

CS/3.0

The COOL:Gen

Component Standard

Version 3.0

30-SEP-1999

A Standard for

Specifying &

Delivering

Software

Components

built with

COOL:Gen

The COOL:Gen Component Standard

Version 3.0

September 1999

Part Number 2616394-0005

Changes are periodically made to the information herein. These changes will be

incorporated in new editions of this publication.

Trademarks

COOL:Gen is a trademark of Sterling Software, Incorporated.

IDL is a trademark of Object Management Group.

Java is a trademark of Sun Microsystems, Inc.

Microsoft, ActiveX, Object Linking and Embedding, OLE, and OLE/COM are

trademarks of Microsoft Corporation.

Other trademarks are the property of their respective owners. Many of the

designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in this document, and the

editor was aware of a trademark claim, the designations have been printed in

initial capital letters and/or acknowledged on this page.

Acknowledgments

This Standard includes concepts originated by Castek Software Factory, Inc. We

acknowledge and thank them for their contributions in developing this standard.

This standard includes concepts originated by ICON Computing, Inc. We

acknowledge and thank them for their contributions in developing this standard.

Copyright 1999, Sterling Software, Inc. All rights reserved.

Licensees of Sterling Software, Inc. are permitted to distribute and duplicate this

work for their internal use only. No other distribution or duplication of this work,

in whole or in part, is permitted without the express written consent of Sterling

Software, Inc. Printed in USA.

 iii

Contents

1 Introduction 1

Overview .. 1
What's New .. 2
Aim of This Publication .. 3
About This Publication ... 3

Organization .. 3
References to the Advanced Practices .. 4

2 Component Characteristics 5

3 Component Delivery 9

Overview .. 9
Delivery Styles ... 9

Model Formats .. 10
Component Specification ... 11
Component Implementation ... 11
Component Executable .. 12
Component Documentation ... 12
Associated Model ... 12

4 Component Specification Model 13

Overview .. 13
Specification Subject Areas ... 13
Component Specification Type .. 14
Interfaces ... 14
Business Systems .. 15
Execution Parameters .. 15

5 Interface 17

Overview .. 17
Interface Definition ... 18
Summary ... 20
Interface Type .. 21
Public Operation Specifications.. 23

Public Operation Name ... 25
Public Operation Description ... 26

Contents CS/3.0

iv

Public Operation Parameters .. 26
Public Operation NOTEs ... 29
Pre- and Post-Conditions .. 29
Return/Reason Code List .. 31
Public Operation Specification Examples .. 34
Release History ... 36
Public Operations Offered as Both Transactions and Sub-Transactions ... 36

Interface Type Model ... 37
Specification Types .. 38
Work Sets .. 39

6 Component Implementation Model 41

Overview .. 41
Implementation Model Contents ... 41
Internal Types .. 42
Component Implementation Type .. 42
Subject Areas .. 42
Business Systems .. 44
Public Operation Implementation ... 44
Data Storage Design .. 45
Component Dependencies ... 46
Dummy Procedure Step ... 46

7 Component Executable 49

Overview .. 49
Contents of the Component Executable ... 49
Execution Parameters .. 51
Black-Box Component Dependencies .. 51

8 Component Documentation 53

Overview .. 53
Component Specification ... 53
Delivery Documentation ... 53
Test Data and Results ... 55
Summary ... 56

9 Associated Model 57

Examples of Contents .. 57
Test Transactions .. 57
Maintenance Transactions .. 58
Default User Interface Designs .. 58
Sample Application .. 58

CS/3.0t Contents

 v

Application Translation Blocks ... 59
Organizing the Associated Model ... 59

10 Identifiers and Relationships 61

Overview .. 61
Instance Identifiers ... 61
Business Identifiers .. 62
Server Identifiers .. 62
Component Object Identifiers... 64
Cross-Component Relationships .. 65

Appendix A: Component Upgrades 67

Overview .. 67
Release Numbering ... 67
Revisions ... 68

Component Revisions ... 68
Interface Revisions .. 69
Operation Revisions .. 70

Versions ... 70
Component Versions ... 71
Interface Versions ... 71
Operation Versions .. 72

Documenting Release History .. 72
Storage Compatibility ... 73
Upgrade Summary ... 74

Appendix B: Recommended Naming Conventions 75

Introduction .. 75
Component Specification (Type) Name ... 76
Model Name .. 77
Interface (Type) ... 79
Specification Subject Area ... 81
Specification Type (or Work Set) ... 82
Public Operation Name .. 84
Parameters of Public Operations ... 86
Business System, Root Subject Area, Root Activity ... 87
Implementation Subject Area ... 89
Internal Entity Type Name .. 90
Internal Action Block .. 91
Operations Library ... 93
Cascade Library ... 94

Contents CS/3.0

vi

Appendix C: Standard Parameters 95

Recommended Practice .. 95
Chart of Standard Parameters ... 96

Appendix D: Return Codes 99

Glossary of Terms 103

Index 115

 1

1 Introduction

Overview

A component is a software building block used to build applications or other

larger components.

Sterling Software recommends that any COOL:Gen-built components traded

between companies follow the Standard defined in this publication. Sterling

Software also advises organizations building components with COOL:Gen for

their own use to adopt this Standard.

The Standard encompasses good component-building practice. Adhering to this

Standard will provide future opportunities to sell or exchange internally developed

components. COOL:Gen-built components acquired from external sources are

likely to follow this Standard.

By conforming to the rules and terms in this Standard, organizations will find it

easier to exchange know-how with other like-minded companies. It also enables

Sterling to offer tools that convert components from an old to new version of the

Standard.

Organizations have been building software components with COOL:Gen since

1995, and a considerable body of expertise has been established within the

COOL:Gen community. Components are available for lease or purchase, or as a

part of consulting projects, from a number of Sterling Software partner

companies.

Components that conform to this Standard are known as a CS/3.0 components.

Components built to earlier versions of this standard continue to be called CBD96

components.

NOTE: Early drafts of CS/3.0 were code-named CBD3, and this term may occasionally occur

within the older software documentation.

The Version 3.0 Standard requires COOL:Gen Release 5.1 or later, and takes

advantage of new features within this release of COOL:Gen.

The scope of this document is:

 Characteristics of CS/3.0 components.

 Component Delivery Standards.

Introduction CS/3.0

2

 Component Specification Standards.

 Recommended disciplines for upgrading components, naming component

elements and the component implementation.

 A glossary of CS/3.0 terminology.

Component-based development does not require all components to conform to

CS/3.0. You can build applications using a mixture of CS/3.0 components and

components conforming to other standards, for example, Microsoft’s ActiveXTM

controls. In this publication, the term component always refers to components

conforming to CS/3.0.

What's New

The main differences between CS/3.0 and CBD96 version 2.1 are:

 Three new COOL:Gen 5.1 object types – component specification type,

interface type and specification type – are used, so model semantics no

longer rely on naming conventions.

 Enhanced component modeling diagrammers are used, so type models are

no longer drawn with COOL:Gen's Data Modeling tools. In particular, an

Interface Type Model diagram is supported, so subject areas are no longer

used to scope the vocabulary of each interface.

 Naming conventions for component modeling objects are no longer

mandatory, although the previous conventions continue to be

recommended.

 Component upgrading procedures (involving version and revision

concepts) are recommended rather than mandatory.

 There is no requirement to deliver a component specification model with a

white-box component, since the new Component Manager tool readily

enables component specification extraction.

 CS/3.0 does not require the operations of an interface to be "factored" to

specification types within the interface type model.

 The content of the return/reason code list is more flexible.

 Component documentation standards are more flexible.

 Dynamically linked sub-transactional operations are permitted; dummy

procedure steps are not always needed.

 CS/3.0 covers the nature and use of component objects.

 CS/3.0 is better aligned with COOL:Spex.

CS/3.0 Introduction

 3

 Components built to a standard prior to CS/3.0 may be kept in that

standard; however, a conversion wizard is provided with Gen 5.1, which

enables organizations to convert component specifications to the new

standard.

Aim of This Publication

This publication describes a Standard. It is not a component-based development

primer. It does not attempt to teach component concepts, explain the benefits of

components, or describe the development process used to build components.

Other documents and courseware exist for these purposes.

This publication focuses on rules for component specification and delivery. It

avoids making rules that constrain component implementation options.

To understand this Standard, readers need to be familiar with CBD concepts and

COOL:Gen.

About This Publication

Organization

This publication is organized into the chapters and appendices shown in the table

below. A Glossary of Terms, and an Index, are provided at the end of the

publication.

Document Organization

Chapter/

Appendix

Title Description

1 Introduction Provides an overview of the intent and
organization of this Standard

2 Component
Characteristics

Defines the basic qualities that all CS/3.0
components should exhibit

3 Component Delivery Details the delivery requirements for CS/3.0
standard components

4 Component Specification
Model

Defines the standards that apply to the
component specification model

5 Interface Describes the standards for the interfaces of
components

6 Component
Implementation Model

Defines the standards that apply to the
component implementation model

7 Component Executable Defines the standards that apply to the
component executable

8 Component
Documentation

Defines the documentation that must be
delivered with every component.

Introduction CS/3.0

4

Chapter/

Appendix

Title Description

9 Associated Model A further model that can help the customer
make better use of a delivered component.

10 Identifiers and
Relationships

The four standardized identifiers used in
CS/3.0, one of which is used to maintain
cross-component relationships

A Component Upgrades How to handle new component releases

B Recommended Naming
Conventions

Provides a set of naming conventions for
objects in component models

C Standard Public
Operation Parameters

Describes the standard and recommended
public operation parameters

D Return Codes Lists standard return codes and their
descriptions

References to the Advanced Practices

 This symbol and typeface are reserved for comments about alternative or more
difficult practices, which may be important to some organizations, but which are not
considered to be the regular practice. The use of an advanced practice is not a
violation of the Standard.

 5

2 Component Characteristics

This chapter describes the basic qualities of CS/3.0 components.

In the chapters that follow, we define various rules that help realize these

qualities. Adhering to the rules does not guarantee the qualities are achieved:

component developers still need to understand the qualities, and design their

components accordingly.

Characteristic 1

A component is a software building block, which can be used to construct

applications or larger-grained components, that is made available as an

independently delivered software package.

Characteristic 2

A component has three facets:

 Component specification – the definition of component behavior.

 Component implementation – the internal design and code that realizes the

specification.

 Component executable – a set of modules that can be executed to provide

the specified functionality.

Component XYZ
SPECIFICATION

(public operations)

EXECUTABLE

(delivered modules)
IMPLEMENTATION

(internal logic)

The Three Facets of a Component

Characteristic 3

A component is encapsulated. That is, its specification and implementation are

distinct. The implementation can be changed without impacting the software that

consumes the component, since the consuming software may only reference the

specification.

Component Characteristics CS/3.0

6

NOTE: Encapsulation is sometimes broken in order to achieve acceptable performance, or to

maintain data integrity, or to wrap legacy software as multiple components. A formal procedure for

proposing, examining and approving violations should be established in organizations developing

CS/3.0 components.

Characteristic 4

A component is delivered as a white-box component (specification and

implementation facets) or a black-box component (specification and executable

facets).

Characteristic 5

The functionality of a component is made available through one or more

programmable interfaces.

 An interface is a group of related operations.

 Each operation is a separately callable unit of functionality.

 Interfaces are independent units of definition, unless otherwise specified.

 A component specification is a list of interfaces, plus any additional rules

defined on the component specification type itself.

 The same interface may be offered by several components.

NOTE: A COOL:Gen application or component is unable to consume two components that offer

the same interface. Interface reuse is mainly confined to new releases of the same component.

Characteristic 6

Each operation of a component has the following features. It:

 Has an operation specification, which defines its behavior and how that

behavior must be invoked.

 Belongs to an interface.

 Is a success unit (does not leave component constraints violated).

 May be a transaction or a sub-transaction (a commit unit or not).

 May include end-user interaction, or not.

NOTE: In practice, most operations are designed to run on server processors, and do not embed

end-user interactions. User interface designs are normally tailored to the user's circumstances and

hardware, and are liable to change. Nevertheless, CS/3.0 embodies the notion of the user

interface-bearing operation, built with a COOL:Gen display step, which incorporates end-user

interactions.

CS/3.0 Component Characteristics

 7

Characteristic 7

A component is replaceable by another component that supports at least the same

interfaces.

Characteristic 8

A component may have a dependency upon other components. This usually means

it invokes operations of those components. The dependency may be:

 A specification dependency, which then applies to every implementation

of the component.

 An implementation dependency, which reflects a internal design choice

that may not exist in alternative implementations.

Characteristic 9

A component implementation may use a data store to makes its data persistent.

Characteristic 10

A component's data store may not be directly manipulated by any other

component, since that would break encapsulation. However, a new release of a

component could directly manipulate the data store of a previous release.

 9

3 Component Delivery

Overview

This chapter states what the component provisioner must supply to a customer.

White and black-box components are explained, and the various parts of

component delivery are introduced.

Delivery Styles

There are two component delivery styles:

 White-box.

 Black-box.

A white-box component provides the customer with the source code (action

diagram statements), enabling the customer to examine the internal design,

generate it to run on a variety of platforms, and modify the model where

necessary.

A black-box component provides the customer with executable modules, but no

source code. The customer is unable to change the internal design.

White-box component

A white-box component delivery must include the following:

 COOL:Gen Component Implementation Model.

 Component Documentation.

 Optionally, an Associated Model.

Black-box component

A black-box component delivery must include the following:

 COOL:Gen Component Specification Model.

 Modules of the Component Executable.

 Component Documentation.

 Optionally, an Associated Model.

Component Delivery CS/3.0t

10

These delivery parts are illustrated in Figure 3.1, Component Delivery.

SPECIFICATION

MODEL

IMPLEMENTATION

MODEL

COMPONENT

DOCUMENTATION

The

Ultimate

Component

COMPONENT

EXECUTABLE

or

ASSOCIATED

MODEL

Test Transaction -

Attribute Name

Permitted Value List

&

plus

and

optionally

White Box Delivery:

Black Box Delivery:

Figure 3.1 Component Delivery

NOTE: A component provisioner can elect to deliver white-box components with the executable

for requested platforms, as a further convenience to the customer.

NOTE: Specification-only components can be useful. For example, provisioners can use them to

allow potential customers to inspect a component before agreeing to take delivery. They are

needed when outsourcing implementation development. However, this publication focuses on

black-box and white-box components.

NOTE: In the CBD96 standard, a specification model had to be delivered with each white-box

component, so that the customer was not put to the inconvenience of extracting the component

specification. CS/3.0 does not require a separate specification model to be delivered, since the new

Component Manager tool can locate the specification within a component implementation model,

and copy it to a consuming model.

Model Formats

A specification, implementation and associated model may be delivered in any

convenient format. For example:

 Four .DAT files.

 CHECKOUT.TRN file, which is more compact than the four .DAT files.

 UPDATE transaction file, especially in cases where the model is too large

to be downloaded to a work station.

 Delivering several components within one COOL:Gen model is less straightforward.
This is regarded as an "advanced practice."

CS/3.0 Component Delivery

 11

Component Specification

A component specification is a definition of the component’s behavior, which do

not define the manner in which the component is implemented. Primarily, a

component specification is a statement of the component’s function, but it may

also include constraints on the component implementation and/or executable.

The component specification acts as:

 An instruction to the component implementor.

 A contract of guaranteed behavior for the component consumer.

The component specification consists of:

 The component specification type, which indicates the component name

and the interfaces it offers.

 The interface specifications, each of which defines the interface name and

any constraints (known as invariants), plus the specification of each

operation.

 In addition, the component specification type may define:

o Further invariants which the component must apply, not included in

the interface specifications

o Constraints that apply to every implementation of this component

o Constraints that apply to every executable for this component.

A component provisioner must always provide a component specification when

delivering a component to a customer. The specification is delivered within the

component specification model (for black-box components) or within the

component implementation model (for white-box components). Any aspects of

the specification not included in the component specification model, must be

included in the external component documentation.

Chapter 4, “Component Specification Model,” and Chapter 5, “Interface,” provide

the detailed standards for component specifications.

Component Implementation

This is the component’s internal design and logic, which achieves the effect stated

in the component's specification.

A COOL:Gen component implementation model contains the component’s

internal design in the form of action diagrams and, possibly, a database design.

The customer can generate the component executable from this model.

The component implementation model also includes the component specification,

and is only delivered for a white-box component.

Component Delivery CS/3.0t

12

If external action blocks have been used in the implementation, then their code

also forms part of the component implementation. This code must be delivered in

separate files along with the implementation model. If this external code

references persistent data stores, then their design also forms part of the

component implementation.

Refer to Chapter 6, “Component Implementation Model,” for more details.

Component Executable

The component executable is a collection of modules that, when executed on the

stated platform, collectively produce the behavior defined in the component

specification. The modules may be load modules (executable files) and/or object

modules and/or operations libraries (modules containing operations linked in at

run time, such as DLLs.)

Many components require their own data store (data base or files) to make their

data persistent. For these components, the component executable must also

include modules which enable the appropriate data store to be installed. Typically,

this is a module containing the data definition language statements that define a

relational database; plus the bind modules which are needed by database products

that support static database binding.

Refer to Chapter 7, “Component Executable,” for more details.

Component Documentation

A component must be delivered with a certain amount of external documentation,

which summarizes some basic facts about the component, and also covers

anything not explained in the delivered COOL:Gen model.

The external documentation may duplicate information already contained in the

COOL:Gen model, if the provisioner considers this helpful to the customer. See

Chapter 8, “Component Documentation.”

A component may also be delivered with test cases and test results that the

customer can reuse. This is also explained in Chapter 8, “Component

Documentation.”

Associated Model

Additional action diagrams may be included in the component delivery to help the

customer test and use the component. These additional action diagrams are

supplied in a third model, which we call the associated model. Further details

appear in Chapter 9, “Associated Model.”

 13

4 Component Specification Model

Overview

A black-box component delivery must include a Component Specification Model.

This chapter defines the rules that apply to the component specification model.

A white-box component delivery must include a Component Implementation

Model. The implementation model contains the component specification, and the

rules in this chapter also apply to the specification part of the component

implementation model.

The specification model contains:

 Specification subject areas.

 The component specification type.

 The interfaces offered by the component.

 The execution parameters for the component (transaction codes and object

module names for operations).

NOTE: The Component Manager tool makes it easy to copy the component specification, or an

interface, or an operation specification, into an implementation model that consumes this

component (or a selected interface or operation). Alternatively, COOL:Gen's migration facility

can be used.

Specification Subject Areas

A component specification model must contain at least one subject area, with the

role property set to "specification." This is directly contained in the root subject

area.

A component specification model may contain further specification subject areas.

All specification elements, that is, the component specification type, the interface

types and specification types, must be contained in one of the following:

 A specification subject area directly contained in the root subject area.

 A specification subject area contained within another specification subject

area, which is not directly or indirectly within an implementation or

general subject area (except for the general root subject area).

CS/3.0l CS/3.0

14

If these properties are not met, Component Manager will not transfer the entire

component specification to a consuming model.

The recommended practice is one specification subject area, placed directly under

the root subject area.

Component Specification Type

A component specification model must contain one component specification type,

which represents the component specification.

NOTE: The component specification type is a new modeling element, first introduced in

COOL:Gen 5.1. It can only be added to the model using the Specification Model diagrammer.

NOTE: If a model contains multiple component specifications, then it must contain multiple

component specification types. CS/3.0 advocates a separate COOL:Gen model for each component

specification.

 The component specification type must be contained in a specification

subject area.

 The name of the component specification type is the name of the

component specification. The name should include the version and

revision number, if CS/3.0's recommended upgrading approach is adopted

(see Appendix A, “Component Upgrades”).

 The component specification type must be associated with one or more

interface types, representing the interfaces that it offers.

 Any invariants that apply to the component, over and above those defined

on the interfaces, are detailed in the description panel.

 Any constraints, which apply to any implementation of this component

specification, are detailed in the description panel.

 Any constraints, which apply to any executable of this component

specification, are detailed in the description panel.

 If there is insufficient space in the description panel, these constraints must

be described in the external documentation for the component.

Interfaces

A component specification model must contain at least one interface type. The

standards for documenting interfaces are given in Chapter 5, “Interface.”

CS/3.0 Component Specification Model

 15

Business Systems

COOL:Gen requires that all operations belong to a business system.

There are no mandatory rules concerning the use of business systems.

We recommend that all operations, both transactional operations represented by

procedure steps and sub-transactional operations represented by BSD action

blocks, are placed in the “default” business system which is created in every new

model.

Appendix B, “Recommended Naming Conventions,” provides the recommended

naming convention.

Execution Parameters

A component specification model contains the execution parameters for the

component.

NOTE: Execution parameters need to be in the specification model because they have to be

transferred into any consumer model. That is, into any component implementation or application

model that wants to use an operation of this component. Execution parameters are not normally

regarded as a part of a component specification, although they could be defined as execution

constraints if they were required to be the same for every implementation and executable of this

component.

The execution parameters are:

 Source name for each sub-transactional operation.

This is used by COOL:Gen to generate the object module name.

 Transaction code for each transactional operation.

 Load module name for each transactional operation.

The component implementor usually decides the execution parameters.

 17

5 Interface

Overview

This chapter defines the standard for interfaces. An interface is a collection of

semantically related public operations.

 The operations are related in the sense that:

o They share concepts.

All the types referenced by the operations of one interface have a

consistent meaning.

o They are normally inter-dependent and used in conjunction with one

another.

For example, Operation Q of the interface depends upon another,

Operation R, of the interface having been used beforehand.

 The operations are described as public, to distinguish them from operations

used within a component implementation, which are not available to the

component consumer.

The functionality of a component is only available through the operations of its

interfaces. A component must support one or several interfaces. A component

specification is primarily a list of its interfaces.

Figure 5.1 depicts a component offering two interfaces and introduces the

"lollipop" icon commonly used to denote an interface.

Component XYZ
interface 1

interface 2
COMPONENT

SPECIFICATION

Figure 5.1 Component With Two Interfaces

An interface is a reusable unit of specification. The same interface may be offered

by several components.

However, COOL:Gen does not enable a consuming component or application to

use two components that offer the same interface. So we advise against reusing

interfaces, except in these circumstances:

 For different releases of the same component

Interface CS/3.0

18

 Where two interfaces, although identical, are given different names

 For an industry-agreed component specification that is supported by

competitive offerings of the same specification

 Where it is clear that no consumer will need to use both of the components

that have a common interface.

Interface definitions must appear in both component specification and

implementation models.

NOTE: The term interface is used here in the same sense as in Microsoft’s COMTM Component

Object Model, the Object Management Group’s IDLTM and the Java TM programming language.

Interface Definition

An interface definition has two main facets:

 Specifications for each of the Public Operation offered by the interface.

 An Interface Type Model, consisting of specification types, attributes,

relationships, and invariants, which defines the information that the

interface can retrieve.

Figure 5.2 depicts a component with two interfaces, and shows that each interface

has its own type model and own collection of operations.

Component XYZ

interface 2

interface 1

public operations for interface 1

interface type model for interface 1

interface type model for interface 2

public operations for interface 2

Figure 5.2 Two Facets of an Interface

An interface is documented using COOL:Gen's Interface Type Model tool. It

consists of:

 One interface type.

 One or more public operations.

CS/3.0 Interface

 19

 One interface type model diagram.

 Specification types referenced by the interface. That is:

o The types used in operation imports and exports.

o The types appearing within the interface type model.

Specification types can be referenced by more than one interface.

Figure 5.3 shows an example of an Interface Type Model. This model defines the

data that the interface is able to recall, by storing it, by obtaining it from other

interfaces, or by derivation. This is the information that the interface

"remembers."

MANAGES

PRODUCTS

PRODUCTS

The Interface Type,

with (in this example)

three operations

and no attributes

Specification Types,

which must have

attributes and

relationships.

PRODUCT_SALE

PRODUCT_ADD

PRODUCT_UPDATE

PRODUCT_GETSALE

PRODUCT

Diagram Name

(= interface

name)

INSTANCE_ID

CODE

NAME

DESCRIPTION

PRICE

QUANTITY

VALUE

DATE

PROMISE DATE

BUYER REF

IS SUBJECT OF

Figure 5.3 Interface Type Model Example

All the parts of the interface definition must be recorded within specification

subject areas. That is, within subject areas where the subject area role property set

to “specification.”

These specification subject areas must not be directly or indirectly contained in

implementation subject areas, since this indicates a consumed interface rather than

an interface being defined.

We recommend that component models contain just one specification subject

area, which contains the component specification type and all its interfaces.

However, multiple specification subject areas may be used if preferred.

NOTE: In a component implementation model in which the implementation consumes further

components, then at least one more specification subject area is required. This is because the

specifications of consumed components must be placed in specification subject areas which are

contained in an implementation subject area.

Interface CS/3.0

20

Summary

This summary defines how each part of an interface definition is recorded in

COOL:Gen. The standards for each part are given in subsequent sections of this

chapter.

 Interface Type.

Use the Specification Model diagramming tool to add an interface type to

a component model. This automatically creates an Interface Type Model

for the interface, containing just the interface type.

 Operations.

Add one or more operations to the interface types, to define the public

operations.

Operations may be sub-transactional or transactional.

o Sub-transactional operations must be defined as BSD Action Blocks

while adding the operation. You do not need to create a free standing

BSD action block prior to registering it as an operation; the BSD

Action block is created as you create the operation.

o Transactional operations must be represented by Procedure Steps. A

procedure step must be added to a business system, before it can be

registered as an operation in the Specification Model diagram.

NOTE: We recommend that component models contain a single business system, which is

automatically added when a new model is created. However, further business systems are

permitted by this Standard.

CS/3.0 Interface

 21

 Interface Type Model.

Construct the interface type model using the Interface Type Model

diagramming tool.

There is one, and only one, Interface Type Model diagram for each

interface, which gets created when an interface is added to a COOL:Gen

model.

The Interface Type Model is constructed from the interface type itself, and

from specification types.

 Specification Type.

These can be added to the COOL:Gen model using either the Interface

Type Model diagramming tool or the Specification Model diagramming

tool. Whichever tool you use, they are owned by (or "are contained in") a

specification subject area and are referenced by (or "are included in") one

or more Interface Type Models.

Interface Type

Use the Specification Model diagramming tool to add an interface type to a

component model. This automatically creates an Interface Type Model for the

interface, which initially contains just the interface type.

The interface must be placed in a subject area that has role set to "specification."

The interface type must have an "offered by" relationship with a component

specification type. (At least, this must be the case in a COOL:Gen component

implementation model or COOL:Gen component specification model).

The interface must own at least one operation. See section Public Operation

Specifications (on page 23) for the details.

The description panel for the interface must contain:

 Revision number of the interface.

Revision numbering begins at zero.

 Revision date.

 Purpose of the interface.

 Invariants applied by the interface, except where these are already defined

by properties within the interface type model.

For example, the interface type model may express these special kinds of

invariant:

o Cardinality and optionality of relationships.

Interface CS/3.0

22

o Optionality of attributes.

o Permitted values for attributes.

o Exclusive relationship memberships.

o Classifying values for subtypes.

Other invariants have to be expressed in free text, using natural or formal

languages. For example:

o Delivery Date is later than Order Date.

o Delivery Date is null unless Order Status is "delivered."

These textual invariants are written in the interface's description panel,

even if they already appear on specification types. This makes them easy

to locate implementers and consumers, and also makes it quite clear that

they must be applied by this interface.

The interface type may own attributes, but does not need to.

(Multi-valued attributes of the interface are represented by the attributes of

specification types within the interface type model. See the Interface Type Model

section on page 37.)

The interface type normally has its type properties set as follows:

 Single occurrence.

 Not a business object type.

 Transient.

 No identifiers.

 ADVANCED PRACTICE. Interfaces can be defined so they support multiple
interface instances, and hence components that have multiple run-time instances,
which we call component objects (see Chapter 10, “Identifiers and Relationships”).
Where this is required:
- The interface is not "single occurrence", and will need an identifier. (In CS/3.0 we
call this identifier the component object identifier, or COID, and is one of the
Standard Parameters listed in Appendix C, “Standard Parameters”).
- All operations of the interface need to import the component object identifier.
(Operations must only run against one instance of the interface and component).

 ADVANCED PRACTICE. Where an interface instance manages only one business
object (instance), then the interface can be registered as a business object type. In
COOL:Gen-built business components, it is more usual for specification types to
correspond to business object types.

CS/3.0 Interface

 23

 ADVANCED PRACTICE. Interface types which have an identifier, and perhaps
other attributes, can be defined as persistent in component implementation models,
enabling create/update/delete/read actions to be performed directly on the interface
instance within the implementation. The fact that an interface is defined as persistent
is not relevant to the consumer, and should not (ideally) be apparent in consumed
specifications.

Public Operation Specifications

Use the Interface Type Model or Specification Model diagramming tool to add

one or more operations to the interface type.

Operations must be sub-transactional or transactional or user interface-bearing.

 Sub-transactional operations are formed from BSD Action Blocks. Create

the operation using the Add Operation command within the Specification

Model diagramming tool. The operation must be defined as a BSD Action

Block (not a BAA action block or Elementary Process).

NOTES:

Sub-transactional operations should generally be defined as using high-performance view

matching. It is crucial that the operation in the component implementation model and the

corresponding stub in the consuming model both have the same high-performance view

matching value.

If the COOL:Gen model contains multiple business systems, ensure that the business

system into which this BSD action block is to be placed is currently open, otherwise it

will be placed in some other business system, and it is not possible to move it.

 Transactional operations are formed from Procedure Steps. You must first

add a single-step procedure to a business system, using the Windows

Navigation diagram or Dialog Design tools. A transactional operation is a

no-display step, also known as a Server/Procedure Step in the Windows

Navigation diagram.

Then, using the Specification Model diagramming tool, use the Add

Operation command to register the procedure step as an operation of the

interface.

Interface CS/3.0

24

 User Interface-Bearing operations are also permitted by CS/3.0. These are

formed from display Procedure Steps, and enable the operation to interact

with an end-user.

You must first add a single-step procedure to a business system, using the

Windows Navigation diagram or Dialog Design tools. The user interface-

bearing operation is a display step, also known as a Window in the

Windows Navigation diagram.

Then, using the Specification Model diagramming tool, use the Add

Operation command to register the procedure step as an operation of the

interface.

NOTE: User Interface-Bearing operations are more difficult to work with than non-

display operations.

In order to achieve a successful link flow from a display step to a UI-bearing operation,

the return exit state set, within the UI-bearing operation's implementation, must be

migrated into the consuming model.

To address this, and to hide unnecessary import/export views from the consumer, some

organizations define a no-display step which has a link flow to a display step. The no-

display step represents a UI-bearing operation, since its implementation always invokes a

display step. The no-display step stub is transferred to the consuming model, not the

display step.

NOTE: A user interface-bearing operation should not display the attributes of the

component’s internal entity types. It should only display the attributes of the interface

type model, or the operation’s parameters, or system attributes (such as current date and

user identification).

Technically, a user interface-bearing operation is also transactional.

NOTE: To consume (that is, use, call, or invoke) an operation from another COOL:Gen model,

the action diagram that represents the operation must be transferred to that model, using the

Component Manager tool, or the migration services of COOL:Gen.

The consuming model can then define USE statements to invoke the operation, or can define

dialog flows to invoke a transactional operation.

In the consuming model, the action diagram should not contain any logic statements, only

import/export views and documentation NOTES. An action diagram without any logic is often

called a stub.

CS/3.0 Interface

 25

Each public operation must have specification that fully describes the operation’s

behavior. The user of an operation must not need to look at the implementation to

understand its behavior. If a black-box component is delivered, then there is no

implementation to inspect.

A public operation specification must include the following parts:

 Operation name.

 Description.

 Operation parameters (imports and exports).

 Pre- and post-conditions.

 Return codes.

 Release History (discretionary).

The rules for each part are described in the sub-sections that follow.

NOTE:

A parameter is an attribute appearing in the input or export views of an operation.

The set of parameters input and output by an operation is sometimes termed the signature of the

operation.

Public Operation Name

Aim to make the name unique within your computing environment, otherwise

name clashes can occur when consuming a component.

We recommend that you use a name that indicates which interface it belongs to,

and what action it performs on a type.

Appendix B, “Recommended Naming Conventions,” offers a recommended

naming convention.

NOTE: COOL:Gen defaults the source code file name for an action diagram to the first eight

characters of the action diagram name. This name is then also used for the object module name.

Some organizations find it useful to make the first eight characters unique, and as meaningful as

possible, so that they can easily determine which operation is represented by any particular source

module or object module.

Interface CS/3.0

26

Public Operation Description

Use the description panel of the public operation’s action diagram to record the

following:

 Revision number of the operation.

Revision numbers begin at zero.

 Release date of the revision.

 Cross-reference to another specification.

Where a transactional operation is functionally identical to a sub-

transactional operation of the same interface (except the transactional

operation will commit database updates), the description panel may state

SAME AS: operation_name. In which case, there is no need to describe

any purpose, pre-conditions, post-conditions, or return codes.

 Statement of the purpose of the operation.

This is expected to be one or two sentences. If necessary, the purpose text

can be continued as NOTES within the action diagram itself. The first

textual line of the Note should be PURPOSE (CONTINUED):.

Public Operation Parameters

The parameters are defined using import and export views. These may be views of

specification types or work sets.

NOTE: We recommend that all parameters are views of specification types. Work set views are,

however, permitted by the Standard.

Take special care when using IEF_SUPPLIED work sets in the parameters of public operations.

This is because the IEF_SUPPLIED work set exists in all models. When transferring specifications

from one model to another, the various tools do not perform the IEF_SUPPLIED transfer in a

uniform and controllable manner.

Recommendations:

(a) IEF_SUPPLIED attributes are best avoided as parameters, especially if you are a company

supplying components commercially

(b) Where IEF_SUPPLIED attributes are used as parameters, the organization makes it a rule that

the IEF_SUPPLIED work set is left unmodified in all models.

Name type and group views to indicate whether they are used for input, output or

both input-and-output.

Give repeating and non-repeating group views meaningful names.

CS/3.0 Interface

 27

Appendix B, “Recommended Naming Conventions,” offers a recommended

naming convention.

Only record that an import view is mandatory if it actually is mandatory (group or

type or attribute view) within the imports. The setting of the mandatory/optional

property within an import view is a part of the operation specification.

Procedure steps cannot support combined import/export views, so only use

combined import/export views on sub-transactional operations.

NOTE: Avoid using combined import/export views on any sub-transactional operations that are

also made available as transactional operations. Otherwise, the two corresponding operations

cannot have identical specifications.

In a COOL:Gen component specification model, the public operation’s action

diagram is a stub, and must not include local or entity action views.

Each public operation must export the standard parameters. These parameters

communicate exception conditions to the operation consumer.

The following attributes must be defined in every component model and must be

exported by every public operation:

 SEVERITY_CODE

A single-character text field indicating the severity of the exception.

Permitted values are I, W, and E. These characters indicate Information,

Warning and Error, respectively.

 ROLLBACK_INDICATOR

A single-character text field that a public operation uses to request the

consumer to roll back any updates that the public operation has made to

the persistent storage.

… OR …

DATA_STORE_STATUS_CODE

A single-character text field that indicates the status of persistent storage

after an operation execution, where:

o “1” = data unchanged

o “2” = changes rolled back

o “3” = data changed

o “4” = data integrity compromised

 ORIGIN_SERVID

A 15-digit field that is used to communicate which installed copy of the

component raised the return, and the reason codes being exported in this

export view.

Interface CS/3.0

28

NOTE: It is suggested that every installed copy of a component executable should bear a

unique identifier known as its server identifier, or SERVID.

Where several copies of the same component exist on a network, each of these should have a

different server identifier. This assists in debugging and is explained further in the Server

Identifiers section of Chapter 10, “Identifiers and Relationships.”

Organizations do not need to populate this parameter, if they do not find it of value.

 RETURN_CODE

A five-digit numeric field used to return a standardized code indicating the

type of failure or success encountered during the operation execution.

Valid values are defined in Appendix D, “Return Codes.”

 REASON_CODE

A five-digit numeric field used to provide more explanation about why the

failure or success notified by the return code has occurred. Reason codes

must be greater than, or equal to, zero.

Reason code values may be specified or unspecified.

o Specified reason codes are listed in the component specification, and

the consumer can “code to” such values.

o Unspecified reason codes are not explicitly listed in the component

specification. The component specification just states that "any" or

"other" reason codes may be exported. Reason code values can vary by

implementation, so component provisioners are able to provide

exceptions that are specific to their implementation.

NOTE: We recommend that the standard parameters appear in the last export view of each

public operation, and are all attributes of a single specification type.

Appendix C, “Standard Parameters,” provides more information about standard parameters,

including additional parameters and the recommended order of placements in views.

CS/3.0 Interface

 29

Public Operation NOTEs

Further specification details are included within the action diagram of the public

operation, as NOTEs.

The Notes should be included in this order:

1. PURPOSE (CONTINUED)

This Note is only required if the purpose text cannot fit into the action

diagram description panel.

2. PRE-CONDITION

There may be any number of Notes labeled pre-condition. The same Note

must contain the corresponding post-condition, and may include further

pre/post condition pairs.

3. RETURN/REASON CODES

There must be a Note that summarizes all the exception codes that can be

returned by the public operation.

4. RELEASE HISTORY

This is an optional Note.

All of these Notes (except PURPOSE) are described in the sub-sections that

follow. Component provisioners must begin each Note with the keyword

specified. This will enable other software tools to extract information from

operation specifications.

Pre- and Post-Conditions

Pre- and post-conditions are defined in pairs. A public operation specification may

include one or more pre/post pairs.

 A pre-condition is a statement that must be true prior to operation

execution in order for its corresponding post-condition statement to be true

after execution.

 A post-condition is a statement that will be true after the operation has

executed, as long as the corresponding pre-condition was true prior to

execution.

A pre-condition may be a list of conditions connected by Boolean operators

(ANDs and ORs).

The order in which the pre/post pairs are documented has no semantic

significance.

If several pre-conditions are found true, then several post-conditions will be true

after operation execution. Ensure that this cannot lead to ambiguous outcomes.

Interface CS/3.0

30

Pre-conditions and post-conditions are defined within NOTES of the public

operation’s action diagram.

The keyword PRE-CONDITION: must be used to introduce each pre-condition.

The pre-condition expression itself must appear on the lines that immediately

follow PRE-CONDITION:.

Pre-conditions are not defined for import attribute views that are marked as

mandatory within the view, although the exception codes used to report their

absence must be included in the RETURN/REASON CODES list.

The keyword POST-CONDITION: must be used to introduce each post-condition.

This keyword must appear within the same NOTE as its corresponding pre-

condition, and must appear on the line that immediately follows the last line of the

corresponding pre-condition.

A post-condition is a list of actions. There is no need to connect them with AND

operators. For example:

NOTE PRE-CONDITION:

 An Employee with the imported Employee Instance_Id already

 exists

AND does not have status “deleted”.

 POST-CONDITION:

 The Employee Name is changed to the imported value.

 Return Code = 1, Reason Code = 0.

 PRE-CONDITION:

 An Employee with the imported Employee Instance_Id already

 exists AND has status “deleted”.

 POST-CONDITION:

 Return Code = -41, Reason Code = 1.

Figure 5.4 Example of Two Pre/Post Condition Pairs within one Action

Diagram Note

A post-condition action may be conditional, that is, preceded by an IF clause.

Any number of pre/post pairs may be placed in one NOTE. Any number of

NOTES may be used to fully specify the operation’s behavior.

CS/3.0 Interface

 31

NOTE: Where an organization envisages transferring component specifications from COOL:Gen

to COOL:Spex model files, then it is preferable to place each pre/post pair in a separate NOTE

statement.

A pre/post pair may be given a name, in which case the name is appended to each

keyword as follows:

 PRE_CONDITION OF name:

 POST_CONDITION OF name:

NOTES: The full collection of pre-conditions provided for an operation may be independent or

overlapping. They need not be exhaustive. That is, operation executions that do not meet any pre-

condition are permissible. However, the consuming model cannot interpret export data of such

executions.

 It is clearer for the reader if each pre-/post-condition pair is in a separate Note. Where Notes

are built using cut-and-paste from word processors, then multiple pre/post pairs within a single

Note will be more practical for the provisioner.

 We recommend that you write references to specification types and attributes in upper/lower

case.

 We recommend capitalizing Boolean operators and any other conventional keywords, and

using different symbols for nested parentheses; we recommend the following sequence: ([
{ }])

 Starting each action within the post-condition on a separate line is clearer.

Return/Reason Code List

The return and reason codes that can be exported by the operation (in the standard

parameters in an export view) may be documented in a Note in the operation’s

action diagram.

The first line of this Note should be RETURN / REASON CODES:

Each subsequent line of the note must contain:

 A return code value.

Return codes are standardized and are listed in Appendix D, “Return

Codes.”

Interface CS/3.0

32

 A reason code value, or the keyword OTHER or ANY.

ANY indicates that no specific reason codes have been documented, so

various unspecified reason codes may be issued by the operation.

OTHER is used when one or more specific reason codes have been

documented, to indicate that additional, unspecified reason codes could

also be issued by the operation.

 The meaning of the return/reason code combination.

The meaning may be omitted if the phrase ANY or OTHER has been used

in place of the reason code.

The developer who implements the component may introduce further return and

reason codes for the operation, and these must be added to the operation

specification.

The consuming software must not “code to” unspecified reason codes.

Unspecified reason codes should simply be reported to the user or systems

administrator.

If a return/reason code is included in the list, but it does not also appear in any

post-condition, then this implicitly means that an operation execution which

detects this condition (the condition implicit in the meaning documented for the

return/reason code value) rolls back any updates asserted within the explicit

pre/post pairs.

 Some organizations decide to include every possible return/reason code in

the list for an operation, so a full summary of all outcomes is readily

accessible.

 Some organizations prefer to omit from the list those return/reason code

values which are already explained in pre/post pairs, thus reducing

duplicated effort and potential inconsistencies.

 Some organizations prefer to omit the return/reason code list altogether,

but they must then ensure that every possible return/reason code value is

explained within a pre/post pair.

CS/3.0 Interface

 33

NOTES: A component may offer a standard operation that enables the operation consumer to

obtain further information, or a formatted message, for any given return code/ reason code

combination.

Operation implementations can use exit states within the implementation, to retain the current state

of execution. Standard action blocks can be used to convert exit states into standard return and

reason codes.

Whenever you USE an operation (which has been implemented in another COOL:Gen model), be

aware that it may update the exit state variable within its implementation, and hence alter the

current value of the exit state within the logic you are developing.

Exit states have not been used as the mechanism for communicating exceptions in CS/3.0 because

they are not readily accessible to non-COOL:Gen consumers.

Interface CS/3.0

34

Public Operation Specification Examples

Figure 5.5 is an example of a public operation specification:

Operation Name: IHRC1991_EMPLOYEE_CHANGENAME_S of IHRC1_INTERFACE

Action Block Description:
REVISION NUM: 3
RELEASE DATE: 22-Aug-1999
PURPOSE: To enable the family-name of an Employee to be

corrected, or to change the family name of an employee (after

marriage, for instance).

IMPORTS:

Type View IN IHRC1_EMPLOYEE (mandatory, transient, import only)

INSTANCE_ID (mandatory)

NAME (mandatory)

EXPORTS:

Type View OUT IHRC1_STANDARD_PARAMETERS (transient, export only)

SEVERITY_CODE
ROLLBACK_INDICATOR
ORIGIN_SERVID
RETURN_CODE
REASON_CODE

An Employee with the imported Employee Instance_Id already

NOTE PRE-CONDITION:

exists AND does not have status “deleted”.

The Employee Name is changed to the imported value.

Return Code = 1, Reason Code = 1

NOTE PRE-CONDITION:
An Employee with the imported Employee Instance_Id already
exists AND has status “deleted”.
POST-CONDITION:
Return Code = -41, Reason Code = 1

NOTE PRE-CONDITION:
No Employee with the imported Employee Instance_Id exists.
POST-CONDITION:
Return Code = -10, Reason Code = 1

NOTE: RETURN / REASON CODES

+ 1/1 Update successful

- 10/1 Employee ID not found

- 20/1 Employee ID missing in imports

- 20/2 Employee Name missing in imports

- 41/1 Employee not updated since flagged as deleted

- 41/OTHER Employee update action failed

- 60/ANY Persistent storage failure

IHRC1991_EMPLOYEE_CHANGENAME_S of IHRC1_INTERFACE

POST-CONDITION:

Figure 5.5 Public Operation Specification Example 1

NOTE: In the example above, pre-conditions have not been defined to check that Instance_Id and

Name have been input, since these are marked as mandatory within the import view. However, the

return and reason codes for missing mandatory attributes have been included in the Return/Reason

Codes Note.

CS/3.0 Interface

 35

The next example (Figure 5.6) shows how the same specification might look if it

had been prepared in COOL:Spex, and transferred to COOL:Gen using the

Component Manager tool. Observe that a more formal pre/post syntax has been

used, that the pre/post pairs are named, and the different style of view name. The

COOL:Gen developer has added the return/reason code list.

Operation Name:IHRC1991_EMPLOYEE_CHANGENAME_S of IHRC1_EMPLOYEE_MGR

Action Block Description:
REVISION NUM: 3
RELEASE DATE: 22-Aug-1999

PURPOSE: To enable the family-name of an Employee to be

corrected, or to change the family name of an employee (after

marriage, for instance).

IMPORTS:

Type View IN_E IHRC1_EMPLOYEE (mandatory, transient, import only)

INSTANCE_ID (mandatory)

NAME (mandatory)

EXPORTS:

Type View OUT_S IHRC1_STANDARD_PARAMETERS(transient,export only)

SEVERITY_CODE
ROLLBACK_INDICATOR
ORIGIN_SERVID

RETURN_CODE

REASON_CODE

Employee e EXISTS IN self.managedEmployee

NOTE PRE-CONDITION OF success:

WITH e.instance_id = in_e.instance_id AND e.status <>“deleted”

e.Employee.name = in_e.name

out_s.return_code = 1, out_s.reason_code = 1

NOTE PRE-CONDITION OF employee_status_error:
Employee e EXISTS IN self.managedEmployee
WITH e.instance_id = in_e.instance_id AND e.status = “deleted”
POST-CONDITION OF employee_status_error:

out_s.return_code = -41, out_s.reason_code = 1

NOTE PRE-CONDITION OF employee_not_found_error:
NO Employee e EXISTS IN self.managedEmployee

POST-CONDITION OF employee_not_found_error:
out_s.return_code = -10, out_s.reason_code = 1

NOTE: RETURN / REASON CODES

+ 1/1 Update successful

- 10/1 Employee ID not found

- 20/1 Employee ID missing in imports

- 20/2 Employee Name missing in imports

- 41/1 Employee not updated since flagged as deleted

- 41/OTHER Employee update action failed

- 60/ANY Persistent storage failure

IHRC1991_EMPLOYEE_CHANGENAME_S of IHRC1_EMPLOYEE_MGR

POST-CONDITION OF success:

WITH e.instance_id = in_e.instance_id

Figure 5.6 Public Operation Specification Example 2

Interface CS/3.0

36

NOTE: Component Manager converts the parameter names used in Spex, to the import and export

view names required by Gen. It prefixes the view name with in_ or out_ unless this prefix has

already been given to the parameter name. Where the parameter's type is a view type in

COOL:Spex, then the base type name will be shown in the Gen import/export view, but the

contained attribute views will correspond to the attributes from the Spex-defined view type.

Release History

We recommend providing a list of previous releases of the operation in a NOTE.

The releases are listed in newest to oldest order, so the current release is listed

first. The component provisioner may choose how many earlier releases to include

in the list. The suggested format is shown in Figure 5.7.

NOTE RELEASE HISTORY:

 02_00 01-Apr-99 Multiple managers for Employees supported.

 01_01 16-Apr-98 Changed to recognize and support “soft

 deletes” of Employees.

 01_00 22_Feb-98 Initial release of Version 1.

Figure 5.7 Example of a Public Op. Release History within an Action

Diagram Note

Public Operations Offered as Both Transactions and Sub-
Transactions

Apart from UI-bearing operations, operations offered as transactions, are likely to

be offered as sub-transactions, but not vice-versa. The implementation of such a

transactional operation need only involve a single USE statement that invokes its

corresponding sub-transactional operation.

In this case:

 The sub-transaction should not be given combined import/export views

(that is, <exported> import views, or <imported> export views) because

procedure steps do note support these.

 The Notes of the sub-transaction need not be repeated in the corresponding

transaction.

Transactional operations may often include special, but standard, processing that

is needed at the transaction level, for example:

 Security checking

 Standard client/server data exchange, for example, USER_ID,

SERVER_TIME.

CS/3.0 Interface

 37

In this case the description of the transaction should state the extra processing

involved and then state: OTHERWISE SAME AS: operation_name.

Interface Type Model

Use the Interface Type Model diagramming tool to construct the interface type

model.

The interface type model defines the information that the interface can retrieve.

This could be by directly storing the information, or by obtaining it from other

components, or by calculating it. If the operations of the interface cannot obtain

this information in some way, it should not appear in the interface type model.

The operations may also create, modify and delete this information. Effectively,

the interface type model is a model of the information that is recallable by the

interface. It does not, in anyway, express how the information is stored or derived.

The pre-and post-conditions of an operation can refer to both the interface type

model and the operation's parameters.

There is one interface type model per interface.

In COOL:Gen, the interface type model diagram shows the entire interface type

model. That is, the interface type model cannot include types, relationships and

attributes which are not shown in the diagram.

The interface type model diagram is created when an interface is added to a

COOL:Gen model. It automatically includes the interface type itself, and this must

not be removed from the interface type model.

It may also include specification types, which define further groups of attributes

that the interface retains, and defines the cardinality of this information relative to

the interface itself. Each specification type appearing in the interface type model

must be directly or transitively related to the interface type.

NOTE: The interface type model is simply the attributes of the interface, organized into an entity

relationship model. This enables the multiplicities and other invariants of the attributes to be

expressed visually. Single-valued attributes of the interface, can be included as attributes of the

interface type itself. However, single-valued attributes are quite unusual in the interfaces of

business components, so most attributes are assigned to specification types. This enables their

multiplicity relative to interface and other attributes to be expressed.

If COOL:Gen enabled the data type of an attribute to be non-scalar, that is, an array or structure,

then the attributes of the interface could all be directly attached to the interface type itself.

However, this would be difficult to understand by a user; it is much easier to comprehend when the

attributes are organized into a type model.

The following section defines the rules that apply to specification types.

Interface CS/3.0

38

Specification Types

A specification type defines a collection of attributes referenced by a component

specification. Unlike an interface, it does not define behavior. That is, it cannot

own operations.

NOTE: In the CBD96 Standard, operations were "factored" to specification types. This practice

has been discontinued in CS/3.0.

Specification types are used in:

 The interface type model.

 The parameters of public operations.

 Pre- and post-conditions.

A specification type must own attributes.

A specification type may have relationships with itself, with other specification

types and with interface types.

A specification type may be a subtype or supertype of other specification types.

A specification type that has been included in (that is, referenced by) an interface

type model must be directly or indirectly related to the interface type for that

interface.

A specification type is normally defined as transient. That is, is has no

corresponding table in a database design.

 ADVANCED PRACTICE. The specification types included in interface type models
may be defined as persistent in the component implementation model, enabling
create/update/delete/read actions to be directly performed on the specification type
occurrences within the implementation. The fact that a specification type is defined
as persistent is not relevant to the consumer, so this should not (ideally) be apparent
in consumed specifications.

A specification type usually has at least one identifier, unless it is given the "one

occurrence" property.

A specification type may be designated as a business object type. This is for

documentation only, and has no downstream significance. It is not necessary for

business object types to own transactional operations, although you need to be

aware that COOL:Gen issues a warning message if they does not.

The same specification type may appear in the parameters and/or interface type

model of several interfaces.

CS/3.0 Interface

 39

COOL:Gen supports views of specification types (that is, subsets of attributes)

within parameters, but not within interface type models.

See Appendix B, “Recommended Naming Conventions,” for the recommended

naming conventions.

For a given interface, a specification type may be used in a parameter, without

being included in the interface type model. It may also be included in the interface

type model, without being used as a parameter.

You should write a definition for the specification type in its description panel.

EXAMPLES.

1. A component that calculates the number of days between two dates has two inputs parameters,

both of type Date, and an output parameter which is an Integer. The interface type model is empty,

since the interface does not need to recall any information.

2. To simplify the expression of certain post-conditions, the type model of the Human Resources

component refers to the Length_of_Service attribute. But this attribute never appears in the inputs

or outputs of any operations, although Service_Date (= date of joining) does.

Work Sets

Public operations may import and export work set attributes.

We recommend that specification types are used in preference to work sets, since

work sets cannot be included in subject areas, interface type models, or

specification model diagrams.

Work sets are unsuitable for use in interface type models.

 41

6 Component Implementation

Model

Overview

A component implementation model is a COOL:Gen model containing the

internal design of the component. This is, typically, lots of action diagram logic

and a database design, plus the component specification.

A white-box component delivery must include the component implementation

model. A black-box component delivery does not.

The standards in this chapter apply to delivered component implementation

models. The rules for the implementation model are minimal, allowing

considerable implementation flexibility.

These standards will also be found useful when developing a component for

internal use.

Implementation Model Contents

The component implementation model must contain everything that is in the

component specification model (see Chapter 4, “Component Specification

Model,” plus:

 One or more implementation subject areas.

 Internal types (entity types and work sets).

 Public operation implementations.

 Action diagram statements (not just Notes).

 Further internal operations or free standing action diagrams.

 Source code and/or modules for external action blocks.

 Specifications of consumed components (if any).

 Data storage design (if component directly provides persistency).

 Dummy procedure steps (if required).

Appendix B, “Recommended Naming Conventions,” provides recommended

naming conventions for:

 The implementation model.

 The implementation subject area.

Component Implementation Model CS/3.0

42

 Internal entity types.

 Internal action blocks.

 Operations libraries.

 Cascade libraries..

The following sections contain further rules and guidance.

Internal Types

An internal type is an entity type or work, set referenced by action diagrams

within the implementation model, which is not referenced by the component

specification.

Internal entity types may be persistent or transient. Work sets are always transient.

All internal types must be contained within implementation subject areas. That is,

within subject areas, which have their role set to “implementation.”

Component Implementation Type

A component implementation type for the implemented component may be

included in one of the implementation subject areas, though this is not required by

CS/3.0.

Subject Areas

A component implementation model may contain any number of implementation

subject areas.

These may be nested or at the same level.

Implementation subject areas may not be placed within specification subject areas.

Specification subject areas may, however, be placed in implementation subject

areas. The significance of this is explained below.

We recommend that an implementation model contains just one implementation

subject area.

All the component specification types, interfaces and specification types,

belonging to consumed components, must be placed inside specification subject

areas, which are in turn contained within implementation subject areas. Otherwise

it would not be possible to distinguish the specification of the component being

implemented from the specifications of the components being consumed.

Component Manager would not be able to "extract" just the component

specification from a component implementation model.

CS/3.0 Component Implementation Model

 43

Figure 6.1 provides an example of a component implementation model's contents.

The figure on the left is a hierarchical view of the contents; the figure on the right

is how the model tree actually appears in COOL:Gen. In this example, the

Ordering component’s implementation model contains a subject area for its

specification and a subject area for its implementation. The specification subject

area (SSW_ORD_SPECIFICATION) shows that the Ordering component offers

two interfaces (IORM1_INTERFACE and ICHH3_INTERFACE). For brevity,

only two operations have been depicted.

model SSW_ORD_ORDERING_02_04_I

root function SSW_ORD_ORDERING

root subj area SSW_ORD_ORDERING

spec subj area SSW_ORD_SPECIFICATION

comp spec SSW_ORD_ORDERING_02_03

offers IORM1_INTERFACE

offers ICHH3_INTERFACE

interface IORM1_INTERFACE

operation IORM1011_ORDER_NEW_S

operation IORM1021_ORDER_NEW_T

interface ICHH3_INTERFACE

spec type ICHH3_CHANGE_CATEGORY

spec type ICHH3_CHANGE_ITEM

spec type IORM1_ORDER

spec type IORM1_ORDER_ITEM

spec type IORM1_ORDERER

spec type IORD1_STANDARD_PARAMETERS

impl subj area IMPLEMENTATION

entity type ORDER

entity type ORDER_ITEM

etc.

spec subj area SSW_PRD_SPECIFICATION

comp spec SSW_PRD_PRODUCT_ADMIN_01_07

offers IPRD1_PRODUCTS

interface IPRD1_PRODUCTS

spec type IPRD1_PRODUCT

spec type IPRD1_PRODUCT_GROUP

spec type IPRD1_STANDARD_PARAMETERS

spec subj area TIS_SEC_SPECIFICATION

interface ISEC4_SECURITY

spec type ISEC4_USER

spec type ISEC4_TRANSACTION

spec type ISEC4_STANDARD_PARAMETERS

bus system SSW_ORD_ORDERING

procedure IORM1021_ORDER_NEW_T

pr step IORM1021_ORDER_NEW_T

action blk IORM1021_ORDER_NEW_T

Figure 6.1 Implementation Model Contents

The implementation subject area contains the internal entity types, plus two

specification subject areas: one for each consumed component. Note that one of

the consumed component specifications includes its component specification type,

while the other does not. Component Manager offers you this choice when

copying the component specification into a consuming model.

This example follows the recommended naming conventions and subject area

arrangement. You can use more subject areas if you wish. Component Manager’s

conversion wizard and COOL:Spex to COOL:Gen transformer will generally

create additional subject areas.

Component Implementation Model CS/3.0

44

Business Systems

There are no mandatory rules concerning the use of business systems.

In COOL:Gen, all the action diagrams must belong to a business system before

they can be generated. This includes all public operations, all consumed public

operation stubs, and all internal action diagrams, that is, internal operations or

free-standing action blocks.

We recommend that the consumed operation stubs of each component are placed

in separate business systems in the consuming model. The business system name

should be the same as that in the source component implementation model.

Appendix B, “Recommended Naming Conventions,” contains the recommended

naming convention.

NOTE: When version control (migration) is used to transfer the operation stubs from a source

model to consuming model, the business system from the source model is migrated to the

consuming model, as well as all the operations.

When Component Manager is used, the original business system name should be typed-in, when

Component Manager prompts for the destination business system.

By keeping the consumed operations of each component in separate business systems, the ability to

adopt a new version of the consumed operations still exists.

Public Operation Implementation

The operations appearing on the interfaces offered by the component are termed

public operations. This distinguishes them from internal operations used within

the implementation, especially where an object-oriented implementation style has

been adopted. Free standing action blocks, and external action blocks, can also be

used within a public operation’s implementation.

A public operation implementation is all the logic that achieves the effect defined

in the public operation’s specification. This logic consists of:

 The action diagram statements in the public operation’s own action

diagram.

 Any action diagrams directly or indirectly USE’d by the public operation:

o If external action blocks are USE’d, then the delivered implementation

must include the source code or object modules corresponding to the

external action block.

CS/3.0 Component Implementation Model

 45

o If operations of other components are USE’d, then the delivered

implementation model must contain the specifications of the consumed

operations, but not the implementation (logic) of the consumed

operations, since this is delivered as a separate component.

o Public operations may share action blocks within their implementation.

There is no requirement for an internal action block to be exclusively

used by one public operation.

o Any execution parameters needed to invoke the operations of

consumed components must exist within the consuming

implementation model. For example, the transaction codes,

source/object module names and operations library names for the

consumed operations need to be known by the consuming model

o Any internal action blocks may be defined as EXTERNAL, to enable,

for example, component persistency via a non-relational database or

the logic to be written in an alternative language.

NOTE: To simplify the extraction of a component specification from an implementation

model when the model migration capabilities are used, we recommend that action

diagrams of public operations exclude action views, local views, and any action

statements, other than a single USE statement that invokes another action diagram.

This advice does not apply to user interface-bearing public operations.

CS/3.0 does not include any further rules about how the operation implementation

should be constructed, so there is considerable flexibility in how a component

implementation is realized.

Data Storage Design

Components may support persistency. This means that the component appears to

store all the data shown in the interface type models, even if the component stops

executing and restarts later.

Persistency can be implemented using a COOL:Gen-generated relational database,

in which case the implementation model must contain the Data Storage and

Structure Design (also known as the Technical Design), which defines a table for

each internal type that is a persistent entity type.

External action blocks may reference other data stores, and the design of these

data stores is also a part of the implementation.

Persistency can also be achieved by invoking the operations of other components,

which directly or indirectly have access to data stores.

Component Implementation Model CS/3.0

46

No other component or software may access the component's persistent storage,

otherwise the component is not encapsulated. The only exception is where two

releases of the same component are storage aware or storage compatible.

 ADVANCED PRACTICE. Within an implementation model, it is permissible for the
specification types of the interfaces being implemented to be defined as persistent
rather than transient.

This technique makes it simpler to develop implementations and may result in better
run-time performance.

However, it becomes more difficult to alter the implementation in the future. An
interface should not be changed, except by extension, once it has been published
(see Appendix A, “Component Upgrades”). All specification types appearing in
specification models must be transient; internal attributes that are not referenced by
any operation should not appear in the specification model. This may cause
additional work when extracting a specification from an implementation model that
includes persistent specification types.

Component Dependencies

The components upon which the delivered component depends must be listed in

the component documentation, as explained in the Chapter 8, “Component

Documentation.”

 There may be specification dependencies upon other components or

interfaces, which should then re-occur in all future implementations of this

component, although the component or interface release numbers may

change.

 There may be implementation-only dependencies upon other components,

which may be removed or altered in subsequent releases (versions or

revisions) of this component.

The delivered component implementation model must contain the stubs of all the

consumed operations. These are actions blocks that contain import and export

views, and operation specification Notes, but no logic statements.

Dummy Procedure Step

In certain situations, the component implementation model needs to include a

“dummy” procedure step (within a “dummy”, single-step procedure).

This is because COOL:Gen will not generate object modules for an action block

unless they are called (directly or indirectly) by some procedure step. Since sub-

transactional operations are modeled using action blocks, you have to create an

artificial procedure step that USEs each sub-transaction, to obtain the

corresponding object modules.

CS/3.0 Component Implementation Model

 47

The rules for a dummy procedure step are that:

 It is a non-display step containing a succession of USE statements.

 There is one USE action-block statement for each sub-transaction of the

component.

 You should name the dummy procedure and its step

SUB_TRANSACTIONS, or a similar name.

This procedure step is never executed, hence the term “dummy.”

NOTE: We recommend that component implementation models contain just one business system

(plus a business system for each component being consumed, which contains the stubs of

consumed operations). Where the operations being implemented reside in multiple business

systems , we recommend that all the public operations belong to the same business system. If,

however, you do assign the sub-transactions to several business systems, then you will need a

dummy procedure step in each of those business systems.

The dummy procedure step is not needed in all circumstances. Do not create a

dummy procedure step when:

 The component offers only transactional operations.

 Dynamic linking of sub-transactions is preferred and the target platform

for the component executable is Unix or Windows NT.

NOTE: The COOL:Gen Component Packaging facility can generate operations libraries for Unix

or Windows NT, without the sub-transactions appearing in any procedure steps beforehand. The

generated operations libraries contain the “binary code” for one or more sub-transactions.

* An operations library for Windows NT is known as a dynamic link library or DLL.

* An operations library for Unix is known as a shared library.

Operations libraries are called at run-time, enabling dynamic linking. This is in contrast to static

linking, which happens at development-time.

COOL:Gen also supports dynamic linking for MVS environments. This is an option within

Cooperative Packaging, and still requires a dummy step to be created.

Component Implementation Model CS/3.0

48

It is permissible to for a component implementation model to contain several

dummy procedure steps.

NOTE: You may find reasons for actually executing the dummy procedure step. For example, you

use it to run tests on the component. In this case it is suggested that:

* The procedure step is given import and export views that cover all the imports and exports of the

sub-transactions therein.

* The first eight characters of the operation name are used as the operation’s associated command.

(This makes the commands unique and helps the developer know which command to use.)

 49

7 Component Executable

Overview

This chapter defines the standards that apply to a component executable.

As explained in Chapter 3, “Component Delivery,” a black-box component is

delivered without the implementation, that is, without the source code. Instead,

the customer gets the component specification model and the software (the

component executable).

The component executable is a collection of modules, which may be load

modules, operations libraries, object modules and/or database definition

statements. The component executable is this complete collection of modules.

Contents of the Component Executable

The content of the component executable depends on the use of the components,

as follows:

 For components offering transactional operations, the component

executable must include a set of load modules (executable files), which

together contain all the transactional operations.

A transactional operation is typically delivered in its own load module.

However, multi-operation load modules will be favored for some

platforms, for performance or administration reasons.

Component Executable CS/3.0

50

 For components offering sub-transactional operations, the component

executable must include a set of operations libraries which, together,

contain all the sub-transactional operations of the component, plus any

internal operations and sub-routines called by those operations.

Operations libraries are the preferred means of delivering sub-transactional

functionality. Operations libraries enable run-time linking of sub-

transactions, making it much easier to replace the sub-transactions with

new versions or revisions in the future. COOL:Gen directly supports the

generation of operations libraries for MVS, Unix and Windows NT

platforms.

If operations libraries are not delivered, then object modules must be

delivered for each sub-transaction. These enable the customer to statically

link the sub-transactions into their consuming software. Even if operations

libraries are delivered, the provisioner may choose to supply both

operations libraries and the object modules for the sub-transactional

operations.

 For components offering sub-transactional operations, for which no

operations libraries have been delivered, the component executable must

include a set of object modules, which are the sub-transactional operations

of the component, plus any internal object modules called by those object

modules.

Object modules for any external action blocks must also be delivered with

the component.

 For components supporting persistency, the component executable must

include the generated database definition statements (DDL) for the

relational database and/or the equivalent definition for non-COOL:Gen-

generated data stores.

For storage compatible component upgrades the “delta DDL” must be also

be delivered, to facilitate extension of existing database tables.

For component upgrades that are not storage aware, a data conversion

program will need to be delivered. See Appendix A, “Component

Upgrades.”

 For database products supporting static binding the component executable

must include a directory or library of bind modules. These bind modules

contain “plans” of how the database will be accessed and updated.

o DB2 for NNS requires DBRMs (database request modules).

o DB2 for Windows requires .BND files.

CS/3.0 Component Executable

 51

Execution Parameters

The transaction codes, operation library names and object module names used

within the component executable must have exactly the same values as in the

corresponding specification model. Otherwise, it will not be possible to invoke the

public operations from another component or application.

Black-Box Component Dependencies

Where the delivered component depends on the operations of other components,

this must be clearly stated in the component documentation, as explained in

Chapter 8, “Component Documentation.”

The provisioner must supply the specification of the consumed component, or its

interfaces. The customer must then supply these other components.

The provisioner may also deliver a component executable which contains further

consumed components. In this case, the dependency need not be documented,

although the provisioner may choose to inform the customer, explaining that the

consumed components are already “embedded” within the delivered software.

Where the component offers transactional operations, and the executable is

generated to run in environments other than MVS, Unix or Windows NT, then

any consumed sub-transactional operations should be statically linked into the

delivered component executable by the provisioner. This is because COOL:Gen

does not support calls to operations libraries (that is, dynamic linking) in other

than MVS, Unix or Windows NT environments. Only static linking is available.

The delivered component executable should not include any modules for the stubs

of consumed operations. These stubs appear in component implementation

models, but are not required within the component executable.

 53

8 Component Documentation

Overview

This chapter defines the information that must be supplied with a delivered

component. It is divided into three sections.

 Component Specification

 Delivery Documentation

 Test Data and Results.

Component Specification

The component specification is supplied as a COOL:Gen model.

 For a black-box delivery, the specification is delivered in a component

specification model. See Chapter 4, “Component Specification Model,”

for the details.

 For a white-box delivery, the specification is delivered within a

component implementation model. The standards for the implementation

model are given in Chapter 5, “Interface,” the rules concerning the

specification aspect are in Chapter 4, “Component Specification Model.”

Delivery Documentation

While the component specification in the COOL:Gen model provides a

comprehensive description of the behavior of each operation of the component,

there is a certain amount of additional information that the component customer

needs to know. This must be supplied as a part of any component delivery.

CS/3.0 does not prescribe the delivery medium or format of this information.

The minimal documentation requirements are set out below. Provisioners can

extend and embellish this list, as necessary. For example, they may duplicate or

summarize information already contained in the specification model.

Minimum documentation requirements are:

 Commercial or informal name of the component.

 Textual description of the component functionality and purpose.

 Differences from the previous release, if any.

 Name of the provisioner and the provisioner contact details.

Component Documentation CS/3.0

54

 Legal terms and conditions: price, warranties, usage constraints, and so on.

 The formal name of the component, as used within the component

specification model.

If the recommended upgrade and naming conventions have been

followed, this name will include a version number and release

number of the component.

 Version of the COOL:Gen Component Standards to which the component

conforms.

 COOL:Gen release that was used to create the component model.

 Names of any other component specifications, or interfaces, upon which

the delivered component depends. For example:

o The documentation should state whether the dependency is a

specification dependency (so it should be detailed within the

component specification), or an implementation design choice, in

which case the dependency would not be evident in the component

specification.

o It is preferable to record dependencies against interfaces rather than

components, since this provides the customer with more flexibility

over which components to consume.

o The specifications of these consumed components or interfaces must

be supplied. This should be in the component implementation model

for white-box components, or in associated models or documents for

black-box components.

o Where an executable component is delivered, the executable may

include the executable of all consumed components, in which case the

customer need not be aware that the executable was constructed using

other components.

 Whether the component supports persistency.

 Whether the component was engineered to support multiple component

objects. See chapter10, “Identifiers and Relationships.”

 When the component is an upgrade to a previously available component, it

is necessary to document whether the component is storage aware or

storage compatible with the previous release and, if not, what data

conversion must be done when switching to the new release. See

Appendix A, “Component Upgrades.”

 For the component implementation model, if a white-box delivery:

o Any special design objectives which the implementation designers had

in mind. For example, adaptability, high performance, high data

integrity, extensibility, minimal work space, and so on.

CS/3.0 Component Documentation

 55

o Target run-time environment currently set within the model, if any. For

example, the DBMS, TP Monitor, programming language. The

component design should have been optimized for and tested under

this platform. The customer can, however, change these settings to

generate a component executable that runs on some other platform.

o The implemented dependencies on other interfaces or component

specifications, as explained on the previous page.

 For the component executable, if a black-box delivery:

o Run-time environment (operating system, database management

system, TP monitor) required by the executable, including the release

numbers of such products.

o The execution parameters for the component can be summarized in the

documentation, although these should in any case appear in the

component specification model. These cannot be altered for a black-

box component.

o The mechanism that enables the customer to set a different server

identifier value in each installed component.

Test Data and Results

A component may be delivered with test cases and test results, to show the

customer the tests that the provisioner has performed. The customer can reuse

these tests to:

 Make sure the component is working correctly after installation in the

customer’s environment. This is especially important for components that

depend upon other components.

 Perform regression testing, checking to see that the component is working

correctly after some major software change has been instituted, for

example, a new database management system, or the replacement of a

component upon which this one depends.

 Test a modified version of an implementation component.

The tests are documented as a collection of test cases and results, along with

instructions for running the tests. The tests may also be supplied in the form of

inputs to a software testing tool. The test environment (hardware, software and

release numbers) should be included in the documentation. Where the tests require

a pre-loaded test database, the test database, or a DBMS "dump" (for example,

Oracle .DMP file, which loads up both the database structure and some test data)

should be supplied.

Component Documentation CS/3.0

56

Summary

A component delivery must always include the specification of the component,

and the information listed under Delivery Documentation on page 53.

Test data and results are a discretionary part of a component delivery.

The format and media for the delivery documentation is up to the provisioner.

 57

9 Associated Model

A component provisioner may choose to deliver additional COOL:Gen-based

functionality to help the customer make better use of the component. This

additional functionality is not a part of the component itself.

 For a white-box component, this additional functionality must be delivered

in a separate COOL:Gen model, known as the associated model. The

additional functionality must not be delivered within a component

implementation model.

 For a black-box component, the additional functionality may be delivered

in an associated model. It may also be delivered in the component

specification model, rather than as a separate model.

The following sections provide examples of some of the additional functionality

that may be supplied with a component.

The recommended naming convention for the Associated Model is given in

Appendix B, “Recommended Naming Conventions.”

Examples of Contents

Test Transactions

A collection of user interface-bearing procedure steps may be supplied, which

enable the customer to test and explore all the operations of a component. These

save the customer from having to develop his or her own test transactions for the

component.

Ideally, the customer could use these test transactions to perform the test cases

supplied within the component documentation.

 Some provisioners may choose to supply a single transaction that can be

run to check that the component is installed properly, without testing every

aspect of the component.

 Some provisioners may prefer to supply a non-COOL:Gen built test

harness that allows the customer to check that the component is correctly

installed, or that enables the customer to test individual operations.

Associated Model CS/3.0

58

Maintenance Transactions

Some components require “constants” to be stored in a database before the public

operations can be used within line-of-business applications. For example, a table

of the Country Codes may be needed. In such cases, the component provisioner

could supply a maintenance application (one or more user-interface bearing

procedure steps), that allows the system administrator to set up and maintain these

“constants.”

The user-interface bearing transactions should USE public operations of the

component in order to access and update the data store of the component.

NOTE: Components may offer user interface-bearing operations, which are an integral part of a

component interface and will be documented to the same standard as any other public operation.

These are not be delivered in the Associated Model, since they are the component’s public

operations. The maintenance transactions referred to in the section above, are not bona fide

operations of the component, and are supplied as a convenience to customers.

Default User Interface Designs

Components may be supplied with default user-interface designs. These may be

used by application developers as a starting point for developing a user interface

for an application that uses the component. They are delivered as procedure steps

with windows or screen layouts. They are not considered to be operations of the

component and do not need formal operation specifications.

The test transactions described earlier can act as both test transactions and default

user interface designs.

Sample Application

A sample application demonstrates a possible use of the component. It may have

been obtained from an early customer, or it may be a usage example created by the

provisioner. The sample application can be used by the customer as an installation

test, or may be adapted by the customer to meet specific business needs.

CS/3.0 Associated Model

 59

Application Translation Blocks

An application translation block is an “adaptor” for a public operation. It

translates the application’s (or other consumer’s) data model attributes into the

names that the component employs. The application never calls a public operation

directly; it always calls the translation block, which converts the application’s

terminology into component terminology (and back again), and calls the actual

public operation. It is anticipated that this will be a common practice within

application models.

A component provisioner may choose to supply these translation action blocks

with the component, to save the customer from having to build them. Of course,

the provisioner can only provide a “template” which the customer will need to

adjust to the specific application’s attribute, type and operation names.

Organizing the Associated Model

The additional functionality should be grouped into business systems that are

named to reflect their purpose. For example, TEST_TRANSACTIONS,

DEFAULT_WINDOW_DESIGNS, SAMPLE_APPLICATION. If additional

entity types are involved, these should be placed in a subject area that takes the

same name as the business system.

Action blocks and procedure steps should be named so they are readily

distinguishable from public operations. For example, all test transactions can be

given names beginning with TEST_.

This is particularly important if the additional functionality is delivered within the

specification model, instead of in an associated model.

 61

10 Identifiers and Relationships

Overview

This chapter standardizes the identifiers and relationships used by CS/3.0

components. Four kinds types of identifier are described:

 Instance identifiers, for interface type model types.

 Business identifiers, for interface type model types.

 Server identifiers, for installed copies of components.

 Component object identifiers, for run-time instances of components.

Relationships between instances of specification types that are maintained by

different components are recorded using instance identifiers. These are termed

cross-component relationships and are further explained in the Cross-Component

Relationships section on page 65.

Instance Identifiers

An instance identifier is required on any specification type that is likely to be

referenced from some other component. That is, some other component

“remembers” these identifiers in order to form a relationship with an occurrence

of the specification type.

However, a specification type registered as a “single-occurrence” does not have

identifiers and will not require an instance identifier of its own.

NOTE: It is suggested that each business (object type) appearing within an interface type model is

given a instance identifier, since these are very likely to be referenced by other components.

A standard instance identifier must be an attribute that is:

 Named INSTANCE_ID (instance identifier).

 Defined as an identifier of the specification type.

 A fifteen-digit numeric field.

A standard size allows for generic treatment of cross-component

relationships.

Identifiers & Relationships CS/3.0

62

The value of an instance identifier:

 Is immutable.

An occurrence of a specification type receives the identifier when it is first

instantiated, and it remains unchanged until it is deleted.

 Has no business meaning.

It is not intended that the identifier values are made known to business

users.

 Is unique within a component object.

References to instances of specification types maintained within a component that

has been built to support multiple component objects, require two attributes: the

component object id and the instance id. Where a component is built to support

only a single component object (which is often the case), then references to

instances of the specification types need only include one attribute—the instance

id.

Business Identifiers

Specification types usually define identifiers known to business users. These

identifiers are called business identifiers. All instances of specification types must

be uniquely identifiableby an instance identifier, a business identifier, or both.

A business identifier need not be restricted to a single attribute. It may be a

composite of several attributes and/or relationships. A specification type may have

several business identifiers.

For example, Suppliers are identified by Supplier Number or by a combination of

Name and Address. Products are identified by their Product Code. Claimants are

identified by their Social Security Number. Order Lines could be identified by the

instance identifier of the Order to which they belong plus the line number.

While most business identifiers are expected to be immutable, this is not always

the case. For example, they may need to be extended as the number of customers

grows. Business Identifiers vary in format from one specification type to another

and cannot be used as the basis for a general treatment of cross-component

relationships. Hence the need for internal, immutable instance identifiers.

Server Identifiers

Each installed copy of the component executable is allocated a number that is

unique across all the installed components for an organization.

Every operation execution must export this unique number, to communicate to its

consumer which of the installed copies of the component actually executed the

CS/3.0 Identifiers & Relationships

 63

operation. This can be useful to know when the same component is installed

multiple times.

This unique number is the component server identifier. The standard parameter

name for it is ORIGIN_SERVID.

Note that we originally referred to installed components as component servers.

The term installed component is now preferred.

CS/3.0 requires each operation execution to export a component server identifier

value in an attribute view named ORIGIN_SERVID. This is also explained in the

Standard Parameters section of Chapter 5, “Interface.”

NOTE: SERVID is a fifteen digit numeric attribute. Some organizations may prefer to keep the

value of server identifiers less than 232 so the value can be transferred to or from widely-used 32-

bit numeric fields.

Organizations do not need to populate this parameter if they do not find it of value.

An operation normally exports the SERVID of the component just invoked.

However, when an error occurs during a nested invocation, the ORIGIN_SERVID

should export the server identifier of the component which first detected an error.

This is valuable when a failure occurs, since it helps the operations support team

to identify exactly which of the installed component copies experienced the

failure.

For components supplied as white-box components, the provisioner must provide

a means for the customer to set a different server identifier value in each installed

component.

NOTE: We recommend that the value of the component server identifier is generated by a special

action block, that is always named Cccc999v_SETSERVID. Every public operation execution can

invoke this action block to obtain the value of the component server identifier. This action block

only exports one attribute: ORIGIN_SERVID. The component customer can modify the action

block logic, so that each installed component returns a different ORIGIN_SERVID value.

Customers do not have to modify the action block, if they do not see the benefit of unique

component server identifiers within their organization.

For components supplied as black-box components, the provisioner must provide

a documented mechanism that enables the customer to set a different server

identifier value in each installed component.

Identifiers & Relationships CS/3.0

64

Component Object Identifiers

Components can be engineered to support several instances of the same

component at run-time. The component software is installed once, and it then

manages several distinct run-time instances, each instance being called a

component object.

 Each run-time instance has its own persistent data.

 Each operation can only operate on one component object at a time.

A component object is identified by its immutable component object identifier,

which should have a unique value across all the component objects (run time

instances) for a given component specification.

Components can be built to support multiple component objects by:

 Offering interfaces in which every operation imports the component object

identifier value.

 Labeling the persistent data with the component object identifier, so the

data belonging to each component object can be differentiated. For

example, the key of each table of a relational database could include the

component object identifier.

Component object identifier values can be “hard coded” into the component

consumers, or allocated programmatically at creation-time. (The latter is usually

done by some other component which is often called the “factory” for our

component’s objects).

Multiple component objects may be useful whenever the specification type

instances (in the interface type models of the interfaces offered by the component)

can or must be partitioned into distinct collections.

For example, a company manages retail and personal orders through entirely

separate departments. The orders use the same Sales system, but the orders must

be kept entirely separate from one another. The company buys an Order

Management component, which supports multiple component objects. All the

retail orders are managed by component object “R”, and all the personal orders are

managed by component object "P“. These two component object identifiers are

"hard coded" into the consuming application.

In another example, a company with many stores needs to keep track of the stock

in each store. It has a stock control application that runs on a mainframe. The

stock component which is developed supports multiple component objects, and

each component object manages the stock from one store. When a new store is

opened, the application allocates a new component object identifier, effectively

“instantiating” a new component object for the store. The stock component is

unable to report the total value of all stock in all stores. A different component or

CS/3.0 Identifiers & Relationships

 65

the application software has to do this, since an operation can only act on one

component object at a time.

So, component objects are simple a different name for a development technique

that has existed for years.

 ADVANCED PRACTICE. To support multiple component objects, the component
object identifier (COID) should be defined as an attribute of the interface type. This
attribute is registered as the primary identifier of the interface.
All operations of this interface are recorded as instance operations of the interface;
then each operation you define will automatically include an import view for the
COID.

There is no requirement for CS/3.0 components to support multiple component

objects. Components that support a single component object are perfectly valid.

Cross-Component Relationships

A relationship between a specification type managed by one component, and a

specification type managed by another, must be recorded using the instance

identifier of one of the specification types.

Figure 10.1 shows an Example of Cross-Component Relationship.

Figure 10.1 Example of a Cross-Component Relationship

In this example, the Ordering_Component offers the I_Orders interface, and the

Customer_Administration_Component offers the I_Customers interface. Each

Order managed by I_Orders needs to be related to a Customer managed by the

I_Customers interface.

Identifiers & Relationships CS/3.0

66

The relationship is formed by I_Orders “remembering” the instance identifier of

the Customer that placed the Order. This is shown in the interface type model for

I_Orders by the attribute Customer_Ref. Customer Ref is what relational database

designers would call a “foreign key.” The Customer_Ref attribute must contain

an instance identifier, not a business identifier, since business identifiers are not

immutable, and do not have a standard format.

This simple example explains the rule that instance identifiers must be used to

form cross-component relationships. A standard format instance identifier enables

the referencing attribute to define associations with the instances of various

specification types.

CS/3.0 does not require that cross-component instance references are maintained

with full referential integrity. There are various mechanisms for maintaining full

or partial referential integrity, which are outside the scope of this standard. The

integrity may be maintained by the referencing component, or by some mutual

consumer. References may be uni-directional, as in our example, or bi-directional.

The referencing attribute may be placed in its own specification type if preferred.

 67

Appendix A: Component Upgrades

Overview

This appendix presents recommendations for numbering new releases of CS/3.0

components. It explains how to number new releases of components, interfaces

and operations. A summary chart appears at the end of the chapter.

Release Numbering

A component upgrade—designed to correct errors, improve performance, provide

additional functionality, and so on—is made available in a new release of a

component.

A new release of a component is given the same name as the previous release,

except its release number is incremented using the rules described below.

Component naming conventions are summarized in Appendix B, “Recommended

Naming Conventions.”

Component release numbers are made up of two parts:

 Version number.

 Revision number.

The initial release of a component is assigned release number 1_0. That is, version

1, revision 0.

For subsequent releases:

 If the release represents a new version, the version number is incremented

and the revision number is reset to 0.

 If the release represents a revision, the revision number is incremented.

A revision is a new release that is specification-compatible with the previous

release. This means that a consumer of the component is not impacted. This

allows the new release to be used in place of the old, without impacting any

consuming application or component.

A version is a new release that is not specification-compatible with the previous

one. The introduction of a new version of a component will have an impact on

existing consumers of that component and must be managed accordingly.

Component Upgrades CS/3.0t

68

Similar concepts and rules apply to the interface offered by the component, and to

each of the public operations within that interface. For example, a revision to an

interface must be specification-compatible with the previous version of the

interface.

Revisions

A revision of a component, interface, or operation must be specification-

compatible with its previous release. This means that the specification of the

revision must be the same as the previous release or an extension of the previous

release. That is, the new specification must add to the existing one, without

contradicting it or removing anything from it.

Component Revisions

A component revision is required when any of the following specification-

compatible changes occur:

 Its specification is extended.

 Its implementation or executable is changed, without affecting the

specification.

 Its documentation is improved.

The specification is considered extended when any of these occur:

 An interface is revised.

 A new version of an (existing) interface is added.

 A whole new interface is added.

Implementation changes that do not affect the specification will be those that

improve the quality of the component (for example, fix bugs or improve

performance). Where the component specification has been extended, the

implementation must also change to provide the additional behavior.

Changes to a delivered component executable also imply a new component

revision, even if the implementation has not changed, since it may affect the

installation process. For example, generating for a different database version or

generating to a different target language will require a component revision.

The component revision number appears in the name of the component

specification type, in model names and in the Delivery Documentation.

CS/3.0 Component Upgrades

 69

NOTE: For a revision that does not change the component specification in any way, it is

reasonable to leave the component specification type's revision number unchanged, while the

revision number on the component implementation model is incremented. Hence the revision

number on the model name may be higher than that on the component specification type, though

the version number must not differ.

Interface Revisions

An interface revision is required when the interface specification is extended by

any of the following:

 An existing operation is revised.

 A new operation is added.

 The interface type model is extended.

Operation revision is discussed in the next section (on page 70).

New operations (including new operation versions) can be added to the interface.

These may be specified in terms of the existing interface type model, or they may

require extensions to it. Any interface type model extension required by the new

operation must be compatible with the existing model, so that existing operation

specifications are unaffected. This means that new specification types can be

added and these may be subject to new invariants, but existing types must not be

affected, and existing invariants must not be changed.

The following interface type model changes are considered extensions:

 Additional attributes and relationships for existing specification types.

 Additional specification types.

 Additional subtypes for existing specification types.

This may include additional partitionings.

 New constraints defined against these additional types, subtypes, attributes

and relationships.

If the required interface type model changes are more significant and are not

simple extensions, a new version of the interface, or even a completely new

interface, is required.

Interface revision numbers are recorded in the interface type description, not

within the interface name.

Component Upgrades CS/3.0t

70

Operation Revisions

An operation revision is required when a public operation specification is

changed, but is unlikely to have a significant impact on existing consumers of the

public operation.

A signature change is always deemed to have significant impact, and requires a

new version of a public operation.

Where the changes are limited to the following, then the change will qualify as a

revision:

 Further unspecified reason codes for existing return codes.

 Documentation improvements.

Component provisioners are left to decide whether an operation specification

change will have a significant impact on a consumer's logic, in cases where the

signature of the operation remains unaltered. Where they judge it will have a

significant impact, a new version of the public operation should be delivered,

rather than simply incrementing the revision number of the existing public

operation.

In short, any change to a public operation specification that is not deemed by the

provisioner to require a new operation version, is treated as a revision.

Operation revision numbers are recorded in the operation's action diagram

description, not within the operation name.

Versions

A new version of a component, interface, or operation need not be specification-

compatible with its previous release, and so, in general, it will involve more effort

than replacing the old with the new. Typically, the logic in the consuming

implementations will need to be altered to take advantage of the newly delivered

version.

NOTE: In some cases, a new version may be created for other reasons, such as market

requirements or numbering consistency across a portfolio of components, even though the new

version is technically specification-compatible with the previous one. These cases are not covered

here.

CS/3.0 Component Upgrades

 71

Component Versions

A new component version is required when a change is made that is not

specification-compatible. This occurs when an interface is removed from a

component.

When a new version of an interface is designed, the component should offer both

the original and new versions of the interface. This counts as a revision to the

component. However, if the original version is discontinued, this requires a new

version of the component.

The component version number appears in the name of the component

specification type, the delivered model name (see Appendix B, “Recommended

Naming Conventions”) and the Delivery Documentation.

Interface Versions

A new interface version is required when:

 The interface type model is changed in an incompatible way. That is, the

new type model is not an extension of the previous one.

 An operation is removed from the interface.

Incompatible interface type model changes mean that existing operation

specifications are affected and a new interface or new interface version must be

introduced.

The following interface type model changes are considered incompatible:

 Removal of specification types, subtypes, attributes and relationships.

 Any change to existing invariants on specification types, attributes and

relationships. This includes addition of invariants as well as removal of

invariants.

 Any change to the data types of attributes.

NOTE: Name changes to specification types and attributes used in operation views are, strictly,

incompatible changes since they affect the consumer. However, where the altered operation

specification is not migrated into the consumer model, the consumer could be re-linked to the new

object module, or dynamically linked to the new operations library, without problem.

For example, changing the cardinality of a relationship membership from one to

many is a change to an invariant and is, therefore, an incompatible change.

Similarly, changing the length of a text attribute is considered an incompatible

change.

Component Upgrades CS/3.0t

72

Interface version numbers are recorded in the interface name as part of the

interface prefix.

When a new interface version is created, any operations that are retained (carried

forward onto the new interface and changed accordingly) will require a name

change to show that they are different from a prior version. However, the

opportunity exists to carry forward the version number and revision number of the

corresponding operation on the previous interface version. This may be done, if

required, and may be useful for distinguishing between multiple versions of the

same operation on the same interface, if both were carried forward, or for

identifying the consumer changes needed to incorporate the new component

version.

Operation Versions

A new operation version is required when the operation specification is altered in

a way that will have significant impact on the current consumers.

A signature change has a significant affect, and always requires a new version.

Even when the signature remains the same, the operation specification might be

changed in a way that has significant impact on the consumer. For example:

 Return code changes, that is, additions, deletions or changes in meaning.

 Reason code changes, that is, additions, deletions, or changes in meaning

to any reason codes that have been detailed as part of the operation

specification.

 Changes to pre-conditions and post-conditions.

The component provisioner is left to judge whether a non-signature change is

liable to require significant logic changes for current consumers. Where they

judge the change will have significant impact, a new version of the public

operation is supplied, and the old version should continue to be supplied.

When a new interface is required, new versions of all the operations it retains are

required, including those operations that were not affected by the change.

Documenting Release History

Instead of recording just the current revision number and date in the component

specification and interface type description panels, a release history may be

provided.

CS/3.0 Component Upgrades

 73

The releases are listed newest first, oldest last. For example:

NOTE RELEASE HISTORY:

 02_00 31-Feb-99 Interface ISS1 dropped

 01_04 01-Apr-98 Interface ISS2 added

 01_03 01-Jan-98 Identifier generation algorithm

 changed - used by many operations

 01_02 01-Dec-97 Indexes added to database design to

 improve performance

 01_01 01-Feb-97 Operation XYZ added to interface ISS1

 01_00 01-Jan-97 Initial Release

The component provisioner decides how many releases to include in the list. The

list may include revisions which did not change the specification.

Storage Compatibility

A new component release must be able to access the data stored by the previous

release.

There are three main ways of doing this:

 Data conversion.

A separate one-off migration program is delivered with a new component

release. This program converts the data from the old storage format into

the new, and has to be run before operations of the new release can access

the previous release’s stored data.

 Storage aware release.

The new component understands the storage format of the previous release

and can read all the data stored by the previous release, although it might

or might not subsequently store data in that format. In this case we say the

new release is storage aware of the previous version.

 Storage compatible release.

The storage format of the new release is the same or is a compatible

extension to the previous release. In this case we say the new release is

storage compatible with the previous version.

Storage compatible releases are a special case of storage aware releases.

This means that, when installing the new release, only additions to the

current database definition statements need to be compiled. Of course, if

this is an initial purchase for a customer and not an upgrade, then all

database definition statements must be compiled.

Component Upgrades CS/3.0t

74

Upgrade Summary

The table “Revisions and Versions Required by Various Kinds of Upgrade”

summarizes whether a revision or new version of the operation, interface or

component is required for the main classes of change to a component. Refer to

previous paragraphs to understand the meaning of “extension” and “incompatible

change.”

TYPE OF CHANGE: operation
numbering:

interface
numbering:

component
numbering:

OPERATION CHANGES:

Only the implementation (of
one or more operations, or
the data store design) has
changed

no change no change revision

No significant impact on
existing consumers

revision revision revision

Signature change, or
significant impact on existing
consumers

version

(see note 1)

revision revision

INTERFACE CHANGES

New operation revision revision

Interface type model
extension

 revision revision

Operation removal version revision

Interface type model
incompatible change

 version

(see note 2)

revision

COMPONENT CHANGES:

New Interface revision

Interface removal (e.g. an
interface replaced by new
version)

 version

Revisions and Versions Required by Various Kinds of Upgrade

Note 1: The original version of the operation must continue to be supported by the

new release of the interface; otherwise this amounts to operation removal.

Note 2: The original version of the interface must continue to be supported by the

new release of the component; otherwise this amounts to interface removal.

 75

Appendix B:

Recommended Naming Conventions

Introduction

These conventions are not a mandatory part of CS/3.0.

However, it is suggested, that component developers adopt these conventions,

unless there is a good reason not to do so. The rationale for each naming

convention is given, so where you have other objectives, or other standards to

comply with, or simply disagree with the stated rationale, then it is reasonable to

establish a different convention – or no convention at all – in your organization.

The following notation is used in the naming formats:

 lower case italics indicates an element of the name which is variable

 UPPER CASE ITALICS indicates an element of the name which is a fixed

literal.

Recommended Naming Conventions CS/3.0t

76

Component Specification (Type) Name

Form the component specification (type) name as follows:

ppp_ccc_componentname_vv_rr

where... is...

ppp Unique identifier of the component provisioner

ccc Unique code for the component

componentname Succinct textual name for the component (16
characters maximum)

vv_rr Release number comprised of:

 vv Version number, which may be one or two
digits; the first version is normally numbered 01.

 rr Revision number, which may be one or two
digits; this number is normally 00 on the initial
release for a new version.

Examples of component specification (type) names:

 CSF_HRC_HUMAN_RESOURCES_1_1

 SSW_PRM_PRODUCT_MANAGMNT_02_00

Rationale:

 Component specifications names are unique, and convey further useful

information.

 Different releases of a component specification can be readily

distinguished, since the version and revision number are incorporated into

the name.

 Components acquired from different provisioners have unique names,

even if the same component code has been used.

 The component code (which is reused in other naming conventions) is

readily evident from the model name.

 Unique model names can be formed by extending this component

specification name.

CS/3.0 Recommended Naming Conventions

 77

Model Name

Form model names as follows: ppp_ccc_componentname_vv_rr_m

where... is...

ppp_ccc_compon
entname_vv_rr

The component specification name.

But, the release number of an implementation model
and associated model can bear a higher revision
number than the specification, owing to revisions that
do not change the specification. The version number of
implementation and associated models must be the
same as for the corresponding specification.

m Type of model:

 S Component Specification Model

 I – Component Implementation Model

 A – Associated Model for a component delivery

 other - Used to distinguish the development status
of components still under development

Examples of model names for the component specification

SSW_PRM_PRODUCT_MANAGMNT_02_00.

 Component specification model name (delivered with a black-box

component): SSW_PRM_PRODUCT_MANAGMNT_02_00_S

 Component implementation model name (delivered with a white-box

component): SSW_PRM_PRODUCT_MANAGMNT_02_00_I

 Associated model name (additional delivered functionality, not a part of

the component): SSW_PRM_PRODUCT_MANAGMNT_02_00_A

 Component implementation model still undergoing unit testing: for

example SSW_PRM_PRODUCT_MANAGMNT_02_01_U. Note that

this is the first revision to version 2 of the component. The component

specification must be version 2, but may bear a lower revision number

(that is, 00) if the implementation was changed but the specification was

not.

Notes:

1. This convention is unsuitable for models containing multiple component

implementations (not recommended) or specifications.

2. The short model name can take the form: cccvvrrm.IEF

Rationale:

 Model names are unique and convey useful information.

Recommended Naming Conventions CS/3.0t

78

 The component specification version that this model supports is readily

evident.

 Component models acquired from different provisioners have unique

names.

 Multiple releases of a component model can coexist in the same

encyclopedia.

 The content of the model (implementation, specification-only, or

associated functionality) is readily evident from the model name, and all

can coexist in one encyclopedia.

 The component code (needed in other naming conventions) is readily

evident from the model name.

If two models acquired from different provisioners incorporate the same

component code, and both these components will be deployed in the same

computing environment, then it is advisable to change one of the

component codes, since other naming conventions depend upon the

component code being unique across the computing environment.

CS/3.0 Recommended Naming Conventions

 79

Interface (Type)

Form interface names as follows: Ixxxv_ interfacename

where... Is...

I Leading literal

xxx Three alphabetic characters forming the interface code

v One-digit interface version number

interfacename Succinct textual name for the interface, maximum 26
characters

Examples of interface names are:

 IEMP1_EMPLOYEE_MANAGER

 IPRB3_PRODUCTS

 IACC1_INTERFACE

 IAC1_ACCOUNTS (see Note 4)

Notes:

1. Where an interface manages multiple occurrences of the concept

mentioned in the interface name, then, by convention, the keyword

MANAGER or MGR is added to the interface name. Otherwise, the

interface name is likely to clash with a specification type name. For

example, interface IEMP1_EMPLOYEE_MANAGER manages

specification type IEMP1_EMPLOYEE.

2. An alternative convention is to pluralize the interface name.

3. The practice of making the interfacename the literal value INTERFACE

is acceptable, although it conveys less meaning to the reader.

4. Previous versions of the COOL:Gen Component Standard allowed two

character interface codes. These are still acceptable, to allow for

backward compatibility—and since these naming conventions are

guidelines, not mandatory standards.

Rationale:

 To provide each interface with a unique name, so multiple interfaces can

coexist in models.

 To readily distinguish interfaces from the non-interface types in

COOL:Gen models.

Recommended Naming Conventions CS/3.0t

80

 To enable different versions of an interface to exist in a model. For

example, a component specification may offer the original version and a

new version of an interface; these are different interfaces, so they must

bear different names.

 To define a 5 character code Ixxxv, which is reused in the names of various

interface features.

CS/3.0 Recommended Naming Conventions

 81

Specification Subject Area

Form the specification subject area name as follows: ppp_ccc_SPECIFICATION

where... Is...

ppp Unique identifier of the component provisioner

ccc The component code, as used in the component
specification type name

Examples of specification subject area names:

 CSF_HRC_SPECIFICATION

 SSW_PRM_SPECIFICATION

Notes:

1. This guideline refers to a single specification subject area that contains all

specification elements. No guideline is offered where multiple

specification subject areas are defined.

Rationale:

 To provide a unique name for the specification subject area in consuming

models. The name needs to be unique because:

o The specification subject area is imported into models that consume

this component specification, even when a single interface or operation

is consumed.

o To avoid subject areas being automatically renamed (when using

migration or Component Manager to consume a component

specification within an encyclopedia-based model).

o To avoid the specification subject being of the consuming model being

incorrectly re-positioned, when a name clash occurs while using

Component Manager on local models.

 So that the component, to which a consumed interface or operation

belongs, is visible in a consuming model.

The component specification type need only be imported into the

consuming model when the specification properties – the specification

release number (version + revision) and invariants – need to be visible in

the consuming model.

Recommended Naming Conventions CS/3.0t

82

Specification Type (or Work Set)

Form specification type names as follows: Ixxxv_spectypename

where... Is...

Ixxxv_ Interface prefix, in cases where the specification type is
referenced by one interface.

In cases where the specification type is referenced by
several interfaces of the component, you may prefer to
set xxx to the component code. So the prefix is Icccv.

spectypename Succinct, descriptive name for the specification type

Examples of specification type names:

 IEMP1_EMPLOYEE

 IEMP1_JOB

 IPRB3_PRODUCT_SALE

 IAC1_ACCOUNT

 IHRC1_RESULTS (shared specification type)

 IHRC3_USER_INFO (shared specification type)

Notes:

1. In the above examples, HRC is a component code, not an interface code.

The version number given after HRC is not the component version, but

the specification type version.

2. Specification types which are referenced by just one interface (in its

interface type model, and/or its operation parameters) are given the same

prefix as the interface type.

3. Specification types intended to be referenced by any number of interfaces

(in its interface type model, and/or its operation parameters) are prefixed

Icccv, where v allows for several versions of this type to coexist in one

model.

4. There is no requirement to rename a specification type which was

originally given an interface prefix, and which is subsequently referenced

by other interfaces.

5. You may wish to prefix every specification type with Icccv from the start,

since they are all potentially shareable.

CS/3.0 Recommended Naming Conventions

 83

6. CS/3.0 permits the use of work sets in component specifications. They

may not be used in interface type models, but operation parameters may

be views of work sets. However, it is suggested that all these work sets

are "promoted" to specification types. If work sets are referenced by

parameters, they should follow the same naming convention as

specification types.

Rationale:

 Provides a unique name for the type within a model.

While several interfaces may reference the same underlying type in there

type models, the attributes may vary.

 Allows the internal entity types to be named without suffixes or prefixes.

(COOL:Gen does not allow specification types and entity types and

interface to bear the same name.)

 The interface which this type describes is readily identifiable, without the

need to inspect the interface type model.

 Shared specification types adopt a similar naming structure.

 Continuity with CBD96 conventions.

Recommended Naming Conventions CS/3.0t

84

Public Operation Name

Form public operation names as follows: Ixxxvoow_typename_action_g

where... is...

Ixxxvoow Unique eight-character prefix for the operation, which
becomes the operation's object module name. This code
is comprised of:

 Ixxxv – The Interface Prefix of the interface to which
this operation belongs

 oo – The Operation Code, which must have a unique
value within its interface. Usually numeric

 w – The Operation Version Number, enabling an
interface to support several versions of the same
operation

typename Name of the type upon which the operation acts. This is
usually a specification type, but could be the interface
type itself.

Avoid using underscores and spaces in the typename.

This may be a consistently used abbreviation of the full
typename.

action Verb summarizing the action that the operation performs.

Sometimes several words will be needed to clarify or
distinguish the action; avoid using spaces or underscores
within the action name.

g Operation category:

 S Sub-transactional Operation

 T Transactional Operation with no user interface
support

 U transactional operation with User Interface
Support.

Examples of public operation names:

 IEMP1011_EMPLOYEE_ADD_T

 IEMP1021_EMPLOYEE_ADD_S

 IEMP1031_JOB_CHANGE_S

 IEMP1032_JOB_CHANGE_S (a new version of the operation above)

 IAC10011_ACCOUNT_OPEN_S

 IAC10021_ACCOUNT_CLOSE_S

 IPRD3011_PRODGRP_MODDISCOUNT_U

 IPRD3021_INTERFACE_UPDATE_S

Notes:

CS/3.0 Recommended Naming Conventions

 85

1. In COOL:Gen models:

o Sub-transactional operations are represented by BSD action blocks.

o Transactional operations are represented by non-display procedure

steps.

o User interface-bearing operations are represented by display procedure

steps.

2. Where a two-character xx interface code is used, the operation code is the

three characters ooo, and the operation prefix is Ixxvooow.

3. An interface type may directly own attributes, which are not "factored" to

any specification type. In this case, an operation that updates these

attributes is focused on the interface type itself, rather than on a

specification type. The last example above is intended to illustrate this

possibility. The interface was named INTERFACE to emphasize this

point.

 ADVANCED PRACTICE. Where new component objects can be created and
deleted programmatically at run time, then these will be performed by the create and
delete operations on the interface itself. For example,
IPRD1031_INTERFACE_CREATE_S and IPRD1041_INTERFACE_DELETE_S.

Rationale:

 To ensure operation names are unique across an organization, preventing

name clashes when they are consumed.

 The owning interface is readily evident from the name.

 The first eight characters are unique, enabling the default source module

name set by COOL:Gen to be to be acceptable and meaningful.

o COOL:Gen creates the source and object module names for an

operation from the first eight characters of the action diagram name.

By providing a unique first eight characters, there is no need to adjust

the names created by COOL:Gen.

Furthermore, these names allow two operations versions to coexist,

and same operations versions on different interface versions to coexist.

 ADVANCED PRACTICE. Some organizations may prefer to use "versionless
interfaces." In this case, incompatible interface type model changes and dropped
operations are treated as a revision to the interface rather than as a new version.
This violates the recommendation given in Appendix A, “Component Upgrades,”
because interface stability has not been preserved, and existing consumers are likely
to be impacted by the change. For versionless interfaces, the operation name format
is Ixxxooow.

 ADVANCED PRACTICE. Some organizations have found it useful to provide
operation prefixes that are longer than eight characters. The first underscore in the

Recommended Naming Conventions CS/3.0t

86

operation name is considered to terminate the operation prefix. Remember that the
first eight characters should be unique, so that the module names generated by
COOL:Gen (from these characters) are also unique.

Parameters of Public Operations

In COOL:Gen, parameters are represented using import and export views.

Form type and group view names as follows:

 Import view names begin in_[qualifier_]

 Export view names begin out_[qualifier_]

 Combined import/export views (that is, <exported> import and

<imported> export views) are named inout_[qualifier_]

The qualifier may be used to distinguish several views of the same type or to

improve the semantics of the view.

Notes:

1. Alternative view names (for example, import, export, impexp) can be

used, as long as that usage is consistent for all operations of the interface.

Rationale:

 Input and output data can be readily distinguished in both the specification

and the implementation.

 COOL:Gen requires the views of a given type and direction to have a

unique name

CS/3.0 Recommended Naming Conventions

 87

Business System, Root Subject Area, Root Activity

Form the business system name, root subject area name and root activity

(function) name as follows: ppp_ccc_componentname

where... is...

ppp Provisioner code, as in the component specification
name

ccc Component code, as in the component specification
name

componentname Textual name for the component, as in the component
specification name

Examples of business system and root subject area names are:

 CSF_HRC_HUMAN_RESOURCES

 SSW_PRM_PRODUCT_MANAGMNT

Notes:

1. The root subject area, the root activity and a business system are

automatically created when a new model is opened. The root subject area,

root activity and business system are given the same name as the model.

So, name the new model in one of the following ways:

o Name the new model ppp_ccc_componentname, so the root subject

area, root activity and business system get the correct name, then alter

the model name so it include the version number, revision number and

model type.

o Name the new model ppp_ccc_componentname_vv_rr_I, and then

remove the version number, revision number and model type code

from the root subject area, root activity and business system.

2. It is recommended that all the public and internal operations of a

component implementation are placed in the default business system.

This has the same name as the root subject area and root activity. The

public operations of each consumed component should be placed in

separate business systems; these business systems should carry the same

name as in their respective source models.

3. The root activity is always a function, so is also known as the root

function.

Rationale:

 To provide a tidy name for the root subject area, root activity and business

system.

Recommended Naming Conventions CS/3.0t

88

 To exclude the version number, revision number and model type code

from these names so they do not have to be altered, or become misleading,

when models are copied to form new versions or model types.

 To provide unique business system names, in case the business system of a

consumed component is migrated into the consuming model.

CS/3.0 Recommended Naming Conventions

 89

Implementation Subject Area

Form the implementation subject area name as follows: IMPLEMENTATION

Examples of implementation subject area names:

 IMPLEMENTATION

Notes:

1. This guideline refers to a single implementation subject area that contains

all implementation elements, including the specifications of consumed

components. No guidelines are offered for the case where multiple

implementation subject areas are defined.

Rationale:

 To make it obvious that this subject area contains the implementation-only

elements of a component implementation design.

Recommended Naming Conventions CS/3.0t

90

Internal Entity Type Name

Internal entity type names are pure text; they do not include any codes or prefixes

or suffixes.

Where the internal entity type has a corresponding specification type, then it

should have the same name as the specification type, without the Ixxxv_ interface

prefix or Icccv shared type prefix.

For example, the internal entity type, which corresponds to specification type

IEMP1_EMPLOYEE, is named :

 EMPLOYEE

Notes:

1. Internal Entity types may be persistent or transient.

Rationale:

 Internal entity types can be distinguished from specification types, since

they lack the interface prefix. It is easy to find their corresponding

specification type.

CS/3.0 Recommended Naming Conventions

 91

Internal Action Block

Form the internal action block names as follows: axxxvoow_opname

where ... is ...

a Any character other than “I” or "C"

xxxvoow

The last seven characters of the operation prefix
Ixxxvoow, from the name of the public operation which
this internal operation implements

Different leading characters may be used to indicate
which part of the implementation.

For example:

M for mapper

D for data store manipulation operation

T for translator

opname Succinct textual name for the operation.

This may be the typename_action text of the operation
being implemented.

Or where the internal action block is "common" to the implementations of several,

many or all operation implementations, form the name as follows:

Ccccooov_name

where ... is ...

ccc Component code (the code that appears within the
component specification type name)

In many cases, this may be the same as the code of
the principal or only interface.

ooo Three-character code for the action block, unique within
the component implementation

v Version number for the action block

name A phrase summarizing the action performed by the
action block, ideally in the form typename_action

Examples of internal action block names that implement the public operation

IEMP1061_EMPLOYEE_PROMOTE_S are:

 MEMP1061_EMPLOYEE_PROMOTE (mapper operation)

 DEMP1061_EMPLOYEE_PROMOTE (persistent data manipulation

operation)

Recommended Naming Conventions CS/3.0t

92

Example of common action block names are:

CHRC9991_SETSERVID

CEMP0011_EMPLOYEE_VALIDATE_NAME

Notes:

1. Internal action blocks may be:

o Internal operations, owned by internal entity types.

o Free-standing action blocks, not owned by any type.

2. While it is valid practice for specification types to own internal

operations, most organizations prefer not to do so, since it means that

these operations are displayed in the interface type model and

specification diagrams, where they are inappropriate.

3. It is common practice to build a "mapper" block, which is directly called

by the public operation's action diagram. The mapper block performs the

main control logic of the operation implementation, and "maps"

specification types to internal entity types (and vice versa). It is suggested

that the first character of the mapper name is an “M.” It is a free-standing

operation, since internal operations are not recommended for interface

type model types (the interface or its specification types).

4. Some organizations may prefer to use the Cccc000v_name convention for

all internal action blocks, even for those that are not common.

Rationale:

 Action blocks within an implementation model need a unique name.

 It is helpful for the action block name to indicate which operation it

implements.

 It is useful to have a systematic way of naming all the internal parts of a

component implementation, so you immediately know the role of each

action block.

 CS/3.0 does not seek to constrain the way a component is implemented.

This is simply a suggestion.

 As for public operations, the default source and object module name is

automatically created from the first eight characters of the action diagram

name. It has been found helpful if this name is unique and conveys some

meaning to the developer.

CS/3.0 Recommended Naming Conventions

 93

Operations Library

Form operations library names as follows: Lcccvlll

where... is...

ccc The component code, as used in the component
specification type name

v The library version number, if concurrent versions of
the same library are needed

lll A code which indicates the contents of the library.

For example:

ALL indicates all operations of the component are
included in the library

xxx indicates the library contains all operations of the
interface that has code xxx

oow indicates the library contains a single operations,
which has the code oow.

Examples of operations library names are:

 LHRC1ALL

 LHRC2ALL

 LHRC1EMP

 LHRC1011

Notes:

1. lll is a user-defined code; the suggestions given above will not be suitable

in all situations.

Rationale:

 To provide a unique name for the operations library.

 To enable staff to determine which component this library belongs to.

 And, if possible, to give some indication of its contents, and whether the

component code appears in multiple libraries.

 To allow for several concurrent versions of the library. The library version

number may or may not coincide with the component version number.

 For OS/390 (MVS), the operations library is a "NCAL" module and

contains a single operation.

Recommended Naming Conventions CS/3.0t

94

Cascade Library

Form the cascades library names as follows: Ccccvvrr

where... is...

ccc The component code, as used in the component
specification type name

vv Version number of the component implementation

rr Revision Number of the component implementation

Examples of specification type names:

 CHRC0100

 CPRM0213

Notes:

1. There is one cascade library per model, and hence one cascade library per

component implementation.

Rationale:

 The component implementation release, to which the library applies, is

readily identified.

 95

Appendix C: Standard Parameters

This appendix describes a set of attributes, intended for use as standardized

parameters of public operations. That is, they would appear in the import and

export views of public operations.

Some of these parameters are a CS/3.0 requirement: they must appear in every

public operation’s exports. These were introduced in Chapter 5, “Interface,” but

are repeated below.

The other parameters are recommendations. Where a customer acquires

components from several sources, it is simpler if all those components have used

common parameter names and formats for this generic information.

All the attributes shown in Figure C.1, the Chart of Standard Parameters, may be

attributes of any work set or specification type.

NOTE: We recommend that a development organization standardize on the location of the

standard parameters.

Recommended Practice

The standard parameters are defined in their own specification type, or as

attributes of the interface type itself. Furthermore, the export view of this type

should:

 Be the last export view of the public operation

 Include at least the mandatory standard parameters, in this order:

SEVERITY_CODE

ROLLBACK_INDICATOR

ORIGIN_SERVID

CONTEXT_STRING

RETURN_CODE

REASON_CODE

You may use DATA_STORE_STATUS as an alternative to the required

standard parameter ROLLBACK_INDICATOR

The meaning of the four data_store_status codes is clearer than the

meaning of rollback_indicator. Component builders are encouraged to

replace rollback_indicator with data_store_status_code. It is permissible

for operations to export both rollback_indicator and

data_store_status_code.

Standard Parameters CS/3.0

96

If CHECKSUM is exported by an operation, it must be the last attribute of the last

export view of the operation.

Chart of Standard Parameters

We recommend that all views of the type defining the standard parameters present

their attributes in the same order as shown in the chart below, although a view

need not contain every attribute.

Figure C.1 Chart of Standard Parameters

Name Format Purpose Role

ACTION Text 32 The name of an operation sub-action. A public
operation might be built to perform a number of
alternative sub-actions; in such a case, this
attribute appears in the operation’s imports, to
define which sub-action is required.

(Oi)

COID variable The identifier of a component object.

Used as an import attribute to indicate which
component object the operation is to run against.
Only applies to interfaces that have been
designed to support multiple component objects.

Component object identifiers are explained in
Chapter 10, “Identifiers and Relationships.”

(Oi)

RELEASE_INFORMATION Text 20 Describes the release of a public operation.

Can be used as an import attribute, to request
that a particular release is executed, or as an
export to indicate which release of a public
operation has actually executed.

Larger than CS/3.0's version/revision number, to
allow component provisioners to utilize more
extensive “release information.”

(Oi)

(OX)

DIALECT_CODE Text 2 A code indicating a human language or dialect.

Can be used as an import attribute, to request
that exports are returned in a particular dialect,
or as an export attribute, to indicate which dialect
has been chosen for the exports.

(Oi)

(OX)

SEVERITY_CODE Text 1 A code indicating the severity of exception
described by the return/reason code
combination. Permitted values are:

“I” = informational

“W” = warning

“E” = error.

(MX)

ROLLBACK_INDICATOR Text 1 A code returned by a public operation, which
requests the consumer to roll back any updates
that the public operation has made.

(MX)

CS/3.0 Standard Parameters

 97

Name Format Purpose Role

DATA_STORE_STATUS Text 1 A code indicating the status of persistent storage
after an operation execution.

“1” = data unchanged

“2” = changes rolled back

“3” = data changed

“4” = data integrity compromised.

See (DSS) below for further explanation.

(OX)

ORIGIN_SERVID Numeric
15

The server identifier of the component that
originated the return/reason code combination.
Each installed copy of a component (also known
as a component server) is expected to identify
itself using a unique value—its “served.”

See Chapter 10 for more information.

(MX)

CONTEXT_STRING Varying
Length
Text 512

Intended for additional data about a failure
encountered in an operation execution, which
can then be incorporated into end-user
messages.

(RX)

RETURN_CODE Numeric
5

A standardized code (from Appendix D, “Return
Codes”), indicating the type of failure or success
encountered during operation execution.

(MX)

REASON_CODE Numeric
5

A code which amplifies the return_code. (MX)

CHECKSUM Text 15 To enable view compatibility checking. (RX)

Standard Parameters CS/3.0

98

Role Abbreviations

(MX) = must be exported by every public operation.

(RX) = recommend that this is exported by every public operation, even where the

component provisioner chooses not to populate the attribute view.

(OX) = this attribute may appear in the export views for those operations that

require it.

(Oi) = this attribute may appear in the import views for those operations that

require it.

(DSS) The values of the DATA_STORE_STATUS have the following meanings

in the exports of a public operation. Unless mentioned otherwise, the codes apply

to both transactional and sub-transactional operations.

“1” = Data Unchanged. The execution of this operation, or any

operation it uses, has left all stored data unchanged.

“2” = Changes Rolled Back. The execution of this operation has left

all stored data unchanged, since all changes have been rolled back

(only applies to transactional operations).

“3” = Data Changed. The execution of this operation, or any operation

it uses, has changed stored data and data integrity is guaranteed.

“4” = Data Integrity Compromised. The execution of this operation,

or any operation it uses, has left data changed but was not able to

maintain data integrity. The consumer of this operation should initiate

a rollback or employ some other means to restore the integrity of the

data store (only applies to sub-transactional operations).

 99

Appendix D: Return Codes

These codes were developed by Castek Software Factory, Inc.

Asterisks (*) indicate variations from the original Castek’s specification.

Code Exception Description

22 Retrieve Action Returned
Obsolete Data

Data has been returned for the instance that matches the
imported identifier (usually an instance identifier), but the
instance has been logically deleted, or has an expiration date
that makes it “invalid” for the context of the consumer.

20 Delete Action Resulted in
Logical Delete

The operation was expected to delete the instance that
matches the imported identifier. Due to business usage or
referential integrity rules, the instance has been logically
deleted rather than physically deleted. (Archiving or physical
delete is possible at some later date.)

The component may or may not respond with this instance
when queried later using the same identifier. See exception
#0022 for further details.

Compare this with exceptions # -0042 and # -0043.

10 Optional Field Missing;
Default Used

One or more optional import field values were not populated.
Default values were provided by the component.

1 Successful Completion The operation completed successfully.

0000 *Not a valid return code This code was formerly used to mean both “no pre-conditions
met” and “successful completion”.

-1 Operation not Available The implemented operation has not been linked in. The
operation stub has executed instead.

-2 *No pre-conditions met The operation did not meet any pre-condition, so no post-
conditions are guaranteed.

-10 Identifier not Found The operation has attempted to find the instance that
matches the imported identifier. The instance was not found.

-11 Identifier Missing An identifier was missing from the import view.

-12 Identifier Validation Failed An imported identifier was found to have an invalid format.
For example, an alphabetic character appeared in a numeric
instance identifier field.

-20 Mandatory Import Missing A mandatory import field was not populated.

-21 Mandatory Import
Validation Failed

A mandatory imported attribute was found to have an invalid
format. For example, an alphabetic character appeared in a
numeric instance identifier field.

Code Exception Description

-30 Optional Import Validation
Failed

An optional imported attribute was found to have an invalid
format. For example, an alphabetic character appeared in a
numeric instance identifier field.

Return Codes CS/3.0

100

Code Exception Description

-40 Create Action Failed A failure occurred during a CREATE action. Although the
import data validated successfully, some subsequent
problem occurred that prevented the create from occurring.

The reason code provides additional details.

-41 Update Action Failed A failure occurred during an UPDATE action. Although the
import data validated successfully, and a valid instance was
located, a subsequent problem occurred that prevented the
update from occurring.

The reason code provides additional details.

-42 Delete Action Failed A failure occurred during a DELETE action. Although the
import data validated successfully and a valid instance was
located, a subsequent problem occurred that prevented the
delete from occurring.

The reason code provides additional details.

This exception differs from # -0043 in that the processing did
not fail because of referential integrity issues.

-43 Deletion Inhibited A failure occurred during a DELETE action due to a delete
restrict or referential integrity issue, or due to a usage or
business rule (in the invoked component or a subsequently
invoked component). The import data validated successfully,
and a valid instance was located. Unlike exception # -0042,
the delete process did not fail due to problems implementing
the delete action itself.

The reason code provides additional details.

This exception is distinct from # 0020 and # -0042.

-44 Associate Action Failed A failure occurred during an ASSOCIATE action. Although
the import data validated successfully, and valid instances
were located, a subsequent problem occurred that prevented
the associate from occurring.

The reason code provides additional details.

-45 *Disassociate Action Failed A failure occurred during a DISASSOCIATE action. Although
the import data validated successfully and valid instances
were located, a subsequent problem occurred that prevented
the disassociate from occurring.

The reason code provides additional details.

-46 *Transfer Action Failed A failure occurred during a TRANSFER action. Although the
import data validated successfully and valid instances were
located, a subsequent problem occurred that prevented the
transfer from occurring.

The reason code provides additional details.

Code Exception Description

-50 Date Format Error The imports, or the data store, have supplied a date in an
invalid format. The operation has stopped, pending the user
correcting the field in error. This exception is often exported
by validation operations running on a client workstation.

CS/3.0 Return Codes

 101

Code Exception Description

-51 Numeric Operation Failed A numeric exception has occurred.

The reason code provides additional details, which will help
to identify the data items in error.

-55 *View Matching Failure A failure occurred when importing data into or exporting data
from the operation.

-60 Persistent Storage Failure An error condition has been returned by the data store used
to provide persistency of user data. This error cannot be
mapped to one of the above exceptions, so is returned in this
format.

The reason code will indicate the reason for the failure. The
reason code probably cannot contain enough information for
problem correction, so we recommend exporting a
Context_String containing additional detail.

-61 Operating Environment
Failure

A serious error has arisen in the operating environment,
causing the operation to stop. This error cannot be mapped
to one of the above exceptions, so is returned in this format.

The reason code will indicate the reason for the failure. The
reason code probably cannot contain enough information for
problem correction, so we recommend returning a
Context_String containing additional detail.

-999 Unexpected Exception An unexpected or uncontrollable exception has occurred.
This error cannot be mapped to one of the above exceptions,
nor can the component be safely expected to perform further
operations.

We recommend that the component attempt to provide
additional error information in a Context_String to assist
development and support staff in tracing the problem.
However, component users cannot expect consistent results
from this component and should halt application execution.

The range -1999 to -1000 is reserved for user-defined exceptions.

The range 1000 to 1999 is reserved for user-defined successful outcomes.

These user-defined return code ranges are intended for customers wishing to use

additional codes in their internally developed and consumed components.

Component provisioners building components for commercial sale are requested

to use only the standard return codes listed above.

 103

Glossary of Terms

Underlined words have their own glossary entry.

application

The software which a user runs, that (a) provides a useful set of services to that

user or their organization and (b) is perceived by the user to be a single system.

black-box component

A component delivered in the form of a component specification plus the

component executable. The customer cannot see the component implementation,

hence the term "black-box". Compare with white-box component.

business object

An item that needs tracking by a business. It is usually assigned a unique

identifier, and data is kept about the item. The item may be tangible, for example

an employee or truck, or something less tangible, such as an accident or a

campaign or an account.

The term business object is also used to mean a software object that corresponds

to a real-world business object.

business (object) type

A type whose instances are business objects.

CBD

The common abbreviation for component-based development.

CS/3.0 component

A component that conforms to the Standard defined in this publication.

component

An independently deployable software collection, which has the following

characteristics:

 It is a software building block, used to build applications or larger

components.

 It is encapsulated.

Glossary of Terms CS/3.0

104

 It offers its functionality through stable, well-defined interfaces.

 It is replaceable by other components that offer (at least) the same set of

interfaces.

 Although independently deployable, it may have usage dependencies upon

other components.

 It is delivered in the white-box or black-box style.

component-based development (CBD)

The process of building applications by combining and integrating pre-engineered,

pre-tested components.

component documentation

The component specification, and any other essential information that a

provisioner must supply with a delivered component for it to be understood and

correctly deployed.

component executable

A set of component modules which, together, perform all the operations of a

component according to its component specification. These may be load modules

(executable files) and/or object modules, and modules containing the database

definition statements that define the persistent storage for the component.

component implementation

A particular internal design of a component that achieves the component

specification. This consists of the source code (action diagram statements) and

possibly a database design.

component implementation model

A COOL:Gen model containing the implementation (and implicitly, the

specification) of a component.

component module

A physical file which constitutes a part of (or possibly all) the software of a

delivered component.

component object

A run-time instance of a component.

CS/3.0 Glossary of Terms

 105

component release

The publication of a new component that is intended as an upgrade to a previously

published component. The release number is comprised of version and revision

numbers.

component server

A synonym for installed component.

component specification

A definition of the behavior of a component, without unnecessarily pre-empting

how it is realized. It may include dependencies on other components or

interfaces. Any component implementation or component executable must

conform to a component specification.

component specification model

A COOL:Gen model containing a component specification and, possibly, the

execution parameters for a particular component executable.

component specification storage model

A COOL:Gen model containing many component specifications. Component

specifications are migrated from this model into consumers’ (application or

component) implementation models. Developers may browse this model, to study

component specifications.

COOL:Gen’s Component Manager tool makes such a storage model unnecessary.

constraint

A condition that must always be true. A component specification contains many

constraints. An invariant is a particular kind of constraint.

consumer

The invoker of an operation of a component. The invoker may be software, for

example, an operation of another component, or a human user (for UI-bearing

operations).

This is not the same thing as a customer. The term consumer is often called a

client in other methods and standards.

Glossary of Terms CS/3.0

106

customer

The organization that takes delivery of a component and uses it to build

applications or other components.

dependency

See usage dependency.

encapsulation

The notion that a component’s implementation details are inaccessible to its

consumers. Consumers can only access the component’s functionality and data

through its (programmable) interfaces. The consumer only codes to the interface

specification, and must not write code that uses a knowledge of the component

implementation.

Encapsulation allows the implementation of a component to be modified without

affecting the consumer of the component or the implementations of other

components.

Where a component implementation uses a data store to provide persistence, it

must not share this data store with other components, since this breaks

encapsulation.

executable

See component executable. In CS/3.0, this term does not mean a single .EXE file.

execution parameters

The values that need to be known to link-in and invoke an operation of a

component, that may vary for each component executable.

extension

Changing a specification or a design by adding to it, and not removing or

contradicting anything that existed before. In CS/3.0, we are mainly concerned

with specification extension.

factoring

The operations of an interface (type) may be classified by stating which interface

type model type they primarily act upon. Factoring was included in CBD96, but

has been dropped from CS/3.0.

CS/3.0 Glossary of Terms

 107

implementation

The realization of a specified component using the syntactical constructs of some

programming language or other tool. This is also termed implementation design or

technical design.

implementation inheritance

An object-oriented programming technique for reusing an existing class. A sub-

class inherits all features of an existing super-class.

Implementation Model diagramming tool

A COOL:Gen tool that enables the implementation-only elements of a component

implementation to be created, modified and visualized.

inheritance

A technique for extending a specification or implementation. This term may refer

to specification inheritance or implementation inheritance, so should be qualified.

installed component

A specific installed copy of a component executable. Each of its run-time

component modules must be installed on a node of a computing network, and be

registered with the run-time environment. Also known as a component server.

instance

An object that conforms to a type.

instance identifier

In CS/3.0, a standard format, immutable identifier for an instance of a specification

type.

interface (type)

A type that defines a collection of semantically related operations.

A component may support one or more interfaces. The same interface could be

offered by several components.

Glossary of Terms CS/3.0

108

interface type model

The attributes of an interface, organized into a type-relationship model. This

defines the values that an interface must be able to recall, in order to realize its

operations.

The model always includes the interface type itself, plus one or more specification

types, and one or more invariants.

Interface Type Model diagramming tool

A COOL:Gen tool that enables an interface type model to be developed and

visualized.

interface type model type

A type that has been included in an interface type model. This may be a

specification type or interface type.

internal operation

An operation, that is used within the implementation of a component, that is not

exposed by the interfaces of that component.

internal type

An entity type (or class) used inside a component implementation, which is not

included in the interface type model, nor exposed as a parameter. Formerly called

an implementation type or an implementation-only type.

invariant

A constraint that applies to type models.

An invariant is a condition that must be true before and after any public operation

execution, although it may be temporarily untrue during execution. The condition

is expressed in terms of interface type model types, their attributes and their

relationships.

Invariants are an essential part of the interface type model.

In COOL:Gen, most invariants are recorded as properties of attributes and

relationships (for example, relationship cardinality, attribute optionality, and

attribute uniqueness). Other constraints have to be recorded textually in the

interface type’s description panel.

CS/3.0 Glossary of Terms

 109

object

Something that is identifiable, exhibits behavior, and has state, where:

 “Identifiable,” means it can be distinguished from other objects. For

example, it has a unique identifier.

 “Exhibits behavior,” means it offers operations, and may invoke the

operations of other objects.

 “Has state,” means it contains/remembers information about itself.

object type

A definition of object behavior. Many objects may conform to the same object

type.

A component specification is a kind of object type.

A run-time component is a type of object, so is called a component object.

operation

A discrete unit of functionality provided by an interface, class or entity type. In

CS/3.0, we use the term public operation for an operation of an interface offered

by a component.

operation implementation

A mechanism that achieves the effect defined in the operation specification. In

COOL:Gen, the mechanism is usually written in action diagram syntax, although

external action blocks may also be used.

operation specification

The consumer’s view of an operation. The specification consists of the operation

name, signature, purpose, pre- and post-condition pairs, and all possible return

codes.

Glossary of Terms CS/3.0

110

operations library

A file containing one or more operation implementations, any of which can be

called into memory at run-time, as needed by some larger program.

This run-time calling action is usually termed dynamic linking. Contrast this with

static linking, in which the operations are linked into a load module or executable

file at "compile-time."

parameter

An attribute or entity or group view, appearing in the imports or exports of an

operation.

persistent/persistence

A quality of an object which means that its state (data values) is remembered

outside the scope of an executing machine process.

The interface type model expresses the possible states of the interface.

post-condition

Part of an operation specification. A set of assertions that will be true after the

operation has executed, providing that its corresponding pre-condition was true

prior to execution.

pre-condition

Part of an operation specification. A condition that must be true prior to operation

execution in order for its corresponding post-condition to hold. A false pre-

condition does not imply the operation does not execute; it means that the

corresponding post-condition is not guaranteed to be true.

provisioner

An organization that builds components and delivers them to customers.

public operation

A discrete unit of functionality defined on an interface. A public operation should

be a success unit, but need not be a database commit unit.

reason code

A value which amplifies why a particular return code has been output by an

operation.

CS/3.0 Glossary of Terms

 111

refactor

The action of restructuring a design, so that it produces the same results, but is

now improved in some way. For example, it may be more maintainable, or

perform better.

release

A new offering of a component made available to a customer by a provisioner. It

also applies to new offerings of interfaces or operations that may occur within a

new release of a component.

In CS/3.0, we differentiate version releases and revision releases.

replaceable

An important characteristic of components. One component can replace another,

so long as it supports at least the same set of interfaces, and respects the same

dependencies.

return code

A value indicating the final state of an public operation execution. That is, a

success state or a reason for failure. CS/3.0 provides a standardized set of return

codes.

revision

A new release of a component, interface or operation that does not impact existing

consumers. A specification compatible release.

signature

The operation name, plus the complete set of import and export views, for a given

public operation.

specification compatible

The distinguishing quality of a new component release, which requires that its

component specification is a specification extension of the previous release, so

current consumers are unaffected by the change.

specification extension

A technique for defining a new component specification by adding to an existing

component specification without removing anything from it.

Specification inheritance is an acceptable extension technique.

Glossary of Terms CS/3.0

112

Other specification extension techniques include adding new operations and

optional interface type model elements (types, attributes, relationships) to an

existing component specification, and weakening its invariants.

specification inheritance

A specification technique that extends an existing type (interface or specification

type) by adding sub-types. The new sub-type inherits all the features (operations,

attributes, relationships, invariants) of its super-type.

Specification Model diagramming tool

A COOL:Gen tool that enables the elements of a component specification to be

created, modified and visualized.

specification type

Specification types are used to define parameters and interface type model types.

A specification type has attributes and relationships, but no operations.

storage aware

A quality of a particular release of a component indicating that the release

understands the storage format of the previous release.

A storage-aware release can at least read all the information stored by the previous

release. It does not imply that the new release stores data in the same format, or

even a compatible extension of that format, although this will often be the case.

storage compatible

A quality of a particular release of a component indicating that the release uses the

same storage format, or an extension to the storage format, used by the previous

release.

A storage compatible release is always a storage aware release, but not the other

way around.

sub-transaction, or sub-transactional operation

An operation that is not a database commit unit and will be rolled-back if its

enveloping transaction fails.

success unit

A process which, when complete, does not leave any invariant or database

integrity rule violated. All public operations should be success units.

CS/3.0 Glossary of Terms

 113

test harness

A collection of programs that allow a customer to validate the services of a

component. The programs could be built as GUI, web or block-mode transactions,

or batch jobs.

transaction, or transactional operation

An operation that forms a database commit unit. This means that once the

operation has completed, the database updates cannot be undone. Prior to

completion, it is possible to “rollback” the database updates if a failure or

deadlock occurs.

In CS/3.0, a transactional operation may offer user-interaction support; this is

known as a user interface-bearing operation.

Regular transactional operations are supported by COOL:Gen’s non-display

procedure steps, while user interface-bearing operations are supported by display

procedure steps.

transient type

A type that does not (directly) provide persistence for its occurrences. In

COOL:Gen terms, this is an entity type or specification type which is not

“transformed” into the table of a database.

Normally, all the types contained in a specification subject area are transient. In an

implementation subject area, there will usually be some types which are persistent

– they have a corresponding database table.

type

A construct that defines behavior and/or data structure.

usage dependency

A relationship between two components or a component and an interface, in

which one component requires the presence of the other for its correct functioning

or implementation.

Usually, this means that the dependent component invokes some of the operations

offered by the other component. In COOL:Gen, invocation is by USE statement or

dialog flow.

A component is said to be independent if it does not depend on any other

component.

Glossary of Terms CS/3.0

114

A usage dependency may be stated in the component specification, so all

component implementations have this dependency, or may be a design choice

within a particular implementation.

version

A new release of a component, interface, or operation that may not specification-

compatible with the previous release. That is, some consuming software may need

to be changed if it is to continue to work with the new release.

white-box component

A component delivered as a component implementation model. The customer can

see how the component works, hence it is a "white-box" as compared to a black-

box component.

 115

Index
Action Block ... 20, 23, 91

BSD ... 15, 20, 23, 85

Action Diagram... 30, 36

Advanced Practice 4, 22, 23, 38, 46, 65, 85

Associated Model 4, 9, 12, 57, 58, 59, 77

Black-box Component ... 6, 9, 11, 13, 25, 41, 49, 54, 55, 57,

63, 77, 103, 114

Business Identifier .. 62

Business System ... 15, 44, 87

Cascade Library .. 94

CBD .. 3, 103, 104

CBD96 Standard ... 38

CHECKSUM .. 96, 97

Componentiv, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 17, 18, 24,

29, 35, 36, 41, 42, 43, 44, 46, 47, 49, 50, 51, 53, 54, 61,

64, 65, 67, 68, 70, 71, 76, 77, 78, 79, 81, 85, 87, 91, 95,

96, 101, 105

Documentation 3, 9, 12, 46, 51, 53, 56, 68, 70, 71

Executable ... 3, 9, 12, 49

Implementation ... 3, 9, 11, 12, 13, 41, 42, 43, 44, 68, 77,

89, 107

Implementation Model 3, 9, 12, 13, 41, 43, 77, 107

Implementation Model Diagramming Tool 107

Implementation Type ... 42

Object .. 18, 64

Object Identifier .. 64

Revision ... 68

Specification ... 2, 3, 9, 11, 13, 14, 19, 20, 21, 23, 24, 38,

41, 42, 53, 62, 76, 77, 81, 82, 111, 112

Specification Model . 3, 9, 11, 13, 14, 20, 21, 23, 24, 41,

53, 77, 112

Standard .. iv, 54, 79

Upgrades 4, 14, 46, 50, 54, 67, 85

Version .. 71

Component Server Identifier................ See Server Identifier

Context_String .. 101

COOL

Gen iv, 1, 2, 3, 6, 9, 10, 11, 12, 13, 14, 15, 17, 18, 20,

21, 22, 23, 24, 25, 27, 31, 33, 35, 37, 38, 39, 41, 43,

44, 45, 46, 47, 50, 51, 53, 54, 57, 79, 83, 85, 86,

104, 105, 107, 108, 109, 112, 113

Spex ... 2, 31, 35, 36, 43

Cross-Component Relationship 61, 65

CS/3.0 1, 2, 3, 4, 5, 6, 10, 14, 22, 24, 33, 38, 42, 45, 53, 61,

63, 65, 66, 67, 75, 83, 92, 95, 96, 103, 106, 107, 109,

111, 113

Customer ... 65, 66

Data Storage Design ... 45

Delivery 1, 3, 9, 10, 22, 49, 53, 56, 68, 71

Dummy Procedure Step .. 46

Elementary Process ... 23

Encapsulation ... 6, 106

Entity Type ... 90

Executable

Parameter .. 15, 51

Execution Parameter .. 15, 51

Factoring .. 106

Identifier ... 73, 99

Business .. 62

Component Object .. 64

Server .. 28, 62

IDL .. iv, 18

Instance .. 30, 34, 61

Identifier ... 61

Interface

Revision .. 69

Type 2, 18, 19, 20, 21, 22, 23, 37, 108

Type Model 2, 18, 19, 20, 21, 22, 23, 37, 108

Type Model Diagramming Tool 21, 37, 108

Version .. 72

Java ... iv, 18

Maintenance Transactions .. 58

Naming Conventions ... 4, 15, 25, 27, 39, 41, 44, 57, 67, 71,

75

Operation Implementation .. 44

Operation Specification . See Public Operation Specification

Persistency ... 45

Persistent .. 101

Procedure ... 20, 23, 24, 27, 46

Provisioner ... 87

Public Operation

Specification ... 21, 23, 34, 35

Public Operation Parameter ... 4, 26

Public Operation Specification....................... 21, 23, 34, 35

Reason Code .. 30, 31, 34

Reason Code List ... 31

Relationship ... 65

Release

History .. 25, 36, 72

Numbering .. 67

Return Code ... 4, 28, 30, 31, 97, 99

Revision ... 21, 26, 67, 76, 94

Server Identifier ... 28, 62

Signature .. 74

Specification Model Diagramming Tool 20, 21, 23, 24, 112

Specification Subject Area ... 13, 81

Standard Parameter 22, 28, 63, 95, 96

Subject Area

Implementation ... 89

Sub-transactional .. 20, 23, 84, 85

Sub-transactional Operation ... 84

Test

Data ... 56

Transactional .. 20, 23, 36, 84, 85

Transactional Operation ... 84

Translation Blocks ... 59

Type 2, 14, 18, 19, 20, 21, 22, 23, 37, 42, 76, 77, 79, 82,

90, 108

116

Upgrades ... 4, 14, 46, 50, 54, 67, 85

Version iv, 1, 36, 54, 67, 76, 84, 91, 94

View ... 101

White-box component 2, 6, 9, 10, 11, 13, 41, 54, 57, 63, 77,

103, 114

