Developing a Java Application using the

CA Gen Studio JMMI Interface

Contents
T Ao [V 4] o F PSP PP PR OPR 2
Y=Y 0] o] 1S o] o] L1 oF= Y o [o TS 2
DeVvelopMENT ENVIFONMENTuuiiiiiiiie ettt e e e e e e e ee et e e e e e e e e e e s sseaabtaaeeeeeaeeeesassnnnsnnnnneaeeeaeeessnnnnnnes 3
Extracting action block descriptions from the model ... 5
Reloading descriptions t0 the MOdel.........coo o 12
10 010 g T 1 V2P PP UPPPTPRTRPPPPNE 15
REFEIENCES ..ttt e e Error! Bookmark not defined.

Introduction

This paper shows how to develop an uncomplicated Java application accessing and updating models in
the CA Gen local encyclopedia using the JIMMI Application Program Interface (API) software for CA Gen.

The JMMI API currently supports local access to workstation models for Java based applications on a
Windows platform. The JMMI APl includes read and update classes. These classes provide the capability
to extract and update model information from models in the local encyclopedia.

The API is designed to be able to access CSE model in the future. The JMMI APl is a set of Java classes
and Windows DLLs. You should be familiar with the Java programming language and the software
development tools for the platform on which you are working in order to use the JIMMI API. You should
also be familiar with the CA Gen meta-model.

These API classes allow CA Gen customers and Open Initiative partners to write software to retrieve and
update encyclopedia information.

Sample Application

Let us develop a sample application for the imaginary Company developing commercial applications
using CA Gen. The Company would like to extend its Quality Assurance process so that action block
descriptions can be reviewed by external professional technical writers. These technical writers do not
have a license or the skills to use CA Gen and all materials should be provided in some agreed text
format.

This paper shows how to develop two Java classes to create two Java applications to run from the
command line.

DescriptionExtractor

This class extracts descriptions from all action blocks within the model. The Class stores descriptions in
text files. By default the name of the file is the name of the action block with txt as a file extension. All
text files are stored in the dedicated subdirectory /doc . The application creates a subdirectory in the
directory where a local encyclopedia is located. The application has two parameters: the full path to the
local encyclopedia and the name of the model in the local encyclopedia.

Tip1

We are using the term local encyclopedia which can be a little bit misleading. This is really the location
of the local model on your workstation.

DescriptionReloader

This class reloads action block descriptions stored in text files back into the model. Verified action block
descriptions are in the text files kept in the /doc subdirectory of the directory storing the local
encyclopedia. The name of the file has to match the name of the action block. The name of the file is
used to locate the action block in the model. The text files have to have txt as their file extension. The
application has two parameters: the full path to the local encyclopedia and the name of the model kept
in the local encyclopedia.

Development environment

You can use any Java development environment to develop and run these sample applications. Any Java
development environment you choose has to be located on the windows platform with CA Gen 8.0
installed. The Eclipse SDK has been used to test and run the sample applications. Eclipse Classic 3.4 is
used, the same version of Eclipse used in the beta-release of Gen Studio 8.0.

It is highly recommended that you use a version of any third-party software that has been certified for
the current release of CA Gen.

The first step is always to create a Java Project within the Eclipse workspace. The screen below shows
Eclipse with an open Java project having two classes used in this example.

Picturel.

7)/ab/desc/DescripronEXtTac
File Edit Source Refactor Navigate Search Project Run Window Help

iIN-HE % - 0-%- Q- i BHEG-I®FL- P S5 -

Eclipse DK

EHH - ifﬁ B[&]° =0
@15 gen.plugin.example
R~ o utities.example |
-8 src
. =~ gen.ab.desc
@ [J] DescriptionExtractor.java
i] m DescriptionReloader.java
®-B} IRE System Library [JavaSE-1.6]
(= m Referenced Libraries
] @ com.ca.gen.jmmi_8.0.0.04031.jar - C:\F

|

=

©ar D = R :
[3) *DescriptionExtractor.java 2 = 0| 8= outline 52 EProperﬁes] =
package gen.ab.desc; ~] BV ow"™
-~ #t gen.ab.desc
®i = g P ® ‘= import dedarations
import java.io.File;[] 5 @, Desaptortxrac

public class {
private static final String L/T_SOURCE_SUBDIRECTORY ="/do
private static final String LIT_FILE_EXTENSION = ".txt";

public static void main(String[] args) throws Exception {
System.out.printIn("Extracting Descriptions from Action Blo
if (args.length !=2) {
System.out
.printIn("\nThis utility takes two aguments: <locatior

System.out.print(" Example: ");
a

o LIT_SOURCE_SUBDIRECTORY
& F LIT_FILE_EXTENSION : String
@ ° main(String[)

@ extract(String, String)

® setSourceDirectory(String)

B saveAsTextFile(String, String,

[21 Problems | @ Javadoc &2 @Dedaaﬁm]ﬁmle)&mﬂ@ammﬂ

AL

Ble@ =0

2 ahd gen.utilities.example

You need to set the Java Build Path of the project so your project sees classes of the Gen JMMI API. The
following screen shows how to do it.

Picture?.

[type filter text |

Java Build Path =g (= v
- Resource
. Builders % source | = Projects | B Libraries | & Order and Export | A
JARs and class folders on the build path:
g JJ::: 22:1& 1Set;y|e IB"' com.ca.gen.jmmi_8.0.0.04031.jar - C:\Program Files\CA\Gen r8\Gen\GenStudio \plugins [Add JARs...]
dhis @ = JRE System Library [JavaSE-1.6]
& Java Editng [AddExternalJaRs... |
- Javadoc Location
- Project References [Addvariable.. |
- Refactoring History
--Run/Debug Settings [Add Library...]
[AddClassFolder... | |E
@ [ok][cance]

As you can see the jarfile com.ca.gen.jmmi 8.0.0.04031.Jjar isadded to the Java Build Path
using the Libraries tab. The jar file with JMMI API can be found in the following directory:

C:\Program Files\CA\Gen r8\Gen\GenStudio\plugins

This directory is created during the installation of CA Gen 8.0 on your workstation. You need to be aware
that the name of the jar file can be different depending on what Gen build you are currently using.
Please always check the current name of the jar file or your Java classes will not compile correctly.

This paper comes with sample Eclipse projects and you may prefer to import complete projects into
your workspace. You need to use the Eclipse Import function to do so. You choose the import option
Existing Projects into Workspace. This Option will prompt you to enter the location of the folder or
archive file with the project. The project will be compiled immediately after import is completed. You
should not see any compilation errors if your project class path is set correctly.

This completes the preparation steps. The next sections explain the flow of logic for both applications
and will explain how the Gen JMMI APl works in practice.

Extracting action block descriptions from the model

Class DescriptionExtractor is designed to open a specific model in read-only mode, next it looks
for action blocks, extracts the description from each action block and places the description in the text
files. Each text file is written to the dedicated directory.

Invocation sequence
DescriptionExtractor class has a main method which allows execution of the class from the
command line. The screen below shows the invocation sequence.

Picture3.

public static void main(String[] args) throws Exception {
System.out.printin("Extracting Descriptions from Action Blocks, 1.1");
if (args.length !=2) {
System.out
.printin("\nThis utility takes two aguments: <location of model> and <model name>\n");
System.out.print(" Example: ");
System.out
.println(" <your model directory>\\desc.ief\" \"descriptions\"");
return;
}
DescriptionExtractor descriptionExtractor = new DescriptionExtractor();
descriptionExtractor.extract(args[0], args[1]);

You can see that the application takes two arguments and passes them as parameters to the
instantiated class using the extract () method. The first parameter points to the local encyclopedia
and the second has the name of the model.

Opening and accessing the model
The essential logic accessing the Gen model is executed in the extract () method. There are two
things you should be aware of before we analyse the logic of the extract () method.

Tip 2

All the data object instances within IMMI will at some point in time need to be referred to by a unique
identifier. These identifiers are represented as Id objects in IMMI. There are 3 types of identifiers:
EncyId, ModelId, and ObjId. Ingeneral, ids are not usually instantiated directly. Instead, they are
instantiated automatically when the associated data object is instantiated. Ids are then retrieved from
the data object itself.

Tip 3

Let us have a brief look at the type hierarchy of the class which represents an action block in the model.
As you can see below Class Acblkbsd extends Acblkdef which extends Acb1k which extends
Aggobj and which extends MMOb ;. Acb1kbsd inherits all methods of classes above and adds some of
its own methods as well. You can easily see that the type hierarchy matches what you can see in the
Object Decomposition Report. However, there is a one MMOb j class which does not have an equivalent in
the Object Decomposition Report. MMODb 7 is a base class for an object within a model. It has derived
from it a set of classes generated based on the Gen meta-model schema and Acb1kbsd is just one of
them.

= © object
=-® MMObj
=-@* Aggobj
=-O@* acblk
= ©@" Acblkdef
LCH A

You can develop your own logic using MMOb j or Acb1kbsd. Both have a set of methods allowing you to
access the properties of the object and possibly follow associations from your object to other objects in
the model. The following sample code shows how you can extract the property of type ‘NAME’ from the
object of type Acb1kbsd using two different methods.

// method 1

String abname = acblkbsd.getName();

// method 2

abname = acblkbsd.getTextProperty(PrpTypeCode. NAME);

Tip 4

As you can see the properties above can be fetched in two different ways. Also MMObj objects can be
instantiated in two different ways. In the extract() method, you use

Acblkbsd acblkbsd = (Acblkbsd)MMObj.getInstance (model, objId)
That is the generic way. The specific way would be:

Acblkbsd acbhlkbsd = Acblkbsd.getInstance (model, objId)

The difference is the lack of a cast. The cast is actually done by the Acblkbsd.getInstance

method for you.

Let us return to the extract () method. The following screen shows how very few statements are

required to do this activity.

}

public void extract(String path, String name) throws IOException {

try {

Ency ency = EncyManager.connectlLocalForReadOnly(path);
Model model = ModelManager.open(ency, ency.getModelldByName(name
.toUpperCase()));

setSourceDirectory(path);
List<Objld> list = model.getObjlds(ObjTypeCode.ACBLKBSD);
for (Objld objld : list) {

Acblkbsd achlkbsd = (Acblkbsd) MMObj.getinstance(model, objld);

saveAsTextFile(path + LIT_SOURCE_SUBDIRECTORY, acblkbsd.getName(), acblkbsd.getDesc());
!

System.out.printin("Task completed.");

} catch (EncyException e) {

System.out.printIn(" Problem connecting to the encyclopedia.");

} catch (ModelNotFoundException e) {

System.out.printin(" Model not found.");

So how is it done?

1.

EncyManager is a static factory class that manages the Ency objects. Its
connectLocalForReadOnly () method has one parameter and returns Ency object.
This parameter points to your local encyclopedia. The method can produce an exception
EncyException if the location is incorrect. In practice, parameter path has to point to the
directory having four uncorrupted dat files. Ency object has a number of methods and we use
one of them to find model matching name passed by the parameter name.

ModelManager is a static class that manages the Mode1 objects. This class has a static
method open () opening the model and returning an object representing the opened model. It
takes Ency object as its first parameter and a Mode1Id as its second. As you can see to get
the second parameter, method getModelIdByName () of Ency object is called. Method
open () can throw ModelNotFoundException exception if the model is not found.

The fragment of the code above uses ency.getModelIdByName () method. Thisis
probably the best approach if you want to be sure that the local encyclopedia has a model
exactly matching the specified name. Instead, you can assume that a local encyclopedia’s
mode1TId will always be 0, so it gets the mode11Id by calling ModelId.getInstance (0).
Method setSourceDirectory () will create a subdirectory in the model directory to keep
extracted action block descriptions if the subdirectory does not exist.

The next step will be to find objects of specific type within the model. Method getObjIds ()
will return a list of object ids for the objects of type ACBLKBSD. As we know from the Object

Decomposition Report the model can also store objects of type ACBLKBAA; both types can have
action block descriptions. This sample application ignores type ACBLKBAA for simplicity, but
readers are free to modify the logic including both types of action blocks.

6. We can step through the list of objects, extracting instances of the object for each object id on
the list. Static method getInstance () of the MMOb7j class returns an object. We can
correctly assume that the object has to be of type Acb1kbsd. You need to be sure that the list
only contains objects of the same type otherwise you may get incorrect cast exceptions.

7. Method saveAsTextFile () isresponsible for creating a text file with the extracted action
block description. This method has three parameters: the location where text file should be
created, the name of the action block and the description itself. You can notice that two specific
get methods are used to extract two property values from the action block object. Properties
are type of NAME and type of DESC.

This concludes the main flow of logic. As result a number of text files are created in the designated
directory each with a name derived from the action block name containing the text of the descriptions.

Saving descriptions
DescriptionExtractor class has two extra methods: creating the directory for the text files and
creating the text files. Implementation code for both methods follows:

private void setSourceDirectory(String path) {
File directory = new File(path + LIT_SOURCE_SUBDIRECTORY);
if (!(directory.exists() && directory.isDirectory())) {
if (directory.exists() && directory.isFile()) {
directory.delete();
1
directory.mkdir();
}
}

private void saveAsTextFile(String sources, String abName, String description)

throws |OException {

String name = sources + File.separator + abName + LIT_FILE_EXTENSION;

File file = new File(name);

if (file.exists()) {
file.delete();

!

file.createNewfFile();

PrintWriter printWriter = new PrintWriter(file);

printWriter.printin(description);

printWriter.close();

System.out.printin("a new file " + name + " has been created.");

Full source of the class is part of the attached Java Eclipse project.
Executing the application

The application can be executed from inside Eclipse or as a standalone application executed from the

command line. The screens below show how to run the application from Eclipse.

10

SETTING THE CLASSPATH

Classpath:

=I-~4; Bootstrap Entries
B, JRE System Library [JavaSE-1.6]
=% User Entries
= bj gen.utilities.example (default dasspath)
QTJ gen.utllities.example
(00 com.ca.gen.jmmi_8.0.0.04031.jar - C:\Program Files\CA\Gen r8\Gen\GenStudio\plugins,

Restore Default Entries

PASSING TWO ARGUMENTS

Pro: m

Il":j
Q

o
a

m

Ao
U nis.

o

"C:\Documents and Settings\userid\My Documents\CA\Gen r8\Models\desc.ief” "DESCRIPTIONS™

Variables...

RESULT

hxcracc;ng Descriptions from Action Blocks, 1.1
a2 new file C:\Documents and Settings\stama0
a2 new file C:\Documents and Settings\stamal
Task completed.

\My Documents\CA\Gen r8\Models\desc.ief/doc\AC
My Documents\CA\Gen r8\Models\desc.ief/doc\AC

BLOCK_1.txt has been created.
BLOCK_2.txt has been created.

You need to use the Export feature of Eclipse to create a jar file if you want your utility to be executed
outside the Eclipse SDK. Assuming that Extractor.jar is a name given to the exported jar file, the
application can be executed from the command line as follows:

C:\aa>java —jar Extractor.jar "C:\Documents and Settings\stamaB@?\My Documents\CA
N\Gen r8\Models\desc.ief" “DESCRIPTIONS"

Extracting Descriptions from Action Blocks, 1.1

a new file C:\Documents and Settings\stamaB@?\My Documents\CA\Gen r8\Models\desc.

ief /doc\ACTION_BLOCK_1.txt has been created.

a new file C:\Documents and Settings\stamaB@?\My Documents\CA\Gen r8\Models\desc.
ief /doc\ACTION_BLOCK_2.txt has been created.

Task completed.

11

Reloading descriptions to the model

Reloading descriptions from the text files to the model has equally simple logic. Class
DescriptionReloader is designed to open a specific model for update, search for text files at the
specified location, find action blocks in the model whose name matches the name of the text file and
update the description property of each identified action block in the model. Once all action blocks have
been updated, changes to the model are committed and the model is closed.

Invocation sequence
DescriptionReloader hasa main () method which allows execution of the class from the
command line. The following source code shows the invocation sequence.

public static void main(String[] args) throws Exception {
System.out.printin("Reloading Descriptions to Action Blocks, 1.1");
if (args.length !=2){
System.out
.printIn("\nThis utility takes two aguments: <location of model> and <model name>\n");
System.out.print(" Example: ");
System.out
printin(" \"C:\\Users\\User\\Documents\\CA\\Gen r8\\Models\\desc.ief\" \"descriptions\"");
return;
!
DescriptionReloader descriptionReloader = new DescriptionReloader();
descriptionReloader.reload(args[0], args[1]);

}

The application takes two parameters and passes them to the instantiated class using the reload ()
method. It assumes that the first argument points to the local encyclopedia and the second argument
has the name of the model.

Opening and updating the model
We are going to explain the following piece of logic.

12

public void reload(String path, String name) throws |OException {

Ency ency;
Model model = null;
try {
ency = EncyManager.connectLocal(path);
Modelld modelld = ency.getModelldByName(name.toUpperCase());
model = ModelManager.open(ency, modelld);
model.beginUnitOfWork();
if (isSourceDirectory(path)) {
File directory = new File(path + LIT_SOURCE_SUBDIRECTORY);
File[] files = directory.listFiles();
for (File file : files) {
if (file.isDirectory()
|| ile.getName().endsWith(LIT_FILE_EXTENSION)) {
continue;
!
Acblkbsd acblkbsd = findActionBlock(model, file.getName());
if (acblkbsd == null) {
continue;
}
updateActionBlock(acblkbsd, file);
System.out.printin(". Completed");
!
model.commitUnitOfWork();
model.save();
System.out.printin("Task completed.");
return;
}
System.out.printin("Cannot find source directory with descrptions");
} catch (EncyException e) {
System.out.printin(" Problem connecting to the encyclopedia.");
if (model != null) {
model.rollbackUnitOfWork();
!
} catch (ModelNotFoundException e) {
System.out.printin(" Model not found.");
return;
}

model.close();

13

1. Static factory class EncyManager has a method connectLocal () which returns Ency
object. We use this method each time we update models stored in the encyclopedia. This
method can throw exception EncyException if the specified path is incorrect.

2. Next step is to find the model in the encyclopedia using the model name. The method
getModelIdByName () returns ModelId. This method can throw exception
ModelNotFoundException if the model cannot be found.

3. We are using static factory class Mode1Manger and its method open () to open the model.
The method has two parameters: Ency object and Mode11d object. This method can throw a
number of exceptions such as the model is not available or is already opened or there are some
communication problems.

4. The model is opened with for update so we need to begin unit of work and commit unit of work
after all action blocks are successfully updated. On some rare occasions it may be necessary to
rollback unit of work. Model should be saved and closed after successful completion. Class
model has a set of methods to maintain the integrity of the model. They are
beginUnitOfWork (), commitUnitOfWork () and rollbackUnitOfWork ().
Methods save () and close () match functions which you know from using the Gen Toolset.
They both ensure that changes to the model are saved and the model closed properly.

5. From a closer look at the logic flow you can see that the application searches for text files in the
specified directory with the name of the file used to find matching action blocks in the model. A
purpose written method findActionBlock () takes two parameters and returns a non-null
object for each action block which matches the specified name.

private Acblkbsd findActionBlock(Model model, String name)
throws EncyUnsupportedOperationException {
String abName = name.substring(0, name.lastindexOf(LIT_FILE_EXTENSION,
name.length()));
System.out.print("Processing " + abName);
if (list == null) {
list = model.getObjlds(ObjTypeCode.ACBLKBSD);
!
for (Objld objld : list) {
Acblkbsd acblkbsd = (Acblkbsd) MMObj.getinstance(model, objld);
if (acblkbsd.getName().equals(abName)) {
return acblkbsd;
}
!
System.out.printin(" Action block not found.");
return null;

}

6. Once a matching action block is found method updateActionBlock () is executed. This
method takes two parameters, the first is an object representing the action block and the
second a handle to a text file with the description.

private void updateActionBlock(Acblkbsd achlkbsd, File file)
throws |OException {
acblkbsd.setDesc(retrieveDescription(file));

}

14

7. The update method is very simple. Class Acb1kbsd has one convenient method for each
property. Method setDesc () takes a string of characters and overwrites the existing value of
the property of type ‘DESC’. A new action block description is returned by purpose written
method retrieveDescription (). This method has a single parameter which is the file
handle to the text file.

private String retrieveDescription(File file) throws IOException {
BufferedReader bufferedReader = new BufferedReader(new FileReader(file));
StringBuffer buffer = new StringBuffer();
String line = bufferedReader.readLine();
while (line != null) {
buffer.append(line + '\n');
line = bufferedReader.readLine();
}
String result = null;
if (buffer.length() > 3950) {
result = buffer.substring(0, 3950);
System.out.print(". Truncated to size of 3950 characters.");
}else {
result = buffer.toString();

}

return result;

8. You should be aware that the description property can have a limited number of characters and
any description longer than 3950 characters will be truncated.

9. Lastly you need to be aware of NLS and codepage issues. The set property methods are going to
convert from the Unicode Java strings to the model’s code page. Care needs to be taken by the
user to ensure that appropriate data is passed in. Along with that your calls to open
BufferedReaders can also take a file encoding as a parm. Without the parm the
machine’s default file encoding will be used.

The job of reloading descriptions from the text files into action blocks is completed when the model is
saved and closed.

Running the application
The preparation to run the application is no different from what we did for the Description Extractor
class and there is no need to repeat it here. It will produce the following output:

Reloading Descriptions to Action Blocks, 1.1
Processing ACTION BLOCK 1. Completed
Processing ACTION_BLOCK_2. Completed

Task completed.

Summary
These API classes allow CA Gen customers and Open Initiative partners to write software to retrieve and
update encyclopedia information. Sample applications used in this knowledge document do not show

15

the full potential of this new interface, but it should convince you that writing such application need not
be too difficult.

16

