Table of Contents

1 - Pre-Requisites	4
2 - Program options	5
2.1 Regex robot selection filters	7
2.2 Actions	8
2.3 Selection Criteria	9
3 - Examples	10
3.1 generate a list of robots under a hub	10
3.2 generate a list of robots under a group	10
3.3 generate input commands for the port_check tool for all robots under a specific hub	11
3.4 generate a deploy_probe PU command for robots that don't have the robot_update package version 7.97 installed	11
3.5 deploy_probe with timing parameters	12
3.6 generate PU deploy custom package "aa" to all (also hub robots and inactive robots) robots located in hub "b_hub" that have probe "sql_response" installed	13
3.7 generate PU command for all non hub robots in USM group: bgbulab to set/update proxy_mode to 1 in the controller probe	14
3.8 generate PU custom command for all non hub robots in USM group: bgbulab to set/update the controller config parameter: proxy_mode to value: 1	14
3.9 generate PU command as Custom command to set origin	15
3.10 generate probe_config_set callback to modify origin	16
3.11 generate PU sethub command to update domain and hub	16
4 - Nimsoft_generic.dat (settings)	17
5 - Create Windows Perl environment	19
6 - Create Linux Perl environment	22
6.1 install Perl base	22
6.2 Install C compiler	23
6.3 Install additional Perl Packages	23
6.3.1 Perl modules MySQL	24
6.3.2 Compiling Perl	25

Some years ago I received on a regular base questions like:
· what are the machines without a CDM probe?
· followed by: deploy the CDM probe on all those machines
· update the user1 tag on all machines that have "sql" in the hostname and ip address in the range: xxx
· create a new setting, like proxy_mode, on robots with origin xxx
· what are the machines that don't have the latest version of probe or package xxx?
· can we deploy/update a probe in a scheduled way?
· ….

During deployments I had also a need for a tool that could generate almost any PU command with a very powerful robot selection method.

The problem was that there was no easy selection/reporting tool to help me answering these logical questions/needs.

That was the start of a new Perl tool: nimsoft_generate_pu.

In the beginning this tool was written only for my own use during client interventions. The needed command generation was at that moment hardcoded/modified in the Perl source when needed.
Slowly this was changed by adding more and more (and more) parameters to make the tool more powerful without the need to change the source each time for specific needs.

The nimsoft_generate_pu utility is a Perl tool that can help you:

· select robots based on "regular expressions" on the typical fields: hub, robot, probe name/version, origin, os_major, user1, user2, ip address, uim address.
· generate "deploy" commands via distsrv or ADE (with grouped & scheduled deploy) (tested mainly with distsrv, it seems to be more stable than ADE)
· generate PU "probe_config_set" callback
· generate almost any PU command in a file for later execution or review.
· generate almost any custom command (this is the latest addition in the tool and can be a partial overlap with other possibilities/options)
· generate input statements for the tool: port_check.pl.

Some examples what can be done:
· list all robots that don't have probe cdm installed
· deploy the cdm probe on all robots that don't have the cdm probe installed.
· generate deploy commands for all robots that have (or don't have) a specific package/version installed.
· upgrade the cdm probe on all robots that have a cdm version lt x.x
· deploy the robot_update package on all robots that have a version LT x.x.
· deploy a probe/package to 1000's of robots in packets of 100. Between each 100 deploys wait xx seconds.
· generate deploy commands with a start date/time.
· update the controller proxy_mode=1 setting on all robots that contain XXX in the name, ip or address. (xxx is a regex statement)
· update the spooler origin setting on all robots that are located under hub YYY and are not a hub and are active
· create any command and use several variables

This utility will by default create all commands in a file so that you can decide what/when/where you execute them.

[bookmark: _Toc19094870]1 - Pre-Requisites

· If you plan to run the tool as a Perl source you need a correct Perl 5.14.2 + the UIM SDK_Perl package. See appendix to have a detailed setup "example" for your Perl environment based on Strawberry Perl. Any other matching Perl version flavor is also ok.
· If you plan to use the compiled version, you only need the next step: customize the file: nimsoft_generic.dat.
· Customize the parameter file: nimsoft_generic.dat. This file contains all common parameter between several custom UIM utilities and contains the passwords in an encrypted format. See appendix for setup instructions.
· If you plan to generate deploy commands based on packages you will need activate the population of table: cm_nimbus_package

Note1: the Perl source, nimsoft_generic.pm and nimsoft_generic.dat must be located in the same directory (and that can be any directory) as nimsoft_generate_pu.pl/exe.

Note2: To activate the population of CA_UIM table: cm_nimbus_package:
· goto raw configure of probe discovery_server.
· Under the setup folder, create a new section "nis".
· Under nis, create a new key: enable_cm_nimbus_package and set the value to: true.
· The next time you restart the discovery_server probe it will start to populate this table with detailed probe information for each robot.

[bookmark: _Toc19094871]2 - Program options

If you execute the Perl without any parameter it will display all available options.

nimsoft_generate_pu.pl

Selection Parameters (regex):
 -gi/ge: (opt), group include/exclude
 -ni/-ne: (opt), name include/exclude based on CM_COMPUTER_SYSTEM
 -ii/ie: (opt), ip address include/exclude (attention: regex format)
 -hi/he: (opt), hub include/exclude
 -ho/hx: (opt), hub origin include/exclude
 -ti/te: (opt), robot include/exclude based on CM_NIMBUS_ROBOT
 -ai/ae: (opt), address include/exclude
 -u1: (opt), user_tag_1 include
 -u2: (opt), user_tag_2 include
 -om: (opt), os major include (like: Windows)
 -on: (opt), probe name include
 -ov: (opt), probe version lt

Selection with sql table: cm_nimbus_package (no regex)
 -op/ox: (opt), package name include/exclude
 -os: (opt), package version lt
 -oy: (opt), 1: use cm_nimbus_package (default), 2: use custom_probe_package

Selection Parameters specific: (no regex)
 -oi: (opt), probe name include (NO regex) (select only robots that have this probe installed)
 -oe: (opt), probe name exclude (NO regex) (select only robots that don't have this probe)

Robot selection switches:
 -bh: Bypass Hub robots (y,n) default y
 -bi: Bypass Inactive robots (y,n) default: y
 -oh: select Only Hub robots (y,n) default n

Action: Probe Deploy settings:
 -de: deploy probe or package (y,n) default n
 -dp: package name
 -dv: minimum package version to deploy
 -du: deploy utility: distsrv (d) or ade (a) Default: a
 -dr: y: use remote hub ade n: use central ade hub (default: n)
 -dt: (opt) start date/time for deployment (default: now)
 format: yyyy-mm-dd hh:mm:ss
 -d#: (opt) number of probes that will be deployed at the same time
 (default: 0 means all selected robots at the same time)
 -dw: (opt) wait #seconds between block of probes that will be deployed
 -do: deploy update (default: 0) (0/1)
 0: deploy on all selected robots
 1: deploy only on robots that have this package installed

Action: probe_config_set generation settings:
 -pc: probe_config_set command (y,n,e) default n
 -pp: probe name (example: controller/spooler)
 -ps: probe section (example: controller/spooler)
 -pk: probe key (example: proxy_mode/origin)
 -pv: probe value (example: 1/new_origin)

Action: PU generation settings:
 -pu: generate PU commands (y,n,e) default n
 -p1: parameter1 (example: sethub)
 -p2: parameter2 (example: new_domain or old_domain)
 -p3: parameter3 (example: new_hub)
 -p4: parameter4 (example: new_hub_ip)
 -p5: parameter5 (example: hub robot name)
 -p6: parameter6
 -p7: parameter7
 -p8: parameter8
 -p9: parameter9
 -p10: parameter10
 -p11: parameter11

Action: USM group member definitions:
 -us: generate USM member definitions (y,n) default: n
 -ug: USM group for the selected devices (lowest level)

Action: Custom command:
 -sl: generate server list file (y,n) default n
 -sc: custom command to be generated (" must be escaped as \")
 (see examples) (sl"y" must be used)

 Generic settings:
 -di: output directory. Default: c:/temp or /opt/temp
 -fi: output file. Default: report_nimsoft_generate_pu.txt
 -of: output file, default: c:\temp\report_nimsoft_generate_pu.txt
 -db: debug (y,n) default: n

For performance reasons all selections are done against information in the database: CA_UIM and not via callbacks. Depending on the selected options/switched the used query can be different and use different CA_UIM tables.

But this also means that we will initially select "all" entries in your database, except for the probe and package options, and it's the Perl source that will apply the flexible regex filters and apply your customized filters.

Note: when using –ni or –ne you can only use the switches: -ho/hx (origin include/exclude) and –ii/ie (ip include/exclude). This because the CM_COMPUTER_SYSTEM table does not contain all other details

[bookmark: _Toc19094872]2.1 Regex robot selection filters

All options under the section: "Regex robot selection filters" are options where you can use generic regular expressions.

This makes it possible to be as selective as possible in selecting the target robots and optional probes.

There are a few combination "exceptions":
· when using group include/exclude (-gi/-ge) you cannot use the probe name/package/version parameters (-on, -op,-ov, -ox, -os). But you can use probe name installed include/exclude (-oi/-oe)
· when using the computer name include/exclude (-ni/-ne) you can only use the origin and ip switches

Note1: the reason of this exception is that depending on your selection we will use a different SQL query into CA_UIM tables. (and until now there was no need to create these combined sql queries)
Note2: pay attention when using IP address filters -ii or/and -ie, they are always in regex format. Use -ii"10.10.10\." if you want to select all robots in the 10.10.10 range. Without the \. at the end you would also select robots with address: 10.10.100.xxx and 10.10.108.xxx (I made this error)

[bookmark: _Toc19094873]2.2 Actions

You can generate 6 types of action:
· generate a simple .txt file with a list of selected servers (-ls"y").
· generate your custom command in a .txt file (-ls"y" -lc"your command"). You can use variable sin your command.
· generate PU deploy_probe (ade) or job_add (distsrv) commands, activated with: -de"y"
· generate PU probe_config_set commands, activated with: -pc"y"
· generate other PU commands, activated by: -pu"y"
· generate USM group and member statements by -us"y"

It's clear that the easiest and preferred way, to deploy probes and customized packages, is to drag and drop in the IM or Admin GUI. But sometimes you need to be more specific/flexible in your selection criteria, especially if you want to filter on installed packages and versions.

Mass update probe settings is easier to perform via a quick custom archive package, but there you don't have the regex include/exclude possibilities to select your robots/probes. A best practice can be to prepare, like before, the customized archive package with your updated settings, and to deploy this package via this tool that will generate PU commands to do the job.

When creating your own custom commands with: ls"y" -lc"command":
· when using special characters, like " they must be escaped as: \"
· you can use variables: $o_ip, $o_os_major, $o_os_minor, $o_domain, $o_hub, $o_robot, $o_origin, $o_is_hub, $o_robot_active, $o_user_tag1, $o_user_tag2, $o_address, $o_group, $o_group_member, $o_probe_name, $o_probe_pkg, $o_probe_version
· you can also use: $nimuser and $nimpass (these are the UIM user and password defined in nimsoft_generic.dat)

Note1: USM group and member statements (-us"y") are used as input by the tool: nimsoft_rest_usm_group.pl to create an USM static group structure and populate these groups with members/devices.
Note2: when using $nimpass it will be the password in clear (this is a tool for THE administrator, not for an end user)

[bookmark: _Toc19094874]2.3 Selection Criteria

All of the selection criteria are based on a SQL query, instead of UIM callbacks, for performance reasons. (the first versions used callbacks, until I arrived with a very large client)

The basic MSSQL query is:

SELECT ip, os_major, os_minor, domain, hub, robot, origin, is_hub, robot_active, user_tag_1, user_tag_2, address
FROM CM_NIMBUS_ROBOT with(nolock)

Depending if you select also a group, a probe or package we will use alternative queries.

Where possible we will make the SQL queries generic so that the Perl source/tool can apply the regular expressions.

Only when you select probes (-io/-oe) or packages (-op) you need to use specific probe or package names because the filtering will be done in the SQL query.

When using the name selection –ni/-ne the MSSQL query is:

select name,ip,os_type,os_name,domain,domain,origin,domain,domain,domain,domain from CM_COMPUTER_SYSTEM with(nolock)

Note: if you add the option: -db”y”, we will print the used sql query as a reference.

[bookmark: _Toc19094875]3 - Examples

Attention: most of the selection fields are in "regular expression" format.

[bookmark: _Toc19094876]3.1 generate a list of robots under a hub

The -sl"y" switch will activate the generation of an output file with only the selected robots in it. At the same time you can use any other selection switch.

perl nimsoft_generate_pu.pl -sl"y" -hi"bgbulab00_hub"

By default we will exclude hub robots (-bh"y") and inactive robots (-bi"y").
The default output file is: c:\temp\report_nimsoft_generate_pu.txt. But this can be adapted by the -di and -fi parameters.

Example output: (only the selected robot names)

[image:]

Note: if you need more than a simple list you can add the -sc switch to generate any combination of parameters/commands.

[bookmark: _Toc19094877]3.2 generate a list of robots under a group

When selecting a group with the -gi (group include) and/or -ge (group exclude) switch you need to use the lowest level of the group.

Only devices with a robot installed can be selected via the group selection.

If you have a group structure: /Groups/Operating Systems/Windows
you need to use "windows" to have all devices in that group.

perl nimsoft_generate_pu.pl -sl"y" -gi"windows"

[bookmark: _Toc19094878]3.3 generate input commands for the port_check tool for all robots under a specific hub

With the combination of parameters -sl"y" and sc"your_command" you can generate almost every command or string.
perl nimsoft_generate_pu.pl -bh"y" -bi"n" -sl"y" -sc"$o_ip:48000" -hi"bgbulab00_hub"

This command will select all robots under a hub (-hi".."), active and inactive (-bi"n"), except the hub robot (-bh"y"); and will generate the input commands for the utility/tool port_check.pl in format: "ipaddress:48000" (-sl"y" -sc"$o_ip:48000")
Note: you can use the variables:
$o_ip, $o_os_major, $o_os_minor, $o_domain, $o_hub, $o_robot, $o_origin, $o_is_hub, $o_robot_active, $o_user_tag1, $o_user_tag2, $o_address, $o_group, $o_group_member, $o_probe_name, $o_probe_pkg, $o_probe_version

[bookmark: _Toc19094879]3.4 generate a deploy_probe PU command for robots that don't have the robot_update package version 7.97 installed

perl nimsoft_generate_pu.pl -de"y" -bi"y" -bh"y" -op"robot_update" -os"7.97" -dp"robot_update" –du”a”

In this example we use the optional sql table: cm_nimbus_package. (this table is not populated by default, see introduction how to activate this table)

· -de"y": generate PU deploy command
· -bi"y": bypass inactive robots (y is the default)
· -bh"y": bypass hub robots (y is the default)
· -du”a”: use ade (a is the default)
· -op: package name include (select all robots that have this package installed) (specific, no regex)
· -os: package version less than (no regex)
· -dp: package name to deploy (no regex)

This will generate a command like:

pu.exe -u administrator -p xxx /domain/hub/robot/automated_deployment_engine deploy_probe "robot_update" "" "/domain/robot_hub/target_robot" "0" "" "" ""

Note1: do NOT deploy the robot_update package on your hubs at the same time as you deploy it on your robots!!!
Note2: by default we will use ADE to deploy probes. By using -du"d" you can request to perform the deploy via distsrv.
Note3: the -op (package name) and -os (package version less than) parameters will be used in the SQL query against the table: cm_nimbus_package. That's why they are not in regex format.
Note 4: when defining -dp (deploy package name) it can be needed to use also -dv (deploy version). This depends how the UIM internal package name is constructed. (sometimes with version, sometimes without)

[bookmark: _Toc19094880]3.5 deploy_probe with timing parameters

If the previous example would generate a lot of deploy commands it can be interesting:
· to start the deployment during a non peak period. This can be done by using -dt to define a start date/time. In format: "yyyy-mm-dd hh:mm"
· by launching only xx deploys at the same time (-d#).
· by waiting a number of seconds between each deploy block (-dw)

perl nimsoft_generate_pu.pl -de"y" -bi"y" -bh"y" -op"robot_update" -os"7.93" -dp"robot_update" -dt"2018-04-28 22:00" -d#"100" -dw"300"

Our deploy_probe command will have a start date and time and the first 100 robots will start deployment at 22:00. The next 100 robots will start at 22:05 (300 seconds later).

[bookmark: _Toc19094881]3.6 generate PU deploy custom package "aa" to all (also hub robots and inactive robots) robots located in hub "b_hub" that have probe "sql_response" installed

perl nimsoft_generate_pu.pl -de"y" -bh"n" -bi"n" -dp"aa" -hi"b_hub" -oi"sql_response"

· -de"y": generate PU deploy command
· -bh"n": do not bypass hub robots
· -bi"n": do not bypass inactive robots
· -dp: package name to deploy (specific, no regex)
· -hi: hub include (regex)
· -oi: probe installed selected include (specific, no regex)

[bookmark: _Toc19094882]3.7 generate PU command for all non hub robots in USM group: bgbulab to set/update proxy_mode to 1 in the controller probe

perl nimsoft_generate_pu.pl -pc"y" -gi"bgbulab" -bi"n" -pp"controller" -ps"controller" -pk"proxy_mode" -pv"1"

· -pc"y": activate probe_config_set
· -gi: USM group include (last level of USM group) (regex)
· -bi"n": don't bypass inactive robots
· -pp: probe name (controller) (specific)
· -ps: probe section (controller) (specific)
· -pk: probe key (proxy_mode) (specific)
· -pv: probe value (1) (specific)

This generates a command like:

pu.exe -u administrator -p xxx /domain/target_hub/target_robot probe_config_set controller controller "proxy_mode" "1" "" "target_robot"

Note1: -pp refers to the probe name you want to update. -ps refers to the section of the config where the key is located. This info can be found in the probe config file.
Note2: do NOT activate proxy_mode on one of your hubs!!

[bookmark: _Toc19094883]3.8 generate PU custom command for all non hub robots in USM group: bgbulab to set/update the controller config parameter: proxy_mode to value: 1

In previous example we used the build in generation of the probe_config_set command. But we can also use -sl"y" and -sc"xx" to generate exactly the same command with the use of variables:
Note: the use of -sl"y" with -sc"xx" is the most powerful option to generate any command
perl nimsoft_generate_pu.pl -sl"y" -gi"bgbulab" -bi"n" -sc"pu.exe -u $nimuser -p $nimpass /$UIM_Domain/$o_hub/$o_robot probe_config_set controller controller \"proxy_mode\" \"1\" \"\" \"$o_robot\""

[bookmark: _Toc19094884]3.9 generate PU command as Custom command to set origin

perl nimsoft_generate_pu.pl -bh"n" -bi"n" -sl"y" -sc"pu.exe -u $nimuser -p $nimpass /$UIM_Domain/$o_hub/$o_robot probe_config_set spooler spooler \"origin\" \"bgbulab\" \"\" \"$o_robot\""
· -sl"y": activate custom command mode (-sc is containing the custom command)
· -bh"n": don't bypass hub robots
· -bi"n": don't bypass inactive robots
· -sc"..": command that can contain the variables:
$o_ip, $o_os_major, $o_os_minor, $o_domain, $o_hub, $o_robot, $o_origin, $o_is_hub, $o_robot_active, $o_user_tag1, $o_user_tag2, $o_address, $o_group, $o_group_member, $o_probe_name, $o_probe_pkg, $o_probe_version
Note: bgbulab is the new origin that we want to define

[bookmark: _Toc19094885]3.10 generate probe_config_set callback to modify origin

perl nimsoft_generate_pu.pl -pc"y" -hx"bgbulab" -pp"spooler" -ps"spooler" -pk"origin" -pv"bgbulab"

Select all robots that are not located under a hub with bgbulab in the hubname (-hx)

For all selected robots, generate a PU probe_config_set command (-pc) to update the spooler probe, spooler section , key=origin and value=bgbulab.

Generate PU
· -pc: generate PU probe_config_set
· -hx"bgbulab": hub exclude (regex)
· -pp: probe name (spooler) (specific)
· -ps: probe section (spooler) (specific)
· -pk: probe parameter/key (origin) (specific)
· -pv: probe new value (new_origin) (specific)

[bookmark: _Toc19094886]3.11 generate PU sethub command to update domain and hub

perl nimsoft_generate_pu.pl -pu"y" -p1"sethub" -p2"bgbulab53_domain" -p3"bgbulab53_hub" -p4"192.168.0.153" -p5"" -p6""

· -pu"y": generate PU commands
· -p1: command sethub
· -p2: new (or same) domain
· -p3: new hub
· -p4: new hub ip
· -p5: empty
· -p6: empty

Note1: -pu can be used for most PU commands other than deploy and probe_config_set. Here you must check via the probe utility GUI for the layout of the command you want to generate.
Note2: test always 1 (and only 1) of the generated PU commands to check if your parameters are correct.
Note3: using -sl and -sc is now the recommended combination to generate any command (-sc is a relative new parameter in this tool)

[bookmark: _Toc458756327][bookmark: _Toc19094887][bookmark: _Toc468095939][bookmark: _Toc465407494]4 - Nimsoft_generic.dat (settings)

All custom reporting tools use a common parameter file: nimsoft_generic.dat

-- UMP server & port & (http or https)
uim_server=ump_server_name
uim_port=80
uim_https=http

--- Nimsoft userid and crypted password (via nimsoft_crypt.exe)
uim_user=administrator
uim_password=gWL/M/ij/Dvonp0=

--- Nimsoft domain, hub and robot to create address to the main hub
uim_domain=xxx_domain
uim_hub=xxx_hub
uim_robot=xxx

--- SQL server, userid, crypted password (via nimsoft_crypt.exe) and database name
sql_server=sql_server_name
sql_user=sa
sql_password=gWL/M/ij/Dvonp0=
sql_db=CA_UIM
sql_type=mssql

--- end of parameters ---

The 2 passwords are stored in an encrypted form. To generate this encrypted password, use:

nimsoft_crypt your_password

As output you will receive the string that you can copy as encrypted password in the above file.

Note: all versions use now a nimsoft_generic.dat/pm that have an extra parameter: uim_https. This option is only used for utilities that use the REST interface. (probe_maint_on and nimsoft_rest_maintenance)

Note1: this nimsoft_generic.dat is common between multiple tools. It is possible that the tool you are working with is not using all variables in this file.
Note2: if you use "sql_user=trusted" and use also "sql_password=" we will connect to MSSQL via a trusted connection. (=your logged on userid)
Note3: the uim_robot must be defined in the format/case that UIM recognize them. (like it's displayed in IM)
Note4: In case you receive a "communication error" while using a non-simulation execution of the tool, try to use the: /uim_domain/uim_hub/uim_robot values like you use it in nimsoft_generic.dat in the command:

pu -u administrator -p ??? /your_domain/your_hub/your_robot/discovery_server get_snmp_devices

This commands must give a normal output like:

[image:]

These names are case sensitive.

[bookmark: _Toc19094888]5 - Create Windows Perl environment

This tool contains the Perl source and compiled Perl version.
If you want to create a Perl environment that can run this Perl source & optionally compile the source yourself you can follow the documented steps.

Once the Perl environment is created you can compile the Perl source:

pp -C -o c:\unibat\nimsoft_delete_device.exe c:\unibat\nimsoft_delete_device.pl
pp -C -o c:\unibat\nimsoft_delete_device_mysql.exe -l="C:\strawberry\c\bin\libmysql__.dll" c:\unibat\nimsoft_delete_device.pl

Note1: you must execute this PP command from a command prompt with as directory where you placed/copied:
1. nimsoft_delete_device.pl (only an example source name)
1. nimsoft_generic.pm
Note2: the -l option is needed to include all dll modules to be able to execute the compiled module on an external servers without Perl installed.

0. download from: http://strawberryperl.com/releases.html the file:
0. strawberry-perl-5.14.2.1-64bit.msi (it's a must that you download version 5.14.2)
0. install the msi in: c:\Strawberry64 (or any other directory)
0. verify that the following 3 directories are in the system path:
2. C:\strawberry64\perl\bin
2. C:\strawberry64\perl\site\bin
2. C:\strawberry64\c\bin
0. refresh the command prompt or reboot to activate the path
0. deploy the probe: SDK_Perl to the main UIM server (this creates: C:\Program Files (x86)\Nimsoft\perllib)
0. copy the directories under: C:\Program Files (x86)\Nimsoft\perllib to C:\strawberry64\perl\lib
0. now you are ready to install additional packages via cpan (from command prompt): (you need internet access because these modules are get directly from cpan):
0. cpan install Crypt::RC4
0. cpan install XML::Simple
0. cpan install HTTP::Request
0. cpan install DBD::ODBC (here you will receive some messages, but it's normal)
0. cpan install MIME::Base64
0. cpan install Time::Piece
0. cpan install Time::Seconds
0. cpan install LWP::UserAgent
0. (cpan install -f WWW::Mechanize) (generates messages and can take a long time to complete)
0. cpan install PAR::Packer
0. cpan install MIME::Lite
0. cpan install Data::GUID
0. cpan install Sys::HostAddr
0. (cpan install XML::LibXML)
0. cpan –fi Statistics::LineFit
0. cpan install Math::Spline
0. cpan install DBD::CSV
0. (cpan install DBD::Chart)
0. cpan install Net::SNMP
0. pip http://strawberryperl.com/package/kmx/perl-modules-patched/Crypt-OpenSSL-Random-0.04_patched.tar.gz
0. (cpan -fi Net::SSL::ExpireDate) (generates a lot of messages and can take some time)
0. cpan install Win32::Console
0. cpan install Term::ANSIColor
0. cpan install Win32::Console::ANSI

Note: the lines between () are not needed to run the probe or utility but are packages that are also installed on the original Perl directory received from CA services. (and can be needed if you run other customized reports/tools/probes)

[bookmark: _Toc19094889]6 - Create Linux Perl environment

[bookmark: _Toc467224118][bookmark: _Toc19094890]6.1 install Perl base

- deploy perl probe package (perl_linux_23_64)
- deploy Perl UIM SDK probe (SDK_Perl)
- add in /etc/bashrc:

PATH=/opt/nimsoft/perl/bin:$PATH
- add perl5lib
* Add a file in directory: /etc/profile.d example: setperl.sh
* add in this file:

export PERL5LIB=/opt/nimsoft/perllib:/root/perl5/lib/perl5:/root/perl5/lib/perl5:/root/perl5/lib/perl5
- login again or reboot to activate settings

[bookmark: _Toc467224119][bookmark: _Toc19094891]6.2 Install C compiler

- to install the c compiler (to install other packages):
· Yum group install “Development Tools”
· Yum install expat-devel

Probably the "Development Tools" will have added also version of Perl installed, but uim perl is first in definitions.
[bookmark: _Toc467224120][bookmark: _Toc19094892]6.3 Install additional Perl Packages

- Note: in this order this will install perl in /opt/nimsoft/perl
- Install now the additional Perl packages (needed by several chrlu01 utilities), all done by:

cpan install package (the first cpan install will ask to configure cpan)
-	cpan install Encode::Locale
-	cpan install File::Listing
-	cpan install HTML::Entities
-	cpan install HTML::HeadParser
- cpan install IO::HTML
- cpan install LWP::MediaTypes
- cpan install URI
- cpan install HTTP::Cookies
-	cpan install HTTP::Daemon
-	cpan install HTTP::Headers::Util
- cpan install HTTP::Negotiate
- cpan install YAML
- cpan install Net::HTTP
- cpan install WWW::RobotRules
-	cpan install LWP::UserAgent
-	cpan install XML::Simple
- cpan install Crypt::RC4
- cpan install File::Which
 - (check yum install perl-XML-LibXML-2.0018-5.el7.x86_64
- yum install libxml2
- yum install libxml2-devel
- cpan install XML::LibXML
- cpan install Win32::Console
- cpan install Term::ANSIColor
- cpan install Win32::Console::ANSI

[bookmark: _Toc467224121]

[bookmark: _Toc19094893]6.3.1 Perl modules MySQL

If you need the MySQL/MariaDB interface on a server without the DB itself:
· goto directory: /etc/yum.repos.d/ and create a file (example) mariadb.repo
· copy the following in the file (or generate the content via: https://downloads.mariadb.org/mariadb/repositories/#mirror=nucleus
MariaDB 10.1 CentOS repository list - created 2016-11-18 06:47 UTC #http://downloads.mariadb.org/mariadb/repositories/ [mariadb] name = MariaDB baseurl = http://yum.mariadb.org/10.1/centos7-amd64 gpgkey=https://yum.mariadb.org/RPM-GPG-KEY-MariaDB gpgcheck=1
· add in bashrc:
·
export DBD_MYSQL_CFLAGS=-I/usr/local/mysql/include/mysql
export DBD_MYSQL_LIBS="-L/usr/local/mysql/lib/mysql -lmysqlclient"
export DBD_MYSQL_EMBEDDED=
export DBD_MYSQL_CONFIG=mysql_config
export DBD_MYSQL_NOCATCHSTDERR=0
export DBD_MYSQL_NOFOUNDROWS=0
export DBD_MYSQL_NOSSL=
export DBD_MYSQL_TESTDB=test
export DBD_MYSQL_TESTHOST=bgbulab67
export DBD_MYSQL_TESTPASSWORD=Unicenter10
export DBD_MYSQL_TESTPORT=3306
export DBD_MYSQL_TESTUSER=root
· yum install MariaDB-client
· yum install perl-DBD-mysql
· yum install mysql-devel
· yum install zlib-devel
· yum install openssl-devel
· cpan install DBD::mysql

Note: you will remark that sometimes a pre-requisite package can be missing, you will need to install the missing pre-requisite also. (here it's a big difference with Strawberry Perl on Windows that installs automatically all missing pre-requisites)

Note:If cpan is not initialized correctly, remove /root/.cpan (rm –rf /root/.cpan) and excute cpan again to reinit

[bookmark: _Toc467224122][bookmark: _Toc19094894]6.3.2 Compiling Perl

Note: if you want to compile Perl sources and you don't have the PP command you can install:
- cpan install PAR
-	cpan install PAR::Packer

To compile a module:

pp -C -o test.bin test.pl
this to compile a very simple Perl

pp -C -o nimsoft_alarm_reporter.bin -l /usr/lib64/libodbc.so.2 -l /usr/lib64/libmysqlclient.so nimsoft_alarm_reporter.pl
this to compile a Perl that will access MySQL and you want to be able to execute this .bin from a standalone machine with no Perl and no MySQL client.

1

image1.png

image2.png

