	[image:]

	

	

	Publish CI Qos & Alarms to USM

	

[image:]Publish CI Qos & Alarms to USM
This document describes the new methods on how to publish CI QoS and Alarm messages which have been added to the SDK. This document assumes the reader has experience in writing Perl code and knowledge of the Nimsoft SDK.
Configuration Item
The definition of Configuration Items (CI) must follow the new object model.
QoS & Alarm data are associated with a Computer System.
Unique identifier for Computer System (CS)
Unique identifier for each Configuration Item (CI)
For each CI you can monitor one or more aspects:
Read speed, write speed for disks (CI Metrics)
Every metric monitored has a one-to-one relationship to a CI
Every CI has a one-to-one relationship to a CS
All is stored in a new central repository (database tables, see below for more details)
Create the CI in Perl
This makes the association to the CS and the Type, this association has to be created first of all.
CI Type & Metric Type Definition
CI Type Definition
The available ci types are stored in the table CM_CONFIGURATION_ITEM_DEFINITION.
	ci_type
	ci_parent
	ci_description

	1
	NULL
	System

	1.1
	1
	System.Disk

	1.1.1
	1.1
	System.Disk.Filesystem

	1.1.2
	1.1
	System.Disk.Partition

	1.10
	1
	System.File

	1.10.1
	1.10
	System.File.XML

The typical base categories for ci types are:
· System (1)
· Network (2)
· Application (3)
· Database (4)
· Private (9)

Private is reserved for customer own CI type and Metric type definitions.
Metric Type Definition
The available metric type definitions are stored in the table CM_CONFIGURATION_ITEM_METRIC_DEFINITION table.
	met_type
	met_description
	unit_type
	ci_type
	multi_select_separator

	1.10:18
	File Size In Bytes
	B
	1.10
	NULL

	1.10:19
	File Size In KB
	KB
	1.10
	NULL

	1.10:20
	File Size In MB
	MB
	1.10
	NULL

	1.10:21
	File Size In GB
	GB
	1.10
	NULL

	1.10:22
	File Size In TB
	TB
	1.10
	NULL

The SDK expects for some methods the metric type (met_type).
When creating CI’s the CI name is the name of the item being monitored, intended to distinguish the CI’s (e.g. files, disks, network interface, …). It is this name which is being used to display in USM.
CI Handle
CI Type Definition
In order to send Alarms and QoS messages you must create a CI Handle. For this the following new methods have been added, both methods return a handle. If the record doesn’t exist it will be created by the method.
ciOpenLocalDevice(ci_type, ci_name)
First parameter is the CI type, which is issued when you register a new CI type in the central repository.
Second parameter is the ci_name which is a descriptive name of the CI and should be used together with the type parameter be unique for the CI's associated with a device.
 E.g. $pCI = ciOpenLocalDevice("1.10","genesys_filesize.txt");
ciOpenRemoteDevice(ci_type, ci_name, target_host)
First parameter is the CI type, which is issued when you register a new CI type in the central repository.
Second parameter is the ci_name which is a descriptive name of the CI and should be used together with the type parameter be unique for the CI's associated with a device.
Third parameter is the target host; creating a handle with this method can result in the creation of a device (CM_DEVICE) and possibly a new Computer System.
 E.g. $pCI = ciOpenRemoteDevice("2.2.1","Echo","www.nimsoft.com");
QoS & Alarms
QoS messages
In order to be able send QoS a remote or local handle has to be opened, as described in the section CI Handle. Next a QoS handle has to be created as one would normally do. Then a binding between the device handle and the QoS handle has to be made. Once this binding is made, you can send QoS messages the way you would normally do.
To bind the device handle with the QoS handle the following new method is used.
ciBindQoS(ci_handle,qos_handle,metric_type)
Example:
$pCI = ciOpenLocalDevice("1.10","genesys_filesize.txt");
$qos = nimQoSCreate("QOS_FILESIZE",$source,$interval,-1);
ciBindQoS($pCI,$qos,"1.10.18");
nimQoSSendValue($qos,"<File Name>",42);
Alarm messages
In order to be able send QoS a remote or local handle has to be opened, as described in the section CI Handle. Then you can send an alarm the way you normally would do but using the ciAlarm function, where the second parameter is the metric type for the alarm.
Example:
($rc,$alarmId) = ciAlarm($pCI,"1.10.18",5,"File $file size $filesize has exceeded threshold of $filethreshold",$token,$pds-data(),"1.10","$prgname $file threshold_exceed","$source");
The usage of parameter $token is still unknown, use the code from the FileSizeCheck probe. For more details on the other parameters see perldoc.
[bookmark: _GoBack]USM Screenshot
[image:]
FileSizeCheck Probe
The source is hard coded in this probe, change accordingly. This probe has only been configured to run on windows operation systems.

!perl

#use lib "c:\\program files (x86)\\nimsoft\\perllib\\";

use Nimbus::API;
use NimBUS::CFG;
use Nimbus::Session;
use Nimbus::PDS;

my $prgname = "fileSizeCheck";
my $qosDefinition = 0;
my $filesize = 0;
my $source = "192.168.110.161";
my $next_run = time();
my $alarmId = 0;
my $rc = 0;

my $config = "";
my $loglevel = 2;
my $logfile = "$prgname.log";
my $filename = "$prgname.txt";
my $interval = 60;
my $filethreshold = 2000;

###
Command-set callback function(s), with parameter transfer
#
sub get_size {
	my ($hMsg,$arg1,$arg2,$arg3) = @_;
 my $reply = pdsCreate();
 nimLog(2, "[get_size] INFO: Sending request filesize $filesize");
 pdsPut_INT($reply,"filesize",$filesize);
 nimSendReply($hMsg,0,$reply);
 pdsDelete($reply);
}

###
DoWork - function called by dispatcher on timeout
#
sub doWork {
		
 my $now = time();
 return if ($now < $next_run);
 $next_run = $now + $interval;

 my @myFiles = ($filename, "fileSizeCheck.log");

 foreach (@myFiles) {
	 monitor_file($_);
 }

 nimLog(0, "[doWork] INFO: Writing to file: $filename");
	open (MYFILE, '>>genesys_filesize.txt');
	print MYFILE "A test for genesys\n";
	close (MYFILE);
}

sub monitor_file {
	
my $file = shift;
	my $token = "cp#$prgname"; # usage of token is still unknown
 	my $pds = new Nimbus::PDS();
 	$pds->string("geheim","ach wie gut dass niemand weiss ...");

	my $pCI = ciOpenLocalDevice ("1.10",$file);
 	nimLog(0, "[doWork] INFO: $source: $file: pCI: $pCI");

	# My code	
	unless (-e $file) {
 		$filesize = -1;
 		($rc,$alarmId) = ciAlarm($pCI,"1.10:18",5,"File $file does not exist",$token, $pds->data(),"1.10","$prgname $file file_exist","$source");
 nimLog(2, "[doWork] ERROR: File $file does not exist ($alarmId)");
 	} else {
		($rc,$alarmId) = ciAlarm($pCI,"1.10:18",0,"File $file does exist",$token, $pds->data(),"1.10","$prgname $file file_exist","$source");
	 $filesize = -s $file;
	 if ($filesize >= $filethreshold) {
		 nimLog(0, "[doWork] INFO: Problem with file size: $file");
		 ($rc,$alarmId) = ciAlarm($pCI,"1.10:18",5,"File $file size $filesize has exceeded threshold of $filethreshold",$token, $pds->data(),"1.10","$prgname $file threshold_exceed","$source");
		 nimLog(2, "[doWork] ERROR: File $file size $filesize has exceeded threshold of $filethreshold ($alarmId)");
		 if ($file eq "genesys_filesize.txt") {
			 nimLog(0, "[doWork] INFO: Resetting file: $file");
				open (MYFILE, '>genesys_filesize.txt');
				print MYFILE "A test for genesys\n";
				close (MYFILE);
		 }
	 } else {
		 ($rc,$alarmId) = ciAlarm($pCI,"1.10:18",0,"File $file size $filesize is within threshold of $filethreshold",$token, $pds->data(),"1.10","$prgname $file threshold_exceed","$source");
		 nimLog(2, "[doWork] INFO: File $file size $filesize is within threshold of $filethreshold ($alarmId)");
	 }
	}

 if (my $qos = nimQoSCreate("QOS_FILESIZE",$source,$interval,-1)) {
	 ciBindQoS($pCI,$qos,"1.10:18");
 if ($filesize < 0) {
 nimQoSSendNull ($qos,$file);
 } else {
	 nimQoSSendValueStdev($qos,$file,$filesize,0);
 }
 nimLog(0,"[doWork] INFO: Publish $file, $filesize");
 ciUnBindQoS($pCI);
 nimQoSFree($qos);
 }
 ciClose($pCI);
}

###
Service functions
#
sub restart {
}

sub timeout {
 doWork();
}

###
Signal handler - Ctrl-Break
#
sub ctrlc {

 nimLog(0,"Got a control-C so am restarting");
 exit;
}

###
MAIN ENTRY
#

$SIG{INT} = \&ctrlc;

$config = Nimbus::CFG->new("$prgname.cfg");
$loglevel = $config->{setup}->{loglevel}|| 2;
$logfile = $config->{setup}->{logfile} || "$prgname.log";
$filename = $config->{setup}->{filename} || "$prgname.txt";
$interval = $config->{setup}->{interval} || 60;
$filethreshold = $config->{setup}->{file_threshold} || 2000;

nimLogSet($logfile,$prgname,$loglevel,0);
nimLog(0,"----------------- Starting (pid: $$) ------------------");

	nimLog(2, "[main] INFO: Config file: $prgname.cfg");
	nimLog(2, "[main] INFO: log level: $loglevel");
	nimLog(2, "[main] INFO: filename: $filename");
	nimLog(2, "[main] INFO: interval: $interval");
	nimLog(2, "[main] INFO: threshold: $filethreshold");
	
	nimLog(2, "[main] INFO: Defining QoS definition");
	# Send the QoS Definition
 nimQoSSendDefinition ("QOS_FILESIZE", # QOS Name
 "QOS_FILE", 	# QOS Group
 "File size", 		# QOS Description
 "Bytes","B"); # QOS Unit and Abbreviation

	$sess = Nimbus::Session->new("$prgname");
	$sess->setInfo($version,"Nimsoft Software AS");
	
	if ($sess->server (NIMPORT_ANY,\&timeout,\&restart)==0) {
	 $sess->addCallback ("get_size");
	}else {
	 nimLog(0,"unable to create server session");
	 exit(1);
	}
	
	nimLog(0,"Going to dispatch the probe");
	
	$sess->dispatch();
	exit;
1	Copyright © 2012 CA. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.
4	Copyright © 2012 CA. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.
image1.png
system atarms [N croues

Monitoring Reports v

v System
B —
Memory »
»crua

> Disk
Process
Service

> Network

24k
o 22K
201

18k

© File Size In Bytes: fileSizeCheck.log

1000 1200 1400

1600 1800 2000

22:00

200

400

&:00

10:00

540
Il ss0
@ 520

s10

s00

© File Size In Bytes: genesys_f

ilesize.txt

1000 1200 1400

1600 1800 2000

22:00

200

400

&:00

10:00

image2.jpeg
G

technologies

image3.jpg
agility
made possible”

technologies

