
Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

CA Gen Integration

Consuming REST Services – C Edition

Christian Kersters

Broadcom Limited

Web: www.broadcom.com

Corporate Headquarters: San Jose, CA

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

1

Revision History

Revision Date Change Description

V0.9 2020/11/12 Initial version

V1.0 2020/11/17 Revised edition (integration of C. Jamar suggestions)

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

2

References

CA Gen Integration Solutions, Christian Kersters, Broadcom, August 2017

https://community.broadcom.com/HigherLogic/System/DownloadDocumentFile.ashx?Docum

entFileKey=4a401797-4dfe-4230-a031-273b908e57d3&forceDialog=0

Hello world: getting started with REST APIs

https://www.genivia.com/dev.html#how-rest

gSOAP User Guide

https://www.genivia.com/doc/guide/html/index.html

Richardson Maturity Model

https://restfulapi.net/richardson-maturity-model/

https://community.broadcom.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=4a401797-4dfe-4230-a031-273b908e57d3&forceDialog=0
https://community.broadcom.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=4a401797-4dfe-4230-a031-273b908e57d3&forceDialog=0
https://www.genivia.com/dev.html#how-rest
https://www.genivia.com/doc/guide/html/index.html
https://restfulapi.net/richardson-maturity-model/

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

3

Contents

Revision History ... 1

References ... 2

Contents ... 3

1. Introduction ... 5

1.1 Richardson Maturity Model ... 6

1.2 Specification of REST services and data in Level 2-3 APIs 6

1.2.1 REST service identification .. 6

1.2.1.1 HTTP verb .. 6

1.2.1.2 MIME type ... 7

1.2.1.3 URL ... 7

1.2.2 Exchanging data with Level 2-3 APIs .. 8

1.2.2.1 Sending data ... 8

1.2.2.2 Receiving data .. 8

1.3 Level 3 Web APIs and HATEOAS .. 8

2 API specifications ... 9

2.1 OpenAPI specification ... 9

2.1.1 Data model ... 9

2.1.2 Services ... 10

2.2 WADL .. 10

2.2.1 Data Model ... 11

2.2.2 Services ... 12

3 CA Gen integration ... 13

3.1 Component-Based Development .. 13

3.1.1 Data Model Specification ... 13

3.1.2 Functionality Specification ... 14

3.1.3 Typical definition of a REST operation .. 15

3.1.4 Implementation .. 15

3.1.5 Alternative .. 15

4 Using gSOAP to consume REST Services .. 16

4.1 Creation of the gSOAP C artifacts .. 16

4.1.1 WADL pre-processing .. 16

4.1.2 WADL processing .. 17

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

4

4.1.2.1 WADL specification parsing ... 17

4.1.2.2 Stub and skeleton compilation ... 17

4.1.3 API-specific gSOAP documentation .. 18

4.1.3.1 Doxygen-generated documentation ... 18

4.1.3.1.1 Data Model documentation ... 18

4.1.3.1.2 Processes documentation ... 18

4.2 External Action Block design .. 20

4.2.1 Include Files ... 20

4.2.2 Variables declaration ... 20

4.2.3 Processing ... 20

4.2.3.1 Communication initialization ... 21

4.2.3.2 Specification of input data .. 21

4.2.3.3 Invocation of REST service .. 21

4.2.3.3.1 URL build ... 22

4.2.3.3.2 Services without request payload ... 22

4.2.3.3.3 Services with request payloads .. 23

4.2.3.4 Error handling ... 23

4.2.3.5 Fetch of output data .. 24

4.2.3.6 Communication termination .. 24

4.3 Library build ... 24

4.4 Debugging gSOAP communications .. 24

5 Conclusion .. 26

Appendix A. Example of External Action Block .. 27

Appendix B. Windows C Utility Functions .. 32

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

5

1. Introduction

Over the last decade, REST has gained much momentum, compared to the older SOAP

protocol, as a solution to exchange messages and integrate workflows among different,

independent parties across the Internet.

Reasons for that enthusiasm for REST are multiple, the most important being:

 Extensive use of the HTTP protocol, fostering reuse of hardware and software

assets across human-based and machine-based consumption (caching,

authentication and authorization, …), and making it lightweight

 Support for multiple data formats, with most, if not all REST server frameworks

supporting both XML and the less verbose JSON formats

 Flexibility, simplicity and extensibility of APIs, easing exchange of structured

data and code reuse

 Statelessness, making it easy, among others, to develop test harness suites.

Due to this success, many solutions have been developed to assist with REST services

publication or consumption, or to extend SOAP-based frameworks to also support REST.

Thanks to their reliance on the HTTP protocol, REST services are very easy to consume,

even without such specialized framework. Many options are available, in your preferred

language, to send HTTP GET, POST, … requests. Also, certainly when the structure of the

messages you exchange remains simple, they can easily be created or decoded using a

small set of string manipulation and domain conversion functions. When it’s not the case,

and the structure requires more work, complexity of the task will be significantly reduced by

relying on XML or JSON libraries, many of which available as Open Source. If the services

you want to consume are quite independent, in their function or interface1, this is probably

the best approach.

If, on the contrary, the services you want to consume provide a consistent Web API, the

REST consumption frameworks provide better alternatives. In addition to give the functions

to support all necessary HTTP features, those solutions, typically, recreate the API data

model, based on its formal documentation. This data model is then populated / queried

by your specific consumption logic, using generated functions and fields, and automatically

serialized to / de-serialized from the selected message format (typically XML or JSON).

For the C/C++ languages, this is the case with the gSOAP development toolkit, well known

in the SOAP world, but also supporting REST. Although not as easy as Java-based

solutions, gSOAP certainly makes consumption of REST services doable in CA Gen

applications implemented in C, even without in-depth knowledge of the language and the

HTTP protocol, and it’s the objective of this document to guide and help you to do this.

1 Like SOAP web services converted to REST

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

6

At Broadcom Mainframe Services for CA Gen, we’ve extensively used gSOAP to consume

SOAP and REST services from CA Gen C external action blocks. Our best practices will be

presented here.

1.1 Richardson Maturity Model

Leonard Richardson analyzed a hundred

different web service designs and divided

them into four categories based on how much

they are REST compliant.

In the rest of this document, Levels 0-1 types

of REST services will be called Ad-Hoc

Services2, where levels 2-3, thanks to their

consistency, truly are Web APIs3.

While the technical part of this document can

apply equally well to levels 1-3, the

methodological view of our best practices are

much more applicable when consuming Web APIs.

1.2 Specification of REST services and data in Level 2-3 APIs

1.2.1 REST service identification

In Web APIs, target REST services are identified by the following 3 components:

HTTP Verb – URL – MIME Type

1.2.1.1 HTTP verb

The standard HTTP verbs are normally used to specify the type of action the Service

provides:

Verb Meaning

GET Read

POST Create

PUT Update

2 Level 0 should really be considered as “XML/JSON Services”, rather than REST, as it’s only the
content of the message that drives the process
3 For information, Broadcom Mainframe Services’ Web API Designer Field-Supported Solution can
generate Level 1 Ad-hoc Services and Level 2 (and Level 3, using Jboss RESTEasy REST
framework) Web APIs

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

7

DELETE [Logical] Delete

HTTP considerations can however influence this clear setup. The most important

consideration is that GET requests don’t support any message payload (nor should the

DELETE ones).

(At Broadcom Mainframe Services for CA Gen, we avoid as much as possible designs

where Read requests require significant / structured input. However, when the impact of this

constraint would be too high – like performances or workload – we use POSTs instead, and

clearly document the case).

1.2.1.2 MIME type

There are 2 optional MIME types associated with a request, which are specified in header

parameters

 Content-Type, which describes the format of the body that is sent to the service

 Accept, which describes the format of body the consumer expects in the response.

For REST, wherever relevant, both contain xml or json, and are most generally

application/xml or application/json.

As such, they don’t influence the service that is invoked by the HTTP verb and the URL.

Some REST server frameworks, however, make it possible to invoke different services,

based on the MIME type. This possibility could be used for service versioning. Such custom

MIME types should normally start with “vnd.” (for vendor-specific). For instance,

vnd.com.broadcom.mf.gen.cse.v01+xml as Content-Type would mean that we want to

access version 1 of a service with a request payload in XML.

1.2.1.3 URL

In Web APIs, URLs always start with the same base content:

http[s]://<host>[:<port>]/<base url>

Next part is definition of the target resource4, with optional id and action:

 {/<resource>[/id]}[/action]

If no id is specified, the action (or default HTTP verb behavior) applies to the type of

resource (like listing for GET or creation for POST), and it applies to the specific resource if

the id has been specified (normally defaulting to read for GET, update for PUT or delete for

DELETE, as mentioned before).

4 A resource is similar to an object, containing fields and accessed through a number of methods
(which are its REST services)

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

8

Based on the identified resource (between <id> and <action>), sub-resources can be

accessed, at arbitrary depth (as represented by the “{}”), as long as previous resources have

been identified (accompanied by one id).

1.2.2 Exchanging data with Level 2-3 APIs

1.2.2.1 Sending data

In addition to resource identifiers specified in the URL (path parameters), consumers of APIs

can also send:

 Query parameters (?parm1=xxx&parm2=yyy)

 Header fields (Authorization, custom fields)

 Request payload (except for GET/DELETE requests, as mentioned before).

1.2.2.2 Receiving data

REST services will also (normally) send information back to the consumer, as:

 HTTP Status code

 Custom Header fields

 Response Payload.

1.3 Level 3 Web APIs and HATEOAS

HATEOAS stands for Hypertext As The Engine Of Application State. This means that the

REST service will send back hyperlinks to the resources it specifies in its response, to ease

navigation through the API. Such information makes it very easy for consumers to fetch

resource details or related information, based on an initial request.

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

9

2 API specifications

As opposed to SOAP, with its unique WSDL specification format, REST supports multiple

formal representations, among others:

 Swagger, or its descendant, OpenAPI (aka Swagger 3) (the most widespread),

available in JSON or YAML format

 RAML, YAML-based

 WADL, XML-based, REST equivalent to the WSDL for SOAP, with focus on machine

readability.

2.1 OpenAPI specification

Here are some examples of an OpenAPI specification of a REST API, in native format

(JSON in this case) or human representation.

2.1.1 Data model

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

10

2.1.2 Services

2.2 WADL

The fact that the WADL for a REST API has been designed, from the beginning, to be

unambiguously processed by machines and its syntax, based on similar conventions as

WSDLs, has made it the preferred Web API representation for a number of REST

consuming frameworks (and certainly those also supporting SOAP), among which gSOAP.

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

11

Fortunately, if the REST API you want to consume provides a formal specification in some

other representation, you can rely on a number of different services5 (like APIMATIC -

https://www.apimatic.io/transformer/) to convert it to WADL.

There are 2 main possibilities for the design of WADL specifications:

 Put the whole specification into one file

 Separate the grammar of the data model from the rest, in the form of a reference to

the xsd of the grammar in the main WADL file.

The second option will be used in this document, as it’s easy to map to a data model-based

approach to REST API consumption.

2.2.1 Data Model

(Note that, in the specific extract of a WADL data model specification above, the xs:ID type

identifies a [partial6] identifier for your specification type. It’s not necessarily present in all

data model specs).

5 Broadcom Mainframe Services for CA Gen has also developed a converter from Swagger 2 to
WADL, for batch processing
6 As REST provides support for sub-resources, this id should be combined with the ones of parent
resources, if any

https://www.apimatic.io/transformer/

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

12

2.2.2 Services

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

13

3 CA Gen integration

We must here distinguish between the kind of REST Services we want to consume. Are

these ad-hoc REST services or do we want to consume a well-designed REST API?

In the first case, easiest is probably to directly rely on views of existing entities and perform

the ad-hoc mapping in an external action block.

In the second case, a much more structured approach will be welcome. As a consequence,

this will be the sole focus7 of this section.

3.1 Component-Based Development

From its specification and our consumer point of view, whatever implementation is behind it,

a REST API can be considered as an API to a Microservice. As described in the CA Gen

Integration Solutions White Paper I wrote a few years ago, Microservices map very well to

the much older, visionary, concept of Component-Based Development (CBD).

From our perspective, there are 2 major differences with our traditional CBD-based

approach:

1. As there is no CA Gen-based component, we must build our specification model from

scratch, rather than reusing /adapting pieces of implementation definitions

2. The usual trick CBD practicers use, which links specification definitions with

implementation artifacts at runtime, must be replaced by a layer of External Action

Blocks (EABs) that will perform data mapping and REST service invocations.

3.1.1 Data Model Specification

From the formal specification of the

REST API, a specification data

model is first constructed. This is a

manual operation8, but the mapping

is quite straightforward, from any of

the API formal type of

representation (refer to the

OpenAPI or WADL examples for a

confirmation).

As usual for CBD, the owner subject area is of specification type, and the entity types are

transient entity, specification or interface type.

7 Although nothing prevents any of these guidelines to be used in other conditions as well
8 Although some automation, at least partial, using one of the CA Gen APIs, could easily be
developed

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

14

3.1.2 Functionality Specification

To mimic what happens with CBD,

we take the following approach:

1. Group all the EABs that invoke

services of the Web API in their own

Business System

2. Create an Operations Library

grouping those action blocks.

With this setup:

a. If consumption if the Web API is needed in multiple models, it’s easy and quick to

migrate the Operations Library and start consuming its REST services

b. Wherever you want to access the Web API, simply drop the operations library into

the runtime environment of the consumer.

Advantage

With this solution, as mentioned above, the whole set of EABs that consume the API will be

managed together.

Caveat

There is one small caveat to this approach: by default, CA Gen build processes ignore

External Action Blocks in Operations Libraries.

To circumvent this limitation, two easy steps can be taken:

1. In the C build script (in %IEFH%\bt\scripts\build_lm_c.scr:

a. Identify the following piece of code:

b. Append, below, the following lines:

2. Add some (empty) dummy common action block (here ICSE_DUMMY) to trigger the

build process of the Operation Library.

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

15

3.1.3 Typical definition of a REST operation

As can be seen from the example

on the left:

 The EAB, which invokes a

service of a REST resource has

been declared as operation of

the specification type that

defines the resource in the CA

Gen model,

 It receives as imports:

o The base URL for the Web

API

o The information the

service needs as path or

query parameter or as

payload

 It returns as exports:

o The information returned by the service as payload, header parameters, …

o Some execution status information9

3.1.4 Implementation

As we use Operation Libraries, which are runtime components (DLLs on Windows or Shared

Libraries in Linux / Unix), there is no need to natively build any shared library.

All the EABs that give access to the whole Microservice (or equivalent) will be developed in

a single project and grouped together in a static library.

The CA Gen Build process will then convert it to a shared library / DLL.

3.1.5 Alternative

An alternative to this approach is, of course, to avoid customizing the Operation Library build

script and directly access the (preferably dynamic) library of consumer EABs.

The drawback of this approach is, however, that the unity of the Web API gets lost at the CA

Gen model level.

9 In this example, the structure for logging-type of payload, returned by some services, has been
reused

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

16

4 Using gSOAP to consume REST Services

As said in the introduction, there are several ways of consuming REST Services and there is

no doubt that gSOAP can be used differently, using features that are provided either in the

base product or through complementary plugins.

The approach taken at Broadcom Mainframe Services for CA Gen has been to create an

API data model on the consumer (gSOAP) side, then to use that data model to interact with

gSOAP and the target REST Service.

Also, as our infrastructure is not sensitive to the message format, we’ve decided to rely on

the default XML serialization, rather than use the gSOAP JSON plugin.

4.1 Creation of the gSOAP C artifacts

As briefly told before, this step consists in taking a formal representation of the API (which

should normally be provided by its publisher), and processing it using gSOAP tools.

4.1.1 WADL pre-processing

Our experience with gSOAP has shown that some documentation available in WADL

specifications prevents the gSOAP REST tools from correctly analyzing the specification.

It’s consequently strongly advised to remove all pieces of

documentation (which are not necessary for machine processing)

from the specification. An easy way to do it is with the gawk10

script, presented on the left side.

(This script copies the whole content of the wadl specification to

the output, except for <wadl:doc>…</wadl:doc> sections).

Save the pre-processing script as removeDoc.awk and run it with

following statement:

gawk –f removeDoc.awk application.wadl application-

noDoc.wadl

10 gawk is a Linux open source tool, which has been ported to many other platforms, like Unix or
WIndows

Commented [CJ1]: added

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

17

4.1.2 WADL processing

Processing of WADL files by gSOAP is a 2 steps process.

 In the first step, the wsdl2h.exe utility (parser) is invoked to convert the specification

into a gSOAP “header” file,

 In the second step, the soapcpp2.exe utility (stub and skeleton compiler) will

process that header file and provide (in our CA Gen case) standard C files.

Let’s look in details at the 2 commands we’re normally using.

4.1.2.1 WADL specification parsing

In this command, we specify, in this order:

 Target of c language

 REST specification (based on WADL)

 Output will be a file named application.h

 Console logging is set to Verbose (optional)

 WADL file to be processed is application-noDoc.wadl

 Base namespace prefix will be csens (optional, but recommended to avoid

conflicts, some short identifier for the consumed Web API)

 Secondary input is the data model xsd, ns0.xsd.

We strongly recommend to use a non-default (ns) namespace, to avoid any runtime conflict

between gSOAP-generated artifacts, if your application links to multiple Web APIs.

4.1.2.2 Stub and skeleton compilation

Here are specified, again in the order displayed:

 Generation of source code for REST

 Generation of Client-side code (as we’re consuming services)

 Generation of c code

 Console logging is set to Verbose (optional)

 Input file is the result of the previous step.

This results in the generation of the following files:

- XML namespace mapping table (csens2REST.nsmap in our case)

- soapStub.h annotated header file

- soapH.h, main header file

- Serializer for C types (soapC.c)

- Client-side stub functions, for invocation of services (soapClient.c).

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

18

4.1.3 API-specific gSOAP documentation

4.1.3.1 Doxygen-generated documentation

As mentioned in the generated gSOAP header file (in our case, application.h), Doxygen

(www.doxygen.org) can be used to extract API usage documentation from the header file.

4.1.3.1.1 Data Model documentation

gSOAP header file, processed by Doxygen, is a great tool for the Data Model.

4.1.3.1.2 Processes documentation

The Doxygen documentation, however, does not immediately give any insight into what

functions need to be used to invoke the services of the API, and we’ve to manually analyze

the header file to find out the base functions to invoke the services.

The only hint that can be captured from the Doxygen documentation, relative to the functions

that invoke the API services, is from its basic processing of the gSOAP header file

(application.h). Below are 2 examples.

http://www.doxygen.org/

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

19

This example is about a service to retrieve all models. It’s a GET operation, as mentioned in

(1) and in the method protocol under it, and the base name of this “operation” is

__csens2__GETResponse.

In the next lines, we also see:

 (2) The default action for this service invocation (we personally never change) is a

/Models URI, which will be appended to the base URL for the Web API

 (3) The structure returned by the REST response is a ModelArray.

In this example, we can see that:

 (1) The operation is a PUT, with base name __csens2__PUT,

 (2) Its default action URI is /Models/{id}/deleteObjects, {id} representing a variable

 (3) id is expected as parameter

 (4) Another parameter is expected, user, not part of the service URI, meaning that it’s

a query parameter

 (5) The structure returned by the REST response is a Logging structure.

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

20

4.2 External Action Block design

4.2.1 Include Files

In addition to the Include directives generated in the EAB stub, the following needs to be

added:

 Standard gSOAP header file (“stdsoap2.h”)

 Generated main header file (“soapH.h”)

 In one C file only11, XML Namespace mappings (“csens2REST.nsmap” or

equivalent)

 Also, probably needed, the standard <string.h>.

4.2.2 Variables declaration

In the User-written code, the following standard declaration is needed:

Other variables will also have to be declared, of standard C types, or types defined in the

gSOAP headers. As they are specific to the CA Gen import / export views or consumed

REST service, however, they won’t be detailed here.

4.2.3 Processing

Processing can be divided into 6 sections:

 Communication initialization, with action and path and query parameters,

 Specification of input data for the REST service (request payload)

 Invocation of REST service

 Error handling

 Fetch of output data of REST service (response payload and optionally response

header12)

 Communication termination.

11 Including the nsmap file into multiple C files will result in multiply-defined symbols at link-edit time
12 Fetch of response headers is not included in this version of the document)

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

21

4.2.3.1 Communication initialization

In its simplest form, communication initialization is limited to some endpoint URL setup,

including variables where required.

In our use of gSOAP, we’ve also encountered the need for basic authentication in our HTTP

requests. This is simply implemented by the following:

4.2.3.2 Specification of input data

Specification of path and query parameters has been discussed before (endpoint definition).

The only thing that needs to be done is the specification of the request payload, filling in the

gSOAP relevant structure.

According to our experience, this is the part where most errors pop up at runtime. Not

surprisingly, those errors originate in C memory allocation. Our recommendations are

consequently to:

 Always initialize structures, using memset or calloc functions, or set all pointers

(fields and substructures) to NULL,

 Carefully allocate memory for dynamic variables,

 Free all pieces of memory we’ve dynamically allocated, in case of failure as in case

of success.

Also, depending on the expectations of the REST service, as for the URL formatting, fixed-

length attribute views could have to be trimmed before filling in the gSOAP structure.

4.2.3.3 Invocation of REST service

gSOAP calls to REST services are rather cryptic. They are declared in soapH.h and defined

in soapClient.c. They are of the form:

soap_<verb>_<operation>

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

22

where :

 verb is one of call, send, recv

 operation is the identification of the REST service in the application.h gSOAP

header file.

As can be seen in the extracts from our gSOAP generated soapClient.c file, soap_call is

equal to soap_send followed by soap_received (if send succeeds). Those pieces of code

are very insightful, not only to understand what they do, but also to overcome inadequate

settings used by gSOAP (as explained later).

4.2.3.3.1 URL build

For the build of URLs, 2 precautions need to be taken, as they could cause the address not

to be property recognized or decoded:

1. Fixed-length attribute views (spaces are significant in URLs)

2. Special characters (URLs must be compliant with the syntax defined in RFC 3986).

(Broadcom Mainframe Services has developed/used some utility functions to trim or encode

strings according to RFC 3986. See Appendix A for the C code for Windows).

4.2.3.3.2 Services without request payload

 List of models:

When there is no payload associated with a REST request, the soap_call function can be

used as is:

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

23

4.2.3.3.3 Services with request payloads

 Objects delete:

In this example, we see that gSOAP has decided to force a Content-Type of application/x-

www-form-urlencoded. This is not what our Web API, nor, probably, what yours expect. As

we use gSOAP XML serialization, the type we want to specify is: application/xml;

charset=utf-813.

So, as suggested by the code, we must use the generic soap_<verb> function (soap_PUT

or soap_POST).

To make things easier, instead of writing all those soap_* invocations we see in the

implementation of the soap_send function, we set up the target endpoint (URL) using normal

string functions, then serialize our XML request payload, including namespace binding,

like this:

4.2.3.4 Error handling

Error handling can be limited to gSOAP errors in the communication with the server, or

extended to include HTTP error status codes.

In the following example, both are taken into account to return some error information to the

caller of the EAB:

13 If our Web API is not using MIME type-based variants / versions

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

24

(Note that, in this example, only the exit state message type has been specified. A much

better solution would be to use a full exit state structure).

4.2.3.5 Fetch of output data

Fetch of output data is quite simple, the only complexity coming from conversion between

domains, as shown below.

4.2.3.6 Communication termination

Finally, the gSOAP structures need to be cleaned up:

4.3 Library build

Build of EABs library / archive varies depending on the target environment, and is beyond

the scope of this document.

What is needed to build our EAB library:

 Library type: static library (mentioned earlier), as we rely on CA Gen Build Tool to

give us a dynamic / shared Operations Library

 C files needed for in the library:

o External Action Blocks

o Generated gSOAP C files (soapC.c, soapClient.c)

o Standard gSOAP C file (stdsoap2.c)

4.4 Debugging gSOAP communications

When compiled with DEBUG macro definition, gSOAP produces 3 files in the folder where

the application was started, that can be used for debugging purposes:

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

25

 SENT.log contains messages sent, concatenated

 RECV.log contains messages received, concatenated

 TEST.log contains debugging information.

Of course, those files occupy space and give some processing overhead. So, it’s

recommended not to use them in production.

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

26

5 Conclusion

In this document, we’ve shown (or at least tried to show) that, even without any automation,

consuming REST services, even in large, is quite feasible in C.

There is of course much more to the topic than this. We, at Broadcom Mainframe Services,

have many more examples, with cases that couldn’t be detailed here, and are here to help

you.

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

27

Appendix A. Example of External Action Block

/**

 *

 * Source Code Generated by

 * CA Gen 8.6

 *

 * Copyright (c) 2018 CA Technologies. All rights reserved.

 *

 * Name: ICSE_DELETE_OBJECTS Date: 2018/08/27

 * Target OS: WINDOWS Time: 14:26:59

 * Target DBMS: <NONE> User: kerch01

 * Access Method: Embedded SQL

 *

 * Generation options:

 * Debug trace option not selected

 * Data modeling constraint enforcement not selected

 * Optimized import view initialization not selected

 * High performance view passing selected

 * Last_statement_num execution selected

 * Enforce default values with DBMS not selected

 * Init unspecified optional fields to NULL not selected

 *

 ***/

/**

 Data declarations

 ***/

static char ief_cgen_rlse[] = "CA Gen 8.6";

static char * ss_copyright = "Copyright (c) 2018 CA Technologies. All rights

reserved.";

static char ief_cgen_date[] = "2018/08/27";

static char ief_cgen_time[] = "14:26:59";

static char ief_cgen_ency[] = "9.2.A6";

static char ief_cgen_userid[] = "kerch01";

static char ief_cgen_model[] = "GEN XCIDE";

static char ief_cgen_subset[] = "ALL";

static char ief_cgen_name[] = "ICSE_DELETE_OBJECTS";

#define TGT_EXTERNAL

#define TGT_MULTIVIEW

#include <tiabinc.h>

#include <string.h>

#include "stdsoap2.h"

#include "soapH.h"

#include "utilities.h"

#include "csens2REST.nsmap" // Only needed once

/* */

/* START OF IMPORT VIEWS */

/* */

struct w_ioa_0174064508_000

{

struct

{

/* Entity View: IN */

/* Type: SCSE_ENV */

char service_url_001as;

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

28

char service_url_001[256] /* 255 + 1 */;

} l000l01;

};

static struct w_ioa_0174064508_000 *a_0174064508_ioa;

struct w_ioa_0174064513_001

{

struct

{

/* Entity View: IN */

/* Type: SCSE_DUSR */

char u_user_id_002as;

char u_user_id_002[9] /* 8 + 1 */;

} l001l01;

};

static struct w_ioa_0174064513_001 *a_0174064513_ioa;

struct w_ioa_0174064511_002

{

struct

{

/* Entity View: IN */

/* Type: SCSE_DMDL */

char model_id_003as;

double model_id_003;

} l002l01;

};

static struct w_ioa_0174064511_002 *a_0174064511_ioa;

struct w_ioa_0173015152_003

{

struct

{

struct

{

/* Repeating GV: G_IN */

/* Repeats: 500 times */

long g_in_001ma;

char g_in_001ac[500];

} l004l01;

struct

{

/* Entity View: IN_G */

/* Type: SCSE_DOBJ */

char obj_id_004as[500];

double obj_id_004[500];

} l005l02;

} l003l01;

};

static struct w_ioa_0173015152_003 *a_0173015152_ioa;

/* */

/* START OF EXPORT VIEWS */

/* */

struct w_ioa_0174064512_004

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

29

{

struct

{

/* Entity View: OUT */

/* Type: SCSE_LOGGING */

char model_id_005as;

double model_id_005;

char operation_005as;

char operation_005[65] /* 64 + 1 */;

char status_005as;

char status_005[2] /* 1 + 1 */;

char comment_005as;

char comment_005[1025] /* 1024 + 1 */;

} l006l01;

};

static struct w_ioa_0174064512_004 *a_0174064512_ioa;

/* * * * * * * * * * * * * * * * * * * */

/* REPEATING GROUP VIEW STATUS FIELDS */

/* * * * * * * * * * * * * * * * * * * */

static char g_in_001fl;

static int g_in_001ps;

static char g_in_001rf;

static int g_in_001mm = 500;

static char long64bit_len[5];

/* * * * * * * * * * * * * * * * * * */

/* MISC DECLARATIONS AND PROTOTYPES */

/* FOLLOW AS NEEDED: */

/* * * * * * * * * * * * * * * * * * */

static void f_22020211(void);

/* +-> ICSE_DELETE_OBJECTS 08/27/2018 14:26 */

/* ! IMPORTS: */

/* ! Entity View in scse_env (Transient, Mandatory, Import */

/* ! only) */

/* ! service_url */

/* ! Entity View in scse_dusr (Transient, Optional, Import */

/* ! only) */

/* ! u_user_id */

/* ! Entity View in scse_dmdl (Transient, Optional, Import */

/* ! only) */

/* ! model_id */

/* ! Group View (500) g_in */

/* ! Entity View in_g scse_dobj (Transient, Optional, */

/* ! Import only) */

/* ! obj_id */

/* ! EXPORTS: */

/* ! Entity View out scse_logging (Transient, Export only) */

/* ! model_id */

/* ! operation */

/* ! status */

/* ! comment */

/* ! */

/* ! EXTERNAL ACTION BLOCK */

/* ! */

/* +--- */

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

30

/* * * * * * * * * * * * * * * * * * * */

/* ACTION BLOCK FUNCTION DECLARATIONS */

/* * * * * * * * * * * * * * * * * * * */

void ICSEDOBJ(in_runtime_parm1,

in_runtime_parm2,

in_globdata,

im_v_000, im_v_001, im_v_002, im_v_003,

ex_v_000)

char *in_runtime_parm1;

char *in_runtime_parm2;

struct ief_globdata *in_globdata;

struct w_ioa_0174064508_000 *im_v_000;

struct w_ioa_0174064513_001 *im_v_001;

struct w_ioa_0174064511_002 *im_v_002;

struct w_ioa_0173015152_003 *im_v_003;

struct w_ioa_0174064512_004 *ex_v_000;

{

ief_runtime_parm1 = in_runtime_parm1;

ief_runtime_parm2 = in_runtime_parm2;

globdata = in_globdata;

a_0174064508_ioa = im_v_000;

a_0174064513_ioa = im_v_001;

a_0174064511_ioa = im_v_002;

a_0173015152_ioa = im_v_003;

a_0174064512_ioa = ex_v_000;

f_22020211();

return;

}

static void f_22020211(void)

{

/* User-written code should be inserted here */

 struct soap *soap = soap_new();

 struct csens1__genObjectArray objectsArray;

 struct csens1__genObject* objects = NULL;

 struct csens1__logging logging;

 char endpoint[256];

 int rc = 0;

 int count;

 strcpy_s(a_0174064512_ioa->l006l01.operation_005, 65, "Objects Delete");

 // /Models/{id}/deleteObjects

 sprintf_s(endpoint, sizeof(endpoint),

"%s/Models/%010.0f/deleteObjects?user=%s",

 a_0174064508_ioa->l000l01.service_url_001,

a_0174064511_ioa->l002l01.model_id_003,

a_0174064513_ioa->l001l01.u_user_id_002);

 // Message setup

 objectsArray.__sizeGenObject = a_0173015152_ioa->l003l01.l004l01.g_in_001ma;

 objects = calloc(1,

sizeof(struct csens1__genObject) *

 a_0173015152_ioa->l003l01.l004l01.g_in_001ma);

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

31

 objectsArray.GenObject = objects;

 for (count = 0; count < a_0173015152_ioa->l003l01.l004l01.g_in_001ma;

 count++) {

 objects[count].id = malloc(11);

 sprintf_s(objects[count].id, 11, "%010.0f",

a_0173015152_ioa->l003l01.l005l02.obj_id_004[count]);

 }

 // Post message

 rc = soap_PUT(soap, endpoint, NULL, "application/xml; charset=utf-8")

 || (soap_serialize_csens1__genObjectArray(soap, &objectsArray), 0)

 || soap_put_csens1__genObjectArray(soap, &objectsArray,

 "csens1:GenObjectArray", "")

 || soap_end_send(soap);

 // Receive reply

 if (rc == 0) {

 rc = soap_begin_recv(soap)

|| soap_get_csens1__logging(soap, &logging, NULL, NULL)

|| soap_end_recv(soap);

 }

 if ((rc != SOAP_OK) && (soap->status >= 300)) {

 soap_print_fault(&soap, stdout);

 sprintf_s(a_0174064512_ioa->l006l01.status_005,

sizeof(a_0174064512_ioa->l006l01.status_005), "F");

 globdata->psmgr_exit_msgtype = 'E';

 }

 else {

 // Decoding of output

 sprintf_s(a_0174064512_ioa->l006l01.status_005,

sizeof(a_0174064512_ioa->l006l01.status_005), logging.status);

 sprintf_s(a_0174064512_ioa->l006l01.comment_005,

sizeof(a_0174064512_ioa->l006l01.comment_005),

logging.comment);

 }

 // Free dynamically allocated memory

 for (count = 0; count < a_0173015152_ioa->l003l01.l004l01.g_in_001ma;

 count++) {

 free(objects[count].id);

 }

 free(objectsArray.GenObject);

 // Termination

 soap_destroy(soap);

 soap_end(soap);

 soap_free(soap);

}

Consuming REST Services – C Edition

Broadcom Proprietary. © 2020 Broadcom. All rights reserved.

32

Appendix B. Windows C Utility Functions

(Those utility functions are available asis, for convenience. There is no guarantee provided

by Broadcom for the usage of this code).
#include <string.h>

#include <stdio.h>

#include <windows.h>

char rfc3986[256] = { 0 };

int rfcInit = FALSE;

char* trim(char* string, size_t length) {

 size_t trimCount;

 for (trimCount = length - 1; trimCount >= 0; trimCount--) {

 if (string[trimCount] == ' ')

 *(string + trimCount) = '\0';

 else

 break;

 }

 return string;

}

void url_encoder_rfc_tables_init() {

 int i;

 for (i = 0; i < 256; i++) {

 rfc3986[i] = isalnum(i) || i == '~' || i == '-' || i == '.' ||

 i == '_' ? i : 0;

 // html5[i] = isalnum(i) || i == '*' || i == '-' ||

// i == '.' || i == '_' ? i : (i == ' ') ? '+' : 0;

 }

}

char *url_encode(unsigned char *s, char *enc, int maxSize) {

 if (!rfcInit) {

 url_encoder_rfc_tables_init();

 rfcInit = TRUE;

 }

 for (; *s; s++) {

 if (rfc3986[*s]) {

 sprintf_s(enc, maxSize, "%c", rfc3986[*s]);

 enc++;

 maxSize--;

 }

 else {

 sprintf_s(enc, maxSize, "%%%02X", *s);

 enc += 3;

 maxSize -= 3;

 }

 }

 return(enc);

}

