

Directive, Tracer Type & Metric Data Type Definitions

A list of the Metric Data Types, Directives and Tracer Types used by Introscope ProbeBuilder

Current as of Introscope 7.1

Last updated on August 27, 2007

Feedback appreciated:
chris.barry@ca.com

Key:

Blue – Requires Introscope 6.1 or later
Red – Requires Introscope 7.0 or later

Use subject to the terms of the Wily Mutual Non-Disclosure Agreement in place between Wily Technology, Inc. and the recipient.
This information is solely for your internal use. Wily Technology, Inc. provides this information “as is” without warranty of any kind, either express or implied, including but not

limited to, implied warranties of non-infringement, merchantability or fitness for a particular purpose.

Copyright © 2006 CA. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

mailto:chris.barry@ca.com

Directives

Directive Name Definition
IdentifyAllClassesAs Associates all classes inspected by ProbeBuilder to the specified Tracer Group. Do NOT use in

production environments. Supported on Java & .NET Agents.
Format: IdentifyAllClassesAs: <Tracer Group>

IdentifyAnnotatedClassAs Associates all classes which are annotated with the specified class to the specified Tracer Group.
Supported on Java & .NET Agents.
Format: IdentifyAnnotatedClassAs: <class> <Tracer Group>

IdentifyClassAs Associates a specific class to the specified Tracer Group. Class name should be fully qualified.
Supported on Java & .NET Agents.
Format: IdentifyClassAs: <class> <Tracer Group>

IdentifyCorbaAs Associates all CORBA classes to the specified Tracer Group. CORBA classes are limited to stubs
and skeleton classes, and are identified by matching the patterns “_st_” & “_sk_” in class names.
Supported on Java Agents.
Format: IdentifyCorbaAs: <Tracer Group>

IdentifyFlagAs Assigns the classes associated with the 1st Tracer Group listed to also be associated with the 2nd
Tracer Group. In addition, the 2nd Tracer Group can be activated by turning on either the 1st
Tracer Group or the 2nd Tracer Group. See java2.pbd for examples. Supported on Java & .NET
Agents.
Format: IdentifyFlagAs: <Tracer Group> <Tracer Group>

IdentifyInheritedAs Associates all direct subclasses of the specified class or all direct implementations of the specified
interface to the Tracer Group. The specified class or interface should be the fully qualified name.
Supported on Java & .NET Agents.
Format: IdentifyInheritedAs: <class or interface> <Tracer Group>

IdentifyMatchingClassesAs Associates all classes that match the class name expression to the specified Tracer Group. The
quotes around the class name expression are optional. The class name expression can only
contain one type of wildcard * which matches any number of any characters. The wildcard may
appear as many times as desired. Requires Agent be at 6.0 or later. Supported on Java & .NET
Agents.
Format: IdentifyMatchingClassesAs: "<class name expression>" <Tracer Group>

IdentifyTwoFlagIntersectionAsAggregateFlag Identifies an Aggregate Tracer Group for two member Tracer Groups. When the Aggregate Tracer
Group is associated with tracing Directives, activation is dependent on both member Tracer Groups
being turned on with the TurnOn Directive. See j2ee.pbd for examples. Supported on Java & .NET
Agents.
Format: IdentifyTwoFlagIntersectionAsAggregateFlag: <member Tracer Group> <member Tracer
Group> <aggregate Tracer Group>

 2

IdentifyTwoFlagUnionAsAggregateFlag Identifies an Aggregate Tracer Group for two member Tracer Groups. When the Aggregate Tracer
Group is associated with tracing Directives, activation is dependent on either member Tracer
Group being turned on with the TurnOn Directive. Classes associated with activated member
Tracer Groups will be probed with the tracing Directives associated with the Aggregate Tracer
Group. See taglibs.pbd for examples. Supported on Java & .NET Agents.
Format: IdentifyTwoFlagUnionAsAggregateFlag: <member Tracer Group> <member Tracer
Group> <Aggregate Tracer Group>

InstrumentPoint A toggle for enabling or disabling capturing ThrownException and CaughtException stack traces.
Also used to initialize the starting of the agent when not using JVM AutoProbe (AgentInitialization).
Supported on Java & .NET Agents.
Format: InstrumentPoint: <Flag>

SetFlag Declaration for a new Tracer Group identified by its Flag. Supported on Java & .NET Agents.
Format: SetFlag: <Tracer Group>

SetTracerClassMapping Internal Use Only. Maps Tracers to instrumentation classes. Supported on Java & .NET Agents.
Format: SetTracerClassMapping: <Tracer Type> <Instrumentation Class> <Metric/Resource Name
Validation Class>

SetTracerParameter Internal Use Only. Sets a Tracer parameter. For example, the amount that incrementors add and
the amount that decrementors subtract from a perpetual counter. Supported on Java & .NET
Agents.
Format: SetTracerParameter: <Tracer Type> <Parameter Name> <Parameter Value>

SkipAssembly Prevents all methods in all classes contained within the specified assembly from being traced.
Supported on .NET Agents.
Format: SkipAssembly: <assembly-specification>

SkipAssemblyForFlag Prevents all methods in all classes contained within the specified assembly from being traced by
the specified Tracer Group. Supported on .NET Agents.
Format: SkipAssembly: <assembly-specification> <Tracer Group>

SkipAssemblyPrefix Prevents all methods in all classes contained within an assembly which begins with the specified
assembly prefix from being traced. Supported on .NET Agents.
Format: SkipAssembly: <assembly-specification prefix>

SkipAssemblyPrefixForFlag Prevents all methods in all classes contained within an assembly which begins with the specified
assembly prefix from being traced by the specified Tracer Group. Supported on .NET Agents.
Format: SkipAssembly: <assembly-specification prefix> <Tracer Group>

SkipClass Prevents all methods in the specified class from being traced. Supported on Java & .NET Agents.
Format: SkipClass: <class>

SkipClassForFlag Prevents all methods in the specified class from being traced by the specified Tracer Group.
Supported on Java & .NET Agents.
Format: SkipClassForFlag: <class> <Tracer Group>

SkipMethodForClass Prevents the specified method in the associated class from being traced. Class name must be fully
qualified. Supported on Java & .NET Agents.
Format: SkipMethodForClass: <class> <method>

 3

SkipMethodForFlag Prevents the specified method(s) from being traced by the specified Tracer Group. Supported on
Java & .NET Agents.
Format: SkipMethodForFlag: <Tracer Group> <method>

SkipNamespace Prevents all methods in all classes in the specified namespace from being traced. Supported on
.NET Agents.
Format: SkipNamespace: <namespace>

SkipNamespaceForFlag Prevents all methods in all classes in the specified namespace from being traced by the specified
Tracer Group. Supported on .NET Agents.
Format: SkipNamespace: <namespace> <Tracer Group>

SkipNamespacePrefix Prevents all methods in all classes contained within namespaces which begin with the specified
namespace prefix from being traced. Supported on .NET Agents.
Format: SkipNamespacePrefix: <namespace prefix>

SkipNamespacePrefixForFlag Prevents all methods in all classes contained within namespaces which begin with the specified
namespace prefix from being traced by the specified Tracer Group. Supported on .NET Agents.
Format: SkipNamespacePrefixForFlag: <namespace prefix> <Tracer Group>

SkipPackage Prevents all methods in all classes in the specified package from being traced. Supported on Java
Agents.
Format: SkipPackage: <package>

SkipPackageForFlag Prevents all methods in all classes in the specified package from being traced by the specified
Tracer Group. Supported on Java Agents.
Format: SkipPackageForFlag: <package> <Tracer Group>

SkipPackagePrefix Prevents all methods in all classes that begin with the specified package prefix from being traced.
Supported on Java Agents.
Format: SkipPackagePrefix: <package prefix>

SkipPackagePrefixForFlag Prevents all methods in all classes that begin with the specified package prefix from being traced
by the specified Tracer Group. Supported on Java Agents.
Format: SkipPrefixForFlag: <package prefix> <Tracer Group>

TraceAllComplexMethodsIfFlagged On Java, traces all methods, except constructors (<init>) and static initializers (<clinit>), which call
any other method, for classes associated with specified Tracer Group. On .NET, traces all
methods, except instance constructors (“.ctor”) and class constructors (“.cctor”), which call any
other method, for classes associated with specified Tracer Group. Supported on Java & .NET
Agents.
Format: TraceAllComplexMethodsIfFlagged: <Tracer Group> <Tracer> "<Investigator Tree Path>"

 4

TraceAllComplexMethodsWithThresholdIfFlagged On Java, traces all methods that call any other method, except constructors (<init>) and static
initializers (<clinit>), which finish before or beyond the threshold specified in milliseconds, for
classes associated with specified Tracer Group. On .NET, traces all methods that call any other
method, except instance constructors (“.ctor”) and class constructors (“.cctor”), which finish before
or beyond the threshold specified in milliseconds, for classes associated with specified Tracer
Group. Works with variations of the following Tracers: StalledMethodTracer,
OverThresholdPerIntervalCounter, and UnderThresholdPerIntervalCounter. Supported on Java &
.NET Agents.
Format: TraceAllComplexMethodsWithThresholdIfFlagged: <Tracer Group> <Tracer>
"<Investigator Tree Path>" <threshold>

TraceAllMethodsIfCorba Traces all methods except for constructors (<init>) and static initializers (<clinit>) for CORBA-
related classes. CORBA classes are limited to stubs and skeleton classes, and are identified by
matching the patterns “_st_” & “_sk_” in class names. For use with Single-Metric Tracers.
Supported on Java Agents.

TraceAllMethodsIfFlagged Traces all methods except for constructors (<init>) and static initializers (<clinit>) for classes
associated with specified Tracer Group. Supported on Java & .NET Agents.
Format: TraceAllMethodsIfFlagged: <Tracer Group> <Tracer> "<Investigator Tree Path>"

TraceAllMethodsIfInherits Traces all methods except for constructors (<init>) and static initializers (<clinit>) in all direct
subclasses of the specified class or direct implementations of the specified interface. The specified
class or interface should be the fully qualified name. Supported on Java & .NET Agents.
Format: TraceAllMethodsIfInherits: <class or interface> <Tracer> "<Investigator Tree Path>"

TraceAllMethodsOfClass Traces all methods except for constructors (<init>) and static initializers (<clinit>) in the specified
class. Class name should be fully qualified. Supported on Java & .NET Agents.
Format: TraceAllMethodsOfClass: <class> <Tracer> "<Investigator Tree Path>"

TraceAllMethodsWithThresholdIfFlagged Traces all methods that finish before or beyond the threshold specified in milliseconds except for
constructors (<init>) and static initializers (<clinit>) for classes associated with specified Tracer
Group. Works with variations of the following Tracers: StalledMethodTracer,
OverThresholdPerIntervalCounter, and UnderThresholdPerIntervalCounter. Supported on Java &
.NET Agents.
Format: TraceAllMethodsWithThresholdIfFlagged: <Tracer Group> <Tracer> "<Investigator Tree
Path>" <threshold>

TraceAllMethodsWithThresholdOfClass Traces all methods that finish before or beyond the threshold specified in milliseconds except for
constructors (<init>) and static initializers (<clinit>) for the specified class. Works with variations of
the following Tracers: StalledMethodTracer, OverThresholdPerIntervalCounter, and
UnderThresholdPerIntervalCounter. Class name should be fully qualified. Supported on Java &
.NET Agents.
Format: TraceAllMethodsWithThresholdOfClass: <class> <Tracer> "<Investigator Tree Path>"
<threshold>

 5

TraceAnnotatedMethodsIfFlagged Traces all methods which are annotated by the specified class for classes associated with the
specified Tracer Group. Supported on Java & .NET Agents.
Format: TraceAnnotatedMethodsIfFlagged: <Tracer Group> <class> <Tracer> "<Investigator Tree
Path>"

TraceAnnotatedMethodsWithParametersIfFlagged Traces all methods which are annotated by the specified class for classes associated with the
specified Tracer Group. In addition, records passed argument values. Primarily used to capture
argument values passed in method invocations to display separate Metrics per argument value or
with ErrorDetector-related Tracer Types to display error messages in Error Snapshots. The Metric
name can include strings like “{#}” that are substituted with the value of the parameter at index #
(where 0 is the first parameter, 1 is the second parameter, etc). Supported on Java & .NET Agents.
Format: TraceAnnotatedMethodsWithParametersIfFlagged: <Tracer Group> <class> <Tracer>
"<Investigator Tree Path>"

TraceComplexMethodsIfFlagged On Java, traces all public or package-visible non-synthetic methods that call any other method,
except constructors (<init>) and static initializers (<clinit>) for classes associated with specified
Tracer Group. On .NET, traces all public non-synthetic methods that call any other method, except
instance constructors (“.ctor”) and class constructors (“.cctor”) for classes associated with specified
Tracer Group. Synthetic methods are ones that do not appear in the source code and are added by
the compiler. Supported on Java & .NET Agents.
Format: TraceComplexMethodsIfFlagged: <Tracer Group> <Tracer> "<Investigator Tree Path>"

TraceComplexMethodsWithParametersIfFlagged Traces all public or package-visible non-synthetic methods that call any other method, except
constructors (<init>) and static initializers (<clinit>) for classes associated with specified Tracer
Group. In addition, records passed argument values. Primarily used to capture argument values
passed in method invocations to display separate Metrics per argument value or with
ErrorDetector-related Tracer Types to display error messages in Error Snapshots. The Metric name
can include strings like “{#}” that are substituted with the value of the parameter at index # (where 0
is the first parameter, 1 is the second parameter, etc). Synthetic methods are ones that do not
appear in the source code and are added by the compiler. Supported on Java Agents. Requires
7.0p6 or later.
Format: TraceComplexMethodsWithParametersIfFlagged: <Tracer Group> <Tracer> "<Investigator
Tree Path>"

TraceComplexMethodsWithThresholdIfFlagged On Java, traces all public or package-visible non-synthetic methods that call any other method,
except constructors (<init>) and static initializers (<clinit>), which finish before or beyond the
threshold specified in milliseconds, for classes associated with specified Tracer Group. On .NET,
traces all public non-synthetic methods that call any other method, except instance constructors
(“.ctor”) and class constructors (“.cctor”), which finish before or beyond the threshold specified in
milliseconds, for classes associated with specified Tracer Group. Synthetic methods are ones that
do not appear in the source code and are added by the compiler. Works with variations of the
following Tracers: StalledMethodTracer, OverThresholdPerIntervalCounter, and
UnderThresholdPerIntervalCounter. Supported on Java & .NET Agents.
Format: TraceComplexMethodsWithThresholdIfFlagged: <Tracer Group> <Tracer> "<Investigator
Tree Path>" <threshold>

 6

TraceOneMethodIfCorba Traces a specific method in CORBA classes. CORBA classes are limited to stubs and skeleton
classes, and are identified by matching the patterns “_st_” & “_sk_” in class names. Supported on
Java Agents.

TraceOneMethodIfFlagged Traces a specific method in all classes associated with the specified Tracer Group. Supported on
Java & .NET Agents.
Format: TraceOneMethodIfFlagged: <Tracer Group> <method> <Tracer> "<Investigator Tree
Path>"

TraceOneMethodIfInherits Traces a specific method in all direct subclasses of the specified class or in all direct
implementations of the specified interface. The specified class or interface should be the fully
qualified name. Supported on Java & .NET Agents.
Format: TraceOneMethodIfInherits: <class or interface> <method> <Tracer> "<Investigator Tree
Path>"

TraceOneMethodOfClass Traces a specific method in the specified class. Class name should be fully qualified. Supported on
Java & .NET Agents.
Format: TraceOneMethodOfClass: <class> <method> <Tracer> "<Investigator Tree Path>"

TraceOneMethodWithParametersIfCorba Traces a specific method in CORBA classes. In addition, records passed argument values.
Primarily used to capture argument values passed in method invocations to display separate
Metrics per argument value or with ErrorDetector-related Tracer Types to display error messages
in Error Snapshots. CORBA classes are limited to stubs and skeleton classes, and are identified by
matching the patterns “_st_” & “_sk_” in class names. The Metric name can include strings like “{#}”
that are substituted with the value of the parameter at index # (where 0 is the first parameter, 1 is
the second parameter, etc). Supported on Java Agents.

TraceOneMethodWithParametersIfFlagged Traces a specific method in all classes associated with the specified Tracer Group. In addition,
records passed argument values. Primarily used to capture argument values passed in method
invocations to display separate Metrics per argument value or with ErrorDetector-related Tracer
Types to display error messages in Error Snapshots. The Metric name can include strings like “{#}”
that are substituted with the value of the parameter at index # (where 0 is the first parameter, 1 is
the second parameter, etc). Supported on Java & .NET Agents.
Format: TraceOneMethodWithParametersIfFlagged: <Tracer Group> <method> <Tracer>
"<Investigator Tree Path>"

TraceOneMethodWithParametersIfInherits Traces a specific method in all direct subclasses of the specified class or in all direct
implementations of the specified interface. In addition, records passed argument values. Primarily
used to capture argument values passed in method invocations to display separate Metrics per
argument value or with ErrorDetector-related Tracer Types to display error messages in Error
Snapshots. The specified class or interface should be the fully qualified name. The Metric name
can include strings like “{#}” that are substituted with the value of the parameter at index # (where 0
is the first parameter, 1 is the second parameter, etc). Supported on Java & .NET Agents.
Format: TraceOneMethodWithParametersIfInherits: <class or interface> <method> <Tracer>
"<Investigator Tree Path>"

 7

TraceOneMethodWithParametersOfClass Traces a specific method in the specified class. In addition, records passed argument values.
Primarily used to capture argument values passed in method invocations to display separate
Metrics per argument value or with ErrorDetector-related Tracer Types to display error messages
in Error Snapshots. Class name should be fully qualified. The Metric name can include strings like
“{#}” that are substituted with the value of the parameter at index # (where 0 is the first parameter,
1 is the second parameter, etc). Supported on Java & .NET Agents.
Format: TraceOneMethodWithParametersIfInherits: <class or interface> <method> <Tracer>
"<Investigator Tree Path>"

TraceOneMethodWithThresholdIfFlagged Traces a specific method for classes associated with specified Tracer Group and reports metrics
for invocations that finish before or beyond the threshold specified in milliseconds. Works with
variations of the following Tracers: StalledMethodTracer, OverThresholdPerIntervalCounter, and
UnderThresholdPerIntervalCounter. Supported on Java & .NET Agents.
Format: TraceOneMethodWithThresholdIfFlagged: <Tracer Group> <method> <Tracer>
"<Investigator Tree Path>" <threshold>

TraceOneMethodWithThresholdOfClass Traces a specific method for a specified class and reports metrics for invocations that finish before
or beyond the threshold specified in milliseconds. Class name should be fully qualified. Works with
variations of the following Tracers: StalledMethodTracer, OverThresholdPerIntervalCounter, and
UnderThresholdPerIntervalCounter. Supported on Java & .NET Agents.
Format: TraceOneMethodWithThresholdOfClass: <class> <method> <Tracer> "<Investigator Tree
Path>" <threshold>

TraceRemoteMethodsIfCorba Traces methods exposed via RMI in CORBA classes. CORBA classes are limited to stubs and
skeleton classes, and are identified by matching the patterns “_st_” & “_sk_” in class names.
Directive selects methods based on whether or not they throw an RMIException. Supported on
Java Agents.

TraceRemoteMethodsIfFlagged Traces methods exposed via RMI in classes associated with the specified Tracer Group. Directive
selects methods based on whether or not they throw an RMIException. Supported on Java Agents.

TraceRemoteMethodsIfInherits Traces methods exposed via RMI in all direct subclasses of the specified class or in all direct
implementations of the specified interface. Directive selects methods based on whether or not they
throw an RMIException. The specified class or interface should be the fully qualified name.
Supported on Java Agents.

TraceRemoteMethodsOfClass Traces methods exposed via RMI in the specified class. Directive selects methods based on
whether or not they throw an RMIException. Class name should be fully qualified. Supported on
Java Agents.

TurnOn A toggle for activating the specified Tracer Group. Supported on Java & .NET Agents.
Format: TurnOn: <Tracer Group>

 8

Tracer Types

Tracer Name Defintion
BackendMarker Generates 5 separate metrics (listed in italics below) for associated methods or

classes. The Errors Per Interval metric will be generated, but will always report a value
of 0 (zero) when this Tracer Type is used alone. To generate non-zero Errors Per
Interval metric values, also apply ExceptionErrorReporter to associated methods or
classes. The Stall Count metric threshold is set by the property
introscope.agent.stalls.thresholdseconds in the IntroscopeAgent.profile. Metric naming
is automatic. Explicitly identifies methods as Backends metrics, i.e. those that were not
automatically identified by Introscope out of the box, as representing calls to backend
systems. Participate in the Application Overview grid and heuristics. Generated metrics
will appear under the Backends folder and Called Backends folder and are
automatically named. The Investigator Tree Path name declaration is “<Resource>”,
without the explicit “:<Metric>” naming portion. Blame is implicit, but does not apply to
Concurrent Invocations. This tracer will factor in every method invocation. Supported
on Java & .NET Agents.
Default Metric Names: Average Response Time (ms), Concurrent Invocations, Errors
Per Interval, Responses Per Interval, Stall Count

BlamedComponentTimer Deprecated.
BlamedConcurrentComponentTimer Deprecated.
BlamedMethodCPUTimer Reports the average CPU time (in milliseconds) used during method execution with

Blame enabled. This tracer will factor in every method invocation. This tracer requires a
platform monitor on the supported platform (either AIX 5.2 or RedHat Enterprise Linux
3.0). Supported on Java Agents.
Default Metric Name: Average CPU Time (ms)

BlamedMethodCPUTimerDifferentInstances Reports the average CPU time (in milliseconds) used during method execution with
Blame enabled. This tracer is applied to the first method invoked in the object - any
successive calls within that object will be ignored until the first method finishes. This
tracer requires a platform monitor on the supported platform (either AIX 5.2 or RedHat
Enterprise Linux 3.0). Supported on Java Agents.
Default Metric Name: Average CPU Time (ms)

 9

BlamedMethodCPUTimerDifferentMethods Reports the average CPU time (in milliseconds) used during method execution with
Blame enabled. This tracer will run on the first method invoked in an instance with a
given method name but any successive calls to other methods with the same name will
be ignored until the first method finishes. This applies to calls to another method with
the same name but different signature, recursive calls to the exact same method and
calls to a method with the same name in the superclass. This tracer requires a platform
monitor on the supported platform (either AIX 5.2 or RedHat Enterprise Linux 3.0).
Supported on Java Agents.
Default Metric Name: Average CPU Time (ms)

BlamedMethodInvocationCounter Deprecated.
BlamedMethodNanoCPUTimer Reports the average CPU time (in nanoseconds) used during method execution. This

tracer will factor in every method invocation. This tracer provides nanosecond
precision, but not necessarily nanosecond accuracy; it relies on the JVM to provide the
current value of the most precise available system timer, in nanoseconds. This tracer
requires a platform monitor on the supported platform (either AIX 5.2 or RedHat
Enterprise Linux 3.0). Requires Java 5. Blame enabled. Supported on Java Agents.
Default Metric Name: Average CPU Time (ns)

BlamedMethodNanoCPUTimerDifferentInstances Reports the average CPU time (in milliseconds) used during method execution. This
tracer is applied to the first method invoked in the object - any successive calls within
that object will be ignored until the first method finishes. This tracer provides
nanosecond precision, but not necessarily nanosecond accuracy; it relies on the JVM
to provide the current value of the most precise available system timer, in
nanoseconds. This tracer requires a platform monitor on the supported platform (either
AIX 5.2 or RedHat Enterprise Linux 3.0). Requires Java 5. Blame enabled. Supported
on Java Agents.
Default Metric Name: Average CPU Time (ns)

BlamedMethodNanoCPUTimerDifferentMethods Reports the average CPU time (in milliseconds) used during method execution. This
tracer will run on the first method invoked in an instance with a given method name but
any successive calls to other methods with the same name will be ignored until the first
method finishes. This applies to calls to another method with the same name but
different signature, recursive calls to the exact same method and calls to a method with
the same name in the superclass. This tracer provides nanosecond precision, but not
necessarily nanosecond accuracy; it relies on the JVM to provide the current value of
the most precise available system timer, in nanoseconds. This tracer requires a
platform monitor on the supported platform (either AIX 5.2 or RedHat Enterprise Linux
3.0). Requires Java 5. Blame enabled. Supported on Java Agents.
Default Metric Name: Average CPU Time (ns)

 10

BlamedMethodNanoTimer Calculates the method execution time (in nanoseconds) of methods that have
completed during the reported interval. This tracer will factor in every method
invocation. This tracer provides nanosecond precision, but not necessarily nanosecond
accuracy; it relies on the JVM to provide the current value of the most precise available
system timer, in nanoseconds. Requires Java 5. Blame enabled. Supported on Java
Agents.
Default Metric Name: Average Response Time (ns)

BlamedMethodNanoTimerDifferentInstances Calculates the method execution time (in nanoseconds) of methods that have
completed during the reported interval. This tracer is applied the first method invoked in
the object - any successive calls within that object will be ignored until the first method
finishes. This tracer provides nanosecond precision, but not necessarily nanosecond
accuracy; it relies on the JVM to provide the current value of the most precise available
system timer, in nanoseconds. Requires Java 5. Blame enabled. Supported on Java
Agents.
Default Metric Name: Average Response Time (ns)

BlamedMethodNanoTimerDifferentMethods Calculates the method execution time (in nanoseconds) of methods that have
completed during the reported interval. This tracer will run on the first method invoked
in an instance with a given method name but any successive calls to other methods
with the same name will be ignored until the first method finishes. This applies to calls
to another method with the same name but different signature, recursive calls to the
exact same method and calls to a method with the same name in the superclass. This
tracer provides nanosecond precision, but not necessarily nanosecond accuracy; it
relies on the JVM to provide the current value of the most precise available system
timer, in nanoseconds. Requires Java 5. Blame enabled. Supported on Java Agents.
Default Metric Name: Average Response Time (ns)

BlamedMethodRateTracer Calculates the number of completed invocations per second with Blame enabled. For a
15 second interval, the remainder (14 or less) will be truncated. This tracer will factor in
every method invocation. Supported on Java & .NET Agents.
Default Metric Name: Responses Per Second or Invocations Per Second

BlamedMethodRateTracerDifferentInstances Calculates the number of invocations per second with Blame enabled. For a 15 second
interval, the remainder (14 or less) will be truncated. This tracer is applied to the first
method invoked in the object - any successive calls within that object will be ignored
until the first method finishes. Supported on Java & .NET Agents.
Default Metric Name: Responses Per Second or Invocations Per Second

 11

BlamedMethodRateTracerDifferentMethods Calculates the number of invocations per second with Blame enabled. For a 15 second
interval, the remainder (14 or less) will be truncated. This tracer will run on the first
method invoked in an instance with a given method name but any successive calls to
other methods with the same name will be ignored until the first method finishes. This
applies to calls to another method with the same name but different signature,
recursive calls to the exact same method and calls to a method with the same name in
the superclass. Supported on Java & .NET Agents.
Default Metric Name: Responses Per Second or Invocations Per Second

BlamedMethodStartTraceDecrementor Perpetual counter that decreases by 1 at the start of a method invocation from another
object instance. Blame enabled. Supported on Java & .NET Agents.

BlamedMethodStartTraceIncrementor Perpetual counter that increases by 1 at the start of a method invocation from another
object instance. Blame enabled. Supported on Java & .NET Agents.

BlamedMethodTimer Calculates the method execution time (in milliseconds) of methods that have completed
during the reported interval with Blame enabled. This tracer will factor in every method
invocation. Supported on Java & .NET Agents.
Default Metric Name: Average Response Time (ms) or Average Method Invocation
Time (ms) or Average Query Time (ms)

BlamedMethodTimerDifferentInstances Calculates the method execution time (in milliseconds) of methods that have completed
during the reported interval with Blame enabled. When aggregated for a class, This
tracer is applied to the first method invoked in the object - any successive calls within
that object will be ignored until the first method finishes. Supported on Java & .NET
Agents.
Default Metric Name: Average Response Time (ms) or Average Method Invocation
Time (ms) or Average Query Time (ms)

BlamedMethodTimerDifferentMethods Calculates the method execution time (in milliseconds) of methods that have completed
during the reported interval with Blame enabled. This tracer will run on the first method
invoked in an instance with a given method name but any successive calls to other
methods with the same name will be ignored until the first method finishes. This applies
to calls to another method with the same name but different signature, recursive calls
to the exact same method and calls to a method with the same name in the superclass.
Supported on Java & .NET Agents.
Default Metric Name: Average Response Time (ms) or Average Method Invocation
Time (ms) or Average Query Time (ms)

BlamedMethodTraceDecrementor Perpetual counter that decreases by 1 for each completion of a method invocation from
another object instance. Blame enabled. Supported on Java & .NET Agents.

BlamedMethodTraceIncrementor Perpetual counter that increases by 1 for each completion of a method invocation from
another object instance. Blame enabled. Supported on Java & .NET Agents.

BlamedNormalCompletionMethodTraceDecrementor Perpetual counter that decreases by 1 for each method invocation from another object
instance that completes without throwing an exception. Blame enabled. Supported on
Java & .NET Agents.

 12

BlamedNormalCompletionMethodTraceIncrementor Perpetual counter that increases by 1 for each method invocation from another object
instance that completes without throwing an exception. Blame enabled. Supported on
Java & .NET Agents.

BlamedNormalCompletionPerIntervalCounter Counts the number of method invocations that complete without throwing an exception,
per time interval. Blame enabled. This tracer will factor in every method invocation.
Supported on Java & .NET Agents.

BlamedNormalCompletionPerIntervalCounterDifferentInstances Counts the number of method invocations that complete without throwing an exception,
per time interval. Blame enabled. This tracer is applied to the first method invoked in
the object - any successive calls within that object will be ignored until the first method
finishes. Supported on Java & .NET Agents.

BlamedNormalCompletionPerIntervalCounterDifferentMethods Counts the number of method invocations that complete without throwing an exception,
per time interval. Blame enabled. This tracer will run on the first method invoked in an
instance with a given method name but any successive calls to other methods with the
same name will be ignored until the first method finishes. This applies to calls to
another method with the same name but different signature, recursive calls to the exact
same method and calls to a method with the same name in the superclass. Supported
on Java & .NET Agents.

BlamedNormalCompletionSimpleDecrementor Perpetual counter that decreases by 1 for each method invocation that completes
without throwing an exception, regardless of whether called from another object
instance or the same object instance. Blame enabled. Supported on Java & .NET
Agents.

BlamedNormalCompletionSimpleIncrementor Perpetual counter that increases by 1 for each method invocation that completes
without throwing an exception, regardless of whether called from another object
instance or the same object instance. Blame enabled. Supported on Java & .NET
Agents.

BlamedOverThresholdPerIntervalCounter Calculates per interval the number of invocations that completed over the specified
time threshold (in milliseconds). Blame enabled. This tracer will factor in every method
invocation. Supported on Java & .NET Agents.

BlamedOverThresholdPerIntervalCounterDifferentInstances Calculates per interval the number of invocations that completed over the specified
time threshold (in milliseconds). Blame enabled. This tracer is applied to the first
method invoked in the object - any successive calls within that object will be ignored
until the first method finishes. Supported on Java & .NET Agents.

BlamedOverThresholdPerIntervalCounterDifferentMethods Calculates per interval the number of invocations that completed over the specified
time threshold (in milliseconds). Blame enabled. This tracer will run on the first method
invoked in an instance with a given method name but any successive calls to other
methods with the same name will be ignored until the first method finishes. This applies
to calls to another method with the same name but different signature, recursive calls
to the exact same method and calls to a method with the same name in the superclass.
Supported on Java & .NET Agents.

 13

BlamedPerIntervalCounter Calculates the number of invocations that completed during the time interval with
Blame enabled. This tracer will factor in every method invocation. Supported on Java &
.NET Agents.
Default Metric Name: Responses Per Interval or Method Invocations Per Interval

BlamedPerIntervalCounterDifferentInstances Calculates the number of invocations that completed during the time interval with
Blame enabled. This tracer is applied to the first method invoked in the object - any
successive calls within that object will be ignored until the first method finishes.
Supported on Java & .NET Agents.
Default Metric Name: Responses Per Interval or Method Invocations Per Interval

BlamedPerIntervalCounterDifferentMethods Calculates the number of invocations that completed during the time interval with
Blame enabled. This tracer will run on the first method invoked in an instance with a
given method name but any successive calls to other methods with the same name will
be ignored until the first method finishes. This applies to calls to another method with
the same name but different signature, recursive calls to the exact same method and
calls to a method with the same name in the superclass. Supported on Java & .NET
Agents.
Default Metric Name: Responses Per Interval or Method Invocations Per Interval

BlamedSimpleDecrementor Perpetual counter that decreases by 1 for each completion of a method invocation,
regardless of whether from another object instance or the same object instance. Blame
enabled. Supported on Java & .NET Agents.

BlamedSimpleIncrementor Perpetual counter that increases by 1 for each completion of a method invocation,
regardless of whether from another object instance or the same object instance. Blame
enabled. Supported on Java & .NET Agents.

BlamedSimpleStartDecrementor Perpetual counter that decreases by 1 at the start of a method invocation, regardless of
whether from another object instance or the same object instance. Blame enabled.
Supported on Java & .NET Agents.

BlamedSimpleStartIncrementor Perpetual counter that increases by 1 at the start of a method invocation, regardless of
whether from another object instance or the same object instance. Blame enabled.
Supported on Java & .NET Agents.

BlamedThrownExceptionMethodTraceDecrementor Perpetual counter that decreases by 1 for each exception thrown by a method, caught
or not, when called from another object instance. Blame enabled. Supported on Java &
.NET Agents.

BlamedThrownExceptionMethodTraceIncrementor Perpetual counter that increases by 1 for each exception thrown by a method, caught
or not, when called from another object instance. Blame enabled. Supported on Java &
.NET Agents.

BlamedThrownExceptionPerIntervalCounter Counts the number of exceptions thrown by methods, caught or not, per time interval.
Blame enabled. This tracer will factor in every method invocation. Supported on Java &
.NET Agents.

 14

BlamedThrownExceptionPerIntervalCounterDifferentInstances Counts the number of exceptions thrown by methods, caught or not, per time interval.
Blame enabled. This tracer is applied to the first method invoked in the object - any
successive calls within that object will be ignored until the first method finishes.
Supported on Java & .NET Agents.

BlamedThrownExceptionPerIntervalCounterDifferentMethods Counts the number of exceptions thrown by methods, caught or not, per time interval.
Blame enabled. This tracer will run on the first method invoked in an instance with a
given method name but any successive calls to other methods with the same name will
be ignored until the first method finishes. This applies to calls to another method with
the same name but different signature, recursive calls to the exact same method and
calls to a method with the same name in the superclass. Supported on Java & .NET
Agents.

BlamedThrownExceptionSimpleDecrementor Perpetual counter that decreases by 1 for each exception thrown by a method, caught
or not, regardless of whether called from another object instance or the same object
instance. Blame enabled. Supported on Java & .NET Agents.

BlamedThrownExceptionSimpleIncrementor Perpetual counter that increases by 1 for each exception thrown by a method, caught
or not, regardless of whether called from another object instance or the same object
instance. Blame enabled. Supported on Java & .NET Agents.

BlamedUnderThresholdPerIntervalCounter Calculates per interval the number of invocations that completed under the specified
time threshold (in milliseconds). Blame enabled. This tracer will factor in every method
invocation. Supported on Java & .NET Agents.

BlamedUnderThresholdPerIntervalCounterDifferentInstances Calculates per interval the number of invocations that completed under the specified
time threshold (in milliseconds). Blame enabled. This tracer is applied to the first
method invoked in the object - any successive calls within that object will be ignored
until the first method finishes. Supported on Java & .NET Agents.

BlamedUnderThresholdPerIntervalCounterDifferentMethods Calculates per interval the number of invocations that completed under the specified
time threshold (in milliseconds). Blame enabled. This tracer will run on the first method
invoked in an instance with a given method name but any successive calls to other
methods with the same name will be ignored until the first method finishes. This applies
to calls to another method with the same name but different signature, recursive calls
to the exact same method and calls to a method with the same name in the superclass.
Supported on Java & .NET Agents.

 15

BlamePointTracer Generates 5 separate metrics (listed in italics below) for associated methods or
classes. The Errors Per Interval metric will be generated, but will always report a value
of 0 (zero) when this Tracer Type is used alone. To generate non-zero Errors Per
Interval metric values, also apply ExceptionErrorReporter to associated methods or
classes. The Stall Count metric threshold is set by the property
introscope.agent.stalls.thresholdseconds in the IntroscopeAgent.profile. Metric naming
is automatic. The Investigator Tree Path name declaration is “<Resource>”, without the
explicit “:<Metric>” naming portion. Blame is implicit, but does not apply to Concurrent
Invocations. This tracer will factor in every method invocation. Supported on Java &
.NET Agents.
Default Metric Names: Average Response Time (ms), Concurrent Invocations, Errors
Per Interval, Responses Per Interval, Stall Count

BlamePointTracerDifferentInstances Generates 5 separate metrics (listed in italics below) for associated methods or
classes. The Errors Per Interval metric will be generated, but will always report a value
of 0 (zero) when this Tracer Type is used alone. To generate non-zero Errors Per
Interval metric values, also apply ExceptionErrorReporter to associated methods or
classes. The Stall Count metric threshold is set by the property
introscope.agent.stalls.thresholdseconds in the IntroscopeAgent.profile. Metric naming
is automatic. The Investigator Tree Path name declaration is “<Resource>”, without the
explicit “:<Metric>” naming portion. Blame is implicit, but does not apply to Concurrent
Invocations. This tracer is applied to the first method invoked in the object - any
successive calls within that object will be ignored until the first method finishes.
Supported on Java & .NET Agents.
Default Metric Names: Average Response Time (ms), Concurrent Invocations, Errors
Per Interval, Responses Per Interval, Stall Count

BlamePointTracerDifferentMethods Generates 5 separate metrics (listed in italics below) for associated methods or
classes. The Errors Per Interval metric will be generated, but will always report a value
of 0 (zero) when this Tracer Type is used alone. To generate non-zero Errors Per
Interval metric values, also apply ExceptionErrorReporter to associated methods or
classes. The Stall Count metric threshold is set by the property
introscope.agent.stalls.thresholdseconds in the IntroscopeAgent.profile. Metric naming
is automatic. The Investigator Tree Path name declaration is “<Resource>”, without the
explicit “:<Metric>” naming portion. Blame is implicit, but does not apply to Concurrent
Invocations. This tracer will run on the first method invoked in an instance with a given
method name but any successive calls to other methods with the same name will be
ignored until the first method finishes. This applies to calls to another method with the
same name but different signature, recursive calls to the exact same method and calls
to a method with the same name in the superclass. Supported on Java & .NET Agents.
Default Metric Names: Average Response Time (ms), Concurrent Invocations, Errors
Per Interval, Responses Per Interval, Stall Count

 16

BlamePointTracerLite Unsupported Community Download. Generates no metrics. When applied, classes and
methods will participate in Transaction Traces. Blame is implicit. This tracer will factor
in every method invocation. The Directive statement will still require the “<Resource>”
declaration. Works with Java Agents.

CEMTracer Generates 5 separate metrics (listed in italics below) for Servlet Metrics categorized in
the Investigator Tree according to Business Transaction definitions defined within
CEM. Applicable only to Servlet method service() & Servlet Filter method doFilter().
Requires that Servlet container implement 2.3 specification or later. Required for linking
defects in CEM to Transaction Traces in Introscope. The Errors Per Interval metric will
be generated, but will always report a value of 0 (zero) when this Tracer Type is used
alone. To generate non-zero Errors Per Interval metric values, also apply
ExceptionErrorReporter to associated methods. The Stall Count metric threshold is set
by the property introscope.agent.stalls.thresholdseconds in the IntroscopeAgent.profile.
Must be used with a *WithParameters* Directive. The Metric naming is automatic. The
Resource naming is automatic; in the Investigator Tree, Metrics will appear under
"Customer Experience|Business Processes|<CEM Business Process>|Business
Transaction|<CEM Business Transaction>". In some HTTP Posts, the Stall Count and
Concurrent Invocations will not be produced per CEM Business Transaction. Blame is
implicit, but does not apply to Concurrent Invocations. This tracer will factor in every
method invocation. Supported on Java Agents.
Default Metric Names: Average Response Time (ms), Concurrent Invocations, Errors
Per Interval, Responses Per Interval, Stall Count

ConcurrentInvocationCounter Calculates the number of method invocations that have not completed at the end of the
interval period. This tracer will factor in every method invocation. Supported on Java &
.NET Agents.
Default Metric Name: Concurrent Invocations or Concurrent Method Invocations

ConcurrentInvocationCounterDifferentInstances Calculates the number of method invocations that have not completed at the end of the
interval period. This tracer is applied to the first method invoked in the object - any
successive calls within that object will be ignored until the first method finishes.
Supported on Java & .NET Agents.
Default Metric Name: Concurrent Invocations or Concurrent Method Invocations

ConcurrentInvocationCounterDifferentMethods Calculates the number of method invocations that have not completed at the end of the
interval period. This tracer will run on the first method invoked in an instance with a
given method name but any successive calls to other methods with the same name will
be ignored until the first method finishes. This applies to calls to another method with
the same name but different signature, recursive calls to the exact same method and
calls to a method with the same name in the superclass. Supported on Java & .NET
Agents.
Default Metric Name: Concurrent Invocations or Concurrent Method Invocations

ConcurrentResponseTimer Deprecated.

 17

DatabaseBackendTracer Internal use only. A version of the BackendMarker used with database drivers that will
format the metric name (under the Backends Resource) based on the database URL
connection string. Supports the following database driver: Microsoft for SQL Server.
Supported on .NET Agents.

DbCommandTracer Internal use only. Supported on Java & .NET Agents, but with different meanings:
On Java, a version of the BackendMarker used with database drivers that will format
the metric name (under the Backends Resource) based on the database URL
connection string. Supports the following database drivers: Oracle for Oracle, BEA for
Oracle, BEA for Pointbase, IBM for DB2, IBM for Informix, SAP for MaxDB, and
Microsoft for SQL Server.
On .NET, generates 5 separate metrics (listed in italics below) for each SQL query,
insert or update statement, based on the SQL text, without per-query parameters.
Metrics will appear under the Resource “Backends|<Database Instance>|SQL”.
Supports the Microsoft for .NET database drivers. Otherwise, database instance name
may appear as unknown, but SQL statements will appear correctly.
Default Metric Names: Average Response Time (ms), Concurrent Invocations, Errors
Per Interval, Responses Per Interval, Stall Count

DriverAwareBlamedMethodRateTracerDifferentInstances Calculates the number of invocations per second with Blame enabled. For a 15 second
interval, the remainder (14 or less) will be truncated. This tracer is applied to the first
method invoked in the object - any successive calls within that object will be ignored
until the first method finishes. Separates metrics based on JDBC Driver name.
Supported on Java Agents.
Default Metric Name: Queries Per Second

DriverAwareBlamedMethodTimerDifferentInstances Calculates the method execution time (in milliseconds) of methods that have completed
during the reported interval with Blame enabled. When aggregated for a class, This
tracer is applied to the first method invoked in the object - any successive calls within
that object will be ignored until the first method finishes. Separates metrics based on
JDBC Driver name. Supported on Java Agents.
Default Metric Name: Average Query Time (ms)

DriverAwareBlamedPerIntervalCounterDifferentInstances Calculates the number of invocations that completed during the time interval with
Blame enabled. This tracer is applied to the first method invoked in the object - any
successive calls within that object will be ignored until the first method finishes.
Separates metrics based on JDBC Driver name. Supported on Java Agents.
Default Metric Name: Queries Per Interval

DriverAwareConcurrentInvocationCounterDifferentInstances Calculates the number of method invocations that have not completed at the end of the
interval period. This tracer is applied to the first method invoked in the object - any
successive calls within that object will be ignored until the first method finishes.
Separates metrics based on JDBC Driver name. Supported on Java Agents.
Default Metric Name: Concurrent Invocations

 18

DriverAwareMethodRateTracerDifferentInstances Calculates the number of invocations per second. For a 15 second interval, the
remainder (14 or less) will be truncated. This tracer is applied to the first method
invoked in the object - any successive calls within that object will be ignored until the
first method finishes. Separates metrics based on JDBC Driver name. Supported on
Java Agents.
Default Metric Name: Queries Per Second

DriverAwareMethodTimerDifferentInstances Calculates the method execution time (in milliseconds) of methods that have completed
during the reported interval. This tracer is applied to the first method invoked in the
object - any successive calls within that object will be ignored until the first method
finishes. Separates metrics based on JDBC Driver name. Supported on Java Agents.
Default Metric Name: Average Query Time (ms)

DriverAwarePerIntervalCounterDifferentInstances Calculates the number of invocations that completed during the time interval. This
tracer is applied to the first method invoked in the object - any successive calls within
that object will be ignored until the first method finishes. Separates metrics based on
JDBC Driver name. Supported on Java Agents.
Default Metric Name: Queries Per Interval

DriverAwareStalledMethodTracer Calculates the number of method invocations currently running that have not
completed within the specified threshold (in milliseconds). This tracer will factor in
every method invocation. Separates metrics based on JDBC Driver name. Supported
on Java Agents.
Default Metric Name: Stalled Method Count

DriverAwareStalledMethodTracerDifferentInstances Calculates the number of method invocations currently running that have not
completed within the specified threshold (in milliseconds). This tracer is applied to the
first method invoked in the object - any successive calls within that object will be
ignored until the first method finishes. Separates metrics based on JDBC Driver name.
Supported on Java Agents.
Default Metric Name: Stalled Method Count

DumpStackTraceTracer Dumps a stack trace to the instrumented application's stderr for methods to which it is
applied. The exception stack trace thrown by DumpStackTraceTracer is not a true
Exception - it is a mechanism for printing the method stack trace. This Tracer does not
produce a metric, therefore the “<Investigator Tree Path>” declaration is ignored, but is
still required - must be of the form “<non-empty-character>:<non-empty character>” in
order to parse properly. Warning: This feature imposes heavy system overhead.
Supported on Java & .NET Agents.

 19

FrontendMarker Generates 5 separate metrics (listed in italics below) for associated methods or
classes. The Errors Per Interval metric will be generated, but will always report a value
of 0 (zero) when this Tracer Type is used alone. To generate non-zero Errors Per
Interval metric values, also apply ExceptionErrorReporter to associated methods or
classes. The Stall Count metric threshold is set by the property
introscope.agent.stalls.thresholdseconds in the IntroscopeAgent.profile. Metric naming
is automatic. Explicitly identifies methods as Frontends metrics, i.e. to override those
that were automatically identified by Introscope out of the box as representing the entry
point to the application. Generated metrics will appear under the Frontends folder and
are automatically named. The Investigator Tree Path name declaration is
“<Resource>”, without the explicit “:<Metric>” naming portion. To participate in the
Application Overview grid and heuristics, the resource name declaration must be of the
format “Apps|<Resource>”. Blame is implicit, but does not apply to Concurrent
Invocations. This tracer will factor in every method invocation. Supported on Java &
.NET Agents.
Default Metric Names: Average Response Time (ms), Concurrent Invocations, Errors
Per Interval, Responses Per Interval, Stall Count

ExceptionErrorReporter A per interval counter based on the number of exceptions being thrown (i.e. uncaught)
from the identified method(s). If an exception is thrown, the error message is based on
the return value of the getMessage() method called on the exception object. In order to
capture the error message, must be used with a *WithParameters* Directive, otherwise
will only increment the Errors Per Interval metric. To see error messages, requires
ErrorDetector, otherwise will only increment the Errors Per Interval metric. Requires
Agent be at 6.0 or later. Blame is implicit. Supported on Java Agents.
Default Metric Name: Errors Per Interval

HTTPErrorCodeReporter Reports the number of errors sent per interval from Servlets and JSPs. Gathers the
error message from the JSP and Servlet method parameter values. In order to capture
the error message, must be used with a *WithParameters* Directive, otherwise will only
increment the Errors Per Interval metric. Not recommended to be used in custom
PBDs. To see error messages, requires ErrorDetector, otherwise will only increment
the Errors Per Interval metric. Requires Agent be at 6.0 or later. Blame is implicit.
Supported on Java Agents.
Default Metric Name: Errors Per Interval

HttpServletTracer Internal Use Only. A version of the FrontendMarker which collects HttpSession and
HttpServletRequest information on JSPs and Servlets for display in Transaction Traces
& for formatting URL names in the Frontends|Apps Resource. Supported on Java
Agents.

MethodCPUTimer Reports the average CPU time (in milliseconds) used during method execution. This
tracer will factor in every method invocation. This tracer requires a platform monitor on
the supported platform (either AIX 5.2 or RedHat Enterprise Linux 3.0). Supported on
Java Agents.
Default Metric Name: Average CPU Time (ms)

 20

MethodCPUTimerDifferentInstances Reports the average CPU time (in milliseconds) used during method execution. This
tracer is applied to the first method invoked in the object - any successive calls within
that object will be ignored until the first method finishes. This tracer requires a platform
monitor on the supported platform (either AIX 5.2 or RedHat Enterprise Linux 3.0).
Supported on Java Agents.
Default Metric Name: Average CPU Time (ms)

MethodCPUTimerDifferentMethods Reports the average CPU time (in milliseconds) used during method execution. This
tracer will run on the first method invoked in an instance with a given method name but
any successive calls to other methods with the same name will be ignored until the first
method finishes. This applies to calls to another method with the same name but
different signature, recursive calls to the exact same method and calls to a method with
the same name in the superclass. This tracer requires a platform monitor on the
supported platform (either AIX 5.2 or RedHat Enterprise Linux 3.0). Supported on Java
Agents.
Default Metric Name: Average CPU Time (ms)

MethodCalledErrorReporter A per interval counter based on methods where the very act of the method being called
means that an error has occurred. The error message is based on the class and
method called. In order to capture the error message, must be used with a
WithParameters Directive and requires ErrorDetector, otherwise will only increment
the Errors Per Interval metric. Requires Agent be at 6.0 or later. Blame is implicit.
Supported on Java Agents.
Default Metric Name: Errors Per Interval

MethodInvocationCounter Deprecated.
MethodNanoCPUTimer Reports the average CPU time (in nanoseconds) used during method execution. This

tracer will factor in every method invocation. This tracer provides nanosecond
precision, but not necessarily nanosecond accuracy; it relies on the JVM to provide the
current value of the most precise available system timer, in nanoseconds. This tracer
requires a platform monitor on the supported platform (either AIX 5.2 or RedHat
Enterprise Linux 3.0). Requires Java 5. Supported on Java Agents.
Default Metric Name: Average CPU Time (ns)

MethodNanoCPUTimerDifferentInstances Reports the average CPU time (in milliseconds) used during method execution. This
tracer is applied to the first method invoked in the object - any successive calls within
that object will be ignored until the first method finishes. This tracer provides
nanosecond precision, but not necessarily nanosecond accuracy; it relies on the JVM
to provide the current value of the most precise available system timer, in
nanoseconds. This tracer requires a platform monitor on the supported platform (either
AIX 5.2 or RedHat Enterprise Linux 3.0). Requires Java 5. Supported on Java Agents.
Default Metric Name: Average CPU Time (ns)

 21

MethodNanoCPUTimerDifferentMethods Reports the average CPU time (in milliseconds) used during method execution. This
tracer will run on the first method invoked in an instance with a given method name but
any successive calls to other methods with the same name will be ignored until the first
method finishes. This applies to calls to another method with the same name but
different signature, recursive calls to the exact same method and calls to a method with
the same name in the superclass. This tracer provides nanosecond precision, but not
necessarily nanosecond accuracy; it relies on the JVM to provide the current value of
the most precise available system timer, in nanoseconds. This tracer requires a
platform monitor on the supported platform (either AIX 5.2 or RedHat Enterprise Linux
3.0). Requires Java 5. Supported on Java Agents.
Default Metric Name: Average CPU Time (ns)

MethodNanoTimer Calculates the method execution time (in nanoseconds) of methods that have
completed during the reported interval. This tracer will factor in every method
invocation. This tracer provides nanosecond precision, but not necessarily nanosecond
accuracy; it relies on the JVM to provide the current value of the most precise available
system timer, in nanoseconds. Requires Java 5. Supported on Java Agents.
Default Metric Name: Average Response Time (ns)

MethodNanoTimerDifferentInstances Calculates the method execution time (in nanoseconds) of methods that have
completed during the reported interval. This tracer is applied the first method invoked in
the object - any successive calls within that object will be ignored until the first method
finishes. This tracer provides nanosecond precision, but not necessarily nanosecond
accuracy; it relies on the JVM to provide the current value of the most precise available
system timer, in nanoseconds. Requires Java 5. Supported on Java Agents.
Default Metric Name: Average Response Time (ns)

MethodNanoTimerDifferentMethods Calculates the method execution time (in nanoseconds) of methods that have
completed during the reported interval. This tracer will run on the first method invoked
in an instance with a given method name but any successive calls to other methods
with the same name will be ignored until the first method finishes. This applies to calls
to another method with the same name but different signature, recursive calls to the
exact same method and calls to a method with the same name in the superclass. This
tracer provides nanosecond precision, but not necessarily nanosecond accuracy; it
relies on the JVM to provide the current value of the most precise available system
timer, in nanoseconds. Requires Java 5. Supported on Java Agents.
Default Metric Name: Average Response Time (ns)

MethodRateTracer Calculates the number of invocations per second. For a 15 second interval, the
remainder (14 or less) will be truncated. This tracer will factor in every method
invocation. Supported on Java & .NET Agents.
Default Metric Name: Responses Per Second or Invocations Per Second

 22

MethodRateTracerDifferentInstances Calculates the number of invocations per second. For a 15 second interval, the
remainder (14 or less) will be truncated. This tracer is applied the first method invoked
in the object - any successive calls within that object will be ignored until the first
method finishes. Supported on Java & .NET Agents.
Default Metric Name: Responses Per Second or Invocations Per Second

MethodRateTracerDifferentMethods Calculates the number of invocations per second. For a 15 second interval, the
remainder (14 or less) will be truncated. This tracer will run on the first method invoked
in an instance with a given method name but any successive calls to other methods
with the same name will be ignored until the first method finishes. This applies to calls
to another method with the same name but different signature, recursive calls to the
exact same method and calls to a method with the same name in the superclass.
Supported on Java & .NET Agents.
Default Metric Name: Responses Per Second or Invocations Per Second

MethodStartTraceDecrementor Perpetual counter that decreases by 1 at the start of a method invocation from another
object instance. Supported on Java & .NET Agents.

MethodStartTraceIncrementor Perpetual counter that increases by 1 at the start of a method invocation from another
object instance. Supported on Java & .NET Agents.

MethodTimer Calculates the method execution time (in milliseconds) of methods that have completed
during the reported interval. This tracer will factor in every method invocation.
Supported on Java & .NET Agents.
Default Metric Name: Average Response Time (ms) or Average Method Invocation
Time (ms) or Average Query Time (ms)

MethodTimerDifferentInstances Calculates the method execution time (in milliseconds) of methods that have completed
during the reported interval. This tracer is applied to the first method invoked in the
object - any successive calls within that object will be ignored until the first method
finishes. Supported on Java & .NET Agents.
Default Metric Name: Average Response Time (ms) or Average Method Invocation
Time (ms) or Average Query Time (ms)

MethodTimerDifferentMethods Calculates the method execution time (in milliseconds) of methods that have completed
during the reported interval. This tracer will run on the first method invoked in an
instance with a given method name but any successive calls to other methods with the
same name will be ignored until the first method finishes. This applies to calls to
another method with the same name but different signature, recursive calls to the exact
same method and calls to a method with the same name in the superclass. Supported
on Java & .NET Agents.
Default Metric Name: Average Response Time (ms) or Average Method Invocation
Time (ms) or Average Query Time (ms)

MethodTraceDecrementor Perpetual counter that decreases by 1 for each completion of a method invocation from
another object instance. Supported on Java & .NET Agents.

MethodTraceIncrementor Perpetual counter that increases by 1 for each completion of a method invocation from
another object instance. Supported on Java & .NET Agents.

 23

NormalCompletionMethodTraceDecrementor Perpetual counter that decreases by 1 for each method invocation from another object
instance that completes without throwing an exception. Supported on Java & .NET
Agents.

NormalCompletionMethodTraceIncrementor Perpetual counter that increases by 1 for each method invocation from another object
instance that completes without throwing an exception. Supported on Java & .NET
Agents.

NormalCompletionPerIntervalCounter Counts the number of method invocations that complete without throwing an exception,
per time interval. This tracer will factor in every method invocation. Supported on Java
& .NET Agents.

NormalCompletionPerIntervalCounterDifferentInstances Counts the number of method invocations that complete without throwing an exception,
per time interval. This tracer is applied to the first method invoked in the object - any
successive calls within that object will be ignored until the first method finishes.
Supported on Java & .NET Agents.

NormalCompletionPerIntervalCounterDifferentMethods Counts the number of method invocations that complete without throwing an exception,
per time interval. This tracer will run on the first method invoked in an instance with a
given method name but any successive calls to other methods with the same name will
be ignored until the first method finishes. This applies to calls to another method with
the same name but different signature, recursive calls to the exact same method and
calls to a method with the same name in the superclass. Supported on Java & .NET
Agents.

NormalCompletionSimpleDecrementor Perpetual counter that decreases by 1 for each method invocation that completes
without throwing an exception, regardless of whether called from another object
instance or the same object instance. Supported on Java & .NET Agents.

NormalCompletionSimpleIncrementor Perpetual counter that increases by 1 for each method invocation that completes
without throwing an exception, regardless of whether called from another object
instance or the same object instance. Supported on Java & .NET Agents.

OverThresholdPerIntervalCounter Calculates per interval the number of invocations that completed over the specified
time threshold (in milliseconds). This tracer will factor in every method invocation.
Supported on Java & .NET Agents.

OverThresholdPerIntervalCounterDifferentInstances Calculates per interval the number of invocations that completed over the specified
time threshold (in milliseconds). This tracer is applied to the first method invoked in the
object - any successive calls within that object will be ignored until the first method
finishes. Supported on Java & .NET Agents.

OverThresholdPerIntervalCounterDifferentMethods Calculates per interval the number of invocations that completed over the specified
time threshold (in milliseconds). This tracer will run on the first method invoked in an
instance with a given method name but any successive calls to other methods with the
same name will be ignored until the first method finishes. This applies to calls to
another method with the same name but different signature, recursive calls to the exact
same method and calls to a method with the same name in the superclass. Supported
on Java & .NET Agents.

 24

PageInfoTracer Internal Use Only. A version of the FrontendMarker applied to ASP.NET components
which will capture the requested HTTP URL and application name from the virtual
directory name. These parameters will be displayed in Transaction Traces and the
Resource name in the Frontends|Apps|<Application Virtual Directory
Name>|URLs|<URL Name>. Supported on .NET Agents.

PerIntervalCounter Calculates the number of invocations that completed during the time interval. This
tracer will factor in every method invocation. Supported on Java & .NET Agents.
Default Metric Name: Responses Per Interval or Method Invocations Per Interval

PerIntervalCounterDifferentInstances Calculates the number of invocations that completed during the time interval. This
tracer is applied to the first method invoked in the object - any successive calls within
that object will be ignored until the first method finishes. Supported on Java & .NET
Agents.
Default Metric Name: Responses Per Interval or Method Invocations Per Interval

PerIntervalCounterDifferentMethods Calculates the number of invocations that completed during the time interval. This
tracer will run on the first method invoked in an instance with a given method name but
any successive calls to other methods with the same name will be ignored until the first
method finishes. This applies to calls to another method with the same name but
different signature, recursive calls to the exact same method and calls to a method with
the same name in the superclass. Supported on Java & .NET Agents.
Default Metric Name: Responses Per Interval or Method Invocations Per Interval

ResponseTimer Deprecated.
ResponseTimerWithPackageName Deprecated.
ServletHeaderDecorator Decorates HTTP responses from Servlets with a unique identifier, allowing the

correllation of CEM defects and Introscope Transaction Traces. In CEM, necessary to
generate application server details for defective transactions and to present hyperlinks
from defect and incident detail pages to Transaction Traces and Metrics in the
Introscope Workstation. Applicable only to Servlet method service() & JSP method
_jspservice(). Requires that Servlet container implement 2.1 specification or later. Must
be used with a *WithParameters* Directive. Does not generate Metrics. Supported on
Java Agents.

SimpleDecrementor Perpetual counter that decreases by 1 for each completion of a method invocation,
regardless of whether from another object instance or the same object instance.
Supported on Java & .NET Agents.

SimpleIncrementor Perpetual counter that increases by 1 for each completion of a method invocation,
regardless of whether from another object instance or the same object instance.
Supported on Java & .NET Agents.

SimpleInstanceCounter Counts the approximate number of Object Instances for a particular class. By default,
used by the InstanceCounts Tracer Group. Supported on Java & .NET Agents.
Default Metric Name: Approximate Instance Count

 25

SimpleStartDecrementor Perpetual counter that decreases by 1 at the start of a method invocation, regardless of
whether from another object instance or the same object instance. Supported on Java
& .NET Agents.

SimpleStartIncrementor Perpetual counter that increases by 1 at the start of a method invocation, regardless of
whether from another object instance or the same object instance. Supported on Java
& .NET Agents.

SQLBackendTracer Internal use only. A version of the BackendMarker used with database drivers that will
format the metric name (under the Backends Resource) based on the database URL
connection string. Supports Oracle, DB2, and Microsoft SQL Server on Java. Supports
Microsoft SQL Server on .NET. Supported on Java & .NET Agents.

StalledMethodTracer Calculates the number of method invocations currently running that have not
completed within the specified threshold (in milliseconds). This tracer will factor in
every method invocation. A Metric will not be published until a method stalls. Supported
on Java & .NET Agents.
Default Metric Name: Stalled Method Count

StalledMethodTracerDifferentInstances Calculates the number of method invocations currently running that have not
completed within the specified threshold (in milliseconds). This tracer is applied to the
first method invoked in the object - any successive calls within that object will be
ignored until the first method finishes. A Metric will not be published until a method
stalls. Supported on Java & .NET Agents.
Default Metric Name: Stalled Method Count

StalledMethodTracerDifferentMethods Calculates the number of method invocations currently running that have not
completed within the specified threshold (in milliseconds). This tracer will run on the
first method invoked in an instance with a given method name but any successive calls
to other methods with the same name will be ignored until the first method finishes.
This applies to calls to another method with the same name but different signature,
recursive calls to the exact same method and calls to a method with the same name in
the superclass. A Metric will not be published until a method stalls. Supported on Java
& .NET Agents.
Default Metric Name: Stalled Method Count

StatementBackendTracer Internal use only. Generates 5 separate metrics (listed in italics below) for each SQL
query, insert or update statement, based on the SQL text, without per-query
parameters. Metrics will appear under the Resource “Backends|<Database
Instance>|SQL”. On Java, supports the following database drivers: Oracle for Oracle,
BEA for Oracle, BEA for Pointbase, IBM for DB2, IBM for Informix, SAP for MaxDB,
and Microsoft for SQL Server. Supported on Java Agents.
Default Metric Names: Average Response Time (ms), Concurrent Invocations, Errors
Per Interval, Responses Per Interval, Stall Count

StatementExecuteQueryMethodTimer Deprecated.
StatementExecuteUpdateMethodTimer Deprecated.

 26

ThisErrorReporter Traces the number of exceptions thrown (caught or uncaught) per interval by tracing
the constructor of the specified exception class(es). The error message is based on the
return value of the toString() method of the exception object. Recommended for custom
exceptions. In order to capture the error message, must be used with a
WithParameters Directive, otherwise will only increment the Errors Per Interval
metric. To see error messages, requires ErrorDetector, otherwise will only increment
the Errors Per Interval metric. Requires Agent be at 6.0 or later. Blame is implicit.
Supported on Java Agents.
Default Metric Name: Errors Per Interval

ThresholdMethodTimer Deprecated.
ThrownExceptionMethodTraceDecrementor Perpetual counter that decreases by 1 for each exception thrown by a method, caught

or not, when called from another object instance. Supported on Java & .NET Agents.
ThrownExceptionMethodTraceIncrementor Perpetual counter that increases by 1 for each exception thrown by a method, caught

or not, when called from another object instance. Supported on Java & .NET Agents.
ThrownExceptionPerIntervalCounter Counts the number of exceptions thrown by methods, caught or not, per time interval.

This tracer will factor in every method invocation. Supported on Java & .NET Agents.
ThrownExceptionPerIntervalCounterDifferentInstances Counts the number of exceptions thrown by methods, caught or not, per time interval.

This tracer is applied to the first method invoked in the object - any successive calls
within that object will be ignored until the first method finishes. Supported on Java &
.NET Agents.

ThrownExceptionPerIntervalCounterDifferentMethods Counts the number of exceptions thrown by methods, caught or not, per time interval.
This tracer will run on the first method invoked in an instance with a given method
name but any successive calls to other methods with the same name will be ignored
until the first method finishes. This applies to calls to another method with the same
name but different signature, recursive calls to the exact same method and calls to a
method with the same name in the superclass. Supported on Java & .NET Agents.

ThrownExceptionSimpleDecrementor Perpetual counter that decreases by 1 for each exception thrown by a method, caught
or not, regardless of whether called from another object instance or the same object
instance. Supported on Java & .NET Agents.

ThrownExceptionSimpleIncrementor Perpetual counter that increases by 1 for each exception thrown by a method, caught
or not, regardless of whether called from another object instance or the same object
instance. Supported on Java & .NET Agents.

UnderThresholdPerIntervalCounter Calculates per interval the number of invocations that completed under the specified
time threshold (in milliseconds). This tracer will factor in every method invocation.
Supported on Java & .NET Agents.

UnderThresholdPerIntervalCounterDifferentInstances Calculates per interval the number of invocations that completed under the specified
time threshold (in milliseconds). This tracer is applied to the first method invoked in the
object - any successive calls within that object will be ignored until the first method
finishes. Supported on Java & .NET Agents.

 27

UnderThresholdPerIntervalCounterDifferentMethods Calculates per interval the number of invocations that completed under the specified
time threshold (in milliseconds). This tracer will run on the first method invoked in an
instance with a given method name but any successive calls to other methods with the
same name will be ignored until the first method finishes. This applies to calls to
another method with the same name but different signature, recursive calls to the exact
same method and calls to a method with the same name in the superclass. Supported
on Java & .NET Agents.

 28

Metric Data Types
In JavaScript Calculators, all Metric Data Types are referenced by pre-pending the following to the front of the metric data type:
Packages.com.wily.introscope.spec.metric.MetricTypes. For example, to use kIntegerFluctuatingCounter, the full name would be
Packages.com.wily.introscope.spec.metric.MetricTypes.kIntegerFluctuatingCounter.

Metric Data Type EPA Metric

Type Name
Definition

kIntegerConstant A 32 bit numeric value that is initialized but does not change.
Example Metric: ProcessID

kIntegerDuration IntAverage A 32 bit numeric value representing duration of time. When aggregated over multiple time
periods, the weighted average is used as the aggregated Value. The Count is the number of
completions (i.e. responses) during the time interval, which is used as the denominator to
calculate the Value (i.e. average).
Example Metric: Average Response Time (ms)

kIntegerFluctuatingCounter IntCounter A 32 bit numeric value that fluctuates, but stays at the last known value until new data is
available. In 7.0 and before, when aggregated over multiple time periods, the most recent
Value is used as the aggregated Value. In 7.1 and later, when aggregated over multiple time
periods, the highest Value is used as the aggregated Value. The Count is the total number of
increments and decrements to the Value that occurred during that time interval.
Example Metrics: Stall Count, Concurrent Invocations

kIntegerPercentage An integer (no decimal) percentage. When aggregated over multiple time periods, the average
is used as the aggregated Value.
Example Metric: Utilization % (process)

kIntegerRate IntRate A 32 bit numeric value representing a per second counter. For a 15 second interval, the
remainder (14 or less) will be truncated. When aggregated over multiple time periods, the
weighted average is used as the aggregated Value.
Example Metric: Queries Per Second

kLongConstant A 64 bit numeric value that is initialized but does not change.
Example Metric: ProcessID

kLongDuration LongAverage A 64 bit numeric value representing duration of time. When aggregated over multiple time
periods, the weighted average is used as the aggregated Value. The Count is the number of
completions (i.e. responses) during the time interval, which is used as the denominator to
calculate the Value (i.e. average).
Example Metric: Average Response Time (ms)

 29

kLongFluctuatingCounter LongCounter A 64 bit numeric value that fluctuates, but stays at the last known value until new data is
available. In 7.0 and before, when aggregated over multiple time periods, the most recent
Value is used as the aggregated Value. In 7.1 and later, when aggregated over multiple time
periods, the highest Value is used as the aggregated Value. The Count is the total number of
increments and decrements to the Value that occurred during that time interval.
Example Metric: Bytes In Use

kLongIntervalCounter PerIntervalCounter A 64 bit numeric value representing a per interval Metric value. When aggregated over multiple
time periods, the sum is used as the aggregated Value. The Count is the number of
completions (i.e. responses or errors) during the time interval and will be equal to the Value.
Example Metrics: Responses Per Interval, Errors Per Interval

kLongTimestamp TimeStamp A timestamp value which may be updated. Value is entered as the number of milliseconds
since Unix Epoch Time, January 1, 1970 00:00:00 UTC. Not persisted to SmartStor.

kLongTimestampConstant A timestamp value that is initialized, but does not change. Value is entered as the number of
milliseconds since Unix Epoch Time, January 1, 1970 00:00:00 UTC. Not persisted to
SmartStor.
Example Metric: Launch Time

kStringConstant A string value which is initialized, but does not change. Not persisted to SmartStor.
Example Metric: Virtual Machine

kStringIndividualEvents StringEvent A string value which may be updated. Not persisted to SmartStor.
Example Metric: Currently Leaking

 30

	Directive, Tracer Type & Metric Data Type Definitions
	Directives
	Tracer Types
	Metric Data Types

