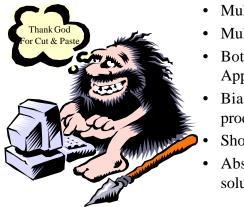

Track 7:Dynamic Searcher Session 730

Taking your IEF application where no IEF application has gone before.


Prepared By: Michael Yaffe

Design Objectives

- Platform Independance
- Support a limitless combination of queries
- Provide sub second response time
- Provide online, print or file output
- Reusable components
- Statically linked and bound
- In real-time mode provide the ability to link to the source object(double click event to link to the thing that was found)

Prepared By: Michael Yaffe

Roadblocks to Dynamic Searching

- Multiple physical platforms
- Multiple database environments
- Both Online and Batch Applications
- Bias against complex queries in production
 - Shortage of skilled resources
- Absence of a good technical solution

Prepared By: Michael Yaffe

Technical Solution

- Create a Table whose sole purpose is to find things(including support for between and like)
- Ensure that the column layouts are generic
- Ensure that all access is through indexes
- Ensure that the data can easily be re-loaded to maintain currency
- Join the table to itself, but no other????

Prepared By: Michael Yaffe

Join to Itself ????

I need to know all people who are over 50 ,earn more than \$40,000, live in Ohio and have a Home Insurance policy.

- In a normal relational system this would require the joining of three or four tables assuming customer demographics and insurance policies are in the same DBMS.
- Adding other criteria would expotentially increase the number of SQL statements required.
- When you join a table to itself you find all keywords that match the above criteria /Age = 50 / State = Ohio / Policy = Home / Salary = \$40,000 /

Prepared By: Michael Yaffe

Join to Itself ????

J O I N	Keyword 50 OHIO 040000 HOME MALE	Keyword Description AGE STATE SALARY POLICY SEX	Identifier from Source System 123456789 123456789 123456789 123456789 123456789 123456789
	MALE	SEX	123456789
	LIFE MARRIED JONES	POLICY MARITAL NAME	123456789 123456789 123456789

Prepared By: Michael Yaffe

Table Design

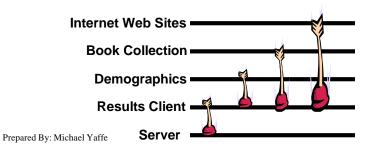
- Keyword Type (Identifies the source of the data)
- Keyword (text your searching on(50, \$40,000, ohio, Home)
- What the keyword represents (Age, Salary, State, Policy type)
- Feeder system identifier (Primary key on the feeder system of what's been indexed "Customer #")
- Description (Textual description of the indexed entity "Customer Name")
- Number of SQL statements equals the maximum number of concurrent keywords you need to search on.
 Experience suggests that it is difficult to find anything that will meet eight criteria.

Prepared By: Michael Yaffe

Database Layout

Record	KEYWORD_SEARC	СН	1(03		
Field	KEYWORD	Text	20	Not Nul	I	
Field	KEYWORD_TYPE		Text	1	Not Null	
Field	ORIGINATOR_ID		l nteger	4	Not Null	
Field	KEYWORD_DESC	RIPTO	DR Text	8	Not Null	
Field	ORIGINATOR_DE	SCRIF	>	Varchar	62	Not Null
EntryP	oint (U) SND 24					
Field	KEYWORD	Text	20	Not Nul	I Ascel	nd
Field	ORIGINATOR_ID		l nteger	4	Not Null	Ascenc
Field	oint (U) 11 (Primary) 2 KEYWORD_TYPE				Not Null	
Field	ORIGINATOR_ID	— .	0	4	Not Null	
Field	KEYWORD	Text	20	Not Nul	I Ascei	nd

Bottom Line


Not all data fits nicely into a normalized relational structure

Try and design a database that describes the products in a L.L. Bean Catalogue. There are too many products that fall into too many catagories. eg. Shirt, Short Sleeve, Cotton, Button Down, Striped, \$35, Mens

Prepared By: Michael Yaffe

Program Design

- Based on two re-usable components and as many custom clients as required.
- <u>Server</u> Contains SQL, formats response to either client window, print or file. Has no knowledge of the Client.
- <u>Results Client</u> displays results of query
- Query Client Collects search criteria from the user

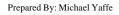
Sample Server SQL

35	CASE 2
40	READ EACH first keyword_search_facilty
40	second keyword_search_facilty
40	TARGETING export_list FROM THE BEGINNING UNTIL FULL
40	WHERE DESIRED first keyword_search_facilty keyword IS GREATER OR EQUAL TO
40	local_1st_from keyword_search_facilty keyword
40	AND DESIRED first keyword_search_facilty keyword IS LESS OR EQUAL TO
40	local_1st_plus_zzzz keyword_search_facilty keyword
40	AND DESIRED first keyword_search_facilty keyword_type IS EQUAL TO
40	local_1st_from keyword_search_facilty keyword_type
40	AND DESIRED first keyword_search_facilty keyword_descriptor IS LIKE
40	local_1st_from keyword_search_facilty keyword_descriptor
40	AND DESIRED second keyword_search_facilty keyword IS GREATER OR EQUAL TO
40	local_2nd_from keyword_search_facilty keyword
40	AND DESIRED second keyword_search_facilty keyword IS LESS OR EQUAL TO
40	local_2nd_plus_zzzz keyword_search_facilty keyword
40	AND DESIRED second keyword_search_facilty keyword_descriptor IS LIKE
40	local_2nd_from keyword_search_facilty keyword_descriptor
40	AND DESIRED second keyword_search_facilty keyword_type IS EQUAL TO
40	local_1st_from keyword_search_facilty keyword_type
40	AND DESIRED first keyword_search_facilty originator_id IS EQUAL TO DESIRED
40	second keyword_search_facilty originator_id
41	MOVE first keyword_search_facilty TO export keyword_search_facilty
42	SET export_records ief_supplied count TO 1 + export_records ief_supplied count
43	SET export ief_supplied select_char TO SPACES
	Prepared By: Michael Yaffe

Sample Client Code

12 EVENT ACTION search	
13 SET SUBSCRIPT OF export_search_group TO 0	
14 IF import_1st_from keyword_search_facility keyword IS NOT EQUAL TO SPACES	
15 SET SUBSCRIPT OF export_search_group TO SUBSCRIPT OF export_search_group + 1	
16 MOVE import_1st_from keyword_search_facility TO	
16 export_1st_from keyword_search_facility	
17 SET export_fromgrp_item keyword_search_facility keyword TO	
17 import_1st_from keyword_search_facilty keyword	
18 SET export_fromgrp_item keyword_search_facilty keyword_descriptor TO "%%%%%%%%"	
19 SET export_fromgrp_item keyword_search_facilty keyword_type TO "I"	
20 SET export_to_grp_item keyword_search_facilty keyword TO	
20 import_1st_from keyword_search_facilty keyword	
14	
21 IF import_2nd_from keyword_search_facility keyword IS NOT EQUAL TO SPACES	
22 SET SUBSCRIPT OF export_search_group TO SUBSCRIPT OF export_search_group + 1	
23 MOVE import_2nd_from keyword_search_facilty TO	
23 export_2nd_from keyword_search_facilty	
24 SET export_fromgrp_item keyword_search_facilty keyword_descriptor TO "%%%%%%%%"	
25 SET export_fromgrp_item keyword_search_facility keyword TO	
25 import_2nd_from keyword_search_facilty keyword	
26 SET export_to_grp_item keyword_search_facility keyword TO	
26 import_2nd_from keyword_search_facilty keyword	
21	
Prepared By: Michael Y	affe

Pros and Cons


- · Cheap to implement
- Flexibilty limited to your ability to dream up new uses
- Re-usable components
- Platform independant
- Maximizes IEF's ability to link a variety of clients to a server
- Hours to develop a new client load the database and be up and running
- Duplication of data
- Data may become stale
- Spoil your users

Prepared By: Michael Yaffe

Demo

- Internet Client
- Book Collector Client
- Demographic Client
- Display Results Client
- Search Server
- 100,000+ rows in Search Table
- Toshiba T4900/P75/810 Hard Drive/40 Meg of memory
- · All programs, tables and indices on one drive a worst case scenario
- IEF 5.3.1, OS2 Warp, DB2/2

