
GEL 2.0 Tutorial

Francis Tang
Bioinformatics Institute

A-STAR, Singapore

June 21, 2005

http://wildfire.bii.a-star.edu.sg

Revision: 1.5 – Date: 2005/06/21 07:44:37 Last Author: francis

1 Introduction

The advent of commodity hardware in HPC has resulted in a situation where re-
searchers often find they have several clusters at their disposal. Often these clus-
ters have subtle differences, e.g. different operating systems and different queue
manager software. For example, one cluster might use SGE as its queue manager,
and another might use PBS/Torque as its queue manager.

Running jobs on a cluster involves writing a submit script for the queue man-
ager. Typically, submit scripts are not portable between queue managers. For
example, an SGE submit script might not run on PBS/Torque.

Furthermore, though queue managers such as PBS/Torque, SGE and LSF pro-
vide command-line “submit” programs which can be used to submit single jobs
with dependencies, or even job arrays, using dependencies in a useful manner
often requires extensive script programming, or otherwise.

GEL allows you to write scripts which are independent of queue schedulers,
and which specify dependencies between jobs implicitly in the script syntax. Dif-
ferent interpretor instances will submit your jobs to different queue managers,
with the correct job dependencies.

This tutorial guides you through the development of a simple script to make
an animated GIF image out of a collection of JPEG images. The reader can find
further information about GEL scripting in theGEL Reference Guideavailable
from http://wildfire.bii.a-star.edu.sg .

1

2 Obtaining and Installing GEL

To use GEL, you will need a UNIX-like machine with GNU utilities. If you
would like to run jobs on the compute nodes, your cluster must use either PBS (or
Torque), SGE or LSF, and have a shared file system.

You will need to download and install GEL. GEL is available fromhttp:
//wildfire.bii.a-star.edu.sg .

2.1 Installing GEL

Only Unix-like environments are supported by GEL. (GEL has been tested on
i386-linux, ia64-linux, alpha-OSF and sparc-SunOS.)

Downloadgel-2.0.tar.gz from wildfire.bii.a-star.edu.sg .
GEL is available without fee under an A-STAR license which allows for non-profit
research use. The precise terms of the license are available fromwildfire.
bii.a-star.edu.sg website.1 Extract this archive into your home directory
and run the install scriptmk-wrapper.sh :

% zcat gel-2.0.tar.gz | tar xf -
% cd gel-2.0
% ./mk-wrapper.sh ‘pwd‘

The last step is important.
Add $HOME/gel-2.0 to your PATH. To check that GEL has been installed,

try runninggel on the command line:

% gel
GEL (Version: 2.0)
(c) 2004, 2005, Bioinformatics Institute, A-STAR, Singapore
...

If you see the banner above (plus help on command-line options), then you have
successfully installed GEL.

2.1.1 Uninstalling GEL

To uninstall GEL, just remove the program directory, e.g. remove$HOME/gel-2.0
in the example above.

1Please contact BII for information about other licenses.

2

3 A simple problem: building an animated GIF from
a collection of JPEG images

We consider a simple problem. Suppose we have a directory of JPEG images and
we would like to resize each image before joining the directory together into an
animated GIF. The resizing step is embarassingly parallel because each image can
be resized independently of the others. However, the animation step is dependent
on the resizing step, since it can only start once all the images have been resized.

Solving this simple problem using the command-line “submit” programs (i.e.qsub
andbsub) provided by PBS/Torque, SGE or LSF would require programming a
script using bash, or otherwise. An example bash script for LSF is shown in Fig. 1;
note that the main bulk of this script involves catching the job id from submitting
the resize jobs, and then assembling the correct dependency expression for the an-
imate job. In contrast, this script expressed as a GEL script is displayed in Fig. 2;
note that the dependencies between jobs is implicit in the structure of the script.

The files relating to this tutorial can be found in thedocs/tutorial/files
directory within the GEL 2.0 install directory. The script uses theconvert com-
mand from the ImageMagick package, and so you will also need to install that to
be able to run the script.

3.1 Starting simple, resizing one image

The ImageMagick commandconvert can resize an image to fit within a320×
240 box using the following options

convert -geometry 320x240 input.jpg output.jpg

This will readinput.jpg and writeoutput.jpg .
Supposeinput.jpg is in directoryinput one relative to the current work-

ing directory. A GEL script to run the command above looks like this:

resize := {
exec = "convert" ;
args = "-geometry", "320x240", "input.jpg", "output.jpg" ;
ipdir = "input_one"

}

resize

This script first defines ajob templatecalledresize such that running the job
amounts to running the commandconvert with the arguments as listed in the
args attribute. Theipdir attribute tells GEL where to find the input files.

To run this script, save the script asone.gel and run the following command

3

#!/bin/bash

jobs=""
outfiles=""
for f in *.jpg; do

out=${f%.jpg}out.jpg
outfiles="$outfiles $out"
jid=‘echo convert -geometry 320x240 $f $out \

| bsub -H \
| sed ’s/[ˆ0-9]//g’‘

jobs="$jobs $jid"
echo $jid

done

deps=""
for jid in $jobs; do

if [-z "$deps"]; then
deps="ended($jid)"

else
deps="$deps && ended($jid)"

fi
done

echo convert -delay 20 $outfiles anim.gif | bsub -w "$deps"
bresume $jobs

Figure 1: LSF script to resize a directory of JPEG images and join them into an
animated GIF. Note that this script must be modified for submitting to SGE or
PBS since the submit program command-line options are different; especially the
dependency condition.

4

init := {
exec = "date" ;
ipdir = "input"

}

final := {
exec = "date" ;
cmdir = "results"

}

resize(f) := {
exec = "convert";
args = "-geometry", "320x240",

$f,
$f %".jpg" ."out.jpg"

}

animate := {
exec = "animate.sh" ;
dir = "bin"

}

init ; # copy files
pforeach file of "*.jpg" do

resize($file) # resize images in parallel
endpforeach ;
animate ; # make animation
final # copy files

Figure 2: GEL script to resize and then animate a directory of JPEG images.

5

gel -f one.gel

GEL will create a temporary working directory of the formJtmp- nnnn where
nnnn is a sequence of digits. Next, it will copy the contents ofinput one
into the working directory, and execute theconvert command. When GEL has
terminated,ouput.jpg can be found in this temporary working directory.

We can modify this script so that the output is stored inresults one , by
adding thecmdir attribute to theresize job:

resize := {
exec = "convert" ;
args = "-geometry", "320x240", "input.jpg", "output.jpg" ;
ipdir = "input_one" ;
cmdir = "results_one"

}

resize

Save this file asone1.gel . Make sureresults one directory exist and is
empty, and run GEL as before:

gel -f one1.gel

When GEL terminates, you can inspectresults one and find the output file in
there.

3.1.1 Running GEL on a cluster

We can tell GEL to run theconvert command on the compute node of a cluster
by specifying a queue manager option. If your cluster uses PBS/Torque, you can
run

gel --pbs -f one1.gel

In this case, GEL will submit the individual jobs to the compute nodes using the
qsub command with the correct dependency expressions. GEL will catch the job
ids and calculate the dependencies for you. Similarly, if your cluster uses SGE,
you can run

gel --sge -f one1.gel

and if it uses LSF, you can run

gel --lsf -f one1.gel

The behaviour of the GEL script is exactly the same as before.
Congratulations! You have written a submit script that works on PBS/Torque,

SGE and LSF without modification.

6

3.2 Exploiting parallelism

Suppose you have a collection of JPEG images in directoryinput , and you want
to resize all of them in parallel. The following GEL script can do this for you:

init := {
exec = "date" ;
ipdir = "input"

}

resize(f) := {
exec = "convert";
args = "-geometry", "320x240",

$f,
$f %".jpg" ."out.jpg"

}

init ;
pforeach file of "*.jpg" do

resize($file)
endpforeach

We have now introduced two job templates:init andresize . The init job
simply forces the files frominput to be copied into the working directory, it runs
the commanddate which does not modify any files in the working directory.

The resize job is now parameterised by parameterf . For the command
line arguments, the input file is now$f , and the output file is$f %".jpg"
."out.jpg" which is the file name$f with the .jpg extension substituted
with out.jpg . For example,input.jpg would becomeinputout.jpg .

Theresize job is invoked inside apforeach construct. This construct first
finds all files matching*.jpg , and for each such file, it will executeresize($file)
where$file is replaced by the file name.

Save this script asmany.gel and execute it as before, making sure you have
several JPEG files in theinput directory. As before, the output images will be
in the temporary working directory.

3.3 Bringing it all together

You can take several images and join them together into an animated GIF using
theconvert command. The syntax is

convert -delay 20 img1.jpg img2.jpg img3.jpg anim.gif

7

where-delay 20 means use a delay of 20/100 seconds between images, and
img {1,2,3 }.jpg are the three frames.

Let us write a wrapper script calledanimate.sh and save it in a directory
calledbin . The script is as follows:

#!/bin/sh

convert -delay 20 *out.jpg anim.gif

This simple shell script joins all files matching*out.jpg into one animated GIF
file calledanim.gif .

Next we modify the previous GEL script so that we run theanimate.sh
script after all the images have been resized. Figure 2 shows the modified GEL
script. First we add a new job template calledanimate whosedir attribute
specifies that theanimate.sh script can be found in the directorybin . We then
use the sequential composition operator “;” to compose theanimate job with the
pforeach loop. We also add another job calledfinal which is analogous to
init and copies the results into directoryresults .

3.4 Running the example script

The docs/tutorial/files directory within the GEL 2.0 install directory
contains the script displayed in Fig. 2, and scriptsone.gel , one1.gel and
many.gel . To experiment with the examples, you should copy the wholefiles
directory to a writable, shared directory on the cluster (i.e. a directory which all
compute nodes can write to).

First run thesetup.sh script to: (1) copy the input JPEG images into
the input and input one directories, and (2) make emptyresults and
results one directories.

To run the script in Fig. 2, invoke the GEL interpretor as follows:

1. gel -f make anim.gel
This will run the GEL script using the local interpretor, i.e. run the jobs
on the same machine that runs the intepretor, using a default value of 4
concurrent processes.

2. gel --nproc=8 -f make anim.gel
This is the same as above except GEL will run up to 8 concurrent processes.
Since theconvert processes terminate very quickly, this is useful even if
you have fewer than 8 cpus in your machine since it reduces the amount of
idle time while the interpretor pauses before polling for job completion.

8

3. gel --sge -f make anim.gel
This will run the script by submitting the jobs through SGE using SGE’s
qsub command.

4. gel --pbs -f make anim.gel
As above except using PBS/Torque.

5. gel --lsf -f make anim.gel
As above except using LSF andbsub .

The resulting file will be calledanim.gif in theresults directory.
The scriptsone.gel , one1.gel andmany.gel can be run similarly.

9

