
© Texas Instruments 1996 1

Productivity Techniques
for Windows

Session 630

Abdul Latif and Robert Bowen
Texas Instruments

© Texas Instruments 1996 2

Productivity Techniques for Windows–
Agenda

• Objectives
• Developer workstation deployment

and management
• Composer Build Tool overview
• Performance tuning findings-code

generation
• Performance tuning findings-

installation
• Summary/Q&A

© Texas Instruments 1996 3

Objectives

• Reducing development downtime
• Improving developer productivity
• Creating a highly functional and consistent

technical environment
• Building awareness of options to make the

right choices (the 1st Time!)
First
Prize

© Texas Instruments 1996 4

Productivity Techniques for Windows–
Agenda

• Objectives
• Developer workstation deployment

and management
• Composer Build Tool overview
• Performance tuning findings-code

generation
• Performance tuning findings-

installation
• Summary/Q&A

© Texas Instruments 1996 5

Developer Workstation Configuration–
Overview

• Why do it?
– Creates a consistent, reliable, and

productive environment for Composer
developers

– Allows the developers to focus on design,
coding, and testing rather than PC
configuration

• Is it worth it?
– The benefits will be evident the first time

you generate code

© Texas Instruments 1996 6

Developer Workstation Configuration–
Process

• Plan for one week of machine configuration and
testing at project startup

• Try to use homogeneous machines
• Build and test one machine for each machine type

(Take your time for testing!)
• Performance tune the configuration(s)
• Copy the configuration image to a file server

(Save and maintain the image for later use)
• Replicate the image to all of the developer PC’s
• Make PC-specific modifications (as necessary)
• Identify one person to coordinate all future

modifications (maybe more for large projects)

© Texas Instruments 1996 7

Developer Workstation Configuration–
Details

• Install all required software (operating system,
network, tools, etc.)

• Configure Composer software (paths, options, etc.)
• Set the project standard Build Tool options

(WINITDEF.TGT)
• Configure Composer Client Manager to ‘talk’ to all

target servers
• Configure TCP/IP tools (Ping, Telnet, FTP) for

maximum ease-of-use
• Set up icons for TI Books and Codeview trace

example
• Modify Build Tool scripts (as necessary)

© Texas Instruments 1996 8

Developer Workstation Configuration–
Files

• HOSTS and SERVICES files for TCP/IP (for CSE, RDA,
and Client Manager)

• SYSTEM.INI variables (MaxBPS=768 under [386Enh],
CommandEnvSize=1536 under [NonWindowsApp]

• AUTOEXEC.BAT variables (PATH, IEF, LIB, IEFGEN,
AEHOME, AETEST, WIN3INC, WIN3LIB, WIN3EXE,
IEF_BITMAP, INCLUDE, IEF_MDMODE, IEF_MDNAME,
IEFUSER, IEFLAN, IEFCONST, IEF_RDSNODE,
IEF_CCP, CSF_GUIM, EOLINK, DSUSER, DSPSWD)

• CONFIG.SYS variables (SHELL= /e:1024)

© Texas Instruments 1996 9

Developer Workstation Configuration–
Debugging

• Utilize CodeView for Windows
– Warning: CodeView for Windows has high resource

requirements and usually takes over the machine!
• Refer to the Attached White Paper
• Build Tool allows for CodeView option (only for

non-EAB’s)
• Compile EAB code with debug option (-Zi)
• Link executable with CodeView (/CO)
• Execute Composer executable inside CodeView
• Set appropriate breakpoints
• Attend the EAB Technical Session for more info!!

© Texas Instruments 1996 10

Developer Workstation Configuration–
Extras

• Try to use dedicated machines for specific tasks
– MS Office, E-Mail, SQL reporting tools
– Cooperative code generation

• Standardize locations of EAB’s, bitmaps, RI
triggers, and database loads on a file server
– reference these directories in the Composer

Build Tool (where appropriate)
• Write scripts for everything!

– EAB Compiles, database loads, model
backups, etc.

© Texas Instruments 1996 11

Developer Workstation Configuration–
Summary

• PLAN, PLAN, PLAN!!
• Build quality machines in the beginning to

reduce headaches later
• Communicate changes to all developers

during the project
• Centralize configuration changes through one

person (PTF’s, enhancements, etc.)
• Be ready for success!!

© Texas Instruments 1996 12

Productivity Techniques for Windows–
Agenda

• Objectives
• Developer workstation deployment

and management
• Composer Build Tool overview
• Performance tuning findings-code

generation
• Performance tuning findings-

installation
• Summary/Q&A

© Texas Instruments 1996 13

Composer Build Tool Overview

Build
Tool

Target

Scripts

Source
Code

Remote
File

ICM File

Executables

DLL’s

DDL

© Texas Instruments 1996 14

Code Installation Process

Generated
Code

Precompile

‘C’ Compile

DLL Link

Final Link

Help Compile

Build
Tool

• The Build Tool is the ‘Traffic Cop’
that directs the processing
options of the generated code
(target database, compiler
options, help compile option,
Debug option, DLL option, etc.)

© Texas Instruments 1996 15

Composer Build Tool Overview–AIK
• What is the Advanced Installation Kit (AIK)?

– An auxiliary tool used to tailor the installation of
Composer-generated code

– A “must-have” tool for the Windows target
environment

– Enabled by the Windows Build Tool
• What does it include?

– Target files, scripts, easy-to-change installation
options, automated DLL generation, and easy
database portability

• Where is it?
– In the AIK directory on the Composer 3 Installation

CD. It is NOT on the installation menu!

© Texas Instruments 1996 16

Productivity Techniques for Windows–
Agenda

• Objectives
• Developer workstation deployment

and management
• Composer Build Tool overview
• Performance tuning findings-code

generation
• Performance tuning findings-

installation
• Summary/Q&A

© Texas Instruments 1996 17

Developer Workstation
Performance Tuning

• Why do it?
– Reduces the Code Generation /

Installation ‘Downtime’
(L O N G Coffee Breaks!!)

– Allows the developers to spend more time
on designing, coding, and testing rather
than generating and installing code

• Is it worth it?
– The benefits will be evident every time you

generate code

© Texas Instruments 1996 18

• Created Generic Composer Workstations
• Benchmarked Code Generation and

Installation Tasks using Windows for
Workgroups

• Modified Configuration to Optimize
Performance

• Repeated steps 2-3
• Refer to Appendix for more details

Performance Tuning Approach

© Texas Instruments 1996 19

Performance Tuning Findings

• Performance Tuning is Hard!
• It takes time to get an optimized configuration
• Configurations are never perfectly optimized
• It is still worth the work!
• Consider moving to Windows 95 or Windows NT

© Texas Instruments 1996 20

How to Generate Code Faster

Define Optimal Subset

• Use subset expansion (Design, Unit Test,
System Test)

• Use several smaller subsets to maximize
performance

• Subset size is very dependent on Load
Module Packaging

© Texas Instruments 1996 21

How to Generate Code Faster (cont.)

Load Module Packaging

• For Unit Test:
– Package Clients and Servers together

in one load module
– 1 client: 1 server: 1 load module
– Multiple servers may be necessary

(depending on design)
• For System Test:

– Package common routines together
(Error routines, List Boxes, etc.)

© Texas Instruments 1996 22

How to Generate Code Faster (cont.)

Regenerate Code Better

• Only regenerate the changed objects
• Schedule regeneration around

meetings, lunch, etc.
• Don’t regen after every change!

© Texas Instruments 1996 23

How to Generate Code Faster (cont.)

Manage Your Hard Drive

• Start with clean, formatted hard drive
where possible

• Defragment your hard drive often
(weekly)

• Increase your swapfile size to resolve
some memory errors

© Texas Instruments 1996 24

Performance Tuning Findings–
Code Generation

Things that Worked Things that didn’t Work

• Defragment the
hard drive

• 32-bit file and disk
access for Windows
3.11

• Generating without
Trace

• Worrying about available
Windows system
resources

• Changing swapfile
settings

© Texas Instruments 1996 25

Productivity Techniques for Windows–
Agenda

• Objectives
• Developer workstation deployment

and management
• Composer Build Tool overview
• Performance tuning findings-code

generation
• Performance tuning findings-

installation
• Summary/Q&A

© Texas Instruments 1996 26

Performance Tuning Findings–
Installation

• Refer to Appendix for detailed findings
• Modify configuration at three levels:

– PC Hardware Configuration
– Operating System Configuration

(including Windows software)
– Composer Software (Build Tool,

Scripts, AIK)

© Texas Instruments 1996 27

Performance Tuning Findings–
Installation (cont.)

PC Hardware Configuration
• Buy the Fastest, Biggest Machine Possible!
• Focus on Hard Drive Speed, Processor, and

Memory
• Defragment the Hard Drive often (weekly)

© Texas Instruments 1996 28

Performance Tuning Findings–
Installation (cont.)

Operating System Configuration

• Dedicate the machine configuration to
Composer development

• Use slow, older machines for administrative
tasks to minimize timeslicing (MS Office,
E-Mail, Reporting Tools, etc.)

• Upgrade to Windows for Workgroups (v3.11)
• Use 32-Bit disk and file access (under 386

Enhanced in Control Panel)

© Texas Instruments 1996 29

Performance Tuning Findings–
Installation (cont.)

Software Configuration

• Turn off the Help Compile option during
development in the Build Tool (OPT.HELP)

• Configure the Build Tool PIF file (WINITBLD.PIF)
for Full Screen execution

• Package small, generate fast!!
• Always generate from one local directory to

minimize redundancy

© Texas Instruments 1996 30

Performance Tuning
Summary

• Manage the machine configurations at all
levels (Hardware, Operating System, and
Software)

• Manage the process to improve productivity
(Subsetting, Code Generation, Test Data
Maintenance, Testing, etc.)

• Plan, document, and communicate
continually as the environment evolves

© Texas Instruments 1996 31

Summary

• Preparation pays off in developer
productivity!!

• Many database options available for
development and testing

• Use the tools available to reduce
development and testing time

• Be ready to Fly!!

© Texas Instruments 1996 32

Productivity Techniques
for Windows

Session 630

Abdul Latif and Robert Bowen
Texas Instruments

