
A staging document contains information about how to run a test case. For more
information, see Building Staging Documents in the User Guide.

Glossary 87

subprocess
A subprocess is a test case that another test case calls. For more information, see
Building Subprocesses in the User Guide.

test case
A test case is a specification of how to test a business component in the system under
test. Each test case contains one or more test steps. For more information, see Building
Test Cases in the User Guide.

test step
A test step is an element in the test case workflow that represents a single test action to
be performed. Examples of test steps include Web Services, Java Beans, JDBC, and JMS
Messaging. A test step can have LISA elements, such as filters, assertions, and data sets,
attached to it. For more information, see Building Test Steps in the User Guide.

test suite
A test suite is a group of test cases, other test suites, or both that are scheduled to
execute one after other. A suite document specifies the contents of the suite, the
reports to generate, and the metrics to collect. For more information, see Building Test
Suites in the User Guide.

think time
Think time is how long a test case waits before executing a test step. For more
information, see Add a Test Step (example) and Staging Document Editor - Base Tab in
the User Guide.

transaction frame
A transaction frame encapsulates data about a method call that the LISA Java Agent
intercepted. For more information, see Transactions and Transaction Frames in the
Pathfinder Guide.

virtual service model (VSM)
A virtual service model receives service requests and responds to them in the absence of
the actual service provider. For more information, see Virtual Service Model (VSM) in
the Virtual Services Environment Guide.

Virtual Services Environment (VSE)
The Virtual Services Environment (VSE) is a LISA Server application that you use to
deploy and run virtual service models. For more information, see the Virtual Services
Environment Guide.

	CA LISA Developer Guide
	Contact CA Technologies
	CA LISA Fix Strategy
	CA LISA Release 7.5 Fix Strategy
	Installation and Maintenance Methodology
	Maintenance Delivery and Time Frames
	Delivery Definitions

	Contents
	1: Developer Guide Overview
	Examples and API Documentation

	2: The Integration API
	Integration API Concepts
	Integration Flow
	The Integration Process

	3: Integrating Components
	Integrate Server-Side Components
	Collect Transaction Information
	Integrators
	Handle Integrated Output

	4: Testing Integrated Components
	Integration Filters
	Integration Assertions
	Check Integrator Response
	Check Integrator Component Content Response
	Check Integrator Reporting Missing Data

	5: Extending LISA Software
	Reasons to Extend the LISA Software
	LISA Extension Concepts
	lisaextensions File
	wizards.xml File
	The NamedType Interface
	Parameters and Parameter Lists
	The Test Exec Class
	Test Exceptions

	6: Extending Test Steps
	Custom Java Test Steps
	Create a Custom Java Test Step
	Deploy a Custom Java Test Step
	Define a Custom Java Test Step

	Native Test Steps
	Create a Native Test Step
	Deploy a Native Test Step
	Define a Native Test Step

	7: Extending Assertions
	Create a New Assertion
	Deploy a New Assertion
	Define and Teste a New Assertion

	8: Extending Filters
	Create a New Filter
	Deploy a New Filter
	Define and Test a New Filter

	9: Custom Reports
	Create a New Report Generator
	Deploy a New Report Generator
	Use a New Report Generator

	10: Custom Report Metrics
	Create a New Report Metric
	Deploy a New Report Metric

	11: Custom Companions
	Create a New Companion
	Deploy a New Companion

	12: Using Hooks
	Create a New Hook
	Deploy a New Hook

	13: Custom Data Sets
	Data Set Characteristics
	Create a New Data Set
	Deploy a New Data Set

	14: Java .NET Bridge
	com.itko.lisa.jdbridge.JDInvoker
	com.itko.lisa.jdbridge.JDProxy
	com.itko.lisa.jdbridge.JDProxyEventListener

	Glossary

