

Web Agent Configuration Guide
r12.0 SP3

CA SiteMinder®

Second Edition

This documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to as
the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2011 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA SiteMinder®

■ CA Wily Introscope®

■ CA Identity Manager

■ CA SOA Security Manager

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

If you would like to provide feedback about CA Technologies product documentation,
complete our short customer survey, which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Web Agents 15

Two Types of Agents for Internet Information Services (IIS) Web Servers .. 15

Multiple Agent for IIS Directory Structures According to Operating Environment .. 16

How Web Agents Secure Resources... 18

How Web Agents and the Policy Server Work Together .. 19

How the Agent Reads SiteMinder Cookies.. 22

Types of Web Agents (Traditional and Framework) ... 24

Parameters Requiring a Server Restart when Changed .. 25

Web Agent Configurations ... 27

Central Configuration .. 28

Local Agent Configuration ... 30

How to Edit an Agent Configuration File ... 35

Implement Local Configuration... 36

Restrict Changes to Local Configuration Parameters .. 38

Central and Local Configuration Together .. 39

Chapter 2: Configuration Files used by the Web Agent 41

Agent Connection Manager Configuration File .. 41

Connection API Configuration File ... 42

Local Agent Configuration File ... 43

Trace Configuration File ... 44

Web Agent Trace Configuration File .. 45

SiteMinder Host Configuration File .. 46

Web Agent Configuration File .. 47

Chapter 3: Use Cases 49

How to Meet the Use Case Deployment Prerequisites .. 49

Use Case 1: Single Agent Protects Single Resource.. 50

How to Implement Use Case 1 .. 50

Use Case 2: Multiple Agents Protecting Multiple Applications within One Domain.. 50

How to Implement Use Case 2 .. 51

Use Case 3: Framework and Traditional Agents Protecting Multiple Applications within One Domain.................... 51

How to Implement Use Case 3 .. 52

Use Case 4: Framework and Tradtional Agents Protecting Multiple Applications Across Multiple Domains 52

How to Implement Use Case 4 .. 53

6 Web Agent Configuration Guide

Chapter 4: Basic Web Agent Configuration 55

Default Settings of Web Agent Configuration Parameters .. 55

Set the Agent Name and Default Agent Name Identities .. 56

Ensure that Agent Names Match .. 57

Encrypt the Agent Name ... 58

How to Manage Web Agent and Policy Server Communication .. 58

Use CA Wily Introscope to Monitor Web Agents .. 59

Monitor Web Agents with the OneView Monitor... 59

Change How Often an Agent Checks for Policy or Key Updates ... 60

Accommodate Network Latency ... 61

Manage Web Agents with Multiple Web Server Instances .. 62

Chapter 5: Server-Specific Web Agent Configurations 65

Special IIS Web Agent Settings ... 65

Manage 404 Not Found Errors (IIS 6.0 Agent) .. 65

Configure your Web Agent to Accommodate P3P Compact Policies.. 66

Enable the IIS 6.0 Security Context to Work with the Agent .. 66

Remove the Server HTTP Header if Using the URLScan Utility ... 67

Special Apache Web Agent Settings ... 67

Use the HTTP HOST Request for the Port Number ... 68

Use Legacy Applications with an Apache Web Agent ... 68

Choose How Content Types are Transferred in POST Requests ... 69

Restrict IPC Semaphore-Related Message Output to the Apache Error Log .. 70

Restrict Directory Browsing on an Oracle iPlanet Web Server .. 71

Chapter 6: Starting and Stopping Web Agents 73

Enable a Web Agent ... 73

Disable a Web Agent .. 74

Chapter 7: Configure Virtual Servers 75

How to Set Up Virtual Server Support.. 76

Add a SiteMinder Wildcard Mapping to Protect IIS 6.0 Virtual Web Sites... 77

Assign Web Agent Identities for Virtual Servers .. 78

Specify Virtual Servers for the Web Agent to Ignore ... 79

Resolve Agent Identity by IP Address ... 80

Chapter 8: Use Platform for Privacy Preferences (P3P) Compact Policies
with SiteMinder Agents 81

How to Support a P3P Compact Policy with your SiteMinder Web Agent ... 81

Contents 7

Configure your Web Agent to Accommodate P3P Compact Policies ... 82

Chapter 9: Single Sign-On (SSO) 83

How Single Sign-on Works in a Single Domain ... 84

Single Sign-On Across Multiple Domains ... 85

Single Sign-On Across Multiple Cookie Domains .. 86

Single Sign-On and Authentication Scheme Protection Levels .. 88

Allow Automatic Access to Resources that use the OPTIONS Method .. 89

Track User Identity Across Anonymous Realms ... 90

Single Sign-on and Agent Key Management .. 90

How to Configure Single Sign-On ... 91

Require Cookies for Basic Authentication ... 92

Set Persistent Cookies ... 93

Specify the Cookie Domain ... 94

Specify the Cookie Provider .. 96

Modify the Session Update Period.. 97

Store Session Cookies on the Session Store for Improved Security .. 98

Validate a Session Cookie Domain .. 99

Prevent Session Cookie Creation or Updates.. 100

Prevent Session Cookie Creation or Updates Based on Method and URI... 101

Set Secure Cookies .. 102

Set Secure Cookies Across Multiple Domains ... 102

Control Identity Cookies.. 103

Modify the Session Grace Period .. 104

Set a Time-out for Saved Credentials .. 105

How to Enforce Timeouts across Multiple Realms ... 106

Redirect a User after a Session Time-out .. 107

Protect Session Cookies from Misuse with Validation Periods and Expired Cookie URLs 108

Configure Support for SDK Third-Party Cookies ... 109

Ignore the Cookie Provider for Unprotected Resources .. 109

Ignore the Cookie Provider for POST Requests (Framework Agents Only) .. 110

Force the Cookie Domain ... 110

Implement Cookie Domain Resolution .. 111

Configure SecureUrls with Single Sign-on .. 112

Prevent Cookie Provider Replay Attacks .. 113

How Full Logoff Works ... 113

Configure Full Logoff ... 114

How to Configure Full Logoff for Single Sign-on ... 115

Configure Comprehensive Log Out using FCC Forms .. 117

Integrate an IIS 6.0 Agent with SharePoint Portal Server 2003 ... 118

Specify the Cookie Path for Agent Cookies .. 119

8 Web Agent Configuration Guide

How CookiePathScope Settings Work ... 120

Chapter 10: Protecting Web Applications 123

Mechanisms for Developing Web Applications ... 123

How Response Attributes Work with Web Agents .. 124

HTTP Header and Cookie-Variables .. 126

Cache Response Attributes ... 126

REMOTE_USER Variable ... 126

How the IIS Web Agent Populates the REMOTE_USER Variable .. 127

Configure the Web Agent to set the REMOTE_USER Variable ... 128

SiteMinder Default HTTP Headers ... 130

Disable Default HTTP Header Variables .. 133

Example Applications that Use SiteMinder Default HTTP Headers .. 134

Header Variables and End-User IP Address Validation .. 137

How Custom Headers Validate IP Addresses .. 138

Configure IP Address Validation .. 139

IP Address Validation with Previous Web Agent Releases .. 140

Preserve HTTP Headers .. 140

Control How HTTP Header Resources are Cached ... 141

Use Lower Case HTTP in Headers (for Oracle iPlanet, Apache, and Domino web servers)...................................... 142

Set the HTTP Header Encoding Spec .. 143

Disable Conformance to RFC 2047 ... 144

Use SM_AGENT_ATTR_USRMSG Response for a Forms Challenge ... 144

Enable Legacy Variables for HTTP Headers .. 145

Define HTTPS Ports... 146

Use the HttpsPorts Parameter on Apache 2.x Servers.. 146

Handle Multiple AuthTrans Functions for Oracle iPlanet Web Servers ... 147

Custom Error Handling For Applications .. 148

How to Set Up Error Handling ... 149

Notes for Custom 401 Pages ... 150

Chapter 11: Manage User Access with IIS 151

Remove Integrated Windows Authentication (IWA) Redirection with InlineCredentials Parameter of the
SiteMinder Agent for IIS ... 151

Control IIS 7.x Module Execution Order when using the SiteMinder Agent for IIS .. 153

Use an IIS Proxy User Account (IIS Only) .. 155

Enable Anonymous User Access ... 156

Use the NetBIOS Name or UPN for IIS Authentication... 157

How to Configure the NT Challenge/Response Authentication (IIS Only) ... 158

Map the .NTC File Extension ... 160

Configure the Virtual Directory for Windows Authentication Schemes (IIS 6.0) .. 161

Contents 9

Configure Automatic Logon for Internet Explorer .. 162

Configure the Challenge/Response Authentication Scheme .. 163

Specify an NTLM Credential Collector ... 164

How to Implement an Information Card Authentication Scheme ... 165

Export the Web Server Certificate to your smkey Database... 166

Configure an FCC Template for an Information Card Authentication Scheme ... 167

Disable Windows Security Context on Agents for IIS ... 168

Chapter 12: Track User Activities 169

Track User Activities or Application Usage with Auditing .. 169

Record the Transaction ID in Oracle iPlanet Web Server Logs ... 170

Record the Transaction ID in Apache Web Server Logs ... 172

Record the User Name and Transaction ID in IIS Server Logs .. 173

Chapter 13: Configure Logs 175

Logs of Start-up Events... 175

Error Logs and Trace Logs... 176

Parameter Values Shown in Log Files ... 177

Set Up and Enable Error Logging .. 178

Enable Transport Layer Interface (TLI) Logging .. 180

Limit the Number of Log Files Saved .. 181

How to Set Up Trace Logging ... 181

Configure Trace Logging .. 182

Trace Log Components and Subcomponents.. 185

Trace Message Data Fields .. 187

Trace Message Data Field Filters... 189

Determine the Content of the Trace Log .. 190

Limit the Number of Trace Log Files Saved ... 192

Collect Detailed Agent Connection Data with an Agent Connection Manager Trace Log 193

Chapter 14: Adjust Performance 195

Web Agent Cache ... 195

Control How Long Resource Enteries Remain Cached ... 196

Set the Maximum Resource Cache Size ... 197

Disable the Resource Cache ... 198

Set the Maximum User Session Cache Size .. 198

Cache Anonymous Users .. 199

Accommodate Testing Tools that do not send HOST Headers .. 200

10 Web Agent Configuration Guide

Chapter 15: Use Web Agents with Proxy Servers 201

Configure Agents that Sit behind Proxy Servers... 202

Customize the Cache-Control and ExpireForProxy Header Settings ... 204

Proxy Header Usage Notes.. 206

Security Considerations.. 207

Chapter 16: Configure Reverse Proxy Servers 209

Types of Reverse Proxy Solutions... 209

How Reverse Proxy Servers Work with SiteMinder .. 209

SiteMinder Reverse Proxy Deployment Considerations ... 211

SiteMinder Secure Proxy Server ... 218

SM_PROXYREQUEST HTTP Header for SiteMinder Processing with Secure Proxy Server 218

SiteMinder IIS 7.x Web Servers and Application Request Routing (ARR)... 219

How to Set Up an IIS 7.x Server with ARR and SiteMinder in your DMZ ... 220

How to Set up your IIS 7.x Servers with SiteMinder When Operating Behind an ARR Server in a DMZ 221

How to Set up an IIS 7.x Server with ARR and SiteMinder in your DMZ with other SiteMinder Agents
for IIS Operating Behind the DMZ ... 222

Chapter 17: Control Inbound URL Processing 227

Decode Query Data in a URL .. 227

Ignore Query Data in a URL .. 228

Query String Encryption of Redirect URLs .. 229

FCC Directive for Encoding Query Strings of Redirect URLs .. 230

Query String Encryption of Redirect URLs and FCC-based Password Services ... 230

Allow Un-restricted Access to URIs .. 231

Encrypt Query String Parameters in Redirection URLs .. 232

Set a Maximum URL Size .. 233

Chapter 18: Enforce Security with URL Monitoring 235

URL Monitoring Overview .. 235

Reduce Overhead by Ignoring File Extensions of Unprotected Resources .. 236

How to Protect Resources Without Periods or Extensions .. 237

Protect Resources Without Extensions .. 238

Secure Applications .. 239

Handle Complex URIs ... 239

Specify Bad URL Characters.. 241

IIS 6.0 Servers and BadURLChars Settings ... 242

Specify Bad Form Characters ... 243

Specify Bad Query Characters .. 244

Restrict Characters Allowed in Host Names ... 246

Contents 11

Chapter 19: Help Prevent Attacks 247

Protect Web Sites Against Cross-Site Scripting .. 247

Configure the Web Agent to Check For Cross Site-Scripting .. 248

Override the Default CSS Character Set ... 248

Safeguard Information in Cookies with HTTP-Only Attribute .. 249

Compare IP Addresses to Prevent Security Breaches .. 249

Help Prevent DNS Denial Of Service Attacks .. 250

Chapter 20: Authenticate Users with Forms 251

How Credential Collectors Process Requests ... 251

Use Credential Collectors for Authentication and Single Sign-On ... 252

MIME Types for Credential Collectors .. 253

Configure MIME Types for Each Credential Collector ... 254

Configure Credential Collectors in a Mixed Environment ... 256

Configure the FCC to Use a Single Resource Target .. 261

Forms Cache .. 261

Disable FCC Realm Context Confirmation to Improve Performance .. 263

Use a Relative Target for Credential Collector Redirects .. 263

Define Valid Target Domains... 264

Define Valid Federation Target Domains .. 265

Enable FCCs/SCCs to Use Agent Names as Fully Qualified Host Names ... 266

Map Agent Identities and Web Servers for Use By FCCs and SCCs ... 267

Preserve Data Posted to a Form ... 267

Use the safeword.fcc File for SafeWord Forms Authentication .. 270

Use a Special Forms Template for Passport Authentication ... 270

How to use Forms with ACE Authentication ... 271

Specify URL Protocols with Lowercase Characters ... 272

Chapter 21: Manage Password Services 273

Supported Approaches for Using Password Services with Web Agents .. 273

FCC Password Services and URL Query Encryption .. 273

Configure FCC Password Services ... 274

How to Enable User-Initiated Password Changes when using the SiteMinder X.509 Certificate and
Basic Authentication Scheme .. 275

How to Enable User-Initiated Password Changes with FCCs .. 277

How to Enable User-Initiated Password Changes with FCCs (SecureURLs=Yes) ... 279

Configure SecureID Authentication with FCC Password Services ... 280

How to Localize FCC-based Password Services Change Forms ... 281

Localize CGI-based Password Services Change Forms ... 282

Use a Fully Qualified URL for Password Services Redirects.. 283

12 Web Agent Configuration Guide

Chapter 22: Domino Web Agents 285

Domino Agents Overview... 285

Domino URL Syntax ... 287

Domino Aliases .. 288

Convert Notes Document Names ... 289

Configure the Domino Web Agent ... 289

Configure Domino-Specific Agent Functions .. 290

Authenticate Users with the Domino Server .. 290

Force SiteMinder to Authenticate Users... 292

Authenticate as the Domino Super User... 293

Authenticate as the Actual User or the Default User.. 293

Modify the Domino Default User and the Domino Super User .. 294

Map URLs for FCC Redirects .. 296

Coordinate SiteMinder and Domino Authentication ... 296

Use a SiteMinder Header for Authentication.. 296

Disable Domino Session Authentication ... 297

Map URLs for FCC Redirects with a Domino Web Agent .. 297

Disable URL Normailization ... 298

Control Access to Lotus Notes Documents .. 299

Enable a Domino Agent to Collect Credentials for Authentication .. 300

Specify User Directories for Domino .. 300

Configure Policies for Domino.. 301

Create Rules for Domino Server Resources .. 302

Configure Full Logoff Support for Domino Agents .. 305

Guidelines for Creating Policies on Domino Servers ... 306

Use a Domino Agent with a WebSphere Application Server ... 306

Force Domino Server to Authenticate Unprotected SiteMinder Resources .. 307

Chapter 23: Advanced Authentication Scheme Configuration 309

Protect IIS 6.0 Web Server Resources with Passport Authentication .. 309

Delete Certificates from Stronghold (Apache Agent Only) .. 310

Accommodate Legacy URL Encoding ... 310

Chapter 24: Single Sign-On Security Zones 311

Security Zone Definitions ... 311

Security Zones Overview .. 312

Security Zones Benefits ... 312

Security Zone Basic Use Case .. 313

User Sessions Across Security Zones ... 314

Trusted Zone Order ... 314

Contents 13

Request Processing with Multiple User Sessions .. 316

Transitive Relationships Across Zones .. 317

Other Cookies Affected by Single Sign-On Zones .. 317

Single Sign-On Zones and Authorization ... 318

Configure Security Zones.. 319

Specify the Single Sign-on Zone for the Agent .. 321

The Order of Trust and Failover .. 322

Appendix A: Troubleshooting 323

Agent Error Codes .. 323

Agent for IIS Troubleshooting Log .. 323

Duplicate LLAWP Error Appears in Log File .. 324

Custom Error Pages not Appearing .. 325

Authentication Error with FCCs if Passwords Contain Special Characters ... 326

Appendix B: Agent Parameters 327

List of Agent Configuration Parameters ... 327

Index 335

Chapter 1: Web Agents 15

Chapter 1: Web Agents

This section contains the following topics:

Two Types of Agents for Internet Information Services (IIS) Web Servers (see page 15)
Multiple Agent for IIS Directory Structures According to Operating Environment (see
page 16)
How Web Agents Secure Resources (see page 18)
Web Agent Configurations (see page 27)

Two Types of Agents for Internet Information Services (IIS)
Web Servers

SiteMinder r12.0 SP3 now offers the following types of Agents for Internet Information
Services (IIS) web servers:

SiteMinder Agent for IIS

A SiteMinder Web Agent for IIS implemented as an ISAPI plug-in and a native HTTP
module that supports the following functions:

■ Application pools using Integrated or Classic pipeline mode.

■ Application pools configured with the Enable 32-bit applications option.

■ The optional IIS Application Request Routing (ARR) feature.

■ Supported with IIS 7.0 and 7.5, including IIS clusters and shared
configuration deployments.

SiteMinder Web Agent

A SiteMinder Web Agent implemented as an ISAPI plug-in that supports the
following functions:

■ Application pools in Classic pipeline mode only.

■ Supported with IIS 6.0, 7.0 and 7.5 standalone deployments only.

Multiple Agent for IIS Directory Structures According to Operating Environment

16 Web Agent Configuration Guide

Multiple Agent for IIS Directory Structures According to
Operating Environment

The directory structure added to your IIS web server for your Agent files varies
according to the operating environment of your IIS web server. The following directory
structures exist:

■ SiteMinder Web Agents and SiteMinder Web Agents for IIS use the directory
structure shown in the following illustration:

Multiple Agent for IIS Directory Structures According to Operating Environment

Chapter 1: Web Agents 17

■ SiteMinder Agents for IIS installed on 64-bit operating environments use the
directory structure shown in the following illustration:

How Web Agents Secure Resources

18 Web Agent Configuration Guide

How Web Agents Secure Resources

A SiteMinder Web Agent is a software component that controls access to any resource
that can be identified by a URL. The Web Agent resides on a web server and intercepts
requests for a resource to determine whether or not the resource is protected by
SiteMinder. The Web Agent then interacts with the Policy Server to authenticate and
authorize users who request access to the protected web server resources.

Web Agents perform the following tasks:

■ Intercept access requests for protected resources and work with the Policy Server
to determine whether or not a user should have access.

■ Provide information to a Web application that dictates how content is presented to
the user (policy-based personalization) and how to deliver access privileges.

■ Ensure a user’s ability to access information quickly and securely. Web Agents store
contextual information about user access privileges in a session cache. You can
optimize performance by modifying the cache settings.

■ Enable single sign-on across Web servers in a single cookie domain or across
multiple cookie domains without requiring users to re-authenticate.

For a list of SiteMinder Web Agents and supported Web server platforms, go to
Technical Support and search for SiteMinder Support Matrix.

Web Agents reside on web servers as illustrated in the following diagram:

Policy

Store

User

Directories

Protected

Resources

Web applications

Active server pages

Scripts

HTML pages

Policy Server

Web Server

Accounting

Logs

Web Agent

http://www.ca.com/support
http://www.ca.com/support

How Web Agents Secure Resources

Chapter 1: Web Agents 19

How Web Agents and the Policy Server Work Together

To enforce access control, the Web Agent interacts with the Policy Server, where all
authentication and authorization decisions are made.

The Web Agent intercepts user requests for resources and checks with the Policy Server
to see if the requested resource is protected. If the resource is unprotected, the access
request proceeds directly to the web server. If the resource is protected, the following
occurs:

1. The Web Agent checks which authentication method is required for this resource.
Typical credentials are a name and password, but other credentials, such as a
certificate or a token card PIN, may be required.

2. The Web Agent challenges the user for credentials.

The user responds with the appropriate credentials.

3. The Web Agent passes the credentials to the Policy Server, which determines if the
credentials are correct.

4. If the user passes the authentication phase, the Policy Server determines if the user
is authorized to access the resource. Once the Policy Server grants access, the Web
Agent allows the request to proceed to the web server.

The Web Agent also receives user-specific attributes, in the form of a response, to
enable Web content personalization and session management. A response is a
personalized message or other user-specific information returned to the Web Agent
from the Policy Server after authorizing the user. It consists of name-value attribute
pairs that are added to HTTP headers by the Web Agent for use with Web applications.
Examples of responses include the following:

■ After authorizing a user to access a Web application, the Web Agent could also send
information to the Web application dictating how long the user session can last.

■ If the user is returning to a site where he or she previously registered, the Web
Agent could return information about that user’s buying preferences.

The following diagram shows the communication between the Web Agent and the
Policy Server:

How Web Agents Secure Resources

20 Web Agent Configuration Guide

Yes

Web Agent

intercepts

access request

Resource

protected?

Web Browser

Web Agent

allows request

through to the

Web server

No

Yes

Access denied No

Web Server

delivers resource

to broswer

Web Agent

checks Policy

Server for

authorization

User

authorized?

Yes

NoAccess denied

User

authenticated?

Web Agent asks

Policy Server if

resource is

protected

Yes

Are there

credentials?

No

Web Agent

challenges user

for credentials

Web Agent

passes

credentials to

Policy Server

How Web Agents Secure Resources

Chapter 1: Web Agents 21

Considerations for Web Agents and Policy Servers in Different Time Zones

By default, the Policy Server and Web Agent calculate time relative to Greenwich Mean
Time (GMT). Therefore, for each system that has a Policy Server or Web Agent installed,
the system clock must be set for the time zone appropriate to that system’s
geographical location.

The following illustration shows how the Policy Server executes a policy relative to time.
A resource is stored on a web server in Massachusetts and is protected by a Policy
Server in California. The policy allows access to the resource between 9:00 AM and 5:00
PM. However, the user in Massachusetts can still access the resource at 6:00 PM
because the policy is based on the Policy Server’s time zone, Pacific Standard Time
(PST), which is three hours behind the Web Agent’s time zone, Eastern Standard Time
(EST).

Note: For Windows systems, both the time zone setting and the time of day (set in the
Date/Time control panel) must agree. For example, to reset a system in the U.S. from
Eastern time to Pacific time, perform the following tasks in the order shown:

a. Set the time zone to Pacific time.

b. Verify that the system clock displays the correct time (three hours earlier than
Eastern time).

If these settings differ, single sign-on across multiple domains and agent key
management will not work properly.

How Web Agents Secure Resources

22 Web Agent Configuration Guide

How the Agent Reads SiteMinder Cookies

Web Agents use agent keys to encrypt and decrypt SiteMinder cookies so the data they
contain can be read. The Agent uses the key to encrypt cookies before sending them to
a user’s browser and to decrypt cookies received from other Web Agents.

All Web Agents need to be aware of the same keys, and the keys must be set to the
same value for all Agents communicating with a Policy Server. This rule is particularly
important for Agents in a single sign-on environment. To ensure that the keys remain
secure, the Policy Server performs a key rollover. A key rollover is the process of
generating new keys, encrypting them, and distributing them to all Web Agents within a
SiteMinder environment.

When a Web Agent starts up and makes a management call request, the Policy Server
supplies the current set of keys. Each time the Web Agent polls the Policy Server, the
agent again makes the management call. The Web Agent receives the updated keys.

The Policy Server provides the following types of keys:

Dynamic Keys

Refers to a key that is generated by a Policy Server algorithm and distributed to
other connected Policy Servers and their associated Web Agents. Dynamic keys can
be rolled over automatically at a regular interval, or they can be changed manually
by using the Administrative UI.

Static Keys

Refers to a key that remains the same indefinitely, and can be generated by a Policy
Server algorithm or configured manually. SiteMinder uses this type of key for a
subset of features that requires information to be stored in cookies over extended
periods.

Automated key changes ease the process of managing agent keys for large SiteMinder
installations that share a single key store. A key store is a storage location for all key
information. Policy Servers access the key store to obtain the current keys, which are
then passed on to the Web Agents. For Agents that are configured for single sign-on, the
key store must be replicated and shared across all Policy Servers in the single sign-on
environment. Automating key changes also ensures the integrity of the keys.

Note: For more information, see the Policy Server documentation.

How Web Agents Secure Resources

Chapter 1: Web Agents 23

Web Agents and Dynamic Key Rollovers

You can use the Administrative UI to configure dynamic Agent key rollover. Web Agents
poll the Policy Server for key updates at regular intervals. If keys have been updated,
Web Agents pick up the changes during polling. The default polling time is 30 seconds,
but you can customize it by changing the value of the PSPollInterval parameter for a
Web Agent.

When a Web Agent detects that a key rollover has occurred, the Agent retrieves new
values for the following Agent keys:

Old Key

Contains the last value used for the dynamic Agent key before the current value.

Current Key

Contains the value of the current dynamic Agent key.

Future Key

Contains the next value that will be used as the current key in a dynamic Agent key
rollover.

Static Key

Contains a long-term key that the Agent can use for SiteMinder features that need
to identify a user and maintain this information for long periods. Static keys also
support cookie encryption for single sign-on when dynamic keys are not enabled.

Web Agents require multiple keys to preserve cookie data and ensure a smooth
transition between old keys and new keys.

More information:

Change How Often an Agent Checks for Policy or Key Updates (see page 60)

Key Stores

When the Policy Server generates dynamic keys, it saves and maintains these keys in the
key store. The key store is a repository from which all Policy Servers retrieve the most
current keys. Web Agents obtain the current keys from the Policy Servers. The key store
may be part of a SiteMinder policy store or maintained as a stand-alone key store.

Note: If an administrator issues multiple agent key rollovers in rapid succession, this
action may invalidate all cookies issued for single sign-on and may disrupt single sign-on
for all users currently logged in. After these users re-authenticate, single sign-on will
operate normally.

How Web Agents Secure Resources

24 Web Agent Configuration Guide

Types of Web Agents (Traditional and Framework)

All SiteMinder Web Agents are based on one of two architectures. Traditional Web
Agents are based on the original SiteMinder Agent architecture. Framework Agents
were introduced with SiteMinder version 5.x QMR 6. Features provided by the Web
Agent are primarily the same regardless of the architecture. There are some differences.
Framework Agents, for example, use a different WebAgent.conf file and a
LocalConfig.conf file, that are not used by the traditional Web Agents.

Traditional Web Agents are installed on the following web servers:

■ Domino

Framework Agents are installed on the following web servers:

■ IIS 6.0, 7.0, 7.5

■ Apache 2.0

■ Apache 2.0-based servers: IBM HTTP Server, HP Apache server

■ Oracle iPlanet Web Server versions 6.0 and above.

Note: The Oracle iPlanet Web Server was previously named "Sun Java Systems" or
"SunONE".

More information:

How to Meet the Use Case Deployment Prerequisites (see page 49)
Enable Post Preservation between Framework and Traditional Agents (see page 268)

How Web Agents Secure Resources

Chapter 1: Web Agents 25

Parameters Requiring a Server Restart when Changed

Some Agent parameters be updated dynamically. You must restart the web server to
apply any changes to the following parameters:

AgentConfigObject

Defines the name of an Agent Configuration Object (stored on a policy server)
in a local agent configuration file. This parameter is not used in Agent
Configuration Objects.

Default: no default

 CacheAnonymous

Specifies if the Web Agent caches anonymous user information. You may want
to set this parameter in any of the following situations:

■ If your web site gets mostly anonymous users and you want to store their
session information.

■ If your web site gets a mix of registered and anonymous users.

 You may want to disable this parameter to keep the anonymous user
information from filling the cache and leaving no room for registered
users.

Default: No

HostConfigFile

Specifies the path to the SMHost.conf file (in an IIS 6.0 or Apache agent) that is
created after a trusted host computer has been successfully registered with a
Policy server. All Web Agents on a computer share the SMHost.conf file.

Default: No default

MaxResourceCacheSize

Specifies the maximum number of entries that the Web Agent keeps in its
resource cache. An entry contains the following information:

■ A Policy Server response about whether a resource is protected

■ Any additional attributes returned with the response

When the maximum is reached, new resource records replace the oldest
resource records.

If you set this value to a high number, be sure that sufficient system memory is
available.

How Web Agents Secure Resources

26 Web Agent Configuration Guide

If you are viewing Web Agent statistics using the OneView Monitor, you may
notice that the value shown for the ResourceCacheCount is greater than the
value you specified for the MaxResourceCacheSize parameter. This is not an
error. The Web Agent uses the MaxResourceCacheSize parameter as a
guideline and the values may at times differ because the
MaxResourceCacheSize parameter represents the maximum number of
average-sized entries in the resource cache. The actual cache entries are most
likely larger or smaller than the pre-determined average size; therefore, the
effective maximum number of entries may be more or less than the value
specified.

Note: For Web Agents that use shared memory, such as the framework Agents,
the cache is pre-allocated to a constant size based on the
MaxResourceCacheSize value and will not grow.

Default: (Domino web servers) 1000

Default: (IIS and Sun Java System web servers) 700

Default: (Apache web servers) 750

MaxSessionCacheSize

Specifies the maximum number of users the Agent maintains in its session
cache. The session cache stores the session IDs of users who authenticate
successfully. Authenticated users accessing other resources within the realm
during a session, are authenticated using the session cache instead of the
Policy Server. When the maximum number is reached, the Agent replaces the
oldest user records with new user records.

Base the value of this parameter on the number of users that you expect to
access and use resources for a sustained period. If you set this value to a high
number, verify that sufficient system memory is available.

Note: Regardless of the cache size, all entries in the session cache of the Web
Agent expire automatically after one hour.

Default: (Domino web servers) 1000

Default: (IIS and Oracle iPlanet web servers) 700

Default: (Apache web servers) 750

PostPreservationFile

Enables the transfer of POST preservation data between Traditional and
Framework Agents by specifying the path to one of the following
POST-preservation-template files:

■ tr2fw.pptemplate—Indicates that resources hosted on a server running a
traditional agent are protected by an FCC running on a Framework agent.

■ fw2tr.pptemplate—Indicates that resources hosted on a server running a
Framework agent are protected by an FCC running on a Traditional agent.

Default: No default

Web Agent Configurations

Chapter 1: Web Agents 27

Example: web_agent_home/samples/forms/fw2tr.pptemplate

ResourceCacheTimeout

Specifies the number of seconds that resource entries remain in the cache. If a
user tries to access a protected resource after the time interval has been
exceeded, the Web Agent removes the cached entries and contacts the Policy
server.

Default: 600 (10 minutes)

More information:

Implement Central Configuration (see page 29)

Web Agent Configurations

The configuration type of a Web Agent determines how the Web Agent obtains the
values for its parameters. You can configure a Web Agent with one (or a combination of
both) of the following methods:

Central

Receives parameter values from an Agent Configuration Object on the Policy Server.

Local

Receives parameter values from a file installed on the system hosting the web
server.

The Web Agent reads its configuration settings using the following process:

1. When a Web Agent is enabled, it searches the Agent Configuration Object (on the
Policy Server) for configuration information.

2. The Web Agent examines the value of the AllowLocalConfig parameter.

3. If AllowLocalConfig is set to no, the Web Agent retrieves all of its configuration
settings from the Agent Configuration object. If AllowLocalConfig is set to yes, the
Web Agent searches the corresponding agent's local configuration file for modified
or additional parameters. The settings in the local configuration file override those
in the Agent Configuration object.

4. The Web Agent creates a unified local copy of an Agent Configuration object using
the settings from the central and local sources. This local copy does not change the
original Agent Configuration object on the Policy Server.

More Information

Central and Local Configuration Together (see page 39)

Web Agent Configurations

28 Web Agent Configuration Guide

Central Configuration

A central agent configuration manages one or more Web Agents from an Agent
Configuration Object in the Policy Server. The Agent Configuration Object that resides in
the Policy Server contains the parameters used by the Web Agents. One advantage of
central configuration is that you can update the parameter settings of several agents at
once. Most parameter changes occur dynamically, but some Framework parameters
require a web server restart after they are changed.

You create and edit an Agent Configuration Object with the Administrative UI. Each Web
Agent communicating with the Policy Server must be associated with an Agent
Configuration Object, but many Web Agents can use a single Agent Configuration
Object.

Note: For more information about creating an Agent Configuration Object, see the
Policy Server documentation.

More Information

Parameters Requiring a Server Restart when Changed (see page 25)

Web Agent Configurations

Chapter 1: Web Agents 29

Implement Central Configuration

Central configuration is enabled by default. The Web Agent uses the configuration
settings from the existing Agent Configuration Object that you specified when you
configured the Web Agent with the configuration wizard. You can change the settings of
the parameters to suit your needs at any time.

To implement central configuration

1. Log into the Administrative UI.

The Welcome screen appears.

2. Click Infrastructure, Agent Configuration.

A list of agent configuration tasks appears.

3. Click Modify Agent Configuration.

The search window appears.

4. (Optional) Fill out the search form to narrow your search criteria.

5. Click Search.

A list of Agent Configuration objects appears.

6. Click the radio button to the left of the Agent Configuration Object associated with
the Agent on which you want to implement central configuration. Click Select.

The Modify Agent Configuration window appears.

7. Ensure the value of the AllowLocalConfig parameter is set to no.

8. Use the Administrative UI to add, edit or delete the settings of any other
parameters according to your needs.

9. Click Submit when you are finished making changes.

The Modify Agent Configuration window closes, and a confirmation message
appears. Central configuration is implemented. Most parameter changes occur
dynamically, but some changes require a web server restart to take effect.

More information:

Parameters Requiring a Server Restart when Changed (see page 25)

Web Agent Configurations

30 Web Agent Configuration Guide

Local Agent Configuration

Local Configuration

A local agent configuration manages a Web Agent using local files that are
installed on the system hosting the web server. The parameter settings in the
local file override any settings stored in an Agent Configuration Object on the
Policy Server. The settings in the Agent Configuration Object do not change.
Situations to consider local agent configuration include the following:

■ When you have three Apache Web Agents, and the first two (A and B) use
identical parameter settings, but you want the third Apache Agent (C) use
the most of the settings from A and B while acting as a reverse proxy. To
accomplish this, use central agent configuration for Apache Agents A and
B, but use local configuration for Apache Agent C.

■ When the Policy Server administrator is not the same person (or group) who
configures an Agent. For example, the information technology department in a
company maintains the Policy Server, but the finance department uses an Agent to
control access to an accounting application. Someone from the information
technology department enables local configuration for the Agent on the Policy
Server, but another person from the finance department controls the specific
configuration settings for the Agent that protects the accounting application.

Framework Web Agents use the following files for local configuration:

WebAgent.conf

Contains the core settings that the Framework Web Agent uses to start and connect
to a Policy Server.

LocalConfig.conf

Contains the configuration settings for the Framework Web Agents.

Traditional Web Agents use the following file for local configuration:

WebAgent.conf

Contains all of the configuration settings for traditional Web Agents.

Web Agent Configurations

Chapter 1: Web Agents 31

WebAgent.conf File Locations

The following table shows the locations of the WebAgent.conf file on various web
servers:

web_agent_home

Indicates the directory where the SiteMinder Agent is installed.

Default (Windows 32-bit installations of SiteMinder Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [SiteMinder Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with SiteMinder Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

Web Server File Location

IIS web_agent_home\bin\IIS

Oracle iPlanet
(iPlanet/SunOne)

Oracle_iPlanet_server_home/https-hostname/config

where Oracle_iPlanet_home is the location in which
theOracle iPlanet web server is installed and hostname

is the name of the server.

Apache,

IBM HTTP Server

Oracle HTTP Server

web_server_home/conf

where web_server_home is the installed location of the

web server

Domino Windows: c:\lotus\domino

UNIX: $HOME/notesdata

More information:

Enable a Web Agent (see page 73)
Disable a Web Agent (see page 74)

Web Agent Configurations

32 Web Agent Configuration Guide

WebAgent.conf file for Framework Agents

Along with the AgentConfigObject, HostConfigFile, and EnableWebAgent parameters,
the following parameters are also added to the WebAgent.conf file of Framework
Agents:

Important! You should not modify any sections of the file that refer to other SiteMinder
products besides the Web Agent. You may, however, change the values of the Web
Agent parameters in the file.

LocalConfigFile

Specifies the location of the LocalConfig.conf file, where most of Agent
configuration settings reside.

ServerPath

Identifies the web server directory (of Apache 2.0 and Oracle iPlanet web servers)
to the Agent.

LoadPlugin

Specifies which plug-ins are loaded for IIS 6.0 and Apache 2.0 Agents. The plug-ins
support different types of Agent functions. The following plug-ins are available:

HttpPlugin

Specifies whether the Web Agent operates as an HTTP agent.

Default: Enabled

SAMLAffiliatePlugin

Allows communication between the Web Agent and a SAML Affiliate Agent (if
you have purchased Federation Security Services).

Default: Disabled

Affiliate10Plugin

Allows communication between the Web Agent and a 4.x Affiliate Agent. This is
not used by the SAML Affiliate Agent.

Default: Disabled

To enable the other LoadPlugin entries, remove the pound symbol (#) from the
beginning of the line.

More Information

Manage Web Agents with Multiple Web Server Instances (see page 62)

Web Agent Configurations

Chapter 1: Web Agents 33

LocalConfig.conf File Locations (Framework Agents)

When you install a Framework Web Agent, the SiteMinder installation program creates
a LocalConfig.conf file in the following directory:

Windows

web _agent_home\config

UNIX

web _agent_home/config

Important! This file contains all of the default settings. Do not modify this file. We
recommend creating a backup copy of this file for future reference or for recovery
purposes.

When you configure the Web Agent, the configuration wizard copies the
LocalConfig.conf file to the following directory:

 IIS web server

web_agent_home\bin\IIS

Oracle iPlanet web server

Oracle_iPlanet_home/https-hostname/config

Apache web server

Apache_home/conf

The Web Agent retrieves its configuration settings from this copy of the
LocalConfig.conf file.

Web Agent Configurations

34 Web Agent Configuration Guide

Parameters Found Only in Local Configuration Files

For central Agent configurations, most of the parameters in the local configuration file
are also in an Agent Configuration Object. The following parameters are used in the
local configuration file only and are not found in Agent Configuration Objects:

AgentConfigObject

Defines the name of an Agent Configuration Object (stored on a policy server)
in a local agent configuration file. This parameter is not used in Agent
Configuration Objects.

Default: no default

EnableWebAgent

Activates a Web Agent and allows it to communicate with the Policy server. Set
this parameter to yes only after you have finished changing all of the
configuration parameters.

Default: No

HostConfigFile

Specifies the path to the SMHost.conf file (in an IIS 6.0 or Apache agent) that is
created after a trusted host computer has been successfully registered with a
Policy server. All Web Agents on a computer share the SMHost.conf file.

Default: No default

Web Agent Configurations

Chapter 1: Web Agents 35

How to Edit an Agent Configuration File

The agent configuration file controls the settings of a locally-configured Web Agent. To
change those settings, use the following process:

1. Create a backup copy of WebAgent.conf (for a traditional agent) or LocalConfig.conf
file (for a Framework agent).

2. Open the original copy of the agent configuration file with a text editor.

3. Enable or disable parameters by doing any of the following:

■ Removing the pound sign (#) from the beginning of the line to enable a
parameter.

■ Adding the pound sign (#) to the beginning of the line to disable a parameter.

4. Change the values of parameters using the following guidelines:

– Do not add spaces between the parameter names, the equals sign (=), and
the parameter values.

– Surround the parameter values with quotation marks.

– The WebAgent.conf and LocalConfig.conf files are not case-sensitive. You
do not have to match the case shown in the sample file installed with the
Agent.

– Many values are shown in the file as descriptive variables, such as <Agent
Name>,<IPAddress>. Replace the angle brackets and text with the values
you want.

– In cases where the value is Empty, a blank is valid as the default. A default
value applies only if there is no pound sign (#) preceding the parameter.

5. Set EnableWebAgent to yes only when you are done making changes, then save and
close the file.

This makes all local configuration changes effective. If you make more changes after
an Agent has been enabled, you must restart your web server for those changes to
become take effect.

Web Agent Configurations

36 Web Agent Configuration Guide

Implement Local Configuration

You can control whether local configuration is allowed with the following parameter:

AllowLocalConfig

Instructs the Agent Configuration Object on the Policy Server to read the local
configuration file to obtain configuration parameters for the agent. This
parameter is used only in Agent Configuration Objects.

Add multiple values for this parameter in the Agent Configuration Object to
control which parameters can be changed in a local configuration file. When
multiple values are set for this parameter, they are processed in the following
order:

■ If the value of yes exists together with other configuration parameters in
the same Agent Configuration Object, yes takes precedence. The other
configuration parameters are the only ones that can be changed in the
local configuration file.

■ If the value no exists together with other configuration parameters in the
same Agent Configuration Object, no takes precedence. This option lets
you quickly disable local configuration entirely without having to remove
any of the other configuration parameters from the Agent Configuration
Object.

■ If the multiple values of yes and no exist in the same Agent Configuration
Object, no takes precedence. This option lets you quickly disable local
configuration entirely without having to remove any of the other
configuration parameters from the Agent Configuration Object.

Default: No

Example: yes, EnableAuditing, EnableMonitoring (allows local control of the
only the two previous parameters).

To implement local configuration

1. Log into the Administrative UI.

The Welcome screen appears.

2. Click the Infrastructure, Agent Configuration.

A list of agent configuration tasks appears.

3. Click Modify Agent Configuration.

The search window appears.

4. (Optional) Fill out the search form to narrow your search criteria.

5. Click Search.

A list of Agent Configuration objects appears.

Web Agent Configurations

Chapter 1: Web Agents 37

6. Click the radio button on the left of the Agent Configuration Object associated with
the Agent on which you want to implement local configuration, and then click
Select.

The Modify Agent Configuration dialog appears.

7. Click the arrow to the left of the AllowLocalConfig parameter.

The Edit Parameter dialog appears.

8. Change the text in the Value field to yes, and then click OK.

The Edit Parameter dialog closes.

9. Click Submit.

A confirmation message appears. Local configuration is enabled.

10. Open the appropriate local configuration file on your web server and change the
parameter settings you want.

11. For traditional agents only, set the value of the EnableWebAgent parameter to yes.

12. Save and close the local configuration file.

13. For Framework agents only, do the following steps:

a. Open the WebAgent.conf file.

b. Set the value of the EnableWebAgent parameter to yes.

c. Save and close the WebAgent.conf file.

14. Restart the web server.

Local configuration is enabled and any updated parameters are changed.

More information:

Parameters Requiring a Server Restart when Changed (see page 25)
Enable a Web Agent (see page 73)

Web Agent Configurations

38 Web Agent Configuration Guide

Restrict Changes to Local Configuration Parameters

With central agent configuration, you can restrict the configuration parameters that can
be set by a local web server administrator. You may want to do this if the SiteMinder
administrator in your organization is not the same person who is responsible for the
web server where the SiteMinder Agent is installed.

To restrict changes to local configuration parameters

1. Log into the Administrative UI.

The Welcome screen appears.

2. Click the Infrastructure, Agent Configuration.

A list of agent configuration tasks appears.

3. Click Modify Agent Configuration.

The search window appears.

4. (Optional) Fill out the search form to narrow your search criteria.

5. Click Search.

A list of Agent Configuration objects appears.

6. Click the radio button on the left of the Agent Configuration Object you want. Click
Select.

The Modify Agent Configuration dialog appears.

7. Click the arrow to the left of the AllowLocalConfig parameter.

The Edit Parameter dialog appears.

8. Change the text in the Value field to yes, and then click the Multi-value radio
button.

9. Click Add.

An empty field appears.

10. Type the name of the parameter to which you want to allow access in the field.
Only those parameters in the list can be changed locally.

11. (Optional) Repeat Steps 9 and 10 to add more parameters.

12. Click OK.

The Edit Parameter dialog closes, and the Modify Agent Configuration dialog
appears.

13. Click Submit.

14. The Modify Agent Configuration dialog closes, and a confirmation message appears.
Your changes will be applied the next time the Web Agent polls the Policy server.

Web Agent Configurations

Chapter 1: Web Agents 39

Central and Local Configuration Together

If you have a large number of Web Agents that you want to configure centrally, but the
settings of a few of those Web Agents need to be different than the others, you can use
a combination of central and local configuration together.

For example, if you need to configure multiple cookie domain single sign-on across a
SiteMinder network without configuring the Agents individually, you can use a central
configuration for all of the agents, and local configuration settings for the smaller group
that needs the different settings.

In the previous example, suppose the CookieDomain parameter in the Agent
Configuration Object is set to example.com. However, for one Web Agent in your
network, you want to set the CookieDomain parameter to .example.net, while still using
all the other parameter values set in the Agent Configuration Object.

To implement the example configuration

1. With the Administrative UI, create an Agent Configuration Object with all the
parameters that you want for your environment. Set the CookieDomain parameter
to .example.com

2. Set the AllowLocalConfig parameter of the Agent Configuration Object to yes.

3. At one Web Agent, change only the local configuration file (on the web server) to
use example.net as the value of the CookieDomain parameter. Do not modify any
other parameters.

The value for the CookieDomain parameter in the lone Agent's local configuration file
overrides the value in the Agent Configuration Object, while the Agent Configuration
Object determines the settings for all the other parameters.

Chapter 2: Configuration Files used by the Web Agent 41

Chapter 2: Configuration Files used by the
Web Agent

SiteMinder Web Agents use configuration files for certain settings. Some of these
configuration files are installed on the web server with the Web Agent. Other
configuration files are created the web server by the SiteMinder Web Agent
Configuration Wizard where the Web Agent files are associated with the particular web
server product installed on the computer hosting your web server.

For example, if you install a Web Agent on a 32-bit Windows system that runs an
Apache Web Server, the Web Agent Configuration Wizard makes the changes in your
Apache Web Server configuration required by the SiteMinder Web Agent..

Agent Connection Manager Configuration File

The Web Agent installation wizard installs the Agent Connection Manager Configuration
file (AgentConMgr.conf), in the following location:

web_agent_home/config

web_agent_home

Indicates the directory where the SiteMinder Agent is installed.

Default (Windows 32-bit installations of SiteMinder Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [SiteMinder Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with SiteMinder Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

The Agent Connection Manager Configuration file lets you create detailed trace logs
about the connections the Web Agent makes while operating.

More information:

Collect Detailed Agent Connection Data with an Agent Connection Manager Trace Log
(see page 193)

Connection API Configuration File

42 Web Agent Configuration Guide

Connection API Configuration File

The Connection API file (conapi.conf) is used to configure services through the
Connection API. These services include the OneView Monitor.

The Web Agent Installation wizard creates the Connection API Configuration file in the
following location:

web_agent_home/config

web_agent_home

Indicates the directory where the SiteMinder Agent is installed.

Default (Windows 32-bit installations of SiteMinder Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [SiteMinder Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with SiteMinder Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

Note: More information about using the OneView Monitor exists in the DNA Always
Current Scheduler.

Local Agent Configuration File

Chapter 2: Configuration Files used by the Web Agent 43

Local Agent Configuration File

The Web Agent Installation wizard installs a Local Agent Configuration File
(LocalConfig.conf) in the following location:

web_agent_home/config

web_agent_home

Indicates the directory where the SiteMinder Agent is installed.

Default (Windows 32-bit installations of SiteMinder Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [SiteMinder Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with SiteMinder Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

This file lets you set the Web Agent configuration parameters on the same web server
where the Web Agent is installed, instead of using the parameter settings stored in the
Agent Configuration Object on the associated Policy Server.

For IIS Web Agents, the Web Agent Configuration Wizard makes a duplicate copy of the
Local Agent Configuration file in the following location:

web_agent_home\bin\IIS

More information:

Local Agent Configuration (see page 30)
LocalConfig.conf File Locations (Framework Agents) (see page 33)
Implement Local Configuration (see page 36)

Trace Configuration File

44 Web Agent Configuration Guide

Trace Configuration File

The Trace Configuration File (trace.conf) lets you configure trace logs for the following
items:

■ Connection API

■ IPC provider

■ TCP/IP transport

■ Monitoring API

The Web Agent Installation Wizard creates the Trace Configuration file in the following
location:

web_agent_home

Indicates the directory where the SiteMinder Agent is installed.

Default (Windows 32-bit installations of SiteMinder Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [SiteMinder Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with SiteMinder Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

More information:

Restrict IPC Semaphore-Related Message Output to the Apache Error Log (see page 70)

Web Agent Trace Configuration File

Chapter 2: Configuration Files used by the Web Agent 45

Web Agent Trace Configuration File

The Web Agent Trace Configuration file lets you create trace logs for various aspects of
the Web Agent operations. For example, you can create a trace log of any Web Agent
operations related to the SiteMinder single-sign on (SSO) feature.

The Web Agent Installation wizard creates the Web Agent Trace Configuration file in the
following location:

web_agent_home

Indicates the directory where the SiteMinder Agent is installed.

Default (Windows 32-bit installations of SiteMinder Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [SiteMinder Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with SiteMinder Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

More information:

How to Set Up Trace Logging (see page 181)

SiteMinder Host Configuration File

46 Web Agent Configuration Guide

SiteMinder Host Configuration File

The Web Agent Configuration wizard creates a Host Configuration File (SmHost.conf) on
every web server on which you configure a SiteMinder Web Agent in the following
location:

web_agent_home/config

web_agent_home

Indicates the directory where the SiteMinder Agent is installed.

Default (Windows 32-bit installations of SiteMinder Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [SiteMinder Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with SiteMinder Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

The SmHost.conf file contains information that the Web Agent uses to make initial
connections to the Policy Servers to which it is associated.

Note: For more information, see the SiteMinder Web Agent Installation Guide.

Web Agent Configuration File

Chapter 2: Configuration Files used by the Web Agent 47

Web Agent Configuration File

The SiteMinder Web Agent Configuration Wizard creates a Web Agent Configuration file
(WebAgent.conf) on every web server on which you configure a SiteMinder Web Agent
in the following location:

web_agent_home\conf

web_agent_home

Indicates the directory where the SiteMinder Agent is installed.

Default (Windows 32-bit installations of SiteMinder Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [SiteMinder Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with SiteMinder Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

This file is used to enable or disable (start or stop) the Web Agent.

For IIS Web Agents, the Web Agent Configuration Wizard makes a duplicate copy of the
Local Agent Configuration file in the following location:

web_agent_home\bin\IIS

More information:

Enable a Web Agent (see page 73)
Disable a Web Agent (see page 74)

Chapter 3: Use Cases 49

Chapter 3: Use Cases

This section contains the following topics:

How to Meet the Use Case Deployment Prerequisites (see page 49)
Use Case 1: Single Agent Protects Single Resource (see page 50)
Use Case 2: Multiple Agents Protecting Multiple Applications within One Domain (see
page 50)
Use Case 3: Framework and Traditional Agents Protecting Multiple Applications within
One Domain (see page 51)
Use Case 4: Framework and Tradtional Agents Protecting Multiple Applications Across
Multiple Domains (see page 52)

How to Meet the Use Case Deployment Prerequisites

All of the Web Agent use cases have the following prerequisites, that you must
complete before deploying a Web Agent:

1. Use the Administrative UI to do the following:

■ Define the resources you want to protect.

■ Implement an authentication scheme.

2. Select a configuration method for each Web Agent. Choose one of the following:

■ Central Configuration

■ Local Configuration

■ Central and Local Configuration together.

3. If you plan to use both traditional and framework agents together in the same
environment, you may want to review the server platforms and Web Agent versions
that apply to each Type of Web Agent.

More information:

Web Agent Configurations (see page 27)
Types of Web Agents (Traditional and Framework) (see page 24)

Use Case 1: Single Agent Protects Single Resource

50 Web Agent Configuration Guide

Use Case 1: Single Agent Protects Single Resource

This use case describes how to configure one Web Agent to protect a single resource,
such as a website or application. The environment for this use case consists of the
following components and settings:

■ One Web Agent

■ One web server

How to Implement Use Case 1

To implement Web Agent use case one, use the following process:

1. Ensure you have met the prerequisites.

2. Set the Agent Name and Default Agent Name Identities (see page 56).

3. Implement any of the following logging types:

■ Error logging (see page 178)

■ Trace logging (see page 181)

■ The OneView montior (see page 59)

4. Enable the Web Agent (see page 73).

Use Case 2: Multiple Agents Protecting Multiple Applications
within One Domain

This use case describes how to configure multiple Web Agents to protect a several
resources within one domain. The environment for this use case consists of the
following components and settings:

■ Several Web Agents

■ Several web servers

■ Several Resources

■ Single sign-on

■ A Cookie Provider

Use Case 3: Framework and Traditional Agents Protecting Multiple Applications within One Domain

Chapter 3: Use Cases 51

How to Implement Use Case 2

To implement Web Agent use case two, use the following process:

1. Ensure you have met the prerequisites.

2. (Optional) Configure any virtual servers (see page 76).

3. Set the Agent Name and Default Agent Name Identities for each Web Agent (see
page 56).

4. Enable single sign-on (see page 91).

5. Configure a cookie provider (see page 96).

6. Implement any of the following functions:

■ Error logging (see page 178)

■ Trace logging (see page 181)

■ The OneView montior (see page 59)

7. Enable the Web Agents (see page 73).

Use Case 3: Framework and Traditional Agents Protecting
Multiple Applications within One Domain

This use case describes how to configure a combination of Framework and Traditional
Web Agents to protect a several resources within one domain. The environment for this
use case consists of the following components and settings and domains:

■ Several Framework and Traditional Web Agents

■ Several web servers

■ Several Resources

■ Single sign-on

■ A Cookie provider

Use Case 4: Framework and Tradtional Agents Protecting Multiple Applications Across Multiple Domains

52 Web Agent Configuration Guide

How to Implement Use Case 3

To implement Web Agent use case three, use the following process:

1. Ensure you have met the prerequisites.

2. (Optional) Configure any virtual servers (see page 76).

3. Set the Agent Name and Default Agent Name Identities for each Web Agent (see
page 56).

4. Use the following procedures to ensure proper compatibility between your
traditional and framework agents:

■ Ignore the Cookie Provider for Unprotected Resources (see page 109)

■ Ignore the Cookie Provider for POST Requests (see page 110)

■ Use FCCs and NTCs in a Mixed Environment (see page 257)

5. Enable single sign-on (see page 91).

Note: Set the SecureURLs parameter for all of the agents in your SSO environment
to the same value.

6. Configure a cookie provider (see page 96).

7. Implement any of the following functions:

■ Error logging (see page 178)

■ Trace logging (see page 181)

■ The OneView montior (see page 59)

8. Enable the Web Agents (see page 73).

Use Case 4: Framework and Tradtional Agents Protecting
Multiple Applications Across Multiple Domains

This use case describes how to configure a combination of Framework and Traditional
Web Agents to protect a several resources across multiple domains. The environment
for this use case consists of the following components and settings:

■ Several Framework and Traditional Web Agents

■ Several web servers

■ Several Resources

■ Single sign-on

■ Cookie Provider configured

■ (Optional) SSO Zones used

Use Case 4: Framework and Tradtional Agents Protecting Multiple Applications Across Multiple Domains

Chapter 3: Use Cases 53

How to Implement Use Case 4

To implement Web Agent use case four, use the following process:

1. Ensure you have met the prerequisites.

2. (Optional) Configure any virtual servers (see page 76).

3. Set the Agent Name and Default Agent Name Identities for each Web Agent (see
page 56).

4. Use the following procedures to ensure proper compatibility between your
traditional and framework agents:

■ Ignore the Cookie Provider for Unprotected Resources (see page 109)

■ Ignore the Cookie Provider for POST Requests (see page 110)

■ Use FCCs and NTCs in a Mixed Environment (see page 257)

■ Enable Post Preservation between Framework and Traditional Agents (see
page 268)

5. Enable single sign-on (see page 91).

Note: Set the SecureURLs parameter for all of the agents in your SSO environment
to the same value.

6. Configure a cookie provider (see page 96).

7. (Optional) Implement SSO Zones (see page 312).

8. Implement any of the following functions:

■ Error logging (see page 178)

■ Trace logging (see page 181)

■ The OneView montior (see page 59)

9. Enable the Web Agents (see page 73).

Chapter 4: Basic Web Agent Configuration 55

Chapter 4: Basic Web Agent Configuration

This section contains the following topics:

Default Settings of Web Agent Configuration Parameters (see page 55)
Set the Agent Name and Default Agent Name Identities (see page 56)
How to Manage Web Agent and Policy Server Communication (see page 58)

Default Settings of Web Agent Configuration Parameters

The default settings for the Web Agent configuration parameters are always used unless
a different value is specified.

If a parameter does not exist in the Agent Configuration Object or local configuration
file, the default value is used.

Set the Agent Name and Default Agent Name Identities

56 Web Agent Configuration Guide

Set the Agent Name and Default Agent Name Identities

The Agent name is the Agent’s identity. The Policy Server uses this identity to tie policies
to a Web Agent. You can define the name of a Web Agent with the following
parameters:

AgentName

Defines the identity of the web agent. This identity links the name and the IP
address or FQDN of each web server instance hosting an Agent.

The value of the DefaultAgentName is used instead of the AgentName
parameter if any of the following events occur:

■ The AgentName parameter is disabled.

■ The value of AgentName parameter is empty.

■ The values of the AgentName parameter do not match any existing agent
object.

Note: This parameter can have more than one value. Use the multivalue option
when setting this parameter in an Agent Configuration Object. For local
configuration files, add the parameter name followed by each value to
separate lines in the file.

Default: No default

Limit: Multiple values allowed.

Limits: Must contain 7-bit ASCII characters in the range of 32-127, and include
one or more printable characters. Cannot contain the ampersand (&) and
asterisk (*) characters. The value is not case-sensitive. For example, the names
MyAgent and myagent are treated the same.

Example: myagent1,192.168.0.0

Example: myagent,www.example.com

DefaultAgentName

Defines a name that the agent uses to process requests. The value for
DefaultAgentName is used for requests on an IP address or interface when
there is no agent name specified in the AgentName parameter.

If you are using virtual servers, you can set up your SiteMinder environment
quickly by using a DefaultAgentName. Using DefaultAgentName means that
you do not need to define a separate agent for each virtual server.

Important! If you do not specify a value for the DefaultAgentName parameter,
then the value of the AgentName parameter requires every agent identity in its
list. Otherwise, the Policy Server cannot tie policies to the agent.

Default: No default

Limit: Multiple values allowed.

Set the Agent Name and Default Agent Name Identities

Chapter 4: Basic Web Agent Configuration 57

Limits: Must contain 7-bit ASCII characters in the range of 32-127, and include
one or more printable characters. Cannot contain the ampersand (&) and
asterisk (*) characters. The value is not case-sensitive. For example, the names
MyAgent and myagent are treated the same.

If you are configuring virtual server support, you must specify a value for the
AgentName or DefaultAgentName parameter.

To set the agent name and default agent name identities

1. Specify the agent name identities by doing either of the following:

■ For central agent configurations, open the Agent Configuration Object on the
Administrative UI, and then add the values that you want to the AgentName
parameter.

■ For local agent configurations, open the local configuration file on your web
server. Add the values you want on a separate lines in the file.

2. Specify a default agent name identity by doing either of the following:

■ For central agent configurations, open the Agent Configuration Object on the
Administrative UI, and then add the value that you want to the
DefaultAgentName parameter.

■ For local agent configurations, open the local configuration file on your web
server. Add the value you want to the DefaultAgentName parameter.

The agent name and default agent name identities are set.

More Information

How to Set Up Virtual Server Support (see page 76)

Ensure that Agent Names Match

SiteMinder rules and policies are tied to Agent names. If a request is made to a host
with an Agent name that is unknown to the Policy Server, the Policy Server cannot
implement policies. Therefore, the value for the Web Agent’s DefaultAgentName or
AgentName parameter must match the name of an Agent entry defined at the Policy
Server.

You define an Agent at the Policy Server using the Administrative UI. The value you
enter in the Name field of the Agent Properties dialog box is the value that must match
the name defined for the DefaultAgentName or AgentName setting, whether the Web
Agent is configured locally (Agent configuration file) or centrally from the Policy Server
(Agent Configuration Object).

How to Manage Web Agent and Policy Server Communication

58 Web Agent Configuration Guide

Encrypt the Agent Name

The Web Agent, by default, adds its name to the URL that redirects a user to a forms,
SSL, or NTLM credential collector. You can control whether the Agent encrypts its name
in the URL and whether the credential collector decrypts the name when it receives the
URL with the EncryptAgentName parameter.

The default setting for the EncryptAgentName parameter is yes. You should set this
parameter to no in either of the following situations:

■ If a third-party application is working with the credential collector and it must be
able to read the Agent name for processing.

■ If you configure a Web Agent as a Forms Credential Collector (FCC) for forms
authentication, and direct users to a single resource to be authenticated. The
procedure to configure a single resource target requires an un-encrypted Agent
name.

To encrypt the Web Agent name, set the EncryptAgentName parameter to yes.

More Information

Configure the FCC to Use a Single Resource Target (see page 261)

How to Manage Web Agent and Policy Server Communication

You can manage the communication between a Web Agent and the Policy Server using
any of the following procedures:

■ Use CA Wily Introscope to monitor Web Agents.

■ Use the SiteMinder OneView monitor for auditing purposes.

■ Specify how often the Agent retrieves policy changes.

■ Accommodate network latency issues.

■ Manage Web Agents with Multiple Web Server instances.

How to Manage Web Agent and Policy Server Communication

Chapter 4: Basic Web Agent Configuration 59

Use CA Wily Introscope to Monitor Web Agents

If you are already using CA Wily Introscope in your organization, you can monitor the
health of your SiteMinder Web Agents with the following parameter:

EnableIntroscopeApiSupport

Collects information about the SiteMinder Web Agent and sends it to CA Wily
Introscope using a plug-in. This parameter uses the following settings:

■ When set to yes, the Wily plug-in calls an API to collect the data.

■ When set to no, the Wily plug-in creates an HTTP header with the data.

■ When set to both, the Wily plug-in calls the API and creates an HTTP
header with the data.

■ When set to none, data not collected.

Default: No.

Limits: Yes, Both, No, None.

Example: (HTTP header) sm-wa-perf-counters =
server_name.example.com:6180,86117203,86118343,1,0,0,1,0,0,1,0,0,0,0,0,1,
0,0,0,0,0,0,0,1125,0,15,1,1,750,750,

To use CA Wily Introscope to monitor the health of your Web Agents, set the value of
the EnableIntroscopeApiSupport parameter to one of the following:

■ Yes

■ Both

■ No

Monitor Web Agents with the OneView Monitor

The SiteMinder OneView monitor reports cache statistics and other information to the
Policy Server, which administrators can use to analyze and fine-tune the Web Agent.
You control the SiteMinder OneView monitor with the following parameter:

EnableMonitoring

Specifies whether the SiteMinder Web Agent sends monitoring information to
the Policy Server.

Default: No

To have the Web Agent use the SiteMinder OneView Monitor, set the EnableMonitoring
parameter to yes.

Note: For more information, see the Policy Server documentation.

How to Manage Web Agent and Policy Server Communication

60 Web Agent Configuration Guide

Change How Often an Agent Checks for Policy or Key Updates

The Web Agent polls the Policy Server at regular intervals to check for the following
items:

■ Updated management information

■ Updated policies

■ Dynamically updated agent keys

You can change this interval according to your needs with the following parameter:

PSPollInterval

Specifies how often (in seconds) the Web Agent contacts the Policy Server to
retrieve information about policy changes or dynamically updated keys. Higher
numbers (longer intervals) decrease network traffic. Lower numbers (shorter
intervals) increase network traffic.

Default: 30

Limit: 1

To change how often a Web Agent checks the Policy Server for updates, change the
number of seconds in the PSPollInterval parameter.

Important! Increasing the PSPollInterval parameter also affects how quickly the Agents
enforce SiteMinder policy changes. For example, suppose you change a Policy to revoke
access for a terminated employee at 10:30, and your PSPollInterval parameter has a
value of 3600 (the number of seconds in an hour). The Web Agents would not enforce
the changed policy until as late as 11:30.

More information:

Web Agents and Dynamic Key Rollovers (see page 23)

How to Manage Web Agent and Policy Server Communication

Chapter 4: Basic Web Agent Configuration 61

Accommodate Network Latency

When network latency issues exist, the Web Agent cannot connect with the Policy
Server. To avoid this problem, you can use the following parameter in the Agent
Configuration Object or local configuration file:

AgentWaitTime

Specifies the number of seconds that the Web Agent waits for the Low-level
Agent Worker process (LLAWP) to become available. When the interval expires
the Web Agent tries to connect to the Policy Server.

Setting this parameter can help to resolve agent start-up errors related to
LLAWP connections. We recommend starting with the default value and then
increasing the interval by 5 seconds at a time until the agent starts successfully.
If you do not want to set this parameter in the Agent Configuration Object or
LocalConfig.conf file, you can also set it in the WebAgent.conf file instead.

Default: 5

Example: If you have primary and secondary policy servers, try starting with
value from 30 through 40.

Limit: None

Note: You can use this parameter with Framework Agents if you experience network
latency issues. Use the higher setting only if network latency issues exist. A high setting
may cause unexpected web server behavior.

To accommodate network latency, add the AgentWaitTime parameter to your Agent
Configuration Object or local configuration file, and then specify the number of seconds
you want.

How to Manage Web Agent and Policy Server Communication

62 Web Agent Configuration Guide

Manage Web Agents with Multiple Web Server Instances

If you configure a Web Agent on multiple web server instances, each server instance
should have its own Web Agent cache, log file, and health monitoring resources. To
ensure resources are unique, you configure the following parameter:

ServerPath

Specifies a unique path to each web server instance when a Web Agent is
configured to use multiple instances of a web server. The ServerPath creates a
unique identifier for the Web Agent's caching, logging, and health-monitoring
resources.

Default: Empty

Example: If there are four web server instances, each loading a Web Agent,
then each server’s WebAgent.conf file should have the ServerPath parameter
set to a unique value. You can set the ServerPath parameter to the directory
where the web server’s log file is stored, such as server_instance_root/logs.

Note: Do not add this setting to the LocalConfig.conf file for IIS web servers.

To configure a Web Agent on multiple server instances, add a unique path to the
ServerPath parameter.

Set the ServerPath Parameter for Windows Systems

The ServerPath parameter is required for Apache web servers on Windows if there are
multiple server instances and you do not want these instances to share the same Agent
resources (cache, logging, health monitoring). To help ensure that web server instances
have their own resources, specify a ServerPath value.

The value you set for the ServerPath parameter must be an alphanumeric string unique
among server instances running on the system. For example, if you have two server
instances, the value of the ServerPath parameter for one instance could be MyAgent1
and the value for the second instance could be MyAgent2.

Note: Do not use a backslash (\) in the string you specify for the ServerPath parameter;
all other characters are permitted.

The ServerPath parameter is not required for the following Windows platforms:

■ IIS servers (there is always only one server instance)

■ Apache 2.0 servers if there is only one web server instance. The parameter is
supported on these systems, but it serves no purpose.

■ The Oracle iPlanet or Domino web servers.

These servers do not use the ServerPath parameter because it does not run in
multiprocess mode on Windows.

How to Manage Web Agent and Policy Server Communication

Chapter 4: Basic Web Agent Configuration 63

Set the ServerPath Parameter for UNIX Systems

The ServerPath parameter is located in the WebAgent.conf file. Do not add this setting
to the LocalConfig.conf file for framework Agents.

For web servers on UNIX platforms, we recommend that each server instance has its
own Agent resources.

Set the ServerPath parameter for the following servers on UNIX:

■ Any Apache 2.0 (including any Apache 2.0-based servers, such as IBM HTTP Server)

■ Any Oracle iPlanet web server instance

Note: The ServerPath is not required for Domino web servers on UNIX systems.

The value you set for the ServerPath parameter must be an alphanumeric string unique
among the server instances running on the system. For example, if you have two server
instances, the value of the ServerPath parameter for one instance could be MyAgent1
and the value for the second instance could be MyAgent2.

Additional Configurations Requiring the ServerPath Parameter

Situations that may require the ServerPath to be set are as follows:

■ The Web Agent tracks shared memory using a semaphore. A semaphore is a value
in operating system (or kernel) storage that each process can check to see if a
resource is available or not, and then change. The semaphore is not generated
uniquely, so multiple Agents would try to point to the same area of memory,
causing the Agent to function improperly. Naming a server path gives the root of an
instance, which allows the Web Agent to find the files used for creating unique keys
for semaphores.

■ For multiple server instances (all platforms except Windows), the Agent fails to
execute one of the following:

■ To encrypt agent name (00-0012 error)

■ To encrypt SMSESSION or SMIDENTITY cookies

■ To get agent key updates at start up

■ With Apache (all platforms except Windows), the Agent does not release its six
shared memory segments (semaphores) when Apache is restarted.

■ If each Web Agent is configured for a different web server type on the same
system, such as an Apache 2.0 server and an Oracle iPlanet server, you are required
to specify a unique ServerPath value for each server’s configuration. Different web
server types cannot share Agent resources.

Chapter 5: Server-Specific Web Agent Configurations 65

Chapter 5: Server-Specific Web Agent
Configurations

This section contains the following topics:

Special IIS Web Agent Settings (see page 65)
Special Apache Web Agent Settings (see page 67)
Restrict Directory Browsing on an Oracle iPlanet Web Server (see page 71)

Special IIS Web Agent Settings

You may need to make additional configuration changes to your IIS Web Agent if you
have any of the following situations or conditions in your environment:

■ Your resource requests return with 404 not found errors

■ You use compact P3P Policies

■ You use the IIS 6.0 Security Context

■ You need to limit the size of your POST data

Manage 404 Not Found Errors (IIS 6.0 Agent)

If a Web Agent on an IIS 6.0 web server returns a 404 Not found error in response to a
resource request, or if the Web Agent is not being called properly by the IIS 6.0 web
server, open the IIS console and ensure that Wildcard Application mapping has been
enabled and is configured to refer to the Web Agent DLL. Also, ensure that the Verify
file exists check box is cleared before the mapping is enabled.

Special IIS Web Agent Settings

66 Web Agent Configuration Guide

Configure your Web Agent to Accommodate P3P Compact Policies

You can determine whether the custom responses from your Web Agent comply with
P3P response headers with the following parameter:

P3PCompactPolicy

Determines whether custom responses comply with the Platform for Privacy
Preferences Project (P3P) response headers. P3P compact policies use tokens
representing the specific elements from the P3P terminology. If you set the
P3PCompactPolicy parameter to the appropriate policy syntax, it ensures that
custom responses are set with the correct P3P response header when a P3P
compact policy is specified for the Web Agent.

Default: No default

Example: NON DSP COR CURa TAI (these represent: none, disputes, correct,
current/always, and tailoring, respectively)

To accommodate P3P compact policies, add an appropriate policy syntax to the
P3PCompactPolicy parameter.

Enable the IIS 6.0 Security Context to Work with the Agent

The SiteMinder Web Agent on an IIS 6.0 web server functions as an ISAPI extension.
When an HTTP request is made, the IIS 6.0 web server challenges the user before the
Web Agent responds to the request. The IIS server uses its native authentication
scheme, Basic authentication, for the authentication challenge, if that scheme is
selected in the server’s Management Console.

To enable the IIS 6.0 security context to work with the agent

1. Open the IIS Management Console, and expand the local computer and Web Site
folders.

2. Right-click the folder of your website, and then select Properties.

The properties dialog (for your website) appears.

3. Click the Directory Security tab. In the Authentication and Access section, click Edit.

The Authentication Methods dialog appears.

4. Ensure that Enable anonymous access check box is selected, and then click OK.

The Authentication Methods dialog closes.

5. Click OK.

The properties dialog closes. The IIS 6.0 Security Context is enabled to work with
the SiteMinder Web Agent.

Special Apache Web Agent Settings

Chapter 5: Server-Specific Web Agent Configurations 67

Remove the Server HTTP Header if Using the URLScan Utility

If you want to use the URLScan utility from Microsoft to remove the Server HTTP Header
from the responses your IIS Web server sends, you also need to set the following
parameter for your IIS Web Agent:

 SuppressServerHeader

Prevents an IIS Web Agent from returning the Server HTTP Header in its
responses. When the value of this parameter is set to no, the Web Agent sends
the Server header with its responses and the IIS Web server passes it along to
the client. When the value of this parameter is set to yes, the web agent does
not send the Server header in its responses.

Default: No

The URLScan utiltiy removes the header from the IIS server's responses, while hte
SuppressServerHeader parameter removes the header from the Web Agent's responses.
Both the utility and the parameter must be set to prevent the Server header from being
sent to the client in all responses.

To keep the Web Agent from sending the Server header in responses, set the value of
the SuppressServerHeader parameter to yes.

Special Apache Web Agent Settings

You may need to make additional configuration changes to your Apache Web Agent if
you have any of the following situations or conditions in your environment:

■ Applications that redirect traffic to specific web servers without modifying the HTTP
headers.

■ Legacy applications (before HTTP 1.1) that do not support transfer-encoding.

■ The Web Agent is logging excessive informational messages to the Apache error log

Special Apache Web Agent Settings

68 Web Agent Configuration Guide

Use the HTTP HOST Request for the Port Number

If you have applications that perform load balancing by redirecting traffic to specific web
servers without modifying the actual HTTP headers, you should configure the Web
Agent to redirect users back to the proper external port (instead of the port used by the
load balancer) with the following parameter:

 GetPortFromHeaders

Directs the Web Agent to obtain the port number from the HTTP HOST request
header instead of obtaining it from the web server service structures.

Default: No

Note: This parameter is required for Apache Web Agents.

To use the port number in the HTTP HOST request header, set the GetPortFromHeaders
parameter to yes.

Use Legacy Applications with an Apache Web Agent

If you have legacy applications (that do not support HTTP 1.1), and you want to run
them on an Apache Web Server, you can set the following parameter:

LegacyTransferEncodingBehavior

Specifies the type of message encoding used by the Web Agent. When the
value of this parameter is set to no, transfer-encoding is supported.

When the value of this parameter is set to yes, content encoding is used. The
transfer-encoding header is ignored and only the content-length header is
supported.

Default: No

To use legacy applications with an Apache Web Server, set the value of the
LegacyTransferEncodingBehavior parameter to yes.

Important! If you set the value of this parameter to yes, these features will not
work: Federation; preservation of POST data longer than 4 KB; and large certificates
may not be recognized.

Special Apache Web Agent Settings

Chapter 5: Server-Specific Web Agent Configurations 69

Choose How Content Types are Transferred in POST Requests

If you are using an Apache web server, you can control how content is transferred to the
server during POST requests with the following parameter:

LegacyStreamingBehavior

Specifies how content will be transferred to the server during POST requests.
When the value of this parameter is set to yes, all content types are streamed,
except for the following:

■ text/xml

■ application/x-www-form-urlencoded

When the value of this parameter is set to no, all content types are spooled.

Default: No

To stream most types of content in POST requests, change the value of the
LegacyStreamingBehavior parameter to yes.

Special Apache Web Agent Settings

70 Web Agent Configuration Guide

Restrict IPC Semaphore-Related Message Output to the Apache Error Log

By default the Apache Web Agent logs all levels (informational and error) of IPC
semaphore-related messages to the Apache error log, regardless of the configured
Apache logging level.

To restrict the verbosity of Web Agent IPC semaphore-related output to the Apache
error log, add the following parameter in the trace.conf file located in web
_agent_home/config:

nete.stderr.loglevel

Specifies the level of IPC semaphore-related messages the Web Agent logs to the
Apache error log. Accepts the following values:

off

The Web Agent logs no IPC semaphore-related messages to the Apache error
log.

error

The Web Agent logs only IPC semaphore-related error messages to the Apache
error log.

info

(Default) The Web Agent logs IPC semaphore-related error and informational
messages to the Apache error log.

Example: Define the nete.stderr.loglevel parameter in trace.conf

In the following snippet from trace.conf, the nete.stderr.loglevel parameter is
configured to restrict the Web Agent to log only IPC semaphore-related error messages
to the Apache error log:

CA Web Agent IPC logging levels

nete.stderr.loglevel=error

Restrict Directory Browsing on an Oracle iPlanet Web Server

Chapter 5: Server-Specific Web Agent Configurations 71

Restrict Directory Browsing on an Oracle iPlanet Web Server

To help ensure that users who try to browse the directories of a Oracle iPlanet web
server are challenged by SiteMinder, you can set the following parameter:

DisableDirectoryList

Specifies whether the Web Agent allows a user to view or browse the contents
of a directory without challenging them first. This occurs when all of the
following conditions are true:

■ The realm is set to protect a root resource (/)

■ The default web page in the directory (such as index.html) is renamed or
deleted.

Default: No

To restrict directory browsing on a Oracle iPlanet server

1. Add the DisableDirectoryList parameter to your Agent Configuration object or your
local configuration file.

2. Set the value of the DisableDirectoryList parameter to yes.

Directory browsing is restricted. SiteMinder challenges users who try to browse
directories.

Chapter 6: Starting and Stopping Web Agents 73

Chapter 6: Starting and Stopping Web
Agents

This section contains the following topics:

Enable a Web Agent (see page 73)
Disable a Web Agent (see page 74)

More information:

WebAgent.conf File Locations (see page 31)

Enable a Web Agent

Configure your Web Agent parameters and then enable the Web Agent to protect the
resources on the web server.

Note: No resources are protected until you also define policies in the SiteMinder Policy
Server.

To enable a Web Agent

1. Open the WebAgent.conf file with a text editor.

Note:SiteMinder r12.0 SP3 Agents for IIS installed on 64-bit Windows operating
environments have two WebAgent.conf files. One file is associated with 32-bit
Windows applications. The other file is associated with 64-bit Windows
applications. Modify both WebAgent.conf files to start or stop the SiteMinder Agent
for IIS on all 32-bit and 64-bit applications on a particular IIS web server.

2. Change the value of the EnableWebAgent parameter to yes.

3. Save and close the WebAgent.conf file.

4. Restart the web server (the web server itself, not the computer on which it runs).

The Web Agent is enabled.

Disable a Web Agent

74 Web Agent Configuration Guide

Disable a Web Agent

If you want to stop the Web Agent from protecting the resources on your web server
and stop communicating with the Policy Server, you must disable the Web Agent.

To disable a Web Agent

1. Open the WebAgent.conf file with a text editor.

Note:SiteMinder r12.0 SP3 Agents for IIS installed on 64-bit Windows operating
environments have two WebAgent.conf files. One file is associated with 32-bit
Windows applications. The other file is associated with 64-bit Windows
applications. Modify both WebAgent.conf files to start or stop the SiteMinder Agent
for IIS on all 32-bit and 64-bit applications on a particular IIS web server.

2. Change the value of the EnableWebAgent parameter to no.

3. Save and close the WebAgent.conf file.

4. Restart the web server (the web server itself, not the computer on which it runs).

The Web Agent is disabled.

More information:

WebAgent.conf File Locations (see page 31)

Chapter 7: Configure Virtual Servers 75

Chapter 7: Configure Virtual Servers

This section contains the following topics:

How to Set Up Virtual Server Support (see page 76)
Add a SiteMinder Wildcard Mapping to Protect IIS 6.0 Virtual Web Sites (see page 77)
Assign Web Agent Identities for Virtual Servers (see page 78)
Specify Virtual Servers for the Web Agent to Ignore (see page 79)
Resolve Agent Identity by IP Address (see page 80)

How to Set Up Virtual Server Support

76 Web Agent Configuration Guide

How to Set Up Virtual Server Support

A virtual server is a logical entity that you configure on a physical server. This logical
entity acts as an independent server. Virtual servers let you host multiple websites on
one physical server. For example, using virtual servers, you could set up a server to host
both www.mysite.com and www.yoursite.com.

You can assign any of the following to a virtual server:

■ A unique IP address

■ An IP address that is shared with the physical server

■ An IP address that is shared with another virtual server

Although you configure only one Web Agent per web server, you can configure Agent
identities to protect your virtual servers. If one user accesses the server through
www.mysite.com and another user accesses the server through www.yoursite.com,
each server is protected by an agent identity. The advantage of creating an agent
identity for each virtual server is that you can define unique realms and rules for each
site.

The settings that you define for the Web Agent apply to all virtual servers that you
define for that web server instance; however, each virtual server processes requests
independently and the Policy Server treats each virtual server request separately. For
more information about virtual servers and how to configure them, see the
documentation for your web server.

To configure support for virtual servers, do one of the following tasks:

■ Define and add an Agent identity for each virtual server, specify a value for the
AgentName parameter, and assign it the IP address or host header name of a virtual
server.

■ Define an Agent identity only for virtual servers that need to be uniquely identified.

■ Set a Default Agent Name.

Note: If you have more than one instance of the Oracle iPlanet web server, such as a
server for HTTP communication and a server for HTTPS communication, two
WebAgent.conf files exist. Each file can have multiple agent identities. (The name Oracle
iPlanet refers to the web server that was formerly called Sun ONE and iPlanet.)

More information:

Set the Agent Name and Default Agent Name Identities (see page 56)

Add a SiteMinder Wildcard Mapping to Protect IIS 6.0 Virtual Web Sites

Chapter 7: Configure Virtual Servers 77

Add a SiteMinder Wildcard Mapping to Protect IIS 6.0 Virtual
Web Sites

SiteMinder automatically protects only the Default Web Site folder of the IIS web server.
If you are running virtual web sites on your IIS 6.0 web server, add wildcard mappings to
each virtual web site that you want to protect. After adding the wildcard mapping to the
virtual sites, enable the Web Agent.

To add a SiteMinder wildcard mapping to protect IIS 6.0 virtual web sites

1. Configure virtual servers for the IIS 6.0 web server.

Note: For more information, see your IIS documentation.

2. Open the IIS Management Console.

3. Right-click on the Virtual Web Site, and then select Properties.

The Properties dialog appears.

4. Click the Home Directory tab.

5. Click Configuration.

The Application Configuration dialog appears.

6. In the Wildcard application maps section, click Insert.

7. Click Browse and navigate to the following file:

web_agent_home\SiteMinder Web Agent\Bin\ISAPI6WebAgent.dll

web_agent_home

Indicates the directory where the SiteMinder Agent is installed.

Default (Windows 32-bit installations of SiteMinder Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [SiteMinder Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with SiteMinder Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

8. Click OK twice.

The Application Configuration and Properties dialogs close.

9. Restart the virtual website.

10. Repeat Steps 3 through 9 for each virtual web site you want to protect.

The IIS Web Agent is ready to be enabled.

Assign Web Agent Identities for Virtual Servers

78 Web Agent Configuration Guide

Assign Web Agent Identities for Virtual Servers

Additional Web Agents for each virtual server are not actually defined, but are assigned
a Web Agent identity. To protect virtual servers that have unique access requirements
or to protect distinct realms, assign each server a unique Agent identity and use the
default agent name for all other virtual servers. The advantage of this option is that you
can configure your SiteMinder installation quickly, yet still guard virtual servers hosting
realms that require separate protection.

The AgentName parameter and its associated IP address provide mapping for web
server interfaces to agent names as defined in the policy store. Web Agents need to
make Agent API calls in the proper agent name context in order for the correct set of
rules and policies to apply. If no Agent name or IP address is assigned for mapping to the
policy store, then the Web Agent uses the value of the DefaultAgentName parameter
only for a virtual server.

To protect virtual servers using unique Agent identities, add a Web Agent for each
virtual server in the AgentName parameter. Adding separate Web Agents for each
virtual server lets you define unique realms and rules for each virtual server.

To assign a Web Agent identity

1. Enter the name of the agent and the IP address, separated by a comma.

2. Specify the port number associated with the IP address (for example:
112.12.12.1:8080) if your virtual servers share the same IP address, but use
different ports. If you are using default ports, port numbers are not required.

3. To add more than one Agent, put each entry on a separate line, as in the following
example:

agentname="agent1,123.123.12.12:8080"

agentname="agent2,123.123.12.12:8081"

agentname="agent3,123.123.12.13"

4. If you add an Agent Identity, you must define it in the Administrative UI with the
same configuration. Make sure that the Agent Identity is defined in Administrative
UI exactly as it is defined for the Agent configuration.

If it finds no entries in the AgentName parameter, SiteMinder uses the value of the
DefaultAgentName only for a virtual server.

Note: If you change the DefaultAgentName, make sure that it is defined in the
Administrative UI exactly as it is defined for the Agent.

Specify Virtual Servers for the Web Agent to Ignore

Chapter 7: Configure Virtual Servers 79

Specify Virtual Servers for the Web Agent to Ignore

If a web server at your site supports several virtual servers, there may be resources on
these virtual servers that you do not want to protect with the Web Agent. To simplify
how the Web Agent distinguishes which portions of a web server's content it protects,
use the following parameter:

IgnoreHost

Specifies the fully qualified domain names of any virtual servers that you want
the web Agent to ignore. Resources on such virtual servers will be
auto-authorized, and the Web Agent always grants access to them regardless
of which client makes the request. The authorization decision is based on the
configuration of the Web Agent instead of being based on a policy.

The list of ignored hosts is checked first before any other auto-authorization
checks, such as the IgnoreExt and IgnoreURL settings. Therefore, the
double-dot rule will not trigger an authorization call to the Policy Server for
resources on an ignored host but would not be ignored by extension.

The host portion of the URL entries for the IgnoreHost parameter must exactly
match what the Web Agent reads for the host header of the requested
resource.

Note: This value is case-sensitive.

If the URL uses a specific port, then the port must specified.

For centrally-managed agents, use a multi-value parameter in the Agent
Configuration Object to represent several servers. For agents configured with a
local configuration file, list each host on a separate line in the file.

Example: (URL shown with port specified)

IgnoreHost="myserver.example.org:8080"

Example: (local configuration file)

IgnoreHost="my.host.com"

IgnoreHost="your.host.com"

Default: No default

To specify virtual servers for the Web Agent to Ignore, do either of the following tasks:

■ For central configuration, add the servers you want to ignore to your agent
configuration object. For more than one server, use the multi-value setting for
the parameter.

■ For local configuration, add a separate line for each server in the local
configuration file.

Resources using the specified URLs are ignored by the Web Agent and access to
those resources is granted automatically.

Resolve Agent Identity by IP Address

80 Web Agent Configuration Guide

More Information

Handle Complex URIs (see page 239)

Resolve Agent Identity by IP Address

On virtual web servers, when IP addresses and host names are used to resolve the
Agent name, the Web Agent can potentially use an incorrect value for AgentName to
evaluate the request. This situation would allow unauthenticated users to access
protected resources.

You can force the Web Agent to resolve the Agent name based on the physical IP
address of the virtual server, with the following parameter:

UseServerRequestIp

Instructs the Web Agent to resolve the AgentName according to the physical IP
address of a virtual web server. Use this parameter to increase security if a web
server uses IP addresses for virtual server mappings. If this parameter is set to
no, the Web Agent resolves the AgentName according to the host name in the
HTTP Host header of the client's request.

For Domino servers, this parameter is supported only for Domino 6.x. If this
parameter is enabled for an Agent on other Domino versions, the Web Agent
uses the default Agent name.

For IIS Web Agents configured for SSL communication and virtual hosts, you
must set this parameter to yes. IIS does not allow virtual host mappings using
host names with SSL enabled.

Default: No

To resolve a Web Agent's identity using the IP Address, set the UseServerRequestIp
parameter to yes.

Chapter 8: Use Platform for Privacy Preferences (P3P) Compact Policies with SiteMinder Agents 81

Chapter 8: Use Platform for Privacy
Preferences (P3P) Compact Policies with
SiteMinder Agents

SiteMinder agents can support P3P compact policies using the parameters described in
the following procedures:

■ How to support P3P compact policies (see page 81).

■ Configure your agent to support P3P compact policies (see page 66).

This section contains the following topics:

How to Support a P3P Compact Policy with your SiteMinder Web Agent (see page 81)
Configure your Web Agent to Accommodate P3P Compact Policies (see page 82)

How to Support a P3P Compact Policy with your SiteMinder
Web Agent

CA SiteMinder supports P3P Compact policies on most types of Web Agents, except for
the following types:

■ Domino

Note: For more information about P3P, see the P3P page of the World Wide Web
Consortium web site.

To configure your Web Agent to support a P3P Compact policy, use the following
process:

1. Configure a P3P Compact policy on your web server.

Note: For more information, see the documentation provided by your web server
vendor.

2. Configure your Web Agent to accommodate your P3P Compact policy.

http://www.w3.org/P3P/
http://www.w3.org/P3P/

Configure your Web Agent to Accommodate P3P Compact Policies

82 Web Agent Configuration Guide

Configure your Web Agent to Accommodate P3P Compact
Policies

You can determine whether the custom responses from your Web Agent comply with
P3P response headers with the following parameter:

P3PCompactPolicy

Determines whether custom responses comply with the Platform for Privacy
Preferences Project (P3P) response headers. P3P compact policies use tokens
representing the specific elements from the P3P terminology. If you set the
P3PCompactPolicy parameter to the appropriate policy syntax, it ensures that
custom responses are set with the correct P3P response header when a P3P
compact policy is specified for the Web Agent.

Default: No default

Example: NON DSP COR CURa TAI (these represent: none, disputes, correct,
current/always, and tailoring, respectively)

To accommodate P3P compact policies, add an appropriate policy syntax to the
P3PCompactPolicy parameter.

Chapter 9: Single Sign-On (SSO) 83

Chapter 9: Single Sign-On (SSO)

This section contains the following topics:

How Single Sign-on Works in a Single Domain (see page 84)
Single Sign-On Across Multiple Domains (see page 85)
Single Sign-On and Authentication Scheme Protection Levels (see page 88)
Allow Automatic Access to Resources that use the OPTIONS Method (see page 89)
Track User Identity Across Anonymous Realms (see page 90)
Single Sign-on and Agent Key Management (see page 90)
How to Configure Single Sign-On (see page 91)
Configure Support for SDK Third-Party Cookies (see page 109)
Ignore the Cookie Provider for Unprotected Resources (see page 109)
Ignore the Cookie Provider for POST Requests (Framework Agents Only) (see page 110)
Force the Cookie Domain (see page 110)
Implement Cookie Domain Resolution (see page 111)
Configure SecureUrls with Single Sign-on (see page 112)
Prevent Cookie Provider Replay Attacks (see page 113)
How Full Logoff Works (see page 113)
Integrate an IIS 6.0 Agent with SharePoint Portal Server 2003 (see page 118)
Specify the Cookie Path for Agent Cookies (see page 119)

How Single Sign-on Works in a Single Domain

84 Web Agent Configuration Guide

How Single Sign-on Works in a Single Domain

SiteMinder provides single sign-on functionality across single and multiple cookie
domains. This simplifies using applications across different Web servers and platforms,
and improves the user experience because the users do not have to re-authenticate as
they move across a single sign-on environment.

A single domain is an environment where all resources exist in the same cookie domain.
Multiple Web Agents in the same cookie domain can be configured for single sign-on if
you specify the same cookie domain in each Web Agent’s configuration.

If single sign-on is enabled, it uses the following process:

1. The user authenticates once.

2. The Web Agent caches the successful authentication, and then issues a single
sign-on cookie to the user’s browser.

3. The single sign-on cookie provides the session information, so that users can access
the following types of resources without reauthenticating:

■ Protected resources in other realms with an equal or lower protection level

■ Another web server within this cookie domain

Users who try to access resources with a higher protection level must
re-authenticate before they are granted access.

The following illustration shows single sign-on in a single cookie domain:

Note: If you are using replicated user directories with non replicated policy stores, the
user directory must be named identically for all policy stores. Also, the session ticket
key, which encrypts session tickets, must be the same for all key stores in the SSO
environment. The session ticket determines the duration of a valid user session.

Single Sign-On Across Multiple Domains

Chapter 9: Single Sign-On (SSO) 85

Single Sign-On Across Multiple Domains

Without single sign-on, users are often required to log on and enter their credentials
multiple times as they access different applications and resources on separate servers in
different cookie domains. The ability to pass single sign-on information across multiple
cookie domains enables a user to authenticate at a site in one cookie domain, and then
go to a site in another cookie domain without being rechallenged for credentials. For
the user, this seamless navigation makes related sites easier to use.

The following illustration shows single sign-on across multiple cookie domains.

Single Sign-On Across Multiple Domains

86 Web Agent Configuration Guide

Single Sign-On Across Multiple Cookie Domains

SiteMinder implements single sign-on across multiple cookie domains using a
SiteMinder Web Agent configured as a cookie provider.

The cookie domain where the cookie provider Web Agent resides is named the cookie
provider domain. All the other Web Agents from the other cookie domains within the
single sign-on environment, point to one cookie provider.

SiteMinder cookie providers work using the following process:

1. A user requests a protected resource in a domain within the single sign-on
environment, and is challenged for credentials.

2. When the user is authenticated, the following cookies are set in the user's browser:

■ the local cookie for the domain where the user has authenticated

■ the cookie set by the cookie provider.

3. The user can navigate between the domains in the single sign-on environment
without being rechallenged until either of the following events occur:

■ The user's session times out

■ They end the session (usually by closing their browser)

Will the Web Agents in your single sign-on environment need to be load-balanced?

Because all Web Agents in an SSO environment must refer to a single cookie provider
domain, add a load-balancer between the web servers in your cookie provider domain
and the other cookie domains in your SSO environment as shown in the following
illustration:

Single Sign-On Across Multiple Domains

Chapter 9: Single Sign-On (SSO) 87

The Web Agent in the example.org cookie domain points and the Web Agent in the
example.com cookie domain both point to the same cookie provider domain of
example.net. A load-balancer distributes the traffic evenly between all the web servers
in the example.net cookie provider domain.

Note: SSO across multiple cookie domains does not require that the same user directory
be used across the SSO environment. However, if you are using replicated user
directories with non-replicated policy stores, the user directory must be named
identically for all policy stores. Also, the session ticket key, which encrypts session
tickets, must be the same for all key stores in the SSO environment. The session ticket
determines the duration of a valid user session.

Single Sign-On and Authentication Scheme Protection Levels

88 Web Agent Configuration Guide

Single Sign-On and Authentication Scheme Protection Levels

With single sign-on, authenticated users of one realm can access a resource in another
realm without re-authenticating as long as the second realm is protected by an
authentication scheme with an equal or lower protection level. If a user tries to access a
resource protected by an authentication scheme with a higher protection level,
SiteMinder prompts the user to re-enter their credentials.

SiteMinder lets administrators assign protection levels to authentication schemes with
the Administrative UI. Protection levels range from 1 through 20, with 1 being the least
secure and 20 being the most secure. These protection levels enable administrators to
implement authentication schemes with an additional measure of security and flexibility
for a single sign-on environment.

For example, a set of resources that is available to all users has a Basic authentication
scheme with a protection level of 1. Another set of resources that should only be
available to corporate executives, uses an X.509 certificate scheme with a protection
level of 15. If a user authenticates with the Basic theme, then tries to access the
resources protected by a certificate scheme, they will be required to re-authenticate.

Note: For more information, see the Policy Server documentation.

Allow Automatic Access to Resources that use the OPTIONS Method

Chapter 9: Single Sign-On (SSO) 89

Allow Automatic Access to Resources that use the OPTIONS
Method

The SiteMinder Web Agent still challenges authenticated users who attempt to access
resources that use the OPTIONS method. Some examples of resources that use the
OPTIONS method include (but are not necessarily limited to) the following:

■ Microsoft® Word documents

■ Microsoft
®
 Excel

®
 spreadsheet documents

This challenge occurs because the application associated with the resource sends a
request using the OPTIONS method to the web server. Because this request does not
include a SiteMinder cookie, the Web Agent issues a challenge.

To prevent users from being challenged for these resources

1. Set the value of the following parameter to yes:

autoauthorizeoptions

Automatically authorizes any requests for resources which use the HTTP
OPTIONS method.

If you set the value of this parameter to yes, also set the value of the
PersistentCookies parameter to no.

Limits: yes, no

2. Set the value of the PersistentCookies parameter to no.

Track User Identity Across Anonymous Realms

90 Web Agent Configuration Guide

Track User Identity Across Anonymous Realms

When an anonymous user accesses resources, that user is assigned an SMIDENTITY
(anonymous) cookie. When the user moves to another domain, the user is challenged,
logs in successfully, and is assigned an SMSESSION (logged in) cookie.

As this user accesses protected and "anonymous" resources, that is, resources in a
realm that do not require a user to present credentials, the user may enter a domain
that contains both cookies for a user. For resources protected by Web Agents starting at
5.x QMR 3 , the Web Agent uses the SMSESSION cookie to identify the user, not the
SMIDENTITY cookie.

If the user goes from a thoroughly upgraded domain to a domain where older Agents
use the SMIDENTITY cookie to identify the user, the cookie used depends on the version
of the Web Agent handling the request.

Regarding separate cookie domains, when a master cookie domain contains protected
resources and a second domain contains anonymous resources, a user who does the
following tasks continues to be treated as an anonymous user in the anonymous
domain:

1. Accesses the anonymous domain first

2. Moves to the master domain and logs in

3. Moves back to the anonymous domain

Single Sign-on and Agent Key Management

Web Agents use keys to encrypt and decrypt cookies that pass information between
Web Agents. When an Agent receives a SiteMinder cookie, the key allows the Agent to
decrypt the contents of the cookie. Keys must be set to the same value for all Web
Agents communicating with a Policy Server.

To ensure the keys remain secure, the Policy Server can generate these keys, encrypt
them, and distribute them to all the Web Agents within a SiteMinder environment.
Automated key changes make agent key management easy to implement for large
SiteMinder installations that share the same key store, which holds all the key
information. Automating key changes also ensures the integrity of the keys.

How to Configure Single Sign-On

Chapter 9: Single Sign-On (SSO) 91

How to Configure Single Sign-On

To set up your single sign-on environment, use the following process:

1. Decide which cookie domains comprise the single sign-on environment.

2. Decide which cookie domain within the single sign-on environment will be the
cookie provider domain.

3. Access the Agent Configuration Object (using the Administrative UI) or open the
Web Agent configuration file (on your web server), and modify the parameters in
the following steps:

a. Set the RequireCookies parameter to yes.

If you set the timeout parameters without requiring cookies, the Web Agent
functions normally; however, it cannot enforce the timeouts. If the Web Agent
requires cookies but the user’s browser does not accept them, the user will be
denied access to all protected resources.

Note: For more information, see the Policy Server documentation.

b. If you want the cookies to last until the configured session timeout, set the
PersistentCookies parameter to yes.

If you set this parameter to no, the cookies last for only one browser session.

c. For the CookieDomain parameter, verify that this is the local cookie domain of
the system on which the Web Agent is installed, such as .mycompany.com.
Modify the domain, if necessary. This value is case-sensitive.

d. Set the CookieProvider parameter to the cookie provider domain using the
appropriate syntax as follows:

http://server.domain:port/siteminderagent/SmMakeCookie.ccc

where server.domain:port is the fully qualified domain name of the Web Server
where the Web Agent acting as the cookie provider resides, such as
myserver.mysite.com. The cookie provider name must have a .ccc extension.

e. Make sure the cookie provider is configured with the proper associated MIME
type (.ccc).

f. Enable the proper type IP checking (to compare IP addresses) if you enabled
persistent or transient cookies.

4. (Optional) Modify any other single sign-on settings.

5. If you edited parameters by modifying the Web Agent configuration file, restart the
web server, so that the changes take effect.

More Information

Configure MIME Types for Each Credential Collector (see page 254)
Compare IP Addresses to Prevent Security Breaches (see page 249)

How to Configure Single Sign-On

92 Web Agent Configuration Guide

Require Cookies for Basic Authentication

You can control whether SiteMinder requires cookies with the following parameter:

RequireCookies

Specifies whether SiteMinder requires cookies. SiteMinder requires cookies for
the following functions:

■ Securing single sign-on environments.

■ Enforcing session timeouts.

■ Enforcing idle timeouts.

When the value of this parameter is yes, the agent requires one of the
following cookies to process HTTP requests:

■ SMCHALLENGE

■ SMSESSION

When the value of this parameter is no, the following conditions could occur:

■ Users are challenged for credentials unexpectedly.

■ Timeouts are not strictly enforced.

Important! If the agent requires cookies, instruct your users to accept HTTP
cookies in their browsers. Otherwise, the users are denied access to all
protected resources.

Default: Yes

To require cookies, set the value of the RequireCookies parameter to yes.

How to Configure Single Sign-On

Chapter 9: Single Sign-On (SSO) 93

Set Persistent Cookies

If you want to use single sign-on for multiple browser sessions, use persistent cookies.
The following steps describe one possible use for persistent cookies:

1. Users authenticate with SiteMinder, but end their browser sessions before the
SiteMinder session expires.

2. Users start new browser sessions later, but the persistent cookie maintains their
single-sign on capability

Persistent cookies remain valid for the configured maximum session time-out plus seven
days. Many browsers delete the cookie file of the web browser after the cookie expires.
Some browsers possibly handle persistent cookies differently.

To set persistent cookies

1. Set the PersistentCookies parameter to yes

The SMSESSION cookies are persistent.

2. Set the TransientIDCookies parameter to no.

The SMIDENTITY cookies are persistent.

How to Configure Single Sign-On

94 Web Agent Configuration Guide

Specify the Cookie Domain

The CookieDomain parameter defines the cookie domain of the web sever where you
installed the Web Agent. You can modify the domain by setting the following
parameter:

CookieDomain

Defines the cookie domain of the agent. Use a fully qualified domain name with
at least two periods. For example, the setting .example.com cookie domain
matches the following servers:

■ w1.example.com

■ w2.example.com

■ w3.sales.example.com

All web servers in this domain can exchange cookies with a browser. Servers in
the same cookie domain use cookies to verify the credentials of a user.

If the value is none, the agent generates cookies only for the server on which it
runs. For example, myserver.example.com.

If the value is blank (or contains "" in a local configuration file), the agent uses
the domain information in the HTTP_HOST header. The agent then bases the
value using the setting in the CookieDomainScope parameter.

Default: Empty

Example: .example.com

Limits: This value is case-sensitive. This value requires a fully qualified domain
name with at least two periods, as shown in the previous example.

Note: This value is case-sensitive.

How to Configure Single Sign-On

Chapter 9: Single Sign-On (SSO) 95

Follow these steps:

1. Set the value of the CookieDomain parameter.

2. (Optional) Set the value of the CookieDomainScope parameter.

CookieDomainScope

Specifies the number of sections (areas separated by a period) in the domain
name.

When the value is set to 0, the default, the agent chooses the most specific
cookie domain for the host without making a server-only cookie. This means
that the cookie domain myserver.example.com yields a domain of
example.com, and myserver.metals.example.org yields a domain of
.metals.example.com.

If the CookieDomainScope parameter is set to 2, the cookie domain would be
.example.com and .example.org respectively.

Default: 0

Example: If your cookie domain is division.example.com, and you want to set
the scope for server.division.example.com, set the value of the
CookieDomainScope parameter to 3.

How to Configure Single Sign-On

96 Web Agent Configuration Guide

Specify the Cookie Provider

To use a cookie provider, specify its location with the following parameter:

CookieProvider

Specifies the URL of the web server where the agent that is acting as the cookie
provider resides.

A cookie provider is an agent in a single sign-on environment. The cookie
provider sets a browser cookie for the local domain in which it exists. After this
cookie is set, users can navigate throughout the single sign-on environment
without reauthenticating.

The cookie provider name requires a .ccc extension, as shown in the following
examples:

■ For IIS, Oracle iPlanet, and Domino web servers, the URL syntax is as
follows:

 http://server.domain:port/siteminderagent/SmMakeCookie.ccc

■ For Apache and Apache-based web servers, the URL syntax is as follows:

 http://server.domain:port/SmMakeCookie.ccc

This parameter also affects the following parameters:

■ CCCExt

■ SessionUpdatePeriod

Default: No default

Example: (IIS, Oracle iPlanet, and Domino web servers)
http://server1.example.com:80/siteminderagent/SmMakeCookie.ccc

Example: (Apache and Apache-based web servers)
http://server1.example.com:80/SmMakeCookie.ccc

Limits: This parameter requires a fully qualified domain name.

To specify the cookie provider

1. Set the CookieProvider parameter to the URL of the web server that you want to
designate as a cookie provider.

2. Verify that the value of the CCCExt parameter is set to .ccc

3. Add the .ccc extension to the values in the IgnoreExt parameter.

4. (Optional) Modify the session update period.

The cookie provider is specified.

How to Configure Single Sign-On

Chapter 9: Single Sign-On (SSO) 97

More Information

Configure MIME Types for Each Credential Collector (see page 254)

Modify the Session Update Period

You can specify how often the Web Agent redirects a request to the Cookie Provider to
set a new cookie with the following parameter:

SessionUpdatePeriod

Specifies how often (in seconds) a Web Agent redirects a request to the Cookie
Provider to set a new cookie. Refreshing the master cookie decreases the
possibility that it will expire due to an idle time-out of the SiteMinder session.

Default: 60

To modify the session update period

1. Make sure the CookieProvider parameter is defined.

2. Change the number of seconds in the SessionUpdatePeriod parameter to reflect the
interval you want.

The session update period is changed.

How to Configure Single Sign-On

98 Web Agent Configuration Guide

Store Session Cookies on the Session Store for Improved Security

You can increase the security of your environment by having SiteMinder create session
cookies that are stored in the SiteMinder session store instead of on the client computer
belonging to the end user. Storing session cookies in the SiteMinder session store
prevents anyone with access to the following items from copying a session cookie from
a client computer and then re-using it:

■ Web server logs

■ SiteMinder Web Agent logs

■ Potentially compromised proxy servers sitting between domains (in the case of
cross-domain single sign on)

You can control where SiteMinder stores its session cookies by setting the following
parameter:

 StoreSessioninServer

Specifies whether session cookies are stored on the client computer, or in the
SiteMinder session store. When the value of the StoreSessioninServer
parameter is yes, a session cookie is created and stored on the session store.
Cookie providers and Web Agents access the cookie from the session store.

Cookie providers and Web Agents replace the session cookie in a URL with a
GUID that corresponds to the session cookie stored on the session store.

When the value of the StoreSessioninServer parameter is no, the session
cookie is passed directly in the URL

Default: No

To store session cookies on the session store for improved security

1. Ensure your environment meets the following conditions:

■ Upgrade your Web Agents and cookie providers to use SiteMinder 6.0 SP5
QMR1 or higher.

■ Use a value for the DefaultAgentName parameter in the Web Agents and
cookie provider.

■ Your Policy Server is configured with a valid session store.

2. In your Web Agents and cookie provider, set the value of the StoreSessioninServer
parameter to yes.

How to Configure Single Sign-On

Chapter 9: Single Sign-On (SSO) 99

Validate a Session Cookie Domain

You can reduce the risk that unauthorized users may hijack and attempt to reuse
SiteMinder session cookies by having SiteMinder validate the domain of a session cookie
with the following parameter:

TrackSessionDomain

Instructs the Web Agent to encrypt and store the intended domain of a session
cookie within the session cookie itself. During subsequent requests, the Web
Agent compares the intended domain stored within the session cookie against
the domain of the requested resource. If the domains do not match, the Web
Agent rejects the request.

For example, when the value of this parameter is set to yes, session cookies
intended for operations.example.com are rejected when presented at
finance.example.com.

In SiteMinder environments using SSO, set this parameter on the Web Agent
that creates the encrypted session cookie. For example, suppose your SSO
environment has domains named a.example.com and b.example.com. If the
Web Agent protecting a.example.com encrypts the session cookie, set the
value of the TrackSessionDomain parameter of the associated Web Agent.
When the Web Agent protecting b.example.com receives the cookie, it
compares the intended domain stored in the cookie against the domain of the
requested resource.

Default: No

To have SiteMinder validate the domain of a session cookie, set the value of the
TrackSessionDomain parameter to yes.

How to Configure Single Sign-On

100 Web Agent Configuration Guide

Prevent Session Cookie Creation or Updates

Some Web applications, such as Microsoft Outlook Web Access, make HTTP requests
behind the scenes even when a user is not actively using the application. For example,
the Web Access application makes HTTP requests even when the user is not actively
checking for new email on the server.

These requests may update the SMSESSION cookie so that the session never expires,
even though the user has been idle. You can prevent the Web Agent from creating or
updating session cookies during these background requests so that sessions expire
normally.

To prevent creating or updating SMSESSION cookies

1. Configure one or both of the following parameters:

OverlookSessionForMethods

Specifies whether the Web Agent compares the request method of all HTTP
requests against the methods listed in this parameter. If a match occurs, the
Web Agent does not create or update an SMSESSION cookie. Also, cookie
providers (if configured) are not updated for that request.

Default: No default

OverlookSessionForUrls

Specifies whether the Web Agent compares the URLs from all HTTP requests
against the URLs listed in this parameter. If a match occurs, the Web Agent
does not create or update an SMSESSION cookie. Also, cookie providers (if
configured) are not updated for that request.

Default: No default

Example: Use a relative URL, such as /MyDocuments/index.html. Do not use an
absolute URL (http://fqdn.host/MyDocuments/index.html)

Note: If you configure both of the previous parameters, the methods are processed
before the URLs.

How to Configure Single Sign-On

Chapter 9: Single Sign-On (SSO) 101

Prevent Session Cookie Creation or Updates Based on Method and URI

Some Web applications, such as Microsoft Outlook Web Access, make HTTP requests
behind the scenes even when a user is not actively using the application. For example,
the Web Access application makes HTTP requests even when the user is not actively
checking for new email on the server.

These requests update the SMSESSION cookie so that the session never expires, even
though the user has been idle. You can prevent the Web Agent from creating or
updating session cookies during these background requests so that sessions expire
typically.

To prevent creation or updates based on method and URI

1. Set all the following parameters:

OverlookSessionForMethods

Specifies whether the Web Agent compares the request method of all HTTP
requests against the methods listed in this parameter. If a match occurs, the
Web Agent does not create or update an SMSESSION cookie. Also, cookie
providers (if configured) are not updated for that request.

Default: No default

OverlookSessionForMethodUri

Specifies whether the Web Agent compares the method and the URI from all
HTTP requests against the method and URI listed in this parameter. If a match
occurs, the Web Agent does not create or update an SMSESSION cookie. Cookie
providers (if configured) are not updated for that request.

Default: No default.

Limits: Specify a relative URI

Example: POST, /directory/file prevents updates to the SMSESSION cookie for
POST requests to /directory/resource.

Note: Methods are processed before URIs.

How to Configure Single Sign-On

102 Web Agent Configuration Guide

Set Secure Cookies

You can specify that session cookies are only sent between a protected web server and
the requesting browser over secure (HTTPS) connections using the following parameter:

UseSecureCookies

Sends cookies to web servers using secure (HTTPS) connections. Enable this
parameter to increase security between browsers and web servers.

When this setting is enabled, users in single sign-on environments who move
from an SSL web server to a non-SSL web server will have to reauthenticate.
Secure cookies cannot be passed over traditional HTTP connections.

Default: No

To send cookies over SSL connections, set the UseSecureCookies parameter to yes.

More information:

Set Secure Cookies Across Multiple Domains (see page 102)

Set Secure Cookies Across Multiple Domains

Setting the UseSecureCookies parameter configures a Web Agent to only return a local
cookie to a requesting browser session if the connection between them is secure
(HTTPS); if the Web Agent is also configured as a cookie provider, UseSecureCookies
does not apply to redirected requests for access to resources in other cookie domains.

To configure a Web Agent acting as a cookie provider to only return cookies to a Web
Agent in another cookie domain if that Web Agent is also configured to use secure
cookies, you must enable UseSecureCookies and also configure the following
parameter:

UseSecureCPCookies

If UseSecureCPCookies is set to Yes, the cookie provider will only send a cookie
to a Web Agent in another cookie domain that is also configured to use secure
cookies (that is, UseSecureCookies is enabled).

When this setting and UseSecureCookies are both enabled, users in a multiple
domain single sign-on environment who move from an SSL web server to a
non-SSL web server in another cookie domain will have to reauthenticate.
Secure cookies cannot be passed over traditional HTTP connections.

Default: No

To send cookies over SSL connections across multiple domains, set the
UseSecureCookies and UseSecureCPCookies to yes on the cookie provider.

How to Configure Single Sign-On

Chapter 9: Single Sign-On (SSO) 103

More information:

Set Secure Cookies (see page 102)

Control Identity Cookies

The TransientIDCookies parameter specifies whether or not the Agent identity cookie
(SMIDENTITY) is transient or persistent.

Persistent cookies are written to a client system’s hard disk. Prior to Web Agent 5.x
QMR1, persistent cookies remained valid for 7 days. Beginning with Web Agent 5.x
QMR1, persistent cookies remain valid for the configured maximum session timeout
plus 7 days. (The maximum session timeout is set in the Administrative UI.) Typically, a
persistent cookie is deleted from a Web browser’s cookie file after the cookie expires;
however, browsers may handle persistent cookies differently. By default, the Web
Agent does not use persistent cookies. It uses transient cookies.

If you want to use single sign-on for multiple browser sessions, use persistent cookies. If
you set persistent cookies, a user can end their browser session before a SiteMinder
session expires then start a new browser session and still have single sign-on capability.

Whereas persistent cookies are written to a hard disk, transient cookies are not written
to the hard disk and they are not subject to configured session time-outs. Transient
cookies will remain in your cookie folder.

Set TransientIDCookies to no, if you want the identity cookie to be persistent. Leave the
default value set to yes, if you want the identity cookie to be transient.

Be sure to set the corresponding IP Check.

More Information

Compare IP Addresses to Prevent Security Breaches (see page 249)

How to Configure Single Sign-On

104 Web Agent Configuration Guide

Modify the Session Grace Period

Web pages usually consist of many resources, all of which are potentially protected by
the Web Agent. For each resource associated with a single request, a session cookie is
generated. To eliminate the overhead of generating multiple session cookies for a single
user request, set the following parameter:

SessionGracePeriod

Specifies the number of seconds during which a SiteMinder session
(SMSESSION) cookie will not be regenerated. Cookies are not regenerated
when all of the following conditions are met:

■ There is no URL SMSESSION cookie.

■ The difference between the current time and the last access time of the
received SMSESSION cookie is less than or equal to the
SessionGracePeriod.

■ The amount of time between the current time and the time when the
received cookie would have been idle exceeds two grace periods. For
example, if your grace period is 25 minutes and the idle time-out is 60
minutes, SiteMinder regenerates a session cookie after 10 minutes,
because then there are less than two grace periods (50 minutes) of time
left before the session goes idle.

Default: 30

To modify the session grace period

1. Change the value of the SessionGracePeriod parameter.

2. If you increased the setting for the SessionGracePeriod parameter in Step 1, use the
Administrative UI to ensure both of the following values in all of your realms do not
exceed the value of the SessionGracePeriod parameter:

■ Session timeout value

■ Idle timeout value

The session grace period is changed.

Note: Session timeouts are part of configuring a realm, which you do using the
Administrative UI. For further instructions on configuring session timeouts, see the
Policy Server documentation.

How to Configure Single Sign-On

Chapter 9: Single Sign-On (SSO) 105

Set a Time-out for Saved Credentials

When a user chooses to have credentials saved, the Policy Server instructs the Web
Agent to create a persistent cookie containing the user’s credentials. The cookie allows
Web Agents to authenticate a user based on the credentials saved in the cookie, instead
of challenging the user to authenticate. You can control how long the persistent cookie
remains with the following parameter:

SaveCredsTimeout

Specifies the number of hours that a persistent cookie containing the user
credentials will be saved. During this time interval, the Web Agent
authenticates the user with the data stored in the cookie. After this time
interval expires, the cookie is removed and the Web Agent challenges the user
again.

Default: 720 (30 days)

To set a timeout for saved credentials, enter the number of hours you want in the
SaveCredsTimeout parameter.

Note: For more information, see the Policy Server documentation.

How to Configure Single Sign-On

106 Web Agent Configuration Guide

How to Enforce Timeouts across Multiple Realms

User session timeouts are governed by the realm that the user first logs into. If a user
enters a new realm through single sign-on, the time-out values for the new realm are
still governed by the session that was established by the initial login at the first realm. If
you have different time-out values for different realms, and you want to have each
realm use its own time-out values, you can override the time-outs of the original realm.

A user who has already timed out cannot log in to another realm without being
rechallenged. For example, if the Idle Timeout in Realm1 is 15 minutes and the Idle
Timeout in Realm2 is 30 minutes, a user who accumulates 20 idle minutes in Realm1 will
be challenged upon logging in to Realm2.

To override the time-outs of the original realm, configure your Web Agent and realms as
described in the following process:

1. Set the value of the EnforceRealmTimeouts parameter to yes.

2. Use the Administrative UI to do the following tasks:

a. For each realm where you want to supersede the original time-outs (any realm
that SSO functionality allows the user to access), do the following:

■ To override the Maximum Timeout value, create a response using the
WebAgent-OnAuthAccept-Session-Max-Timeout response attribute.

■ To override the Idle Timeout value, create a response using the
WebAgent-OnAuthAccept-Session-Idle-Timeout response attribute.

b. Bind each of the previous responses to an OnAuthAccept rule.

Note: For information about creating responses, see the Policy Server Configuration
Guide.

How to Configure Single Sign-On

Chapter 9: Single Sign-On (SSO) 107

Redirect a User after a Session Time-out

Session time-outs are set when you configure a realm with the Administrative UI. When
a user’s SiteMinder session times out, the Web Agent does one of the following actions:

■ Rechallenges the user for credentials

■ Redirects the user to another URL

If a redirect URL is specified, the user is sent to that destination page. If the page is
unprotected, the user is granted direct access to that page. If the page is protected, the
user is challenged for credentials before being granted access to the page. If no
redirection URL has been specified, the Web Agent rechallenges the user for credentials
after a session time-out.

You can redirect users whose sessions time out to a URL with a customized web page,
which explains why their session has been terminated and how they can reestablish it.
For example, you can create a custom web page that displays a message such as, "You
have been logged out automatically as a security precaution. Please login again to
continue."

If the user is not redirected to another page after a session times out, SiteMinder
challenges the user again. This may confuse users because they may not understand
why they are being asked to reauthenticate.

To redirect users to different URLs after session time-outs

1. Add the following parameters to your Agent Configuration Object or your local
configuration file:

IdleTimeoutURL

Specifies the URL where the Web Agent should redirect the user when the idle
time-out for the session occurs.

Example: http://example.mycompany.com/sessionidletimeoutpage.html

Note: IdleTimeoutURL should only be used for non-persistent sessions; it has
no effect if configured for persistent sessions.

MaxTimeoutURL

Specifies the URL where the Web Agent should redirect the user when the
maximum time-out for the session occurs.

Example: http://example.mycompany.com/maxtimeoutpage.html

Default: No default

2. Enter one URL for each of the previous parameters. You can use the same URL for
all of the parameters, or you may use different URLs for each.

How to Configure Single Sign-On

108 Web Agent Configuration Guide

If the idle timeout and maximum timeout values for a session (set in the Policy
Server) occur at the same time and the IdleTimeoutURL and MaxTimeoutURL
parameters are set, the user is redirected to the URL specified in the
MaxTimeoutURL parameter when a time-out occurs.

Protect Session Cookies from Misuse with Validation Periods and Expired Cookie
URLs

SiteMinder uses time-based session cookie parameters that can substantially reduce the
possibility of a SiteMinder session cookie being compromised by administrators or other
users who have access to the following items:

■ Web server logs

■ SiteMinder Web Agent logs

■ Potentially compromised proxy servers sitting between domains in the case of
cross-domain single sign-on

These time-based session cookie parameters add the concept of "born dates" to session
cookies. Agents receiving a session cookie as a result of a redirect (URL session cookie)
will look for the cookie born date name/value pair and compare this value with the
value set for the CookieValidationPeriod configuration parameter. If the value of the
born date and the CookieValidationPeriod parameter value exceed the current time, the
cookie is rejected.

To protect session cookies from misuse, set the following parameters:

CookieValidationPeriod

Specifies the time period (in seconds) in which the receiving agent will accept
the session cookie. After this time passes, the session cookie will not be
accepted. If this field is not used or is set to zero, the session cookie expires
when the Idle Timeout and Max Session Timeout values are met.

Default: Empty.

ExpiredCookieURL

(Optional) Specifies a URL that the agent redirects the user to after any session
cookie has expired. If neither the born date nor the CookieValidationPeriod are
configured, the agent ignores the settings and processes the cookie as usual
(backwards compatibility).

Configure Support for SDK Third-Party Cookies

Chapter 9: Single Sign-On (SSO) 109

Configure Support for SDK Third-Party Cookies

If you use non-SiteMinder Web Agents in your organization, you can configure them to
support single sign-on with the following parameter:

AcceptTPCookie

Allows the Web Agent to accept session (SMSESSION) cookies created by
third-party (non-SiteMinder) Web Agents. Third-party agents generate and
read SMSESSION cookies using the SiteMinder SDK.

Default: No default

Note: For more information, see the SiteMinder Developer's documentation.

To allow the Web Agent to accept session cookies created by non-SiteMinder Web
Agents, set the AcceptTPCookie parameter to yes.

Ignore the Cookie Provider for Unprotected Resources

Web Agents forward all requests to the cookie provider by default. If you have
unprotected resources, you can reduce network traffic with the following parameter:

IgnoreCPForNotprotected

Prevents the cookie provider from being queried for unprotected resource
requests. When this parameter is set to no, all requests are directed to the
cookie provider by the Web Agent. For traditional (non-framework) Agents, a
cookie provider must be configured for the value of this parameter to appear in
the Web Agent log file.

Default: No

To prevent Web Agent from contacting the cookie provider when unprotected
resources are requested, set the value of the IgnoreCPForNotprotected parameter to
yes.

Ignore the Cookie Provider for POST Requests (Framework Agents Only)

110 Web Agent Configuration Guide

Ignore the Cookie Provider for POST Requests (Framework
Agents Only)

The following parameter lets you use traditional agents as cookie providers in an
environment that also has framework agents:

LegacyCookieProvider

Controls whether a framework agent sends a POST request to a cookie
provider. When framework agents send a POST request to a traditional agent
that is acting as a cookie provider, the redirected request becomes a GET
instead and fails. When set to no, the framework agent sends the POST request
to the cookie provider. When set to yes, the framework agent does not send
the POST request to the cookie provider.

If you are using central agent configuration, you must add this parameter to
your Agent Configuration Object. This parameter already exists in local
configuration files.

Default: No (POST requests sent)

To use a traditional agent as a cookie provider with a framework agent, set the
LegacyCookieProvider parameter to yes.

Force the Cookie Domain

Using fully qualified domain names helps ensure that cookies work properly. You can
force the agent to append its cookie domain to the host name in a URL request that
meets either of the following conditions:

■ The request does not specify a domain

■ The request contains only an IP address.

■ Agents can be forced to use a cookie domain by setting the following parameters:

ForceCookieDomain

Forces the Web Agent to append its cookie domain to the host name in a URL
request that does not specify a domain or contains only an IP address. This
parameter works together with the ForceFQHost parameter for added
functionality.

Default: No

Implement Cookie Domain Resolution

Chapter 9: Single Sign-On (SSO) 111

ForceFQHost

Forces a Web Agent to use a fully qualified domain name. This parameter uses
configured domain name system (DNS) services to force the appending of the
cookie domain to the host name in a URL request through DNS services and not
an Agent. If the Web Agent receives a request that contains a partial URL, the
Web Agent redirects the request back to the same destination resource
specified in the original URI. The redirect request uses the fully qualified host
name, which the Web Agent determines using the configured DNS services.
Use this parameter with the ForceCookieDomain parameter for added
functionality.

Default: No

Example: When the Web Agent receives a request from
http://host1/page.html, it responds with http://host1.myorg.com/page.html.
If the Web Agent receives a request such as http://123.113.12.1/page.html, it
responds with http://host1.myorg.com/page.html.

Note: These examples work only if the proper DNS lookup tables are set up. If a
partial domain is entered, the result depends on whether or not the DNS
lookup can resolve it. If the request resolves as an invalid host, an error will
result. Most likely, such a request would not even reach the web server.

Follow these steps:

1. Set the value of the ForceCookieDomain parameter to yes.

2. Set the value of the ForceFQHost parameter to yes.

The agent appends its cookie domain to the host name when necessary.

Implement Cookie Domain Resolution

To implement automatic domain resolution, comment out the CookieDomain
parameter or set it to none to cause the Web Agent to create cookies that are good only
for the server from which they were issued.

You can further define the cookie domain by adding a value to the CookieDomainScope
parameter. The scope determines the number of sections, separated by periods, that
make up the domain name. (A domain always begins with a ".")

A CookieDomainScope value of 0 instructs the agent to use the most specific scope for a
given host. A value of 1 (resulting, for example, in a cookie domain of .com) is not
allowed by the HTTP specification. The value 2 instructs the agent to use the most
general scope.

Configure SecureUrls with Single Sign-on

112 Web Agent Configuration Guide

The following table shows some domain names and CookieDomainScope values.

Domain Name Cookie Domain
Scope value

Cookie Domain

server.myorg.com 2 .myorg.com

server.division.myorg.com 3

2

.division.myorg.com

.myorg.com

server.subdivision.division.myorg.c
om

4

3

2

.subdivision.division.myorg.com

.division.myorg.com

.myorg.com

For example, the domain division.myorg.com has a scope of 3. By default, the Web
Agent assumes a scope of 2; cookie domains cannot have a scope of 1.

Configure SecureUrls with Single Sign-on

If your single sign-on network has a Web Agent that supports SecureUrls functionality
and another Agent that does not, this could result in internal server error messages
when a user requests a protected single sign-on resource.

The log for the Web Agent with SecureUrls support shows the reason for the server
error, such as the following:

Error. Unable to process request, SecureUrls is disabled.

Note: All Web Agents in a single sign-on environment must have the SecureUrls
parameter set to the same value. SiteMinder does not support interoperability between
Web Agents with the SecureUrls parameter set to different values.

Prevent Cookie Provider Replay Attacks

Chapter 9: Single Sign-On (SSO) 113

Prevent Cookie Provider Replay Attacks

You can prevent the cookie provider from being vulnerable to replay attacks with the
following parameter:

TrackCPSessionDomain

Validates that the cookie domain of the session cookie matches the cookie
domain of the cookie provider. Different cookie domains could indicate a
possible replay attack. When the value of this parameter is no, the cookie
domain of the session cookie is not validated.

Default: No

To prevent cookie provider replay attacks, set the value of the TrackCPSessionDomain
parameter to yes.

The agent compares cookie domains and rejects requests when the domains do not
match.

How Full Logoff Works

Full logoff support enables a Web developer to make sure that a user is completely
logged off from a user session. This protects resources because it gives users a way to
end a session without exiting the Web browser and prevents an unauthorized person
from assuming control of an open session.

A full logoff uses the following process:

1. A user clicks a button to log off.

2. The Web Agent redirects the user to a customized logoff page that you created.

3. The Web Agent removes the session and authentication cookies from a user’s
browser.

4. The Web Agent also removes the session cookie from the local cookie domain and
the cookie provider domain, which you specify for single sign-on environments.

5. The Web Agent calls the Policy Server and instructs the Policy Server to remove any
session information.

The user is completely logged off.

More information:

Configure Full Logoff Support for Domino Agents (see page 305)

How Full Logoff Works

114 Web Agent Configuration Guide

Configure Full Logoff

Full logoff uses a custom logoff page that you create along with the following
parameter:

LogOffUri

Enables full log off and specifies the location of a custom web page on your
web server that appears to users after they are successfully logged off. You
must configure this page so that it cannot be stored in a browser cache.
Otherwise, a browser may display a logoff page from its cache without logging
the user off. This may give an unauthorized user an opportunity to assume
control of a session.

Note: When the CookiePath parameter is set, the value of the LogOffUri
parameter must point to the same cookie path. For example, if the value of
your CookiePath parameter is set to example.com, then your LogOffUri must
point to example.com/logoff.html

Default: (all agents except Agent for SharePoint r12.0.3.0) No default

Limits: Multiple URI values permitted. Do not use a fully qualified URL.You must
use a relative URI.

Example:(all agents except Agent for SharePoint r12.0.3.0) /Web
pages/logoff.html

To configure full logoff

1. Create a custom HTTP application to log the user off, for example, add an Exit or
Sign Off button that redirects the user to a URL you specify.

2. To make sure that an HTML logoff page is loaded from the web server and not from
the browser’s cache, set up the logoff page so it cannot be cached in the browser.
For example, for HTML pages, you can add the following meta tags to the page:

<META HTTP-EQUIV="Pragma" CONTENT="no-cache">

<META HTTP-EQUIV="Expires" CONTENT="-1">

Important! Meta tags may not work with some web browsers. If this happens, use a
cache-control HTTP header.

3. Configure the LogOffURI parameter with the following steps:

a. Delete the pound sign (#), if necessary.

b. Enter the URI of the custom HTTP file that will log the user off. Do not enter a
fully qualified URL.

Full logoff is configured.

How Full Logoff Works

Chapter 9: Single Sign-On (SSO) 115

More information:

Specify the Cookie Path for Agent Cookies (see page 119)

How to Configure Full Logoff for Single Sign-on

In a single sign-on environment, the session cookies are removed only from the local
cookie domain and the cookie provider domain associated with the Web Agent. For
single sign-on across multiple cookie domains, the full log-off feature of SiteMinder does
not automatically log a user off across all the cookie domains that the user has visited.

To configure log-offs across multiple cookie domains, use the following process:

1. Create one centralized log-off page that contains separate frames (or iframes) for
the other cookie domains in your SSO environment. These frames can be a small
size, such as 1x1 pixels.

2. For each frame of the centralized log-off page in Step one, add a hyperlink to the
Logoff URI of the associated cookie domain. For example, if you have two other
cookie domains, example.org and example.net, you would do the following steps:

■ Add a hyperlink to the Logoff URI of example.org to one frame.

■ Add a hyperlink to the Logoff URI of example.net to the other frame.

3. Configure the LogoffURI of the cookie provider domain to point to the centralized
log-off page. When the web server loads this log off page, the frames in the
centralized log-off page call the logoff pages from the other cookie domains. The
user is logged off from all the cookie domains at once.

How Full Logoff Works

116 Web Agent Configuration Guide

The following illustration shows an example of using a centralized log-off page:

Note: You can also place the hyperlinks inside <iframe> tags instead of <frame> tags.

How Full Logoff Works

Chapter 9: Single Sign-On (SSO) 117

Configure Comprehensive Log Out using FCC Forms

If you use FCC forms to authenticate your users, you can configure comprehensive log
out with your FCC form. This method provides an alternative to the LogoffURI
parameter.

Follow these steps:

1. Open the .fcc file you are using to authenticate your users with a text editor. FCC
files are located in the following directory:

web_agent_home/samples/forms

web_agent_home

Indicates the directory where the SiteMinder Agent is installed.

Default (Windows 32-bit installations of SiteMinder Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [SiteMinder Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with SiteMinder Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

2. Add the following text to the top of your FCC page (before the <_html> tag):

@smlogout=true

@target=http://server_name.example.com/directory/your_logout_page.html

Note: your_logout_page indicates a custom html page you create to inform users
that they have logged out.

Comprehensive logout using FCC forms is configured.

Integrate an IIS 6.0 Agent with SharePoint Portal Server 2003

118 Web Agent Configuration Guide

Integrate an IIS 6.0 Agent with SharePoint Portal Server 2003

The IIS 6.0 Web Agent can work with Microsoft’s SharePoint Portal Server 2003 and
provide single sign-on for resources stored on that server.

Note: In a SharePoint security context, the user store must be Active Directory (AD).

To integrate the Web Agent and the SharePoint sever,

1. Complete both of the following prerequisites:

■ Install a r12.0 SP3 (or later) Web Agent for IIS 6.0.

■ Apply the hotfix described in Microsoft Knowledge Base Article 824330, "IIS 6.0
Does Not Return AUTH_TYPE for Integrated Security."

2. Add the following to the default virtual server’s web.config file, located, for
example, in c:\inetpub\wwwroot2\web.config.

3. Place the following entry between the </system.web> attribute and the
</configuration> attribute:

<appSettings>

<add key="SPS-EnforceIISAnonymousSetting" value="false"/>

</appSettings>

4. Enable the session server so the Web Agent can provide the user security context
for the SharePoint Portal Server resources.

Note: For more information, see the Policy Server documentation.

The Web Agent is integrated with the SharePoint Portal Server 2003.

Specify the Cookie Path for Agent Cookies

Chapter 9: Single Sign-On (SSO) 119

Specify the Cookie Path for Agent Cookies

When a Web Agent creates a cookie, the web agent automatically uses the root (/)
directory as the cookie path. The domain and path attributes of cookies are compared
to the URL of a request. If the cookie is valid for the domain and the path, the client
sends the cookie to the server. When the cookie path uses the root value, the client
sends the cookie to the server with all requests in the domain.

You can set SiteMinder cookies to a given set of paths to eliminate the web traffic
caused when cookies are sent for unprotected resources. For example, if a cookie path
is set to /mypackage, the client only sends the cookie for requests in a particular
package in the domain.

To specify the cookie path for agent cookies

1. Open your Agent Configuration Object or your local agent configuration file.

2. Set the Cookie Path for the Cookie Provider in the following parameter:

MasterCookiePath

Specifies the path for the primary-domain session cookies created by the
cookie provider. For example, if this parameter is set to /siteminderagent, all
session cookies that the cookie provider creates will have the /siteminderagent
path. If this parameter is not set in the Cookie Provider Agent, the default value
is used.

Default: / (root)

3. Set the cookie path for the secondary agents in the following parameter:

CookiePath

Specifies the cookie path for the following secondary agent browser cookies:

■ xxSESSION

■ xxIDENTITY

■ xxDOMINODATA

■ xxCHALLENGE (including SSL_CHALLENGE_DONE)

■ xxDATA

■ xxSAVEDSESSION

For example, setting this parameter to /BasicAuth, all of the secondary agents
in the previous list are created using /BasicAuth as the path. If not specified,
the default value is used.

The CookiePath is not added to credential cookies (such as xxxxCRED) to
maintain backwards compatibility with 4.x agents.

The following cookies will always use the root (/) path:

■ ONDENIEDREDIR

Specify the Cookie Path for Agent Cookies

120 Web Agent Configuration Guide

■ TRYNO

If the CookiePathScope parameter is greater than zero, the CookiePath
parameter settings are overriden.

Default: / (root)

4. (Optional) If you want the Web Agent to extract the cookie path from the URL
instead of using the CookiePath value, set the following parameter to a number
greater than zero:

CookiePathScope

Specifies the scope of the cookie path for the following secondary agent
cookies:

■ xxSESSION

■ xxIDENTITY

■ xxDOMINODATA

■ xxCHALLENGE (including SSL_CHALLENGE_DONE)

■ xxDATA

■ xxSAVEDSESSION

Using a CookiePathScope greater than zero in this parameter overrides the
setting of the CookiePath parameter.

Default: 0

More information:

Configure Full Logoff (see page 114)

How CookiePathScope Settings Work

The following table shows how the value of the CookiePathScope parameter works with
the following settings:

■ A URL such as http://fqdn/path1/path2/path3/path4/index.html

■ A CookiePath parameter value of /BasicA

If the CookiePath value is: And the CookiePathScope
value is:

Then the following path is
used:

/BasicA 0 /BasicA

/BasicA 1 /Path1

/BasicA 2 /Path1/Path2

Specify the Cookie Path for Agent Cookies

Chapter 9: Single Sign-On (SSO) 121

If the CookiePath value is: And the CookiePathScope
value is:

Then the following path is
used:

/BasicA 3 /Path1/Path2/Path3

/BasicA 4 /Path1/Path2/Path3/Path4

/BasicA 5 /Path1/Path2/Path3/Path4

/BasicA 99 /Path1/Path2/Path3/Path4

/ or "undefined" 0 /

/ or "undefined" 1 /Path1

/ or "undefined" 2 /Path1/Path2

/ or "undefined" 3 /Path1/Path2/Path3

/ or "undefined" 4 /Path1/Path2/Path3/Path4

/ or "undefined" 5 /Path1/Path2/Path3/Path4

/ or "undefined" 99 /Path1/Path2/Path3/Path4

These settings also affect simple SSO. For example, if the value of the CookiePathScope
is set to 1 or higher,users will get challenged for credentials for both /BasicA/Index.html
and /BasicB/Index.html since the SESSION cookie with a path /BasicA will not be valid
for /BasicB/Index.html request.

Chapter 10: Protecting Web Applications 123

Chapter 10: Protecting Web Applications

This section contains the following topics:

Mechanisms for Developing Web Applications (see page 123)
How Response Attributes Work with Web Agents (see page 124)
REMOTE_USER Variable (see page 126)
Configure the Web Agent to set the REMOTE_USER Variable (see page 128)
SiteMinder Default HTTP Headers (see page 130)
Header Variables and End-User IP Address Validation (see page 137)
Preserve HTTP Headers (see page 140)
Control How HTTP Header Resources are Cached (see page 141)
Use Lower Case HTTP in Headers (for Oracle iPlanet, Apache, and Domino web servers)
(see page 142)
Set the HTTP Header Encoding Spec (see page 143)
Disable Conformance to RFC 2047 (see page 144)
Use SM_AGENT_ATTR_USRMSG Response for a Forms Challenge (see page 144)
Enable Legacy Variables for HTTP Headers (see page 145)
Define HTTPS Ports (see page 146)
Handle Multiple AuthTrans Functions for Oracle iPlanet Web Servers (see page 147)
Custom Error Handling For Applications (see page 148)

Mechanisms for Developing Web Applications

SiteMinder provides the following mechanisms for developing Web applications:

■ Configurable response attributes

Response attributes are sent by the Policy Server to the Web Agent to be included
in HTTP headers or cookies. These are configurable by an administrator using the
Administrative UI and they are available for the Web Agent.

■ Default HTTP headers

SiteMinder has a set of default HTTP headers that are passed from the Agent to
Web applications.

■ Custom error handling

SiteMinder allows you to make error information relevant to your application by
customizing HTML text in standard HTTP errors or using custom error pages.

More Information

How Response Attributes Work with Web Agents (see page 124)
SiteMinder Default HTTP Headers (see page 130)

How Response Attributes Work with Web Agents

124 Web Agent Configuration Guide

How Response Attributes Work with Web Agents

SiteMinder response attributes instruct applications how to collect user data and apply
that information to display personalized content for each user.

SiteMinder provides configurable response attributes as a means of delivering data to
applications and customizing the user experience.

You configure responses using the Administrative UI, and then associate them with
specific rules in a policy. When a request triggers a rule with a configured response, the
Policy Server sends the response data to the Agent, which interprets the information
and makes it available to Web applications.

When you configure a response, you associate the response with an Agent action. You
can associate HTTP header and cookie response attributes with the actions GET and
POST. These attributes can also be tied to Authentication or Authorization events. The
Policy Server can send a response if the user is accepted or rejected for either of these
events.

Note: When configuring response attributes note that the maximum buffer size for the
web server for agent responses is 32 KB. There is no length limit of a response other
than the total buffer size.

Response attributes other than the header and cookie attributes can only be used when
an authentication or authorization event occurs (whether or not the user is accepted or
rejected for either of these events). For example, you can select an Authorization event
action for a rule and then configure a WebAgent-OnReject-Redirect response attribute.
If a user is rejected during the authorization process by SiteMinder, the Agent redirects
the user to another page that could display a message indicating why that user was
rejected.

How Response Attributes Work with Web Agents

Chapter 10: Protecting Web Applications 125

The following illustration shows how response attributes are sent from the Policy Server
to the web server:

To simplify the task of maintaining responses, define a separate response for each type
of event. For example, define one response for an OnAccept event and another
response for an OnReject event. Creating a separate response makes it easier to find
attributes when you need to modify response values.

REMOTE_USER Variable

126 Web Agent Configuration Guide

HTTP Header and Cookie-Variables

The HTTP-Header-Variable and HTTP-Cookie-Variable attributes enable a Web Agent to
pass a static or dynamic list of name/value pairs to a Web application. The name/value
pairs are specific to the user requesting a resource, which enables the application to
customize what the user sees.

For example, an administrator configures the WebAgent-HTTP-Header-Variable
response attribute to store the full name of the user. When the user is authorized to
access the protected resource, the Web Agent passes the user’s full name to the Web
application. The user’s name is then displayed by the application, which helps to
establish a relationship with the customer.

Be aware that in a Web application environment, the HTTP-Header-Variable response
attribute appears as an HTTP_attribute_name variable, where attribute_name is the
name of the HTTP variable, for example USERFULLNAME. You do not have to have an
underscore in the name as the underscores cause problems with some application
servers.

Note: The server may convert any dash (-) in the attribute name to an underscore (_),
and all alphabetic characters to uppercase.

Cache Response Attributes

You can instruct a SiteMinder Agent to cache response attributes or expire attributes
that contain dynamic data, forcing the Agent to contact the Policy Server and update
the information. If you configure a static response attribute, the Policy Server only
allows you to cache the value. By definition, static values do not change, so there is no
need to recalculate them. If you configure user, DN, or active attributes, you can either
cache the value or recalculate the value at specific intervals to ensure that the data is
current.

REMOTE_USER Variable

The REMOTE_USER variable holds the name of the user authenticated by the web
server. When the agent is installed on a web server, SiteMinder replaces the native
authentication of the web server. The REMOTE_USER variable is blank.

If you have applications that require the REMOTE_USER variable, verify that the
REMOTE_USER variable is set.

If your web server does not use the REMOTE_USER variable, the HTTP_SM_USER header
provides an alternate method of passing a user name to an application.

REMOTE_USER Variable

Chapter 10: Protecting Web Applications 127

More Information

Configure the Web Agent to set the REMOTE_USER Variable (see page 128)

How the IIS Web Agent Populates the REMOTE_USER Variable

For an IIS web server to populate its REMOTE_USER header, Basic authentication has to
be enabled for the web server. Basic authentication is set in the IIS Management
Console in the Directory Security settings.

When Basic authentication is enabled and a user requests a SiteMinder-protected
resource, the Web Agent attempts to set the IIS web server’s HTTP_Authorization
header by providing a user name but not a password. The presence of the
HTTP_Authorization header means that the IIS server’s Basic authentication takes
precedence over any other authentication challenge. Therefore, the IIS web server
thinks that the user is responding to its own challenge. Unless an ISAPI filter, such as the
SiteMinder Web Agent sets the user context of the request, the IIS web server attempts
to authenticate the user name passed by the incomplete HTTP_Authorization header.

Because the Web Agent operates as an ISAPI filter, it can set the user context of the
request and provide a value for the REMOTE_USER header. The Agent populates the
REMOTE_USER header based on the SetRemoteUser parameter being set to Yes plus the
configuration of any one or more of the following Web Agent parameters:

■ DefaultUsername and DefaultPassword—together these parameters control the
(privileged) proxy user account used by the Web Agent for most activities.

■ ForceIISProxyUser—overrides the normal behavior and forces the Web Agent to
instruct the IIS web server to run as the proxy user.

■ UseAnonAccess—instructs the Web Agent to provide no user context for the
request at all, leaving any existing user context unchanged.

■ Run in Authenticated User's Security Context—overrides the normal behavior
because the Web Agent instructs the IIS web server to use the credentials stored in
the persistent session.

Be cautious when using the SetRemoteUser parameter and the UseAnonAccess
parameter together.

Configure the Web Agent to set the REMOTE_USER Variable

128 Web Agent Configuration Guide

The following table shows how these parameters work together.

If... Then...

SetRemoteUser=yes

and

UseAnonAccess=yes

The REMOTE_USER variable cannot be set because the
Web Agent does not pass along a user security context.

The lack of a user security context forces the IIS web
server to use the credentials from the
HTTP_Authorization header that the Agent modified;
however it is incomplete because it contains only the
user name.

SetRemoteUser=yes

and

UseAnonAccess=no

The Web Agent can pass along a user context of some
type, depending on how other parameters are set, such
as DefaultUserName, DefaultPassword, or

ForceIISProxyUser.

If the Web Agent does pass on a security context, the IIS
web server ignores the incomplete HTTP_Authorization
header in favor of the credentials provided by the Web

Agent.

Configure the Web Agent to set the REMOTE_USER Variable

Configure the Web Agent to set the REMOTE_USER variable as follows:

■ To set the REMOTE_USER to the value of the SiteMinder log-in user name, set the
Web Agent’s SetRemoteUser parameter to yes.

The default for this parameter is no, which leaves the REMOTE_USER variable
blank.

Note: Prior to SiteMinder Web Agent 5.x QMR 2, the SetRemoteUser parameter
affected only IIS web servers; Apache and Oracle iPlanet Agents always set
REMOTE_USER to the SiteMinder logged-in user name. If you install or upgrade
from Agents prior to 5.x QMR 2, note that REMOTE_USER is no longer enabled by
default.

Configure the Web Agent to set the REMOTE_USER Variable

Chapter 10: Protecting Web Applications 129

■ To set the REMOTE_USER variable based on a specific user account instead of the
logged-in user’s credentials:

■ Enable the SetRemoteUser parameter by setting it to yes.

■ Set the RemoteUserVar parameter. This parameter instructs the Agent to
populate the REMOTE_USER variable based on the value from an
HTTP-WebAgent-Header-Variable response attribute. Use this to integrate with
legacy applications.

To configure the RemoteUserVar parameter, enter only the name of the
response variable. For example, to return an HTTP-WebAgent-Header-Variable
such as "user=ajohnson", set the RemoteUserVar parameter to the value user.

■ Bind the header variable to an OnAuthAccept rule. Do not use an existing HTTP
header variable response; create a new one.

Note: For more information, see the Policy Server documentation.

■ To revert to the default, which leaves REMOTE_USER blank, return the
SetRemoteUser parameter to no.

Note: Be sure to take security consequences into consideration before configuring
SetRemoteUser or RemoteUserVar.

SiteMinder Default HTTP Headers

130 Web Agent Configuration Guide

SiteMinder Default HTTP Headers

SiteMinder default HTTP headers instruct applications how to collect user data and
apply that information to display personalized content for each user.

As part of the Web application environment, the SiteMinder Agent submits default HTTP
headers to the web server, and the web server makes them available for Web
applications. You can use these headers to include functions and enable your Web
applications to personalize content. Headers can store information such as a user’s
name and the type of action a user is authorized to perform.

The Agent sends these headers regardless of whether or not they are called from a Web
application; however, you can disable some of these headers so that they do not use up
header space.

The following SiteMinder default HTTP headers are available for Web Agents:

HTTP_SM_AUTHDIRNAME

Indicates the name of the directory against which the Policy Server authenticates
the user. The administrator specifies this directory with the Administrative UI.

HTTP_SM_AUTHDIRNAMESPACE

Identifies the directory namespace against which the Policy Server authenticates
the user. The administrator specifies this namespace with the Administrative UI.

HTTP_SM_AUTHDIROID

Indicates the directory object identifier (OID) from the Policy Server database.

HTTP_SM_AUTHDIRSERVER

Indicates the directory server against which the Policy Server authenticates the
user. The administrator specifies this directory server with the Administrative UI.

HTTP_SM_AUTHREASON

Indicates the code the Web Agent returns to the user after a failed authentication
attempt or secondary authentication challenge.

HTTP_SM_AUTHTYPE

Indicates the type of authentication scheme the Policy Server uses to verify the
user’s identity.

SiteMinder Default HTTP Headers

Chapter 10: Protecting Web Applications 131

HTTP_SM_DOMINOCN

Identifies the user’s Domino canonical name if a Domino LDAP directory is used to
authenticate users.

Example: HTTP_SM_DOMINOCN="CN=jsmith/O=netegrity."

HTTP_SM_REALM

Indicates the SiteMinder realm in which the resource exists.

HTTP_SM_REALMOID

Indicates the realm object ID that identifies the realm where the resource exists.
This ID is may be used by third party applications to make calls to the Policy Server.

HTTP_SM_SDOMAIN

Indicates the Agent’s local cookie domain.

HTTP_SM_SERVERIDENTITYSPEC

Indicates the Policy Server identity ticket that keeps track of the user identity. The
Web Agent uses this to access content protected by anonymous authentication
schemes so that it can personalize the content for the user.

HTTP_SM_SERVERSESSIONID

Indicates a unique string that identifies a user session.

HTTP_SM_SERVERSESSIONSPEC

Indicates the ticket that contains user session information. Only the Policy Server
knows how to decode this information.

HTTP_SM_SESSIONDRIFT

Indicates the amount of time the Web Agent can keep a session active using the
information in its cache before validating the session with the Policy Server. The
session server at the Policy Server must be enabled and a session validation period
must be configured for this header to be set.

HTTP_SM_TIMETOEXPIRE

Indicates the amount of time remaining for a SiteMinder session.

HTTP_SM_TRANSACTIONID

Indicates the agent-generated unique ID for each user request.

HTTP_SM_UNIVERSALID

Identifies the Policy Server-generated universal user ID. This ID is specific to the
customer and identifies the user to the application, but it is not the same as the
user login.

SiteMinder Default HTTP Headers

132 Web Agent Configuration Guide

HTTP_SM_USER

Indicates the login name of the authenticated user. If a user does not provide a user
name at log in, such as certificate-based authentication, then this variable is not set.

HTTP_SM_USERDN

Identifies an authenticated user’s distinguished name as determined by the Policy
Server.

For anonymous authentication schemes, this returns a Globally Unique Identifier
(GUID).

HTTP_SM_USERMSG

Identifies the text that the Agent presents to the user after an authentication
attempt. Some authentication schemes supply challenge text or a reason why an
authentication has failed.

More Information

Disable Default HTTP Header Variables (see page 133)

SiteMinder Default HTTP Headers

Chapter 10: Protecting Web Applications 133

Disable Default HTTP Header Variables

Many system platforms have an HTTP header limit of 4096 bytes. To avoid exceeding
this limit and to allow space for custom response variables, you can disable some of
SiteMinder’s default HTTP header variables.

The default variables are grouped into the following categories:

Note: You cannot disable individual variables. You can only disable a category of
several variables.

■ Authentication source variables

– SM_AUTHDIRNAME

– SM_AUTHDIRSERVER

– SM_AUTHDIRNAMESPACE

– SM_AUTHDIROID

■ User Session variables

– SM_SERVERSESSIONID

– SM_SERVERSESSIONSPEC

– SM_SERVERIDENTITYSPEC

– SM_SESSIONDRIFT

– SM_TIMETOEXPIRE

■ User Name variables

– SM_USER

– SM_USERDN

– SM_DOMINOCN

To disable the default use of HTTP header variables do any of the following tasks:

■ To disable authentication source variables, set the value of the DisableAuthSrcVars
parameter to yes.

■ To disable user session variables, set the value of the DisableSessionVars parameter
to yes.

■ To disable user name variables, set the value of the DisableUserNameVars
parameter to yes.

Note: If you are using CA Identity Manager, or any application that might use the
variables in this category, ensure the value of this parameter is set to no (enabled).

SiteMinder Default HTTP Headers

134 Web Agent Configuration Guide

Example Applications that Use SiteMinder Default HTTP Headers

The sections that follow contain examples of different applications that call out the
SiteMinder environment headers. They also show how you can use the default headers
in applications.

Extract HTTP Headers Using a Shell Script

To access the default HTTP headers, you can extract their values from the environment
and display them. This example uses a shell script, called TEST.SH, to return these
variables to the browser.

#!/bin/sh

First put out a valid header

echo Content-Type: text/html

echo

Then echo out the variables

echo HTTP_SM_USER: $HTTP_SM_USER

echo HTTP_SM_AUTHTYPE: $HTTP_SM_AUTHTYPE

echo HTTP_SM_AUTHDIRNAME: $HTTP_SM_AUTHDIRNAME

echo HTTP_SM_SERVERSESSIONID: $HTTP_SM_SERVERSESSIONID

echo HTTP_SM_SESSIONID: $HTTP_SM_SESSIONID

Extract HTTP Headers Using NSAPI

This example shows an application that makes an Oracle iPlanet API (NSAPI) call to
retrieve a header. The name/value pairs exist in the request structure’s header block.

The header is accessed as follows:

char * user;

user = pblock_findval(“HTTP_SM_USER”, rq->headers);

SiteMinder Default HTTP Headers

Chapter 10: Protecting Web Applications 135

Extract HTTP Headers Using PERL

Accessing environmental variables from the Practical Extraction and Report Language
(PERL) is a standard practice. The following script is a PERL version of the shell script
TEST.SH that returns the variables to the browser:

#!/usr/win32/perl117

Example Test Program To Echo Back Default

Web Agent Headers from a CGI environment

First put out a valid CGI Header

print “Content-Type: text/html\n\n”;

Now print out the standard HTML document tags

print “<HTML>”;

print “<HEAD><TITLE> Test Web Agent Headers </TITLE></HEAD>”;

print “<BODY BGCOLOR=#ffffff>”;

print “<H1> Test Web Agent Headers </H1>”;

print “HTTP_SM_USER: $ENV{„HTTP_SM_USER„}
”;

print “HTTP_SM_AUTHTYPE: $ENV{„HTTP_SM_AUTHTYPE„}
”;

print “HTTP_SM_SESSIONID: $ENV{„HTTP_SM_SESSIONID„}
”;

Now end the HTML file output

print “</BODY>”;

print “</HTML>”;

The following PERL script returns all the environment variables to the browser, not just
SiteMinder variables.

#!/export/home/iplanet/server4/install/perl

print "content-type: text/html\n\n";

print "<HTML>\n";

print "<HEAD>\n";

print "<TITLE>echo cgi env. vars.</TITLE>\n";

print "<H2>Echo CGI Environment Variables</H2>\n";

print "</HEAD>\n";

print "<BODY>\n";

print "<HR>\n";

print "<H3>Environment Variables</H3>\n";

print "\n";

foreach $key (keys %ENV) {

print "$key = $ENV{$key}\n";

}

print "\n";

print "</BODY>\n";

SiteMinder Default HTTP Headers

136 Web Agent Configuration Guide

Extract HTTP Headers Using ASP

To access the default HTTP headers, you can extract their values from the environment
and display them using an ASP script.

To use an ASP script to return SiteMinder variables, your script has to include the
ALL_HTTP header, which retrieves all the environment variables, and code that parses
out the SiteMinder variables. Use the following script as an example.

<HTML>

<HEAD><TITLE> Test Web Agent Headers </TITLE></HEAD>

<BODY BGCOLOR=#ffffff>

<TABLE BORDER=1>

<TR><TD VALIGN=TOP>Variable</TD><TD VALIGN=TOP>Value</TD></TR>

<% For Each key in Request.ServerVariables %>

<TR>

<TD><% = key %></TD>

<TD>

<%

if Request.ServerVariables(key) = "" Then

if GetAttribute(key) = "" Then

Response.Write " " ' To force border around table cell

else

Response.Write GetAttribute(key)

end if

else

Response.Write Request.ServerVariables(key)

end if

Response.Write "</TD>"

%>

</TR>

<% Next %>

</TABLE>

<% Function GetAttribute(AttrName)

 Dim AllAttrs

 Dim RealAttrName

 Dim Location

 Dim Result

 AllAttrs = Request.ServerVariables("ALL_HTTP")

 RealAttrName = AttrName

 Location = instr(AllAttrs, RealAttrName & ":")

 if Location <= 0 then

 GetAttribute = ""

 Exit Function

 end if

Header Variables and End-User IP Address Validation

Chapter 10: Protecting Web Applications 137

 Result = mid(AllAttrs, Location + Len(RealAttrName) + 1)

 Location = instr(Result, chr(10))

 if Location <= 0 then Location = len(Result) + 1

 GetAttribute = left(Result, Location - 1)

End Function %>

Header Variables and End-User IP Address Validation

When a SiteMinder Web Agent receives a request that follows an initial request by that
same user, the Agent validates the session cookie sent with the subsequent request by
comparing the IP address of the requesting user with the IP address encrypted inside
the session cookie. The address inside the cookie is generated by the Agent during the
user’s initial request.

Mechanisms used to balance and manage incoming network traffic, such as firewalls,
load balancers, cache devices, and proxies can alter the user’s IP address or make it
appear as if all incoming requests are coming from a single or small group of IP
addresses. As a result, the Web Agent’s IP checking becomes ineffective. The Web Agent
can now perform IP checking in these network environments using a custom HTTP
header and a configurable list of safe proxy IP addresses.

The following table lists the terminology for new IP checking functionality.

Term Definition

HTTP Request Header A name/value pair that describes a single element of an
HTTP request.

Custom IP Header A user-defined HTTP request header used by intermediate
HTTP network applications or hardware devices to store the

requestor’s IP address.

IP Checking Feature that enables the Web Agent to check requests for
authenticity by comparing the REMOTE_ADDR in the
request with the REMOTE_ADDR value stored in the
SMSESSION cookie, after an initial request. This feature is
also known as IP validation.

REMOTE_ADDR web server variable representing the IP address of the HTTP
client making a request to the web server. Also known as
REMOTE_IP or CLIENT_IP. This differs from the Requestor IP
Address when a proxy server, NAT firewall, or other
network service or device sits between the requestor and
the target web server.

Header Variables and End-User IP Address Validation

138 Web Agent Configuration Guide

Term Definition

Requestor The initiator of an HTTP request, typically a user at a
browser.

Requestor IP Address The IP address of the user making the original HTTP
request.

Single Sign-on Feature that requires a user to enter credentials for secure
access to a protected Web site only once during a session.

SMSESSION cookie HTTP mechanism used by Web Agents to track single
sign-on state.

How Custom Headers Validate IP Addresses

The Web Agent can now use a custom HTTP header to determine a user’s IP address
instead of using the REMOTE_ADDR variable. If a proxy or other device sets a custom
client IP header and the Web Agent is configured to look for that header on an incoming
request, the Agent uses that header as the source of the client IP information.

In addition to configuring a custom header, you can set up a list of proxy IP addresses. If
the REMOTE_ADDR matches an address in the proxy list, the Web Agent retrieves the
user’s IP address from the custom header. Otherwise, the user’s IP address is obtained
from the REMOTE_ADDR.

After the Web Agent resolves the requestor’s IP address, the address is stored and used
for request processing. If an address cannot be resolved, the IP address is set to
unknown.

The Web Agent logs where the client IP address was resolved from to facilitate any
debugging that may be necessary.

Header Variables and End-User IP Address Validation

Chapter 10: Protecting Web Applications 139

Configure IP Address Validation

IP checking is implemented using two parameters:

■ CustomIpHeader—each entry specifies an HTTP header that the Web Agent should
look for to find the requestor's IP address. If no value is specified for this parameter,
the default is an empty string. No maximum length is enforced and the value may
be any string that contains a valid HTTP header value, for example,
HTTP_ORIGINAL_IP.

You can define this setting centrally, in an Agent Config Object or locally, in a
configuration file. For central agent configuration, you can designate this parameter
as a multi-value setting. For local configuration, each entry should be added on a
separate line. For example:

CustomIpHeader="HTTP_ORIGINAL_IP"

CustomIpHeader="HTTP_CLIENT_IP"

Note: The CustomIpHeader parameter can be used without a proxy address list
being defined; however, the proxy definition list cannot be used without at least
one custom IP header defined.

■ ProxyDefinition—each entry specifies the IP address of a proxy (such as a cache
device) that requires the use of a custom HTTP header to resolve requestor IP
addresses. If no value is specified for this parameter, the default is an empty string.

No maximum length is enforced for this parameter, and the value may be any string
that contains a valid IP address, for example, 111.123.23.11. Do not enter server
names or fully-qualified DNS host names.

You can define this setting centrally, in an Agent Config Object or locally, in a
configuration file. For central agent configuration, you can designate this parameter
as a multi-value setting. For local configuration, each entry should be added on a
separate line. For example:

ProxyDefinition=111.12.1.1

ProxyDefinition=112.11.2.2

Note: These settings are independent of the TransientIPCheck and
PersistentIPCheck parameters.

Note: For all traditional Web Agents, these parameters are in the WebAgent.conf file.
For framework Agents, these values are in the LocalConfig.conf file.

Preserve HTTP Headers

140 Web Agent Configuration Guide

IP Address Validation with Previous Web Agent Releases

In an environment of 6.x QMR 2 or 3 Web Agents and older Agents, single sign-on may
be affected if IP checking is configured.

Web Agents prior to v6.x QMR 2 and 5.x QMR 7 will not be able to resolve the requestor
IP address and as a result, SMSESSION cookies created by those Web Agents may be
discarded by 6.x QMR 2 or 3 Web Agents. This includes custom Agents using the SDK to
generate SMSESSION cookies, Application Server Agents, and any other SiteMinder
Agents in a single sign-on environment that use SMSESSION cookies.

Conversely, 6.x QMR 2 and 3 Web Agents may resolve a requestor’s IP address, which
then differs from the address resolved by an older Agent.

Preserve HTTP Headers

You can configure the Web Agent to save existing HTTP headers instead of replacing
them when new headers are created. This feature is useful for applications that
generate multiple SiteMinder responses with the same name but with different values,
and need to be included in headers. If there are multiple instances of the same HTTP
header, the web server handles this by generating a single header with all the relevant
header values separated by commas.

By default, the Web Agent does not preserve headers as a precaution against
applications using the wrong header values. For Oracle iPlanet, Domino, and Apache
Web Agents to preserve HTTP headers, set the PreserveHeaders parameter to yes. The
default value is no.

Control How HTTP Header Resources are Cached

Chapter 10: Protecting Web Applications 141

Control How HTTP Header Resources are Cached

You can control how the Web Agent handles cache-related request headers by setting
the following parameter:

AllowCacheHeaders

Specifies whether the Web Agent removes the following cache-related HTTP
headers from requests for protected resources before passing those requests
to the web server:

■ if-modified-since

■ if-none-match

This setting affects whether a browser uses cached pages, but it does not affect
auto-authorized resources (including those matched by the values in the
IgnoreExt parameter). Caching of auto-authorized resources is determined by
the settings of the web server and the browser.

This parameter uses the following values:

■ Yes—The Agent does not remove any cache-related HTTP headers.
SMSESSION cookies are still tracked to validate the session. When the
session expires, the Web Agent sends an updated SMSESSION cookie with
a 304 "not modified" response for resources stored in the cache but not
modified by the web server since the time indicated in the
if-modified-since HTTP header.

Important! When this parameter is set to yes, pages which are personalized by
an application on the web server but do not have the appropriate cache control
headers set may become cached in the browser or any HTTP intermediary. This
can introduce unexpected behavior and allow a browser to save sensitive data
to the disk.

■ No—The Agent removes the cache-related HTTP headers only from
requests for protected resources. The web server treats the request as
unconditional, and does not perform any cache-validation operations.

■ None—The Web Agent removes all cache-related headers for protected
and unprotected resources.

For terminated sessions, the browser will not use cached content, regardless of
the value in the AllowCacheHeaders parameter.

The settings of this parameter affect the following parameters:

■ LogOffURI—If you are also using the LogOffURI parameter, we recommend
setting the value of the AllowCacheHeaders parameter to no. Otherwise, a
cached logoff page may be served to users and their sessions are not
terminated properly.

Default: No

Limits: Yes, No, None

Use Lower Case HTTP in Headers (for Oracle iPlanet, Apache, and Domino web servers)

142 Web Agent Configuration Guide

To remove all cache related headers from protected and unprotected resources, set the
value of the AllowCacheHeaders parameter to none.

Note: For more information about HTTP 1.1 caching mechanisms, see RFC 2616, Section
13 "Caching in HTTP."

Use Lower Case HTTP in Headers (for Oracle iPlanet, Apache,
and Domino web servers)

If you have server applications that are case-sensitive, you can specify the case of the
Agent’s HTTP headers. The Web Agent defaults to lower case headers.

For example, Oracle iPlanet web servers, by default, provide the HTTP header variables
in lower-case, such as http_sm_user.

Note: IIS Web Agents do not benefit from this feature, because IIS forces all headers to
an upper case format.

To use lower case headers, set the LowerCaseHTTP parameter to yes. If you require
upper-case header variables, set LowerCaseHTTP to no.

More information:

Record the Transaction ID in Oracle iPlanet Web Server Logs (see page 170)

http://www.ietf.org/rfc/rfc2616.txt

Set the HTTP Header Encoding Spec

Chapter 10: Protecting Web Applications 143

Set the HTTP Header Encoding Spec

The HTTPHeaderEncodingSpec setting affects the encoding of all HTTP header values
and all custom HTTP-COOKIE responses.

Use this parameter to support Web applications expecting localized text in specific
encodings. Since cookies pass back and forth between the browser and portal through
the HTTP protocol, you should use the RFC-2047 HTTPWrapSpec if your chosen
encoding puts characters that HTTP traffic considers illegal into the cookies.

For example, some Shift-JIS characters will cause undesirable results if not further
encoded by RFC-2047.

For Kanji characters, you can use SECP932, which is a superset of SHIFT-JIS. Though
SHIFT-JIS can be used for most Kanji encoding and decoding, CP932 covers an even
larger character set.

When HTTPWrapSpec is used, first the data is encoded according to the
HTTPHeaderEncodingSpec, then the data is further encoded following the RFC-2047
specification.

The syntax for the parameter is:

encoding_spec, wrapping_spec

The encoding_spec is a text string that represents one of the following encoding types:
UTF-8, Shift-JIS, EUC-J, or ISO-2022 JP. Specify the encoding type you want the Agent to
use.

The wrapping_spec is the wrapping specification, which must be RFC-2047. Although
this variable is optional, we strongly recommend that you include the wrapping
specification because the encoding type you choose may generate byte codes that are
not compatible with the HTTP protocol.

This is especially true if you use custom HTTP Cookie responses that contain double-byte
encoded data. For example, some Shift-JIS characters cause undesirable results if they
are not further encoded by RFC-2047. The wrapping also tells the receiving application
the type and nature of the encoding so the application can better interpret the encoded
text. For example, you may set the parameter to Shift-JIS,RFC-2047.

When RFC-2047 is used, the Agent first encodes the data based on the chosen encoding
specification and then further encodes the data following the RFC-2047 specification.

Note: If you leave the HTTPHeaderEncodingSpec setting blank, the default is UTF-8 with
no wrapping.

Disable Conformance to RFC 2047

144 Web Agent Configuration Guide

Disable Conformance to RFC 2047

By default, the Web Agent conforms to RFC 2047. However, you can disable this
conformance by setting the ConformToRFC2047 parameter to no.

If this parameter does not exist or is set to yes, the Web Agent conforms to RFC 2047.

Use SM_AGENT_ATTR_USRMSG Response for a Forms
Challenge

The SM_AGENTAPI_ATTR_USERMSG response enables developers of custom SiteMinder
authentication schemes to return custom text to their client applications, as part of a
user challenge or for some other purpose.

Beginning with v5 QMR3, the Web Agent has the ability to convert the text from an
SM_AGENTAPI_ATTR_USERMSG response to an SMUSRMSG cookie when performing a
forms challenge.

To ensure the SMUSRMSG cookie is removed after the challenge is complete, the FCC
consumes the cookie (deletes it from the browser) after a successful POST request, as
follows:

■ In native SiteMinder mode, the Agent deletes the cookie after a successful login,
while redirecting back to the target URL.

■ In SiteMinder 4.x compatibility mode, the Agent deletes the cookie after generating
the FORMCRED cookie, while redirecting back to the target URL.

Note: The SMUSRMSG cookie will be stored for a period of time in the user's browser,
and could possibly be transmitted over non-secure HTTP connections. As a result,
sensitive data should be avoided.

Web Agents will URL-encode text that is placed in the SMUSRMSG cookie during a forms
challenge, to make it safe for HTTP transmission, eliminating spaces and other harmful
characters. The FCC decodes this text before making it available to the environment for
use in custom FCC functionality.

Note: URL encoding is not implemented unless the text is placed in the SMUSRMSG
cookie.

Enable Legacy Variables for HTTP Headers

Chapter 10: Protecting Web Applications 145

To implement the new functionality, custom authentication scheme developers must
generate custom forms-based authentication schemes. When an Sm_AgentApi_Login()
call returns SM_AGENTAPI_CHALLENGE, the Agent challenges the requesting user by
redirecting to the authentication scheme URL provided by the response to
Sm_AgentApi_IsProtected().

When the Web Agent handles an authentication scheme that uses the HTML Forms
authentication scheme template, the Agent looks for a
SM_AGENTAPI_ATTR_STATUS_MESSAGE response attribute. If the attribute is found,
the Agent generates the appropriate SMUSRMSG cookie, while redirecting to the
authentication scheme URL. The FCC may then use this cookie during form generation, if
appropriate directives are placed in the desired .FCC source file.

Note: For more information, see the Policy Server documentation.

Enable Legacy Variables for HTTP Headers

You can specify which naming convention the Web Agent uses for HTTP headers with
the following parameter:

LegacyVariables

Specifies if the Web Agent uses underscores in HTTP header names. With some
web servers (such as the Sun Java System), using the underscore character in
the HTTP headers causes problems with some applications.

When this parameter is set to no, the HTTP headers will not have underscores,
as shown in the following example:

SMHeaderName

When this parameter is set to yes, the HTTP headers will use underscores, as
shown in the following example:

SM_HeaderName

Default: (traditional agents) Yes

Default: (framework agents) No

To enable legacy variables and have the Web Agent use underscores in the HTTP header
names, set value of the LegacyVariables parameter to yes.

Define HTTPS Ports

146 Web Agent Configuration Guide

Define HTTPS Ports

If you are using an SSL connection to the web server (HTTPS) to keep your requests
more secure, you must specify the HTTPS ports with the following parameter:

HttpsPorts

Specifies the secure ports the Web Agent listens on if you are using an SSL
connection to the web server. If you specify a value for this parameter, you
must include all the ports for all the web servers that serve secure requests. If
you do not specify a value, the Web Agent reads the HTTP scheme from the
web server's context.

If a server is behind an HTTPS accelerator (which converts HTTPS to HTTP), the
requests are treated as SSL connections by your browser.

Default: Empty

Example: 443

Example: (multiple ports) 443,7002

To define your HTTPS ports, set the value of the HttpsPorts parameter to the port
numbers that use SSL. Use commas to separate multiple port numbers.

Use the HttpsPorts Parameter on Apache 2.x Servers

If you use an SSL accelerator or any intermediate device that changes the value of the
HTTP_HOST header with an Apache 2.x Web server and use the HttpsPorts parameter,
additional web server configuration changes are required.

To use the HttpsPorts Parameter with Apache 2.x servers

1. Open the httpd.conf file of your Apache Web server, and then make the following
changes:

■ Change the value of the UseCanonicalName parameter to on.

■ Change the value of the ServerName parameter to the following:

server_name:port_number

server_name

Specifies the host name of the SSL accelerator.

2. Modify the following configuration parameter for your Web Agent:

■ Change the value of the GetPortFromHeaders parameter to yes.

Handle Multiple AuthTrans Functions for Oracle iPlanet Web Servers

Chapter 10: Protecting Web Applications 147

Handle Multiple AuthTrans Functions for Oracle iPlanet Web
Servers

AuthTrans functions are directives that initialize the Oracle iPlanet web server. The
Oracle iPlanet web server executes AuthTrans functions in the order that they are listed
in the obj.conf file. The Oracle iPlanet server reads through the AuthTrans functions
until it finds a function that returns a REQ_PROCEED command. Once a REQ_PROCEED
command executes, no other AuthTrans functions are executed.

By default, SiteMinder is the first AuthTrans function and it returns a REQ_PROCEED. To
allow other AuthTrans functions to execute, you need to add the EnableOtherAuthTrans
parameter and set the value to yes.

The default value for this parameter is no. To enable multiple AuthTrans functions set
the EnableOtherAuthTrans parameter to yes.

By adding this parameter, you permit the SiteMinder Web Agent to exist with other
functions.

Be sure the SiteMinder Agent function is the first entry in the obj.conf file for the
AuthTrans directive. The entry should read:

AuthTrans fn="SiteMinderAgent"

Custom Error Handling For Applications

148 Web Agent Configuration Guide

Custom Error Handling For Applications

Custom error handling allows you to make error information relevant to your
application. To customize applications for users, you can add the HTML text displayed by
HTTP 500, HTTP 401, and HTTP 403 error pages or, with the exception of 401 errors, you
can redirect the user to a URL that points to a custom error page or application.

You can configure customized handling for the following types of errors:

■ Server errors—the Agent uses the ServerErrorFile for error pages that result from
HTTP 500 web server errors. These error codes are passed to the custom error
pages and include:

■ Problems because the Web Agent cannot read values from required HTTP
headers.

■ Advanced authentication cookies cannot be parsed or contain an error status.

■ Connectivity problems between the Web Agent and the Policy Server.

■ Access Denied errors—the Agent uses the file specified in the Custom401ErrorFile
parameter to display customized text for the standard 401 access denied message.
These errors occur when a user does not have the appropriate privileges to access a
resource.

Note: Some web servers may append text of their own to the custom text.
Consequently, the response pages for these servers will not be completely
customized.

■ Require cookies errors—if the RequireCookies parameter is set, the Web Agent sets
a cookie during basic authentication. If this cookie is not returned by the browser
with the basic credentials, the error page designated by the ReqCookieErrorFile
parameter is returned, and the Agent denies the user access to the web server.

■ Cross-site scripting errors—the Agent uses the file specified in the CSSErrorFile
parameter for error pages that result from HTTP 403 cross-site scripting errors.
Cross-site scripting can compromise the security of a Web site.

After you create these HTML files or applications, direct the Web Agent to the custom
error pages or URLs.

Note: For an Apache server being used as a proxy or reverse proxy server, the Apache
Agent will not return custom SiteMinder error pages, but will return the standard
Apache HTTP 500 and 403 error pages.

Custom Error Handling For Applications

Chapter 10: Protecting Web Applications 149

How to Set Up Error Handling

To customize applications for users, you can add the HTML text displayed by HTTP 500,
HTTP 401, and HTTP 403 error pages or redirect the user to a URL that points to a
custom error page or application.

For HTTP 500 and 403 errors only: If you configure the Agent to redirect the user to a
URL, it appends the error code, in the form ?SMError=error_code, to the URL. If you add
standard HTML error text, you can only specify HTML code between the opening and
closing Body tags (<body> </body>); you cannot use a complete custom HTML page or
customize any text outside the Body tags.

To direct the Web Agent to the custom error pages or URLs, you specify the path where
the text files reside or enter the URL in the Agent configuration file.

To direct the Web Agent to a server error, access denied, require cookie, or cross-site
scripting (CSS) custom error file or page, specify the file path or URL in the
ServerErrorFile, Custom401ErrorFile, ReqCookieErrorFile, or CSSErrorFile parameters
respectively. The error files can reside anywhere in your application.

Important! Any URL you configure as a custom error page should be an unprotected
resource. To prevent a misconfiguration in which it is not possible to display the
specified error file because it is protected, any URL you configure as an error page is
added to the ignoreURL list.

Note: If your applications require URLs that include HTML tags, you can encode these
characters so the Web Agent does not block a request. For information about encoding
HTML characters, see: http://www.cert.org/tech_tips/.

The following examples show a file path and a URL to an error file. The syntax in the
example is for a local Agent configuration file. These parameters can also be set in an
Agent Configuration Object.

File Path:

CSSErrorFile="C:\error\error.txt"

ReqCookieErrorFile="C:\custompages\error.txt"

ServerErrorFile="C:\error\error.txt"

Custom401ErrorFile="C:\error\accessdenied.txt"

URL:

CSSErrorFile="http://www.mycompany.com.error.jsp"

ReqCookieErrorFile="http://www.myorg.com.error.asp"

ServerErrorFile="http://www.mycompany.com.error.jsp"

Custom Error Handling For Applications

150 Web Agent Configuration Guide

More Information

Custom Error Handling For Applications (see page 148)

Notes for Custom 401 Pages

■ Do not set the Custom401errorfile parameter to a URL.

■ If a value (usable or not) for Custom401errorfile exists, the Agent will check every
60 seconds to see if the file has changed. However, the response is intended to be
static in nature. You cannot, for example, insert a "user_name denied" type of
dynamic message.

Because re-checking is triggered by the existence of the Custom401errorfile value
rather than its usability, you can correct an error without restarting the agent. The
correction will be picked up on the next check.

■ The customized message file text will not be exposed by other errors. The file
pathname will be logged at startup and in the case of error.

■ The extent of customization may be limited by the web server, which may add text
of its own to the response.

■ The size of the customized text file is limited only by the system file size limit.

Chapter 11: Manage User Access with IIS 151

Chapter 11: Manage User Access with IIS

This section contains the following topics:

Remove Integrated Windows Authentication (IWA) Redirection with InlineCredentials
Parameter of the SiteMinder Agent for IIS (see page 151)
Control IIS 7.x Module Execution Order when using the SiteMinder Agent for IIS (see
page 153)
Use an IIS Proxy User Account (IIS Only) (see page 155)
Use the NetBIOS Name or UPN for IIS Authentication (see page 157)
How to Configure the NT Challenge/Response Authentication (IIS Only) (see page 158)
How to Implement an Information Card Authentication Scheme (see page 165)
Disable Windows Security Context on Agents for IIS (see page 168)

Remove Integrated Windows Authentication (IWA) Redirection
with InlineCredentials Parameter of the SiteMinder Agent for
IIS

SiteMinder Agents now offer the following methods to support Windows Authentication
Schemes:

■ SiteMinder Agents for IIS obtain the credentials of the user from the HTTP request
(without redirection).

■ SiteMinder Web Agents redirect the user to an NTC credential collector. This
credential collector retrieves the Windows credentials of the user. The user is not
challenged for credentials.

The following illustration describes the differences between each method:

Remove Integrated Windows Authentication (IWA) Redirection with InlineCredentials Parameter of the SiteMinder Agent
for IIS

152 Web Agent Configuration Guide

The following parameter controls the behavior of the SiteMinder Web Agent for IIS:

InlineCredentials

Specifies whether the Agent for IIS reads the credentials of the user directly or
redirects to an NTC credential collector (which obtains the credentials instead).
When the value of this parameter is yes, the Agent for IIS reads the credentials
directly from the HTTP request. When the value of this parameter is no, the
Agent redirects to an NTC credential collector.

Default: No

To eliminate NTC redirects with existing Windows Authentication Schemes, set the value
of the InlineCredentials parameter to yes.

If you do not want to eleminate NTC redirects, or you want to configure NTC redirects
for additional agents, then configure the NT challenge/response authentication.

More information:

How to Configure the NT Challenge/Response Authentication (IIS Only) (see page 158)

Control IIS 7.x Module Execution Order when using the SiteMinder Agent for IIS

Chapter 11: Manage User Access with IIS 153

Control IIS 7.x Module Execution Order when using the
SiteMinder Agent for IIS

When you install and configure the SiteMinder Agent for IIS on an IIS web server, the
Agent for IIS executes before any other modules. If your IIS environment requires
another module to execute first, you can change the number set the following location
in the Windows Registry:

HKLM\Software\Netegrity\SiteMinder Web Agent\Microsoft IIS\RequestPriority

For example, suppose another module in your IIS 7.x web server (like UrlScan) is
assigned the same execution priority as the SiteMinder Agent for IIS. Use this setting to
control when the SiteMinder module executes.

To control which IIS modules execute first when using the SiteMinder Agent for IIS

1. Open the Windows Registry Editor on your IIS web server.

2. Expand the following keys:

HKLM\Software\Netegrity\SiteMinder Web Agent\Microsoft IIS

3. Locate the following value:

RequestPriority

4. Change the value of RequestPriority to the number which corresponds to the
following value you want:

PRIORITY_ALIAS_FIRST

Executes the SiteMinder Agent for IIS before any other modules on your IIS
web server. This setting is the default.

Example: 0 (First)

Default: 0

PRIORITY_ALIAS_HIGH

Executes the SiteMinder Agent for IIS module after modules set to execute
first, but before modules set to execute with medium, low or last priority.

Example: 1 (High)

PRIORITY_ALIAS_MEDIUM

Executes the SiteMinder Agent for IIS module after modules set to execute first
and high, but before modules set to execute with low or last priority.

Example: 2 (Medium)

PRIORITY_ALIAS_LOW

Executes the SiteMinder Agent for IIS module after modules set to execute
first, high, and medium, but before modules set to execute with last priority.

Control IIS 7.x Module Execution Order when using the SiteMinder Agent for IIS

154 Web Agent Configuration Guide

Example: 3 (Low)

PRIORITY_ALIAS_LAST

Executes the module for the SiteMinder Agent for IIS after all other modules.

Example: 4 (Last)

5. Save your changes and close the registry editor.

6. Test your settings and verify that the module you want executes before the Agent
for IIS module executes.

Use an IIS Proxy User Account (IIS Only)

Chapter 11: Manage User Access with IIS 155

Use an IIS Proxy User Account (IIS Only)

If users try to access resources on an IIS web server protected by SiteMinder, the Web
Agent may deny access if those users lack sufficient IIS privileges for those resources.
For example, if users are stored in an LDAP user directory on a UNIX system, those users
may not have access to the Windows system with the IIS web server.

The IIS web server has a default proxy account that has sufficient privileges for users
who are granted access by SiteMinder. The Web Agent uses the values of the
DefaultUserName and DefaultPassword parameters as credentials even if the user has a
valid Windows security context.

To configure the IIS Web Agent to use a proxy user account

1. Set the value of the ForceIISProxyUser parameter to one of the following values:

■ If access to the applications on the IIS server is based on the users' credentials
themselves, set the value of the ForceIISProxyUser parameter to yes.

■ If access to the applications on the IIS server is based on a specific account
(such as a proxy) which acts on behalf of the users, set the value of the
ForceIISProxyUser parameter to no.

2. If you are not using either of the following Windows features, continue with Step 3:

■ The Windows authentication scheme

■ The Windows User Security Context

3. Enter the user name for the proxy user account in the DefaultUserName parameter.
If you are using a domain account, and the local machine is not a part of that
domain, use the syntax shown in the following example:

DefaultUserName=Windows_domain\acct_with_admin_privilege

Otherwise, specify just the user name.

4. Enter the password associated with the existing Windows user account in the
DefaultPassword parameter.

Important! We recommend setting this parameter in your Agent Configuration
Object because you can encrypt it. If you set it in a local configuration file, the value
is stored unencrypted in plain text.

The IIS Proxy account is configured.

Use an IIS Proxy User Account (IIS Only)

156 Web Agent Configuration Guide

Enable Anonymous User Access

If you do not want users to have access as the proxy user, you can set the following
parameter:

UseAnonAccess

Instructs the IIS Web Agent to execute the web application as an anonymous
user, instead of using credentials of the proxy user.

Default: No

Note: This parameter applies to IIS Web Agents only.

To enable anonymous user access, set the UseAnonAccess parameter to yes.

Use the NetBIOS Name or UPN for IIS Authentication

Chapter 11: Manage User Access with IIS 157

Use the NetBIOS Name or UPN for IIS Authentication

In an IIS network, you may have a NetBIOS name that is different than the domain name
for the location of a requested resource. When a user tries to access a protected
resource and there are multiple domain controllers, user authentication fails and the
web server log shows an "IIS logon failure." You can control whether the UPN or
NetBIOS name is sent to the IIS web server with the following parameter:

UseNetBIOSforIISAuth

Specifies whether the IIS 6.0 Web Agent sends the user principal name (UPN)
or the NetBIOS name to the IIS 6.0 web server for IIS user authentication.

Note: This parameter is valid only if an Active Directory user store is associated
with the Policy Server.

If you enable this parameter, the Policy Server extracts the UserDN, the UPN,
and the NetBIOS name from the Active Directory during SiteMinder
authentication, and sends this data back to the IIS 6.0 Web Agent.

Depending on whether or not you selected the Run in Authenticated User's
Security Context option for the user directory with the Administrative UI and
how you set the UseNetBIOSforIIAuth parameter, a user's logon credentials are
sent as follows:

■ When the UseNetBIOSforIISAuth parameter is set to no, the IIS 6.0 Web
Agent sends the UPN name.

■ When the UseNetBIOSforIISAuth parameter is set to yes, the Web Agent
sends the NetBIOS name.

The IIS web server authenticates the user with the credentials it receives from
the Web Agent.

Default: No

To have the Web Agent use the NetBIOS name for IIS authentication, set the
UseNetBIOSAuth parameter to yes.

How to Configure the NT Challenge/Response Authentication (IIS Only)

158 Web Agent Configuration Guide

How to Configure the NT Challenge/Response Authentication
(IIS Only)

The IIS Web Agent supports the NT challenge/response authentication scheme. With NT
challenge/response authentication, the IIS web server challenges the user's Internet
Explorer browser when a user requests access to a resource. The challenge is a
mathematical calculation based on the user’s password that is stored on the user’s
client system. The browser returns the results of the calculation to the web server,
which compares the response with the password information in its database and does
the same calculation. If the results match, the server allows the user access. This process
is transparent to the user.

Note: The NT challenge/response authentication scheme only works with Internet
Explorer browsers.

There are two ways you can choose to implement the challenge/response
authentication scheme:

■ Challenge users when they try to access a protected resource (in single sign-on
environments, users are only challenged the first time they request a resource)

■ Have your users configure the automatic logon feature of their Internet Explorer
browser.

The automatic logon feature allows users to access a resource without being
challenged. The authentication process still takes place, but the NT
challenge/response process between the browser and the server is transparent to
the user. Automatic logon is typically used for intranets where security is less strict
and you want users to have seamless access to resources. Automatic logon is not
recommended for communication across the Internet and is usually not possible
because the user’s Windows account would need to be in the same Windows
domain system as the web server.

SiteMinder Agents use credential collectors to gather a user’s Windows credentials for
the NT challenge/response authentication scheme. The agent supports the extension
.NTC for collecting NTLM credentials.

Note: NTCEXT only has to be set if the you wish to change this default behavior.

To make SiteMinder operate with NT challenge/response authentication, use the
following process:

1. Set up the NT Challenge response authentication for the IIS web server with the
following tasks:

a. Map the .ntc file extension (see page 160).

b. Create and configure the virtual directory, and then ensure that it requires the
NT challenge and response credentials.

How to Configure the NT Challenge/Response Authentication (IIS Only)

Chapter 11: Manage User Access with IIS 159

2. Configure the NT challenge/response authentication scheme in the Administrative
UI (see page 163).

3. Specify an NTLM credential collector (see page 164).

4. Configure policies for NT Challenge/Response authentication using the
Administrative UI.

Note: For more information see the Policy Server Configuration Guide.

5. (Optional) Have your users configure the automatic logon feature of their Internet
Explorer browser (see page 162).

The NT Challenge Response Authentication for IIS is configured.

More Information

Remove Integrated Windows Authentication (IWA) Redirection with InlineCredentials
Parameter of the SiteMinder Agent for IIS (see page 151)

How to Configure the NT Challenge/Response Authentication (IIS Only)

160 Web Agent Configuration Guide

Map the .NTC File Extension

You must map the .NTC file extension to the ISAPIWebAgent.dll application to configure
tNT Challenge/Response Authentication on the IIS Web Server.

To map the .NTC file extension

1. Open the Internet Services Manager.

2. Right-click Web Sites in the left pane, and then right click Default Web Site in the
right pane and select Properties.

The Default Web Site Properties dialog appears.

3. Click the Home Directory tab.

4. In the Application Settings group box, click Configuration.

The Application Configuration dialog appears.

5. Click Add.

The Add/Edit Application Extension Mapping dialog opens.

a. In the Executable field, click Browse and locate the following file:
web_agent_home/bin/ISAPIWebAgent.dll.

b. Click Open.

c. In the Extension field, enter .ntc.

6. Click OK three times.

The Add/Edit Application Extension Mapping dialog, the Application Configuration
dialog and the Default Web Site Properties dialog close. The .ntc file extension is
mapped.

How to Configure the NT Challenge/Response Authentication (IIS Only)

Chapter 11: Manage User Access with IIS 161

Configure the Virtual Directory for Windows Authentication Schemes (IIS 6.0)

To use the SiteMinder Windows authentication scheme, configure a virtual directory on
the IIS 6.0 web server. The virtual directory requires Windows challenge and response
for credentials.

Configure the virtual directory for Windows authentication schemes

1. Open the Internet Information Services (IIS) Manager.

2. In the left pane, expand the following items:

■ The web server icon

■ The Web Sites folder

3. Do one of the following steps:

■ To protect all the resources on the entire website with SiteMinder Windows
authentication scheme, right-click the Default Web Site folder, select
Properties, and then go to Step 4.

■ If you do not want to protect the entire website, with the SiteMinder Windows
authentication scheme, do the following steps:

a. Locate the following folder:

\siteminderagent\ntlm

b. Right-click the ntlm folder, select Properties and go to Step 4.

 The Properties dialog appears.

4. Click the Directory Security tab.

5. In the Anonymous Access and Authentication Control group box, click Edit.

The Authentication Methods dialog appears.

6. Do the following steps:

■ Clear the Enable Anonymous Access check box.

■ Select the Integrated Windows Authentication check box.

7. Click OK twice.

The Authentication Methods dialog and the Properties dialog close. The virtual
directory is configured and requires Windows challenge and response for
credentials.

Note: Reboot the web server for these changes to take effect.

How to Configure the NT Challenge/Response Authentication (IIS Only)

162 Web Agent Configuration Guide

Configure Automatic Logon for Internet Explorer

If you want to authenticate users without having the Web Agent challenge them for
their credentials, have each user configure the NT automatic logon feature of the
Internet Explorer browser by changing the security settings.

To configure automatic logon

1. Start the Internet Explorer browser.

2. Click one of the following:

■ The View menu (on Internet Explorer 4.x or 5.x)

■ The Tools menu (on Internet Explorer 6.0)

3. Select Internet Options.

The Internet Options dialog opens.

4. Click the Security tab.

5. Click the correct security zone (internet, intranet, trusted, or restricted).

6. Click one of the following:

■ The Custom radio button (on Internet Explorer 4.x).

■ The Custom Level radio button (on Internet Explorer 5.x or 6.0).

7. Click Settings.

8. Scroll down to the User Authentication section. Under the Logon option, click the
Automatic Logon with current username and password radio button.

9. Click OK twice.

The Security Settings dialog and the Internet Options dialog close. Your settings are
saved, and automatic login is configured.

How to Configure the NT Challenge/Response Authentication (IIS Only)

Chapter 11: Manage User Access with IIS 163

Configure the Challenge/Response Authentication Scheme

To implement NT Challenge/Response authentication, you must create an
authentication scheme using the Administrative UI.

Note: For more information, see the Policy Server documentation.

Use the following settings when creating an NT Challenge/Response authentication
scheme:

■ In the Scheme Common Setup group box:

Authentication Scheme Type: Windows Template

■ In the Scheme Type Setup tab:

Server Name: enter the fully qualified domain name, for example:

server1.myorg.com

Target: /siteminderagent/ntlm/smntlm.ntc

Note: The directory should correspond to the virtual directory already set up by the
installation. The target file, smntlm.ntc, does not need to exist and can be any name
that ends in .ntc or the custom MIME type that you use in place of the default.

■ In the Advanced tab:

Library: smauthntlm

More Information

MIME Types for Credential Collectors (see page 253)

How to Configure the NT Challenge/Response Authentication (IIS Only)

164 Web Agent Configuration Guide

Specify an NTLM Credential Collector

The NTLM credential collector (NTC) is an application within the Web Agent. It collects
NT credentials for resources that are protected by the Windows authentication scheme.
This scheme applies to resources on an IIS web server accessed by Internet Explorer
browsers.

Each credential collector has an associated MIME type. For IIS, the NTC MIME TYPE is
defined in the following parameter:

NTCExt

Specifies the MIME type associated with the NTLM credential collector. This
collector gathers NT credentials for resources that are protected by the
Windows authentication scheme. This scheme applies to resources on IIS web
servers that are accessed by the Internet Explorer browser.

You can have multiple extensions in this parameter. If you are using an Agent
Configuration Object, select the multi-value option. If you are using a local
configuration file, separate each extension with a comma.

Default: .ntc

If your environment already uses the default extension specified by the previous
parameter, you can specify a different MIME type.

To change the extension that triggers the credential collector, add a different file
extension to the NTCExt parameter.

More Information

Use Credential Collectors for Authentication and Single Sign-On (see page 252)

How to Implement an Information Card Authentication Scheme

Chapter 11: Manage User Access with IIS 165

How to Implement an Information Card Authentication
Scheme

CA SiteMinder supports an Information Card Authentication Scheme (ICAS) that
implements Windows CardSpace. Users who request access to protected resources can
select an authentication card. SiteMinder uses the information contained in the card to
verify the user's identity.

Implementing an ICAS requires configuration changes on the following SiteMinder
components:

■ The server hosting the SiteMinder Web Agent

■ The SiteMinder Policy Server

■ The smkey database

Use the following process:

1. Do the following tasks on the web server:

a. Enable SSL communication on the IIS web server.

Note: For more information, see your Microsoft documentation, or go to
http://support.microsoft.com/

b. Export the web server certificate as a .pfx file.

c. Customize the SiteMinder InfoCard.fcc template.

2. Do the following tasks on the Policy Server:

a. Install the JCE on the policy server

b. Update the java.security file on the policy server.

c. Update the config.properties file on the Policy Server.

d. If you do not already have an smkey database, Create one with the Policy
Server Configuration wizard.

e. Add the .pfx file certificate from the web server to the smkey database.

f. Configure the user directory in the Policy Server

g. Create a custom authentication scheme for CardSpace using the Administrative
UI

h. (Optional) Store the claims in the session store to use in responses.

i. (Optional) Enable personalization by allowing the retrieval of claim values from
the session store.

j. (Optional) Configure an active response to retrieve a stored claim value.

http://support.microsoft.com/
http://support.microsoft.com/

How to Implement an Information Card Authentication Scheme

166 Web Agent Configuration Guide

Export the Web Server Certificate to your smkey Database

Part of configuring an ICAS involves exporting the SSL certificate from the web server
which hosts your SiteMinder Web Agent in a different format and placing it in your
smkey database.

To export the web server certificate

1. Open the Internet Information Services (IIS) Manager.

2. Expand the web server, and then expand the web sites folder.

3. Right-click the Default Web Site (or the one on which you want to configure the
ICAS) and select Properties.

The Properties page appears.

4. Click the Directory Security tab.

5. In the Secure Communications pane, click Server Certificate.

The Web Server Certificate Wizard opens.

6. Export the certificate to a .pfx file using the wizard.

Important! Remember the password you choose during this process. You will need
it in the future.

7. Click Finish to close the wizard, and then click OK to close the Properties page.

8. Close the IIS Manager.

9. Deliver the .pfx certificate file to your Policy Server administrator and have the
administrator import it into the smkey database.

Note: For more information, see the Federation Security Services Guide.

How to Implement an Information Card Authentication Scheme

Chapter 11: Manage User Access with IIS 167

Configure an FCC Template for an Information Card Authentication Scheme

The SiteMinder Web Agent includes a Forms Credential Collector (FCC) template that
you can use to implement an ICAS in SiteMinder.

To configure the FCC template for an Information Card Authentication Scheme

1. Open the following default FCC file with a text editor:

web_agent_home\samples_default\forms\InfoCard.fcc

2. Save a copy of the file to the following directory (this preserves the default FCC
settings in case you need them later):

web_agent_home\samples\forms\

3. Record the following information from your copy of the FCC file:

Important! The Policy Server needs this information for its configuration.

■ The fully-qualified domain name of the IIS Web server that hosts the Web
Agent.

■ The name of the FCC file you saved in Step 2.

■ The value (without quotation marks) of the requiredClaims parameter tag in
the FCC file from Step 2. See the following example:

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/privatepersonaliden

tifier

4. (Optional) Use the text editor to make any of the following changes in copy of the
FCC file.

■ To use a custom logo, replace the netegrity_logo.gif file with your own graphic
and update the following link in the FCC file accordingly:

Disable Windows Security Context on Agents for IIS

168 Web Agent Configuration Guide

Disable Windows Security Context on Agents for IIS

The SiteMinder Policy Server obtains the Windows security context from the session of
the user. In most situations, this environment is acceptable for single-sign on because
the session information is available to all agents.

If one agent uses Windows security context, but another does not, then disable
Windows security context for specific agents, as shown in the following illustration:

To permit SSO between a Windows domain that uses Windows security context and a
Windows workgroup that does not use it, set the following parameter:

DisableWindowsSecurityContext

Disables the Windows security context for the agent. When the value of this
parameter is yes, the agent ignores the Windows security context of the user.
When the value of this parameter is false or no, the agent uses the Windows
security context contained in the session of the user. This parameter allows
single-sign on between Windows environments which use the security context
Windows environments that do not.

Default: False

Limits: Yes, No

Chapter 12: Track User Activities 169

Chapter 12: Track User Activities

This section contains the following topics:

Track User Activities or Application Usage with Auditing (see page 169)
Record the Transaction ID in Oracle iPlanet Web Server Logs (see page 170)
Record the Transaction ID in Apache Web Server Logs (see page 172)
Record the User Name and Transaction ID in IIS Server Logs (see page 173)

Track User Activities or Application Usage with Auditing

You can you can measure how often applications on your web site are used, or track
user activities with auditing. Auditing is controlled with the following parameter:

EnableAuditing

Specifies whether the Web Agent logs all successful authorizations that are
stored in the user session cache. When enabled, user authorizations are logged
even when the Web Agent uses information from its cache instead of
contacting the Policy Server. Web Agents log user names and access
information in native web server log files when users access resources.

Default: No

Both the Policy Server and Web Agent audit user activity. The Web Agent sends a
message to the Accounting service each time a user is authorized from cache to access
resources. This action ensures that the Accounting service is tracking successful
authorizations for the Web Agent and the Policy Server. If the Web Agent cannot
successfully send an audit message to the Accounting service for an authorization,
access to the resource is denied. You can then run a SiteMinder activity report from the
Administrative UI. The reports from the Policy Server show user activity for each
SiteMinder session.

Note: For more information, see the Policy Server documentation.

To track user activity or application usage with auditing, set the value of the
EnableAuditing parameter to yes.

Record the Transaction ID in Oracle iPlanet Web Server Logs

170 Web Agent Configuration Guide

Record the Transaction ID in Oracle iPlanet Web Server Logs

Valid on Solaris

The Web Agent generates a unique transaction ID for each successful user authorization
request. The Agent adds the ID to the HTTP header. The ID is also recorded in the
following logs:

■ Audit log

■ Web server log (if the server is configured to log query strings)

■ Policy Server log

You can track user activities for a given application using the transaction ID.

Note: For more information, see the Policy Server documentation.

The transaction ID appears in the log as a mock query parameter in the log that is
appended to the end of an existing query string. The following example shows
transaction ID (in bold) appended to a query string (which ends with STATE=MA):

172.24.12.1, user1, 2/11/00, 15:30:10, W3SVC, MYSERVER, 192.168.100.100, 26844,

47, 101, 400, 123, GET, /realm/index.html,

STATE=MA&SMTRANSACTIONID=0c01a8c0-01f0-38a47152-01ad-02714ae1

If no query parameters are in the URL, the Agent adds the transaction ID at the end of
the web server log entry. For example:

172.24.12.1, user1, 2/11/00, 15:30:10, W3SVC, MYSERVER, 192.168.100.100, 26844,

47, 101, 400, 123, GET, /realma/index.html,

SMTRANSACTIONID=0c01a8c0-01f0-38a47152-01ad-02714ae1.

Note: Web Agents log user names and access information in native web server log files
when users access resources.

Record the Transaction ID in Oracle iPlanet Web Server Logs

Chapter 12: Track User Activities 171

You can record the SiteMinder transaction ID in the Oracle iPlanet web server logs.

To record the SiteMinder transaction ID in the Oracle iPlanet web server logs

1. Open the magnus.conf file.

2. Add the the following header variable to the existing list of HTTP server variables
that you want to log when the web server initializes:

%Req->headers.SM_TRANSACTIONID%"

Note: You must enter the header variable in uppercase unless the value of the
LowerCaseHTTP parameter is set to yes in your Agent Configuration Object or local
configuration file.

The following example shows the SMTRANSACTIONID header variable in bold at the
end of an existing entry. However, you can place it anywhere in the list of variables.

Init fn="flex-init" access="D:/iPlanet/server4/https-orion/logs/access"

format.access="%Ses->client.ip% - %Req->vars.auth-user% [%SYSDATE%] \"

%Req->srvhdrs.clf-status% %Req-srvhdrs.content-length% %Req->headers.-

SM_TRANSACTIONID%"

3. Restart the Oracle iPlanet Server to apply the change.

The transaction ID appears in the Oracle iPlanet web server logs. The following
example shows a web server log entry with the transaction ID in bold:

11.22.33.44 - user1 [21/Nov/2003:16:12:24 -0500] "GET /Anon/index.html HTTP/1.0"

200 748 3890b4b9-58f8-4a74df53-07f6-0002df88

More information:

Use Lower Case HTTP in Headers (for Oracle iPlanet, Apache, and Domino web servers)
(see page 142)

Record the Transaction ID in Apache Web Server Logs

172 Web Agent Configuration Guide

Record the Transaction ID in Apache Web Server Logs

The Web Agent generates a unique transaction ID for each successful user authorization
request. The Agent adds the ID to the HTTP header. The ID is also recorded in the
following logs:

■ Audit log

■ Web server log (if the server is configured to log query strings)

■ Policy Server log

You can track user activities for a given application using the transaction ID.

Note: For more information, see the Policy Server documentation.

The transaction ID appears in the log as a mock query parameter in the log that is
appended to the end of an existing query string. The following example shows
transaction ID (in bold) appended to a query string (which ends with STATE=MA):

172.24.12.1, user1, 2/11/00, 15:30:10, W3SVC, MYSERVER, 192.168.100.100, 26844,

47, 101, 400, 123, GET, /realm/index.html,

STATE=MA&SMTRANSACTIONID=0c01a8c0-01f0-38a47152-01ad-02714ae1

If no query parameters are in the URL, the Agent adds the transaction ID at the end of
the web server log entry. For example:

172.24.12.1, user1, 2/11/00, 15:30:10, W3SVC, MYSERVER, 192.168.100.100, 26844,

47, 101, 400, 123, GET, /realma/index.html,

SMTRANSACTIONID=0c01a8c0-01f0-38a47152-01ad-02714ae1.

Note: Web Agents log user names and access information in native web server log files
when users access resources.

You can record the SiteMinder transaction ID in the Apache web server logs
SMTRANSACTIONID header variable.

To record the SiteMinder transaction ID in the Apache web server logs

1. Open the httpd.conf file.

2. Add the SM_TRANSACTIONID header variable to the LogFormat directive.

For example:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{SM_TRANSACTIONID}i\"" common

Note: For more information about the httpd.conf file and the LogFormat directive,
see your Apache web server documentation.

3. Restart the server to apply the change.

The transaction ID will be recorded in the Apache web server logs.

Record the User Name and Transaction ID in IIS Server Logs

Chapter 12: Track User Activities 173

Record the User Name and Transaction ID in IIS Server Logs

The Web Agent generates a unique transaction ID for each successful user authorization
request. The Agent adds the ID to the HTTP header. The ID is also recorded in the
following logs:

■ Audit log

■ Web server log (if the server is configured to log query strings)

■ Policy Server log

You can track user activities for a given application using the transaction ID.

Note: For more information, see the Policy Server documentation.

The transaction ID appears in the log as a mock query parameter in the log that is
appended to the end of an existing query string. The following example shows
transaction ID (in bold) appended to a query string (which ends with STATE=MA):

172.24.12.1, user1, 2/11/00, 15:30:10, W3SVC, MYSERVER, 192.168.100.100, 26844,

47, 101, 400, 123, GET, /realm/index.html,

STATE=MA&SMTRANSACTIONID=0c01a8c0-01f0-38a47152-01ad-02714ae1

If no query parameters are in the URL, the Agent adds the transaction ID at the end of
the web server log entry. For example:

172.24.12.1, user1, 2/11/00, 15:30:10, W3SVC, MYSERVER, 192.168.100.100, 26844,

47, 101, 400, 123, GET, /realma/index.html,

SMTRANSACTIONID=0c01a8c0-01f0-38a47152-01ad-02714ae1.

Note: Web Agents log user names and access information in native web server log files
when users access resources.

Record the User Name and Transaction ID in IIS Server Logs

174 Web Agent Configuration Guide

Agents protecting resources on IIS servers do not record the SiteMinder transaction ID
and authenticated user name in the IIS server logs by default. Because these agents can
operate as ISAPI extensions (in Classic Pipeline mode), the server would have have
already logged a transaction. You can force the agent to add this information with the
following parameters:

AppendIISServerLog

Instructs the agent to add the authenticated user name and SiteMinder
transaction ID to cs-uri-query field of the IIS server log. For URLs containing
query strings, commas separate the query string, SiteMinder transaction ID,
and username in the cs-uri-query field of the IIS server log.

Default: No

SetRemoteUser

Specifies a value for the REMOTE_USER variable that some legacy applications
may require.

Default: No

To record the transaction ID and user name in the IIS server log

1. Set the value of the AppendIISServerLog parameter to yes.

2. Set the value of the SetRemoteUser parameter to yes.

The IIS server logs will contain the user name and transaction ID.

Chapter 13: Configure Logs 175

Chapter 13: Configure Logs

This section contains the following topics:

Logs of Start-up Events (see page 175)
Error Logs and Trace Logs (see page 176)
Set Up and Enable Error Logging (see page 178)
Enable Transport Layer Interface (TLI) Logging (see page 180)
Limit the Number of Log Files Saved (see page 181)
How to Set Up Trace Logging (see page 181)

Logs of Start-up Events

To assist in debugging, startup events are recorded in a log. Each message may provide
clues about the problem. These logs are stored in the following locations:

■ On Windows systems, these events are recorded in the Windows Application Event
log.

■ On UNIX systems, these events are sent to STDERR. Apache servers map STDERR to
the Apache error_log file, so these events are also recorded in that log.

Error Logs and Trace Logs

176 Web Agent Configuration Guide

Error Logs and Trace Logs

You can use the Web Agent logging function to monitor the performance of the Web
Agent and its communication with the Policy Server. The logging feature provides
accurate and comprehensive information about the operation of SiteMinder processes
to analyze performance and troubleshoot issues.

A log is a record of events that occur during program execution. A log consists of a series
of log messages, each one describing some event that occurred during program
execution. Log messages are written to log files.

Note: IIS Agents create log files only after the first user request is submitted. Apache 2.0
Web Agents create log files when the Apache server starts.

The Web Agent uses the following log files:

Error log

Contains program and operational-level errors. One example is when the Web
Agent cannot communicate with Policy Server. The level of detail output in this log
cannot be customized. Error logs contain the following types of messages:

Error messages

Contain program-level errors, which indicate incorrect or abnormal program
behavior, or an inability to function as expected due to some external problem,
such as a network failure. There are also operational-level errors. This type of
error is a failure that prevents the operation from succeeding, such as opening
a file or authenticating a user.

Informational messages

Contain messages for the user or administrator that some event has occurred;
that is, that a server has started or stopped, or that some action has been
taken.

Warning messages

Contain warnings for the user or administrator of some condition or event that
is unusual or indicative of a potential problem. This does not necessarily mean
there is anything wrong.

Trace log

Contains detailed warning and informational messages, which you can configure.
Examples include trace messages and flow state messages. This file also includes
data such as header details and cookie variables. Trace logs contain the following
messages:

Error Logs and Trace Logs

Chapter 13: Configure Logs 177

Trace messages

Provide detailed information about program operation for tracing and/or
debugging purposes. Trace messages are ordinarily turned off during normal
operation. In contrast to informational, warning, and error messages, trace
messages are embedded in the source code and can not easily be localized.
Moreover, trace messages may include significant data in addition to the
message itself; for example, the name of the current user or realm.

You specify the location of both the error and trace log files when you configure the
Web Agent. Use the error and trace logs to help solve any issues that may prevent the
Web Agent from operating properly.

Note: For Agents on Windows platforms, set the EnableWebAgent parameter to yes to
ensure that the Web Agent log gets created. If you leave EnableWebAgent set to no (the
default) and set the logging parameters, the Agent log gets created only for Agents on
UNIX platforms.

More Information

Set Up and Enable Error Logging (see page 178)
Configure Trace Logging (see page 182)

Parameter Values Shown in Log Files

Web Agents list configuration parameters and their values in the Web Agent error log
file, but there are differences between the ways that Traditional and Framework agents
do this.

Framework agents record the configuration parameters and their values in the log file
exactly as you entered them in the Agent Configuration Object or the local configuration
file. All of the parameters, including those which may contain an incorrect value, are
recorded in the log file.

Traditional agents process the parameter values before recording them. If the
parameter has a proper value, the parameter and its value are recorded in the log file.
Parameters with incorrect values are not recorded in the log file.

Set Up and Enable Error Logging

178 Web Agent Configuration Guide

Set Up and Enable Error Logging

The error log is not available until you enable logging and specify a location for the log
file. The parameters that enable error logging and determine options such as appending
log data are defined in a local configuration file or an Agent Configuration Object at the
Policy Server.

Web Agents installed on an IIS or Apache web servers do not support dynamic
configuration of log parameters set locally in a local configuration file. Consequently,
when you modify a parameter, the change does not take effect until the Agent is
restarted. However, these log settings can be stored and updated dynamically if you
configure them in an Agent Configuration Object at the Policy Server.

Note: IIS Agents create log files only after the first user request is submitted. Apache 2.0
Web Agents create log files when the Apache server starts.

To set up and enable error logging

1. If you do not have a log file already, create a new log file and any related
directories.

2. Set the value of the LogFile parameter to yes.

Note: Setting the value of this parameter to yes in a local configuration file of a web
server overrides any of the logging settings defined on the Policy Server. For
example, when the value of this parameter is set to yes in a LocalConfig.conf file,
then log files are generated even if the value of the AllowLocalConfig parameter in
the corresponding Agent Configuration object on the Policy Server is set to no. Set
the related logging parameters (that define the file name, size, and others) in the
LocalConfig.conf file too to override any Policy Server log settings.

3. Specify the full path to the error file, including the file name, in any of the following
parameters:

LogFileName

Specifies the full path (including the file name) of the log file.

Default: No

Example: (Windows) web_agent_home\log\WebAgent.log

Example: (UNIX/LInux>
/export/iPlanet/servers/https-jsmith/logs/WebAgent.log

LogFileName32

Specifies the full path to a log file for a SiteMinder Web Agent for IIS on 64-bit
Windows operating environments protecting 32-bit applications. The 32-bit
applications run in Wow64 mode on the 64-bit Windows operating
environment. If logging is enabled but this parameter is not set, the Web Agent
for IIS appends _32 to the log file name.

Default: No

Set Up and Enable Error Logging

Chapter 13: Configure Logs 179

Limits: For Windows 64-bit operating environments only. Specify the file name
at the end of the path.

Example: (Windows 64-bit operating environments using Wow64 mode)
web_agent_home\log\WebAgent32.log.

4. (Optional) Set the following parameters (in the Agent Configuration Object on the
Policy Server or in the local configuration file):

LogAppend

Adds new log information to the end of an existing log file. When this
parameter is set to no, the entire log file is rewritten each time logging is
invoked.

Default: No

LogFileSize

Specifies the size limit of the log file in megabytes. When the current log file
reaches this limit, a new log file is created. The new log file uses one of the
following naming conventions:

■ For framework agents, the new log file has a sequence number appended
to the original name. For example, a log file named myfile.log is renamed
to myfile.log.1 when the size limit is reached.

■ For traditional agents, the new log files are named by appending the date
and timestamp to the original name. For example, a log file named
myfile.log, is renamed to myfile.log.09-18-2003-16-07-07 when the size
limit is reached.

You must archive or remove the old files manually.

Default: 0 (no rollover)

Example: 80

LogLocalTime

Specifies whether the logs use Greenwich Mean Time (GMT) or local time. To
use GMT, change this setting to no. If this parameter does not exist, the default
setting is used.

Default: Yes

If you use a local configuration file, your settings will resemble the following
example:

LogFile="yes"

LogFileName="/export/iPlanet/servers/https-myserver/logs/errors.log"

LogAppend="no"

LogFileSize="80"

LogLocalTime="yes"

Error logging is enabled.

Enable Transport Layer Interface (TLI) Logging

180 Web Agent Configuration Guide

Enable Transport Layer Interface (TLI) Logging

When you want to examine the connections between the Web Agent and the Policy
Server, enable transport layer interface logging.

To enable TLI logging

1. Add the following environment variable to your web server.

SM_TLI_LOG_FILE

2. Specify a directory and log file name for the value of the variable, as shown in the
following example:

directory_name/log_file_name.log

3. Ensure your Web Agent is enabled.

4. Restart your web server.

TLI logging is enabled.

Limit the Number of Log Files Saved

Chapter 13: Configure Logs 181

Limit the Number of Log Files Saved

You can limit the number of log files that a Web Agent keeps. For example, if you want
to save disk space on the system that stores your Web Agent Logs, you can limit the
number of log files using the following parameter:

LogFilesToKeep

Specifies the number of Web Agent log files that are kept. New log files are
created in the following situations:

■ When the Web Agent starts.

■ When the size limit of the log file (specified by the value of the LogFileSize
parameter) is reached.

Changing the value of this parameter does not automatically delete any
existing logs files which exceed the number that you want to keep. For
example, If your system has 500 log files stored, and you decide to keep only 50
of those files, the Web Agent does not delete the other 450 files.

Setting the value of this parameter to zero retains all the log files.

Default: 0

To limit the number of log files saved

1. Archive or delete any existing log files from your system.

2. Set the value of the LogAppend parameter to no.

3. Change the value of the LogFilesToKeep parameter to the number of log files that
you want to keep.

How to Set Up Trace Logging

To set up trace logging, use the following process:

1. Set up and Enable Trace logging.

2. Determine what you want to record in the trace log by reviewing the following lists:

■ Trace Log Components and Subcomponents

■ Trace Message Data Fields

■ Data Field Filters

3. Duplicate the default Trace Configuration File.

4. Modify the duplicate file to include the items you want to record.

5. Restart the Web Agent.

How to Set Up Trace Logging

182 Web Agent Configuration Guide

Configure Trace Logging

Before you can use trace logging, you must configure it by specifying a name, location,
and parameters for the trace log file. These settings control the size and format of the
file itself. After trace logging is configured, you determine the content of the trace log
file separately. This lets you change the types of information contained in your trace log
at any time, without changing the parameters of the trace log file itself.

To configure trace logging

1. Locate the WebAgentTrace.conf file on your web server. Duplicate the file.

Note: If you are running the SiteMinder Agent for IIS and protecting 32-bit
applications on a 64-bit system (WoW64 mode), create two duplicates. There are
separate directories for 32 and 64-bit applications on 64-bit Windows operating
environments.

2. Open your Agent Configuration Object or local configuration file.

3. Set the TraceFile parameter to yes.

Note: Setting the value of this parameter to yes in a local configuration file of a web
server overrides any of the logging settings defined on the Policy Server. For
example, when the value of this parameter is set to yes in a LocalConfig.conf file,
then log files are generated even if the value of the AllowLocalConfig parameter in
the corresponding Agent Configuration object on the Policy Server is set to no. Set
the related logging parameters (that define the file name, size, and others) in the
LocalConfig.conf file too to override any Policy Server log settings.

4. Specify the full path to the trace log files in following parameters:

TraceFileName

Specifies the full path to the trace log file.

Default: No default

Limits: Specify the file name in this parameter.
Example: web_agent_home\log\trace.log

TraceFileName32

Specifies the full path to the trace file for the SiteMinder Agent for IIS is
running on a 64-bit Windows operating environment and protecting 32-bit
applications. This is the file that contains the trace log output. Set this
parameter if you have a SiteMinder Agent for IIS installed on a 64-bit Windows
operating environment and protecting a 32-bit Windows application. The 32-bit
applications run in Wow64 mode on the 64-bit Windows operating
environment. If trace logging is enabled but this parameter is not set, the Web
Agent for IIS appends _32 to the file name.

Default: No default.

Limits: For Windows 64-bit operating environments only. Specify the trace file
name at the end of the path.

How to Set Up Trace Logging

Chapter 13: Configure Logs 183

Example: (Windows 64-bit operating environments using Wow64 mode)
web_agent_home\log\WebAgentTrace32.log.

5. Specify the full path to the duplicate copies of WebAgentTrace.conf file (you
created in Step 1) in the following parameters:

TraceConfigFile

Specifies the location of the WebAgentTrace.conf configuration file that
determines which components and events to monitor.

Default: No default

Example: web_agent_home\config\WebAgentTrace.conf

TraceConfigFile32

Specifies the location of the WebAgentTrace.conf configuration file that
determines which components and events to monitor. Set this parameter if you
have a SiteMinder Agent for IIS installed on a 64-bit Windows operating
environment and protecting a 32-bit Windows application. The 32-bit
applications run in Wow64 mode on the 64-bit Windows operating
environment. If logging is enabled but this parameter is not set, the Web Agent
for IIS appends _32 to the file name.

Default: No default.

Limits: For Windows 64-bit operating environments only. Specify the
configuration file name at the end of the path.

Example: (Windows 64-bit operating environments using Wow64 mode)
web_agent_home\config\WebAgentTrace32.conf.

Note: This file is not used until the web server is restarted.

6. Define the format of the information in your trace log file by setting the following
parameters in your Agent Configuration Object or local configuration file:

TraceAppend

Adds new logging information to the end of an existing log file instead of
rewriting the entire file each time logging is invoked.

Default: No

TraceFormat

Specifies how the trace file displays the messages. Choose one of the following
options:

■ default—uses square brackets [] to enclose the fields.

■ fixed—uses fields with a fixed width.

■ delim—uses a character of your choice to delimit the fields.

■ xml—uses XML-like tags. A DTD or style sheet is not provided with the Web
Agent.

Default: default (square brackets)

How to Set Up Trace Logging

184 Web Agent Configuration Guide

TraceDelimiter

Specifies a custom character that separates the fields in the trace file.

Default: No default

Example: |

TraceFileSize

Specifies (in megabytes) the maximum size of a trace file. The Web Agent
creates a new file when this limit is reached.

Default: 0 (a new log file is not created)

Example: 20 (MB)

LogLocalTime

Specifies whether the logs use Greenwich Mean Time (GMT) or local time. To
use GMT, change this setting to no. If this parameter does not exist, the default
setting is used.

Default: Yes

7. Edit the WebAgentTrace.conf file to have Web Agent monitor the activities you
want.

Framework Web Agents do not support dynamic configuration of log parameters
set locally in the Agent configuration file. Consequently, when you modify a
parameter, the change does not take effect until you restart the web server.
However, these log settings can be stored and updated dynamically if you configure
them in an Agent configuration object on the Policy Server.

Note: IIS Agents create log files only after the first user request is submitted.
Apache 2.0 Web Agents create log files when the Apache server starts.

8. Restart the web server so the Web Agent uses the new trace configuration file.

How to Set Up Trace Logging

Chapter 13: Configure Logs 185

Trace Log Components and Subcomponents

The Web Agent can monitor specific SiteMinder components. When you monitor a
component, all of the events for that component are recorded in the trace log. Each
component has one or more subcomponents that the Web Agent can also monitor. If
you do not want the Web Agent to record all of the events for a component, you can
specify only those subcomponents you want to monitor instead.

For example, if you want to record only the single sign-on messages for a Web Agent on
a web server, you would specify The Web Agent component and the SSO
subcomponent.

The following components and subcomponents are available:

AgentFramework

Records all Agent framework messages. (Applies only to framework agents.) The
following subcomponents are available:

■ Administration

■ Filter

■ HighLevelAgent

■ LowLevelAgent

■ LowLevelAgentWP

AffiliateAgent

Records web Agent messages related to the 4.x Affiliate Agent, which is part of
Federation Security Services, a separately-purchased product. (Applies only to
framework agents.) The following subcomponent is available:

■ RequestProcessing

SAMLAgent

Web Agent messages related to the SAML Affiliate Agent. (Applies only to
framework agents.) The following subcomponent is available:

■ RequestProcessing

WebAgent

Records all Web Agent log messages. Applies to all Agents except IIS 6.0 or Apache
2.0 Agents. The following subcomponents are available:

■ AgentCore

■ Cache

■ authentication

■ Responses

■ Management

How to Set Up Trace Logging

186 Web Agent Configuration Guide

■ SSO

■ Filter

Agent_Functions

Records all Agent API messages. The following subcomponents are available:

■ Init

■ UnInit

■ IsProtected

■ Login

■ ChangePassword

■ Validate

■ Logout

■ Authorize

■ Audit

■ FreeAttributes

■ UpdateAttributes

■ GetSessionVariables

■ SetSessionVariables

■ DeleteSessionVariables

■ Tunnel

■ GetConfig

■ DoManagement

Agent_Connection_Manager

Records messages related to internal processing of the Agent API. The following
subcomponents are available:

■ RequestHandler

■ Cluster

■ Server

■ WaitQueue

■ Management

■ Statistics

For an explanation of each subcomponent, see the WebAgentTrace.conf file.

How to Set Up Trace Logging

Chapter 13: Configure Logs 187

Trace Message Data Fields

You can define what each trace message for a specific component contains by specifying
which data fields to include in the message.

Data fields use the following syntax:

data:data_field1,data_field2,data_field3

Some data fields are shown in the following example:

data:message,date,time,user,agentname,IPAddr

There may not be data for fields in each message, so blank fields my occur. For example,
if you select RealmOID as a data field, some trace messages will display the realm's OID
while others will not.

The following data fields are available:

Message

Includes the actual trace message

SrcFile

Includes the source file and line number of the trace message

Pid

Includes the process ID

Tid

Includes the thread ID

Date

Includes the date

Time

Includes the time

PreciseTime

Includes the time, including milliseconds

Function

Includes the function in the code containing the trace message

User

Includes the name of the user

Domain

Includes the SiteMinder domain

How to Set Up Trace Logging

188 Web Agent Configuration Guide

Realm

Includes the SiteMinder realm

AgentName

Includes the Agent name being used

TransactionID

Includes the transaction ID

DomainOID

Includes the SiteMinder domain OID

IPAddr

Includes the client IP address

RequestIPAddr

Includes the trace file displays the IP of the server where Agent is present

IPPort

Includes the client IP port

CertSerial

Includes the certificate serial number

SubjectDN

Includes the subject DN of the certificate

IssuerDN

Includes the Issuer DN of the certificate

SessionSpec

Includes the SiteMinder session spec

SessionID

Includes the SiteMinder session ID

UserDN

Includes the User DN

Resource

Includes the requested resource

Action

Includes the requested action

RealmOID

Includes the realm OID

How to Set Up Trace Logging

Chapter 13: Configure Logs 189

ResponseTime

Includes the average response time in milliseconds of the Policy Servers associated
with a CA Web Agent or SDK Agent and API application

Note: To output the ResponseTime to a trace log, include the component
Agent_Con_Manager along with the data field ResponseTime in the
WebAgentTrace.conf file or other file specified in the Policy Server Configuration
Object (ACO) and restart the Policy Server. The Agent_Con_Manager component, or
Agent API Connection Manager, calculates the ResponseTime each time a response
is received from a Policy Server and keeps a running average. To locate the
ResponseTime in the trace log, search for [PrintStats].

Trace Message Data Field Filters

To focus on a specific problem, you can narrow the output of the trace log by specifying
a filter based on the value of a data field. For example, if you are having problems with
an index.html page, you can filter on resources with an html suffix by specifying
Resource:==/html in the trace configuration file. Each filter should be on a separate line
in the file.

Filters use the following syntax:

data_field:filter

The following types of filters are available:

■ == (exact match)

■ != (does not equal)

The filters use boolean logic as shown in the following examples:

Action:!=get (all actions except get)

Resource:==/html (all resources ending in /html)

How to Set Up Trace Logging

190 Web Agent Configuration Guide

Determine the Content of the Trace Log

The WebAgentTrace.conf file determines the content of the trace log. You can control
which components and data items appear in your trace log by modifying the settings of
the WebAgentTrace.conf file on your web server. The following considerations apply
when editing the file:

■ Entries are case-sensitive.

When you specify a component, data field, or filter, the values must match exactly
the options in the WebAgentTrace.conf file instructions.

■ Uncomment the configuration settings lines or they will be ignored.

■ If you modify the WebAgentTrace.conf file before installing a new Web Agent over
an existing Web Agent, the file is overwritten. Therefore, you should rename or
back up the file first. After the installation, you can integrate your changes into the
new file.

To determine the content of the trace log

1. Open the WebAgentTrace.conf file.

Note: We recommend duplicating the original file and making changes to the copy.
This preserves the default settings.

2. Add components and subcomponents using the following steps:

a. Find the section that matches your type of agent. For example, if you have an
Apache 2.0 Web Agent installed on your server, look for a line resembling the
following:

For Apache 2.0, Apache 2.2, IIS 7.0 and SunOne Web Agents

Note: For more information, see the SiteMinder Web Agent Installation Guide.

b. Locate the following line in that section:

#components:

c. Uncomment the line (if it is still commented), and then add the component
names you want after the colon. Separate multiple components commas as
shown in the following example:

components: AgentFramework, HTTPAgent

d. (Optional) Follow the component name with the name of a subcomponent you
want. Separate the subcomponent name with a slash as shown in the following
example:

components: AgentFramework/Administration

3. Add data fields and filters using the following steps:

a. Locate the following line in the appropriate section:

#data:

How to Set Up Trace Logging

Chapter 13: Configure Logs 191

b. Uncomment the line (if it is still commented), and then add the data fields you
want after the colon. Separate multiple data fields with commas as shown in
the following example:

data: Date, Time, Pid, Tid, TransactionID, Function, Message, IPAddr

c. (Optional) Add filters to your data fields by following the data field with a
colon, the boolean operator and the value you want. The values you specify for
the filters must match exactly. The following example shows a filter which logs
activities for a specific IP address:

data: Date, Time, Pid, Tid, TransactionID, Function, Message,

IPAddr:==127.0.0.1

Note: Each filter must be on a separate line in the file.

4. Save your changes and close the file.

5. Restart the web server to apply your changes.

The content of the trace log has been determined.

How to Set Up Trace Logging

192 Web Agent Configuration Guide

Limit the Number of Trace Log Files Saved

You can limit the number of trace logs that a Web Agent keeps. For example, if you want
to save disk space on the system that stores your Web Agent Logs, you can limit the
number of trace logs using the following parameter:

TraceFilesToKeep

Specifies the number of Web Agent trace log files that are kept. New trace logs
are created in the following situations:

■ When the Web Agent starts.

■ When the size limit of the trace log (specified by the value of the
TraceFileSize parameter) is reached.

Changing the value of this parameter does not automatically delete any
existing trace logs which exceed the number that you want to keep. For
example, If your system has 500 trace logs stored, and you decide to keep only
50 of those files, the Web Agent does not delete the other 450 trace logs.

Setting the value of this parameter to zero retains all the trace logs.

Default: 0

To limit the number of trace logs saved

1. Archive or delete any existing trace logs from your system.

2. Set the value of the TraceAppend parameter to no.

3. Change the value of the TraceFilesToKeep parameter to the number of trace logs
that you want to keep.

How to Set Up Trace Logging

Chapter 13: Configure Logs 193

Collect Detailed Agent Connection Data with an Agent Connection Manager Trace
Log

To collect detailed information about the connections between a Web Agent and Policy
Server, you create a Trace Log file that contains information gathered by the Agent
Collection Manager.

To collect detailed web agent connection data

1. Open your Agent Configuration object or local configuration file.

2. Set the value of the TraceFile parameter to yes.

Note: Setting the value of this parameter to yes in a local configuration file of a web
server overrides any of the logging settings defined on the Policy Server. For
example, when the value of this parameter is set to yes in a LocalConfig.conf file log
files are generated even if the value of the AllowLocalConfig parameter in the
corresponding Agent Configuration object on the Policy Server is set to no.
Additionally, set the related trace logging parameters (that define the file name,
size, and so on) in the LocalConfig.conf file to override any Policy Server trace log
settings.

3. Specify the full path to the trace log file for your Agent Connection Data in the
TraceFileName parameter. This is the file that contains the trace log output.

4. Set the value of the TraceConfigFile parameter to the full path of the following file:

web_agent_home/config/AgentConMgr.conf

web_agent_home

Indicates the directory where the SiteMinder Agent is installed.

Default (Windows 32-bit installations of SiteMinder Web Agents only):
C:\Program Files\CA\webagent

Default (Windows 64-bit installations [SiteMinder Web Agents for IIS
only]): C:\Program Files\CA\webagent\win64

Default (Windows 32-bit applications operating on 64-bit systems [Wow64
with SiteMinder Web Agents for IIS only]): C:\Program Files
(x86)\webagent\win32

Default (UNIX/Linux installations): /opt/ca/webagent

5. Define the format the trace log file for your Agent Connection Data by setting the
following parameters:

TraceAppend

Adds new logging information to the end of an existing log file instead of
rewriting the entire file each time logging is invoked.

Default: No

How to Set Up Trace Logging

194 Web Agent Configuration Guide

TraceDelimiter

Specifies a custom character that separates the fields in the trace file.

Default: No default

Example: |

TraceFileSize

Specifies (in megabytes) the maximum size of a trace file. The Web Agent
creates a new file when this limit is reached.

Default: 0 (a new log file is not created)

Example: 20 (MB)

TraceFormat

Specifies how the trace file displays the messages. Choose one of the following
options:

■ default—uses square brackets [] to enclose the fields.

■ fixed—uses fields with a fixed width.

■ delim—uses a character of your choice to delimit the fields.

■ xml—uses XML-like tags. A DTD or style sheet is not provided with the Web
Agent.

Default: default (square brackets)

LogLocalTime

Specifies whether the logs use Greenwich Mean Time (GMT) or local time. To
use GMT, change this setting to no. If this parameter does not exist, the default
setting is used.

Default: Yes

6. Restart your web server so the new settings take effect.

Detailed information about the Web Agent connections will be collected.

Note: For SiteMinder r12.0 SP3, the BusyHandleCount and FreeHandleCount
attributes are not used.

Chapter 14: Adjust Performance 195

Chapter 14: Adjust Performance

This section contains the following topics:

Web Agent Cache (see page 195)
Control How Long Resource Enteries Remain Cached (see page 196)
Set the Maximum Resource Cache Size (see page 197)
Disable the Resource Cache (see page 198)
Set the Maximum User Session Cache Size (see page 198)
Cache Anonymous Users (see page 199)
Accommodate Testing Tools that do not send HOST Headers (see page 200)

Web Agent Cache

The Web Agent stores user session and resource information in cache memory. This
technique improves the Web Agent efficiency because the Web Agent does not have to
retrieve information from the Policy Server each time a user requests access.

By configuring the cache settings, you can manage how this information is stored. The
size of the cache is measured by the number of cache entries. The total number of
entries in each cache cannot exceed the maximum cache size specified.

Note: You have to restart the Web Server for changes in the Web Agent cache settings
to take effect.

The following guidelines apply to cache management:

■ When a cache is full, new entries replace the least recently used entries.

■ For the resource cache, entries are removed when the value of the
ResourceCacheTimeout parameter is reached.

■ For the user session cache, entries are removed based on the session timeout
values that you set for each realm.

SiteMinder empties cached resource information when you modify a policy. You can
also empty the user and resource caches manually from the Administrative UI.

Note: For more information, see the Policy Server documentation.

Control How Long Resource Enteries Remain Cached

196 Web Agent Configuration Guide

Control How Long Resource Enteries Remain Cached

You can change the amount of time that resource entries will remain in the cache with
the following parameter:

ResourceCacheTimeout

Specifies the number of seconds that resource entries remain in the cache. If a
user tries to access a protected resource after the time interval has been
exceeded, the Web Agent removes the cached entries and contacts the Policy
server.

Default: 600 (10 minutes)

Note: If you change the value of this parameter, you must restart the web
server to apply the change.

To change how long the resource entries remain cached, set the ResourceCacheTimeout
parameter to the number of seconds you want.

Set the Maximum Resource Cache Size

Chapter 14: Adjust Performance 197

Set the Maximum Resource Cache Size

You can set a maximum on the number of resource cache entries, such as Web pages,
that the Web Agent tracks with the following parameter:

MaxResourceCacheSize

Specifies the maximum number of entries that the Web Agent keeps in its
resource cache. An entry contains the following information:

■ A Policy Server response about whether a resource is protected

■ Any additional attributes returned with the response

When the maximum is reached, new resource records replace the oldest
resource records.

If you set this value to a high number, be sure that sufficient system memory is
available.

If you are viewing Web Agent statistics using the OneView Monitor, you may
notice that the value shown for the ResourceCacheCount is greater than the
value you specified for the MaxResourceCacheSize parameter. This is not an
error. The Web Agent uses the MaxResourceCacheSize parameter as a
guideline and the values may at times differ because the
MaxResourceCacheSize parameter represents the maximum number of
average-sized entries in the resource cache. The actual cache entries are most
likely larger or smaller than the pre-determined average size; therefore, the
effective maximum number of entries may be more or less than the value
specified.

Note: For Web Agents that use shared memory, such as the framework Agents,
the cache is pre-allocated to a constant size based on the
MaxResourceCacheSize value and will not grow.

Default: (Domino web servers) 1000

Default: (IIS and Sun Java System web servers) 700

Default: (Apache web servers) 750

To set the maximum resource cache size

1. Set the value of the MaxResourceCacheSize parameter to the maximum number of
resources you want.

2. For framework agents, you must restart the web server to apply the change.

The maximum resource cache size is changed.

Disable the Resource Cache

198 Web Agent Configuration Guide

Disable the Resource Cache

If you are protecting an application that uses dynamic, unique URLs, you may want to
disable the resource cache. Since the URLs used by the application are unique, then they
will not be read from the cache.

To disable the resource cache, change the value of the MaxResourceCacheSize to zero.

Set the Maximum User Session Cache Size

You can set a maximum for the number of users the Agent maintains in the session
cache with the following parameter:

MaxSessionCacheSize

Specifies the maximum number of users the Agent maintains in its session
cache. The session cache stores the session IDs of users who authenticate
successfully. Authenticated users accessing other resources within the realm
during a session, are authenticated using the session cache instead of the
Policy Server. When the maximum number is reached, the Agent replaces the
oldest user records with new user records.

Base the value of this parameter on the number of users that you expect to
access and use resources for a sustained period. If you set this value to a high
number, verify that sufficient system memory is available.

Note: Regardless of the cache size, all entries in the session cache of the Web
Agent expire automatically after one hour.

Default: (Domino web servers) 1000

Default: (IIS and Oracle iPlanet web servers) 700

Default: (Apache web servers) 750

To set a maximum size of the user session cache

1. Set the value of the MaxSessionCacheSize parameter to the maximum number of
users you want.

2. For framework agents, you must restart the web server to apply the change.

The maximum user session cache size is changed.

Cache Anonymous Users

Chapter 14: Adjust Performance 199

Cache Anonymous Users

You can configure the Web Agent to store anonymous user information in a cache with
the following parameter:

CacheAnonymous

Specifies if the Web Agent caches anonymous user information. You may want
to set this parameter in any of the following situations:

■ If your web site gets mostly anonymous users and you want to store their
session information.

■ If your web site gets a mix of registered and anonymous users.

 You may want to disable this parameter to keep the anonymous user
information from filling the cache and leaving no room for registered
users.

Default: No

To store anonymous user information in cache, set the value of the CacheAnonymous
parameter to yes.

Accommodate Testing Tools that do not send HOST Headers

200 Web Agent Configuration Guide

Accommodate Testing Tools that do not send HOST Headers

The SiteMinder Web Agent uses the value of the HOST header in an HTTP request to
determine the following settings:

■ Agent name

■ Server name

■ Server IP address

SiteMinder Web Agents only accept HTTP version 1.1 requests, because HTTP versions
0.9 and 1.0 do not use HOST headers. This poses problems for some testing tools that
do not send HOST headers, because the Web Agent rejects those requests.

SiteMinder r12.0 SP3 supports a new Agent Configuration parameter that lets you
define a HOST header value. The Web Agent uses this value in any request that does not
contain a HOST header.

To accommodate testing tools that do not send HOST headers

1. Open one of the following items:

■ If you are using Central Configuration, open your Agent Configuration Object.

■ If you are using Local Configuration, open your LocalConfig.conf file.

2. Add the following parameter:

DefaultHostName

Defines a value for the HOST header. Add this parameter to your Agent
Configuration Object or LocalConfig.conf file to use a testing or performance
tool that sends HTTP version 0.9 or version 1.0 requests (without HOST
headers). If this parameter is not set, the Web Agent only accepts HTTP 1.1
requests.

Default: None (blank)

Example: webserver.example.com

3. Set the value of the previous parameter to the host name you want. See the
previous example.

4. Save and close one of the following items:

■ If you are using Central Configuration, save and close your Agent Configuration
Object.

■ If you are using Local Configuration, save and close your LocalConfig.conf file.

The Web Agent substitutes the DefaultHostName value for any HTTP request
without a HOST header.

Chapter 15: Use Web Agents with Proxy Servers 201

Chapter 15: Use Web Agents with Proxy
Servers

This section contains the following topics:

Configure Agents that Sit behind Proxy Servers (see page 202)
Security Considerations (see page 207)

Configure Agents that Sit behind Proxy Servers

202 Web Agent Configuration Guide

Configure Agents that Sit behind Proxy Servers

If a Web Agent will be installed behind a proxy server, you can configure the Web Agent
to work with proxy servers using the following parameters:

ProxyTrust

Instructs the agent on a destination server (or behind a reverse proxy server) to
trust authorizations received from a SiteMinder agent on a proxy server.
Setting this value to yes increases efficiency because only the agent on the
proxy server contacts the Policy Server for authorization. The agent operating
on the destination server does not contact the Policy Server again reauthorize
users.

Default: No

ExpireForProxy

Prevents a client from caching content (pages and potentially headers or
cookies). When the value of this parameter is set to yes , the Web Agent inserts
one of the following HTTP headers into the HTTP response:

■ Expires

■ Cache-control

If content is not cached, subsequent requests continue to be forwarded.

When the ExpireForProxy parameter is set to yes, the Web Agent inserts the
strings specified in the appropriate ProxyHeaderssuffix_name parameter into
the HTTP response based upon what type of request the Agent performed.

For HTTP/1.1 requests, the Agent inserts the values of the following
parameters as headers in the response:

■ ProxyHeadersAutoAuth

■ ProxyHeadersProtected

■ ProxyHeadersUnprotected

For HTTP/1.0 requests, the Agent inserts the values of the following
parameters as headers in the response:

– ProxyHeadersAutoAuth10

– ProxyHeadersProtected10

■ ProxyHeadersUnprotected10

Default: No

Note: Although this parameter name contains the word 'proxy,' the settings of
this parameter also affect the behavior of web browsers, or any other client
that connects to a web server on which any SiteMinder Agents using this
parameter setting operate.

Configure Agents that Sit behind Proxy Servers

Chapter 15: Use Web Agents with Proxy Servers 203

To tell the proxy not to cache the pages, the Web Agent adds an Expires header for the
page. This header is set to a date in the past, which prevents the page from being
cached by a proxy, as dictated by the HTTP 1.0 specification. On 302 redirects, a
cache-control: no-cache header is set instead. Although this prevents caching of
content, this has the negative consequence of affecting the browsing experience for an
Internet Explorer (IE) browser, as described by Microsoft Support.

With the use of cache-control: no-cache for 302 redirects, the ActiveX component that
manages in-place document viewing in IE relies on the browser’s cache to locate the file.
Because this header instructs the browser not to cache the file, the ActiveX component
cannot locate the file and fails to display the request properly. Further, when you set
the Web Agent’s ExpireForProxy setting to yes, the back-end server tells the proxy not
to cache the resource.

To configure Agents that sit behind proxy servers

1. Set the ProxyTust parameter to yes.

2. Set the ExpireForProxy parameter to yes.

3. (Optional) Customize values the cache-control and ExpireForProxy (HTTP) headers.

The Agents behind the proxy servers are configured.

More information:

Customize the Cache-Control and ExpireForProxy Header Settings (see page 204)

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q297822

Configure Agents that Sit behind Proxy Servers

204 Web Agent Configuration Guide

Customize the Cache-Control and ExpireForProxy Header Settings

You can customize the cache-control and ExpireForProxy headers to secure Web
resources without affecting in-place activation of application files (.doc, .pdf, and so on).
You can set specific HTTP headers for the following types of content independently to
control how that content is cached by a web browser or proxy server:

■ Auto-Authorized

■ Unprotected

■ Protected

Important! We recommend using the default settings unless you are familiar with the
ramifications of changing these settings in accordance with RFC 2068. If you plan to
change the default settings, note that the SiteMinder session cookie is updated on
access of an unprotected page once a user has a session in order to track idle timeout.
Therefore, unprotected pages should not be cached on a proxy that caches HTTP
headers.

The following characteristics apply to setting headers to prevent caching by proxies:

■ All redirects set a Cache-Control: no-cache header, regardless of agent activity.

■ The web server sends the appropriate headers back to the proxy/client based on
the HTTP protocol used (1.0 or 1.1 and higher).

All parameters should be configured using multi-value strings to suit the use of multiple
headers, such as cache-control: private and cache-control: max-age=60.

The following is the new configuration:

1. ProxyHeadersDefaultTime - defaults to 60 seconds

2. ProxyHeadersTimeoutPercentage – defaults to 10 percent

3. The following cache-control headers are available:

ProxyHeadersAutoAuth

Specifies the value of an HTTP 1.1 header that the Web Agent inserts into an
HTTP response to a client when the ExpireForProxy parameter in the Web
Agent Configuration is set to yes. The value of this header determines if or for
how long the auto-authorized resource is cached.

Default: Expires: Thu, 01 Dec 1994 16:00:00 GMT

Example (suggested setting): "Cache-control: max-age=60"

Configure Agents that Sit behind Proxy Servers

Chapter 15: Use Web Agents with Proxy Servers 205

ProxyHeadersAutoAuth10

Specifies the value of an HTTP 1.0 header that the Web Agent inserts into an
HTTP response to a client when the ExpireForProxy parameter in the Web
Agent Configuration is set to yes. The value of this header determines if or for
how long the auto-authorized resource is cached.

Default: Expires: Thu, 01 Dec 1994 16:00:00 GMT

Example (suggested setting): "Expires: Thu, 01 Dec 1994 16:00:00 GMT"

ProxyHeadersProtected

Specifies the value of an HTTP 1.1 header that the Web Agent inserts into an
HTTP response to a client when the ExpireForProxy parameter in the Web
Agent Configuration is set to yes. The value of this header determines if or for
how long the protected resource is cached.

Default: Expires: Thu, 01 Dec 1994 16:00:00 GMT

Cache-Control: no-cache

Example (suggested settings): "Cache-Control: private"

ProxyHeadersProtected="Cache-Control: max-age=60"

ProxyHeadersProtected10

Specifies the value of an HTTP 1.0 header that the Web Agent inserts into an
HTTP response to a client when the ExpireForProxy parameter in the Web
Agent Configuration is set to yes. The value of this header determines if or for
how long the protected resource is cached.

Default: Expires: Thu, 01 Dec 1994 16:00:00 GMT

Cache-Control: no-cache

Example (suggested settings): "Expires: Thu, 01 Dec 1994 16:00:00 GMT"

ProxyHeadersUnprotected

Specifies the value of an HTTP 1.1 header that the Web Agent inserts into an
HTTP response to a client when the ExpireForProxy parameter in the Web
Agent Configuration is set to yes. The value of this header determines if or for
how long the unprotected resource is cached.

Default: Expires: Thu, 01 Dec 1994 16:00:00 GMT

Cache-Control: no-cache

Example (suggested setting): ProxyHeadersUnprotected="Cache-Control:
private"

ProxyHeadersUnprotected="Cache-Control: max-age=60"

Configure Agents that Sit behind Proxy Servers

206 Web Agent Configuration Guide

ProxyHeadersUnprotected10

Specifies the value of an HTTP 1.0 header that the Web Agent inserts into an
HTTP response to a client when the ExpireForProxy parameter in the Web
Agent Configuration is set to yes. The value of this header determines if or for
how long the unprotected resource is cached.

Default: Expires: Thu, 01 Dec 1994 16:00:00 GMT

Cache-Control: no-cache

Example (suggested setting): "Expires: Thu, 01 Dec 1994 16:00:00 GMT"

When configuring multiple headers, (for example, the cache-control headers in the
suggested setting for unprotected HTTP/1.1 content), note the following:

■ You must have multiple occurrences of the configuration parameter and you cannot
separate these with a comma (,) or the plus-sign (+).

■ As the values for these configuration parameters are HTTP response headers, they
must comply with RFC 2616 (for HTTP/1.1), RFC 1945 (for HTTP/1.0) and RFC 822.
Both HTTP/1.1 and HTTP/1.0 specify the format for an HTTP Header as that of an
RFC 822 message, namely "Name: Value" (Name, followed by a colon, white space
and then a value).

If you do not configure the Web Agent to set the appropriate cache expiration headers
when a user accesses unprotected resources, then by default, the Web Agent will not
set these headers, thereby allowing a web browser or proxy server to cache an
SMSESSION cookie. This cached cookie can be re-used by the web browser or
proxy-server after the user has initiated a different session (and therefore a different
user context), causing an unauthorized impersonation.

More information:

Configure Agents that Sit behind Proxy Servers (see page 202)

Proxy Header Usage Notes

■ To prevent the Web Agent from sending any proxy headers, blank out the
ProxyHeadersUnprotected value. For example:

ProxyHeadersUnprotected=""

Note: To get a double quote character (“) to appear, use a single quote (‘). The
Web Agent automatically converts it to a double quote.

■ The value, %% or %d (treated identically) may appear within a ProxyHeaders line.
This value is replaced with either the smaller of the IdleTimeout and
SessionTimeout multiplied by the ProxyHeadersTimeoutPercentage, or, if the
timeouts are not set, the ProxyHeadersDefaultTime is used.

Security Considerations

Chapter 15: Use Web Agents with Proxy Servers 207

■ Ensure that values for the standard (1.1 and higher) and HTTP 1.0 headers are set
properly for requests to the back-end server.

■ ExpireForProxy="YES" will expire cookie provider redirects carrying the SMSESSION
cookie in the query string.

Security Considerations

Browser sessions can persist after logout, so removing the SMSESSION cookie does not
prevent a user from using the same browser session to view previously cached files. This
problem occurs because the proxy server is not aware of the logout request and retains
any protected/unprotected content in cache for the cache-control: private user until it
timed out (cache-control: max-age=60). Thus, such a request would result in a page
returned with a valid SMSESSION cookie. The only way to ensure security is to disable
keep-alives or close the browser.

Further, the local browser cache is affected by the private/max-age combination since it
observes local cache across sessions. For this reason, the max-age time for protected
resources should be as short as possible.

Employing the if-modified-since and if-none-match request headers when the
allowcacheheaders="FALSE" configuration setting is used (default) does not prevent the
proxy server from observing these headers. Thus, these observed headers take effect on
the request according to the proxy server.

You could work around this issue by installing:

■ a Web Agent on the proxy server.

■ another filter that removes these headers from the request.

Since HTTP 1.0, HTTP 1.1, or higher use different headers for specifying instructions to
caching proxies, these versions should be configured in a way to ensure the most
appropriate handling based on the type of connection.

Chapter 16: Configure Reverse Proxy Servers 209

Chapter 16: Configure Reverse Proxy
Servers

This section contains the following topics:

Types of Reverse Proxy Solutions (see page 209)
How Reverse Proxy Servers Work with SiteMinder (see page 209)
SiteMinder Secure Proxy Server (see page 218)
SiteMinder IIS 7.x Web Servers and Application Request Routing (ARR) (see page 219)

Types of Reverse Proxy Solutions

SiteMinder supports the following reverse proxy solutions:

■ The Apache-based reverse proxy agent

■ The Oracle iPlanet-based reverse proxy agent

■ The SiteMinder Secure Proxy Server

How Reverse Proxy Servers Work with SiteMinder

A reverse proxy server is a proxy server that acts on behalf of an enterprise to forward
requests to the internal network of an organization. The reverse proxy server allows
clients to access resources on backend servers (those servers behind a firewall).

Reverse proxy servers provide the following advantages:

■ Users within a cookie domain can access resources on backend servers without
reauthenticating. Users from other domains must authenticate through the reverse
proxy server and typically, a firewall before gaining access to those same backend
servers.

■ Users can access different resources hosted on several backend servers using the
same domain name.

■ Reverse proxy agents support the same features as other SiteMinder agents.

■ If you have resources located on servers for which a SiteMinder agent is not
supported, deploy a reverse proxy server before the backend server. The supported
agent protects the resources hosted on the backend server. The backend server
does not require a SiteMinder agent.

How Reverse Proxy Servers Work with SiteMinder

210 Web Agent Configuration Guide

SiteMinder agents installed on the reverse proxy server can protect resources on
backend servers. The following illustration shows a network with a reverse proxy server
using a SiteMinder agent:

How Reverse Proxy Servers Work with SiteMinder

Chapter 16: Configure Reverse Proxy Servers 211

SiteMinder Reverse Proxy Deployment Considerations

Typically, when you deploy an Apache or Oracle iPlanet reverse proxy Agent, a firewall is
located between the Apache or Oracle iPlanet Web Agent and the servers hosting the
protected resources. The Policy Server should also be located behind the firewall.

The following illustration shows a SiteMinder reverse proxy deployment.

Firewall

Apache or Sun Java

System Proxy Server/

Web Agent

Internet user

 Policy Server

User

Store

Policy

Store

Marketing

Resources

IIS

Payroll

Resources

IIS (SSL)

Finance

Resources

Oracle Application Server

Intranet user

Internet

How Reverse Proxy Servers Work with SiteMinder

212 Web Agent Configuration Guide

When deploying a SiteMinder reverse proxy Agent, consider the following:

■ If a policy has been configured to return response attributes, the variables are sent
to both the reverse proxy server and the backend web server on which the
protected resource resides. When a request is made for a protected resource, the
Policy Server first sends response attributes (CGI or HTTP variables) to the Agent on
the Apache or Oracle iPlanet server. The Agent then puts the response attributes in
the request that is sent to the backend server.

■ If any of the backend servers or protected applications provide their own
authentication functionality, the authentication must be disabled. Disabling the
backend authentication ensures that SiteMinder’s authentication takes precedence.

Important! When configuring the cache for the reverse proxy be aware that all
cookies are cached, including the SMSESSION cookie. For assistance see your
Apache or Oracle iPlanet web server documentation.

More Information

Define HTTPS Ports (see page 146)

How Reverse Proxy Servers Work with SiteMinder

Chapter 16: Configure Reverse Proxy Servers 213

How to Configure An Apache Reverse Proxy Server

Configuring an Apache-based server as a reverse proxy with <stmdnr> has the following
parts:

■ Adding directives to the httpd.conf file of your Apache reverse proxy server.

■ Setting the agent configuration parameters on any SiteMinder Agents.

Follow these steps:

1. Add the following directives to the httpd.conf file of your Apache reverse proxy
server:

ProxyPass

Allows mapping of remote servers to the local server. The values in this
directive use the following format:

/local_virtual_path partial_URL_of_remote_server

Example: ProxyPass /realma/ http://server.example.org/realma/

ProxyPassReverse

Allows adjustment of the location header by the Apache server on HTTP
redirect responses. The values in this directive use the following format:

/local_virtual_path partial_URL_of_remote_server

Example: ProxyPassReverse /realma/ http://server.example.org/realma/

Note: For more information about directives, see the documentation for your
web server.

2. Update the settings of the following parameters for any SiteMinder Agents for
Apache-based servers behind the Apache reverse proxy server:

a. Set the value of the following parameter to to yes:

ProxyAgent

Specifies if a Web Agent is acting as a reverse proxy agent.

When the value of this parameter is yes, the SiteMinder Web Agent on the
front-end server preserves the original URL requested by the user in the
SM_PROXYREQUEST HTTP header. This header is created whenever protected
and unprotected resources are requested. The back-end server can read this
header to obtain information about the original URL.

Default: No

a. Set the following parameter:

ProxyTimeout

Specifies the number of seconds the reverse proxy server waits for the
SiteMinder agent deployed behind it to respond to a request.

Default: 120

How Reverse Proxy Servers Work with SiteMinder

214 Web Agent Configuration Guide

a. Note: This parameter applies to Apache-based agents only.

b. (Optional) Set the following parameter:

ProxyTrust

Instructs the agent on a destination server (or behind a reverse proxy server) to
trust authorizations received from a SiteMinder agent on a proxy server.
Setting this value to yes increases efficiency because only the agent on the
proxy server contacts the Policy Server for authorization. The agent operating
on the destination server does not contact the Policy Server again reauthorize
users.

Default: No

a. Edit the BadURLChars parameter by removing all occurrences of the following
value from the list:

%

b. Set the httpsports parameter to indicate to the Apache server which port is set
up for SSL.

3. Restart your Apache web server.

How Reverse Proxy Servers Work with SiteMinder

Chapter 16: Configure Reverse Proxy Servers 215

Configure a Sun Java System 6.0 Reverse Proxy Server

You can use a Oracle iPlanet 6.0 Web server as a reverse proxy with SiteMinder.

Note: The SiteMinder Agent Configuration wizard only modifies the default obj.conf file
on the Oracle iPlanet (formerly Sun Java System) web server. To protect other instances
or reverse proxy deployments with SiteMinder, copy the SiteMinder settings from the
default obj.conf file to any respective instance_name-obj.conf files. For example, your
web server created an obj.conf file when you installed it, but you later added a server
instance named my_server.example.com. To protect resources on
my_server.example.com with SiteMinder, copy the SiteMinder settings added by the
wizard from the obj.conf file to the my_server.example.com-obj.conf file.

To configure a Oracle iPlanet Web server as a reverse proxy

1. Navigate to the following directory:

web_server_installation_directory/plugins

2. Create the following subdirectories:

\passthrough\bin

3. Add the one of the folloiwng files to the passthrough\bin directory:

■ passthrough.dll (Windows)

■ libpassthrough.so (UNIX)

Note: Download the Sun Java System Web Server Reverse Proxy Add-On 6.1 file
from Sun Microsystems.

4. Add the one of the following sections to your
web_server_installation_directory/config/magnus.conf file:

Windows

Init fn="load-modules"
shlib="web_server_installation_directory/plugins/passthrough/bin/passthroug
h.dll"
funcs="init-passthrough,auth-passthrough,check-passthrough,service-passthro
ugh" NativeThread="no"

Init fn="init-passthrough"

UNIX

Init fn="load-modules"
shlib="web_server_installation_directory/plugins/passthrough/bin/libpassthro
ugh.so"
funcs="init-passthrough,auth-passthrough,check-passthrough,service-passthro
ugh" NativeThread="no"

Init fn="init-passthrough"

Note: All lines must start with Init. Any settings that follow must continue on the
same line.

https://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_SMI-Site/en_US/-/USD/ViewProductDetail-Start?ProductRef=SJWS6.1-ADDON-OCT0104-G-F@CDS-CDS_SMI
https://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_SMI-Site/en_US/-/USD/ViewProductDetail-Start?ProductRef=SJWS6.1-ADDON-OCT0104-G-F@CDS-CDS_SMI

How Reverse Proxy Servers Work with SiteMinder

216 Web Agent Configuration Guide

5. Create a passthrough object by adding the following section to top of the
config/instance_name-obj.conf file:

<Object name="passthrough">

ObjectType fn="force-type" type="magnus-internal/passthrough"

Service type="magnus-internal/passthrough" fn="service-passthrough"

servers="http://server_name:port"

Error reason="Bad Gateway" fn="send-error" uri="$docroot/badgateway.html"

</Object>

6. Configure which URIs are to be forwarded by adding a section similar to the
following to the top of the default object in the
server_install_directory/config/obj.conf file:

NameTrans fn="assign-name" from="(/uri|/uri/*)" name="passthrough"

The URI is the context root of a web application deployed on the remote servers,
and passthrough corresponds to the name of the <Object> in the obj.conf file, as
shown in the following example:

<Object name="default">

...

NameTrans fn="assign-name" from="(/webapp1|/webapp1/*)" name="passthrough"

...

</Object>

The name value should match the value of the object name used in Step 5.

7. Restart the Web server.

The reverse proxy is configured.

How Reverse Proxy Servers Work with SiteMinder

Chapter 16: Configure Reverse Proxy Servers 217

Configure an Oracle iPlanet 7.0 Reverse Proxy Server

You can use a Oracle iPlanet 7.0 Web server as a reverse proxy with SiteMinder.

Note: The SiteMinder Agent Configuration wizard only modifies the default obj.conf file
on the Oracle iPlanet (formerly Sun Java System) web server. To protect other instances
or reverse proxy deployments with SiteMinder, copy the SiteMinder settings from the
default obj.conf file to any respective instance_name-obj.conf files. For example, your
web server created an obj.conf file when you installed it, but you later added a server
instance named my_server.example.com. To protect resources on
my_server.example.com with SiteMinder, copy the SiteMinder settings added by the
wizard from the obj.conf file to the my_server.example.com-obj.conf file.

To configure a Oracle iPlanet Web server as a reverse proxy

1. Add the following directive to the instance_name-obj.conf file:

NameTrans

Specifies the local and remote virtual paths using the following format:

NameTrans fn="map" from="local_virtual_path"
name="reverse-proxy-/local_virtual_path" to="remote_virtual_path"

Example: NameTrans fn="map" from="/realma"
name="reverse-proxy-/reamla" to="http://realma"

2. Add the following directives at the end of the obj.conf file:

Object name

Specifies the name of the local virutal path and the URL of the remote virutal
path used in the NameTrans directive, using the following format:

<Object name="reverse-proxy-/local_virtual_path">

Route fn="set-origin-server" server="http://remote_server_URL:port"

</Object>

Example: <Object name="reverse-proxy-/reamla">

Route fn="set-origin-server" server="http://server.example.org:port"

</Object>

Object ppath

Specifies the partial path given to the server by the client.

Example: <Object ppath="http:*">

Service fn="proxy-retrieve" method="*"

</Object>

3. Restart the web server.

The reverse proxy is configured.

SiteMinder Secure Proxy Server

218 Web Agent Configuration Guide

SiteMinder Secure Proxy Server

For users who require a more sophisticated reverse proxy solution, the SiteMinder
Secure Proxy Server provides the following benefits over the Apache or Oracle
iPlanet-based SiteMinder Reverse Proxy Agent:

■ An embedded and fully supported web server, including SSL accelerator card
support and a GUI tool for managing keys and certificates

■ Support for multiple session schemes (cookie-based, and cookie-less)

■ Support for flexible proxy rules, such as the following:

– Support for rules based on HTTP headers and SiteMinder responses, in addition
to URLs

– Ease of use for complex rules

The Secure Proxy Server introduces a new layer in the traditional SiteMinder
architecture. This layer forwards or redirects all requests to destination servers in the
enterprise.

When the Secure Proxy Server processes a request, the URL requested by the user is
preserved in an HTTP header variable called SM_PROXYREQUEST. This header may be
used by other applications that require the original URL requested by a user before the
Secure Proxy Server proxied the request.

SM_PROXYREQUEST HTTP Header for SiteMinder Processing with Secure Proxy
Server

The Secure Proxy Server introduces a new layer in the traditional SiteMinder
architecture. This layer forwards or redirects all requests to destination servers in the
enterprise.

When the Secure Proxy Server processes a request, the URL requested by the user is
preserved in an HTTP header variable called SM_PROXYREQUEST. This header may be
used by other applications that require the original URL requested by a user before the
Secure Proxy Server proxied the request.

SiteMinder IIS 7.x Web Servers and Application Request Routing (ARR)

Chapter 16: Configure Reverse Proxy Servers 219

SiteMinder IIS 7.x Web Servers and Application Request
Routing (ARR)

The SiteMinder r12.0 SP3 Agent for IIS supports the Application Request Routing feature
of IIS 7.x. The following configurations are supported:

■ An IIS 7.x web server running both ARR and the SiteMinder Agent for IIS in a DMZ,
as shown in the following illustration (see page 220):

■ Multiple IIS 7.x web servers running SiteMinder Web Agents for IIS behind another
IIS 7.x server in the DMZ running ARR. This configuration is shown in the following
illustration (see page 221):

SiteMinder IIS 7.x Web Servers and Application Request Routing (ARR)

220 Web Agent Configuration Guide

■ An IIS 7.x web server running both ARR and the SiteMinder Agent for IIS in a DMZ,
and multiple IIS 7.x web servers running the SiteMinder Agent for IIS behind the the
ARR server. This configuration is shown in the following illustration (see page 222):

How to Set Up an IIS 7.x Server with ARR and SiteMinder in your DMZ

To set up an IIS 7.x web server with Application Request Routing (ARR) and a SiteMinder
Agent for IIS in your DMZ (as a front-end server), use the following multi-step process:

1. Install and configure ARR on the IIS 7.x web server in your DMZ (front end).

Note: For more information about Application Request Routing (ARR), go to the IIS
website, and search for the phrase, "Application Request Routing."

2. Install and configure a SiteMinder Agent for IIS on your IIS 7.x web server in your
DMZ (front-end).

Note: For more information, see the Web Agent Installation Guide for IIS.

http://learn.iis.net/
http://learn.iis.net/

SiteMinder IIS 7.x Web Servers and Application Request Routing (ARR)

Chapter 16: Configure Reverse Proxy Servers 221

How to Set up your IIS 7.x Servers with SiteMinder When Operating Behind an
ARR Server in a DMZ

The SiteMinder Agent for IIS supports the following configuration using Application
Request Routing (ARR):

■ Operating several back-end web servers behind a DMZ-based IIS 7.x web server
running ARR.

■ Protecting those back end servers with SiteMinder Web Agents or Agents for IIS.

Note: Only certain SiteMinder Web Agents support operating as a reverse-proxy
server. However any web server hosting a supported SiteMinder Web Agent or
Agent for IIS can accept traffic from a reverse proxy server running SiteMinder. For
more information, see the Platform Support Matrix.

To implement this configuration, use the following multi-step process:

1. Install and configure ARR on the IIS 7.x web server in your DMZ (front end).

Note: For more information about Application Request Routing (ARR), go to the IIS
website, and search for the phrase, "Application Request Routing."

2. Install and configure a SiteMinder Agent for IIS on your first IIS 7.x web server
behind your DMZ (back-end). For more information, see the Web Agent Installation
Guide for IIS.

Note: In this context, the first server refers to the IIS web server in a farm where
the shared configuration information is stored. A node refers to any other IIS web
servers in the farm which read the shared configuration from the first server.

3. Install and configure a SiteMinder Agent for IIS on your other IIS 7.x web server
nodes behind your DMZ (back-ends).

http://learn.iis.net/
http://learn.iis.net/

SiteMinder IIS 7.x Web Servers and Application Request Routing (ARR)

222 Web Agent Configuration Guide

How to Set up an IIS 7.x Server with ARR and SiteMinder in your DMZ with other
SiteMinder Agents for IIS Operating Behind the DMZ

The SiteMinder Agent for IIS protects your entire IIS environment with the following
configuration:

■ An IIS 7.x web server with Application Request Routing (ARR) and a SiteMinder
Agent for IIS in your DMZ (as a front-end server).

■ Multiple IIS 7.x web servers behind the ARR server in the DMZ, with each using the
SiteMinder Web Agent or Agent for IIS.

Note: Only certain SiteMinder Web Agents support operating as a reverse-proxy
server. However any web server hosting a supported SiteMinder Web Agent or
Agent for IIS can accept traffic from a reverse proxy server running SiteMinder. For
more information, see the Platform Support Matrix.

To implement the previous configuration, use the following multi-step process:

1. Install and configure ARR on the IIS 7.x web server in your DMZ (front end).

Note: For more information about Application Request Routing (ARR), go to the IIS
website, and search for the phrase, "Application Request Routing."

2. Install and configure a SiteMinder Agent for IIS on your IIS 7.x web server in your
DMZ (front-end).

Note: For more information, see the Web Agent Installation Guide for IIS.

3. Set the Web Agent Configuration parameters for the SiteMinder Agent for IIS in
your DMZ (see page 223).

4. Install and configure a SiteMinder Agent for IIS on your first IIS 7.x web server
behind your DMZ (back-end). For more information, see the Web Agent Installation
Guide for IIS.

Note: In this context, the first server refers to the IIS web server in a farm where
the shared configuration information is stored. A node refers to any other IIS web
servers in the farm which read the shared configuration from the first server.

5. Install and configure a SiteMinder Agent for IIS on your other IIS 7.x web server
nodes behind your DMZ (back-ends).

6. Set the Web Agent Configuration Parameters for all of your IIS 7.x Servers using
SiteMinder behind the DMZ (see page 225). Include the first web server and all
nodes.

http://learn.iis.net/

SiteMinder IIS 7.x Web Servers and Application Request Routing (ARR)

Chapter 16: Configure Reverse Proxy Servers 223

Set the SiteMinder Web Agent Configuration Parameters for your IIS 7.x ARR Server in the DMZ

This section describes how to set the Web Agent Configuration parameters running the
<smtndr> Agent for IIS in the following situation:

■ An IIS 7.x Web Server operates in the DMZ using ARR and the SiteMinder Agent for
IIS (front end).

■ Other IIS 7.x Web servers behind the DMZ receive requests from the ARR server,
but do not use the SiteMinder Agent for IIS (back end).

Set the SiteMinder Web Agent Configuration parameters for your IIS 7.x ARR server in
the DMZ

1. Verify the following items:

■ ARR 2.0 is installed and configured on the web server in the DMZ.

■ The SiteMinder r12.0 SP3 Agent for IIS is installed and configured on the web
server in the DMZ.

2. Open the Administrative UI.

3. Open the Agent Configuration Object (ACO) associated with your SiteMinder Agent
for IIS (the front-end running in the DMZ).

4. Locate the following parameter:

ProxyTrust

Instructs the agent on a destination server (or behind a reverse proxy server) to
trust authorizations received from a SiteMinder agent on a proxy server.
Setting this value to yes increases efficiency because only the agent on the
proxy server contacts the Policy Server for authorization. The agent operating
on the destination server does not contact the Policy Server again reauthorize
users.

Default: No

5. Verify that the value set in the ProxyTrust parameter is no.

6. Locate the following parameter:

ProxyAgent

Specifies if a Web Agent is acting as a reverse proxy agent.

When the value of this parameter is yes, the SiteMinder Web Agent on the
front-end server preserves the original URL requested by the user in the
SM_PROXYREQUEST HTTP header. This header is created whenever protected
and unprotected resources are requested. The back-end server can read this
header to obtain information about the original URL.

Default: No

7. Change the value of the ProxyAgent parameter to yes.

8. Submit your changes to the Agent Configuration Object.

SiteMinder IIS 7.x Web Servers and Application Request Routing (ARR)

224 Web Agent Configuration Guide

The Web Agent Configuration parameters are set.

SiteMinder IIS 7.x Web Servers and Application Request Routing (ARR)

Chapter 16: Configure Reverse Proxy Servers 225

Set the Web Agent Configuration Parameters for your IIS 7.x Servers using SiteMinder Behind
the DMZ

This section describes how to set the Web Agent Configuration parameters running the
<smtndr> Agent for IIS in the following situation:

■ An IIS 7.x Web Server operates in the DMZ using ARR (front end).

■ Other IIS 7.x Web servers behind the DMZ receive requests from the ARR server.
Those servers also use the SiteMinder Agent for IIS (back end).

To set the Web Agent Configuration parameters for your IIS 7.x servers using
SiteMinder behind the DMZ

1. Verify the following items:

■ ARR 2.0 is installed and configured on the web server in the DMZ.

■ The SiteMinder r12.0 SP3 Agent for IIS is installed and configured on the first
web server and all the nodes behind your DMZ.

2. Open the Administrative UI.

3. Open the Agent Configuration Object (ACO) associated with your SiteMinder Agent
for IIS on the first web server behind the DMZ.

4. Locate the following parameter:

ProxyTrust

Instructs the agent on a destination server (or behind a reverse proxy server) to
trust authorizations received from a SiteMinder agent on a proxy server.
Setting this value to yes increases efficiency because only the agent on the
proxy server contacts the Policy Server for authorization. The agent operating
on the destination server does not contact the Policy Server again reauthorize
users.

Default: No

5. Change the value of the ProxyTrust parameter to yes.

6. Locate the following parameter:

ProxyAgent

Specifies if a Web Agent is acting as a reverse proxy agent.

When the value of this parameter is yes, the SiteMinder Web Agent on the
front-end server preserves the original URL requested by the user in the
SM_PROXYREQUEST HTTP header. This header is created whenever protected
and unprotected resources are requested. The back-end server can read this
header to obtain information about the original URL.

Default: No

7. Verify that the value of the ProxyAgent parameter is set to no.

8. Submit your changes to the Agent Configuration Object.

SiteMinder IIS 7.x Web Servers and Application Request Routing (ARR)

226 Web Agent Configuration Guide

9. Open the Agent Configuration Object (ACO) associated with your SiteMinder Agent
for IIS on the an IIS web server node behind the DMZ.

10. Repeat Steps 5 through 10 on each IIS web server node, until all the nodes behind
the DMZ are configured.

The Web Agent Configuration parameters are set.

Chapter 17: Control Inbound URL Processing 227

Chapter 17: Control Inbound URL
Processing

This section contains the following topics:

Decode Query Data in a URL (see page 227)
Ignore Query Data in a URL (see page 228)
Query String Encryption of Redirect URLs (see page 229)
Allow Un-restricted Access to URIs (see page 231)
Encrypt Query String Parameters in Redirection URLs (see page 232)
Set a Maximum URL Size (see page 233)

Decode Query Data in a URL

To have the Web Agent’s Base64 algorithm decode a URL’s query data before calling the
Policy Server (so the Policy Server sees the proper resource), use the following
parameter:

DecodeQueryData

Specifies whether the Web Agent decodes the query data in a URL before
calling the Policy Server. Set this parameter to yes if you need do any of the
following tasks in your environment:

■ If you need to ensure the rules filer acts against the proper string.

■ If you need to or write rules against the data in a query string.

Default: No

To have the Web Agent decode the query data in a URL before calling the Policy Server,
set the value of the DecodeQueryData parameter to yes.

Ignore Query Data in a URL

228 Web Agent Configuration Guide

Ignore Query Data in a URL

The IgnoreQueryData parameter affects the way Web Agents treat URLs. If you do not
want the Web Agent cache the entire URL and send the URIs with their query strings to
the Policy Server for rule processing, you improve performance with the following
parameter:

IgnoreQueryData

Specifies whether the Web Agent will cache the entire URL (including the query
strings) and send the entire URI to the Policy Server for rule processing. A full
URL string contains a URI, a hook (?), and some query data, as shown in the
following example:

URI?query_data

URLs that have been the subjects of requests are cached by default.
Subsequent requests search the cache for a match. If requests for the same URI
contain different query data, the match fails. Ignoring the query data improves
performance.

When the IgnoreQueryData parameter is set to yes, the following occurs:

■ The URL is truncated at the hook. Only the URI is cached and sent to the
Policy Server. The query data is maintained elsewhere, for the purpose of
maintaining the proper state for redirects.

■ Only the part before the hook is sent to the Policy Server for rule
processing.

■ Both URIs in the following example are handled as the same resource:

 /myapp?data=1

 /myapp?data=2

When the IgnoreQueryData parameter is set to no, the following occurs:

■ The entire URL is cached.

■ The entire URI is sent to the Policy Server for rule processing.

■ The URIs in the following example are handled as different resources:

 /myapp?data=1

 /myapp?data=2

Default: No

To have the Web Agent send only URIs to the Policy Server for processing, set the value
of the IgnoreQueryData parameter to yes.

Important! Do not enable this setting if you have policies which depend on URL
query data.

Query String Encryption of Redirect URLs

Chapter 17: Control Inbound URL Processing 229

Query String Encryption of Redirect URLs

When a Web Agent communicates with credential collectors, such as the FCC and SCC,
the Password Services application (CGI or JSP), or a Cookie Provider, it uses protocol
parameters that are shown in clear text in the redirection URL.

The Web Agent can now encrypt all SiteMinder query parameters in a redirect URL,
further securing Agent interactions.The Web Agent is only encrypts data sent between
SiteMinder components, not for redirects to non-SiteMinder applications.

When query string encryption is enabled, the Web Agent encrypts query data when it
returns a 302 redirect response to the browser. The 302 response redirects the user to
another SiteMinder resource.

All the query parameters are grouped into a single query parameter called
smquerydata. When the SecureUrls parameter is enabled, SiteMinder denies access to
any request that does not have an encrypted smquerydata parameter, where required.

The SecureUrls feature is not supported when any of the following parameters are
enabled:

FCCCompatMode

Enable an FCC/NTC to serve up forms for resources protected by 4.x Web
Agents or third party applications.

Note: SMUSRMSG is supported for the custom authentication scheme only
when FCCCompatMode set to yes.
Default: (traditional agents) Yes

Default: (framework agents) No

Important! Setting this parameter to no removes support for version 4.x of the
Netscape browser.

LegacyEncoding

Forces the Web Agent to replace any dollar sign ($) characters in legacy URLs
with a hyphen (-). This also ensures backwards comparability with MSR,
Password Services, and DMS. When this parameter is set to no, a Web Agent
converts the string SM to -SM-. When this parameter is set to yes, the Web
Agent does not convert the dollar sign ($) character.

Default: (Framework Agents) No

Default: (Traditional Agents) Yes

If the SecureUrls parameter is set to yes, the Web Agent ignores the values of the
previous parameters, even if they are set to yes. When this happens, these parameters
have a value of no in the Agent logs, regardless of their settings in the configuration
object or configuration file, as shown in the following example:

[12/Jul/2005:05:23:57-975-1-0] SecureUrls: 'YES'

Query String Encryption of Redirect URLs

230 Web Agent Configuration Guide

[12/Jul/2005:05:23:57-975-1-0] FccCompatMode: 'NO'

[12/Jul/2005:05:23:57-975-1-0] LegacyEncoding: 'NO'

FCC Directive for Encoding Query Strings of Redirect URLs

When you encrypt the query strings of redirect URLs use credential collectors, the
credential collectors provide the keys used to encrypt the query data.

For forms authentication schemes, the query string directive, smquerydata, is part of
the FCC template. The agent serving the FCC uses this directive to send the encrypted
query data to the target agent when the FCC is posted.

The following directive is used:

<INPUT type='hidden' name='smquerydata' value='$$smquerydata$$'>

Note: If you are using custom FCCs, add the smquerydata directive with other FCC
directives, such as TARGET to the custom FCC.

SiteMinder r12.0 SP3 agents with the SecureUrls parameter enabled can operate only
with credential collectors served from other agents that support this functionality.

Query String Encryption of Redirect URLs and FCC-based Password Services

If you want to encrypt the query strings of redirect URLs, you can only use the
FCC-based Password Services; CGI or JSP-based Password Services will not work with
encrypted query parameters. If you set the SecureUrls parameter to no, you can use any
one of the three Password Services versions.

Note: CGI and JSP Password Services are deprecated as of 5.x QMR 7, but are still
supported.

Allow Un-restricted Access to URIs

Chapter 17: Control Inbound URL Processing 231

Allow Un-restricted Access to URIs

If you have URIs that you do not want to protect with SiteMinder, you can direct the
Web Agent to ignore and allow un-restricted access to those URIs by setting the
following parameter:

IgnoreUrl

Specifies a URI within a URL that will not be protected. Users attempting to
access the resource associated with the URI will not be challenged. The Web
Agent ignores the URI portion of the string after three forward slashes. For
example, if you set this parameter to the following value:

http://www.example.com/directory

The Web Agent ignores the following URI:

directory

The Web Agent ignores the specified URI wherever it occurs, even if it is under
a different domain. For example, the Web Agent ignores the URI shown
previously in all of the following URLs:

http://www.example.com/directory

http://www.example.net/directory

http://www.example.org/directory

Note: This value is case-sensitive.

Default: No default.

Example: (multiple URIs in local configuration file)

IgnoreUrl="http://www.example.com/directory"

IgnoreUrl="http://www.example.com/directory2"

Example: (using a URI only, without specifying a domain)

IgnoreUrl="/resource/"

To allow un-restricted access to URIs, do either of the following tasks:

■ For central configuration, add the fully qualified domain names with the URIs
that you want to ignore to your agent configuration object. For more than one
URI, use the multi-value setting for the parameter.

■ For local configuration, add a separate line for each fully qualified domain
name and URI in the local configuration file.

Resources using the specified URIs are ignored by the Web Agent and access to
those resources is granted automatically.

Encrypt Query String Parameters in Redirection URLs

232 Web Agent Configuration Guide

Encrypt Query String Parameters in Redirection URLs

The following parameter enables the Web Agent to encrypt all SiteMinder query
parameters in a redirect URL:

SecureURLs

Specifies whether the Web Agent encrypts the SiteMinder query parameters in
a redirect URL. You can use this setting to provide additional security for
requested resources protected by an advanced authentication scheme,
Password Services, or when a request invokes the Cookie Provider.

Important! The Web Agent only encrypts data sent between SiteMinder
components. The data sent for redirects to non-SiteMinder applications is not
encrypted.

The following SiteMinder credential collectors and applications support the
SecureUrls functionality:

■ HTML Forms authentication

■ Cert And Forms authentication

■ SSL Authentication

■ Cert or Forms authentication

■ NTLM authentication

■ ACE authentication

■ SafeWord authentication

■ User self registration

■ Multi-domain Single Sign-on with Cookie Provider

■ FCC-based Password Services (not CGI- or JSP-based)

Default: No

To encrypt query string parameters in redirection URLs

1. Set the value of the SecureURLs parameter to yes.

2. If you want to encrypt query string parameters in redirection URLs within a single
sign-on environment, ensure all of the Web Agents in the single sign-on
environment have the SecureURL parameter set to the same value.

3. If you are using custom FCCs, add the smquerydata directive along with the other
FCC directives (such as TARGET) to the custom FCC.

Query string parameters are encrypted in SiteMinder redirection URLs.

Set a Maximum URL Size

Chapter 17: Control Inbound URL Processing 233

Set a Maximum URL Size

You can increase the maximum URL size that a Web Agent can handle with the following
parameter:

MaxUrlSize

Specifies the maximum size (in bytes) of a URL that a Web Agent can handle.
Because different web servers have different limitations on URL length, check
the documentation from your web server vendor before setting this parameter.

Default: 4096 B

To change the maximum URL size, change the number of bytes specified in the
MaxUrlSize parameter.

Chapter 18: Enforce Security with URL Monitoring 235

Chapter 18: Enforce Security with URL
Monitoring

This section contains the following topics:

URL Monitoring Overview (see page 235)
Reduce Overhead by Ignoring File Extensions of Unprotected Resources (see page 236)
How to Protect Resources Without Periods or Extensions (see page 237)
Protect Resources Without Extensions (see page 238)
Secure Applications (see page 239)
Handle Complex URIs (see page 239)
Specify Bad URL Characters (see page 241)
Specify Bad Form Characters (see page 243)
Specify Bad Query Characters (see page 244)
Restrict Characters Allowed in Host Names (see page 246)

URL Monitoring Overview

The Web Agent can prevent attacks by malicious users trying to halt normal operation
of a Web site or circumvent a site’s security mechanisms to gain illegal access to
information.

The Web Agent monitors URLs in resource requests and enforces the security policies
for these resources. SiteMinder Web Agents interpret and parse URLs differently from
the web servers where the resources reside. These differences can result in subtle
performance and security issues that potentially allow unauthorized users to gain access
to resources. You need to consider these issues in the design of your Web site and the
configuration of the SiteMinder Web Agent.

Reduce Overhead by Ignoring File Extensions of Unprotected Resources

236 Web Agent Configuration Guide

Reduce Overhead by Ignoring File Extensions of Unprotected
Resources

You can reduce SiteMinder overhead by instructing the Web Agent to ignore requests
for certain types of resources with the following parameter:

IgnoreExt

Specifies the types of resources for which the Web Agent passes requests to
the web server without checking SiteMinder policies.The Web Agent allows
access to the items specified by this parameter even if they exist in a realm that
is protected by a SiteMinder policy.

Requests for resources that meet either of the following conditions may be
ignored:

■ The resource ends in one of the extensions that you configure the Web
Agent to ignore.

■ The URI of the protected resource contains a single period (.).

 For example, if a URI for a requested resource is /my.dir/ the Web Agent
passes the request directly to the web server.

Default: .class, .gif, .jpg, .jpeg, .png, .fcc, .scc, .sfcc, .ccc, .ntc

Important! Use caution when setting the IgnoreExt parameter. There are some
security issues that you may want to consider.

By default, the Agent does not ignore requests for resources that contain two or more
periods separated by a slash (/). Web Agents handle requests for resources using the
process shown in the following example:

1. The .gif extension is added to the IgnoreExt parameter. Requests for resources with
the .gif extension are be ignored by the Web Agent.

2. A request is made for the following URI:

/dir1/app.pl/file1.gif,

3. The Web Agent checks /dir1/app.pl/file1.gif against the policy server because some
web servers will execute /dir1/app.pl as an application instead of serving the
file1.gif resource.

Granting access to /dir1/app.pl/file1.gif without consulting the web server may
have caused a security breach.

To reduce overhead by ignoring the file extensions of unprotected resources, add the
extensions of the resources you want to ignore to the value IgnoreExt parameter.

How to Protect Resources Without Periods or Extensions

Chapter 18: Enforce Security with URL Monitoring 237

How to Protect Resources Without Periods or Extensions

Some URLs, such as servlets, do not have peroids. Other URLs may not have extensions.
Both of these situations pose security risks. The following process demonstrates these
risks:

1. Your environment contains a directory called /mydir/servlets that is a protected
resource.

2. Your Web Agent is configured to ignore requests for resources with the .gif
extension.

3. An unauthorized user appends the name of a nonexistent file along with a .gif
extension to the end of the URL as shown in the following example:

/mydir/servlets/file.gif

4. The Web Agent ignores the .gif extension and grants the unauthorized user access
to the /mydir/servelets directory.

If you are most concerned about the security risks, do not allow the Agent to ignore any
extensions, but consider the following consequences:

■ Performance may decrease because the Web Agent will evaluate every image URL
on a page.

■ Behavior of your Web site may change because users may be challenged for
resources that formerly did not require authentication.

The following options are available to protect URLs that do not have periods:

■ Configure the Agent to use the OverrideIgnoreExtFilter feature.

■ Make sure that protected resources do not have extensions that the Web Agent is
configured to ignore.

Protect Resources Without Extensions

238 Web Agent Configuration Guide

Protect Resources Without Extensions

To prevent unauthorized users from gaining access to resources without extensions, you
can use the following parameter:

OverrideIgnoreExtFilter

Specifies a list of strings you want the Web Agent to match against all URIs. This
helps you protect resources whose extensions are normally ignored by the
Web Agent, or any files or applications that do not have extensions. If the URI
matches one of the strings in the list, the Web Agent checks with the Policy
Server to determine if the resource is protected.

It is better to specify more general strings instead of exact paths. You can also
include a partial string to protect a group of resources. For example, the string
/servlet/ protects the following resources:

■ /dira/app1/servlet/app

■ /dirb/servlet/app1

■ /dirc/mydir/servlet/app2

Default: No default

To protect resources without extensions, add strings for the resources (without periods)
that you want to protect to the value of the OverrideIgnoreExtFilter parameter. If you
are using an Agent Configuration Object, use the multi-value option to add the strings. If
you are using a local configuration file, add each string on its own line.

Secure Applications

Chapter 18: Enforce Security with URL Monitoring 239

Secure Applications

An unauthorized user can append a false file name that contains an extension that the
Web Agent is configured to ignore to the end of a URL . The Agent then allows the
unauthorized user access to the resource. To have the Web Agent deny access to such
attempts, use the following parameter:

SecureApps

Prevents the Agent from authorizing URLs from an unauthorized user. If your
Web Agent is configured to ignore requests for files ending with certain
extensions, an attacker may attempt to access resources by creating a false
URL.

For example, if you have a resource with the following URL:

/scripts/myapp

An attacker may attempt to gain access by creating a false URL like the one in
the following example:

/scripts/myapp/junk.jpg

If the value of the SecureApps parameter is set to no, the request for
/scripts/myapp/junk.jpg would be automatically authorized if the Web Agent
was set to ignore requests for .jpg files.

If the value of the SecureApps parameter is set to yes, the Web Agent attempts
to discover if the resource is legitimate or if the URL is false.

Default: No

To secure applications, set the value of the SecureApps parameter to yes.

Handle Complex URIs

The DisableDotDotRule parameter determines whether or not the Web Agent
automatically authorizes a URI that contains two dots separated by a slash (/).

If the DisableDotDotRule is set to yes, the Agent does not apply the double dot rule. For
example, if the URI is:

■ /dir1/app.pl/file1.gif

The Web Agent uses the IgnoreExt parameter to determine if the resource should
be automatically authorized.

■ /dir1/okay.button.gif

The Agent can ignore this URI because the two dots are not separated by a slash (/).
The double-dot rule is not applicable in this case.

Handle Complex URIs

240 Web Agent Configuration Guide

If the DisableDotDotRule is set to no, the default, the Web Agent applies the double-dot
rule. The Web Agent challenges requests for the following URIs, passing the request to
the Policy Server:

■ /dir1/app.pl/file1.gif

This URI falls under the double-dot rule because the two dots are separated by a
slash.

The web server may consider /dir1/app.pl as the target resource, and /file1.gif as
extra path information, typically viewable in CGI headers as PATH_INFO.

■ /dir1/okay.button.gif

The Agent may ignore this URI because even though the double-dot rule is being
enforced, the two dots are not separated by a slash (/), so the rule is not applicable.

Important! Avoid creating the possibility for unauthorized access when you use the
IgnoreExt and DisableDotDotRule parameters together. For example, if you want to
protect /dir1/app.pl, but you set the DisableDotDotRule parameter to yes, the Agent
ignores the URI /dir1/app.pl/file1.gif because you have disabled the double-dot rule and
included .gif in the IgnoreExt parameter. Consequently, an unauthorized user may
access the protected application /dir1/app.pl.

Specify Bad URL Characters

Chapter 18: Enforce Security with URL Monitoring 241

Specify Bad URL Characters

You can list a set of character sequences that cannot be part of a URL request. These are
treated by the Agent as bad URL characters. The Web Agent will refuse URL requests
that contain any of the characters or strings of characters that you include in this list.
The checking is done on the URL before the "?" character. The Web Agent rejects URL
requests that include such characters because a malicious Web client might use such
characters to evade SiteMinder rules.

When a Web Agent refuses a URL request containing a Bad URL character, the web
server responds with one of the following messages:

■ Internal Server Error

■ Web Page not Found (404) Error

Check your Web Agent logs for information on how the Agent is handling requests.

You specify the characters with the following parameter:

BadUrlChars

Specifies the character sequences that cannot be used in URL requests. The
Web Agent checks the characters in the URL that occur before the "?"
character against those specified by this parameter. If any of the specified
characters are found, the Web Agent rejects the request.

You can specify the following characters:

■ a backward slash (\)

■ two forward slashes (//)

■ period and a forward slash (./)

■ forward slash and a period (/.)

■ forward slash and an asterisk (/*)

■ an asterisk and a period (*.)

■ a tilde (~)

■ %2d

■ %20

■ %00-%1f

■ %7f-%ff

■ %25

Separate multiple characters with commas. Do not use spaces.

You can use the bad URL characters in CGI parameters if the question mark (?)
precedes the bad URL characters.

Specify Bad URL Characters

242 Web Agent Configuration Guide

Default: <,>,&,;

Limits:

■ You can specify characters literally or enter the URL-encoded form of that
character. For example, you can enter the letter a, or you can enter the
encoded equivalent of %61.

■ You can specify a maximum number of 4096 characters (including commas
used for separating characters).

■ You can specify ranges of characters separated by a hyphen. The syntax is:
starting_character-ending_character. For example, you can enter a-z as a
range of characters.

■ Specify quotes (") with the URL-encoded equivalent of %22. Do not use
ASCII.

To specify Bad URL characters, edit the value of the BadURLChars parameter to include
the characters that you want to block.

Note: When configuring the Apache 2.0 Reverse Proxy Server and Outlook Web Access
(OWA), be sure to turn off the BadURLChars parameter. OWA allows unrestricted
characters in the email subject that might be listed in the BadURLChars parameter.

More Information

Types of Reverse Proxy Solutions (see page 209)

IIS 6.0 Servers and BadURLChars Settings

The SiteMinder Web Agent for an IIS 6.0 web server functions as an ISAPI extension.
When a HTTP request comes through, IIS 6.0 web server always processes the request
first before the Web Agent.

The IIS 6.0 web server may filter a URL for bad characters before passing the request to
the Web Agent. The server maps a URI to a physical Web resource, such as an HTML
page or CGI application. As a result, the Web Agent may not see certain characters from
the original URI if the URI is modified during the mapping process. The Web Agent only
acts on the resource that the web server passes to it. You need to consider this when
including characters in the BadURLChars parameter.

Note: After the IIS 6.0 web server filters some characters, it may return an error page
instead of passing the request to the Web Agent.

Specify Bad Form Characters

Chapter 18: Enforce Security with URL Monitoring 243

Specify Bad Form Characters

The following characters are commonly used in cross-site scripting attacks:

■ Left and right brackets (< >)

■ ampersand (&)

■ quotation marks (")

If you want to use scripting code for presenting forms to a user during an authentication
challenge, configure the Web Agent encode any of the previous characters as literal
HTML before sending them to an HTML form with the following parameter:

BadFormChars

Specifies the characters that the Web Agent encodes as literal HTML characters
before using them as output on a form. Only directive substitutions are
encoded as raw HTML—the source lines in the form template (for example the
login.fcc template) are unchanged. Keeping the source lines unchanged
prevents dynamic data containing scripting code from being sent back to the
browser as data in the form.

Default: Disabled (no literal encoding)

Example: <, >, &, %22

Limits:

■ You can specify characters literally or enter the URL-encoded form of that
character. For example, you can enter the letter a, or you can enter the
encoded equivalent of %61.

■ You can specify a maximum number of 4096 characters (including commas
used for separating characters).

■ You can specify ranges of characters separated by a hyphen. The syntax is:
starting_character-ending_character. For example, you can enter a-z as a
range of characters.

■ Specify quotes (") with the URL-encoded equivalent of %22. Do not use
ASCII.

To set the BadFormChars parameter

1. Enable the BadFormChars parameter by removing the # character in front of it.

The BadFormChars parameter is enabled with all of the previous characters
included.

2. (Optional) Remove any characters that you do not want to use from the list. Verify
that the remaining characters are separated from one another with commas.

Specify Bad Query Characters

244 Web Agent Configuration Guide

Specify Bad Query Characters

To prevent certain characters the query string portion of a URL, set the following
parameter:

BadQueryChars

Specifies characters that the Web Agent prohibits in the query string portion
(following the '?') in a URL.

Default: Empty (any characters allowed in query strings)

Limits:

■ You can specify characters literally or enter the URL-encoded form of that
character. For example, you can enter the letter a, or you can enter the
encoded equivalent of %61.

■ You can specify a maximum number of 4096 characters (including commas
used for separating characters).

■ You can specify ranges of characters separated by a hyphen. The syntax is:
starting_character-ending_character. For example, you can enter a-z as a
range of characters.

■ Specify quotes (") with the URL-encoded equivalent of %22. Do not use
ASCII.

Example: %25 blocks URL-encoded characters in queries.

Specify Bad Query Characters

Chapter 18: Enforce Security with URL Monitoring 245

Web Agents search for prohibited characters in query strings by comparing the
characters in the query string of the URL with the ASCII values of the characters defined
in the BadQueryChars parameter. For an example, see the following process;

1. The BadQueryChars parameter contains the URL-encoded value for the percent
symbol (%) as shown in the following example:

%25

2. The Web Agent receives an HTTP request that contains the following query string:

xxx=%0d

3. The Web Agent examines the URL in the previous example, but does not decode the
URL-encoded values. For example, the Web Agent interprets the previous example
(in Step 2) as the literal string %0d, and not as a carriage return.

4. The Web Agent examines the values in the BadQueryChars parameter, and converts
them to their ASCII values. For example, the %25 in Step 1 is converted to a percent
symbol (%).

5. The Web Agent compares each character in the URL against the decoded ASCII
values from the BadQueryChars parameter.

6. The Web Agent blocks the request, because the ASCII percent symbol (%) exists in
both of the following places:

■ The query string of the URL.

■ The decoded (ASCII) value in the BadQueryChars parameter.

To block certain characters from query strings, set the value of the BadQueryChars
parameter to include the characters you want to block.

Restrict Characters Allowed in Host Names

246 Web Agent Configuration Guide

Restrict Characters Allowed in Host Names

You can configure the SiteMinder agent to enforce a host name policy in your
organization by restricting the characters allowed in host names.

Specify the characters allowed in host names with the following parameter:

LegalHostNameChars

Instructs the agent to verify that host names contain only the characters set in
this parameter. The agent rejects requests for host names containing any
characters not specified.

For example, suppose you have three hosts named example.com, example.org,
and example.net. To have the agent reject requests for other host names, add
your three host names to the LegalHostNameChars parameter.

Default: Disabled (all characters allowed).

Example: server.example.com:port_number

Limits: Multiple values allowed.

To restrict characters allowed in host names, set the value of the LegalHostNameChars
parameter.

Chapter 19: Help Prevent Attacks 247

Chapter 19: Help Prevent Attacks

This section contains the following topics:

Protect Web Sites Against Cross-Site Scripting (see page 247)
Configure the Web Agent to Check For Cross Site-Scripting (see page 248)
Override the Default CSS Character Set (see page 248)
Safeguard Information in Cookies with HTTP-Only Attribute (see page 249)
Compare IP Addresses to Prevent Security Breaches (see page 249)
Help Prevent DNS Denial Of Service Attacks (see page 250)

Protect Web Sites Against Cross-Site Scripting

A Cross Site Scripting (CSS) attack can occur when the input text from the browser
(typically, data from a post or data from query parameters on a URL) is displayed by an
application without being filtered for characters that may form a valid, executable script
when displayed at the browser.

An attack URL can be presented to unsuspecting users. When a user clicks on the URL,
an application may return a display to the browser that includes the input characters,
along with an error message about bad parameters on the query string. The display of
these parameters at the browser can lead to an unwanted script being executed on the
browser.

For example, when a user types news into a search engine web page, the application
normally might return a blank field, or a response, such as:

Your search for news returned the following:

In response to an attack URL, the browser might receive a response, such as:

news<script>BadProgram</script>

The BadCSSChars parameter does not interpret the double quotation mark (") if it is
entered as an ASCII character. To include the double quotation mark as a bad cross-site
scripting character, enter the hexidecimal equivalent of the ASCII character, which is
%22. For example:

BadCSSChars="%22"

Configure the Web Agent to Check For Cross Site-Scripting

248 Web Agent Configuration Guide

Configure the Web Agent to Check For Cross Site-Scripting

To instruct the Web Agent to check a URL for characters that may be part of an
executable script, set the CSSChecking parameter to yes. By enabling this parameter,
the Web Agent scans a full URL, including the query string, for escaped and unescaped
versions of the following default character set:

■ left and right angle brackets (< and >)

■ single quote (')

Override the Default CSS Character Set

To override the default cross-site scripting character set, enter a character set of your
choice for the BadCSSChars parameter. Include the entire string of characters that you
want. For example, if you set the BadCSSChars parameter to <,>, the Web Agent scans
only for the left and right angle brackets.

If the Web Agent detects a problem related to the character set, it returns an Access
Denied message to the user, and the logs the following message in the Agent error log:

Caught Possible Cross Site Scripting Violation in URL. Exiting with HTTP 403 ACCESS
FORBIDDEN.

Some applications require the use of the quote characters in the query string,
irrespective of the web server platform. For example, some Domino applications, such
as iNotes Web Access, require the use of single quotes.

To use applications that require quotes in the query string, remove quotation marks
from the BadCssChars parameter.

If you leave do not use this parameter, the Web Agent checks for the default character
set.

Note: For more information about cross-site scripting, go to CERT Advisory.

http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html

Safeguard Information in Cookies with HTTP-Only Attribute

Chapter 19: Help Prevent Attacks 249

Safeguard Information in Cookies with HTTP-Only Attribute

To help protect against cross-site scripting attacks, you can make the Web Agent set the
HTTP-Only attribute for any cookies it creates using the following parameter:

UseHTTPOnlyCookies

Instructs the Web Agent to set the HTTP-only attribute on the cookies it
creates. When a Web Agent returns a cookie with this attribute to a user's
browser, the contents of the cookie cannot be read by a script, even a script
from the web site which originally set the cookie. This helps prevent any
sensitive information in the cookie from being sent to an unauthorized third
party through a script.

Default: No

To safeguard the information in cookies, set the value of the UseHTTPOnlyCookies
parameter to yes.

Compare IP Addresses to Prevent Security Breaches

An unauthorized system can monitor packets, steal a cookie, and use that cookie to gain
access to another system. To prevent a breach of security by an unauthorized system,
you can enable or disable IP checking with persistent and/or transient cookies.

The IP checking feature enables the Web Agent to compare the IP address stored in a
cookie from the last request with the IP address in the current request to see if they
match. If they do not match, the Web Agent rejects the request.

The two parameters used to implement IP checking are PersistentIPCheck and
TransientIPCheck. Set them as follows:

■ If you enabled PersistentCookies, set PersistentIPCheck to yes.

■ If you did not enable PersistentCookies, set TransientIPCheck to yes.

SiteMinder identity cookies are unaffected by IP checking.

More Information

How to Configure Single Sign-On (see page 91)
Set Persistent Cookies (see page 93)
Control Identity Cookies (see page 103)

Help Prevent DNS Denial Of Service Attacks

250 Web Agent Configuration Guide

Help Prevent DNS Denial Of Service Attacks

If a web server receives HTTP requests with false IP addresses, the Web Agent tries to
resolve the IP addresses to fully qualified domain names. For large volumes of HTTP
requests, a denial-of-service condition could affect the Web Agent and possibly the DNS
servers. The following parameter controls whether the Web Agent performs DNS
lookups:

DisableDNSLookup

Prevents the Web Agent from performing DNS lookups.

To help prevent DNS Denial Of Service attacks

1. Verify that the DisableDNSLookup parameter does not end with an s. Some earlier
versions of the ACO templates and LocalConfig.conf files possibly contain this error.
The correct parameter ends with a p.

2. Set the value of the DisableDNSLookup parameter to yes.

Important! Fully qualified domain names must be used for cookie-based functions to
work properly when the value of this parameter is set to yes.

Chapter 20: Authenticate Users with Forms 251

Chapter 20: Authenticate Users with Forms

This section contains the following topics:

How Credential Collectors Process Requests (see page 251)
Use Credential Collectors for Authentication and Single Sign-On (see page 252)

How Credential Collectors Process Requests

When a user requests a resource protected by a Web Agent and a credential collector,
SiteMinder processes the request as follows:

Note: This process applies only to FCC, SFCC, SCC, and NTC collectors. It does not apply
to the cookie provider for single sign-on.

1. A user makes a request for a protected resource.

2. The Web Agent protecting that resource contacts the Policy Server and finds out
that resource is protected by a forms, an advanced SSL, or an Windows
authentication scheme.

3. The Web Agent redirects the user to the appropriate credential collector, adding
query data, including the target resource and its encrypted Agent name to the URL
of the credential collector.

4. One of the following occurs:

■ The FCC displays the form and collects the user credentials

■ if no certificate is available, the SFCC displays the form and collects the user
credentials.

■ The SCC collects the user credentials.

■ The NTC collects the user’s NT credentials

5. The credential collector logs the user directly into the Policy Server. The Policy
Server then creates a session.

6. The credential collector writes a session cookie to the user’s browser and redirects
the user back to the original Web Agent.

7. The Web Agent validates the session and permits the user access to the resource.

The r5.x, r6.x and r12 credential collectors operate differently from 4.x credential
collectors. In a "mixed environment" that contains 4.x and higher Agents, you must
consider how to configure an r5.x, r6.x or r12 credential collector so it can communicate
with a 4.x Web Agent.

Note: For more information about SSL Authentication Schemes, see the Policy Server
documentation.

Use Credential Collectors for Authentication and Single Sign-On

252 Web Agent Configuration Guide

Use Credential Collectors for Authentication and Single
Sign-On

A SiteMinder credential collector is an application within the Web Agent that gathers
specific user credentials to authenticate a user. The credentials gathered by the
credential collector are based on the type of authentication scheme configured for a
particular group of protected resources. Credential collectors are used for forms, SSL,
and Windows authentication schemes, and for single sign-on across multiple cookie
domains.

The following types credential collectors are available:

Forms Credential Collector (FCC)

Gathers credentials based on HTML forms that are presented to the user during an
authentication challenge. The forms that the FCC presents are based on templates
that have the file extension .fcc. For example, the Web Agent is installed with a
form called login.fcc, which you can customize and use for login purposes. This file
is written using standard HTML tags and some proprietary notation required by
SiteMinder.

Note: When using FCC-based authentication, if a form is presented with empty
credentials, a framework Web Agent does not process the request and redirects it
back to the originally requested URL, hence causing the framework Web Agent not
to send any communication to the policy server. In the case of a traditional Web
Agent, the request is processed and sent to the policy server, which then generates
an OnAuthAttempt event.

SSL Credential Collector (SCC)

Collects SSL-based credentials (credentials required by SSL-based authentication
schemes) such as Basic over SSL or X509 Cert and Basic.

Note: The SCC does not handle X509 Cert and Forms or X509 Cert or Forms. X509
Cert and Forms is handled by the FCC and X509 Cert or Forms is handled by the
SFCC.

Cookie Provider (CCC)

Tracks SiteMinder sessions across multiple cookie domains for single sign-on. Unlike
other types of credential collectors, the cookie provider does not collect credentials
or perform an authentication challenge of the user. The cookie provider is handling
credentials; however, in this case, the session is the credential.

Default: SmMakeCookie.ccc

Use Credential Collectors for Authentication and Single Sign-On

Chapter 20: Authenticate Users with Forms 253

NTLM Credential Collector (NTC)

Gathers NT credentials for resources stored on an IIS Web server and accessed by
Internet Explorer browsers. This scheme uses a Windows NT login name and
password of a user in place of a challenge for credentials.

SSL Forms Credential Collector (SFCC)

Gathers credentials based on HTML forms (like the FCC) but the SFCC gathers them
only for the X509 Cert or Forms authentication schemes.

The forms that the SFCC presents are based on a templates that end in the file
extension .sfcc. For example, the Web Agent is installed with a form called
login.sfcc, which you can customize and use as a login form.

Kerberos Credential Collector (KCC)

Gathers credentials for Kerberos authentication schemes.

MIME Types for Credential Collectors

Associated with each credential collector is a MIME type. The MIME type indicates
which collector presents the authentication challenge when a user requests a resource.
The following table shows each type.

Credential Collector MIME Type

Forms Credential Collector .fcc

SSL Credential Collector .scc

Cookie Provider .ccc

NTLM Credential Collector .ntc

SSL Forms Credential Collector .sfcc

Kerberos Credential Collector .kcc

Use Credential Collectors for Authentication and Single Sign-On

254 Web Agent Configuration Guide

When you configure an authentication scheme that uses a credential collector, or set up
single sign-on across multiple cookie domains, the relevant MIME type is used as a file
extension for a file referenced by the authentication scheme or single-sign-on
configuration, for example:

■ When configuring single sign-on across multiple cookie domains, you enter a URL
like the following to identify the cookie provider:

http://myserver.company.com:80/siteminderagent/SmMakeCookie.ccc

SmMakeCookie.ccc is the default cookie provider name. You can use this name or
create a name of your own; however, it must have the .ccc extension to initiate
single sign-on.

■ For Windows authentication, the default target file to enable this scheme is:

/siteminderagent/ntlm/creds.ntc

Again, you must use a file with the correct MIME type as the extension.

The FCC and SFCC are the only credential collectors that require actual files to exist on
the web server where the Agent is installed. These collectors are for forms-based
authentication schemes. The .fcc and .sfcc templates are required to define the HTML
form presented to the user.

Configure MIME Types for Each Credential Collector

When you install a Web Agent that will act as a credential collector, there are some
configuration procedures to follow so the collector can operate. The procedures differ
by web server platform, not by operating system.

More information:

How to Configure Single Sign-On (see page 91)

Set Up Credential Collectors for IIS and Domino Web Servers

IIS and Domino web servers require mapping of MIME types (represented as file
extension parameters) in your Web Agent configuration.To set up credential collectors
for IIS and Domino web servers.

1. Map the specific MIME types for use with each credential collector. We recommend
using the default values shown in the following table:

Agent Configuration
Parameter

Credential Collector MIME Type

CCCExt Cookie Provider .ccc

Use Credential Collectors for Authentication and Single Sign-On

Chapter 20: Authenticate Users with Forms 255

Agent Configuration
Parameter

Credential Collector MIME Type

FCCExt Forms Credential Collector .fcc

SCCExt SSL Credential Collector .scc

SFCCExt SSL Forms Credential Collector .sfcc

NTCExt NTLM Credential Collector .ntc

KCCExt Kerberos Credential Collector .kcc

Note: If you do not want to use the default extensions or the defaults are already in
use for other purposes, enter your own extensions and the Web Agent will honor
them. For example, if you set FCCExt to .myext for the FCC, and rename the FCC
template to use this extension, for example, login.myext, the Web Agent will
recognize URLs ending in .myext as forms authentication requests.

The credential collectors are set.

Set Up Credential Collectors for Sun Java System Web Servers

For Oracle iPlanet web servers on Windows or UNIX platforms, the MIME types are set
up automatically when you install the Web Agent. There is no other configuration that is
necessary.

Set Up Credential Collectors for Apache Web Servers

For Apache web servers on Windows or UNIX, you have to modify the httpd.conf file
after you install the Web Agent.

Specifically, you need to add entries to the Alias section that direct the web server to
the installed location of the Web Agent and the Web Agent’s samples directory, where
the forms templates reside. You also have to add entries to the AddHandler section for
each MIME type.

Note: For more information, see the SiteMinder Web Agent Installation documentation.

Use Credential Collectors for Authentication and Single Sign-On

256 Web Agent Configuration Guide

Configure Credential Collectors in a Mixed Environment

From SiteMinder r6.x to SiteMinder r12.0 SP3, the credential collectors operate
differently than the older 4.x type credential collectors do. 4.x type credential collectors
placed a cookie in the browser of the user, and then redirected the user back to the
original agent.

In the newer SiteMinder versions, the credential collector logs the user in to the Policy
Server on behalf of the agent protecting the requested resource. Cookies are not used.

Note: We recommend using credential collectors to log users in directly rather than
setting cookies. Using credential collectors to log users in better secures user credentials
because these credentials are not being passed around the network in cookies.

A credential collector requires the following information to log a user in:

■ The name of the agent protecting the requested resource.

■ The credentials supplied by the user.

To learn the Agent name, a credential collector uses the following process:

1. Use the SMAGENTNAME query parameter that the original Agent adds to the query
string of the URL as it redirects to the credential collector.

2. If no Agent name is appended to the URL, use the mappings defined in the
AgentName configuration parameter associated with the credential collector.

Each mapping in the AgentName parameter specifies the name and IP address of a
host using that collector for its protected resources.

3. If no Agent name mappings are configured, use the fully qualified host name of the
target URL as the Agent name. This behavior is determined by enabling the
AgentNamesAreFQHostNames configuration parameter.

This parameter is disabled by default, so the credential collector uses the value of
the DefaultAgentName parameter as the agent name.

Consider the previous implications before configuring credential collectors in a mixed
environment.

Use Credential Collectors for Authentication and Single Sign-On

Chapter 20: Authenticate Users with Forms 257

Use FCCs and NTCs in a Mixed Environment

To process requests, the FCC and NTC rely on the user credentials and the name of the
Web Agent that is protecting the requested resource. However, 4.x Web Agents and
third party Agents who may post to the FCC and NTC do not pass the Agent name on the
URL they send.

The following configuration options help FCCs and NTCs to operate with 4.x Web
Agents:

■ Use Compatibility Mode—to enable a r5.x, r6.x, or r12.0 SP3 FCC/NTC to serve up
forms for resources protected by 4.x Web Agents or third party applications, enable
the FCCCompatMode parameter. Traditional Web Agents have the
FCCCompatMode parameter is enabled by default; framework Agents have the
FCCCompatMode parameter is disabled by default.

Enabling this parameter makes a r5.x, r6.x, or r12.0 SP3 Agent handle forms and
NTLM credential collection like a 4.x Agent, which means that a form or NTLM
credential cookie is written to a user’s browser and the user is redirected back to
the Agent before she can log in at the Policy Server. This permits the Web Agents to
interoperate.

When the value of the FCCCompatMode parameter is set to no, compatibility
withFCCCompatMode 4.x Agents is disabled. In an exclusively r5.x, r6.x, or r12.0 SP3
environment, set the value of the parameter to no.

Important! Setting this parameter to no removes support for version 4.x of the
Netscape browser.

■ Specify Agent name mappings—FCC only: If you disable backward compatibility (by
setting the value of the FCCCompatMode parameter to no), map the AgentName
parameter to the name and IP address of each host using that FCC for its protected
resources. Set up these mappings in the FCC’s Agent configuration file or its Agent
Configuration Object on the Policy Server.

Example mappings:

myagent, 123.1.12.1

myagent, www.sitea.com

■ Use Host Names as Agent Names—FCC only: If the first two options in the algorithm
are not optimal, you can set the value of the AgentNamesAreFQHostNames
parameter to yes. This tells the FCC to use the fully qualified host name in the target
URL as the Agent name. For example, if the URL string includes:

url?A=1&Target=http://www.nete.com/index.html

The www.nete.com portion of the Target string serves as the Agent name.

By default, this parameter is set to no. Consequently, the value of the
DefaultAgentName parameter is used as the Agent name.

The following tables list guidelines for configuring r5.x, r6.x, or r12.0 SP3 and 4.x FCCs
and NTCs, and describes how each behaves in a mixed environment:

Use Credential Collectors for Authentication and Single Sign-On

258 Web Agent Configuration Guide

Notes:

■ NTLM credential collectors can redirect users from non-IIS Web Servers to IIS Web
Servers.

■ For framework Web Agents, refer only to the instructions where FCC compatibility
mode is disabled.

Web Agent Protecting
Resources

r5.x, r6.x, or r12.0 SP3 FCC
in FCC Compatibility
Mode

r5.x, r6.x, or r12.0 SP3
FCC - FCC Compatibility
Mode Disabled

r5.x, r6.x, or r12.0 SP3 ■ FCC issues a
credential cookie.

■ Certificate and Forms
authentication will
not work.

■ Certificate or Forms
authentication will
not work.

■ FCC issues a session
cookie

■ Certificate and
Forms
authentication
works.

■ Certificate or Forms
authentication
works.

Web Agent Protecting
Resources

4.x QMR 2/3/4 FCC

4.x QMR 5 or

4.x QMR 6
■ Agent issues a credential cookie

■ Certificate and Forms authentication will not
work

■ Certificate or Forms authentication works

r5.x, r6.x, or r12.0 SP3 ■ Agent issues a credential cookie

■ Certificate and Forms authentication will not
work

■ Certificate or Forms authentication works

Use Credential Collectors for Authentication and Single Sign-On

Chapter 20: Authenticate Users with Forms 259

Note: For more information about SSL Authentication Schemes, see the Policy Server
documentation.

Web Agent Protecting
Resources

r5.x, r6.x, or r12.0 SP3 FCC
in FCC Compatibility Mode

r5.x, r6.x, or r12.0 SP3 FCC
- FCC Compatibility Mode
Disabled

4.x QMR 5 or

4.x QMR 6

■ NTC issues a credential
cookie.

■ NTC issues a session
cookie

r5.x, r6.x, or r12.0 SP3 ■ NTC issues a credential
cookie.

■ NTC issues a session
cookie

Web Agent Protecting
Resources

4.x QMR 2/3/4 NTC

4.x QMR 5, 4.x QMR 6 ■ Agent issues a credential cookie

r5.x, r6.x, or r12.0 SP3 ■ Agent issues a credential cookie

Use Credential Collectors for Authentication and Single Sign-On

260 Web Agent Configuration Guide

Use SCCs in a Mixed Environment

To enable 4.x type Web Agents and r5.x, r6.x, or r12.0 SP3 SCCs to interoperate, do one
of the following:

■ Specify Agent name mappings: Map the AgentName parameter to the host name
and IP address of each host using that SCC for its protected resources. You set up
these mappings in the SCC’s Agent configuration file or its Agent Configuration
Object at the Policy Server.

■ Use Host Names as Agent Names: If you do not specify Agent name mappings, you
can set the AgentNamesAreFQHostNames parameter to Yes. This tells the SCC to
use the fully qualified host name in the target URL as the Agent name.

For example, if the URL string is:

url?A=1&Target=http://www.nete.com/index.html

The www.nete.com portion of the Target string serves as the Agent name.

By default, this parameter is set to no. Consequently, the value of the
DefaultAgentName parameter is used as the Agent name.

The following table shows how 4.x and r5.x, r6.x, or r12.0 SP3 Agents acting as SCCs
operate in a mixed environment:

Web Agent Version 4.x QMR 2/3/4 SCC r5.x, r6.x, or r12.0 SP3 SCC

4.x QMR 5 or
4.x QMR 6

■ Agent issues an SSL
credential cookie.

■ Certificates cannot be
collected without
redirecting requests, even
if the original connection
from the browser to web
server is over SSL.

■ Create mappings in
AgentName parameter or
set
AgentNamesAreFQHostNa
mes to Yes.

■ SCC issues a session cookie

■ Certificates cannot be
collected without
redirecting requests, even
if the original connection
from the browser to web
server is over SSL.

r5.x, r6.x, or r12.0
SP3

■ Agent issues an SSL
credential cookie.

■ Certificates can be
collected without
redirecting requests.

■ SCC issues a session cookie

■ Certificates can be
collected without
redirecting requests.

Use Credential Collectors for Authentication and Single Sign-On

Chapter 20: Authenticate Users with Forms 261

Note: For more information about SSL Authentication Schemes, see the Policy Server
documentation.

Configure the FCC to Use a Single Resource Target

You can configure the FCC to direct users to a single resource by hard coding the target
in the login.fcc template file.

To configure the FCC to use a single resource target

1. Open the login.fcc file, located in agent_home/Samples.

2. Add @target=target_resource to the FCC.

3. Add the following entry:

@smagentname=agent_name_protecting_resource

For example: @smagentname=mywebagent

4. Set the EncryptAgentName parameter to no. This is required because no method
exists to encrypt the Agent name after you hard code it in the file.

5. Set the EncryptAgentName to no for any other Agent using this FCC.

Note: For more information, see the Policy Server documentation.

Forms Cache

The forms cache stores form template data. Storing template data improves
performance because the agent no longer reads the .fcc files multiple times for the
same data. When a resource with an FCC extension is accessed, the FCC reads and
processes the corresponding template file. An agent performs hundreds of these read
operations each second.

The form cache relieves the FCC by storing form template files in memory where they
can be read easily. Because virtual memory access is faster than disk access, allowing
FCC components to process forms more quickly with reduced strain on the host server.

The improved processing time increases the capacity of the FCC for serving requests for
each web server. Forms authentication becomes more efficient.

Use Credential Collectors for Authentication and Single Sign-On

262 Web Agent Configuration Guide

Form Cache Data

The data stored in the form cache consists of the form template text, which is parsed
beforehand into data structures. These data structures optimize FCC processing.

These data structures include:

■ Form locale data for internationalization

■ An ordered list of data objects containing raw text in UTF-8 format, template
directive information and function/variable information for substitution from the
request environment.

Directives, functions, and variables are processed from the top of the FCC file down.

Configure the Form Cache

Forms can be cached to improve performance and reduce unnecessary network traffic.
You can control the settings of form cache with the following parameters:

EnableFormCache

Controls the forms template cache. Setting this parameter to yes, improves the
performance of forms authentication. To disable the cache, set this parameter
to no.

Default: Yes

FormCacheTimeout

Specifies the number of seconds that an object may reside in cache before
being considered invalid. When the timeout interval expires, the date and time
of the form template file is compared against the time that the cache object
was created. If the object in cache is stored more recently than the file on the
system's disk, the timeout is reset for another interval; otherwise, the object is
removed from cache.

Default: 600

To configure the forms cache

1. Set the value of the EnableFormCache parameter to yes.

2. If you want to change the timeout interval for the form cache, set the value of the
FormCacheTimeout value to the number of seconds you want.

The form cache is configured.

Use Credential Collectors for Authentication and Single Sign-On

Chapter 20: Authenticate Users with Forms 263

Disable FCC Realm Context Confirmation to Improve Performance

During forms authentication, the Web Agent makes an IsProtected call to the Policy
Server to determine if the requested resource is protected. After this first call, the Web
Agent typically makes an additional IsProtected call to the Policy Server. This second call
establishes a realm context so that the Web Agent can log a user in with an FCC to
access a protected resource. You can control whether the Web Agent makes this
additional call using the following parameter:

FCCForceIsProtected

Specifies whether the Web Agent makes an additional IsProtected call to the
Policy Server to establish a realm context so that the Web Agent can log a user
in to access a protected resource.

When this parameter is set to no, the Web Agent uses the realm information
obtained from its initial IsProtected call to the Policy Server instead.

Default: Yes

To improve performance by disabling the FCC realm context confirmation, set the value
of the FCCForceIsProtected parameter to no.

Use a Relative Target for Credential Collector Redirects

You can instruct the Web Agent to use a relative URI instead of an fully qualified URL
when directing requests to a credential collector and target resource. Using a relative
URI prevents requests from being processed by credential collectors on other systems
installed with Web Agents.

Note: This setting applies to all credential collectors except the cookie credential
collector (CCC). The CCC must use a fully-qualified domain name for this parameter.
OnAuthAccept responses will not work properly with a CCC if a relative URI is used.

Typically, a fully qualified URL is appended to the credential collector URL. For example:

url?A=1&Target=http://www.nete.com/index.html.

To use only a relative URI, set the TargetAsRelativeURI parameter to yes. If set to yes,
the target parameter appended to the credential collector URL is a relative target, such
as url?A=1&Target=/index.html. In turn, when the credential collector redirects back to
the Web Agent protecting the target resource, it is a relative redirect. Also, the Web
Agent rejects any target that does not begin with a forward slash (/).

The default value for this parameter is no, so a fully qualified URL is always used.

Use Credential Collectors for Authentication and Single Sign-On

264 Web Agent Configuration Guide

Define Valid Target Domains

Web Agents can help protect from phishing attempts that could redirect users to a
hostile web site, with the following parameter:

ValidTargetDomain

Specifies the domains to which a credential collector is allowed to redirect
users. If the domain in the URL does not match the domains set in this
parameter, the redirect is denied.

Default: No default

This parameter is supported by all advanced authentication schemes, including forms
credential collectors (FCCs).

During processing, the ValidTargetDomain parameter identifies the valid domains for
the target. Before redirecting the user, the Web Agent compares the values in the
redirect URL against the domains in this parameter. Without this parameter, the Web
Agent redirects the user to targets in any domain.

The ValidTargetDomain parameter can include multiple values, one for each valid
domain.

For local Web Agent configurations, specify an entry, one on each line, for each domain,
for example:

validtargetdomain=".xyzcompany.com"

validtargetdomain=".abccompany.com"

Use Credential Collectors for Authentication and Single Sign-On

Chapter 20: Authenticate Users with Forms 265

Define Valid Federation Target Domains

If SiteMinder is acting as a Federation Security Services SP, you can configure the
Identity Provider Discovery (IPD) profile for SAML 2.0 transactions. IPD enables a user to
select which IdP generates an assertion for an authentication request.

During the discovery process, you can prevent a user from being redirected to a
malicious web site. Configure the Web Agent to validate the domain of the IdP that
satisfies the authentication request.

To enable the validation process, set the value of the following parameter:

ValidFedTargetDomain

(Federation only–SAML 2.0). Lists all valid domains for your federated
environment when implementing Identity Provider Discovery.

When the SiteMinder Identity Provider Discovery (IPD) Service receives a
request, it examines the IPDTarget query parameter in the request. This query
parameter lists a URL where the Discovery Service must redirect to after it
processes the request. For an IdP, the IPDTarget is the SAML 2.0 Single Sign-on
service. For an SP, the target is the requesting application that wants to use the
common domain cookie.

Federation Web Services compares the domain of the IPDTarget URL to the list
of domains specified for the ValidFedTargetDomain parameter. If the URL
domain matches one of the configured domains in the ValidFedTargetDomain,
the IPD Service redirects the user to the designated URL in the IPDTarget
parameter. This redirect is to a URL at the SP.

If there is no domain match, the IPD Service denies the user request and they
receive a 403 Forbidden in the browser. Additionally, errors are reported in the
FWS trace log and the affwebservices log. These messages indicate that the
domain of the IPDTarget is not defined as a valid federation target domain.

If you do not configure the ValidFedTargetDomain setting, no validation is done
and the user is redirected to the target URL.

Limits: Valid domains within the federated network

Default: No default

Specify a valid domain in the ValidFedTargetDomain parameter. This setting is a
multi-value parameter, so you can enter multiple domains.

Use Credential Collectors for Authentication and Single Sign-On

266 Web Agent Configuration Guide

If you are modifying a local configuration file, list the domains separately, for example:

validfedtargetdomain=".examplesite.com"

validfedtargetdomain=".abccompany.com"

For more information about the Identity Provider Discovery profile, see the Federation
Security Services Guide.

Enable FCCs/SCCs to Use Agent Names as Fully Qualified Host Names

The AgentNamesAreFQHostNames parameter enables forms and SSL credential
collectors to use the fully qualified host name of the target URL as a Web Agent name.
For example, if the URL string includes:

url?A=1&Target=http://www.nete.com/index.html

The www.nete.com portion of the Target string serves as the Web Agent name.

The credential collector uses this parameter if:

■ No Agent name is appended to the URL from the target Web Agent.

(This may be the case with third party Agents.)

■ You have not configured Agent-to-host name mappings in the AgentName
parameter.

If AgentNamesAreFQHostNames is set to no, the credential collector uses the value of
the DefaultAgentName parameter as the name of the target Web Agent.

Use Credential Collectors for Authentication and Single Sign-On

Chapter 20: Authenticate Users with Forms 267

Map Agent Identities and Web Servers for Use By FCCs and SCCs

The AgentName parameter and its associated IP addresses provide mappings between
web server interfaces and Agent names defined in the policy store. Web Agents need to
make Agent API calls in the proper Agent name context for the correct set of rules and
policies to apply.

If the Web Agent is acting as a forms or SSL credential collector, it needs the name of
the Web Agent protecting the requested resource and a user’s credentials to process
requests. By default, SiteMinder includes the Agent name in the URL that redirects the
user from the Web Agent to the credential collector. However, if you are working with
other applications, you can map the AgentName parameter to the name and IP address
of each host using the collector. The credential collector uses the mappings to resolve
the Agent name.

The following are example values for the AgentName parameter:

■ myagent1,123.1.1.12

■ myagent, www.sitea.com

Preserve Data Posted to a Form

Beginning with SiteMinder 5.0, data that a user enters in a form is preserved, even if a
timeout or other interruption occurs during the posting. This is called POST
preservation. After the user enters the credentials and submits the form, the preserved
data is re-posted to the application.

Modify the .fcc File for Forms POST Preservation

You may have forms that obtain credentials from SiteMinder releases prior to v5.0. To
preserve data during a POST, add the following line to the .fcc form template that is
presented when a user tries to access the resource:

<input type=hidden name=postpreservationdata
value="$$postpreservationdata$$">

Note: POST preservation is not supported with CGI and Perl based Password Services,
ACE authentication, or any custom authentication scheme that posts to an FCC.

Use Credential Collectors for Authentication and Single Sign-On

268 Web Agent Configuration Guide

Enable Post Preservation between Framework and Traditional Agents

Framework Agents handle POST preservation data differently than Traditional Agents
do. If your SiteMinder environment uses a combination of Framework and Traditional
agents, and resources hosted by one type of Agent are protected by Forms Credential
Collectors (FCCs) hosted on the other type of agent, you must specify the proper
template file with the following parameter:

PostPreservationFile

Enables the transfer of POST preservation data between Traditional and
Framework Agents by specifying the path to one of the following
POST-preservation-template files:

■ tr2fw.pptemplate—Indicates that resources hosted on a server running a
traditional agent are protected by an FCC running on a Framework agent.

■ fw2tr.pptemplate—Indicates that resources hosted on a server running a
Framework agent are protected by an FCC running on a Traditional agent.

Default: No default

Example: web_agent_home/samples/forms/fw2tr.pptemplate

To enable post preservation between Framework and Traditional agents

1. Determine which resources are protected by FCCs running on a different type of
Agent.

a. Create a list of Traditional Agents hosting resources that are protected by FCCs
running on Framework Agents.

b. Create a list of Framework Agents hosting resources that are protected by FCCs
running on Traditional Agents.

2. For any traditional Agents hosting resources (those you listed previously in step 1a),
set the value of the PostPreservationFile parameter to the path of the
tr2fw.pptemplate file.

3. For any Framework Agents hosting resources (those you listed previously in step
1b), set the value of the PostPreservationFile parameter to the path of the
fw2tr.pptemplate file.

Use Credential Collectors for Authentication and Single Sign-On

Chapter 20: Authenticate Users with Forms 269

4. For all of your Framework Web Agents that communicate with Traditional Agents,
set the value of the following parameter to yes:

LegacyPostPreservationEncoding

Specifies whether the Web Agent encodes any POST preservation data in a way
that is compatible with the older, Traditional, Web Agents, or with the newer,
Framework Web Agents. When the value of this parameter is set to yes, the
encoding is compatible with the Traditional Web Agents. When the value of
this parameter is set to no, the encoding is compatible only with the
Framework Web Agents.

Default: No

5. Restart the web servers hosting your resources.

POST preservation is between Framework and Traditional agents is enabled.

More information:

Types of Web Agents (Traditional and Framework) (see page 24)

Disable POST Preservation

If you do not need to use POST preservation, you may disable it with the following
parameter:

PreservePostData

Specifies whether the Web Agent preserves POST data when redirecting
requests. When the user is challenged for advanced authentication, such as
forms or certificate authentication, the post data is preserved during the
authentication phase.

Default: Yes

To disable POST preservation, set the value of the PreservePostData parameter to no.

Use Credential Collectors for Authentication and Single Sign-On

270 Web Agent Configuration Guide

Use the safeword.fcc File for SafeWord Forms Authentication

The Policy Server can authenticate users against a SafeWord authentication server,
including users who are logging in via SafeWord hardware tokens.

One of the prerequisites for using the SafeWord forms-based authentication scheme is
to have a customized safeword.fcc file residing on a web server where the SiteMinder
Web Agent is installed. This web server must be in the cookie domain in which you
implement HTML Forms authentication.

The safeword.fcc file defines the forms that a user sees during SafeWord authentication.
Depending on the value of the authentication code sent by the Policy Server to the
credential collector, the form that the user is asked to fill out changes. In the
safeword.fcc file you can see the different text for each authentication code, as
indicated by the directive smauthreason.

To customize the safeword.fcc file for your enterprise, you can modify the HTML layout
of the form but not the type of credentials that the user must provide for a particular
form. You may also want to modify the form logo. The file uses ISO-8859-1 encoding.

The sample safeword.fcc file is located in the directory:

web_agent_home/Samples/Forms

Note: For more information, see the Policy Server documentation.

Use a Special Forms Template for Passport Authentication

Beginning with Web Agent 5.x QMR1, n FCC file named loginusername.fcc was provided
for use with the Passport authentication scheme. If you configure SiteMinder to use this
form, when a user requests a protected resource, SiteMinder will:

1. Recognize a signed-in Passport user as a mapped user from the SiteMinder user
directory.

2. Present the form, which:

■ Automatically displays the user name of the mapped user

■ Prompts for the corresponding password

To use the loginusername.fcc file:

1. Edit the value of the IgnoreExt Web Agent parameter by removing the .fcc entry
from the list of extensions that the Agent should ignore.

2. Protect loginusername.fcc, using the Passport (Custom) authentication scheme.

Note: For more information, see the Policy Server documentation.

Use Credential Collectors for Authentication and Single Sign-On

Chapter 20: Authenticate Users with Forms 271

3. For each realm protected by the Passport authentication scheme, create a response
on the Policy Server. For each response, configure a Web Agent response attribute
as follows:

a. Select WebAgent-HTTP-Header-Variable from the Attribute drop-down list.

b. Select the User Attribute radio button from the Attribute Kind group box.

c. In the Attribute Name field, enter the name of the user directory attribute that
corresponds to the user name or user id. For example, if an LDAP directory
contains the users mapped to Passport holders, enter uid.

d. In the Variable Name field, enter a name for the response variable, such
LDAPUID.

Note: For more information, see the Policy Server documentation.

4. Edit the loginusername.fcc form to reflect the Variable Name value. Continuing with
this example, the variable name is LDAPUID.

You can add these advanced features to the Agent configuration file or an Agent
Configuration Object.

How to use Forms with ACE Authentication

If you want to use a SiteMinder form together with an ACE authentication scheme, do
one of the following:

■ If you are creating a new authentication scheme, use the following form as a
template:

web_agent_home\samples_default\forms\smaceauth.fcc

■ If you are modifying an existing authentication scheme to use ACE, then add the
following directive below the other directives in the forms.fcc file:

@smacefcc=1

Use Credential Collectors for Authentication and Single Sign-On

272 Web Agent Configuration Guide

Specify URL Protocols with Lowercase Characters

If you protect legacy applications that do not confirm to RFC 2396 with a forms-based
authentication scheme, and you need the protocol portions of URLs to be lowercase,
then set the following parameter:

LowerCaseProtocolSpecifier

Specifies whether the scheme (protocol) portion of a redirect URL, uses only
lowercase characters.

Default: No

Example: http, https

To specify lowercase protocols for the URLs in your environment, set the value of the
LowerCaseProtocolSpecifier parameter to yes.

Chapter 21: Manage Password Services 273

Chapter 21: Manage Password Services

This section contains the following topics:

Supported Approaches for Using Password Services with Web Agents (see page 273)
FCC Password Services and URL Query Encryption (see page 273)
Localize CGI-based Password Services Change Forms (see page 282)
Use a Fully Qualified URL for Password Services Redirects (see page 283)

Supported Approaches for Using Password Services with Web
Agents

To support password services, you can use either of the following approaches:

■ FCC-based approach (required for POST preservation)

■ CGI-based approach (deprecated)

Note: POST preservation is not supported with CGI and Perl based Password Services,
ACE authentication, or any custom authentication scheme that posts to an FCC.

We recommend the FCC-based approach. CGI-based password services is deprecated,
which means it will not be supported at a future release.

FCC Password Services and URL Query Encryption

The FCC Password Services application enables query data on the URL to be encrypted,
further securing Agent interactions. You can only encrypt query data with FCC Password
Services. FCC Password Services files include:

■ smpwservices.fcc

This FCC is installed with the Web Agent and is located at:

web_agent_home/samples/forms

If Password Services is invoked and there is no password policy configured, the
SiteMinder Administrator at the Policy Server should set the environment variable
NETE_PWSERVICES_REDIRECT to a relative path for smpwservices.fcc.

The path is:

/siteminderagent/forms/smpwservices.fcc

The new FCC displays the Password Services form based on the FCC directives
authreason and username.

FCC Password Services and URL Query Encryption

274 Web Agent Configuration Guide

■ smpwservices.unauth

This file handles errors that occur during GET/POST actions of the Password
Services forms.

This file is similar to other FCC unauthorized files that are invoked if there is a
failure processing the request during the POST. This FCC handles error conditions,
such as an empty TARGET variable. The error reporting is intended to be
synchronized with the CGI-based Password Services and for handling any other
unknown errors caused by an FCC POST.

■ smpwservicesUS-EN.properties

This properties file is used by smpwservices.fcc to display the user-friendly
messages on the Password Services forms.

This properties file has the user-friendly messages, which an administrator can
modify depending on what he wants to display on the Password Services forms. The
format for the message is name=value.

Configure FCC Password Services

FCC Password Services is configured much like the CGI or JSP versions—a SiteMinder
Administrator needs to configure password policies that are associated with a user
directory or namespace. However, the Redirection URL field that you are required to
configure must be set to a relative path for the smpwservices.fcc. This path is:

/siteminderagent/forms/smpwservices.fcc

The redirection path ensures that FCC Password Services works correctly.

Note: For more information, see the Policy Server documentation.

FCC Password Services and URL Query Encryption

Chapter 21: Manage Password Services 275

How to Enable User-Initiated Password Changes when using the SiteMinder
X.509 Certificate and Basic Authentication Scheme

You can configure the FCC Password services features of SiteMinder to allow users to
change their own passwords whenever they want. If you are using the SiteMinder X.509
Certificate and Basic authentication scheme, use a password-change URL that starts
with the HTTPS protocol.

To enable user-initiated password changes when using the SiteMinder X.509 certificate
and basic authentication scheme, use the following process:

1. Confirm that your user directory contains attributes that support Password Policies.

2. Use the Administrative UI to do the following tasks:

a. Create an FCC-based password policy and protect the resources you want.

b. Configure the password policy to allow authorized users to change their
passwords.

3. Create a password change URL that includes the following parts:

■ The HTTPS scheme (protocol)

■ The FQDN of the logon server (example: http:logonserver.example.com)

■ The URI of the FCC-based Password services (example:
siteminderagent/forms/smpwservices.fcc?)

■ The name of the SiteMinder Web Agent (SMAGENTNAME)

■ One of the following target URLs:

– For password-change URLs embedded in FCC pages, use the relative values for
the (SMAGENTNAME) and (TARGET) sections, as shown in the following
example:

<a

href="https:logonserver.example.com/siteminderagent/forms/smpwservices.fc

c?SMAUTHREASON=

34&SMAGENTNAME=$$smencode(smagentname)$$&TARGET=$$smencode(target)$$">Cha

nge Password

– For password-change URLs not embedded in FCC pages, hard-code the name of
your SiteMinder Agent for the (SMAGENTNAME) section. Then hard-code a
fully qualified domain name value for the (TARGET) section, as shown in the
following example:

<a

href="https://logonserver.example.com/siteminderagent/forms/smpwservices.

fcc?SMAUTHREASON=34&SMAGENTNAME=Agent1&TARGET=https://logonserver.example

.com/protected/myprotectedpage.html">Change Password

4. Embed the password-change URL (from Step 3) as a link in one or more
unprotected web pages.

FCC Password Services and URL Query Encryption

276 Web Agent Configuration Guide

5. Test the password change function with the following steps:

a. Display a web page that has the password change link you created in Step 3.

b. Click the password change link.

The password change form appears.

c. Fill out the password change form and submit it.

If the password change is successful, a confirmation page appears, and shows a
link to the protected target resource.

d. Click the link and verify that the resource appears.

e. Close and reopen your browser. Try to access the protected resource using
your new password.

If you can access the resource with your new password, the password change is
successful.

FCC Password Services and URL Query Encryption

Chapter 21: Manage Password Services 277

How to Enable User-Initiated Password Changes with FCCs

You can configure the FCC Password services features of SiteMinder to allow users to
change their own passwords whenever they want.

Note: Use the following process only if your SiteMinder Web Agent configuration also
has the value of the SecureURLs parameter set to no.

To enable user-initiated password changes with FCCs, use the following process:

1. Confirm that your user directory contains attributes that support Password Policies.

2. Use the Administrative UI to do the following tasks:

a. Create an FCC-based password policy and protect the resources you want.

b. Configure the password policy to allow authorized users to change their
passwords.

3. Create a password change URL that includes the following parts:

■ The FQDN of the logon server (example: http:logonserver.example.com)

■ The URI of the FCC-based Password services (example:
siteminderagent/forms/smpwservices.fcc?)

■ The name of the SiteMinder Web Agent (SMAGENTNAME)

■ One of the following target URLs:

– For password-change URLs embedded in FCC pages, use the relative values for
the (SMAGENTNAME) and (TARGET) sections, as shown in the following
example:

<a

href="http:logonserver.example.com/siteminderagent/forms/smpwservices.fcc

?SMAUTHREASON=

34&SMAGENTNAME=$$smencode(smagentname)$$&TARGET=$$smencode(target)$$">Cha

nge Password

– For password-change URLs not embedded in FCC pages, hard-code the name of
your SiteMinder Agent for the (SMAGENTNAME) section. Then hard-code a
fully qualified domain name value for the (TARGET) section, as shown in the
following example:

<a

href="http://logonserver.example.com/siteminderagent/forms/smpwservices.f

cc?SMAUTHREASON=34&SMAGENTNAME=Agent1&TARGET=https://logonserver.example.

com/protected/myprotectedpage.html">Change Password

4. Embed the password-change URL (from Step 3) as a link in one or more
unprotected web pages.

5. Test the password change function with the following steps:

a. Display a web page that has the password change link you created in Step 3.

FCC Password Services and URL Query Encryption

278 Web Agent Configuration Guide

b. Click the password change link.

The password change form appears.

c. Fill out the password change form and submit it.

If the password change is successful, a confirmation page appears, and shows a
link to the protected target resource.

d. Click the link and verify that the resource appears.

e. Close and reopen your browser. Try to access the protected resource using
your new password.

If you can access the resource with your new password, the password change is
successful.

FCC Password Services and URL Query Encryption

Chapter 21: Manage Password Services 279

How to Enable User-Initiated Password Changes with FCCs (SecureURLs=Yes)

You can configure the FCC Password services features of SiteMinder to allow users to
change their own passwords whenever they want.

Note: Use the following process only if your SiteMinder Web Agent configuration also
has the value of the SecureURLs parameter set to yes.

To enable user-initiated password changes with FCCs, use the following process:

1. Confirm that your user directory contains attributes that support Password Policies.

2. Use the Administrative UI to do the following tasks:

a. Create an FCC-based password policy and protect the resources you want.

b. Configure the password policy to allow authorized users to change their
passwords.

c. Set the value of the ValidTargetDomain parameter in your Agent configuration
to the domain of the target resource you want to protect.

3. Create a password change URL that includes the following parts:

■ The FQDN of the logon server (example: http:logonserver.example.com)

■ The URI of the FCC-based Password services (example:
siteminderagent/forms/smpwservices.fcc?)

■ The name of the SiteMinder Web Agent (SMAGENTNAME)

■ One of the following target URLs:

– For password-change URLs embedded in FCC pages, use the relative values for
the (SMAGENTNAME) and (TARGET) sections, as shown in the following
example:

<a

href="http:logonserver.example.com/siteminderagent/forms/smpwservices.fcc

?SMAUTHREASON=

34&SMAGENTNAME=$$smencode(smagentname)$$&TARGET=$$smencode(target)$$">Cha

nge Password

– For password-change URLs not embedded in FCC pages, hard-code the name of
your SiteMinder Agent for the (SMAGENTNAME) section. Then hard-code a
fully qualified domain name value for the (TARGET) section, as shown in the
following example:

<a

href="http://logonserver.example.com/siteminderagent/forms/smpwservices.f

cc?SMAUTHREASON=34&SMAGENTNAME=Agent1&TARGET=https://logonserver.example.

com/protected/myprotectedpage.html">Change Password

4. Embed the password-change URL (from Step 3) as a link in one or more
unprotected web pages.

FCC Password Services and URL Query Encryption

280 Web Agent Configuration Guide

5. Open the following file on your web server:

web_agent_home/samples/forms/smpwservices.fcc

a. Locate the following line:

@smpwselfchange=0

b. Change the 0 (zero) at the end of the previous line to 1 (one), as shown in the
following example:

@smpwselfchange=1

c. Save and close the smpwservices.fcc file.

6. Embed the URL you created in Step 3 as a link in one or more unprotected web
pages

7. Test the password change function with the following steps:

a. Display a web page that has the password change link you created in Step 3.

b. Click the password change link.

The password change form appears.

c. Fill out the password change form and submit it.

If the password change is successful, a confirmation page appears, and shows a
link to the protected target resource.

d. Click the link and ensure that the resource appears.

e. Close and re-open your browser. Try to access the protected resource using
your new password.

If you can access the resource with your new password, the password change is
successful.

Configure SecureID Authentication with FCC Password Services

You must modify the SecureID HTML Form template using the Administrative UI if you
are using SecureID as your authentication scheme and both of the following conditions
exist in your environment:

■ The FCC Password Services feature is configured

■ The value of the SecureUrls parameter for the Web Agent is set to yes

SecureID is implemented using Password Services, which is why you must modify the
authentication scheme's template.

To configure SecureID Authentication with FCC password services, add the path to the
smpwservices.fcc file in the Target field of the SecureID template, as shown in the
following example:

/siteminderagent/forms/smpwservices.fcc

FCC Password Services and URL Query Encryption

Chapter 21: Manage Password Services 281

How to Localize FCC-based Password Services Change Forms

To localize the user messages for FCC-based Password Services for another locale follow
these steps:

1. Create an FCC folder on the web server for a new locale or use an existing folder if
appropriate for your locale. The typical naming convention for the folder is
formslocale.

Note: The directories and file names shown could be case-sensitive, depending on
your operating environment and the type of web server in use.

2. Place a copy of the relevant Password Services files in the new folder.

3. Modify the files to accommodate the locale, such as changing the English messages
to the language for your locale. Repeat this step with all the files for the locale.

4. In the Administrative UI, change the value of the Redirection URL field in the
Password Policy.

For example, to use FCC Password Services for Japanese users, put a copy of the
following files in the folder formsja, located in web_agent_home/samples:

■ smpwservices.fcc, located in web_agent_home/samples/forms

■ smpwservices.unauth, located in web_agent_home/samples/forms

■ A new properties file, smpwservicesja.properties

Localize CGI-based Password Services Change Forms

282 Web Agent Configuration Guide

Localize CGI-based Password Services Change Forms

For Password Services change forms, the language encoding is read from the Web
browser. The Password Services CGI reads the ACCEPT_LANGUAGE variable from the
Web browser to determine the language in which to display the password change
forms.

For each language, the change forms use a different properties file. The properties file
defines certain aspects of the text displayed on the HTML pages.

The following properties files are automatically installed with the Web Agent:

■ English: PasswordServicesUS-EN.properties

■ French: PasswordServicesFR-FR.properties

■ Japanese: PasswordServicesJP-JP.properties

If the ACCEPT_LANGUAGE variable indicates a language for which no properties file
exists, the English properties file is used.

To create and use a properties file for another language

1. Translate one of the properties files provided by the SiteMinder Web Agent into the
language of your choice. The files are located in web_agent_home/pw.

For example, copy the PasswordServicesUS-EN.properties file and translate
anything to the right of the equals sign (=).

2. Rename the file according to the convention for Password Services, which is
PasswordServiceslanguage-country.properties

Note: RFC 3066 defines the language tags that you can use as part of the naming
convention. See IETF. Also, if the ACCEPT_LANGUAGE variable returned by the
browser uses only the language tag as its value, then rename the file as
PasswordServiceslanguage.properties instead.

Be sure the browser is set for the correct language.

If you set multiple languages for the browser, Password Services will only use the
first language in the list. If the Password Services CGI cannot find a properties file
for that language, the English properties file is used. The other languages specified
for the browser are ignored.

http://www.ietf.org/rfc/rfc3066.txt
http://www.ietf.org/rfc/rfc3066.txt

Use a Fully Qualified URL for Password Services Redirects

Chapter 21: Manage Password Services 283

Use a Fully Qualified URL for Password Services Redirects

You can make the Web Agent use a fully-qualified URL for redirects to the Password
Services application by setting the following parameter:

ConstructFullPwsvcUrl

Instructs the agent to generate a URL with a fully qualified domain name for
redirecting users to the Password Services application. This setting lets you
host the Password Services application on a particular web server. The agent
generates a URL that resembles the following example:

HTTP://my.server.com:80/path/to/passwordservices.cgi

If a fully qualified URL is not used, the agent assumes that the Password
Services application is hosted on the same web server. The agent uses a
relative URL for redirects instead.

Default: No

For example, if you have all of your password services on a specific web server, you can
set this parameter to yes. If this parameter is set to no, any customized content used
with password services would have to be copied to every web server.

To use a fully-qualified URL for Password Services redirects, set the value of the
ConstructFullPwsvcUrl parameter to yes.

Chapter 22: Domino Web Agents 285

Chapter 22: Domino Web Agents

This section contains the following topics:

Domino Agents Overview (see page 285)
Configure the Domino Web Agent (see page 289)
Configure Domino-Specific Agent Functions (see page 290)
Coordinate SiteMinder and Domino Authentication (see page 296)
Control Access to Lotus Notes Documents (see page 299)
Enable a Domino Agent to Collect Credentials for Authentication (see page 300)
Specify User Directories for Domino (see page 300)
Configure Policies for Domino (see page 301)
Use a Domino Agent with a WebSphere Application Server (see page 306)
Force Domino Server to Authenticate Unprotected SiteMinder Resources (see page 307)

Domino Agents Overview

The Domino Application Server is a messaging and Web application platform that offers
secure access for Lotus Notes clients. The Domino Web Agent protects only the HTTP
interface of the Domino Application Server, controlling access to HTML, JAVA, CGI, and
other Web resources, such as Notes served over the web. It does not protect the Notes
server.

The following illustration shows how the Domino Web Agent integrates with the
Domino server.

Domino Agents Overview

286 Web Agent Configuration Guide

Domino stores data in groups of Notes databases. Resources in a Notes database can be
a variety of objects, such as documents, views, forms, and navigators. These objects can
include text, video, graphics, and audio content.

Notes objects are opened using a URL. To make Notes objects available for the Web,
Domino dynamically creates Web pages from the objects in the Notes database. In the
case of database views, Domino also creates URL links to the documents in a view. The
dynamic creation of pages from the Notes database provides users with the most
current information.

Domino Agents Overview

Chapter 22: Domino Web Agents 287

Domino URL Syntax

Access to resources on a Domino server is based on the URL. Domino servers use a
specific URL syntax.

Domino servers can interpret standard URLs, such as one shown in the following
example:

http://www.example.com/index.html

Domino URL commands can use the following syntax:

http://host/database.nsf/Domino_object?Action_Argument

host

Indicates the DNS entry or IP address of the server.

database

Specifies the database file name with the path relative to notes \data directory
or the database Replica ID.

Domino_object

Specifies the object in the database, for example, a view, document, form, or
navigator.

Action

Identifies the operation performed on the Notes object. For example:
?OpenDatabase, ?OpenView, ?OpenDocument, ?OpenForm, ?ReadForm,
?EditDocument. If there is no action specified in the URL, the default is used.

Default: ?Open.

Argument

Defines how the Domino server delivers an object. For example, if the action
and argument is?OpenView&Expand=5, this argument specifies the number of
rows displayed in an expanded format.

The following is an example of a URL to access a view in a Notes database
named financials.nsf:

http://www.example.com/financials.nsf/reports?OpenView

Domino Agents Overview

288 Web Agent Configuration Guide

Domino Aliases

One of the Notes database conventions is to create aliases for objects. For example, the
alias might identify a resource by its Notes ID or Replica ID instead of the object name.
Using aliases makes programming easier for developers because the names of the Notes
resources can change without requiring code changes.

The following Domino URLs access the same resource though the resource is identified
by its aliases:

■ http://www.domino.com/85255e01001356a8852554c20756?OpenView

■ http://www.domino.com/85267E00075A80C/people?OpenView

■ http://www.domino.com/__852567E00075A80C.nsf/people?OpenView

Regardless of how a resource is identified, the Domino Web Agent converts all Domino
naming conventions into a standard URL based on the name of the database resource.
This simplifies data entry into the SiteMinder policy store.

For example, the following Domino URLs are pointing to the people view in the
names.nsf database. The database and view are referred to by Replica ID and Notes ID:

■ http://www.domino.com/85255e01001356a8852554c20756?OpenView

■ http://www.domino.com/85267E00075A80C/people?OpenView

The Domino Web Agent converts these URLs to a standard URL, as follows:

■ http://www.domino.com/names.nsf/people?OpenView

The following illustration shows the conversion of aliases to a named object.

Configure the Domino Web Agent

Chapter 22: Domino Web Agents 289

Convert Notes Document Names

Unlike views and forms, Notes documents do not have names; they are saved to the
database with a reference to the form that was used to create the document. If a user is
trying to access a document and the Domino Web Agent cannot convert it to a readable
name, the Agent uses the name of the form that generated the document to create a
URL. This applies only to documents. If there is no original form, the Agent uses the
embedded form. If neither apply, the document is protected using the Domino identifier
$defaultForm.

For example, if the incoming URL is:

http://www.domino.com/names.nsf/8567489d60034we50938450098?OpenDocum
ent

The Agent uses:

http://www.domino.com/names.nsf/Person?ReadForm

In this example, Person is the name of the document.

Configure the Domino Web Agent

The Domino Web Agent uses all the standard Web Agent settings to do the following:

■ Configure the Web Agent to communicate with the Policy Server

■ Add and remove Agent identities for virtual servers

■ Modify Web Agent settings

■ Configure single sign-on

■ Configure error message logging

You can configure these centrally at the Policy Server or locally in the Agent
configuration file.

In addition to the standard functions, there are Domino-specific parameters you can set.

More Information

Configure Domino-Specific Agent Functions (see page 290)

Configure Domino-Specific Agent Functions

290 Web Agent Configuration Guide

Configure Domino-Specific Agent Functions

In addition to the standard Web Agent settings, there are specific Domino configuration
parameters that you can set only for the Domino Web Agent. These settings determine
how Domino authenticates and authorizes a user with SiteMinder. You can configure
these settings centrally in the Agent Configuration Object on the Policy Server or locally
in the Agent configuration file on the web server.

Note: The Domino Web Agent does not support the auditing feature used to track user
activity.

Authenticate Users with the Domino Server

The Domino server must authenticate and authorize users even if SiteMinder has
already gone through this process. SiteMinder works with Domino’s authentication
process by providing the Domino server with a user identity that is also configured in
the Domino Directory, which is the list of users and their privileges. The Domino server
uses this identity to authenticate and authorize the user for access to database
resources.

Note: A user name must be resolved unambiguously, or else the Domino Agent denies
the authentication request. This may require some adjustments in your user directory.

The Domino Web Agent identifies the user to the Domino server as one of the following:

■ Super user

■ Actual user

■ Default user

Configure Domino-Specific Agent Functions

Chapter 22: Domino Web Agents 291

To determine which identity the Domino Web Agent uses when communicating with the
Domino server, you configure the following parameters:

SkipDominoAuth

Determines which name to pass to the domino server for server
authentication.

DominoSuperUser

Identifies a user who has access to all resources on the Domino server.

DominoDefaultUser

Identifies a user with default access to the Notes database, which means this
person has general access privileges.

Note: You can configure the DominoSuperUser and DominoDefaultUser locally, in the
Agent configuration file, or centrally, in the Agent Configuration Object. In the Agent
configuration file, these settings have encrypted values. In the Agent Configuration
Object, you have the choice of encrypting these values or leaving them in plain text.

More Information

Force SiteMinder to Authenticate Users (see page 292)
Authenticate as the Domino Super User (see page 293)
Authenticate as the Actual User or the Default User (see page 293)

Configure Domino-Specific Agent Functions

292 Web Agent Configuration Guide

Force SiteMinder to Authenticate Users

To have SiteMinder (and not Domino) authenticate users, set the SkipDominoAuth
parameter to yes.

With SkipDominoAuth set to yes and a Super User defined, SiteMinder first identifies
and authorizes the user. The Domino Web Agent then identifies that user to the Domino
Server as the Super User. As a Super User, the user has access to any resource on the
Domino server, assuming the user has the appropriate ACLs.

You should also set SkipDominoAuth parameter to yes when users are not stored in the
Domino Directory because Domino will not have an identity to use for authorization
privileges.

If you set SkipDominoAuth to no, Domino authenticates users on its own using the
actual user name or the default user name.

The following table shows how the setting of the SkipDominoAuth parameter affects
how the user is identified.

SkipDominoAuth Value

Identified to the
Domino Server As

Notes

yes Super User Super User must be defined in

the Domino Directory

no Actual User User must be in the Domino
Directory

no Default User User must be in the Domino
Directory

no Super User The requested resource is
automatically authorized,
meaning that no authentication
challenge will be presented to
the user

More Information

Authenticate as the Actual User or the Default User (see page 293)

Configure Domino-Specific Agent Functions

Chapter 22: Domino Web Agents 293

Authenticate as the Domino Super User

A Domino Super User is a user who has access to all resources on the Domino server. If
your Web site or portal is designed with SiteMinder in mind, you are securing resources
and applications by implementing SiteMinder policies. As a result, the Domino server
does not have to restrict user access based on its own security. In this case, users can be
identified as the Super User for Domino’s authentication purposes.

To identify the user as the Super User, you enable the SkipDominoAuth parameter and
specify a value for the DominoSuperUser parameter. This action makes sure that
SiteMinder and not Domino authenticates users. The user that you specify must also be
in the Domino Directory.

Authenticate as the Actual User or the Default User

If a user is defined in the Domino Directory, Domino authenticates that user with their
user name. However, if the user is not in the Domino Directory, and they have been
authenticated by SiteMinder against another user directory, then the Domino Web
Agent identifies that user to the Domino server as the DominoDefaultUser.

The default user has default access to the Notes database, which means this person
should have general access privileges such as Domino’s depositor, reader, or author
level of access, configured in ACLs.

For the Domino Agent to use this value, set the SkipDominoAuth parameter to no.

There may be some Notes databases that do not require protection from SiteMinder.
Resources that are not protected by SiteMinder are not authenticated as the default
Domino user. Instead, the Domino server prompts users for their credentials (if
anonymous access is disabled).

Configure Domino-Specific Agent Functions

294 Web Agent Configuration Guide

Modify the Domino Default User and the Domino Super User

To modify the DominoDefaultUser and DominoSuperUser parameters, do one of the
following:

■ Change it in the Agent Configuration Object, if configuring centrally

You can modify the DominoDefaultUser and DominoSuperUser settings in the
Agent Configuration Object. You can choose whether the values are encrypted or in
plain text.

Note: For more information, see the Policy Server documentation.

■ Modify the parameters in the Agent configuration file using the encryptkey tool.

In the Agent configuration file, the DominoDefaultUser and DominoSuperUser
values must be encrypted. Consequently, you have to modify these values using the
encryptkey tool.

Important! Do not edit these settings directly in the Agent configuration file.

Configure Domino-Specific Agent Functions

Chapter 22: Domino Web Agents 295

Use Encryptkey to Set the Domino Default or Super User

To set or change the value of DominoSuperUser or DominoDefaultUser in the Agent
configuration file

1. Do one of the following:

■ UNIX: Navigate to the Domino Agent's bin directory. For example:

/$HOME/ca/SiteMinder/Web Agent/bin

■ Windows: Open a command prompt window and navigate to the Domino
Agent's Bin directory. For example:

C:\Program Files\ca\SiteMinder Web Agent\Bin

2. Run the encryptkey tool, using the following arguments:

■ For DominoSuperUser:

 encryptkey -path path_to_Agent_config_file

 -dominoSuperUser new_value

■ For DominoDefaultUser:

 encryptkey -path path_to_Agent_config_file

 -dominoDefaultUser new_value

For example:

encryptkey -path "c:\program files\ca\SiteMinder Web Agent\Bin\Lotus
Domino5\webagent.conf"

-dominoSuperUser admin

Note: The path to the Agent configuration file must contain the file name, such as,
webagent.conf. Also, if any value in the path contains spaces, the entire path must
be surrounded by quotation marks.

Note: The encryptkey tool is not provided as a part of the SiteMinder Web Agent
kit. However, the tool remains useful to Domino users who can manipulate it to
generate encrypted DominoSuperUser settings for local configuration. You can
contact Support to download a copy of this tool.

Coordinate SiteMinder and Domino Authentication

296 Web Agent Configuration Guide

Map URLs for FCC Redirects

To accommodate URL conversion, you can configure the DominoMapUrlForRedirect
parameter. It is enabled by default.

If this configuration parameter is set to YES, or does not exist, the Web Agent maps
(normalizes) the URL from the Domino server representation to a URL-friendly name for
Forms Credential Collector (FCC) redirects.

If this parameter is set to NO, the Web Agent does not map the URL and performs FCC
redirects using the Domino server representation.

Coordinate SiteMinder and Domino Authentication

The following sections discuss coordination of SiteMinder and Domino authentication.

Use a SiteMinder Header for Authentication

The DominoUseHeaderForLogin and DominoLookUpHeaderForLogin parameters can be
used to identify a Domino user for authentication.

DominoUseHeaderForLogin

Instructs the Domino Web Agent to pass the SiteMinder header value to the
Domino Web Server. The Domino server uses the header data to identify a user in
its user directory.

Set this parameter to a header name. For example, if you specify
DominoUseHeaderForLogin="HTTP_SM_USER", the Web Agent passes the user’s
login name to the Domino server.

DominoLookUpHeaderForLogin

Instructs the Domino Web Agent to ask the Domino Web Server if the user
requesting access to a resource is unique or ambiguous within the Domino user
directory. This check is useful if a user named Jones tries accessing a resource and
there are several users named Jones in the user directory. If this parameter is set to
no, the Domino Web Agent does no checking with the Domino Web Server.

Default: Yes

Coordinate SiteMinder and Domino Authentication

Chapter 22: Domino Web Agents 297

Disable Domino Session Authentication

SiteMinder provides authentication and authorization functionality; therefore, the
Domino session authentication feature is not needed. It should be disabled if the Web
Agent is installed.

Under some conditions, having Domino session authentication enabled causes the user
session to behave differently. This change in behavior does not affect security on a
SiteMinder-enabled site. It reflects the intersection of SiteMinder and Domino session
management rules.

Map URLs for FCC Redirects with a Domino Web Agent

To protect Domino view (.nsf) resources with a forms authentication scheme, map the
URLs before they are redirected to the forms credential collector.

To map the URLs before redirection

1. Set the value of the DominoNormalizeUrls parameter to yes.

2. Set the value of the DominoMapUrlForRedirect parameter to yes.

Domino URLS are mapped before redirection to the Forms Credential Collector.

Coordinate SiteMinder and Domino Authentication

298 Web Agent Configuration Guide

Disable URL Normailization

The process of URL normalization modifies URLs from a Domino representation to a URL
format used by a typical web browser. The Domino Web Agent relies on the Domino
web server APIs to normalize a Domino URL.

During the normalization process, the Domino Server APIs periodically return a URL with
a carriage return (0x0D in hex) and/or a line feed character (0x0A in hex) added to the
normalized URL. The addition of these characters appears to be related to specific Notes
database (.nsf) files and access patterns within these files.

The following example shows a normalized URL with an added carriage return:

■ URL:
http://server.ca.com:80/agentrunner.nsf/be68f4545348400461332?OpenView

■ URL is mapped to:
http://server.ca.com:80/agentrunner.nsf/AgentContext?OpenView

■ URL is normalized to:
http://xxxxx.ca.com:port/agentrunner.nsf/0x0d/AgentContext?OpenView

If necessary, you can ensure that URLs with Domino resource IDs are not normalized
with the following parameter:

DominoNormalizeUrls

Specifies if the SiteMinder Web Agent converts Domino URLs to a URL-friendly
name before redirecting them to a Forms Credential Collector.

The MapUrlsForRedirect parameter must also be set to yes for the Domino
URLs to be converted.

If the DominoNormalizeUrls parameter is set to no, URLs will not be
normalized, even if the MapUrlsForRedirect parameter is set to yes.

Important! If you set the DominoNormalizeUrls parameter to no, you cannot
protect individual documents within a Notes database; you can only protect
the entire database or subdirectories of the Domino Web server.

Default: Yes

To turn off normalization and ensure that URLs are not altered, set the
DominoNormalizeUrls parameter to no.

Control Access to Lotus Notes Documents

Chapter 22: Domino Web Agents 299

Control Access to Lotus Notes Documents

The Web Agent offers a finer level of granularity for protecting Lotus Notes documents
on Domino. The folloiwng parameter controls this protection:

DominoLegacyDocumentSupport

Specifies how a Web Agent handles user requests for protected Lotus Notes
documents in a Domino environment. Setting this parameter to yes grants
users ReadForm permission only for the requested document.

Default: No

Use the DominoLegacyDocumentSupport parameter to configure the Web Agent to
process user-requested actions when accessing Notes documents. This offers a finer
granularity of protection on Domino.

Notes documents do not have names. They are saved to the database with a reference
to the form used to create them. When a user requests a Notes document, the Domino
Web Agent finds the form for that document by converting the request into a URL. This
URL includes the original Domino action. If no form is found, then nothing is used.

For example:

"http://server.domain.com/db.nsf?OpenDocument"

in the URL To ensure that the Web Agent performs the user-requested Domino action
on the document that is specified in the URL, such as ?OpenDocument or
?EditDocument, set the DominoLegacyDocumentSupport parameter to no.

For example, if the URL request is:

http://www.dominoserver.com/names.nsf/93487309489389877857843958809820
3985798349?EditDocument

The Domino Agent converts the preceding URL to:

http://www.dominoserver.com/names.nsf/Person?EditDocument

where Person is the name of the form used to create the document identified by the
NotesID in the original URL.

To force the Domino Web Agent revert back to its pre-4.6 operation for accessing Notes
documents, which means that only the action ?ReadForm is permitted, set this
parameter to yes. With the legacy document support enabled, the Domino Agent would
convert the URL in the previous example to:

http://www.dominoserver.com/names.nsf/Person?ReadForm

Enable a Domino Agent to Collect Credentials for Authentication

300 Web Agent Configuration Guide

Enable a Domino Agent to Collect Credentials for
Authentication

A credential collector is an application within the Web Agent, which gathers user
credentials for forms, SSL, and Windows authentication schemes, and for single sign-on
across multiple cookie domains. The credentials gathered by the credential collector are
based on the type of authentication scheme configured for a particular group of
protected resources.

For a Domino Web Agent to act as a credential collector, you have to configure various
MIME types, represented as file extensions in the Agent configuration file.

Credential collectors are generally auto-authorized, that is, when you add a file
extension to these parameters, they are, by default, included in the IgnoreExt
parameter. Domino Server cannot correctly process URLs that include files with these
extensions, so the Domino Agent has to ignore these files.

Note: For more information, see the Policy Server documentation.

More Information

Use Credential Collectors for Authentication and Single Sign-On (see page 252)

Specify User Directories for Domino

The Domino Directory is integrated with every Domino server. You can enable LDAP
service for the Domino server so that Policy Server can use the Domino Directory to
authenticate and authorize users. If you enable Domino’s LDAP service, you do not need
to configure a separate user directory for authentication.

To enable LDAP service, see your Domino Server documentation.

More information:

Contact CA Technologies (see page 3)

Configure Policies for Domino

Chapter 22: Domino Web Agents 301

Configure Policies for Domino

The Domino server can represent the same Notes object in different ways. An object
can be identified using the name, ReplicaID, UniversalID, and alias.

For the Domino Web Agent to communicate effectively with the Domino server, the
Domino Agent processes access requests to Notes resources using only the object
name. This enables the SiteMinder policy store to understand the entry.

Expressed as a URL, the access method to any resource would be:

http://host/database.nsf/resource_name?Open

Configure Policies for Domino

302 Web Agent Configuration Guide

Create Rules for Domino Server Resources

Actions for the Notes database resources should be considered when you create rules.
Any resource not specified with an action will default to the action ?Open. The rules that
are included in a SiteMinder policy must account for the default action, ?Open, and
equivalent actions for ?Open, such as ?OpenDatabase, ?OpenView, ?OpenDocument,
?OpenFrameset.

The Domino Web Agent enables a policy administrator to create one rule for many
aliases that point to the same resource. You only need one rule because the Domino
Agent converts Domino’s multiple representations of a resource into one URL. This
function of the Domino Agent is important to consider when creating rules for
SiteMinder policies.

You create realms and rules using the Administrative UI.

Note: For more information, see the Policy Server documentation.

In the following illustration, the URL is a link to Acme’s Domino server, with a Notes
database called db1.nsf. This database contains two files: page1 and page2.

Configure Policies for Domino

Chapter 22: Domino Web Agents 303

Example 1: Protecting one document and all its aliases.

For access to page1 and all its aliases, you create only one rule for the realm db1.nsf.
The Domino Agent is able to interpret all the different naming conventions and convert
them to a one standard URL format.

For your realms and rules, do the following:

■ When creating a realm you would specify a resource filter for the database where
page1 resides. For example, to protect all files in the database you would configure
the following:

Resource filter: /db1.nsf/

To protect not only page1 but all its aliases, you would configure the following:

Resource filter: /db1.nsf/page1

■ To create a rule that protects any action on page1, enter an asterisk (*) in the
Resource field of the Rule Properties dialog box. For example:

Resource: *

This * wildcard indicates that any action, such as ?Open, ?EditDocument can be
performed on page1 by the users that are bound to the policy.

Example 2: Protecting different documents in the same database.

To protect page2 in the db1.nsf database in addition to page1, you need to create a
second rule.

Resource Filter: /db1.nsf/page2

Resource: *

Example 3: Protecting different actions on a single resource

To protect individual actions on a resource, for example, if you wanted only some users
to perform the action ?EditDocument and all users to perform the action ?ReadForm,
each action would require its own rule for each resource, as follows:

■ Rule 1

Resource Filter: /db1.nsf/page1

Resource: ?OpenView

■ Rule 2

Resource Filter: /db1.nsf/page1

Resource: ?EditDocument

You could also use one rule as follows:

Resource Filter: /db1.nsf/page

Configure Policies for Domino

304 Web Agent Configuration Guide

Resource: ?Open*

Note: In the Resource field, there is no forward slash (/) before ?Open.

Even if there are aliases for this resource, the one rule would protect the original page
and all its aliases.

Instead of creating several rules for different actions, you could specify a single rule
and use wildcards to cover all actions, for example:

Resource filter: /db1.nsf/page

Resource: ?Open*

With the rule, you are then protecting the resource:

http://www.acme.com/db1.nsf/page*?Open*

Note: If you want a rule to be literal, write a regular expression.

Configure Policies for Domino

Chapter 22: Domino Web Agents 305

Configure Full Logoff Support for Domino Agents

Full logoff uses a custom logoff page that you create along with the following
parameter:

LogOffUri

Enables full log off and specifies the location of a custom web page on your
web server that appears to users after they are successfully logged off. You
must configure this page so that it cannot be stored in a browser cache.
Otherwise, a browser may display a logoff page from its cache without logging
the user off. This may give an unauthorized user an opportunity to assume
control of a session.

Note: When the CookiePath parameter is set, the value of the LogOffUri
parameter must point to the same cookie path. For example, if the value of
your CookiePath parameter is set to example.com, then your LogOffUri must
point to example.com/logoff.html

Default: (all agents except Agent for SharePoint r12.0.3.0) No default

Limits: Multiple URI values permitted. Do not use a fully qualified URL.You must
use a relative URI.

Example:(all agents except Agent for SharePoint r12.0.3.0) /Web
pages/logoff.html

To configure full logoff

1. Create a custom HTTP application to log the user off, for example, add an Exit or
Sign Off button that redirects the user to a URL you specify.

2. To make sure that an HTML logoff page is loaded from the web server and not from
the browser’s cache, set up the logoff page so it cannot be cached in the browser.
For example, for HTML pages, you can add the following meta tags to the page:

<META HTTP-EQUIV="Pragma" CONTENT="no-cache">

<META HTTP-EQUIV="Expires" CONTENT="-1">

Important! Meta tags may not work with some web browsers. If this happens, use a
cache-control HTTP header.

3. Configure the LogOffURI parameter with the following steps:

a. Delete the pound sign (#), if necessary.

b. Enter the URI of the custom HTTP file that will log the user off. Do not enter a
fully qualified URL.

Full logoff is configured.

Use a Domino Agent with a WebSphere Application Server

306 Web Agent Configuration Guide

More Information

How Full Logoff Works (see page 113)

Guidelines for Creating Policies on Domino Servers

Use the following guidelines when creating SiteMinder policies for the Domino server:

■ A user can open a form with a parent document to view default values for the form.
The parent document is the original form used to create the document. To prevent
unauthorized users from viewing default values for forms on which they do not
have access, set the SkipDominoAuth parameter to no.

■ If you replicate databases on the same computer, create a duplicate set of rules to
protect each database.

■ If the Domino Agent cannot associate an alias for a Notes document with a form,
then each document requires its own rule for protection.

■ The Domino server uses special identifiers in URL commands for certain database
documents, for example, $DefaultView, $DefaultForm, $DefaultNav, and
$SearchForm. The Domino agent converts these identifiers to a standard URL to
access the document.

For $defaultNav, the Domino Agent performs an action of ?OpenDatabase. You do
not need to create additional rules for these types of identifiers.

■ Aliases in the Notes database protect their associated resources. If no alias exists,
the resource name or comment protects the associated resource.

■ The Lotus Notes software allows multiple objects of different types to have the
same name and alias. If you create a rule that uses a wildcard with the ?Open
action, such as, ?Open*, be aware that this rule protects different types of
resources that share the same alias or name.

■ Forms protect the documents they create. The action used with the form is
?ReadForm.

■ The Domino Agent protects files with the .nsf extension. Do not add this extension
to the IgnoreExt parameter.

Use a Domino Agent with a WebSphere Application Server

A Domino web server acts as the front end to a WebSphere Application Server by
providing a filter plug-in that intercepts requests before forwarding them to the
WebSphere server.

Force Domino Server to Authenticate Unprotected SiteMinder Resources

Chapter 22: Domino Web Agents 307

Force Domino Server to Authenticate Unprotected SiteMinder
Resources

If you have resources on your Domino server that you not want to protect with
SiteMinder, you can still protect them with your Domino server. To protect these
resources, set the following parameter:

UseDominoUserForUnprotected

Specifies if the Domino server authenticates requests with a Domino user for
resources that only the Domino server (not SiteMinder) protects.

If the value of this parameter is yes, the agent passes the Domino user to the
Domino server. The Domino server authenticates the user. If the value of this
parameter is no or disabled, the agent does not pass the Domino user to the
Domino server. The Domino server does not authenticate the user.

Default: Disabled

Follow these steps:

1. Locate the previous parameter.

2. Remove the # (comment) character in front of the parameter.

3. Change the value of the parameter to yes.

Chapter 23: Advanced Authentication Scheme Configuration 309

Chapter 23: Advanced Authentication
Scheme Configuration

This section contains the following topics:

Protect IIS 6.0 Web Server Resources with Passport Authentication (see page 309)
Delete Certificates from Stronghold (Apache Agent Only) (see page 310)
Accommodate Legacy URL Encoding (see page 310)

Protect IIS 6.0 Web Server Resources with Passport
Authentication

For IIS 6.0 web server resources protected by Passport authentication, you must enable
the Passport application on the IIS 6.0 web server itself in addition to performing the
SiteMinder configuration steps for Passport authentication.

To enable the Passport authentication

1. Open the IIS Manager.

2. From the appropriate website, right-click the directory or file for which the Passport
application should be enabled and select Properties.

The Properties dialog box opens.

3. Do one of the following tasks:

■ If you right-clicked a directory in Step 2, click the Directory Security tab.

■ If you right-clicked a file in Step 2, click the File Security tab.

The appropriate tab opens.

4. Click Edit.

The Authentication Methods dialog appears.

5. Select the .NET Passport authentication check box.

6. Click OK.

The Authentication Methods dialog closes.

7. Click OK.

The dialog closes and Passport Authentication is enabled for the item you chose.

Delete Certificates from Stronghold (Apache Agent Only)

310 Web Agent Configuration Guide

Delete Certificates from Stronghold (Apache Agent Only)

Stronghold web servers write client certificates to a local, temporary file, which the Web
Agent uses for certificate-based authentication. The Stronghold server uses this file to
make information in the client certificate available for authentication. As users visit a
website, these certificate files increase, taking up space on your server. You can
configure the Web Agent to delete a certificate file after the Agent has finished using it.

To delete certificate files, set the DeleteCerts parameter to yes.

Accommodate Legacy URL Encoding

The legacy URL encoding used by CA uses dollar sign ($) characters. If the dollar signs
cause problems, you can make the Web Agent use hyphen (-) characters instead of
dollar signs with the following parameter:

LegacyEncoding

Forces the Web Agent to replace any dollar sign ($) characters in legacy URLs
with a hyphen (-). This also ensures backwards comparability with MSR,
Password Services, and DMS. When this parameter is set to no, a Web Agent
converts the string SM to -SM-. When this parameter is set to yes, the Web
Agent does not convert the dollar sign ($) character.

Default: (Framework Agents) No

Default: (Traditional Agents) Yes

To encode legacy URLs using hyphens instead of dollar signs, set the value of the
LegacyEncoding parameter to no.

Chapter 24: Single Sign-On Security Zones 311

Chapter 24: Single Sign-On Security Zones

This section contains the following topics:

Security Zone Definitions (see page 311)
Security Zones Overview (see page 312)
Configure Security Zones (see page 319)

Security Zone Definitions

The following terms apply to single sign-on (SSO) security zones:

CAC (Centralized Agent Configuration)

Identifies a mechanism by which a Web Agent borrows its configuration properties
from a Web Agent configuration object defined in the policy store.

Cookie Provider

Identifies a mechanism by which single sign-on is implemented in Web Agents
across multiple domains. One of the domains is designated as the master domain,
and the Web Agents from the other domains are re-directed to a Web Agent in the
master domain to provide them with the cookies in that domain.

SSO (Single Sign-On)

Identifies a mechanism by which a user authenticated once will not be rechallenged
for credentials.

SSO Zone

Identifies a sub-set of SSO, defined by an arbitrary identifier (zone name) used to
segment application SSO within a single cookie domain. All applications in the same
SSO zone allow SSO amongst themselves. SSO to and from other SSO zones may or
may not be allowed as defined by zone trust relationships.

Trusted SSO Zone

Identifies a foreign zone trusted by a local zone for SSO.

Security Zones Overview

312 Web Agent Configuration Guide

Security Zones Overview

Users have the ability to define single sign-on security zones within the same cookie
domain, representing a single zone, or across multiple cookie domains, representing
different zones. As a result, users have single sign-on within the same zone, but may be
re-challenged when entering a different zone, depending on the trust relationship
defined between the zones. Zones included in a trusted relationship will not
re-challenge a user that has a valid session in any zone in the group.

Single sign-on security zones are implemented entirely by SiteMinder Web Agents. Each
zone must reside on a separate Web Agent instance. Multiple zones cannot be created
on the same Agent instance.

A security zone is identified by cookies generated by the Web Agent. By default, the
Web Agent generates two cookies, a session cookie named SMSESSION and an identity
cookie named SMIDENTITY. When you configure security zones, the Web Agent can
generate session cookies and identity cookies with unique names so that the zone
affiliation is reflected in the cookie names.

Security Zones Benefits

The SSO Security Zones feature is intended for use in situations where SiteMinder
administrators wish to segment their single sign-on environments within the same
cookie domain. For example, consider the CA.COM domain. Under standard SiteMinder
SSO functionality, all SiteMinder protected applications in CA.COM would use the cookie
SMSESSION to manage single sign-on. Consider the following scenario in which SSO
Security Zones do not exist:

1. A user accesses an application (APP1). The user is challenged by SiteMinder, logs in
to SiteMinder, and creates an SMSESSION cookie.

2. The user accesses a second application (APP2) and is once again challenged by
SiteMinder. (Rules prevent SSO from occurring because the user does not have
access to APP2 using the APP1 user credentials.) The user logs in and creates a new
SMSESSION cookie overwriting the old one with the new logged in session for APP2.

3. The user now returns to APP1 and is challenged yet again, since the user lost the
original APP1 session and the APP2 session might not be accepted for APP1.
Therefore, SSO does not occur between APP1 and APP2, causing a very frustrating
situation.

Security Zones Overview

Chapter 24: Single Sign-On Security Zones 313

With SSO Security Zones, APP1 can be placed in zone Z1 and APP2 can be placed in zone
Z2. Now logging into APP1 creates a Z1SESSION cookie and access to APP2 results in a
Z2SESSION cookie. With different names, the cookies no longer overwrite each other so
there is only one login per application now, not one for each time the user moves
between the applications as in the example above.

Prior to the SSO Security Zones feature, the only way to perform the same grouping of
SSO for applications was to create different network domains and therefore different
cookie domains (CA1.COM, CA2.COM, and so on), and use various multi-cookie domain
configurations with cookie providers. This is not desirable in most enterprises, since
using multiple network domains has certain IT maintenance and support consequences.

Security Zone Basic Use Case

Single sign-on can, on a controlled basis, be broken into several security zones that have
configurable trust relationships. For example, consider Zone A and Zone B:

■ Zone A has only one trusted zone, its own Zone A.

■ Zone B has two trusted zones, its own Zone B as well as Zone A.

The trust relationship in the above illustration is indicated by the arrow, meaning that
the user sessions established in Zone A can be used for single sign-on in Zone B.

In this example, Zone A might be an administrator-only zone, while Zone B might be a
common access zone. An administrator authenticated in Zone A gains access to Zone B
without being rechallenged. However, a user authenticated in Zone B is re-challenged
when trying to access Zone A.

User sessions in different zones are independent of each other. Suppose a user
authenticates in Zone B first, and then authenticates again in Zone B. Two different
sessions are created. In fact, the user may have different identities in both sessions.
When the user returns to Zone A, the session established in that zone is used.

Consider what would happen if a user is validated using single sign-on in a zone where
that user does not yet have a session. If the user authenticates in Zone A and then visits
Zone B for the first time, then a user session is created in Zone B, based on the session
information in Zone A, possibly updated by the Policy Server. Note that the user session
in Zone A is not updated until the user returns to Zone A.

Security Zones Overview

314 Web Agent Configuration Guide

User Sessions Across Security Zones

Single sign-on security zones do not need to all belong to the same domain. In fact,
zones can be spanned over multiple domains. However, Web Agents only search for
trusted zone cookies in their local cookie domain. If no suitable cookies are found, Web
Agents continue to redirect to cookie providers only for their own zone.

Trusted Zone Order

A single sign-on security zone is defined by a pair of parameters:

■ the security zone name

■ an ordered list of trusted zones

The order in which the trusted zones are listed is important. Consider the following
example.

Security Zones Overview

Chapter 24: Single Sign-On Security Zones 315

In this illustration, Zone C trusts both Zone A and Zone B. Neither Zone A nor Zone B
trusts any other zone, but all zones trust themselves.

When a user makes a request in Zone C, the Web Agent looks for a session or identity
cookie in the trusted zones, in the order in which the zones are listed. In this example,
Zone C has a list of trusted zones that include C, A, and B.

The following is an order of events that might occur:

1. The Web Agent first checks to see if the user has a session in Zone C.

2. If no session is found, the Web Agent checks to see if the user has a session in Zone
A.

3. If no session is found, the Web Agent checks to see if the user has a session in Zone
B.

4. The session specification from each cookie that is found is used to process
authentication requests until a successful login occurs.

5. After a successful authentication, the Web Agent proceeds to authorization.

6. If no cookies are found or no cookies pass authentication, the agent challenges the
user for credentials as usual.

Note that the user experience may depend on the order in which the zones are
accessed. In this example, if the user accesses Zone B first followed by Zone C, the user’s
identity in Zone B is also used in Zone C. If the user accesses Zone A first followed by
Zone B and Zone C, the user’s identity in Zone A is used, despite the fact that the user
was re-challenged in Zone B before going to Zone C.

This will also be the case when sessions with different max and idle session timeouts
begin to expire. In the current example, a user with valid cookies in Zone A and Zone C
will first get access with the Zone C cookie. If the Zone C cookie expires, the Zone A
cookie will be used if it has not expired. Therefore, the user’s identity could change from
a Zone C identity to a Zone A identity without a credential challenge occurring.

Two or more Web Agents may have different lists of trusted zones but still use a
common trusted zone name. In this case, the agents implicitly trust each other but will
not trust the same foreign zones. This functionality enables applications to be
segmented for single sign-on. A Web Agent supports only a single sign-on zone name.
All session, identity, and state cookies generated by that agent use the same single
sign-on zone name. Therefore, if two applications do not share the same single sign-on
trust requirements, they must be hosted on separate web servers each with its own
Web Agent and list of trusted zones.

Note: Foreign zones refer to zones other than the one supported by a given Web Agent.
For example, if an agent is configured with SSOZoneName=”Z1”, then any other zone
would be foreign to it. This includes the default zone “SM”.

Security Zones Overview

316 Web Agent Configuration Guide

The Default Single Sign-On Zone and Trusted Zone List

Web Agents that do not specify a security zone name (such as all pre-SiteMinder 6.x
QMR 5 Web Agents) are considered to belong to the default zone. For backwards
compatibility, the default zone is implicitly assumed to have a zone name of SM. This
allows SiteMinder r12.0 SP3 Web Agents to support SMSESSION and SMIDENTITY by
default with no configuration changes.

Web Agents that do not specify a list of trusted zones trust only their own single sign-on
zone (either a specified zone name or default zone if no zone name has been specified).

A Web Agent can be configured to trust other zones in addition to the default zone. It
can also use a specified zone name and list no other trusted zone. Agents always trust
their own zone first, regardless of whether or not additional trusted zones are specified.
In order for a Web Agent using a non-default zone to trust the default zone as well, it
must list "SM" in its trusted zone list.

Request Processing with Multiple User Sessions

Web Agents look up user sessions in the order of trusted zones. If a valid user session is
found, the Web Agent uses the session information to process the user request. If no
valid session is found, the Web Agent fails over to the next valid user session in the
order of trust.

Responses from failed validations are ignored if there is another session to check.
Otherwise, they are processed as normal. This means that if the Web Agent finds three
trusted sessions to process and the first two fail to validate, only the responses from
validating the third and final session are processed.

In the case of a successful validation, the Web Agent stops processing sessions and
immediately begins processing the responses from the successful validation. If the agent
has three sessions to validate and the first session validates successfully, the remaining
two are ignored and the agent moves on to process the responses for the first
successful validation.

More Information

Trusted Zone Order (see page 314)

Security Zones Overview

Chapter 24: Single Sign-On Security Zones 317

Transitive Relationships Across Zones

The trust relationship between single sign-on zones is not fully transitive. If Zone A is
trusted by Zone B, and Zone B is trusted by Zone C, Zone A may not necessarily be
trusted by Zone C, as illustrated in the following diagram.

Other Cookies Affected by Single Sign-On Zones

SiteMinder uses state cookies to manage the various events surrounding authentication
and authorization. All of these cookies by default begin with the default single sign-on
security zone prefix SM. If a new single sign-on zone name is specified, then these
cookies are also named to reflect the specified non-default zone name. Below is a list of
cookies that are affected by defining a new single sign-on zone:

■ SMCHALLENGE

■ SMDATA

■ SMIDENTITY

■ SMONDENIEDREDIR

■ SMSESSION

■ SMTRYNO

If a zone name of Z1 is specified, for example, the Web Agent begins creating
Z1CHALLENGE=YES cookies for Basic authentication. This allows administrators to create
islands of SiteMinder application single sign-on in a single cookie domain (for example,
ca.com) where agents will not interfere with each other. The single sign-on trusted zone
list then allows single sign-on to occur between these isolated single sign-on zones in a
predictable fashion.

Security Zones Overview

318 Web Agent Configuration Guide

Single Sign-On Zones and Authorization

With single sign-on zones, authorization proceeds normally after a successful
authentication without change. Once the validation process identifies a valid session,
the session is used for the remainder of request processing and any other sessions
identified in the request are ignored. If authorization fails, the user is challenged
regardless of whether or not other sessions are available that might authorize
successfully.

The first trusted session that passes validation is the session passed to authorization. If
this session fails authorization, the user is challenged for credentials.

Configure Security Zones

Chapter 24: Single Sign-On Security Zones 319

Configure Security Zones

Two single sign-on parameters have been added to the Web Agent configuration objects
in the policy store. These settings may also be used in local configuration files and are
added to the sample local configuration files laid down during installation.

Note: All Web Agents configured through the same agent configuration object belong to
the same single sign-on zone.

SSOZoneName

Specifies the (case-sensitive) name of the single sign-on security zone a Web
Agent supports. The value of this parameter is prepended to the name of the
cookie a Web Agent creates. This helps you associate cookies with their
respective cookie domains. When this parameter is not empty, SiteMinder
generates cookies using the following convention:

ZonenameCookiename.

Default: Empty (uses SM as a zone name, which gives the cookies the following
default names):

■ SMSESSION

■ SMIDENTITY

■ SMDATA

■ SMTRYNO

■ SMCHALLENGE

■ SMONDENIEDREDIR

Limits: Single-valued

Example: Setting the value to Z1 creates the following cookies:

■ Z1SESSION

■ Z1IDENTITY

■ Z1DATA

■ Z1TRYNO

■ Z1CHALLENGE

■ Z1ONDENIEDREDIR

Configure Security Zones

320 Web Agent Configuration Guide

SSOTrustedZone

Defines an ordered (case-sensitive) list of trusted SSOZoneNames of trust for a
single sign-on security zone. Use SM to add the default zone if necessary.
Agents always trust their own SSOZoneName above all other trusted single
sign-on zones.

Default: Empty (SM or the SSOZoneName if provided)

Limits: Multi-valued

Configure Security Zones

Chapter 24: Single Sign-On Security Zones 321

Specify the Single Sign-on Zone for the Agent

SSOZoneName

Specifies the (case-sensitive) name of the single sign-on security zone a Web
Agent supports. The value of this parameter is prepended to the name of the
cookie a Web Agent creates. This helps you associate cookies with their
respective cookie domains. When this parameter is not empty, SiteMinder
generates cookies using the following convention:

ZonenameCookiename.

Default: Empty (uses SM as a zone name, which gives the cookies the following
default names):

■ SMSESSION

■ SMIDENTITY

■ SMDATA

■ SMTRYNO

■ SMCHALLENGE

■ SMONDENIEDREDIR

Limits: Single-valued

Example: Setting the value to Z1 creates the following cookies:

■ Z1SESSION

■ Z1IDENTITY

■ Z1DATA

■ Z1TRYNO

■ Z1CHALLENGE

■ Z1ONDENIEDREDIR

Use the SSOZoneName parameter to enter the name of the single sign-on zone a Web
Agent is to support. This parameter is case sensitive. If not specified, it defaults to SM. If
the value of the SSOZoneName parameter is non-empty, the Web Agent generates
cookies with the naming convention:

zone_namecookie_name

where zone_name is the parameter value and cookie_name is the general name of the
cookie being created.

Cookies affected by this convention include:

■ SESSION

■ IDENTITY

Configure Security Zones

322 Web Agent Configuration Guide

■ DATA

■ TRYNO

■ CHALLENGE

■ ONDENIEDREDIR

If the user is validated in a single sign-on zone in which that user has not yet established
a session, the session specification returned by the Policy Server is used to create a new
session cookie for that zone.

When a new cookie is created, its zone parameter is set to the zone name, in order to
prevent the user from swapping cookies from different zones by simply renaming them.
The cookie validation engine verifies if the zone name matches the prefix used in the
cookie's name. This applies only to SESSION and IDENTITY cookies.

To specify the name of the single sign on zone you want the Web Agent to support, add
the name of the zone to the SSOZoneName parameter.

The Order of Trust and Failover

Use the SSOTrustedZone parameter to specify the single sign-on zone's order of trust.
When processing a request, the Web Agent looks for a SESSION or IDENTITY cookie for
each zone in the order they appear in the list.

Any cookies found are validated as usual (decrypted, and tested for a valid host name,
single sign-on zone name, and timeouts), then stored in an ordered list of trusted
sessions if valid. Prior to authentication, the user's active session (and therefore user
identity) are considered the first session in the ordered list of valid sessions.

During authentication, the Web Agent will call validate using the first session in the list.
If the validation succeeds, the agent moves on and establishes user identity and affirms
the active accordingly. If validation fails, the next session is used in a new validation call,
and so forth until validation succeeds or the agent runs out of sessions. If no session
validates, the agent challenges the user as usual.

Once validated, the agent ignores all other sessions and instead sticks only to the
session that validated for the remainder of request processing. This means that should
authorization fail, the user is challenged immediately. Any other existing sessions in the
request are not used.

Appendix A: Troubleshooting 323

Appendix A: Troubleshooting

This section contains the following topics:

Agent Error Codes (see page 323)
Agent for IIS Troubleshooting Log (see page 323)
Duplicate LLAWP Error Appears in Log File (see page 324)
Custom Error Pages not Appearing (see page 325)
Authentication Error with FCCs if Passwords Contain Special Characters (see page 326)

Agent Error Codes

The agent responds with an error code when it encounters a problem. These error
codes appear in web browsers or in any custom error pages you have configured.

A list of the agent error codes is posted on the support site in the following article:

■ TEC478222

Note: These codes apply to SiteMinder r6.x and r12.

Agent for IIS Troubleshooting Log

Symptom:

Is there an IIS 7.x log file that can help me troubleshoot the SiteMinder Agent for IIS?

Solution:

Open the following log file:

web_agent_home\log\IIS70Trace.log

This log file contains the following types of information:

■ Application pool id

■ Application pool pipeline mode

■ Filter type (native HTTP module as opposed to ISAPI filter)

■ 32-bit or 64-bit

http://www.ca.com/support
http://www.ca.com/support

Duplicate LLAWP Error Appears in Log File

324 Web Agent Configuration Guide

Duplicate LLAWP Error Appears in Log File

Symptom:

My log file shows the following error:

Duplicate LLAWP

Solution:

This error occurs when an application pool recycles. The application pool tries to start
new LLAWP processes before the current LLAWP processes are fully shut down.

To prevent this error, configure the application pools in your IIS web server to disallow
overlapping rotation. This setting forces the application pool to wait for the current
LLAWP processes to stop before any new ones are started.

Note: For more information, go the IIS website and search for the phrase,
"DisallowOverlappingRotation"

http://learn.iis.net/
http://learn.iis.net/

Custom Error Pages not Appearing

Appendix A: Troubleshooting 325

Custom Error Pages not Appearing

Valid on Oracle Directory Enterprise Edition (formerly Oracle iPlanet Directory Server
Enterprise Edition)

Symptom:

I set either of the following configuration parameters, but users receive a generic error
message from the server instead:

CSSErrorFile

Specifies the location of a custom-error message file or URL that you want to
display to the users if they try to open a URL that contains possible cross-site
scripting characters.

Default: No default

ServerErrorFile

Instructs the Web Agent to display a custom error page to users who encounter
server errors. Specify a file path or URL for this parameter.

Default: No default

Solution:

Do the following steps:

1. Open the instance_name-obj.conf file on your web server.

2. Locate the following line:

AuthTrans fn="SiteMinderAgent"

3. Add UseOutputStreamSize="0"to the end of the previous line, as shown in the
following example:

AuthTrans fn="SiteMinderAgent" UseOutputStreamSize="0"

4. Save the file, and then restart the web server.

Authentication Error with FCCs if Passwords Contain Special Characters

326 Web Agent Configuration Guide

Authentication Error with FCCs if Passwords Contain Special
Characters

Symptom:

If passwords contain special characters (such as $, +, %), users cannot authenticate with
an FCC.

The following messages appear in my SiteMinder log files:

[User 'user_id' is not authenticated by Policy Server.]

Status: Error 49. 8009030C: LdapErr: DSID-0C0904D1, comment: AcceptSecurityContext

error,

[SmDsLdapProvider.cpp:3001] [ldap_get_lderrno returns: 8009030C: LdapErr:

DSID-0C0904D1, comment: AcceptSecurityContext error,

Solution:

Verify that the name of the PASSWORD attribute in your login.fcc file uses uppercase, as
shown in the following examples:

<input type="password" name="PASSWORD" size="30" style="margin-left: 1px">

@password=PASSWORD=%PASSWORD%&newattr1=%newattr1%&newattr2=%newattr2%

Appendix B: Agent Parameters 327

Appendix B: Agent Parameters

This section contains the following topics:

List of Agent Configuration Parameters (see page 327)

List of Agent Configuration Parameters

The following table lists the Agent Configuration parameters:

To change this parameter: See the this procedure:

AcceptTPCookie Configure Support for SDK Third-Party Cookies (see page 109)

AgentConfigObject Parameters Found Only in Local Configuration Files (see page 34)

AgentName Set the Agent Name and Default Agent Name Identities (see page 56)

AgentNamesAreFQHostNames Configure Credential Collectors in a Mixed Environment (see page 256)

AgentWaitTime Accommodate Network Latency (see page 61)

AllowCacheHeaders Control How HTTP Header Resources are Cached (see page 141)

AllowLocalConfig Implement Local Configuration (see page 36)

Restrict Changes to Local Configuration Parameters (see page 38)

AppendIISServerLog Record the User Name and Transaction ID in IIS 6.0 Server Logs (see
page 173)

autoauthorizeoptions Allow Automatic Access to Resources that use the OPTIONS Method (see
page 89)

BadCSSChars Protect Web Sites Against Cross-Site Scripting (see page 247)

BadFormChars Specify Bad Form Characters (see page 243)

BadQueryChars Specify Bad Query Characters (see page 244)

BadUrlChars Specify Bad URL Characters (see page 241)

CacheAnonymous Cache Anonymous Users (see page 199)

CCCExt Specify the Cookie Provider (see page 96)

ConformToRFC2047 Disable Conformance to RFC 2047 (see page 283)

ConstructFullPwsvcUrl Use a Fully Qualified URL for Password Services Redirects (see page 283)

CookieDomain How to Configure Single Sign-On (see page 91)

CookieDomainScope Implement Cookie Domain Resolution (see page 111)

List of Agent Configuration Parameters

328 Web Agent Configuration Guide

To change this parameter: See the this procedure:

CookiePath Specify the Cookie Path for Agent Cookies (see page 119)

CookiePathScope Specify the Cookie Path for Agent Cookies (see page 119)

CookieProvider How to Configure Single Sign-On (see page 91)

CookieValidationPeriod Protect Session Cookies from Misuse with Validation Periods and Expired
Cookie URLs (see page 108)

CSSChecking Configure the Web Agent to Check For Cross Site-Scripting (see

page 248)

CSSErrorFile How to Set Up Error Handling (see page 149)

Custom401ErrorFile How to Set Up Error Handling (see page 149)

CustomIpHeader Configure IP Address Validation (see page 139)

DecodeQueryData Decode Query Data (see page 227)

DefaultAgentName Set the Agent Name and Default Agent Name Identities (see page 56)

DefaultHostName Accommodate Testing Tools that do not send HOST Headers (see
page 200)

DefaultPassword Use an IIS Proxy User Account (see page 155)

DefaultUsername Use an IIS Proxy User Account (see page 155)

DeleteCerts Delete Certificates from Stronghold (see page 310)

DisableAuthSrcVars Disable Default HTTP Header Variables (see page 133)

DisableDirectoryList Restrict Directory Browsing on a Sun Java System Server (see page 71)

DisableDNSLookups Help Prevent DNS DOS Attacks (see page 250)

DisableDotDotRule Handle Complex URIs (see page 239)

DisableSessionVars Disable Default HTTP Header Variables (see page 133)

DisableUserNameVars Disable Default HTTP Header Variables (see page 133)

DominoDefaultUser Authenticate Users with the Domino Server (see page 290)

DominoLegacyDocumentSupport Handle User-Requested Actions on Lotus Notes Documents (see
page 299)

DominoLookUpHeaderForLogin Use a SiteMinder Header for Authentication (see page 296)

DominoMapUrlForRedirect Map URLs for FCC Redirects (see page 296)

DominoNormalizeUrls Map URLs for FCC Redirects with a Domino Web Agent (see page 297)

DominoSuperUser Authenticate as the Domino Super User (see page 293)

DominoUseHeaderForLogin Use a SiteMinder Header for Authentication (see page 296)

List of Agent Configuration Parameters

Appendix B: Agent Parameters 329

To change this parameter: See the this procedure:

EnableAuditing Configure Auditing to Track User Activity (see page 169)

EnableFormCache Configure the Form Cache (see page 262)

EnableIntroscopeApiSupport Use CA Wily Introscope to Monitor Web Agents (see page 59)

EnableMonitoring Monitor Web Agents with the OneView Monitor (see page 59)

EnableOtherAuthTrans Handle Multiple AuthTrans Functions (see page 147)

EnableWebAgent Enable a Web Agent (see page 73)

EncryptAgentName Encrypt the Agent Name (see page 58)

EnforceRealmTimeouts How to Enforce Timeouts across Multiple Realms (see page 106)

ExpiredCookieURL Protect Session Cookies from Misuse with Validation Periods and Expired
Cookie URLs (see page 108)

ExpireForProxy Configure Agents that Sit behind Proxy Servers (see page 257)

FCCCompatMode Use FCCs and NTCs in a Mixed Environment (see page 257)

FCCExt Set Up Credential Collectors for IIS and Domino Web Servers (see
page 254)

FCCForceIsProtected Force an FCC to Establish Realm Context for Forms Authentication (see
page 263)

ForceCookieDomain Force the Cookie Domain (see page 110)

ForceFQHost Force Fully Qualified Domain Names

ForceIISProxyUser Use an IIS Proxy User Account (see page 155)

FormCacheTimeout Configure the Form Cache (see page 262)

GetPortFromHeaders Use the HTTP HOST Request for the Port Number (see page 68)

HostConfigFile Parameters Found Only in Local Configuration Files (see page 34)

HTTPHeaderEncodingSpec Set the HTTP Header Encoding Spec (see page 143)

HttpsPorts Define HTTPS Ports (see page 146)

IdleTimeoutURL Redirect a User after a Session Time-out (see page 107)

IgnoreCPForNotprotected Ignore the Cookie Provider for Unprotected Resources (see page 109)

IgnoreExt Reduce Overhead by Ignoring File Extensions of Unprotected Resources
(see page 236)

IgnoreHost Specify Virtual Servers to be Ignored by the Web Agent (see page 79)

IgnoreQueryData Ignore Query Data (see page 228)

IgnoreUrl Allow Unrestricted Access to URIs (see page 231)

List of Agent Configuration Parameters

330 Web Agent Configuration Guide

To change this parameter: See the this procedure:

InlineCredentials Eliminate NTC Redirects with Existing Windows Authentication Schemes
with Inline Credentials Parameter of the SiteMinder Web Agent for IIS

(see page 151)

LegacyCookieProvider Disable FCC Realm Context Confirmation to Improve Performance (see
page 263)

LegacyEncoding Accommodate Legacy URL Encoding (see page 310)

LegacyStreamingBehavior Choose How Content Types are Transferred in POST Requests (see

page 69)

LegacyTransferEncodingBehavior Use Legacy Applications with an Apache Web Agent (see page 68)

LegacyVariables Enable Legacy Variables for HTTP Headers (see page 145)

LegalHostNameChars Restrict Characters Allowed in Host Names (see page 246)

LoadPlugin WebAgent.conf file for Framework Agents (see page 32)

localconfigfile WebAgent.conf file for Framework Agents (see page 32)

LogAppend Set Up and Enable Error Logging (see page 178)

LogFile Set Up and Enable Error Logging (see page 178)

LogFileName Set Up and Enable Error Logging (see page 178)

LogFileName32 Set Up and Enable Error Logging (see page 178)

LogFileSize Set Up and Enable Error Logging (see page 178)

LogFilesToKeep Limit the Number of Log Files Saved (see page 181)

LogLocalTime Set Up and Enable Error Logging (see page 178)

LogOffUri How to Configure Full Logoff for Single Sign-on (see page 115)

LowerCaseHTTP Use Lower Case HTTP in Headers (see page 142)

LowerCaseProtocolSpecifier Specify URL Protocols with Lowercase Characters (see page 272)

MasterCookiePath Specify the Cookie Path for Agent Cookies (see page 119)

MaxResourceCacheSize Set the Maximum Resource Cache Size (see page 197)

MaxSessionCacheSize Set the Maximum User Session Cache Size (see page 198)

MaxTimeoutURL Redirect a User after a Session Time-out (see page 107)

MaxUrlSize Set a Maximum URL Size (see page 233)

NTCExt Specify an NTLM Credential Collector (see page 164)

OverlookSessionForMethods Prevent Session Cookie Creation or Updates (see page 100)

OverlookSessionForMethodUri Prevent Session Cookie Creation or Updates Based on Method and URI
(see page 101)

List of Agent Configuration Parameters

Appendix B: Agent Parameters 331

To change this parameter: See the this procedure:

OverlookSessionForUrls Prevent Session Cookie Creation or Updates (see page 100)

OverrideIgnoreExtFilter Protect Resources Without Extensions (see page 238)

P3PCompactPolicy Configure your Web Agent to Accommodate P3P Compact Policies (see
page 66)

PersistentCookies Set Persistent Cookies (see page 93)

PersistentIPCheck Compare IP Addresses to Prevent Security Breaches (see page 249)

PostPreservationFile Enable Post Preservation between Framework and Traditional Agents
(see page 268)

PreserveHeaders Preserve HTTP Headers (see page 140)

PreservePostData Enable or Disable POST Preservation (see page 269)

ProxyAgent SiteMinder Reverse Proxy Deployment Considerations (see page 211)

ProxyDefinition SiteMinder Reverse Proxy Deployment Considerations (see page 211)

ProxyHeadersAutoAuth Customize the Cache-Control and ExpireForProxy Header Settings (see
page 204)

ProxyHeadersAutoAuth10 Customize the Cache-Control and ExpireForProxy Header Settings (see
page 204)

ProxyHeadersProtected Customize the Cache-Control and ExpireForProxy Header Settings (see

page 204)

ProxyHeadersProtected10 Customize the Cache-Control and ExpireForProxy Header Settings (see
page 204)

ProxyHeadersUnprotected Customize the Cache-Control and ExpireForProxy Header Settings (see
page 204)

ProxyHeadersUnprotected10 Customize the Cache-Control and ExpireForProxy Header Settings (see
page 204)

ProxyTimeout SiteMinder Reverse Proxy Deployment Considerations (see page 211)

ProxyTrust Configure Agents that Sit behind Proxy Servers (see page 202)

PSPollInterval Change How Often an Agent Checks for Policy or Key Updates (see
page 60)

RemoteUserVar Configure the Web Agent to set the REMOTE_USER Variable (see
page 128)

ReqCookieErrorFile Set Up Error Handling (see page 149)

RequireCookies Require Cookies for Basic Authentication (see page 92)

ResourceCacheTimeout Control How Long Resource Enteries Remain Cached (see page 196)

SaveCredsTimeout Set a Timeout for Saved Credentials (see page 105)

List of Agent Configuration Parameters

332 Web Agent Configuration Guide

To change this parameter: See the this procedure:

SCCExt Set Up Credential Collectors for IIS and Domino Web Servers (see
page 254)

SecureApps Secure Applications (see page 239)

SecureURLs Configure SecureUrls with Single Sign-on (see page 112)

ServerErrorFile Set Up Error Handling (see page 149)

ServerPath Additional Configurations Requiring the ServerPath Parameter (see

page 63)

SessionGracePeriod Modify the Session Grace Period (see page 104)

SessionUpdatePeriod Modify the Session Update Period (see page 97)

SetRemoteUser Configure the Web Agent to set the REMOTE_USER Variable (see
page 128)

SFCCExt Set Up Credential Collectors for IIS and Domino Web Servers (see
page 254)

SkipDominoAuth Authenticate Users with the Domino Server (see page 290)

SSOTrustedZone The Order of Trust and Failover (see page 322)

SSOZoneName Configure Security Zones (see page 319)

StoreSessioninServer Enable Single Use Session Cookies (see page 98)

SuppressServerHeader Remove the Server HTTP Header if Using the URLScan Utility (see
page 67)

TargetAsRelativeURI Use a Relative Target for Credential Collector Redirects (see page 263)

TraceAppend Configure Trace Logging (see page 182)

TraceConfigFile Configure Trace Logging (see page 182)

TraceConfigFile32 Configure Trace Logging (see page 182)

TraceDelimiter Configure Trace Logging (see page 182)

TraceFile Configure Trace Logging (see page 182)

TraceFileName Configure Trace Logging (see page 182)

TraceFileName32 Configure Trace Logging (see page 182)

TraceFileSize Configure Trace Logging (see page 182)

TraceFilesToKeep Limit the Number of Trace Log Files Saved (see page 192)

TraceFormat Configure Trace Logging (see page 182)

TrackCPSessionDomain Prevent Cookie Provider Replay Attacks (see page 113)

TrackSessionDomain Validate a Session Cookie Domain (see page 99)

List of Agent Configuration Parameters

Appendix B: Agent Parameters 333

To change this parameter: See the this procedure:

TransientIDCookies Control Identity Cookies (see page 103)

TransientIPCheck Compare IP Addresses to Prevent Security Breaches (see page 249)

UseAnonAccess Enable Anonymous User Access (see page 156)

UseDominoUserForUnprotected Force Domino server to authenticate unprotected resources (see
page 307)

UseHTTPOnlyCookies Safeguard Information in Cookies with HTTP-Only Attribute (see

page 249)

UseNetBIOSforIISAuth Use the NetBIOS Name or UPN for IIS Authentication (see page 157)

UseSecureCookies Set Secure Cookies (see page 102)

UseSecureCPCookies Set Secure Cookies Across Multiple Domains (see page 102)

UseServerRequestIp Resolve Agent Identity by IP Address (see page 80)

ValidFedTargetDomain Define Valid Federation Target Domains (see page 265)

ValidTargetDomain Define Valid Target Domains (see page 264)

Index 335

Index

A

Accommodate Legacy URL Encoding • 310
Accommodate Network Latency • 61
Accommodate Testing Tools that do not send HOST

Headers • 200
Add a SiteMinder Wildcard Mapping to Protect IIS

6.0 Virtual Web Sites • 77
Additional Configurations Requiring the ServerPath

Parameter • 63
Adjust Performance • 195
Advanced Authentication Scheme Configuration •

309
Agent

See also Web Agent
zzz • 31
Agent Connection Manager Configuration File • 41
Agent Error Codes • 323
Agent for IIS Troubleshooting Log • 323
Agent Parameters • 327
Allow Automatic Access to Resources that use the

OPTIONS Method • 89
Allow Un-restricted Access to URIs • 231
Apache reverse proxy

httpsports, setting • 211
ProxyAgent, setting • 211
ProxyTimeout, setting • 211

ASP script, using to extract HTTP headers • 136
Assign Web Agent Identities for Virtual Servers • 78
Authenticate as the Actual User or the Default User

• 293
Authenticate as the Domino Super User • 293
Authenticate Users with Forms • 251
Authenticate Users with the Domino Server • 290
Authentication Error with FCCs if Passwords Contain

Special Characters • 326
authentication schemes

SafeWord Server • 270
authentication source variables

disabling (IIS) • 133

B

Basic Web Agent Configuration • 55

C

CA Technologies Product References • 3
cache

emptying • 195
management • 195

Cache Anonymous Users • 199
Cache Response Attributes • 126
CCC

See also credential collector
zzz • 252

description • 252
CCCExt parameter, setting • 254
Central and Local Configuration Together • 39
Central Configuration • 28
Change How Often an Agent Checks for Policy or Key

Updates • 60
Choose How Content Types are Transferred in POST

Requests • 69
Collect Detailed Agent Connection Data with an

Agent Connection Manager Trace Log • 193
Compare IP Addresses to Prevent Security Breaches

• 249
Configuration Files used by the Web Agent • 41
Configure a Sun Java System 6.0 Reverse Proxy

Server • 215
Configure Agents that Sit behind Proxy Servers • 202
Configure an FCC Template for an Information Card

Authentication Scheme • 167
Configure an Oracle iPlanet 7.0 Reverse Proxy Server

• 217
Configure Automatic Logon for Internet Explorer •

162
Configure Comprehensive Log Out using FCC Forms •

117
Configure Credential Collectors in a Mixed

Environment • 256
Configure Domino-Specific Agent Functions • 290
Configure FCC Password Services • 274
Configure Full Logoff • 114
Configure Full Logoff Support for Domino Agents •

305
Configure IP Address Validation • 139
Configure Logs • 175

336 Web Agent Configuration Guide

Configure MIME Types for Each Credential Collector
• 254

Configure Policies for Domino • 301
Configure Reverse Proxy Servers • 209
Configure SecureID Authentication with FCC

Password Services • 280
Configure SecureUrls with Single Sign-on • 112
Configure Security Zones • 319
Configure Support for SDK Third-Party Cookies • 109
Configure the Challenge/Response Authentication

Scheme • 163
Configure the Domino Web Agent • 289
Configure the FCC to Use a Single Resource Target •

261
Configure the Form Cache • 262
Configure the Virtual Directory for Windows

Authentication Schemes (IIS 6.0) • 161
Configure the Web Agent to Check For Cross

Site-Scripting • 248
Configure the Web Agent to set the REMOTE_USER

Variable • 128
Configure Trace Logging • 182
Configure Virtual Servers • 75
Configure your Web Agent to Accommodate P3P

Compact Policies • 66, 82
ConformToRFC2047 parameter, setting • 144
Connection API Configuration File • 42
Considerations for Web Agents and Policy Servers in

Different Time Zones • 21
Contact CA Technologies • 3
Control Access to Lotus Notes Documents • 299
Control How HTTP Header Resources are Cached •

141
Control How Long Resource Enteries Remain Cached

• 196
Control Identity Cookies • 103
Control IIS 7.x Module Execution Order when using

the SiteMinder Agent for IIS • 153
Control Inbound URL Processing • 227
Convert Notes Document Names • 289
cookie credential collector. See CCC • 252
cookie provider

domain • 86
cookies

third-party support • 109
Coordinate SiteMinder and Domino Authentication •

296
Create Rules for Domino Server Resources • 302
credential collector

types • 252
Custom Error Handling For Applications • 148
Custom Error Pages not Appearing • 325
Custom401ErrorFile parameter, setting • 150
CustomIpHeader parameter, setting • 139
Customize the Cache-Control and ExpireForProxy

Header Settings • 204

D

Decode Query Data in a URL • 227
default HTTP headers

description • 133
disabling • 133

Default Settings of Web Agent Configuration
Parameters • 55

Default User, identity for Domino server • 293
Define HTTPS Ports • 146
Define Valid Federation Target Domains • 265
Define Valid Target Domains • 264
Delete Certificates from Stronghold (Apache Agent

Only) • 310
Determine the Content of the Trace Log • 190
Disable a Web Agent • 74
Disable Conformance to RFC 2047 • 144
Disable Default HTTP Header Variables • 133
Disable Domino Session Authentication • 297
Disable FCC Realm Context Confirmation to Improve

Performance • 263
Disable POST Preservation • 269
Disable the Resource Cache • 198
Disable URL Normailization • 298
Disable Windows Security Context on Agents for IIS •

168
DisableDotDotRule parameter, setting • 239
Domino Agents Overview • 285
Domino Aliases • 288
Domino Application Server

configuring policies • 301
using Domino Directory • 300

Domino URL Syntax • 287
Domino Web Agent

authentication process • 290
specifying a default user • 293
specifying a super user • 290
specifying a user • 293
URL commands • 288

Domino Web Agents • 285
DominoDefaultUser parameter, setting • 294

Index 337

DominoSuperUser parameter, setting • 294
Duplicate LLAWP Error Appears in Log File • 324

E

Enable a Domino Agent to Collect Credentials for
Authentication • 300

Enable a Web Agent • 73
Enable Anonymous User Access • 156
Enable FCCs/SCCs to Use Agent Names as Fully

Qualified Host Names • 266
Enable Legacy Variables for HTTP Headers • 145
Enable Post Preservation between Framework and

Traditional Agents • 268
Enable the IIS 6.0 Security Context to Work with the

Agent • 66
Enable Transport Layer Interface (TLI) Logging • 180
Encrypt Query String Parameters in Redirection URLs

• 232
Encrypt the Agent Name • 58
Enforce Security with URL Monitoring • 235
Ensure that Agent Names Match • 57
Error Logs and Trace Logs • 176
Example Applications that Use SiteMinder Default

HTTP Headers • 134
Export the Web Server Certificate to your smkey

Database • 166
Extract HTTP Headers Using a Shell Script • 134
Extract HTTP Headers Using ASP • 136
Extract HTTP Headers Using NSAPI • 134
Extract HTTP Headers Using PERL • 135

F

FCC
description • 252
See also credential collector

zzz • 252
FCC Directive for Encoding Query Strings of Redirect

URLs • 230
FCC Password Services and URL Query Encryption •

273
FCCExt parameter, setting • 254
Force Domino Server to Authenticate Unprotected

SiteMinder Resources • 307
Force SiteMinder to Authenticate Users • 292
Force the Cookie Domain • 110
Form Cache Data • 262
Forms Cache • 261

G

Guidelines for Creating Policies on Domino Servers •
306

H

Handle Complex URIs • 239
Handle Multiple AuthTrans Functions for Oracle

iPlanet Web Servers • 147
Header Variables and End-User IP Address Validation

• 137
Help Prevent Attacks • 247
Help Prevent DNS Denial Of Service Attacks • 250
How CookiePathScope Settings Work • 120
How Credential Collectors Process Requests • 251
How Custom Headers Validate IP Addresses • 138
How Full Logoff Works • 113
How Response Attributes Work with Web Agents •

124
How Reverse Proxy Servers Work with SiteMinder •

209
How Single Sign-on Works in a Single Domain • 84
How the Agent Reads SiteMinder Cookies • 22
How the IIS Web Agent Populates the

REMOTE_USER Variable • 127
How to Configure An Apache Reverse Proxy Server •

213
How to Configure Full Logoff for Single Sign-on • 115
How to Configure Single Sign-On • 91
How to Configure the NT Challenge/Response

Authentication (IIS Only) • 158
How to Edit an Agent Configuration File • 35
How to Enable User-Initiated Password Changes

when using the SiteMinder X.509 Certificate and
Basic Authentication Scheme • 275

How to Enable User-Initiated Password Changes with
FCCs • 277

How to Enable User-Initiated Password Changes with
FCCs (SecureURLs=Yes) • 279

How to Enforce Timeouts across Multiple Realms •
106

How to Implement an Information Card
Authentication Scheme • 165

How to Implement Use Case 1 • 50
How to Implement Use Case 2 • 51
How to Implement Use Case 3 • 52
How to Implement Use Case 4 • 53
How to Localize FCC-based Password Services

Change Forms • 281

338 Web Agent Configuration Guide

How to Manage Web Agent and Policy Server
Communication • 58

How to Meet the Use Case Deployment
Prerequisites • 49

How to Protect Resources Without Periods or
Extensions • 237

How to Set Up an IIS 7.x Server with ARR and
SiteMinder in your DMZ • 220

How to Set up an IIS 7.x Server with ARR and
SiteMinder in your DMZ with other SiteMinder
Agents for IIS Operating Behind the DMZ • 222

How to Set Up Error Handling • 149
How to Set Up Trace Logging • 181
How to Set Up Virtual Server Support • 76
How to Set up your IIS 7.x Servers with SiteMinder

When Operating Behind an ARR Server in a DMZ •
221

How to Support a P3P Compact Policy with your
SiteMinder Web Agent • 81

How to use Forms with ACE Authentication • 271
How Web Agents and the Policy Server Work

Together • 19
How Web Agents Secure Resources • 18
HTTP Header and Cookie-Variables • 126

I

Ignore Query Data in a URL • 228
Ignore the Cookie Provider for POST Requests

(Framework Agents Only) • 110
Ignore the Cookie Provider for Unprotected

Resources • 109
IgnoreCPForNotprotected parameter

setting • 109
IIS 6.0 Servers and BadURLChars Settings • 242
IIS 6.0 Web Agent

404 Not Found Errors • 65
SharePoint Portal Server • 118

Implement Central Configuration • 29
Implement Cookie Domain Resolution • 111
Implement Local Configuration • 36
Integrate an IIS 6.0 Agent with SharePoint Portal

Server 2003 • 118
IP Address Validation with Previous Web Agent

Releases • 140

K

Key Stores • 23

L

Limit the Number of Log Files Saved • 181
Limit the Number of Trace Log Files Saved • 192
List of Agent Configuration Parameters • 327
Local Agent Configuration • 30
Local Agent Configuration File • 43
LocalConfig.conf File Locations (Framework Agents)

• 33
Localize CGI-based Password Services Change Forms

• 282
LogAppend parameter, setting, error log • 178
LogFileName parameter

setting, error log • 178
LogFileSize parameter

setting, error log • 178
LogLocalTime

setting, error log • 178
LogLocalTime parameter, setting, trace log • 182
Logs of Start-up Events • 175

M

Manage 404 Not Found Errors (IIS 6.0 Agent) • 65
Manage Password Services • 273
Manage User Access with IIS • 151
Manage Web Agents with Multiple Web Server

Instances • 62
Map Agent Identities and Web Servers for Use By

FCCs and SCCs • 267
Map the .NTC File Extension • 160
Map URLs for FCC Redirects • 296
Map URLs for FCC Redirects with a Domino Web

Agent • 297
Mechanisms for Developing Web Applications • 123
MIME Types for Credential Collectors • 253
Modify the .fcc File for Forms POST Preservation •

267
Modify the Domino Default User and the Domino

Super User • 294
Modify the Session Grace Period • 104
Modify the Session Update Period • 97
Monitor Web Agents with the OneView Monitor • 59
Multiple Agent for IIS Directory Structures According

to Operating Environment • 16

N

nCipher cryptographic modules • 73
Notes for Custom 401 Pages • 150

Index 339

NT challenge/response
configuring • 158

NT, setting time zones • 21
NTC

See also credential collector
zzz • 252
NTCExt parameter, setting • 254

O

Other Cookies Affected by Single Sign-On Zones •
317

Override the Default CSS Character Set • 248

P

Parameter Values Shown in Log Files • 177
Parameters Found Only in Local Configuration Files •

34
Parameters Requiring a Server Restart when

Changed • 25
PERL, using to extract HTTP headers • 135
personalization, using response attributes • 124
Preserve Data Posted to a Form • 267
Preserve HTTP Headers • 140
Prevent Cookie Provider Replay Attacks • 113
Prevent Session Cookie Creation or Updates • 100
Prevent Session Cookie Creation or Updates Based

on Method and URI • 101
Protect IIS 6.0 Web Server Resources with Passport

Authentication • 309
Protect Resources Without Extensions • 238
Protect Session Cookies from Misuse with Validation

Periods and Expired Cookie URLs • 108
Protect Web Sites Against Cross-Site Scripting • 247
Protecting Web Applications • 123
protection levels

for single sign-on • 88
Proxy Header Usage Notes • 206
ProxyAgent parameter, setting • 211
ProxyDefinition parameter, setting • 139
ProxyTimeout parameter, setting • 211
ProxyTrust parameter, setting • 211

Q

Query String Encryption of Redirect URLs • 229
Query String Encryption of Redirect URLs and

FCC-based Password Services • 230

R

Record the Transaction ID in Apache Web Server
Logs • 172

Record the Transaction ID in Oracle iPlanet Web
Server Logs • 170

Record the User Name and Transaction ID in IIS
Server Logs • 173

Redirect a User after a Session Time-out • 107
Reduce Overhead by Ignoring File Extensions of

Unprotected Resources • 236
REMOTE_USER Variable • 126
RemoteUserVar parameter, setting • 128
Remove Integrated Windows Authentication (IWA)

Redirection with InlineCredentials Parameter of
the SiteMinder Agent for IIS • 151

Remove the Server HTTP Header if Using the
URLScan Utility • 67

Request Processing with Multiple User Sessions •
316

require cookies errors, description • 148
Require Cookies for Basic Authentication • 92
RequireCookieErrorFile parameter, setting • 148
Resolve Agent Identity by IP Address • 80
resource cache

emptying • 195
response attributes

for personalization • 19, 124
Restrict Changes to Local Configuration Parameters •

38
Restrict Characters Allowed in Host Names • 246
Restrict Directory Browsing on an Oracle iPlanet

Web Server • 71
Restrict IPC Semaphore-Related Message Output to

the Apache Error Log • 70

S

Safeguard Information in Cookies with HTTP-Only
Attribute • 249

SafeWord Server authentication schemes • 270
SCC

description • 252
See also credential collector

zzz • 252
SCCExt parameter, setting • 254
Secure Applications • 239
Security Considerations • 207
Security Zone Basic Use Case • 313
Security Zone Definitions • 311

340 Web Agent Configuration Guide

Security Zones Benefits • 312
Security Zones Overview • 312
Server-Specific Web Agent Configurations • 65
Set a Maximum URL Size • 233
Set a Time-out for Saved Credentials • 105
Set Persistent Cookies • 93
Set Secure Cookies • 102
Set Secure Cookies Across Multiple Domains • 102
Set the Agent Name and Default Agent Name

Identities • 56
Set the HTTP Header Encoding Spec • 143
Set the Maximum Resource Cache Size • 197
Set the Maximum User Session Cache Size • 198
Set the ServerPath Parameter for UNIX Systems • 63
Set the ServerPath Parameter for Windows Systems

• 62
Set the SiteMinder Web Agent Configuration

Parameters for your IIS 7.x ARR Server in the DMZ
• 223

Set the Web Agent Configuration Parameters for
your IIS 7.x Servers using SiteMinder Behind the
DMZ • 225

Set Up and Enable Error Logging • 178
Set Up Credential Collectors for Apache Web Servers

• 255
Set Up Credential Collectors for IIS and Domino Web

Servers • 254
Set Up Credential Collectors for Sun Java System

Web Servers • 255
SFCC

description • 252
See also credential collector • 252
See also credential collector

zzz • 252
SFCCExt parameter, setting • 254
SharePoint Portal Server • 118
single sign-on

agent key management • 90
configuring full logoff • 115
configuring, overview • 91
cookie provider, description • 252
multiple domains • 85
protection levels • 88
single domain • 84

Single Sign-On (SSO) • 83
Single Sign-On Across Multiple Cookie Domains • 86
Single Sign-On Across Multiple Domains • 85
Single Sign-on and Agent Key Management • 90

Single Sign-On and Authentication Scheme
Protection Levels • 88

Single Sign-On Security Zones • 311
Single Sign-On Zones and Authorization • 318
SiteMinder Default HTTP Headers • 130
SiteMinder Host Configuration File • 46
SiteMinder IIS 7.x Web Servers and Application

Request Routing (ARR) • 219
SiteMinder Reverse Proxy Deployment

Considerations • 211
SiteMinder Secure Proxy Server • 218
SM_PROXYREQUEST HTTP Header for SiteMinder

Processing with Secure Proxy Server • 218
SMSESSION cookie

support for third party cookies • 109
Special Apache Web Agent Settings • 67
Special IIS Web Agent Settings • 65
Specify an NTLM Credential Collector • 164
Specify Bad Form Characters • 243
Specify Bad Query Characters • 244
Specify Bad URL Characters • 241
Specify the Cookie Domain • 94
Specify the Cookie Path for Agent Cookies • 119
Specify the Cookie Provider • 96
Specify the Single Sign-on Zone for the Agent • 321
Specify URL Protocols with Lowercase Characters •

272
Specify User Directories for Domino • 300
Specify Virtual Servers for the Web Agent to Ignore •

79
SSL forms credential collector • 252
SSL-based credential collector. See SCC • 252
Starting and Stopping Web Agents • 73
Store Session Cookies on the Session Store for

Improved Security • 98
Sun Java System reverse proxy

httpsports, setting • 211
ProxyAgent, setting • 211

Super User, identity for Domino server • 290
Supported Approaches for Using Password Services

with Web Agents • 273

T

The Default Single Sign-On Zone and Trusted Zone
List • 316

The Order of Trust and Failover • 322
time

zones, setting (NT) • 21

Index 341

Trace Configuration File • 44
Trace Log Components and Subcomponents • 185
Trace Message Data Field Filters • 189
Trace Message Data Fields • 187
TraceAppend parameter, setting • 182
TraceDelim parameter, setting • 182
TraceFileSize parameter, setting • 182
TraceFormat parameter, setting • 182
Track User Activities • 169
Track User Activities or Application Usage with

Auditing • 169
Track User Identity Across Anonymous Realms • 90
transaction IDs

adding to server logs (Apache) • 170
adding to server logs (Sun Java System) • 170

Transitive Relationships Across Zones • 317
Troubleshooting • 323
Trusted Zone Order • 314
Two Types of Agents for Internet Information

Services (IIS) Web Servers • 15
Types of Reverse Proxy Solutions • 209
Types of Web Agents (Traditional and Framework) •

24

U

URIs, handling complex URIs • 239
URL Monitoring Overview • 235
Use a Domino Agent with a WebSphere Application

Server • 306
Use a Fully Qualified URL for Password Services

Redirects • 283
Use a Relative Target for Credential Collector

Redirects • 263
Use a SiteMinder Header for Authentication • 296
Use a Special Forms Template for Passport

Authentication • 270
Use an IIS Proxy User Account (IIS Only) • 155
Use CA Wily Introscope to Monitor Web Agents • 59
Use Case 1

Single Agent Protects Single Resource • 50
Use Case 2

Multiple Agents Protecting Multiple Applications
within One Domain • 50

Use Case 3
Framework and Traditional Agents Protecting

Multiple Applications within One Domain • 51
Use Case 4

Framework and Tradtional Agents Protecting
Multiple Applications Across Multiple
Domains • 52

Use Cases • 49
Use Credential Collectors for Authentication and

Single Sign-On • 252
Use Encryptkey to Set the Domino Default or Super

User • 295
Use FCCs and NTCs in a Mixed Environment • 257
Use Legacy Applications with an Apache Web Agent

• 68
Use Lower Case HTTP in Headers (for Oracle iPlanet,

Apache, and Domino web servers) • 142
Use Platform for Privacy Preferences (P3P) Compact

Policies with SiteMinder Agents • 81
Use SCCs in a Mixed Environment • 260
Use SM_AGENT_ATTR_USRMSG Response for a

Forms Challenge • 144
Use the HTTP HOST Request for the Port Number •

68
Use the HttpsPorts Parameter on Apache 2.x Servers

• 146
Use the NetBIOS Name or UPN for IIS Authentication

• 157
Use the safeword.fcc File for SafeWord Forms

Authentication • 270
Use Web Agents with Proxy Servers • 201
user session variables

disabling • 133
User Sessions Across Security Zones • 314
UseServerRequestIp parameter

setting • 80

V

Validate a Session Cookie Domain • 99
virtual servers

ignored by a web agent • 79
using IP addresses to find agents • 80

W

Web Agent Cache • 195
Web Agent Configuration File • 47
Web Agent Configurations • 27
Web Agent Trace Configuration File • 45
Web Agents • 15
Web Agents and Dynamic Key Rollovers • 23
Web servers

configuring logs (Apache) • 170

342 Web Agent Configuration Guide

configuring logs (Sun Java System) • 170
WebAgent.conf file for Framework Agents • 32
WebAgent.conf File Locations • 31

	CA SiteMinder Web Agent Configuration Guide
	Contents
	1: Web Agents
	Two Types of Agents for Internet Information Services (IIS) Web Servers
	Multiple Agent for IIS Directory Structures According to Operating Environment
	How Web Agents Secure Resources
	How Web Agents and the Policy Server Work Together
	Considerations for Web Agents and Policy Servers in Different Time Zones

	How the Agent Reads SiteMinder Cookies
	Web Agents and Dynamic Key Rollovers
	Key Stores

	Types of Web Agents (Traditional and Framework)
	Parameters Requiring a Server Restart when Changed

	Web Agent Configurations
	Central Configuration
	Implement Central Configuration

	Local Agent Configuration
	WebAgent.conf File Locations
	WebAgent.conf file for Framework Agents
	LocalConfig.conf File Locations (Framework Agents)
	Parameters Found Only in Local Configuration Files

	How to Edit an Agent Configuration File
	Implement Local Configuration
	Restrict Changes to Local Configuration Parameters
	Central and Local Configuration Together

	2: Configuration Files used by the Web Agent
	Agent Connection Manager Configuration File
	Connection API Configuration File
	Local Agent Configuration File
	Trace Configuration File
	Web Agent Trace Configuration File
	SiteMinder Host Configuration File
	Web Agent Configuration File

	3: Use Cases
	How to Meet the Use Case Deployment Prerequisites
	Use Case 1: Single Agent Protects Single Resource
	How to Implement Use Case 1

	Use Case 2: Multiple Agents Protecting Multiple Applications within One Domain
	How to Implement Use Case 2

	Use Case 3: Framework and Traditional Agents Protecting Multiple Applications within One Domain
	How to Implement Use Case 3

	Use Case 4: Framework and Tradtional Agents Protecting Multiple Applications Across Multiple Domains
	How to Implement Use Case 4

	4: Basic Web Agent Configuration
	Default Settings of Web Agent Configuration Parameters
	Set the Agent Name and Default Agent Name Identities
	Ensure that Agent Names Match
	Encrypt the Agent Name

	How to Manage Web Agent and Policy Server Communication
	Use CA Wily Introscope to Monitor Web Agents
	Monitor Web Agents with the OneView Monitor
	Change How Often an Agent Checks for Policy or Key Updates
	Accommodate Network Latency
	Manage Web Agents with Multiple Web Server Instances
	Set the ServerPath Parameter for Windows Systems
	Set the ServerPath Parameter for UNIX Systems
	Additional Configurations Requiring the ServerPath Parameter

	5: Server-Specific Web Agent Configurations
	Special IIS Web Agent Settings
	Manage 404 Not Found Errors (IIS 6.0 Agent)
	Configure your Web Agent to Accommodate P3P Compact Policies
	Enable the IIS 6.0 Security Context to Work with the Agent
	Remove the Server HTTP Header if Using the URLScan Utility

	Special Apache Web Agent Settings
	Use the HTTP HOST Request for the Port Number
	Use Legacy Applications with an Apache Web Agent
	Choose How Content Types are Transferred in POST Requests
	Restrict IPC Semaphore-Related Message Output to the Apache Error Log

	Restrict Directory Browsing on an Oracle iPlanet Web Server

	6: Starting and Stopping Web Agents
	Enable a Web Agent
	Disable a Web Agent

	7: Configure Virtual Servers
	How to Set Up Virtual Server Support
	Add a SiteMinder Wildcard Mapping to Protect IIS 6.0 Virtual Web Sites
	Assign Web Agent Identities for Virtual Servers
	Specify Virtual Servers for the Web Agent to Ignore
	Resolve Agent Identity by IP Address

	8: Use Platform for Privacy Preferences (P3P) Compact Policies with SiteMinder Agents
	How to Support a P3P Compact Policy with your SiteMinder Web Agent
	Configure your Web Agent to Accommodate P3P Compact Policies

	9: Single Sign-On (SSO)
	How Single Sign-on Works in a Single Domain
	Single Sign-On Across Multiple Domains
	Single Sign-On Across Multiple Cookie Domains

	Single Sign-On and Authentication Scheme Protection Levels
	Allow Automatic Access to Resources that use the OPTIONS Method
	Track User Identity Across Anonymous Realms
	Single Sign-on and Agent Key Management
	How to Configure Single Sign-On
	Require Cookies for Basic Authentication
	Set Persistent Cookies
	Specify the Cookie Domain
	Specify the Cookie Provider
	Modify the Session Update Period
	Store Session Cookies on the Session Store for Improved Security
	Validate a Session Cookie Domain
	Prevent Session Cookie Creation or Updates
	Prevent Session Cookie Creation or Updates Based on Method and URI
	Set Secure Cookies
	Set Secure Cookies Across Multiple Domains
	Control Identity Cookies
	Modify the Session Grace Period
	Set a Time-out for Saved Credentials
	How to Enforce Timeouts across Multiple Realms
	Redirect a User after a Session Time-out
	Protect Session Cookies from Misuse with Validation Periods and Expired Cookie URLs

	Configure Support for SDK Third-Party Cookies
	Ignore the Cookie Provider for Unprotected Resources
	Ignore the Cookie Provider for POST Requests (Framework Agents Only)
	Force the Cookie Domain
	Implement Cookie Domain Resolution
	Configure SecureUrls with Single Sign-on
	Prevent Cookie Provider Replay Attacks
	How Full Logoff Works
	Configure Full Logoff
	How to Configure Full Logoff for Single Sign-on
	Configure Comprehensive Log Out using FCC Forms

	Integrate an IIS 6.0 Agent with SharePoint Portal Server 2003
	Specify the Cookie Path for Agent Cookies
	How CookiePathScope Settings Work

	10: Protecting Web Applications
	Mechanisms for Developing Web Applications
	How Response Attributes Work with Web Agents
	HTTP Header and Cookie-Variables
	Cache Response Attributes

	REMOTE_USER Variable
	How the IIS Web Agent Populates the REMOTE_USER Variable

	Configure the Web Agent to set the REMOTE_USER Variable
	SiteMinder Default HTTP Headers
	Disable Default HTTP Header Variables
	Example Applications that Use SiteMinder Default HTTP Headers
	Extract HTTP Headers Using a Shell Script
	Extract HTTP Headers Using NSAPI
	Extract HTTP Headers Using PERL
	Extract HTTP Headers Using ASP

	Header Variables and End-User IP Address Validation
	How Custom Headers Validate IP Addresses
	Configure IP Address Validation
	IP Address Validation with Previous Web Agent Releases

	Preserve HTTP Headers
	Control How HTTP Header Resources are Cached
	Use Lower Case HTTP in Headers (for Oracle iPlanet, Apache, and Domino web servers)
	Set the HTTP Header Encoding Spec
	Disable Conformance to RFC 2047
	Use SM_AGENT_ATTR_USRMSG Response for a Forms Challenge
	Enable Legacy Variables for HTTP Headers
	Define HTTPS Ports
	Use the HttpsPorts Parameter on Apache 2.x Servers

	Handle Multiple AuthTrans Functions for Oracle iPlanet Web Servers
	Custom Error Handling For Applications
	How to Set Up Error Handling
	Notes for Custom 401 Pages

	11: Manage User Access with IIS
	Remove Integrated Windows Authentication (IWA) Redirection with InlineCredentials Parameter of the SiteMinder Agent for IIS
	Control IIS 7.x Module Execution Order when using the SiteMinder Agent for IIS
	Use an IIS Proxy User Account (IIS Only)
	Enable Anonymous User Access

	Use the NetBIOS Name or UPN for IIS Authentication
	How to Configure the NT Challenge/Response Authentication (IIS Only)
	Map the .NTC File Extension
	Configure the Virtual Directory for Windows Authentication Schemes (IIS 6.0)
	Configure Automatic Logon for Internet Explorer
	Configure the Challenge/Response Authentication Scheme
	Specify an NTLM Credential Collector

	How to Implement an Information Card Authentication Scheme
	Export the Web Server Certificate to your smkey Database
	Configure an FCC Template for an Information Card Authentication Scheme

	Disable Windows Security Context on Agents for IIS

	12: Track User Activities
	Track User Activities or Application Usage with Auditing
	Record the Transaction ID in Oracle iPlanet Web Server Logs
	Record the Transaction ID in Apache Web Server Logs
	Record the User Name and Transaction ID in IIS Server Logs

	13: Configure Logs
	Logs of Start-up Events
	Error Logs and Trace Logs
	Parameter Values Shown in Log Files

	Set Up and Enable Error Logging
	Enable Transport Layer Interface (TLI) Logging
	Limit the Number of Log Files Saved
	How to Set Up Trace Logging
	Configure Trace Logging
	Trace Log Components and Subcomponents
	Trace Message Data Fields
	Trace Message Data Field Filters
	Determine the Content of the Trace Log
	Limit the Number of Trace Log Files Saved
	Collect Detailed Agent Connection Data with an Agent Connection Manager Trace Log

	14: Adjust Performance
	Web Agent Cache
	Control How Long Resource Enteries Remain Cached
	Set the Maximum Resource Cache Size
	Disable the Resource Cache
	Set the Maximum User Session Cache Size
	Cache Anonymous Users
	Accommodate Testing Tools that do not send HOST Headers

	15: Use Web Agents with Proxy Servers
	Configure Agents that Sit behind Proxy Servers
	Customize the Cache-Control and ExpireForProxy Header Settings
	Proxy Header Usage Notes

	Security Considerations

	16: Configure Reverse Proxy Servers
	Types of Reverse Proxy Solutions
	How Reverse Proxy Servers Work with SiteMinder
	SiteMinder Reverse Proxy Deployment Considerations
	How to Configure An Apache Reverse Proxy Server
	Configure a Sun Java System 6.0 Reverse Proxy Server
	Configure an Oracle iPlanet 7.0 Reverse Proxy Server

	SiteMinder Secure Proxy Server
	SM_PROXYREQUEST HTTP Header for SiteMinder Processing with Secure Proxy Server

	SiteMinder IIS 7.x Web Servers and Application Request Routing (ARR)
	How to Set Up an IIS 7.x Server with ARR and SiteMinder in your DMZ
	How to Set up your IIS 7.x Servers with SiteMinder When Operating Behind an ARR Server in a DMZ
	How to Set up an IIS 7.x Server with ARR and SiteMinder in your DMZ with other SiteMinder Agents for IIS Operating Behind the DMZ
	Set the SiteMinder Web Agent Configuration Parameters for your IIS 7.x ARR Server in the DMZ
	Set the Web Agent Configuration Parameters for your IIS 7.x Servers using SiteMinder Behind the DMZ

	17: Control Inbound URL Processing
	Decode Query Data in a URL
	Ignore Query Data in a URL
	Query String Encryption of Redirect URLs
	FCC Directive for Encoding Query Strings of Redirect URLs
	Query String Encryption of Redirect URLs and FCC-based Password Services

	Allow Un-restricted Access to URIs
	Encrypt Query String Parameters in Redirection URLs
	Set a Maximum URL Size

	18: Enforce Security with URL Monitoring
	URL Monitoring Overview
	Reduce Overhead by Ignoring File Extensions of Unprotected Resources
	How to Protect Resources Without Periods or Extensions
	Protect Resources Without Extensions
	Secure Applications
	Handle Complex URIs
	Specify Bad URL Characters
	IIS 6.0 Servers and BadURLChars Settings

	Specify Bad Form Characters
	Specify Bad Query Characters
	Restrict Characters Allowed in Host Names

	19: Help Prevent Attacks
	Protect Web Sites Against Cross-Site Scripting
	Configure the Web Agent to Check For Cross Site-Scripting
	Override the Default CSS Character Set
	Safeguard Information in Cookies with HTTP-Only Attribute
	Compare IP Addresses to Prevent Security Breaches
	Help Prevent DNS Denial Of Service Attacks

	20: Authenticate Users with Forms
	How Credential Collectors Process Requests
	Use Credential Collectors for Authentication and Single Sign-On
	MIME Types for Credential Collectors
	Configure MIME Types for Each Credential Collector
	Set Up Credential Collectors for IIS and Domino Web Servers
	Set Up Credential Collectors for Sun Java System Web Servers
	Set Up Credential Collectors for Apache Web Servers

	Configure Credential Collectors in a Mixed Environment
	Use FCCs and NTCs in a Mixed Environment
	Use SCCs in a Mixed Environment

	Configure the FCC to Use a Single Resource Target
	Forms Cache
	Form Cache Data
	Configure the Form Cache

	Disable FCC Realm Context Confirmation to Improve Performance
	Use a Relative Target for Credential Collector Redirects
	Define Valid Target Domains
	Define Valid Federation Target Domains
	Enable FCCs/SCCs to Use Agent Names as Fully Qualified Host Names
	Map Agent Identities and Web Servers for Use By FCCs and SCCs
	Preserve Data Posted to a Form
	Modify the .fcc File for Forms POST Preservation
	Enable Post Preservation between Framework and Traditional Agents
	Disable POST Preservation

	Use the safeword.fcc File for SafeWord Forms Authentication
	Use a Special Forms Template for Passport Authentication
	How to use Forms with ACE Authentication
	Specify URL Protocols with Lowercase Characters

	21: Manage Password Services
	Supported Approaches for Using Password Services with Web Agents
	FCC Password Services and URL Query Encryption
	Configure FCC Password Services
	How to Enable User-Initiated Password Changes when using the SiteMinder X.509 Certificate and Basic Authentication Scheme
	How to Enable User-Initiated Password Changes with FCCs
	How to Enable User-Initiated Password Changes with FCCs (SecureURLs=Yes)
	Configure SecureID Authentication with FCC Password Services
	How to Localize FCC-based Password Services Change Forms

	Localize CGI-based Password Services Change Forms
	Use a Fully Qualified URL for Password Services Redirects

	22: Domino Web Agents
	Domino Agents Overview
	Domino URL Syntax
	Domino Aliases
	Convert Notes Document Names

	Configure the Domino Web Agent
	Configure Domino-Specific Agent Functions
	Authenticate Users with the Domino Server
	Force SiteMinder to Authenticate Users
	Authenticate as the Domino Super User
	Authenticate as the Actual User or the Default User
	Modify the Domino Default User and the Domino Super User
	Use Encryptkey to Set the Domino Default or Super User

	Map URLs for FCC Redirects

	Coordinate SiteMinder and Domino Authentication
	Use a SiteMinder Header for Authentication
	Disable Domino Session Authentication
	Map URLs for FCC Redirects with a Domino Web Agent
	Disable URL Normailization

	Control Access to Lotus Notes Documents
	Enable a Domino Agent to Collect Credentials for Authentication
	Specify User Directories for Domino
	Configure Policies for Domino
	Create Rules for Domino Server Resources
	Configure Full Logoff Support for Domino Agents
	Guidelines for Creating Policies on Domino Servers

	Use a Domino Agent with a WebSphere Application Server
	Force Domino Server to Authenticate Unprotected SiteMinder Resources

	23: Advanced Authentication Scheme Configuration
	Protect IIS 6.0 Web Server Resources with Passport Authentication
	Delete Certificates from Stronghold (Apache Agent Only)
	Accommodate Legacy URL Encoding

	24: Single Sign-On Security Zones
	Security Zone Definitions
	Security Zones Overview
	Security Zones Benefits
	Security Zone Basic Use Case
	User Sessions Across Security Zones
	Trusted Zone Order
	The Default Single Sign-On Zone and Trusted Zone List

	Request Processing with Multiple User Sessions
	Transitive Relationships Across Zones
	Other Cookies Affected by Single Sign-On Zones
	Single Sign-On Zones and Authorization

	Configure Security Zones
	Specify the Single Sign-on Zone for the Agent
	The Order of Trust and Failover

	A: Troubleshooting
	Agent Error Codes
	Agent for IIS Troubleshooting Log
	Duplicate LLAWP Error Appears in Log File
	Custom Error Pages not Appearing
	Authentication Error with FCCs if Passwords Contain Special Characters

	B: Agent Parameters
	List of Agent Configuration Parameters

	Index

