

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

CA Gen Integration

Building CA Gen code through Jenkins

Christian Kersters

Broadcom Limited

Web: www.broadcom.com

Corporate Headquarters: San Jose, CA

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

1

Revision History

Revision Date Change Description

v1.0 2019/09/30 Initial version

v1.1 2019/10/15 Minor corrections (copyright notices)

V2.0 2020/08/10 Extension to remote & Linux/Unix builds

References

WilliamBoyd, Linux Academy – Adding a Jenkins Agent Node

https://linuxacademy.com/blog/linux-academy/adding-a-jenkins-agent-node/

https://linuxacademy.com/blog/linux-academy/adding-a-jenkins-agent-node/

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

2

Contents

Revision History 1

References 1

Contents 2

Introduction 4

The Jenkins job 5

Doing it all in one step 5

Build Step - Linux 5

Splitting RMT files 6

CA Gen-based Jenkins split job 6

Parameters 7

Build Step - Windows 7

Building CA Gen executable artifacts 7

CA Gen-based Jenkins project 7

Parameters 7

Build Step – Windows 8

External tool-based build job 8

Java Proxy build with Ant 8

Parameters 8

Build Step 9

Submitting Jenkins jobs 10

Use of a Build Pipeline 10

Static Jenkins Pipeline 10

Dynamic Jenkins Pipeline 10

Build triggering 11

Individual Build jobs 11

Submission of Jenkins build jobs 11

RMT discovery 11

Scanning of CSE log files - Windows 11

Scanning of folders - Windows 12

Appendix A. Jenkins Master – Agent configuration using SSH 14

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

3

Configuration 14

Agent machine setup – Linux 14

Jenkins Master setup – Windows 14

Pre-requisites 14

Credentials definition 15

Node setup 15

Appendix B. Jenkins Project for CA Gen remote build 16

Project Parameters 16

Project association with Agent 16

Build Shell Definition 17

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

4

Introduction

Jenkins is a widely used Continuous Integration platform, many organizations rely on to

integrate their developments with.

By lack of in-depth knowledge of CA Gen, however, many customers haven’t tried to push the

use of Jenkins in CA Gen territory. This results in a loss of major opportunities:

● Communication: Although CA Gen is very different from other development

environments, from a CI perspective, the difference stops when CA Gen toolset or

encyclopedia has generated the source files corresponding to the code (C, Cobol, …).

This helps communication between DevOps teams, reducing the barrier generally

separating CA Gen from other development teams

● Integration: Once created, a CA Gen build / split / transfer step can easily be integrated

into a Jenkins pipeline, to achieve more complex integration processes and DevOps

workflows

● Workload reduction: Using only one tool, DevOps teams only need to check at one

place, to identify any issue occurring in the integration process

● Configuration management: Jenkins can easily ensure the presence of the right /

latest versions of software (like EAB libraries, bitmaps, …) the CA Gen application

requires, increasing the quality of the CA Gen builds

● 3rd-party products usage: with the easiness with which Jenkins can work across

environments, CA Gen build steps can be concentrated on a single computer only,

significantly reducing the required licenses of 3rd-party products. Also, concentration on

one environment makes 3rd-party products upgrades much easier and safer

● Security: Jenkins provides much more flexibility in terms of communication across

machines than what the CA Gen Build tool does. Also, it does not require any user

account on target machines.

Whatever the target environment, such integration can easily be achieved with CA Gen.

Note that, using the new CA Gen Generator API, it’s now possible to chain code generation and

build, either using some custom code generator and Jenkins CLI to build, or creating a Jenkins

pipeline, where the first steps generate the code and the next build it.

In this document, we will see:

1. How to create a Jenkins job to process CA Gen code and what CA Gen-specific features

can be processed with Jenkins

2. What main possibilities are available to submit Jenkins jobs for build of CA Gen

applications using Jenkins

3. Some possibilities to discover RMT files that need to be built.

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

5

The Jenkins job

There are normally 3 possible actions (not necessarily exclusive) the Jenkins job can perform:

1. Transfer: if a build on another machine is needed, the RMT file need to be transferred to

its target destination. Multiple options are available. To name the most common: (S)FTP

or Jenkins agent for distributed, CA Brightside / Zowe1 for mainframe targets. Depending

on organizational / technical constraints or easiness, flexibility and knowledge will dictate

some choice, or at least provide some guidance.

The next step will then consist in the split

2. Split: A RMT file is easy to split into its individual components. 2 options are possible:

a. Use custom tools to split the RMT file. This option can be preferred if CA Gen

Build Tool is not used to process the file

b. Use the Build Tool to split the RMT file. This is safer, as the build tool will also

check the integrity of the files that get extracted. When this option is selected,

split and build processing are normally done together

3. Build: Here again, 2 options are possible:

a. Build the load module / RI Trigger library using the CA Gen Build Tool

b. Build the load module / RI Trigger library using a custom build procedure (make,

ant, Endevor, …).

As this document relies on real-world implementation, not all steps or options will be detailed in

the current version. Based on feedback / experience, future versions will incorporate

documentation of more options.

Doing it all in one step

In this approach, Jenkins communicates with one if its agents to process a given RMT file on

the machine the agent runs on.

(The setup of the infrastructure is described in Appendix A).

The Jenkins project is associated with a specific agent, running on a machine where the CA

Gen build tool has been installed.

Build Step - Linux

It receives 3 parameters:

 A file parameter, which will be used to upload the RMT file to the agent

 A Target string parameter, specifying where the RMT file will be moved and what name

it will get (as the first parameter gives a default name)

 A BuildProfile drop-down list, providing a choice among existing profiles on the server.

The Jenkins project execution then does the following:

1 Although transfer of individual files making up the RMT could be considered, it’s strongly advised

(because much easier) to transfer the RMT as a whole and split it in the target location

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

6

1. Upload the RMT file in the machine running the agent,

2. Execute a step consisting of:

a. Move the file to the specified target location

b. Build the file, using the command-line built tool and the specified build profile

c. Add the CA Gen build output to the Jenkins job output

d. Returns success / failure status, depending on the result of the CA Gen build.

Hereunder an example of such logic:

#!/bin/bash

mv gen.rmt $Target

Split target into folder and file

IFS='/'

read -ra ARRAY <<< "$Target"

folder=""

len=${#ARRAY[@]}

for ((i = 0; i < $len - 1; i++)) do

 folder="$folder${ARRAY[i]}/"

done

rmtFile="${ARRAY[$len-1]}"

IFS=' ' # reset to default value after usage

echo Folder: $folder

echo RmtFile: $rmtFile

Process remote file

$IEFH/bt/bldtool -c COMMAND -a BUILD -l $folder -n $rmtFile -f

$BuildProfile

Split file into file name and extension

IFS='.'

read -ra ARRAY <<< "$rmtFile"

fileName=${ARRAY[0]}

#fileExtension=${ARRAY[1]}

IFS=' ' # reset to default value after usage

Prints build output

cat $folder$fileName.out

grep --silent IEFSIGNAL:OK $folder$fileName.out

(See Appendix B for the full definition of this sample Jenkins build).

Splitting RMT files

CA Gen-based Jenkins split job

Using CA Gen Build tool to split a RMT file on a local file system is very easy.

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

7

Parameters

I suggest having 2 parameters:

1. LoadModule: load module name (or name of RMT file without extension)

2. RMTFolder: folder containing remote files generated by CA Gen2

Build Step - Windows

This step will consist in a Windows batch command (or similar for another OS). The build step

can call the bldtool.bat file (located in the Gen folder of Developer workstations), or, more

generically and with less overhead, call the bt.ui.jar file (Gen\bt folder of Developer

workstations).

With the second solution, a typical build step to split a RMT file would be:

cd /D "%RMTFolder%"

call java -jar "C:\Program Files (x86)\CA\Gen86\Gen\bt\bt.ui.jar"

-c command -a SPLIT -l . -n %LoadModule%.rmt

if "%errorlevel%" == "1" type %LoadModule%.out & exit

Building CA Gen executable artifacts

CA Gen-based Jenkins project

Parameters

Same parameters can be used for Build as for Split step, with a few additions:

1. LoadModule: load module name (or name of RMT/ICM file without extension)

2. SourceFolder: folder containing source files generated by CA Gen3

3. BuildProfile: optionally, if you need specific build profile to build your load modules, you

can add a BuildProfile string parameter, with an adequate default value, or a drop-down

list with available profiles

4. ProfilesFolder: location of the build profiles definitions (with default, for easy use /

change), if multiple folders are available

2 We will here consider that the folder is not where the RMT file was generated, because it would then

contain all the necessary files, so a split would not be needed
3 If directly generated from the CSE, it consists of the Source Code / Installation Control / Remote
Installation path, specified in the CSE configuration, followed by Operating System and
language, as always added by the CA Gen Construction server. If you want to build it directly
from the RMT, no need for a distinct split step, everything can be done at once, selecting a
SourceFolder equal to the RMTFolder of the previous (Split) step.

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

8

Build Step – Windows

This step will consist in a Windows batch command (or similar for another OS). The build step

can call the bldtool.bat file (located in the Gen folder of Developer workstations), or, more

generically and with less overhead, call the bt.ui.jar file (Gen\bt folder of Developer

workstations).

With the second solution, a typical build step for an ICM file would be:

cd /D "%SourceFolder%"

call java -Duser.home="%ProfilesFolder%" -jar "C:\Program Files

(x86)\CA\Gen86\Gen\bt\bt.ui.jar" -c command -a BUILD -l . -n

%LoadModule%.icm -f %BuildProfile% >%loadModule%.java.out

type %loadModule%.java.out

for /F "tokens=1-9" %%f in (%LoadModule%.java.out) do call

:process %%f %%g %%h %%i %%j %%k %%l %%m %%n

if "%errorlevel%" == "1" type %LoadModule%.out & exit

%errorlevel%

goto :EOF

:process

if "%1" == "Build-FAILED" set errorlevel=1& goto :EOF

shift /1

if not "%1" == "" goto :process

goto :EOF

(Note the special logic to detect a build failure and report it to Jenkins).

To process RMT files, simply replace %LoadModule%.icm with %LoadModule%.rmt4

External tool-based build job

As previously mentioned, build is not a specific CA Gen activity: it only uses the Build Tool

scripts to drive execution of the relevant 3rd-party products on the source files mentioned in the

ICM.

Based on the environment and the generated pieces of code, this can however be more or less

complicated.

Java Proxy build with Ant

Building a generated Java Proxy with Anit is very simple.

Parameters

Again, you need the similar 2 parameters:

1. Proxy: name of the proxy (or name of RMT/ICM file without extension)

4 Or add an icm/rmt parameter to the job

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

9

2. SourceFolder: folder containing source files generated for the proxy by CA Gen5

Build Step

This time, the build step is an Ant step. There, you need to specify a version of Apache Ant

installed in Jenkins, together with a pointer to the build script that will be executed, as shown

below (in this specific case, using parameters)

The ant script would then look like:

<project name='JProxy' default='all'>

 <property environment="env"/>

 <path id='classpath.base'>

 <pathelement location='C:\Program Files

(x86)\CA\Gen86\Gen\classes\Gen86.jar'/>

 </path>

 <target name='all' depends='compile,jar'/>

 <target name='compile'>

 <property environment="env"/>

 <echo message='... Compiling Java code'/>

 <mkdir dir='${env.SourceFolder}/classes/${env.Proxy}'/>

 <javac fork="yes" executable="${env.JAVA_HOME}/bin/javac.exe"

srcdir='${env.SourceFolder}/src/${env.Proxy}'

destdir='${env.SourceFolder}/classes/${env.Proxy}'

 includes='com/**'

 debug='on' target='1.6' source='1.6'

classpathref='classpath.base'/>

 </target>

5 If directly generated from the CSE, it consists of the Source Code / Installation Control / Remote
Installation path, specified in the CSE configuration, followed by /proxy/java, as always added
by the CA Gen Construction server. If you want to build it directly from the RMT, no need for a
distinct split step, everything can be done at once, selecting a SourceFolder equal to the
RMTFolder of the previous (Split) step.

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

10

 <target name='jar'>

 <echo message='... Building JAR file'/>

 <mkdir dir='${env.SourceFolder}/deploy'/>

 <jar destfile='${env.SourceFolder}/deploy/${env.Proxy}.jar'

basedir='${env.SourceFolder}/classes/${Proxy}' update='false'

includes='**'/>

 </target>

</project>

Submitting Jenkins jobs

Submitting Jenkins jobs for CA Gen code is fairly easy.

For the CSE, as there is currently no API available, chaining code generation with Jenkins

projects is not possible. On Developer workstations, however, the new Generator API makes

such chain possible.

The 3 easiest possibilities are:

● Build submission using Jenkins console

● Use of a build pipeline

● Execution of individual jobs, based upon some form of RMT discovery

The first approach is trivial, for Jenkins users, and won’t be detailed here.

Use of a Build Pipeline

Static Jenkins Pipeline

Use of a static Build Pipeline is certainly the most powerful approach, as you specify:

- Initialization step

- Termination step

- All intermediary build steps, with relevant parameters for each.

Jenkins pipelines are very powerful, and support many requirements. The disadvantage is that

you need to manually keep it in sync with your application architecture. Whenever it changes

(like addition of a load module), you need to update it (or you need to create a repetitive build

step, with loss of modularity and flexibility).

Dynamic Jenkins Pipeline

A dynamic Jenkins pipeline can also be created. Based upon some form of RMT discovery, a

Jenkins Pipeline is created to trigger build of all [new] remote files

This approach is fine if you build all your RMT files with the same settings (like build profile), but

becomes much more complex if some flexibility is needed.

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

11

Also, a Dynamic Pipeline requires usage of a Source Control System. Such dynamic pipeline

could be created from a Jenkins job, or externally, then committed to the selected Source

Control System.

Build triggering

Whatever the solution, the job can run periodically (including discovery for the second

possibility), or upon demand, by use of the Jenkins console, CLI, or any external trigger.

Individual Build jobs

Rather than using Build Pipelines, individual build jobs can be triggered, separately or based

upon a discovery mechanism, be it from Jenkins itself or from an external utility.

Of course, such a solution is not suitable / advisable for workflows, but can be used as a point

solution.

Submission of Jenkins build jobs

Depending on the type of submission desired, different approaches need to be taken for the

submission of Jenkins build jobs for CA Gen:

● For static pipelines, the best approach is scheduling. If not feasible or suitable, on-

demand submission is the alternative

● For dynamic pipelines, it is recommended to chain the discovery step with the

execution of the pipeline in Jenkins. Once again, scheduling or on-demand triggering are

possible. The first step would then:

○ Specify the dynamic pipeline using the selected RMT discovery mechanism

○ Commit the pipeline to the Source Control System

○ Chain to the execution of the pipeline

● For individual jobs, as they are point solutions:

○ If there are very few jobs to submit, the Jenkins console is the right tool

○ Otherwise, best is to couple the discovery activity with a utility that posts build

requests to Jenkins, through its REST interface.

RMT discovery

2 approaches are easy to implement, for discovery of remote files:

● Scanning of CSE log files

● Directory scanning

Scanning of CSE log files - Windows

The iefmd<nnn>.log file contains information issued by the Construction Server, in the form of

lines like:

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

12

Command Line: "C:\Program Files (x86)\CA\Gen86\CSE\bin\rfg.exe"

"HLL" "WINDOWS" "C:\temp\gentest\ENCYADMN\remote.ctl"

"C:\temp\gentest\ENCYADMN\rfg.txt" "NODELETE" "*" "Y"

Packaging of C:\temp\gentest\mvs\cobol\P900.icm is complete

[...]

1684 UTLGENCD End Time: 2019-09-30 10:34:23

From there, it should be possible to determine the RMT files that need to be processed and

build them.

Scanning of folders - Windows

Another possibility consists in scanning folders to discover the files that need to be built.

As an example, here is some windows command code for unconditional discovery of remote

files. (This could be enhanced with conditional discovery, based, for instance, on remote file

creation date).

@echo off

for /R %%f in (*.rmt) do call :process "%%f"

goto :EOF

:process

set rmt=%1

set rmt=%rmt:"=%

echo Submitting build job for %rmt%

for /F "delims=\ tokens=1-7" %%f in ("%rmt%") do call :submit

"%%f//%%g//%%h//%%i//%%j//%%k" %%l

goto :EOF

:submit

set path=%1

set path=%path:"=%

for /F "delims=. tokens=1" %%f in ("%2") do call SubmitJenkins -p

"BaseFolder=%path%" -p LoadModule=%%f

In this example, the command file automatically pushes build requests through Jenkins’ REST

interface. Although, in this specific case, the SubmitJenkins code is in Java, many ways are

available to achieve the same result. Basically, the call is a HTTP POST to an URL like:

http://<jenkinsHost>:<jenkinsPort>/job/<jobName>/build

or

http://<jenkinsHost>:<jenkinsPort>/job/<jobName>/buildWithParamet

ers?parm1=val1&parm2=val2

and basic authorization.

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

13

If successful, the reply will contain a location header field, with value similar to:

http://<jenkinsHost>:<jenkinsPort>/queue/item/1/

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

14

Appendix A. Jenkins Master – Agent configuration

using SSH

(This appendix is not meant to provide a reference implementation, but simply exposes an

example of such configuration)

Configuration

Agent machine setup – Linux

First step is to prepare the agent machine to act as a Jenkins agent, connected to the master

through SSH. It consists in (see Adding a Jenkins Agent Node for details):

 Installing the necessary packages (java 8)

 Creating a user to run the Jenkins agent and its jobs

 Generating an ssh key for remote access to that user and adding the public key to the

authorized_keys file of the user

 Creating a folder to act as a repository for Jenkins work (including the workspace folder)

(e.g., /var/jenkins)

 Adding the necessary CA Gen accesses in the .bashrc file of the Jenkins user

Jenkins Master setup – Windows

Pre-requisites

 SSH Build Agent Plugin: To (easily) connect to the Agent, it is recommended to install

the SSH Build Agents Plugin (https://github.com/jenkinsci/ssh-slaves-plugin)

 OpenSSH: Windows 2010 and Server 2019 natively provide an optional Powershell

implementation of OpenSSH (see OpenSSH in Windows). For these operating systems,

best is to install it.

https://linuxacademy.com/blog/linux-academy/adding-a-jenkins-agent-node/
https://github.com/jenkinsci/ssh-slaves-plugin
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_overview

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

15

Credentials definition

Node setup

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

16

Appendix B. Jenkins Project for CA Gen remote

build

Project Parameters

Project association with Agent

Building CA Gen code through Jenkins

Broadcom Proprietary. © 2019-2020 Broadcom. All rights reserved.

.

17

Build Shell Definition

