
qos_watcher 1.5

QOS_WATCHER V1.5

Release history
Version Author Comments

1.0 Gijsbert Wiesenekker Initial release.

1.1 Gijsbert Wiesenekker The alarm now also shows the message with the largest delay.

1.2 Gijsbert Wiesenekker The alarm now uses the description of the QoS watcher as the 
suppression key to auto-clear alarms.

1.3 Gijsbert Wiesenekker QoS messages are now sent for the number of delayed QoS 
messages.

1.4 Gijsbert Wiesenekker Added an option to track all QoS messages that match a QoS 
watcher.

1.5 Gijsbert Wiesenekker A watcher will at most send one alarm: the QoS message with 
the largest delay. QoS messages are matched to watchers 
last-to-first. QoS messages that match a QoS watcher are 
tracked by default, and all tracked QoS messages are logged to 
csv files.

Description
This probe uses QoS messages as a heartbeat check: it monitors if certain QoS messages have been 
received and generates alarms when not or have been received with a delay. If you have not 
received an alert from a probe (or from a profile within a probe) for some time either everything is 
fine, but there could also be a problem. Perhaps someone has disabled the probe or the profile in the
configuration, or perhaps the probe or the profile is not working correctly. If you are still receiving 
QoS messages it is likely that everthing is working as it should. There could still be a problem 
receiving the alarm messages of course, so the probe also generates a heartbeat ‘hello from 
qos_watcher’ alarm.
Good use cases for this probe are monitoring of QoS heartbeats from critical url_response and 
e2e_appmon profiles.

Installation
Ensure SDK_Perl 5.04 or greater is deployed to the robot that will run cmd.
Ensure ActiveState Perl version 5.14 is installed on the robot system if it is a Windows robot.
Deploy the probe.

Usage
Double click the probe in Infrastructure Manager to raw configure it or edit the configuration file 
with a text-editor (recommended):

1



qos_watcher 1.5

Name Optional/Required Description
interval Optional. The default is 300. The interval at which the probe should check if 

QoS messages have not been received for any of 
the defined QoS watchers. The interval should be 
smaller than any of the maximum allowed delays 
in the QoS watchers (see below). This is checked 
by the probe on startup.

The probe subscribes to QoS messages and matches received QoS messages against the QoS 
watchers defined in the <watchers> section of the configuration file in the order last first, so more 
specific QoS watchers should be defined after the more general watchers in the configuration file. 
For each QoS watcher you specify the following fields. The field names are the names shown by 
Dr. Nimbus when sniffing QoS messages:

Name Optional or required Description
description Required A description of the QoS watcher. The 

description is used as the suppression id in 
the alarm message, but spaces will be 
replaced by the ‘-’ sign.

robot Optional, default ‘.*’ The name of the robot in the QoS message. 
You can use any Perl regular expression 
without the leading and trailing ‘/’.

prid Optional, default ‘.*’ The name of the probe in the QoS message. 
You can use any Perl regular expression 
without the leading and trailing ‘/’.

2



qos_watcher 1.5

Name Optional or required Description
qos Optional, default ‘.*’ The name of the QoS in the QoS message. 

You can use any Perl regular expression 
without the leading and trailing ‘/’.

source Optional, default ‘.*’ The name of the source in the QoS message. 
You can use any Perl regular expression 
without the leading and trailing ‘/’.

target Optional, default ‘.*’ The name of the target in the QoS message. 
You can use a Perl regular expression 
without the leading and trailing ‘/’.

delay Optional, default 900 The maximum allowed delay for QoS 
messages for this watcher.

track_qos Optional, default 
‘yes’

If ‘yes’ the probe will track the individual 
delay of all QoS messages that match the 
watcher. Messages that exceed the delay are 
logged to the file ‘description.csv’ to avoid 
cluttering the console.

Multiple QoS messages could match a watcher when using wildcards. In such case the oldest QoS 
message is retained.

The supplied configuration file shows examples how to watch for
- any QoS;
- any QoS from a remote Hub;
- QoS CPU_USAGE from the cdm probe on the portal server;
- QoS Portal.* from the e2e_appmon Portal profile monitoring the portal server. The name of the 
profile is not available in the e2e_appmon QoS message, so you are advised to start your QoS name
in the e2e_appmon script with the name of the profile:
Script$ = nimGetEnv$("APPMON_PROFILE_NAME", "APPMON_PROFILE_NAME")
QoS$(1) = Script$ + " Login"
etc.

3


	QOS_WATCHER V1.5
	Release history
	Description
	Installation
	Usage


