Productivity Techniques
for Windows

Session 630

Abdul Latif and Robert Bowen
Texas Instruments

© Texas Instruments 1996 1 ,U!

Productivity Techniques for Windows—
Agenda

* Objectives

* Developer workstation deployment
and management

» Composer Build Tool overview

» Performance tuning findings-code
generation

» Performance tuning findings-
installation

o Summary/Q&A

© Texas Instruments 1996 2 }g



©

©

Objectives

* Reducing development downtime %
* Improving developer productivity
» Creating a highly functional and consistent

technical environment

» Building awareness of options to make the
right choices (the 1st Time!)

Texas Instruments 1996 3 ,U!

Productivity Techniques for Windows—
Agenda

» Objectives

|:>- Developer workstation deployment
and management

» Composer Build Tool overview

» Performance tuning findings-code
generation

» Performance tuning findings-
installation

o Summary/Q&A

Texas Instruments 1996 4 }%



Developer Workstation Configuration—
Overview

e Why do it?

— Creates a consistent, reliable, and
productive environment for Composer
developers

— Allows the developers to focus on design,
coding, and testing rather than PC
configuration

e |s it worth it?

— The benefits will be evident the first time
you generate code

© Texas Instruments 1996 5 ,U!

Developer Workstation Configuration—

Process

» Plan for one week of machine configuration and
testing at project startup

» Try to use homogeneous machines

* Build and test one machine for each machine type
(Take your time for testing!)

» Performance tune the configuration(s)

» Copy the configuration image to a file server
(Save and maintain the image for later use)

* Replicate the image to all of the developer PC’s
» Make PC-specific modifications (as necessary)

* Identify one person to coordinate all future
modifications (maybe more for large projects)

© Texas Instruments 1996 6 }g



Developer Workstation Configuration—

Detalls

* Install all required software (operating system,
network, tools, etc.)

» Configure Composer software (paths, options, etc.)

» Set the project standard Build Tool options
(WINITDEF.TGT)

» Configure Composer Client Manager to ‘talk’ to all
target servers

» Configure TCP/IP tools (Ping, Telnet, FTP) for
maximum ease-of-use

» Set up icons for Tl Books and Codeview trace
example

* Modify Build Tool scripts (as necessary) {@5

© Texas Instruments 1996 7

Developer Workstation Configuration—
Files

« HOSTS and SERVICES files for TCP/IP (for CSE, RDA,
and Client Manager)

« SYSTEM.INI variables (MaxBPS=768 under [386Enh],
CommandEnvSize=1536 under [NonWindowsApp]

 AUTOEXEC.BAT variables (PATH, IEF, LIB, IEFGEN,
AEHOME, AETEST, WINSINC, WIN3SLIB, WIN3EXE,
IEF_BITMAP, INCLUDE, IEF_MDMODE, IEF_MDNAME,
IEFUSER, IEFLAN, IEFCONST, IEF_RDSNODE,
IEF_CCP, CSF_GUIM, EOLINK, DSUSER, DSPSWD)

 CONFIG.SYS variables (SHELL=. ... /e:1024)

© Texas Instruments 1996 8 }g



©

©

Developer Workstation Configuration—
Debugging
Utilize CodeView for Windows

— Warning: CodeView for Windows has high resource
requirements and usually takes over the machine!

» Refer to the Attached White Paper

* Build Tool allows for CodeView option (only for
non-EAB’s)

» Compile EAB code with debug option (-Zi)

» Link executable with CodeView (/CO)

» Execute Composer executable inside CodeView

» Set appropriate breakpoints

» Attend the EAB Technical Session for more info!! {@5

Texas Instruments 1996 9

Developer Workstation Configuration—
Extras
» Try to use dedicated machines for specific tasks
— MS Office, E-Mail, SQL reporting tools
— Cooperative code generation

» Standardize locations of EAB'’s, bitmaps, RI
triggers, and database loads on a file server

— reference these directories in the Composer
Build Tool (where appropriate)

» Write scripts for everything!

— EAB Compiles, database loads, model
backups, etc.

Texas Instruments 1996 10 }g



Developer Workstation Configuration—
Summary

 PLAN, PLAN, PLAN!!

 Build quality machines in the beginning to
reduce headaches later

« Communicate changes to all developers
during the project

» Centralize configuration changes through one
person (PTF's, enhancements, etc.) .,

» Be ready for success!!

© Texas Instruments 1996 11

Productivity Techniques for Windows—
Agenda

» Objectives

» Developer workstation deployment
and management

I:>- Composer Build Tool overview

» Performance tuning findings-code
generation

» Performance tuning findings-
installation

o Summary/Q&A

© Texas Instruments 1996 12 }g



©

©

Composer Build Tool Overview

Target

Scripts

Executables

Source Build ,
Code :> Tool :>DLLS

Remote
File

ICM File

Texas Instruments 1996 13

DDL

Code Installation Process

Generated Build

» The Build Tool is the ‘Traffic Cop’
that directs the processing
options of the generated code
(target database, compiler
options, help compile option,
Debug option, DLL option, etc.)

Texas Instruments 1996 14

Precompile

‘C’ Compile

Help Compile

DLL Link

Final Link




Composer Build Tool Overview-AIK

* What is the Advanced Installation Kit (AIK)?

— An auxiliary tool used to tailor the installation of
Composer-generated code

— A “must-have” tool for the Windows target
environment

— Enabled by the Windows Build Tool
* What does it include?

— Target files, scripts, easy-to-change installation
options, automated DLL generation, and easy
database portability

e Where is it?

— In the AIK directory on the Composer 3 Installation
CD. Itis NOT on the installation menu!

© Texas Instruments 1996 15 ,U!

Productivity Techniques for Windows—
Agenda

* Objectives

» Developer workstation deployment
and management

» Composer Build Tool overview

|:>- Performance tuning findings-code
generation

» Performance tuning findings-
installation

o Summary/Q&A

© Texas Instruments 1996 16 }g



Developer Workstation
Performance Tuning
« Why do it?

— Reduces the Code Generation / §§
Installation ‘Downtime’
(L O N G Coffee Breaks!!)

— Allows the developers to spend more time
on designing, coding, and testing rather
than generating and installing code

e |s it worth it?

— The benefits will be evident every time you
generate code

© Texas Instruments 1996 17 ,U!

Performance Tuning Approach

» Created Generic Composer Workstations

» Benchmarked Code Generation and
Installation Tasks using Windows for
Workgroups

» Modified Configuration to Optimize
Performance

» Repeated steps 2-3 O
» Refer to Appendix for more details

© Texas Instruments 1996 18 }g



Performance Tuning Findings

Performance Tuning is Hard!

It takes time to get an optimized configuration
Configurations are never perfectly optimized

It is still worth the work!

Consider moving to Windows 95 or Windows NT

© Texas Instruments 1996 19

How to Generate Code Faster

Define Optimal Subset
» Use subset expansion (Design, Unit Test,
System Test)

* Use several smaller subsets to maximize
performance

» Subset size is very dependent on Load
Module Packaging

© Texas Instruments 1996 20



How to Generate Code Faster (cont.)

Load Module Packaging

e For Unit Test:

— Package Clients and Servers together
in one load module

— 1 client: 1 server: 1 load module

— Multiple servers may be necessary
(depending on design)

* For System Test:

— Package common routines together
(Error routines, List Boxes, etc.)

© Texas Instruments 1996 21

How to Generate Code Faster (cont.)

Regenerate Code Better

* Only regenerate the changed objects

» Schedule regeneration around
meetings, lunch, etc.

» Don’t regen after every change!

© Texas Instruments 1996 22



©

©

How to Generate Code Faster (cont.)

Manage Your Hard Drive

e Start with clean, formatted hard drive

where possible

» Defragment your hard drive often

(weekly)

 Increase your swapfile size to resolve
some memaory errors

Texas Instruments 1996

23

Performance Tuning Findings—
Code Generation

Thingsthat Worked

Thingsthatdidn’t Work

» Defragment the
hard drive

e 32-bit file and disk
access for Windows
3.11

» Generating without
Trace

» Worrying about available

Windows system
resources

» Changing swapfile
settings

Texas Instruments 1996

24



Productivity Techniques for Windows—
Agenda

* Objectives

» Developer workstation deployment
and management

» Composer Build Tool overview

» Performance tuning findings-code
generation

|:>- Performance tuning findings-
installation

o Summary/Q&A

© Texas Instruments 1996 25 ,U!

Performance Tuning Findings—
Installation

» Refer to Appendix for detailed findings
* Modify configuration at three levels:
— PC Hardware Configuration

— Operating System Configuration
(including Windows software)

— Composer Software (Build Tool,
Scripts, AlIK)

© Texas Instruments 1996 26 }g



Performance Tuning Findings—
Installation (cont.)

PC Hardware Configuration

» Buy the Fastest, Biggest Machine Possible!

* Focus on Hard Drive Speed, Processor, and
Memory

» Defragment the Hard Drive often (weekly)

© Texas Instruments 1996

Performance Tuning Findings—
Installation (cont.)

Operating System Configuration

Dedicate the machine configuration to
Composer development

Use slow, older machines for administrative
tasks to minimize timeslicing (MS Office,
E-Mail, Reporting Tools, etc.)

Upgrade to Windows for Workgroups (v3.11)

Use 32-Bit disk and file access (under 386
Enhanced in Control Panel)

© Texas Instruments 1996 28



©

©

Performance Tuning Findings—
Installation (cont.)

Software Configuration

* Turn off the Help Compile option during
development in the Build Tool (OPT.HELP)

» Configure the Build Tool PIF file (WINITBLD.PIF)
for Full Screen execution

» Package small, generate fast!!

» Always generate from one local directory to
minimize redundancy

Texas Instruments 1996 29 ,U!

Performance Tuning
Summary

* Manage the machine configurations at all
levels (Hardware, Operating System, and
Software)

* Manage the process to improve productivity
(Subsetting, Code Generation, Test Data
Maintenance, Testing, etc.)

* Plan, document, and communicate
continually as the environment evolves

Texas Instruments 1996 30 }g



©

©

Texas Instruments 1996

Texas Instruments 1996

Summary

Preparation pays off in developer
productivity!!

Many database options available for
development and testing

Use the tools available to reduce
development and testing time

Be ready to Fly!! //ﬁ
S =

. B

Productivity Techniques
for Windows

Session 630

Abdul Latif and Robert Bowen
Texas Instruments

. a2



