SSL Debugging IBM MQ

This document refers to a CA Communities post for setup and configuration of SSL communications between DevTest with IBM MQ. This document can be found at: https://communities.ca.com/docs/DOC-231165665-ibm-mq-and-ssltls

We noticed that some customers got the MQRC_UNSUPPORTED_CIPHER_SUITE error during testing.

| Message: Error opening queue manager GTSITGTPS1, Completion Code 2 (MQCC_FAILED), Reason Code 2400 (MQRC_UNSUPPORTED_CIPHER_SUITE)
--
| Trapped Exception: MQJE001: Completion Code '2', Reason '2400'.
| Trapped Message: com.ibm.mq.MQException: MQJE001: Completion Code '2', Reason '2400'.

Here are some steps to trouble shoot this issue:

Test Using OpenSSL

For debugging, you can use openssl to help determine where the problem lies, with the client or the server. Try this (replacing the server/port target with your own):

./openssl s_client -status -state -nbio -connect abc02.ca.com:1414 -cipher 'AES256-SHA256'

If you only get the following error message from openssl then your version is too old.
42967:error:1410D0B9:SSL routines:SSL_CTX_set_cipher_list:no cipher match:/BuildRoot/Library/Caches/com.apple.xbs/Sources/OpenSSL098/OpenSSL098-64.50.6/src/ssl/ssl_lib.c:1223:

I upgraded mine to OpenSSL 1.0.2l and it worked.

Here is what the desired output looks like:

CONNECTED(00000003)
turning on non blocking io
SSL_connect:before/connect initialization
SSL_connect:SSLv2/v3 write client hello A
SSL_connect:error in SSLv2/v3 read server hello A
write R BLOCK
OCSP response: no response sent
SSL_connect:SSLv3 read server hello A
depth=0 CN = abc02.ca.com
verify error:num=18:self signed certificate
verify return:1
depth=0 CN = abc02.ca.com
verify return:1
SSL_connect:SSLv3 read server certificate A
SSL_connect:SSLv3 read server certificate request A
SSL_connect:SSLv3 read server done A
SSL_connect:SSLv3 write client certificate A
SSL_connect:SSLv3 write client key exchange A
SSL_connect:SSLv3 write change cipher spec A
SSL_connect:SSLv3 write finished A
SSL_connect:SSLv3 flush data
SSL_connect:error in SSLv3 read finished A
SSL_connect:error in SSLv3 read finished A
read R BLOCK
SSL_connect:SSLv3 read finished A
read R BLOCK

Certificate chain
 0 s:/CN=abc02.ca.com
 i:/CN=abc02.ca.com

Server certificate
-----BEGIN CERTIFICATE-----
MIICvDCCAaSgAwIBAgIEWbG8RjANBgkqhkiG9w0BAQsFADAgMR4wHAYDVQQDExV2
b2dmcjAyTjE0NjkxMC5jYS5jb20wHhcNMTcwOTA3MjEzODE0WhcNMTgwOTA3MjEz
ODE0WjAgMR4wHAYDVQQDExV2b2dmcjAyTjE0NjkxMC5jYS5jb20wggEiMA0GCSqG
SIb3DQEBAQUAA4IBDwAwggEKAoIBAQCtiYE5cQgzuC+sW5jSyZrEiIlYAIO/fZg0
EoCwfllHqQS7h1NTTE5c3glfgI7jKstLOSR6iBi/oBw8ZBlqiQ9NQU3CpuOrqzJf
CpnmdY3srIt+eK1ll447eL9pIv1ulGUx6bMSR8guIdMN2kdRYPf8zI3nAyWkHhna
io13s1id9Fg0NqYpiJYDlXyJwsF8BiDziEqRwkdxBinl4R8lIIMF0/KG76kaA6d7
WDuyftFIBoMaElq9vyMrtWfR/RDGvxzX8KOINz5Fa4K4/0fVTdIukVCewzrvi2Ac
ODJXdGc+pe73ARv931TNe3DbAhuU9pm4qS5ADs7UA6wN01BOIf25AgMBAAEwDQYJ
KoZIhvcNAQELBQADggEBAIYVq2fxFLl0zGn6WbPyDwawtIJTR7ICF7B+2qoKTvaq
iGVb7b8xq0kYoyi9jb0432ejNO2hsE435qnfgxrIAzuhaRGfnWMTSV27lqE25N4w
aZh2n/wBlWlFr7deYhLmpzJxYQBdfyV/xDkbiSmHhRS8Aknmb8zMYBE8uHR+OFVc
WQeJKatZkS7mF+ykxya5n6pvsLTSG5fsaZfPhhzgcPLsRZ6jOXrPfG/pLw1glpph
18HRJV4yhFl/k6plmVxTWRbHlIFQy5apGqb9t8wq9cO2jPOWIYugu8Hs1SwtMpiB
+bz8mLkx+LYMOERCf1kc1MF5CNaoHa6m1bEOqU1fH98=
-----END CERTIFICATE-----
subject=/CN=abc02.ca.com
issuer=/CN=abc02.ca.com

Acceptable client certificate CA names
/CN=abc02.ca.com
/CN=ibmwebspheremqabc02
Client Certificate Types: RSA sign, DSA sign, ECDSA sign
Requested Signature Algorithms: RSA+SHA224:RSA+SHA256:RSA+SHA384:RSA+SHA512:ECDSA+SHA224:ECDSA+SHA256:ECDSA+SHA384:ECDSA+SHA512:ECDSA+SHA1:RSA+SHA1:DSA+SHA1:RSA+MD5
Shared Requested Signature Algorithms: RSA+SHA224:RSA+SHA256:RSA+SHA384:RSA+SHA512:ECDSA+SHA224:ECDSA+SHA256:ECDSA+SHA384:ECDSA+SHA512:ECDSA+SHA1:RSA+SHA1:DSA+SHA1

SSL handshake has read 1003 bytes and written 479 bytes

New, TLSv1/SSLv3, Cipher is AES256-SHA256
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
SSL-Session:
 Protocol : TLSv1.2
 Cipher : AES256-SHA256
 Session-ID: 2517000026FE8494C5F8C981BEFBB8540213C06F58585858217AB95900000022
 Session-ID-ctx:
 Master-Key: 8D37E24E6F7F425BCAADE4B01F3AD3997D0EEE94BF75EB66EA0BEF684FAF22A61193B8AAE8B769990BCFFDEE657DB617
 Key-Arg : None
 PSK identity: None
 PSK identity hint: None
 SRP username: None
 Start Time: 1505327700
 Timeout : 300 (sec)
 Verify return code: 18 (self signed certificate)
If at the top, where it talks about handshakes, it has errors or the certificate is missing from the output. The problem is likely on the server side. If the server side is ok, and the client side config is wrong you won’t see a problem here (unless you can’t reach the target at all, which is a network issue).

Server Side Issues

Verify Certificate Labeling

The easiest thing to miss on the server is the certificate’s Key Label name.
Start the key manager. /opt/mqm/bin/strmqikm

[image: Screen%20Shot%202017-09-13%20at%201.49.03%20PM.png]

Notice the default certificate. Its label is ibmwebspheremqqmgr_test. This naming is required by MQ. It is a combination of ibmwebspheremq and the name of your queue manager. Verify that:
1) there is no typo
2) the name of the queue manager is correct,
3) the whole name is lowercase

If this is correct review your certificate and make sure that it is correct.

Verify Queue Manager Configuration
In MQ Explorer open the ssl properties for your Queue Manager (Queue Manager -> <your QM> -> properties -> ssl)
[bookmark: _GoBack]
[image: /Users/vogfr02/Desktop/Screen Shot 2017-09-13 at 2.03.56 PM.png]

The provided directory and name must match your key database location. There are a couple of tricky things about this.

The directory in the example above is: /var/mqm/qmgrs/QMGR_TEST/ssl/
The part that says “key” is the name of the key database. The file is called key.kdb but in this line, it CANNOT have the extension or it will not work. If your queue manager was named MYTEST and your key database is named MYKDB.kdb; the above line would look like this: /var/mqm/qmgrs/MYTEST/ssl/MYKDB

The next thing to know is that this .kdb file is accompanied by .rdb and .sth files. The .sth file is important (called stash files). It holds your passwords for your key database and your certificates. If this is not present or corrupted, it will be unable to retrieve your certificate from the key database.

If you do not have a .sth file, you can go back to key manager, in the “Key Database File” menu, choose stash Password to create a new one. Then make sure it is in the directory indicated in the above screen.

Verify Channel Configuration
In MQ Explorer choose your channel (Queue Manager -> <Your QM> -> Channels) and right click on the channel you are using. Choose Properties and then SSL.

[image: /Users/vogfr02/Desktop/Screen Shot 2017-09-13 at 2.17.57 PM.png]

Verify that the correct cipher spec is selected. In this case TLS_RSA_WITH_AES_256_CBC_SHA256.

Under SSL Authentication, make this optional for now. Making this optional allows you to focus on just the server side certificate while debugging.

If you only want one way ssl authentication then you should leave that as optional. If you want two-way, it will be revisited later.

Now that these items have been verified; retest with openssl and see if it works now. If the OpenSSL still has a problem, there is still a server side issue. If this works it’s time to test is with DevTest. If that works and you only want one way ssl authentication, you are done!

If the using it with DevTest fails, then it’s time to move on to client side debugging.

If the DevTest test worked but you want two way ssl auth; turn SSL Authentication back on in the MQ Channel. Retest with DevTest. If that fails, you probably have a client side key store issue.

Client Side Debugging

Client Side KeyStore
Verify KeyStore and TrustStore Contents
Review communities document sections 2.3 and 2.3.
The distinction between the KeyStore and TrustStore is that the trust store should hold the server side’s certificate. In this case, the assumption is a self-signed certificate. Because it is self-signed on the server, there is no trust authority that is recognized on the client machine; so, you need to tell it to trust that certificate explicitly.

The KeyStore holds the client certificate that it will recall and send during ssl handshaking. If this certificate is not present and MQ is configured with SSL Authentication as required, then the connect will be rejected.

You can check the contents of your KeyStore with the following command:
keytool -list -v -keystore keystore.jks

It should look like this:
Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: ibmwebspheremqabc02
Creation date: Sep 8, 2017
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=ibmwebspheremqabc02
Issuer: CN=ibmwebspheremqabc02
Serial number: 59b3133a
Valid from: Fri Sep 08 17:01:30 CDT 2017 until: Sat Sep 08 17:01:30 CDT 2018
Certificate fingerprints:
	MD5: 3C:E1:8F:CC:AA:71:4A:47:DA:2C:41:C2:29:CF:69:13
	SHA1: 38:EB:14:DE:D5:21:F4:FF:9F:5E:1E:BC:BF:D8:2C:99:34:E3:C4:9E
	SHA256: 7B:14:90:28:99:80:07:DF:6C:8A:B6:6D:A2:85:A6:B3:C7:F2:44:8A:E1:D6:C2:D3:EE:72:06:3D:90:F7:21:C4
	Signature algorithm name: SHA1withRSA
	Version: 3

Extensions:

#1: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: 03 37 F9 08 19 B2 14 51 .7.....Q
]
]

#2: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 03 37 F9 08 19 B2 14 51 .7.....Q
]
]

Notice that the KeyStore has one certificate and it is named ibmwebspheremqabc02; which is the client cert.

You can issue the same command against the TrustStore and you should find that the certificate named (in my case) ibmwebspheremqqmgr_test. If this is not present and you are using a self-signed certificate then it will fail. If you are using a signed certificate and Java already knows the CA (Certificate Authority) then you don’t need this. If you are using a signed certificate using an intermediate certificate authority, then you probably need to make sure it’s in this store.

Verify KeyStore Is Being Picked Up
Make sure not to forget to add the KeyStore to your context in DevTest. See section 2.3.3 of Communities document about the Key Manager in the SSL context of your DevTest project. Here you specify the KeyStore (and specify where it is), alias, and certificate password.

Verify Cipher Suite
Review section 1.2 of Communities document and make sure your cipher suite and the IBM cipher spec line up. In this case, its TLS_RSA_WITH_AES_256_CBC_SHA256 on MQ and SSL_RSA_WITH_AES_256_CBC_SHA256 on DevTest.

Verify JAR Files
There are two ways to verify the jar files needed. First, since this is MQ v7.5 the required files are:
· com.ibm.mq.commonservices.jar	
· com.ibm.mq.jmqi.jar		
· connector.jar
· com.ibm.mq.headers.jar		
· com.ibm.mq.pcf.jar		
· dhbcore.jar
· com.ibm.mq.jar			
· com.ibm.mqjms.jar

These files should be in $LISA_HOME/lib/shared

Another thing you can do is verify the version of the files. In Unix, you can do this:
unzip –p com.ibm.mq.jar | more

Near the top, you will see: Specification-Version: 7.5.0.2 in all the files, except dhbcore.jar. If they each say that, you have the right jars.

Verify JSSE Setup
Review sections 4.6.1, 4.6.2, and 4.6.3 of Communities document on setting us JSSE (Java Secure Socket Exchange). This conveys well the process of setting this up. This set up should only be required if all else fails.

Verify Correct JRE
When setting up JSSE, it is important to make sure you are modifying the JRE that is being used by DevTest. An easy way to do this is to look in the Workstation. Go to Help -> DevTest Runtime Info. In that window find “java.home”. That is the JRE that DevTest is using. That is the JRE you should update to make work with JSSE or that configuration will fail. You can also opt to change which JRE DevTest is pointing to, if you don’t want to modify that JRE install.

[image: Screen%20Shot%202017-09-13%20at%203.47.26%20PM.png]
image4.png
LEeK] DevTest Runtime Information

Key Value
ice.browser.http.agent Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)
install4j.appDir JApplications /CA/DevTestos1/

install4].exeDir JApplications /CA/DevTesto5 1 /bin/

install4] Jauncherld 7

install4).swt false

java.awt.graphicsenv sun.awt.CGraphicsEnvironment

Java.awt printerjob sun.wawt.macosx.CPrinterjob

java.class.path /Applications CA/DevTestos 1 /bin/Workstation.app...../.installdj idjruntime. ...
java.class.version 52.0

java.endorsed.dirs IApplications CA/DevTest951 /bin/Workstation.app...../lib endorsed

702 Library/Java/Extensions: /Applications/CA/DevTest95 1 instal

Java.io.tmpdir Jvar folders vl vhkhwjb 7qngytkqq4m69c09fgf2_3/T/
java.library.path JApplications /CA/DevTesto5 1 /bin/Workstation.app/..... bin:/Applications/CA...
java.net. preferiPvastack true

java.protocol. handler.pkgs ‘org.apache.axis.transporticom. itko.util. netbeans. protocols
java.rmi.server.randomiDs true

java.runtime.name Java(TM) SE Runtime Environment

iava_runtime.version 1.8.0 60-h

Close

image1.png
& IBM Key Management
Key Database File Create View Help

Dw@rL

EST/ssl/key.kdb]

Key database information

DE-Type: cus
File Name: Jvar/mamjamars/ QMR _TEST /ssl/key. kdb
Token Labek:

Key database content

Personal Certificates

- Receive...
* ibmwebspheremaamar_test Delete
ibmwebspheremqabco2

View/ Edit..

Export/Import..

Recreate Request...

Rename

Validate

New Self-Signed...

Extract Centificate.

image2.png
General

Extended

Exits

Cluster

Repository
Communication
Events

SsL

Statistics

Online monitoring
Statistics monitoring
Accounting monitoring
Log

XA resource managers
Installable services
Channels

QMGR TEST - Properties

ssL

5L key repository
Certificates used by this queue manager are held in a key repository

SSL Key repository: ~[/var/mam/qmars/QMGR_TEST/ssl/key J

Authentication information
(] Check certificates received by this queue manager for revocation

Revocation namelist:

Cryptographic hardware
No encryption hardware specified

Configure.

ranifieate yalidatinm mndime [Ar .

image3.png
SERVERCON - Properties

General ssL
Extended

MCA CipherSpec

Exits Set message security for this end of the channel

SSL SSL Cipher Spec: | TLS_RSA_WITH_AES_256_CBC_SHA256 S
Statistics

TLS 1.2, 256-bit Secure Hash Algorithm, 256-bit AES encryption

[Accept only certificates with Distinguished Names matching these values:

SSL Authentication: | Required S

