

NimBUS Script Agent
(nsa)

Technical Brief

Version: 2.06

Date: March 18, 2015

Author: cseeberg

Technical Brief Nimsoft Corp

 18 March, 2015 2/15

Table of Contents

GENERAL .. 3

TECHNICAL OVERVIEW ... 3

MYSQL SUPPORT ... 3

CONFIGURATION AND DATA FILES ... 3

CLASS DEFINITIONS .. 4

Database ... 4
Action ... 4
Nimbus .. 4
File ... 5
Timestamp ... 6
Probe ... 7
Net ... 8
SNMP .. 9
PDS ... 10
DLL .. 11
Language Extension ... 12

TROUBLESHOOTING ... 14

UNABLE TO ACCESS EMBEDDED CLASS FUNCTIONS ... 14

APPENDIX .. 15

THE NSA DEBUGGER .. 15

Technical Brief Nimsoft Corp

 18 March, 2015 3/15

General
The NimBUS Script Agent (nsa) is a Lua-based scripting platform. The nsa is meant to be used
as a tool for system integration, reporting, on-site enhancements allowing for direct integration
with NimBUS, ADO, MySQL, SNMP and basic system and network functions. It requires almost
no run-time environment, not even NimBUS and contains all functionality within a single binary.
The user may encrypt sensitive data (like NimBUS or database login passwords) and incorporate
this into the script(s).

Technical Overview
The nsa is written in C and built using the latest libraries like Lua 5.1, net-snmp 5.4.1, SQLite
3.5.4 and NimBUS 4.x. The windows binary also supports ADO allowing for direct access to the
myriad of database providers.

The nsa can be run in a command shell window as a manual management/reporting tool, or it can
be used as a timed or daemon probe running under the NimBUS robot.

Scripts can be written in any editor, a great editor of choice is “the crimson editor” -
http://www.crimsoneditor.com/ with built-in lua support and ways to extend the syntax highlighter
with the nsa extensions. In addition it has capabilities of executing the scripts and grabbing the
output thus becoming an Integrated Development Environment (IDE).

MySQL support

NSA 1.14 and later will attempt to dynamically load libmysql.dll / libmysql.so in order to provide
MySQL support. You will need a MySQL connector for C on your system if you wish to access
MySQL database through NSA.

Configuration and Data Files
The nsa is configured by a standard set of command-line options,

- a <argument> passes argument string into script.
- l <logfile> sets the logfile e.g stdout. (default:stdout or

<probename>.log)
- d <debug level> defines which loglevel the script should run under
- p <string> creates an encrypted string based on string.
- P <string> creates a host-locked encrypted string.
- D starts NSA in debugger mode.

The following environment variables will be honored by the NSA:

 NIM_ROOT - this is typically set by the NimBUS robot when running as a probe.
 NIM_LUA_PATH - this variable will be pre-pended to the script lookup path.
 NIM_LUA_CPATH - this variable will be pre-pended to the module lookup path.
 LUA_PATH - will override all script lookup paths.
 LUA_CPATH - will override all module lookup paths.

NSA will use the environment variables to look for scripts and modules in a manner specified by

the lookup path when using the require function.

http://www.crimsoneditor.com/

Technical Brief Nimsoft Corp

 18 March, 2015 4/15

Class Definitions

Database

database.open ([sFileName | sConnectionString [,bStopOnError]])

Opens a database handle to the specified file or database. Subsequent database operations will now be
reference through this handle, until it is closed using the database.close or through an implisit close when
opening another database using database.open. The default database is called user.db. The
ConnectionString parameter may also be an encrypted string using the –p/-P command-line options.
This function returns an error code (see Constants) when StopOnError is false. Default is to abort on
error.
 E.g:

database.open (“myprivate.db”) or
database.open (”Provider=SQLOLEDB;Initial Catalog=NimbusSLM;Data Source=myserver;
User ID=sa;Password=mypassword;Network Library=dbmssocn;Language=us_english")

database.query (sSQL)

Performs the provided SQL in the current open database. If no previous database.open has been
performed then the user.db is used. The SQL statement must be supported by the underlying database.

database.close ()
 Closes the current database.

database.setvariable (sName, sValue)

Creates (or modifies) the persistent variable Name in the current database. The variable name should be
a unique name to avoid collisions.

database.getvariable (sName)
Retrieves the persistent variable Name. The function returns the value as a string as well as the optional
modification timestamp, nil when the variable is non-existent.

Action

action.command (sCommandLine)

Executes the provided command-line string, and places the output (if any) into a table of lines. The exit-
code is returned as the second output parameter. E.g. output, rc = action.command (“ls –al”)

action.ping (sHostName [, iTimeout])

Returns the status (true or false) and the time-used (in milliseconds) when issuing a ping (ICMP ECHO)
to the provided hostname or ip-address.

action.email (sReceiverAddress, sSubject [, sBody]])
 Generates an email-message targeted for the NimBUS Email Gateway. Returns true when successful.

action.SMS (sPhoneNumber, sMessageText)
 Generates an SMSl-message targeted for the NimBUS SMS Gateway. Returns true when successful.

Nimbus

nimbus.login (sUsername, sPassword)

Login to NimBUS with the provided username and password. Note that the password can be encrypted
using the –p/-P command-line arguments and that it is possible to utilize the probe security in the probe
package when running as a probe (using the probe class). Returns the result as boolean, and the
session identification as string.

nimbus.log (iLogLevel, sFormatString, args…)

Writes a line to the specified logfile like the sprint function. The configured loglevel will determine if the
logline is written. E.g configured loglevel is 1.

Technical Brief Nimsoft Corp

 18 March, 2015 5/15

nimbus.log (0,”This will be written”)
nimbus.log (1,”This will also be written”)
nimbus.log (2,”This will not be written”)

nimbus.setloglevel (iLogLevel)
Sets the current loglevel to LogLevel.

nimbus.alarm (iSeverityLevel, sMessageText [, sSuppressionKey [, sSubsystemId [, sSource]]])

Generates a NimBUS alarm message with the severity level (1-5) and a message-text. Use the
suppression-key to create a stateful alarm. Returns a return code and the message-id string.
E.g. rc,nimid = nimbus.alarm (NIML_WARNING, “help me..”)

nimbus.post (sSubject, PDSHandle)
Posts a NimBUS Message onto the NimBUS using the Subject.
Returns a message-id string if successful or nil.

nimbus.request (sNimBUSAddress, sCommand [, sArguments [, iWait [, ReturnAsPDS]]])

Returns the result of the command targeted for the provided nimbus component. The command-
arguments are expected to be a PDS (returned by pds.create). The result is placed into a table unless
the ReturnAsPDS parameter is set to true.
Please note that this is an associative table (not indexed), meaning that a PDS sections will be
referenced by its section-name.

controller = nimbus.request (“controller”,”get_info”)
printf (“controller robot: %s”, controller.robotname)

nimbus.qos_definition (s QosName, sQosGroup, sDescription, sUnit, sUnitAbbreviation, bHasMax [, bIsAsynch]
)

Creates a QoS definition named QosName. Unless the flag IsAsynch is true, an interval based QoS is
created. Please note that subsequent definitions on the same name will not recreate or alter an existing
QoS definition. The HasMax flag set requires that all qos data (issued by nimbus.qos) referring to this
QoSName is issued with a MaxValue.

nimbus.qos (sQosName, sSource, sTarget, dValue, iInterval | QOS_ASYNCH [,nMaxValue])

Will send an interval based QoS message when Interval is greater than zero, and a asynchronous QoS
message when called with QOS_ASYNCH. Please note that no QoS data will be recorded unless a valid
QoS definition has been sent prior to this request. Remember to set the MaxValue if definition was
created using HasMax=true.

nimbus.session_open (sNimBUSAddress)
 Opens a session to the targeted NimBUS component. Returns a handle to the session.

nimbus.session_request (pSessionHandle, sCommand [, sArguments [, iWait [, iReturnAsPDS]]])
 See nimbus.request.

nimbus.session_close (pSessionHandle)
 Closes and removes the data structure associated with the handle.

nimbus.setsid(sSid)

Sets the session identification information into the current running environment.

nimbus.encrypt (sString, sSecretKey)
Returns a base64 encoded string using twofish encryption.

nimbus.decrypt (sString, sSecretKey)

Returns the decoded string using the key.

File

file.copy (sSource, sDestination)

Creates a file using the complete Path and writes Buffer into the file if provided.

file.create (sPath [, sBuffer])

Creates a file using the complete Path and writes Buffer into the file if provided.

Technical Brief Nimsoft Corp

 18 March, 2015 6/15

file.delete (sPath)

Deletes the file named Path.

file.read (sPath [,sMode [,iStartPos]])
Returns a buffer with the filecontents, and the number of bytes read as a second return parameter. The
optional mode parameter allows for controlling the open-mode. (see fopen man-pages, default: “rb”),
StartPos will indicate where the reading should start (default: 0)

file.write (sPath , sBuffer)
Appends Buffer the file Path, and returns true if success

file.stat (sPath)
Returns a table containing the following statistics: mtime, ctime, atime, mode and size.

file.rename (sOldName , sNewName)
Renames the file OldName to NewName.

file.checksum (sPath)
Returns a Base64 encoded checksum string for the specified file.

file.list (sPath [, sPattern [, bDirectoriesOnly]])
Returns a string table with the filenames (or directories if the DirectoriesOnly is set to true). The pattern
can be used to specify the search pattern (default is *).

Timestamp

timestamp.now ()

Returns the number of seconds elapsed since Jan. 1 1970, 00:00:00.

timestamp.diff (iStartTimeStamp [, sFormat [, iEndTimeStamp]])
Returns the difference (seconds, minutes,hours or days) between the EndTimeStamp (or now if not
provided) and the StartTimeStamp using the Format specifier (seconds, minutes, hours,day)

timestamp.newer (iTimeStamp, sTimeSpecification)
Returns true if the TimeStamp is newer than specified by the TimeSpecification. The TimeSpecification
format is built using a combination of numbers and the tokens: seconds, minutes, hours, days. E.g.
10h30min, 5hrs, 30m, 3 days

timestamp.older (iTimeStamp, sTimeSpecification)

Returns true if the TimeStamp is older than specified by the TimeSpecification. The TimeSpecification
format is built using a combination of numbers and the tokens: seconds, minutes, hours, days. E.g.
10h30min, 5hrs, 30m, 3 days

timestamp.data ([iTimeStamp])
Uses ‘now’ if no parameter is provided. Returns a table with the following self-explanatory members:
year,month,day,hour,minute,second,yearofday,weekday and isdst (1 if daylight savings time).

timestamp.fromISO (sISOdatestring)
Returns a timestamp and a timestamp data table (see timestamp.data).

timestamp.format (iTimeStamp [, sFormat])
Returns a formatted timestring using the Format specifier (default: %b %d, %H:%M:%S).

specifier Replaced by Example

%a Abbreviated weekday name * Thu

%A Full weekday name * Thursday

%b Abbreviated month name * Aug

%B Full month name * August

%c Date and time representation * Thu Aug 23 14:55:02

Technical Brief Nimsoft Corp

 18 March, 2015 7/15

2001

%d Day of the month (01-31) 23

%H Hour in 24h format (00-23) 14

%I Hour in 12h format (01-12) 02

%j Day of the year (001-366) 235

%m Month as a decimal number (01-12) 08

%M Minute (00-59) 55

%p AM or PM designation PM

%S Second (00-61) 02

%U
Week number with the first Sunday as the first day of week
one (00-53)

33

%w Weekday as a decimal number with Sunday as 0 (0-6) 4

%W
Week number with the first Monday as the first day of week
one (00-53)

34

%x Date representation * 08/23/01

%X Time representation * 14:55:02

%y Year, last two digits (00-99) 01

%Y Year 2001

%Z Timezone name or abbreviation CDT

%% A % sign
%

* The specifiers whose description is marked with an asterisk (*) are locale-dependent.

Probe

The Probe class allows the script programmer to write a full-blown NimBUS probe in the Lua language like you can
using C/C++, Java, Perl, VB, COM etc.

probe. register(sName, sVersion, sCompanyCopyright [,sLogFile [,iLogLevel [,iLogFlags]]])

Registers the named probe with the NimBUS Robot. Note that this method is prerequisite to all of the
following methods. The Version string is on the form <major>.<minor><release> e.g. 2.01,.
The default LogFile is <Name>.log

probe. unregister()
Unregisters the probe.

probe. run([iTimeout])

This suspends further execution until a “stop” command is issued to the probe. User callbacks and
standard callbacks like timeout, restart and stop will be dispatched when received. The Timeout
parameter indicates how often the timeout callback-function is called. Default is 5000ms.

probe. dispatch([iTimeout])

This method returns control to the script with a return code indicating which event was dispatched. The
registered and standard callbacks are fired as with probe.run(). This gives the script programmer full
control of the event dispatcher.

probe. addCallback(sCallbackFunctionName, sCallbackArguments [, iSecLevel])

This will add a callback function to the probe dispatching mechanism. The CallbackFunctionName is a
string with the same name of an existing function. The CallbackArguments are used to inform the callers
of the parameters and the data-type available. Use SecLevel to alter the security level of the callback.
The default value is 0 (Open).

E.g. probe.addCallback(“get_info”,”details%d”) will inform the callers that the “get_info” command takes
an integer argument named details. The supported identifiers are %d and %s (for string). String is
assumed if no identifier is used.

Technical Brief Nimsoft Corp

 18 March, 2015 8/15

probe. subscribe(sSubject [,sCallbackFunctionName [,sHubAddress]])

This will open a subscriber channel to the hub denoted by the HubAddress (default HubAddress=”hub”)
with a subject list specified by Subject. The default CallbackFunctionName is “hubpost”. The callback
function synopsis is hubpost (messagedata [, msgheaderdata, [, PDSmessagedata, [, PDSmsgheader]]])
The subscribe channel is maintained (reconnected when disconnected) by the nsa.

probe.attach (sQueueName [, sCallbackFunctionName [, sHubAddress]])

This openes a subscriber channel to a named queue on the target HubAddress. See probe.subscribe()

probe.config ([sConfigFile])

Reads the configuration file. Default configuration file is <Name>.cfg where Name is the registered probe
name. The configuration file is returned as a table, where the full section path name is used as the key
for the section.

probe. log(iLogLevel, sFormat [, Arguments])
See nimbus.log()

probe. setloglevel (iLogLevel)

See nimbus.log()

Net

The Net class provides a few simple but useful networking methods.

net.ping (sHostname | sIP-address [,iTimeout [,iNumPackets [,iPacketSize]]])

Send ping (ICMP ECHO) to the designated host. Timeout is in ms, default 1000.
Returns status (true or false) and time used in milliseconds.

net. connect(sHostname | sIP-Address, iTCPport [, iTimeout])

Attempts a TCP connect to the designated host. Timeout is in ms, default 1000.
Returns status (true or false) and time used in milliseconds.

net. nametoip(sHostname)

Returns the IP-address associated with the Hostname.

net. iptoname(sIp-Address)

Returns the hostname (if any) associated with the ip-address.

net. gethostname()

Returns the hostname of ”this” system.

Technical Brief Nimsoft Corp

 18 March, 2015 9/15

SNMP

The SNMP class provides the script programmer with built-in SNMPGET and SNMPWALK functionality.

snmp.create (iSnmpVersion, sTargetHost, …)

The snmp.create method takes different arguments dependent on the SNMPversion information.

For version 1 and 2:
snmp.create(1|2,target,community [,oidlist [,options]])

For version 3:
snmp.create (3,target,username,password,auth,seclevel [,privprotocol [,privpassword [,oidlist]]])

This method returns a handle used by the other methods in this class. The oidlist is a comma or white-
space separated list of object identifiers. They will be added to the handle’s request list, and used by the
snmp.query method.

snmp. addvariable (pSnmpHandle , Oid)
Adds the oid to the SnmpHandle request buffer. Will be used by snmp.query.

snmp. addvariable (pSnmpHandle , sFormat, sType, sData [, iIndex])

Adds the oid to the SnmpHandle set buffer. The Format string is a sprint like formatting string allowing
you to modify the OIDs used together with the snmp.set. The Type is one of string, number or time. This
usage of the addvariable method will be only used by snmp.set.

snmp. delete(pSnmpHandle)

Removes the data-structure associated with SnmpHandle.

snmp.query (pSnmpHandle)

Runs the query against the oidlist specified in the create statement.

snmp. get(pSnmpHandle,Oid)
Requests the Oid from the targethost denoted by the SnmpHandle. The data is returned as a table.

snmp. set(pSnmpHandle)
Sets the variables added to the handle by snmp.addvariable at the targethost denoted by the
SnmpHandle. The data is also returned as a table if successful as well as a return code.

snmp.getnumber (tTable|pSnmpHandle, sOid)

Requests a single integer value from the SnmpHandle’s result buffer, or from the Table returned by
snmp.walk or snmp.get.

snmp.getstring (tTable|pSnmpHandle, sOid)

Requests a single string value from the from the SnmpHandle’s result buffer, or from the Table returned
by snmp.walk or snmp.get.

Technical Brief Nimsoft Corp

 18 March, 2015 10/15

snmp. walk (pSnmpHandle, sStartingOID, sRootPath [, iMaxOids])
Performs a “snmpwalk” starting at the StartingOID, limiting it to the RootPath. The optional MaxOids
parameter allows the caller to set the maximum oids returned per request. The default value is 300.
The table returned by this function contains the following elements: numoids, done, lastoid and oids.

PDS

The PDS (Portable Data Stream) format is used heavily within the NimBUS to exchange data between various
processes on all platforms supported by NimBUS. This format allows users to build nested datastructures that
may be passed between different languages and different hardware platforms.

pds.create ()

Returns a reference handle to a PDS structure. Use pds.size (pdsHandle) to obtain the size of the PDS.

pds.copy(pdsHandle)
Returns a reference handle to a copied PDS structure.

pds.delete (pdsHandle)

Deletes the PDS structure and data.

pds.convert (pdsHandle)

Returns a LUA table. This function converts the PDS structure to a LUA table containing the same
key/value pairs and sub-tables (if any).

pds.putInt (pdsHandle, sKey, iValue)
 Stores an integer value in the provided PDS structure using the Key as the reference to the Value.

Note that an existing element with the same Key will be replaced.

pds.putString (pdsHandle, sKey, sValue)
Stores a string in the provided PDS structure using the Key as the reference to the Value. Note that an
existing element with the same Key will be replaced.

pds.putDouble (pdsHandle, sKey, dValue)
Stores a double value in the provided PDS structure using the Key as the reference to the Value. Note
that an existing element with the same Key will be replaced.

pds.putPDS (pdsHandle, sKey, pdsHandle)
 Stores a PDS in the provided PDS structure using the Key as the reference to the Value.

Note that an existing element with the same Key will be replaced.

pds.putTable (pdsHandle, sKey, Value)
Stores a Value of type string, number or PDS to the named table Key.

pds.getInt (pdsHandle, sKey)
 Returns the number associated by Key from the provided PDS structure (or nil if non-existent).

pds.getString (pdsHandle, sKey)

Technical Brief Nimsoft Corp

 18 March, 2015 11/15

 Returns the string value associated by Key from the provided PDS structure (or nil if non-existent).

pds.getDouble(pdsHandle, sKey)
 Returns the number associated by Key from the provided PDS structure (or nil if non-existent).

pds.getPDS (pdsHandle, sKey)
 Returns the PDS handle associated by Key from the provided PDS structure (or nil if non-existent).

pds.getTableInt (pdsHandle, sKey, iTableIndex)

Returns the number associated by Key from the named table Key and index TableIndex. Zero (0) is the
first table index.

pds.getTableString (pdsHandle, sKey, iTableIndex)
Returns the string value associated by Key from the named table Key and index TableIndex. Zero (0) is
the first table index.

pds.getTablePDS (pdsHandle, sKey, iTableIndex)
Returns the PDS handle associated by Key from the named table Key and index TableIndex. Zero (0) is
the first table index.

pds.getNext (pdsHandle)
 Returns the next Key, Type, DataSize, Data from the provided PDS structure (or nil if non-existent).

pds.fileOpen (sPath)

Returns a reference handle to an open pdsFile. Close the file using pds.fileClose.

pds.fileClose (pdsFileHandle)
Closes the pdsFile.

pds.fileRead (pdsFileHande [,bMarkAsRead])
Returns 3 optional output parameters: return code, a reference handle to a PDS and the number of bytes
read. The bMarkAsRead flag advances and saves the file read pointer, default is true. Note that the PDS
file can contain blocks of PDS’s, these can be read in a loop.
 E.g rc,dta,nbytes = pds.fileRead(f,true)

pds.fileWrite (pdsFileHande , pdsHandle)

Writes the provided pdsHandle data to the file.

DLL

dll.load (sFilename)

Returns a handle to the opened dynamic library.

dll.free (dllHandle)
Free’s up the data-structures related to the dll.

dll.call (dllHandle, sFunctionName [, args])
Calls the dll-function sFunctionName with up to 10 arguments. Make sure that the argument count
matches the expected arguments for the dll function. This function supports lua types: number and string
only.

dll.icall (dllHandle, sFunctionName [, args])
Expects a returned integer value from the dll-function and passes this back to the caller as a string.

dll.scall (dllHandle, sFunctionName [, args])
Expects a returned string value from the dll-function and passes this back to the caller as a string.

 h = dll.load ("winmm.dll")
 dll.call (h, "PlaySoundA","C:\\WINDOWS\\MEDIA\\notify.wav", 0, 0)
 dll.free (h)

Technical Brief Nimsoft Corp

 18 March, 2015 12/15

Language Extension

sprintf (sFormat [,Par1 [,Par2 […]]])

Returns a string buffer with the formatted string.

printf (sFormat [,Par1 [,Par2 […]]])
Logs the formatted string to the output window (if in the editor) or the NAS logfile.

print (Par1[,Par2 […]]])
Logs the string to the output window (if in the editor) or the NAS logfile. Used primarily for simple
unformatted printing and debug output.

left (sString, iLength)
Returns Length characters from the String, starting from the left.

right (sString, iLength)

Returns Length characters from the String, starting from the right.

mid (sString, iStart [, iLength])
Returns Length characters from the String, starting from Start. If no Length is specified, the rest of the
string will be returned.

substr (sString, sSubstring)

Returns true if the Substring is found, as well as the starting Position of the subsctring.

split (sString [, sSeparators])

Returns a table of substrings separated by one or more of the Separator characters. The default
separator is whitespace.

trim (sString [, iMode])
Returns a String trimmed for leading and/or trailing whitespaces.
The Mode is 0 – leading and trailing, 1 – leading only and 2 – trailing only

regexp (sString, sExpression)

Returns true if the regular (or pattern matching) expression matches String.

setvariable (sName, sValue)
Stores the non-persistent variable Name. The value is retrievable until a cold-start of the NSA clears the
Non-persistent data store. Use the equivalent database.setvariable for a persistent store. NSA clears

the
variable if sValue is nil.

getvariable (sName)
Returns the non-persistent named variable Name or nil if non-existent.

exit (iExitCode)
Terminates the script execution with an ExitCode. Non-zero ExitCodes will be recorded in the NAS
activity-log.

tonumber (Value)
Converts Value into a number.

tostring (Value)

Converts Value into a string.

type (Value)
Returns the variable type as as string.

sleep (iMilliSeconds)
 Suspends execution for a given time.

setenv (sName, sValue)
 Sets the environment Name to Value.

Technical Brief Nimsoft Corp

 18 March, 2015 13/15

thread (LuaCodeblock [,Argument])
Executes the LuaCodeBlock in a separate thread, that allows for “parallel” execution outside the current
script context. The lua interpreter already contains co-routines that allows for controlled processing.
The variable THREAD_ARGUMENT is filled with the optional parameter Argument and is used to pass
data from the calling script. Please note that this inline code runs in a complete separate context, thus
not able to access any data in the callers context. The LuaCodeBlock may be a quoted string, or a string
literal enclosed in double square bracket. [[..]]

Technical Brief Nimsoft Corp

 18 March, 2015 14/15

Constants

Script constants:
SCRIPT_FILE = filename of script.
SCRIPT_ARGUMENT = argument string passed by the –a command-line switch.

Alarm severity levels:
NIML_CLEAR = 0
NIML_INFORMATION = 1
NIML_WARNING = 2
NIML_MINOR = 3
NIML_MAJOR = 4
NIML_CRITICAL = 5

Error codes:
NIME_OK = Ok
NIME_AGAIN = Not ready, try again
NIME_ERROR = Error
NIME_COMERR = Communication/connectivity error
NIME_INVAL = Invalid argument
NIME_NOENT = No such entry
NIME_ISENT = Entry is already defined
NIME_ACCESS = No access

Probe dispatcher return codes:
NIMSW_TIMEOUT = Timeout value is reached
NIMSW_MSG =
NIMSW_ERROR = Error situation is detected, e.g. disconnected subscriber channel.
NIMSW_EXIT = The “stop” command has been issued.
NIMSW_RESTART = The “restart” command has been issued.
NIMSW_SHUTDOWN = A “shutdown” command has been issued

Troubleshooting

Unable to access embedded class functions

Problem description
Error message is displayed when accessing a built-in function like database.open.
E.g. Jul 6 12:54:21:756 nsa: Script error, test.lua:12: attempt to call field 'open' (a nil value)

Solution
This problem will occur when you override/overload the class name (in this case, database) with a
local variable. The solution is to rename your variable.

Technical Brief Nimsoft Corp

 18 March, 2015 15/15

Appendix

The NSA Debugger

The built-in NSA debugger (from version 2.00) allows the script developer to perform common
debugging functions like setting breakpoints, stepping in/out of functions, showing data etc.
It is invoked using the –D option. The following command-set is supported:

%nsa –D script.lua

====== NSA 2.00 DEBUGGER STARTING =======
nsa>?
Available Commands:
 r|run execute script.
 c|cont continue execution.
 n|next next statement, step over functions.
 s|step step into functions.
 e|exit exit NSA.
 q|quit quit debugging, and reload script.
 l|list [num_lines] list num_lines of script sourcecode.
 p|print [variable|*] print all or named variables.
 b|break [file:]lineno|funct. set breakpoint.
 t|bt|backtrace show stacktrace.
 B|Breakpoints list breakpoints
 clear [file:]lineno|funct. clear spesified breakpoint.
 where print current line.

 set <named variable> <value> sets the named variable to value.

 show <token>
 breakpoints list breakpoints.
 coverage [true|false] print each executed linenumber.
 env show environment variables.
 version show NSA version.

nsa>

As you can see, most commands can take an abbreviated form e.g. run or just ‘r’. Code coverage
can be achieved by issuing ‘show coverage true’. This will print each executed line, during the
various flow-control commands like run, next or step. The print command will print named
variables for the current scope unless specified with ‘*’, which includes all temporary variables (the
ones that have not been declared with local). Tables will only be ‘dumped’ when specified directly,
e.g. print mytable .
Please note that LUA code executed by the thread function will not be available for debug, since it
actually runs in a separate LUA context.
You can set breakpoints by using a line-number or a function-name. If the function is in a different
lua file (script/module) then specify the breakpoint with a file-name:function-name or file-
name:linenumber.

Use arrow-up key to access the command history.

