

CA Test Data Manager (TDM)

Best Practice Guide and Health Check

Version 2.2

 Version: 2.3
Date: Tuesday, 21st January 2020
Authors: Keith Puzey, Abderrahmane Zahrir, Walter Guerrero, Salvator Pilo

Referenced Documents

CA TDM Product Documentation Bookshelf Broadcom Techdocs

Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced
herein belong to their respective companies.

https://techdocs.broadcom.com/content/broadcom/techdocs/us/en/ca-enterprise-software/continuous-testing/test-data-management/4-8-1.html

Contents
REFERENCED DOCUMENTS 2

Chapter 1: Foundation Functional Feature 5

PLANNED END STATE 5

SOLUTION PERSONAS 6

FOUNDATION LOGICAL ARCHITECTURE 7

Foundation System Specification Requirements 7

FOUNDATION PHYSICAL ARCHITECTURE 7

BASE SYSTEM CONFIGURATION REQUIREMENTS 8

Solution Component Ports 8

Source and Target Database Ports 8

TDM PORTAL ARCHITECTURE 9

ADDITIONAL DEPLOYMENT METHOD - DOCKER 10

CHAPTER 2 :MASKING PERFORMANCE OPTIMIZATION 12

ASSESS THE SIZE OF YOUR ENVIRONMENT 12

Memory use in FDM 12

Optimize concurrent jobs in CA TDM Portal 13

Memory Usage for concurrent masking instances 13

Results of insufficient memory 13

MAXIMISE MEMORY AVAILABILITY 13

SPLIT TABLES 14

USE PARALLEL THREADS TO MASK DATA 15

MASKING FUNCTION AND SEED LISTS 16

RUN FAST DATA MASKER SCRIPTS REMOTELY 17

SCALABLE MASKING 18

Scalable masking deployment 18

TDM Masking Components explained 18

Scalable Masking Flow 19

CHAPTER 3 : SYNTHETIC DATA GENERATION OPTIMIZATION 20

ENVIRONMENT DETAILS 20

Machine specs 20

TEST 1 - HARD-CODED DATA 20

Publish to CSV 20

Publish to XLSX 20

TEST 2 - ONE EXPRESSION 21

Publish to CSV 21

Publish to XLSX 21

SQL Server Target publish (default config) 21

SQL Server Target publish (iterationsBeforeCommit=20000) 21

SQL Server Target publish (iterationsBeforeCommit=50000) 22

CHAPTER 4: CA TEST DATA MANAGER HEALTH CHECK 23

HEALTH CHECK OVERVIEW 23

CA TEST DATA MANAGER HEALTH CHECKLIST 24

TDM Components Used 25

DATA SOURCES IN USE 25

ENVIRONMENT OVERVIEW 27

TDM USAGE DATA 27

CHAPTER 5: UPGRADE PROCESS AND CHECKLIST 28

Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced
herein belong to their respective companies.

Chapter 1: Foundation Functional Feature

Planned End State

 The planned state is to provide a reference architecture to support the implementation of CA TDM.

 This document can be considered as the logical and physical design, illustrating how the technical solution will
be implemented to meet the architecture (non-functional and environment constraints) requirements and how it
will be configured or customized to support the requirements.
 All content contained in this document is based on CA Lead Practices and where necessary, it has been updated
to reflect the corporate governance standards for architecture requirements.

 The following shows a basic TDM logical system architecture. The core components of CA Test Data Manager are
normally deployed on a Windows server. The TDM Portal is a web based UI which can be used to interact with
TDM. TDM Portal can be deployed on windows as well as in a Docker container (Ubuntu) . The datamaker
component is a legacy component of TDM which is required for some of the TDM functions and administration. A
full list of the TDM components can be found here

https://techdocs.broadcom.com/content/broadcom/techdocs/us/en/ca-enterprise-software/continuous-testing/test-data-management/4-5/getting-started/key-components.html

Solution Personas

 The following table summarizes the solution personas and how they can use the CA TDM solution. Where
applicable, the personas are grouped by the capability in which they play a role:

Description Persona (Role)

TDM Administrator Configure CA TDM and administer Projects and users access permissions

Test Data Engineer (TDE) Administer Data sources and create and manage:

 Data Generation rules and Jobs

 Find and Reserve Models

 Data Masking rules and Jobs

Data Compliance Auditor Review PII Discovery models and create Audit Report

Data Compliance Approver Review and Approve PII Audit reports

End User (Tester) Use self-service catalogue to request test data and DB clones

6
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Foundation Logical Architecture

Foundation Logical Architecture
 The following architecture illustrates the required application component packaging for the CA TDM foundation
solution.

Foundation System Specification Requirements
 The hardware requirements for the solution, for average capacity, are defined in the following subsection.

Foundation Physical Architecture
 The hardware required for the Foundation Physical Architecture solution is given in the following table.

TDM Component Qty Disk Space TDM Repository Database

Database 1 50 GB

Microsoft SQL Server 2012, 2014, 2016, 2017
Microsoft SQL Server Express 2014, 2016, 2017
Oracle 11g and 12c, 18c
Oracle 11g XE

TDM
Component

Qty RAM CPUs
OS &SW
Disk Space

Operating Systems

TDM Server
(Medium Size)

1 16 GB
4 Cores,
2.5 Ghz

50 GB

Microsoft Windows Server 2008 R2

Microsoft Windows Server 2012 R2

(64-bit)

Microsoft Windows 10 64-bit

Microsoft Windows 7 64-bit

Ubuntu 16.04 - Docker Deployable

containers

7
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Base System Configuration Requirements

Solution Component Ports

From To Port

ARD TDM TCP 8090 or Portal port 8080 / 8443

TDM Portal

Data Maker

Service Layer – TDOD Service

Repository JDBC MSSQL 1433 /Oracle 1521

ODBC MSSQL 1433 /Oracle 1521

ODBC MSSQL 1433 /Oracle 1521

TDM Portal

Datamaker

Active Directory LDAP 389 / LDAPS 636

LDAP 389 / LDAPS 636

TDM Portal

Remote Publish Service

Email Server SMTP – TCP 25

SMTP – TCP 25

TDM Portal OrientDB TCP 2424

TDM Portal Find and Reserve

Database

JDBC MSSQL 1433 /Oracle 1521 (Location - TDM Repository as the

default configuration)

Data Maker Mainframe FTP – TCP 22

TDM Portal Masking Messaging

Container

TCP 5671

Masking Container Masking Messaging

Container

TCP 5671

 The following table summarizes the ports used by the Solution components:

Source and Target Database Ports

TDM Component Database Default Port

TDM Portal

DataMaker

Oracle TCP 1521

TDM Portal

DataMaker

MS SQL TCP 1433

TDM Portal

DataMaker

IBM DB2 AS400 TCP 446

TDM Portal

DataMaker

IBM DB2 z/OS TCP 446

TDM Portal

DataMaker

Teradata TCP 1025

TDM Portal

DataMaker

PostGres TCP 5432

TDM Portal

DataMaker

MySQL TCP 3306

8
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

TDM Portal Architecture

 The TDM Portal is based on Apache Tomcat and the TDM components are deployed as microservices. The
following diagram shows the Microservices and a high level connectivity architecture.

9
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Additional Deployment method - Docker

A standard TDM deployment is normally on Windows but a subset of TDM can be
deployed using the preshipped Docker images. These images are built on Ubuntu 16.04 and
Java 1.8 v212.

Note: Certain features of TDM Portal are not available when using the docker containers.

This diagram shows how the Docker containers interact with each other.
When deploying TDM Portal using the Docker containers the only supported repository is

Oracle, this oracle Database can either be within another Docker container or standalone.

The following list shows the shipped Docker images and their uses

Image Name Description

Tdmweb:version TDM Web Portal

Orientdb:version Orient Database

tdmtools:version TDM Tools
 Use this container to:

● Encrypt a password, Generate a JWT shared secret
● Create a gtrep user on your Oracle gtrep database
● Create sample databases on your Oracle database, from the sample

databases supplied with CA TDM.

10
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

https://techdocs.broadcom.com/content/broadcom/techdocs/us/en/ca-enterprise-software/continuous-testing/test-data-management/4-8-1/installing/install-test-data-manager/install-tdm-portal-for-docker/features-not-available-in-tdm-portal-in-docker.html

action-service:version Action Services
 Use instances of this container to allow you to execute Actions from TDM
Portal in Docker (one Action per container)

messaging:version Message Bus Server container
 The TDM Portal service (in Windows or Docker) sends masking jobs (split into
tasks) to this container, which then distributes these tasks to masking engine
containers.

masking:version Masking engine container
This container performs masking tasks with the Fast Data Masker engine.

11
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Chapter 2 :Masking Performance Optimization

 CA TDM Portal 4.8 performs masking utilising CA Fast Data Masker. CA TDM Portal can run multiple instances of
FDM concurrently (the maximum and default number of instances is 4). You may be able to perform your masking
job faster, if you can split the job into smaller jobs that Portal can process with concurrent instances of FDM.

Assess the size of your environment

 The size of the data set that you want to mask (i.e. number of tables in each database/schema, number of
columns and rows in tables) has an effect on how much memory FDM needs to mask the data, and how long it
takes. The amount of memory Fast Data Masker requires for a masking job generally increases linearly in relation
to the number of tables, columns and rows to mask.

 Tip: You can use the PARALLEL option on the Masking Settings to set the number of parallel Java threads. Within
an instance of FDM, FDM creates a Java thread for each table.

Memory use in FDM

 For every 1 million rows and 100 columns to mask, 1GB of memory is generally sufficient to maintain optimum
performance (see table below).

Rows Columns Memory Recommended

1 million 100 1GB

2 million 100 2GB

2 million 200 4GB

 .

12
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Optimize concurrent jobs in CA TDM Portal

 CA TDM Portal will split a masking job into separate instances for each Connection Profile. A masking job can run
on either of the following and environment which consist of data sources that it accesses through Connection
Profiles or a specified Connection Profiles.

 The creation of multiple Environments, each with one Connection Profile, does not improve masking efficiency.
However, a Connection Profile can contain multiple schemas.

 A masking job task is created for each set of tables with under one million rows within the same schema. This
means that we will be concurrently running a masking job for these sets of tables linked to a particular schema.

 The masking Service will also create a separate masking job task for each large table (a large table is defined by
the number of rows and that number is configured through application.properties).

 Note that by default a masking container can run a maximum of 4 FDM instances (with one schema on each
instance).

 Example 1: suppose we have a connection profile containing 10 schemas and we are masking all tables in every
schema and we have one masking container. CA TDM creates 10 masking job tasks. One task for each set of tables
in a specific schema. The first 4 masking job tasks will be processed by 4 FDM instances and the remaining 6
masking job tasks will be queued.

Example 2: Suppose we have a connection profile containing 10 schemas and we are masking all tables in every
schema and we have one masking container. Moreover 2 tables are considered LARGE.

The masking service will therefore create 12 masking job tasks; 10 tasks for the 10 schemas and 2 more tasks for
the 2 large tables.

Memory Usage for concurrent masking instances

 The total memory required for a masking job that contains multiple concurrent instances of FDM is equal to the
sum of the memory required for each instance of FDM.

For example, if your job contains 4 instances, and each one requires 1GB of memory, the total memory you need is
4GB.

Results of insufficient memory

CA TDM Portal runs FDM on the same physical system, therefore for optimum masking performance, this system
must have enough physical memory for all concurrent instances of FDM. Less memory can result in:

Slower performance of masking jobs

Slower CA TDM Portal performance

Maximise memory availability

To maximize memory available to CA TDM Portal, we recommend that you schedule jobs to run at a time when
memory load is lower.

13
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Split Tables

 From TDM 4.8.135 and above, when masking a very large table with a primary key or a unique index, you can
improve performance by using the following options.

LARGETABLESPLITENABLED

Enables large tables processing.

Set this parameter to Y to enable, and to N to disable.

Default: N

LARGETABLESPLITSIZE

Defines the minimal number of rows for Fast Data Masker to start using large table processing.

Default: 1000000

With this setting, Fast Data Masker processes large tables by generating several blocks, with each block

containing LARGETABLESPLITSIZE rows to be processed.

The existing option PARALLEL defines the number of threads that can run concurrently to process the

blocks. If the PARALLEL option is not set, and you enable LARGETABLESPLITENABLED, then PARALLEL is set to 10

by default. If there are more blocks than threads, then remaining blocks are queued for processing and wait for a

thread to become available.

The Parallel option is used to define the maximum number of separate threads that the FDM instance will
utilise, each thread will consume additional CPU cycles as can be seen from the table in the masking example
section.

14
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Use Parallel Threads to Mask Data

Fast Data Masker lets you use parallel threads to mask large tables. The PARALLEL option enables you to run n
concurrent threads.

To apply parallel threads, Fast Data Masker must split the work to be done into separate chunks. Fast Data Masker
can manage this task in one of the following ways:

● A regular mask of multiple tables where none of the tables has a large amount of data. Fast Data Masker
automatically sets a thread for each table.

● A large table that is not partitioned. In this case, split the table using the where clauses. For this to work,
the following must apply:

o The masking CSV must only contain a mask for a single table.

o The where clauses must not overlap; for example, if two or more SQL Where clauses select the
same rows in the table to be masked, then the mask causes row lock errors.

● For an Oracle-partitioned table, Fast Data Masker automatically assigns a thread to each underlying
partition. This cannot be combined with the where clauses, and as in point two above, it is applicable to a
mask for a single large table.

Note: The number of parallel threads that you can execute concurrently is constrained by the number of physical
cores and/or processors available. If the parallel number specified in the options is greater than the number of
cores, then some of the threads are held in a queue until resources become available.

You have successfully used parallel threads to mask the data.

15
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Masking Function and Seed Lists

 When reviewing the masking performance consideration should be made to the masking functions

being used and confirming the optimum masking function is being used. Some masking functions

require more resources and also will take longer to run as can be seen in the following graph.

Broadcom engineering is currently working on updates to optimise these various masking methods.

 As well as reviewing the masking functions being used consideration should be made to the size of

any seed lists. Very large seed lists will slow down masking jobs

16
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Run Fast Data Masker Scripts Remotely

 When you save the defined masking information in Fast Data Masker, Fast Data Masker creates a batch file. This
batch file includes information about the location of the connection file, masking file, options file, and other related
information (for example, start memory). You can use this batch file to run from a remote location where Fast Data
Masker is not installed. This is helpful in scenarios where you are facing performance issues on your server because
of different components installed on the server. And, to improve the performance, you want to run the batch script
from a different server.

To run this batch file from a remote location, edit the batch file and update the paths to the Fast Data Masker .jar,
connection file, masking file, and options file. Ensure that they all point to valid locations. You can then run the file
from that remote location.

The following example snippet shows the contents of a masking batch file; update the required file locations based
on your requirement:

java -Djava.util.logging.config.file="C:/Program

Files/Grid-Tools/FastDataMasker/logging.properties" -Xms1000M -Xmx10000M -jar

"C:/Program Files/Grid-Tools/FastDataMasker/Fastdatamasker.jar" "C:/Program

Files/Grid-Tools/FastDataMasker/doc/connectSQLSERVER.txt"

"C:\Users\<username>\AppData\Roaming\Grid-Tools\Fastdatamasker\MyMask.csv"

"C:\Users\<username>\AppData\Roaming\Grid-Tools\Fastdatamasker\MyMask_options.tx

t"

In this snippet, you can find the following example locations:

● C:/Program Files/Grid-Tools/FastDataMasker/Fastdatamasker.jar shows the location of the Fast Data
Masker .jar file.

● C:/Program Files/Grid-Tools/FastDataMasker/doc/connectSQLSERVER.txt shows the location of the
Microsoft SQL Server connection file.

● C:\Users\<username>\AppData\Roaming\Grid-Tools\Fastdatamasker\MyMask.csv shows the location of
the file that contains masking information.

● C:\Users\<username>\AppData\Roaming\Grid-Tools\Fastdatamasker\MyMask_options.txt shows the
location of the file that contains the applied options information.

17
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Scalable Masking
Scalable masking deployment

The Scalable Masking feature was incorporated in CA TDM with version 4.8 and allows the scaling of
masking jobs across multiple FDM masking engines. The masking engines are deployed in Docker containers and
communicate with the TDM portal via a message bus which is also deployed in a docker container. The masking
engines can be deployed on the same docker host as the messaging bus or remote docker hosts. When a new FDM
engine is started it will automatically register with the messaging host. When using the scalable masking solution
the TDM portal can be deployed on Windows or in a Docker container.

The TDM Docker masking containers can generate a high load when running multiple masking jobs so it
is recommended to separate the docker masking engines from other TDM components. In the sample
architecture below the TDM Portal / Messaging and OrientDB containers are deployed separately from the
masking containers. The masking containers are configured to communicate with the messaging container on
the primary TDM server.

TDM Masking Components explained

TDM Portal TDM Manager and UI Server

TDM Repository Oracle Database storing TDM data

OrientDB TDM Internal Database (Models and Find and Reserve data)

Messaging Container Communication bus between TDM Portal and Masking engines

Masking Engines
Container

Docker container hosting FDM Engines

FDM Engines Each Masking engine container can run four separate masking engines

FDM Processes Each FDM Masking engine can spawn additional FDM Processes when using the
large table masking functionality

18
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Scalable Masking Flow

1 User initiates masking job via REST request

2 Request is added to queue of job engine (allowing for scheduling)

3 At appropriate time, job engine passes request onto masking manager

4 Masking manager resolves job information, splits into tasks. one per schema, one task for each
large table. These tasks are then added JMS queue

5 Masking engine pulls task from queue, each docker container contains four masking engines

6 Masking engine begins masking operations (using FDM engine). Threads can be used when
setting Parallels

7 Masking engine provides ongoing status updates and final audit via JMS queue

8 Masking manager pulls status and audit messages from queue

9 Ongoing status is passed to UI via Websockets connection

10 After completion, final audit information is written to masking store

11 Job status is updated to the job engine via REST

12 Job status is written to the repository

19
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Chapter 3 : Synthetic Data Generation Optimization

 The development team performed testing to show performance benchmarks for publishing to CSV and XLSX files.
You can use these benchmarks to help tune the performance of your system, Further details on the testing can be
found on the Broadcom Docops site

Environment Details
The following environment was set up to gather performance data for publishing to CSV and XLSX files.

Machine specs

The machine has 16 GB physical memory, 4 vCPU, and runs Microsoft Windows Server 2012 R2 DataCenter. The
repository was on a local SQL Server 2016.

Test 1 - Hard-coded Data
No expressions were used. All data was hard-coded in the generator.

Publish to CSV

Repeater Performance based on number of rows

10,000 0.5 seconds

100,000 1.2 seconds

1,000,000 7.6 seconds

10,000,000 1 min 08 seconds

100,000,000 11 min 48 seconds

Publish to XLSX

Publish to XLSX is memory intensive compared to publish to CSV. Using the default CA TDM Portal
configuration, the publish hit a wall around 300,000 counts when the CPU usage went high and stayed high. In fact,
performance started degrading around 260,000 counts.

This behaviour is caused by the GC (Garbage collector) going overdrive when trying to clean up some
memory to make sure that the Portal application does not crash with an out-of-memory exception.

The following graph outlines the impact of garbage collection on the Portal:

Tip: Before starting a high-volume publish to XLSX, make sure you increase the memory that is allocated to the
Portal.

20
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

https://techdocs.broadcom.com/content/broadcom/techdocs/us/en/ca-enterprise-software/continuous-testing/test-data-management/4-8-1/installing/publishing-performance-example.html

Edit the config file called wrapper.conf located under CA\CA Test Data Manager Portal\service\conf. You can set
either maxmemory or maxmemory.percent. With maxmemory.percent, the maximum allocated memory is
calculated from the number that was set, times the physical memory. For more information about what needs to
be done to increase the memory size used by the java process,
see https://wrapper.tanukisoftware.com/doc/english/prop-java-maxmemory.html.

Repeater performance based on number of rows

100,000 32 seconds

200,000 59 seconds

300,000 1 min 30 seconds

400,000 1 min 49 seconds

500,000 2 min 40 seconds

600,000 3 min 36 seconds

Test 2 - One Expression
We publish using one expression ~NEXT~ in the generator.

Publish to CSV

Repeater performance based on number of rows

1,000,000 14 seconds

10,000,000 1 min 29 seconds

100,000,000 12 min 38 seconds

Publish to XLSX

Repeater performance based on number of rows

100,000 24 seconds

200,000 46 seconds

300,000 1 min 18 seconds

400,000 1 min 47 seconds

500,000 2 min 17 seconds

600,000 2 min 41 seconds

700,000 3 min 16 seconds

SQL Server Target publish (default config)

Repeater performance based on number of rows

100,000 4 min 18 seconds

200,000 8 min 16 seconds

400,000 17 min 36 seconds

(portal restarted) 800,000 23 min 12 seconds

SQL Server Target publish (iterationsBeforeCommit=20000)

tdmweb.publish.batchCommit=true

21
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

https://wrapper.tanukisoftware.com/doc/english/prop-java-maxmemory.html

tdmweb.publish.iterationsBeforeCommit=20000

Repeater Performance based on number of rows

800,000 35 seconds

10,000,000 6 min 33 seconds

100,000,000 1 hour 6 min 46 seconds

SQL Server Target publish (iterationsBeforeCommit=50000)

tdmweb.publish.batchCommit=true

tdmweb.publish.iterationsBeforeCommit=50000

Repeater Performance based on number of rows

1,000,000 42 seconds

10,000,000 6 min 31 seconds

22
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Chapter 4: CA Test Data Manager Health Check

Health Check Overview

The health check should be used to gather data on the TDM environment and configuration:

1 Test Data Manager Challenges and pain points

2 Test Data Use Cases in use:

Data Masking

Data Subsetting

Data Cloning

Synthetic Data Generation

PII Discovery

Javelin Automation

Test Data Find and Reserve

vTDM

3 Test Data Architecture overview

23
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

CA Test Data Manager Health Checklist

1 Verify CPU Usage of TDM Server

2 Verify Memory Utilisation of TDM server

3 Verify Disk Space Usage of TDM Server

4 Review TDM Portal “startup.log” for errors

5 Run the TDM Repository maintenance utility

a. For versions of TDM prior to TDM 4.8 the repository maintenance utility is launched from within
DataMaker

b. For TDM 4.8 installations using the utility schema-management.bat which can be found in the
following default location :

i. C:\Program Files\CA\CA Test Data Manager Portal\schema-management\bin

6 Review and document license keys

a. TDM License

i. For versions of TDM prior to TDM 4.8 the license can be reviewed in TDM Datamaker UI

ii. For TDM 4.8 installations the license can be reviewed from the TDM portal

b. FDM License

i. License key is stored in this location C:\ProgramData\CA\TDM\lic.dat

c. Subset

24
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

TDM Components Used

TDM Portal

Find and reserve

Masking

Data Modelling

TDod / ARD Forms

DataMaker

Fast Data Masker (FDM)

GT Subset

Javelin

Data Sources in use

Document 3rd Party JDBC drivers for

Database TDM Portal

Find and
Reserve

TDM Portal

Data
Modelling

TDM Portal

Data
Generation

Fast Data
Masker

DataMaker

Data
Generation

Data
Subsetting

Test Match vTDM

Microsoft
SQL Server

Oracle

DB2 for zOS

DB2 iSeries

Teradata

Sybase

PostgreSQL

Adabas

Informix

Ingres

MySQL

MariaDB

25
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

IMS

Netezza

SQL
Anywhere

Derby

SQL Files

CSV Files

Fixed
Definition
files

XML Files

Excel Files

Database TDM Portal

Find and
Reserve

TDM Portal

Data
Modelling

TDM Portal

Data
Generation

Fast Data
Masker

DataMaker
Data
Generation

Data
Subsetting

Test Match vTDM

TXT Files

VSAM / ISAM

JSON Files

26
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Environment Overview

CPU Memory Disk Space

Environment

 TDM Portal

 DataMaker

 FDM

 Subset

MS SQL Version Oracle Version

TDM Repository

List of Fast Data Masker (FDM) Functions used

TDM Usage data

Number of Published jobs Per Week

Number of Published jobs Per Year

Number of Find and Reserve Models

Number of Subset Jobs per week

Number of Subset jobs per year

Number of Masking jobs per week

Number of Masking jobs per year

27
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

Chapter 5: Upgrade Process and Checklist

28
Copyright © 2020 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein
belong to their respective companies.

