
N

2

Legal Notices
Copyright © 2012, CA. All rights reserved.

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future

editions. Further, to the maximum extent permitted by applicable law, Nimsoft LLC disclaims all warranties, either

express or implied, with regard to this manual and any information contained herein, including but not limited to the

implied warranties of merchantability and fitness for a particular purpose. Nimsoft LLC shall not be liable for errors or

for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of

any information contained herein. Should Nimsoft LLC and the user have a separate written agreement with warranty

terms covering the material in this document that conflict with these terms, the warranty terms in the separate

agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied

only in accordance with the terms of such license.

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or

translation into a foreign language) without prior agreement and written consent from Nimsoft LLC as governed by

United States and international copyright laws.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered

and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial

item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any

equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Nimsoft LLC’s

standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no

greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no

greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as

applicable in any technical data.

Trademarks

Nimsoft is a trademark of CA.

Adobe®, Acrobat®, Acrobat Reader®, and Acrobat Exchange® are registered trademarks of Adobe Systems

Incorporated.

Intel® and Pentium® are U.S. registered trademarks of Intel Corporation.

Java(TM) is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

Netscape(TM) is a U.S. trademark of Netscape Communications Corporation.

Oracle® is a U.S. registered trademark of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of the Open Group.

ITIL® is a Registered Trade Mark of the Office of Government Commerce in the United Kingdom and other countries.

All other trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

3

Contact Nimsoft
Contact Technical Support

For your convenience, Nimsoft provides a central site where you can access all

the information you need for your Nimsoft products.

At http://support.nimsoft.com/, you can access the following:

■ Online and telephone contact information for technical assistance and

customer services

■ Information about user communities and forums

■ Product and documentation downloads

■ Nimsoft Support policies and guidelines

■ Other helpful resources appropriate for your product

Provide Feedback

If you have comments or questions about Nimsoft product documentation, you

can send a message to support@nimsoft.com.

mailto:support@nimsoft.com

4

Document History

Version What’s new

1.0 February 21, 2012, version 1.0

1.1 March 29, 2012, added TNT2 data model appendix

5

Legal Notices ..2

Contact Nimsoft ..3

Document History...4
 5

 7

About this Guide ...7

Background on the Nimsoft Information Store ..7

 9

NIS within Nimsoft Monitor ...9

NIS Schema Overview ...9

Relationships between Tables ...10

Database Tables ..10

RN_QOS_DATA_ table columns ..11

RN_tables Indexes ...11

About Table Partitioning ...11

Manual Table Partitioning ...12

Supported Database versions ...14

Hardware Requirements ..14

About Database Performance ...15

General ...16

Storage ...16

Backup ..17

Periodic Maintenance...17

Checklist ...18

Network communication ..18

Cluster environment ...19

Windows configuration ..19

Disks and SANs ...20

SAN considerations ...22

SQL server instance configuration ..23

Database level configuration ..24

Database maintenance and backup strategy ...27

Additional Resources ..28

6

Checklist ...30

Example Query (Wait Statistics) ..30

Example Results...31

Performing Analysis on QoS sample data tables ..34

Advanced indexing when using report_engine/group_server ...36

Option One ..36

Option Two ..36

Option Three ...38

Best Practices for Clustered and Non-Clustered Indexing ..39

Best Practices for Clustered Indexes ...39

Best Practices for Non-clustered Indexes ..39

Get db size info ..40

Get_db_info_sqlserver ..41

get_index_fragmentation..42

fix_index_fragmentation ...43

find_missing_nodes_in_dynamic_views ...43

sp_Generic_DefragindexesBasedOnFragmentation ...46

shrink_transaction_log_sqlserver ...52

Most costly unused indexes ..53

Top Costly Missing Indexes ...53

Indexes with the most contention ..54

Most logically fragmented Indexes ...54

Tables without clustered index ...55

Tables with primary key, without clustered index ..56

Objects with no indexes / Foreign keys that are not indexed ...56

Number of indexes per table ...58

Top SQL with highest CPU ...58

Top SQL with highest I/O ...59

Top SQL with highest Duration ..59

7

About this Guide
This guide covers best practices for deployment, tuning, triage and

maintenance of the Nimsoft database, also known as the Nimsoft Information

Store (NIS), as deployed on MS SQL Server.

It draws together new and existing information from Nimsoft documentation,

support articles, development tools, other internal sources as well as external

sources—and organizes it into these major sections:

• General description of the NIS

• Prerequisites

• Best Practices

• Best Practices for SQL Server

• Performance analysis

• Troubleshooting

• Updating Table Indexes

• Advanced NIS indexing

• SQL Tools and Scripts

Microsoft’s SQL Server platform was the first supported by Nimsoft. MySQL and

Oracle were added later—similar guides for those databases will be released in

the near future.

Note that this document does not attempt to fully document the programming

interfaces, theory of operation, and structure of the NIS, rather it is intended to

be useful for practical issues in database deployment, tuning, curing, and

maintenance.

Background on the Nimsoft Information Store
The Nimsoft Unified Management solution requires a database to store the

QoS, service level, configuration, alarm (optional) and other data that is

collected, processed, and displayed by the system. The NIS is integral and

critical to overall Nimsoft system operation and performance.

The NIS was originally introduced into the Nimsoft product to hold historical

QoS data derived from raw data. This was to enable Service Level Monitoring

(SLM) features, hence it became known as “NimsoftSLM” or just SLM.

With the introduction of expanded reporting and dashboard features in the

Unified Management Portal (UMP), the SLM took on an expanded role, and was

re-named the Nimsoft Information Store or NIS.

Originally, only Microsoft’s SQL Server was supported, but in 2009 cross-

platform support was introduced, adding support for MySQL and Oracle

databases.

http://support.nimsoft.com/Default.aspx?center=portal/Downloads

8

As with any OLTP application, the volume of stored data increases over time.

Especially when scaled to the needs of large enterprise and managed service

providers (MSPs), any database will require periodic maintenance and

performance tuning. Nimsoft’s customers, partners, and developers have

generated a number of “best practice” procedures and tuning tips.

Two areas outside the scope of this document are database software upgrades

and cross-platform data migration. We recommend you speak with your

Nimsoft sales engineer regarding these activities.

9

 Nimsoft I S

These sections provide an overview of the schema and select components of

the NIS.

NIS within Nimsoft Monitor

NIS Schema Overview
For a picture of how the NIS is structured, below is an abbreviated view from

the SchemaSpy tool, listing the tables in the NIS database. The full view is many

pages long, with hundreds of tables listed.

s
(Implied relationships not shown)

RN_QOS_DATA_xxxx

HN_QOS_DATA_xxxx

These tables are of primary interest:

Table name or pattern Type of data held

S_QOS_DATA QoS data, used by data_engine

RN_QOS_DATA_xxxx Raw QoS data—one RN_table for each

qos_def_id

HN_QOS_DATA_xxxx Aggregated (1hr interval) QoS data

CFG_* ACE configuration information

CM_GROUP NIS_Server/USM

CM_DEVICE Discovery/configuration

CM_NETWORK Discovery

CM_NIMBUS_* Discovery/configuration

GRP_* group_server, depricated

ump* and QUARTZ_* UMP and LifeRay

*_ Liferay

t Tmp, dashboard_engine

NAS* Alarms*

tbnLogging Sp logging

tbnVersion Version info

S_SLA_* and S_SLO_* Service Level Agreement info

*Note: Alarm data is held in the separate Nimsoft NAS database. If the NIS-

bridge feature of NAS is enabled, alarms are replicated from NAS to NIS. UMP

accesses alarm data from the NIS using the NIS-bridge feature.

RN_QoS_Data_tables, as their name suggests, hold raw QoS data. QoS data is

written once and never updated. It is aggregated by 1 hour periods and stored

in HN_QoS_Data_tables_xxxx.

tableID Sampletime Samplevalue Samplestdev Samplerate Samplemax Compressed Tz_offset inserttime

Column Name Description

tableID unique identifier; key for looking up time

series data

Sampletime time the sample was taken

Samplevalue QoS value

Samplestdev standard deviation of the sample

Samplerate Rate of sampling

Samplemax Maximum sample value (e.g. 100%)

Compressed Compressed (binary) (deprecated)

Tz_offset time zone offset

Inserttime Time for data insert to db (deprecated)

The default indexes on RN_tables (as of Nimsoft Server version 4.3x or

data_engine v7.53) are optimized for writing data:

Index Description

Idx0 clustered index (sampletime, table_ID)

Idx1 non-clustered index (table_ID, sampletime)

IdxSDP used prior to Server v5.21, deprecated in v5.60

There is no primary key implemented on RN_QoS_DATA_tables, as both tableID

and sampletime can be duplicated.

Prior to version 4.3x, RN_QOS_DATA_ tables used one clustered index on

(tableID,sampletime). Updating pre-v4.3x table indexing is covered in the

section “Updating Table Indexing.”

With the use of report_engine or group_server, for example when generating

on-demand Dynamic Views, a revised index approach is recommended. See the

section “Advanced indexing for report_engine/group_server” for details.

 T
As RN_QoS_DATA_tables grow in size, the time needed to order and index

them increases, slowing performance. Subdividing tables into multiple

partitions offers several benefits:

• Partitioning allows data loads, index creation and rebuilding, and

backup/recovery to occur at the partition level, rather than on the

entire table.

• Partitioning improves query performance. In many cases, the results of

a query can be achieved by accessing a subset of partitions, rather

than the entire table.

• Partitioning can significantly reduce the impact of scheduled downtime

for maintenance operations.

As of data_engine 7.85, NIS tables can be automatically partitioned if you are

using Sql Server 2008 R2 Enterprise Edition. The partitioning scheme is a sliding

window partition on sampletime, with one partition per day. If partitioning is

enabled, data is aged out of the RN tables by dropping the old partitions rather

than deleting.

You may wish to apply partitioning to your large tables at first (use the query

listed under Get db size info to find these). We define “large” as those having

over 100m rows. Partitioning in a selective manner gives you more control over

when tables are partitioned, as this process can take considerable to time to

complete.

Use the following approach to apply manual partitioning.

1. Disable the data_engine probe

2. Disable the wasp probe

3. Disable the dashboard_engine probe

4. Run this for each table you wish to partition (one at a time is okay):

USE [NimsoftSLM]
GO

DECLARE @return_value int ,
 @pErrorMessage ndtLongString

EXEC @return_value =

[dbo] . [spn_de_PartitionAdmin__PartitionTable]
 @pTableName = N'RN_QOS_DATA_0003', --

run for each table
 @pCurrentTime = N'2012 - 02- 21

11:28:49.883' ,
 @pRawAge = 365 ,
 @pRawAgeExtra = 30,
 @pLogLevel = 5 ,
 @pErrorMessage = @pErrorMessage OUTPUT

SELECT @pErrorMessage as N'@pErrorMessage'

SELECT 'Return Value' = @return_value

GO

After this has been done for the larger tables, check the box in the GUI which

will enable partitioning on the rest of the tables.

Use this code to see what has been partitioned:

USE [NimsoftSLM]
GO

DECLARE @return_value int ,
 @pErrorMessage ndtLongString

EXEC @return_value =
[dbo] . [spn_de_PartitionAdmin__List]
 @pMode = list ,
 @pErrorMessage = @pErrorMessage OUTPUT

SELECT @pErrorMessage as N'@pErrorMessage'

SELECT 'Return Value' = @return_value

GO

Be sure to bring the system back into operation by re-enabling the following

probes:

4. data_engine
5. wasp

6. dashboard_engine.

 equisites

This guide assumes that Nimsoft Monitor and the NIS database are installed and running.

We recommend you review the requirements and prerequisites for proper NM Server and

database installation--see the section on “Nimsoft Server Pre-Installation” in the Nimsoft

Server Installation Guide. This document is available from the downloads section at

http://support.nimsoft.com.

Supported Database versions

The following database versions are supported on these operating systems:

Note: To take advantage of partitioning, you need to use Sql Server 2008 R2

Enterprise Edition

Database Supported Operation System

Microsoft SQL Server 2005 , 2008, and

2008 R2

Windows Server 2003 and 2008

Hardware Requirements

Nimsoft always recommends deploying the database on a dedicated physical

server.

When specifying hardware for the database server, generously configure the

host machine and its associated storage facilities:

CPU Multi-CPU (multi-core Xeon class or similar), 3.00 Ghz clock or better

Memory (see chart below)*

OS HDD 50 GB minimum

Log file HDD 250 GB minimum

Data HDD 500 GB minimum, 1TB and RAID 10 recommended

*Based on estimated overall size of the database (which is a function of the

number of QoS messages/min written, the configured data aggregation

parameters and retention interval length):

Database size** after retention

interval has been reached

Processor cores RAM (GB)

Up to 50GB 2 4

50 to 150GB 4 8

150GB to 400GB 8 16

400GB to 600GB 8 28

600GB to 2TB 16 72

2TB or more 32 128

**Your Nimsoft Technical Account Manager has a spreadsheet that can provide

estimates for these numbers, based on monitored devices, QoS metrics, and

sampling rates.

http://support.nimsoft.com/downloads/server56/doc/install_and_user_guide/ENG/NMS_5.6--Nimsoft%20Server%20Installation%20Guide.pdf
http://support.nimsoft.com/downloads/server56/doc/install_and_user_guide/ENG/NMS_5.6--Nimsoft%20Server%20Installation%20Guide.pdf
http://support.nimsoft.com/Default.aspx?center=portal/Downloads
http://support.nimsoft.com/

Relational database server performance is heavily affected by disk I/O

performance and server bus bandwidth. Crowded VM hosts, clusters, or heavily

shared storage or VM environments are not recommended for hosting the

Nimsoft NIS database.

Nimsoft recommends starting with at least 1TB of RAID 10 storage for the NIS

database. Also consider spreading the database files across multiple disks

(LUNs) to improve I/O performance. Choose drive subsystems with low latency

and seek times, high spindle speeds and high interconnect bandwidth.

Also, data redundancy/synchronization model needs to be considered on an on-

going basis, taking into account the growth of the database. Selecting the right

storage solution is beyond the scope of this document--we recommend you

discuss this with your storage vendor/VAR/consultant.

 General

This section covers operational NIS best practices There are categories for:

• General

• Storage

• Backup

• Periodic maintenance

General
Best Practice Comments

Read and observe documented pre-

requisites and pre-install information

Available in the section “Server Pre-Installation” in

NM Server Installation Guide

Always make a backup of your database

before upgrading major Nimsoft

components (e.g. Server and UMP)

Some upgrades contain a non-reversible upgrade

script that changes the database structure of

some tables

Run get_db_info_sqlserver on a regular

basis

Establish a baseline so that system changes can be

easily seen and Nimsoft support can quickly

respond to issues

Use stored procedure ’ sp_who2 active’ Provides information on status

Set up periodic re-indexing Use Nimsoft data_engine

Set up regular defragmentation Use MS SQL Server agent

Check database size Use sp_spaceused

Check index fragmentation on a regular

basis and fix (SQ Server)

get_index_fragmentation

fix_index_fragmentation . Also:

DefragIndexesBasedon Fragmentation

Check index fragmentation (MySQL and

Oracle)

sp_Generic_DefragIndexesBasedOnFragmentation

Reduce transaction log size on a regular

basis

shrink_transaction_log_sqlserver

Check for missing nodes in Dynamic

Views

Find_missing_nodes_in_dynamic_views

Storage
Best Practice Comments

Determine an overall storage strategy Discussion with storage vendor

http://support.nimsoft.com/downloads/server56/doc/install_and_user_guide/ENG/NMS_5.6--Nimsoft%20Server%20Installation%20Guide.pdf

Backup
Best Practice Comments

Plan and schedule regular backups of the database

Test Restore operation before it is needed

Ensure sufficient disk capacity for backups

Document Backup and Restore procedures

Periodic Maintenance

Best Practice Comments

Identify and remove index fragmentation Use get_index_fragmentation &

fix_index_fragmentation tools. Also

DefragIndexesBasedon Fragmentation

Identify skewed and outdated index and column statistics and

make sure they are representative and current

Index statistics are used by the SQL Server

query optimizer to help it determine if, and

when, an index should be used when

executing a query.

Identify and create missing indexes Use tools such as the SQL Server Database

Engine Tuning Wizard to help select missing

indexes based on Profiler traces you have

collected. Or hand tune indexes based on

your analysis of the execution plans of critical

queries. A third option is to use a

combination of the first two.

Identify and remove unused indexes Unused indexes add unnecessary overhead

because they have to be modified every time

data is modified in a table.

Create and monitor index maintenance jobs Create scripts necessary to perform

automated index maintenance, and then

schedule them with the SQL Server agent.

Also, configure SQL Server to notify you if

any of these jobs fail.

Database and log file protection and management

tempdb maintenance

Data corruption detection

Performance monitoring

This section provides a checklist of values and properties to check when setting

up and deploying Microsoft SQL Server.

Checklist
This checklist is hierarchical in method, starting with hardware and OS settings,

then SQL Server instance, then the NIS database and its maintenance.

• Network communication

• Cluster Environment

• Windows configuration

• Disks and SAN

• SQL Server instance

• Database level configuration

• Database maintenance and backup strategy

• Additional Resources

Network communication

Applies to

(Windows

versions)

Item Recommendation

All NIC full duplex Network adapters and switch ports should have matching duplex

levels or transfer speed settings. Full duplex provides better

performance.

“Maximize Data Throughput for Network Applications” should be

set.

http://support.microsoft.com/?scid=kb;EN-US;Q325487#top

All Network settings Latest basic input/output system (BIOS) update for the server

should be installed.

Latest firmware update for the network adapter should be

installed.

Latest driver update for the network adapter MUST be installed

http://support.microsoft.com/kb/942861#top

All NetBIOS and

Server Message

Block enabled?

Disable NetBIOS and Server Message Block

http://msdn.microsoft.com/en-

us/library/ms144228(SQL.90).aspx#disabled_protocols

Important:Make sure NetBIOS is not in use.

http://support.microsoft.com/?scid=kb;EN-US;Q325487#top
http://support.microsoft.com/kb/942861#top
http://msdn.microsoft.com/en-us/library/ms144228(SQL.90).aspx#disabled_protocols
http://msdn.microsoft.com/en-us/library/ms144228(SQL.90).aspx#disabled_protocols

Cluster environment

Applies to

(Windows

versions)

Item Recommendation

All Cluster nodes

hardware

Cluster nodes should have nearly identical hardware on all

cluster nodes to simplify configuration and eliminate potential

compatibility problems.

All Memory

adjustment

In an Active/Active/… environment, max memory for the SQL

Server instances should be set in a way that the total memory in

the weakest node is split between the nodes. This will ensure that

when all instances failover to one node, they will be able to that

quickly and with no memory issues.

Windows configuration

For more information refer to: Performance Tuning Guidelines for Windows Server 2008 R2 or Performance

Tuning Guidelines for Windows Server 2003 .

Applies to

(Windows

versions)

Item Recommendation

All Latest service pack Implement the latest service pack and hotfixes

All 64 bit hardware and

software

Recommended for higher performance

32-bit OS (Win

2000 ADV ,

win2003 ALL) , SQL

server 2000 ENT

Systems with 4 GB

RAM only

Address more than

2 GB RAM

Add /3GB switch to boot.ini file to force the OS reserve

to be only 1GB, while allowing applications (SQL Server)

to use 3GB.

http://support.microsoft.com/kb/274750

32-bit OS

Enterprise edition

only (Not WIN

2000)

Systems with > 16

GB RAM only

Address more than

16 GB RAM

Add the /PAE switch in boot.ini to allows OS to access

physical memory beyond 4GB. This switch is supported

in Windows Server 2003, 2008 Enterprise and

Datacenter editions.

http://support.microsoft.com/kb/274750

32-bit OS

Enterprise edition

only (Not WIN

2000)

Systems with

between 4 & 16 GB

RAM only

Address more than

4 GB RAM

Add both /PAE and /3GB switches in boot.ini to allow OS

to access physical memory beyond 4GB. These switches

are supported in Windows Server 2003, 2008 Enterprise

and Datacenter editions.

http://support.microsoft.com/kb/274750

64-bit OS , SQL

server 2005 ENT

Edition, SQL Server

Enable lock pages in

memory

Reduce paging of buffer pool memory in the 64-bit

version of SQL Server 2005.

http://support.microsoft.com/kb/918483

http://msdn.microsoft.com/en-us/windows/hardware/gg463392
http://download.microsoft.com/download/2/8/0/2800a518-7ac6-4aac-bd85-74d2c52e1ec6/tuning.doc
http://download.microsoft.com/download/2/8/0/2800a518-7ac6-4aac-bd85-74d2c52e1ec6/tuning.doc
http://support.microsoft.com/kb/274750
http://support.microsoft.com/kb/274750
http://support.microsoft.com/kb/274750
http://support.microsoft.com/kb/918483

Applies to

(Windows

versions)

Item Recommendation

Standard Edition

SP3 CU4 and higher

All Paging file Pagefile should be 1~1.5 times the amount of RAM and

should NOT be placed on a drive that contains database

files.

Important: It is recommended to create multiple page

files on different disk partitions beside C:\ or even

different disk subsystems for performance reasons.

All System properties >

Advanced setting

Processor scheduling: Select "Background services".

Memory usage: Select "Programs".

Windows

2003,2008 with

SQL 2005 or higher

Database Instant

File Initialization

enabled?

A way to prevent data file (not log file) Create and Grow

operations zero- initializing new space before allowing it

to be used. This dramatically speeds up these operations

as zero- initialization can take a long time for large files.

To enable the feature :

From Local Policies >User assignments, “Perform

volume maintenance tasks” entry and then add the SQL

ServerService account or the local group

SQLServerMSSQLUser$instancename.

All Unnecessary

Services /

applications

Number of running apps and services should be

minimal.

Unnecessary services should be stopped and disabled

(Messenger, wireless configuration ...etc)

All Anti-virus? Best Practice for SQL Server is not installing anti-virus on

a dedicated SQL Server environment.

If necessary then exclude MDF, NDF and LDF file

extensions from being scanned.

http://support.microsoft.com/kb/309422.

Disks and SANs
This section discusses the general configuration of the disk system (for detailed information regarding the

placement of database files, refer to Database level configuration)

Applies to

(Windows

versions)

Item Recommendation

All NTFS

Allocation

Unit Size

Use : fsutil fsinfo ntfsinfo <DriveLetter>:

SQL Server writes in 8k pages and the read-ahead buffer is 64k so format

any disks which may be used for SQL Server data (data, logs, and tempdb)

using a 64k block size.

Summary:

NTFS block size - 64K

Stripe size - 64 KB or 256 KB

Disk offset - 64K

Useful links:

http://support.microsoft.com/kb/309422

Applies to

(Windows

versions)

Item Recommendation

http://blogs.msdn.com/psssql/archive/2008/02/06/how-it-works-how-

does-sql-server-backup-and-restore-select-transfer-sizes.aspx

http://sqlblogcasts.com/blogs/ssqanet/archive/2008/04/28/sql-server-

2005-and-disk-drive-allocation-unit-size-to-64k-any-benefit-or-

performance.aspx

http://blogs.msdn.com/johnhicks/archive/2008/03/03/sql-server-

checklist.aspx

http://technet.microsoft.com/en-ca/library/cc966414.aspx#EAOAC

http://support.microsoft.com/default.aspx?scid=kb;EN-US;929491

Disk alignment instructions: http://technet.microsoft.com/en-

us/library/aa995867.aspx

Always consult with your storage vendor regarding any changes

2000,2003

(not 2008)

Volume

alignment

NTFS volumes should be aligned. This can be done by using diskpar.exe or

DiskPart.exe. DiskPart.exe is a disk configuration utility that is built into

Windows; in Windows 2003 version SP1 or greater, DiskPart.exe contains

an ALIGN option that can be used to align volumes.

http://support.microsoft.com/default.aspx/kb/929491

http://blogs.msdn.com/jimmymay/archive/2008/12/04/disk-partition-

alignment-sector-alignment-for-sql-server-part-4-essentials-cheat-

sheet.aspx

Always consult with the storage vendor before making any changes

All Disks and

LUNs

Storage can be divided into LUNs and the server will access one or more

of these units as a partition or drive. Consider dedicating entire disks in

the SAN to separate LUNs thereby isolating the I/O on each drive to the

particular activity the drive will encounter.

This is more important for log files where the I/O is sequential in nature--

and any other disk activity (e.g. random read) can increase the log write

latency.

http://blogs.msdn.com/sqlcat/archive/2005/11/21/495440.aspx

All Raid levels

for SQL

Server

There are 3 configurations that can be used for SQL server deployments (Do

not consider using RAID 0)

 RAID 1: disk mirroring, provides a redundant, identical copy of a selected

disk. All data written to the primary disk is written to the mirror disk. RAID

1 provides fault tolerance and generally improves read performance but

may degrade write performance.

 RAID 5: striping with parity, this level stripes the data in large blocks across

the disks in an array and it writes the parity across all the disks. Data

redundancy is provided by the parity information. Striping with parity offers

better performance than disk mirroring (RAID 1). However, when a stripe

member is missing, read performance is decreased, for example, when a

disk fails.

 RAID 10: mirroring with striping. RAID 10 uses a striped array of disks that

are then mirrored to another identical set of striped disks. RAID 10 provides

the performance benefits of disk striping with the disk redundancy of

mirroring. RAID 10 provides the highest read-and-write performance of any

http://blogs.msdn.com/psssql/archive/2008/02/06/how-it-works-how-does-sql-server-backup-and-restore-select-transfer-sizes.aspx
http://blogs.msdn.com/psssql/archive/2008/02/06/how-it-works-how-does-sql-server-backup-and-restore-select-transfer-sizes.aspx
http://sqlblogcasts.com/blogs/ssqanet/archive/2008/04/28/sql-server-2005-and-disk-drive-allocation-unit-size-to-64k-any-benefit-or-performance.aspx
http://sqlblogcasts.com/blogs/ssqanet/archive/2008/04/28/sql-server-2005-and-disk-drive-allocation-unit-size-to-64k-any-benefit-or-performance.aspx
http://sqlblogcasts.com/blogs/ssqanet/archive/2008/04/28/sql-server-2005-and-disk-drive-allocation-unit-size-to-64k-any-benefit-or-performance.aspx
http://blogs.msdn.com/johnhicks/archive/2008/03/03/sql-server-checklist.aspx
http://blogs.msdn.com/johnhicks/archive/2008/03/03/sql-server-checklist.aspx
http://technet.microsoft.com/en-ca/library/cc966414.aspx#EAOAC
http://support.microsoft.com/default.aspx?scid=kb;EN-US;929491
http://technet.microsoft.com/en-us/library/aa995867.aspx
http://technet.microsoft.com/en-us/library/aa995867.aspx
http://support.microsoft.com/default.aspx/kb/929491
http://blogs.msdn.com/jimmymay/archive/2008/12/04/disk-partition-alignment-sector-alignment-for-sql-server-part-4-essentials-cheat-sheet.aspx
http://blogs.msdn.com/jimmymay/archive/2008/12/04/disk-partition-alignment-sector-alignment-for-sql-server-part-4-essentials-cheat-sheet.aspx
http://blogs.msdn.com/jimmymay/archive/2008/12/04/disk-partition-alignment-sector-alignment-for-sql-server-part-4-essentials-cheat-sheet.aspx
http://blogs.msdn.com/sqlcat/archive/2005/11/21/495440.aspx

Applies to

(Windows

versions)

Item Recommendation

one of the other RAID levels, but at the expense of using two times as many

disks.

 General – for SQL Server:

Raid 10 should be used for everything, if possible, and not too expensive

Raid 5 will be the second best option for database data files

Raid 1 will be the next best option for T-Log files.

SAN considerations

Important: Discuss the appropriate values for these settings with your storage vendor.

HBA drivers: ensure that you are using the recommended drivers for your particular

storage array. This should be located on the SAN vendor’s Web sites for download.

HBA Queue depth settings: SQL Server applications are generally I/O-intensive, with many

concurrent outstanding I/O requests. The default depth value is of 8 to 32 for the major

HBA vendors. According to a Microsoft test (http://technet.microsoft.com/en-

us/library/cc966412.aspx#EEAA) they have seen substantial gains in I/O performance when

increasing this to 64 or even higher.

When Queue Depth is set too low, a common symptom is increasing latency and less-

than-expected throughput given the bandwidth between host/storage and the number of

spindles in a particular configuration

More information can be found here:

http://sqlblog.com/blogs/linchi_shea/archive/2007/09/18/sql-server-and-sans-the-

queuedepth-setting-of-a-host-bus-adapter-hba.aspx

http://technet.microsoft.com/en-us/library/cc966412.aspx#EEAA
http://technet.microsoft.com/en-us/library/cc966412.aspx#EEAA
http://sqlblog.com/blogs/linchi_shea/archive/2007/09/18/sql-server-and-sans-the-queuedepth-setting-of-a-host-bus-adapter-hba.aspx
http://sqlblog.com/blogs/linchi_shea/archive/2007/09/18/sql-server-and-sans-the-queuedepth-setting-of-a-host-bus-adapter-hba.aspx

SQL server instance configuration
Applies to

(SQL server

versions)

Item Recommendation

All Latest service

pack

Latest service pack and hotfixes.

http://support.microsoft.com/kb/916287

All SQL installed

on Domain

controller?

SQL server should never be installed on a domain controller

All Dedicated

machine for

SQL Server?

Best Practices imply that SQL Server should be installed on its own

dedicated host machine

All Named

instances are

using

dynamic

ports?

Assign static ports to named instances of SQL Server so that SQL

browser doesn’t have to look up the current dynamic port. More info

about how to check the value at:

http://blogs.msdn.com/sqlserverfaq/archive/2008/06/02/how-to-

change-the-dynamic-port-of-the-sql-server-named-instance-to-an-

static-port-in-a-sql-server-2005-cluster.aspx

All Server

allowed

protocols

(TCP/IP, VIA,

NPs, etc.)

 Limit the supported protocols.

All Max Server

memory

value

SQL server shouldn’t be allowed to address all server memory, about

1.5-2 GB should be left for the OS.

2,000 MB is already the MAX for SQL 2000 STD

http://technet.microsoft.com/en-us/library/ms181453.aspx

All Affinity mask Unless there are multiple instances and the CPUs are distributed on

them, leave this as default.

http://technet.microsoft.com/en-us/library/ms189435.aspx

All Max Degree

Of Parallelism

(Max DOP)

The wait statistics IN SQL Server should be examined

(http://msdn.microsoft.com/en-us/library/ms190732.aspx). If there is

contention due to parallelism, parallelism should be disabled (either per

query: Max DOP = 1 or globally for SQL Server sp_configure) :

http://msdn.microsoft.com/en-us/library/ms181007.aspx

All Boost SQL

server priority

Be careful here as this can degrade the performance of other

applications running on the same Server with SQL Server. Set it ON only

if the box is dedicated to SQL Server only.

Important: Don’t enable this for clustered servers.

All Login auditing Usually “failed logins” will be audited. Not recommended to audit both

successful and failed logins unless necessary, as this will increase the

size of the SQL Server error log. Note: Changing the audit level requires

restarting the service.

2005,2008 C2 Audit Should only be enabled for an essential reason because of the impact it

makes on system performance and the disk space it requires.

http://support.microsoft.com/kb/916287
http://blogs.msdn.com/sqlserverfaq/archive/2008/06/02/how-to-change-the-dynamic-port-of-the-sql-server-named-instance-to-an-static-port-in-a-sql-server-2005-cluster.aspx
http://blogs.msdn.com/sqlserverfaq/archive/2008/06/02/how-to-change-the-dynamic-port-of-the-sql-server-named-instance-to-an-static-port-in-a-sql-server-2005-cluster.aspx
http://blogs.msdn.com/sqlserverfaq/archive/2008/06/02/how-to-change-the-dynamic-port-of-the-sql-server-named-instance-to-an-static-port-in-a-sql-server-2005-cluster.aspx
http://technet.microsoft.com/en-us/library/ms181453.aspx
http://technet.microsoft.com/en-us/library/ms189435.aspx
http://msdn.microsoft.com/en-us/library/ms190732.aspx
http://msdn.microsoft.com/en-us/library/ms181007.aspx

Applies to

(SQL server

versions)

Item Recommendation

All Recycle SQL

Server

Errorlogs?

SQL Server and SQL Server Agent error logs may grow very large. It is a

good practice to recycle them on a regular basis:

http://msdn.microsoft.com/en-us/library/ms182512.aspx

http://technet.microsoft.com/en-us/library/ms178310.aspx

All Database files

location

setting

Database default data location should be changed to point to a

dedicated disk for data files and logs to a location dedicated for log files

(optimized for write operations).

2008 ENT

Edition

Compress

backup

Should be enabled if there are large backups and necessary to reduce

space occupied by the backup files.

2005,2008

on systems

with more

than 16-32

GB RAM

Enable to

large-page

allocations for

the buffer

pool

Enable Trace flag 834 for high performance workloads on servers with

high-end resources (CPU and memory specifically) to use Microsoft

Windows large-page allocations for the buffer pool.

Database level configuration
Applies to

(SQL

server

versions)

Item Recommendation

All Database files

placement

• Log files should always be kept on RAID 1+0. Second best is

Raid 1.

• If possible also keep data and index files on RAID 1+0, but if

this is too expensive (needs at least 4 disks and utilizes half the

space), use Raid 5 as the second choice, especially if Read operations

are expected more than write operations (which is usually the

default with OLTP databases).

• Because of the heavy use of the TempDB, RAID1+0 is the

preferred solution for this database. Raid 5 is the second choice.

At a minimum always separate data files from log files on separate

physical disks.

If possible, separate tempdb files off to a dedicated disk.

All User/system

DBs on system

drive?

Placing database files on the same drive (logical) as the system drive

affects database performance since the system will be busy serving

system files from the same drive. Also, if the database grows

significantly (tempdb for example), it may fill the system drive—with

a severe effect on the system (this can even bring the server down).

All system/user databases should reside on drives dedicated for SQL

server.

All Number of

Tempdb

datafiles

SQL server 2000 : 1 datafile / processor core

SQL 2005, 2008 : 0.5 datafile / processor core

All Database files

filegrowth

• Filegrowth shouldn’t be very large because user activity will have

to wait for the file operation to complete.

http://msdn.microsoft.com/en-us/library/ms182512.aspx
http://technet.microsoft.com/en-us/library/ms178310.aspx

Applies to

(SQL

server

versions)

Item Recommendation

• Filegrowth shouldn’t be very small to avoid issue from the file

being filled up.

• Growth should never be in terms of % but in terms of MBs.

All Filegroups (FG)

are used for

large

databases?

FGs should always be used for large databases (>50 GBs) for better

recovery and organization of database objects.

A best practice implementation is as following:

• Primary: Contains only the MDF--no additional data goes into the

.MDF file. It stays very small and contains only system objects; this

will help with fast and partial recovery.

• Secondary: create one (or more) data files on multiple disks, and

then create (or move) tables to that filegroup. Also make this

filegroup the default one so that any newly created objects go here.

• Index (optional): create one (or more) data files on multiple

disks, and then create (or move) indexes to that filegroup. This

approach works if there is a large index and you want to move it to

a separate disk.

A separate filegroup can also be used for rarely accessed data and

put on a separate, slower I/O path, in order to preserve fast RAID

disks for highly used filegroups.

There are DR benefits of having filegroups; refer to the blog here

http://mssqltips.com/tip.asp?tip=1621

All Primary FG is

the default FG?

Other FGs that hold data should be default FGs so that new objects

are created on secondary FGs

All Database

options are

set?

Database settings should adhere to best practices.

Some options are commonly altered (sometimes to wrong values),

while others stay as default:

• Recovery model: for DR purposes, FULL should be used to allow

for point-in-time recovery. SIMPLE recovery may increase

performance by reducing the cost of T-Log management by SQL

Server.

• Auto Close: Should NEVER be set to TRUE.

• Auto Shrink: Should NEVER be set to TRUE.

• Auto Update Statistics: Should ALWAYS be set to TRUE (except

for very few exceptions, such as databases with extensive data

loads.

• Page Verify: Should ALWAYS be set to CHECKSUM (2005, 2008)

and torn_page_detection must be selected in SQL server 2000.

• Parameterization (2005,2008): should be set to “Forced” when

there are applications that pass a large number of non-

parameterized batches to lower procedure cache memory

utilization and, therefore, have better overall throughput.

More information: http://technet.microsoft.com/en-
us/library/ms188124.aspx

http://mssqltips.com/tip.asp?tip=1621
http://technet.microsoft.com/en-us/library/ms188124.aspx
http://technet.microsoft.com/en-us/library/ms188124.aspx

Applies to

(SQL

server

versions)

Item Recommendation

All Number of

Virtual Log Files

(VLFs) ?

Number of VLFs should not be more than 50, this impacts the

performance of writing to the log file.

http://sqlblog.com/blogs/linchi_shea/archive/2009/02/09/performa

nce-impact-a-large-number-of-virtual-log-files-part-i.aspx

Log files initial size should be large enough to reduce filegrowth

occurrences and filegrowth value should be large enough to prevent

excessive growth. See script for getting VLFs.

To reduce the VLF number:

Check the current size of T-Log

Databases in FULL recovery model:

1 - Full backup (optional)

2 - TLOG backup (with truncate)

3 - Shrink the log file to… 10 megabytes?

4 - Grow the log file in 1 operation to its original size

Databases in SIMPLE recovery model:

1 - Full backup (optional)

2 - Shrink the log file to… 10 megabytes?

3 - Grow the log file in 1 operation to its original size

2005,2008 Encryption

used?

For critical data use encryption.

There are performance implications to the usage of encryption

functions. Make sure the encrypted columns have no indexes and

are not included in WHERE clauses.

SELECT * FROM [db].sys.symmetric_keys

SELECT * FROM [db].sys.asymmetric_keys

2008 Data

compression

If there is much concern about the space used by databases,

compression can be implemented for less-accessed tables (especially

large ones).

Saved space should be measured first ,

sp_estimate_data_compression_savings

Refer to the article here :

http://www.mssqltips.com/tip.asp?tip=1582

2005,2008 Allow page

locks for

indexes

All indexes should have allowed page locks for better escalation

management and the ability to be defraged or rebuilt.

Get list of indexes without “allow page locks”

Select * from db.sys.indexes where allow_page_locks=0

http://sqlblog.com/blogs/linchi_shea/archive/2009/02/09/performance-impact-a-large-number-of-virtual-log-files-part-i.aspx
http://sqlblog.com/blogs/linchi_shea/archive/2009/02/09/performance-impact-a-large-number-of-virtual-log-files-part-i.aspx
http://www.mssqltips.com/tip.asp?tip=1582

SQL query to get number of VLFs in databases (SQL Server 2005, 2008)
SET NOCOUNT ON
DECLARE @db nvarchar (250)

Create TABLE #loginfo
(
 FileId int , FileSize decimal (28 , 0) ,
 StartOffset decimal (28 , 0) , FSeqNo decimal (28 , 0) ,
 Status tinyint , Parity tinyint , CreateLSN varchar (40))

Declare @VLFs TABLE (Db_name sysname , VLFS_count int)

DECLARE VLFS Cursor FOR
select name from master . sys . databases where state_desc = 'online'
--2000
-- select name from master..sysdatabases

OPEN VLFS

FETCH NEXT FROM VLFS INTO @db
WHILE @@FETCH_STATUS = 0
 BEGIN
 Insert into # loginfo
 Exec ('DBCC LOGINFO (' +@db+')')
 Insert into @VLFs
 select @db , count (*) from #loginfo
 Delete from @loginfo
 FETCH NEXT FROM VLFs INTO @db
 END
CLOSE VLFs
DEALLOCATE VLFs

select * from @VLFs order by Vlfs_count desc

Database maintenance and backup strategy
Applies

to (SQL

server

versions)

Item Recommendation

ALL Recovery

models

If the database is in the SIMPLE recovery model, the T-Log cannot be backed up

and therefore there is no point-in-time recovery. In case of a failure, such as

database corruption, the database will need to be restored from the latest FULL

database backup/differential backup.

If the database is on FULL recovery model, make sure that T-Log is being

backed up, otherwise that T-log may grow indefinitely.

Choose the database recovery model and backup strategy based on the

database SLA.

Make sure that database backups are copied off the server for DR.

For better performance, don’t backup the databases or T-logs to the same

physical disk as the database or T-log files.

Applies

to (SQL

server

versions)

Item Recommendation

ALL Index

maintenance

tasks

The Index Rebuild and Index Reorg default maintenance plans rebuild/reorganize

all indexes blindly, no matter if they are fragmented or not. For better

performance, it is strongly advised to reorganize/rebuild indexes based on their

size and fragmentation level. This procedure can run even every day so that the

reorg will be faster and lighter (“delta” defrag).

Note that index rebuild is a resource consumer and may also increase the size of

the T-Log (and therefore also of the T-log backups)

SQL 2005 and higher: use ONLINE index rebuild as much as possible in Enterprise

Edition when tables need to be available at all times.

ALL Shrink

database

maintenance

task

Never shrink databases or database files on a regular basis. If the file has grown

once, it will most probably grow again. When a database file grows while

transactions are running, this may degrade performance.

ALL Update

Statistics

maintenance

task

If Auto UPDATE Statistics option is turned on in the database and there is no

massive insertion/update of data, this task is not required (which is true in most

cases).

ALL Maintenance

and backup

files cleanup

Don’t forget to clean up old backup files according to the database SLA and the

amount of free space on the backup drives.

It is also necessary to purge the job and maintenance plans history from msdb.

Large history tables in tempdb may cause contention and performance issues

(even can lead to jobs failing).

ALL Database

Integrity

checks

It is important to run integrity checks on the database. The earlier you find

consistency issues, the better.

Data corruption is usually very rare. Since this task is a resource consumer, it

shouldn’t be executed more than once a week.

Additional Resources

SQL Server Management Studio F1 Help

http://technet.microsoft.com/en-us/library/ms180294.aspx

Storage Top 10 Best Practices

http://sqlcat.com/top10lists/archive/2007/11/21/storage-top-10-best-practices.aspx

SQL Server 2005 Configuration Blog #2.doc

http://blogs.msdn.com/sqlcat/archive/2005/11/21/495440.aspx

Deploying SQL Server 2005 with SAN #3

http://blogs.msdn.com/sqlcat/archive/2005/11/17/493944.aspx

Storage Consideration for SQL Server 2005 DW environment

http://blogs.technet.com/vipulshah/archive/2008/04/21/storage-consideration-for-sql-

server-2005-dw- environment.aspx

http://technet.microsoft.com/en-us/library/ms180294.aspx
http://sqlcat.com/top10lists/archive/2007/11/21/storage-top-10-best-practices.aspx
http://blogs.msdn.com/sqlcat/archive/2005/11/21/495440.aspx
http://blogs.msdn.com/sqlcat/archive/2005/11/17/493944.aspx
http://blogs.technet.com/vipulshah/archive/2008/04/21/storage-consideration-for-sql-server-2005-dw-environment.aspx
http://blogs.technet.com/vipulshah/archive/2008/04/21/storage-consideration-for-sql-server-2005-dw-environment.aspx
http://blogs.technet.com/vipulshah/archive/2008/04/21/storage-consideration-for-sql-server-2005-dw-environment.aspx

Physical Database Storage Design

http://technet.microsoft.com/en-us/library/cc966414.aspx

High Performance Data Warehouse with SQL Server 2005

http://download.microsoft.com/download/4/7/a/47a548b9-249e-484c-abd7-

29f31282b04d/RelDWPerf.doc

Best Practices for Optimizing SQL Server in SAN Environments

http://www.symantec.com/community/article/4406/best-practices-optimizing-sql-server-san-

environments-using-altiris- products

SQL server Clustering best practices
http://searchsqlserver.techtarget.com/tip/0,289483,sid87_gci1197424_mem1,00.html

Common QA for deploying SQL Server in a SAN Environment

http://hosteddocs.ittoolbox.com/Microsoft-Siebel091704b.pdf

http://technet.microsoft.com/en-us/library/cc966414.aspx
http://download.microsoft.com/download/4/7/a/47a548b9-249e-484c-abd7-29f31282b04d/RelDWPerf.doc
http://download.microsoft.com/download/4/7/a/47a548b9-249e-484c-abd7-29f31282b04d/RelDWPerf.doc
http://www.symantec.com/community/article/4406/best-practices-optimizing-sql-server-san-environments-using-altiris-products
http://www.symantec.com/community/article/4406/best-practices-optimizing-sql-server-san-environments-using-altiris-products
http://www.symantec.com/community/article/4406/best-practices-optimizing-sql-server-san-environments-using-altiris-products
http://searchsqlserver.techtarget.com/tip/0,289483,sid87_gci1197424_mem1,00.html
http://hosteddocs.ittoolbox.com/Microsoft-Siebel091704b.pdf

This section provides a checklist for analyzing overall database performance,

and can be used for continuous performance analysis and database tuning.

Checklist
Most issues listed in the right column link to a listing of the SQL query that will

generate the desired output (valid for SQL Server only):

Performance analysis area Issue to identify

Analyze Wait Statistics Wait times (see example below)

Perform Index Analysis, identifying top issues-> Top costly unused indexes

Top costly missing indexes

Indexes with the most contention

Most logically fragmented indexes

Tables without a clustered index

Tables with primary key, without clustered index

Objects with no indexes

Foreign keys that are not indexed

Number of indexes per table

Identify top SQL queries according to high resource

utilization->

Top SQL with highest CPU utilization

Top SQL with highest I/O

Top SQL with highest execute duration

Heaviest stored procedures (SPs) for tuning (query

TBD)

This query provides wait statistics that give a good indication of resource

bottlenecks from an SQL Server perspective:

SELECT TOP 10
 [Wait type] = wait_type ,
 [Wait time (s)] = wait_time_ms / 1000 ,
 [% waiting] = CONVERT(DECIMAL(12, 2), wait_time_ms * 100.0
 / SUM(wait_time_ms) OVER())
FROM sys . dm_os_wait_stats
WHERE wait_type NOT LIKE '%SLEEP%' and wait_type not in
('SQLTRACE_BUFFER_FLUSH', 'DISPATCHER_QUEUE_SEMAPHORE', 'REQUEST_FOR_DE
ADLOCK_SEARCH',
'XE_TIMER_EVENT' , 'FT_IFTS_SCHEDULER_IDLE_WAIT' , 'XE_DISPATCHER_WAIT' , '
LOGMGR_QUEUE', 'CHECKPOINT_QUEUE', 'BROKER_TO_FLUSH')
ORDER BY wait_time_ms DESC; Index Analysis

Abstracted from a production database (with parallelism enabled):

Wait type Wait Time (ms) % Wait Time

CXPACKET 781810 41.01

PAGEIOLATCH_EX 318017 16.68

PAGEIOLATCH_SH 307897 16.15

ASYNC_NETWORK_IO 112675 5.91

BACKUPIO 80461 4.22

ASYNC_IO_COMPLETION 51813 2.72

BACKUPBUFFER 49769 2.61

OLEDB 36811 1.93

WRITELOG 32093 1.68

BACKUPTHREAD 29272 1.54

After disabling parallelism (run DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR);) the resulting statistics

show I/O contention:

Wait type Wait Time (ms) % Wait Time

PAGEIOLATCH_EX 1479 93.16

WRITELOG 81 5.15

OLEDB 10 0.65

ASYNC_NETWORK_IO 10 0.63

PAGEIOLATCH_SH 2 0.15

LCK_M_X 2 0.14

PAGEIOLATCH_UP 0 0.06

SOS_SCHEDULER_YIELD 0 0.03

PAGELATCH_UP 0 0.00

SQLTRACE_FILE_WRITE_IO_COMPLETION 0 0.00

Another view showing network and I/O contention:

Wait type Wait Time (ms) % Wait Time

ASYNC_NETWORK_IO 17994 20.33

BACKUPIO 14053 15.88

PAGEIOLATCH_EX 10654 12.04

ASYNC_IO_COMPLETION 10549 11.92

BACKUPBUFFER 10497 11.86

PAGEIOLATCH_SH 5940 6.71

PAGELATCH_EX 5633 6.36

BACKUPTHREAD 3511 3.97

OLEDB 3500 3.95

WRITELOG 2070 2.34

 Troubleshooting

This section provides best practices to triage and troubleshoot a distressed

database.

Best Practice Comments

Recognize a distressed database, learn the signs One symptom is the data_engine queue

backing up

Investigate what other processes are running Sp_who2 active

Activity Monitor (need more info on this)

Investigate index fragmentation Use get_index_fragmentation &

fix_index_fragmentation tools. Also

DefragIndexesBasedon Fragmentation

Check disk subsystem(s) and drive failure Performance impact to RAID

Check RAID manager console

Resource constrained? Task Manger (Windows)

Top command in Linux and Solaris

Other jobs running Task Manager (Windows)

Top command in Linux and Solaris

 A es

The data_engine version 7.53 (shipped with NM Server 4.3x) changed the set of

indexes created on newly-created QoS sample data tables RN_QOS_DATA_x. By

default, existing RN_QOS_DATA-tables were left with the old index set. The

decision to update these is left the end user-- the task was not executed by the

NM Server Installer nor the data_engine.

The following procedure describes how to migrate from old indexing to new

indexing for the QoS sample data tables RN_QOS_DATA_x.

1. Stop the data_engine and any other activity against the NIS database (by

stopping the hub and robots working against it). This step is required to

the speed up the migration of indexes

2. Important: Take a backup of database before executing the steps

mentioned below.

3. Using SQL Management Studio or similar, access the NIS database and

execute the following steps to check which RN_QOS_DATA-tables

require re-indexing.

Expand the RN_QOS_DATA_xxxx tables to verify the type of indexing

they are currently using.

- If they have one clustered index with the same name as the table, then

they are using the old indexing.

- If they have two or three indexes (_Idx0, _Idx1 and _IdxSDP all prefixed

by table name), then they are using new indexing.

4. For all tables found to be using old indexing, execute the following step:

exec spn_utl_Reindex_SampledataTables
@TableNamePattern='RN_QOS_DATA_%'

Note: Modify the parameter @TableNamePattern to match the set

of tables which should be re-indexed.

You can either execute the re-indexing in one step as above or

execute it multiple times where each iteration covers one or more

RN-tables as in example below:

exec spn_utl_Reindex_SampledataTable
@TableName='RN_QOS_DATA_0001'

5. Start any components stopped in step 1.

Note that re-indexing increases the storage space requirement for the

database. The increased requirement ranges from 25% to 50%, where the

increase approaches 50% if starting with a deployment which has only the

original clustered index.

Performing Analysis on QoS sample data tables
Executing the stored procedure spn_ins_NISCC performs a detailed analysis of

the QoS sample data tables and will report any issues which should be resolved:

• Log onto your database server

• Execute the following commands to analyze tables

spn_ins_NISCC 'list','all'
• Execute following command the review result of analysis

select * from vwn_ins_NISCC
• If the analysis above revealed any issues, you can run the following

commands in order to resolve the issues:

spn_ins_NISCC 'fix','all'
• To review what has been resolved, execute the command

select * from vwn_ins_NISCC
Each database vendor has a different implementation with respect to execution

of stored procedures. See detailed steps below for each database.

Note that you can change the value for the second argument (default ‘all’) to

any number (‘10’ for example) to reduce the number of issues which should be

reported/fixed. This is useful in situations where you do not have time to fix all

issues in one execution.

Note: It is strongly advised to stop the data_engine probe and all other activity

against database while executing the spn_ins_NISCC with the fix-option. This

can be accomplished by placing the Primary Hub and Robots working against it

into maintenance mode.

SqlServer

declare @lEM varchar(max), @lRC int;
-- analyse sample data tables
exec spn_ins_NISCC 'list', 'all', 5, @lEM, @lRC ;
-- review result of analysis
select * from vwn_ins_NISCC ;
-- resolve any issues
exec spn_ins_NISCC 'fix', 'all', 5, @lEM, @lRC ;
-- review result of resolving issues
select * from vwn_ins_NISCC ;

Oracle

ALTER SESSION SET NLS_SORT=BINARY_CI;
ALTER SESSION SET NLS_COMP=LINGUISTIC;
/
set serveroutput on;
/
-- analyse sample data tables
declare lRC number; lEM varchar2(255);
begin
 spn_ins_NISCC('list ', 'all', 5, lEM,lRC);
 dbms_output.put_line('lRC=' || lRC || ', lEM' || lEM);
end;
/
-- review result of analysis
select * from vwn_ins_NISCC ;
-- resolve any issues

declare lRC num ber; lEM varchar2(255);
begin
 spn_ins_NISCC('fix', 'all', 5, lEM,lRC);
 dbms_output.put_line('lRC=' || lRC || ', lEM' || lEM);
end;
/
-- review result of resolving issues
select * from vwn_ins_NISCC ;

Mysql

-- analyze sample data tables
call spn_ins_NISCC('list','all', 5, @lEM,@lRC);
-- review result of analysis
select * from vwn_ins_NISCC ;
-- resolve any issues
call spn_ins_NISCC('fix','all', 5, @lEM,@lRC);
-- review result of resolving issues
select * from vwn_ins_NISCC ;

 B ndexing

Advanced indexing when using
report_engine/group_server

If using legacy report_engine or group_server, components, for example, when

generating “on demand reports” from Dynamic Views, modifying the standard

indexing of the RN_QOS_DATA-tables can improve database performance.

This section applies to MS SQL Server only.

RN-tables which have a very high number of distinct table_ids, as compared to

the number of samples, will suffer performance degradation using standard

indexing. A typical example is the RN-table for net_connect or interface_traffic

QoS. For this combination the old (pre-NM Server v4.3x) clustered index over

(table_id, sampletime) provided better performance compared to the non-

clustered index over (table_id,sampletime) which replaced it (which generates

an excessive amount of I/O).

The explanation is that report_engine's queries typically require non-indexed

columns to qualify the rows required, something the clustered index handles

fairly well. The remedy is to drop the current non-clustered index over

(table_id,sampletime) and create a new non-clustered index over

(table_id,sampletime,tz_offset, samplerate, samplevalue) as shown below:

create nonclustered index
 AllNClIdx
on
 rn_qos_data_0001_all(table_id,sampletime)
include
 (tz_offset,samplerate,samplevalue,samplemax)

Adding such an index to the designated RN-tables will reduce I/O to about the

same level as the old clustered index. Please note that this index takes

additional disk space--if you have data requiring 1 GB then the table with

indexing will require a total of approximately 1.5 GB.

A second approach to improving performance when generating “on demand

reports” from Dynamic Views is to enable a covering index for

RN_QOS_DATA_x tables (applies to MS SQL Server only).

To enable a covering index for new RN_QOS_DATA tables, run this command:

update tbn_de_Config
 set ConfigValueNumeric = 0
where ConfigName = 'CreateMinimalTSIndex'

This will cause new RN tables to have Idx1 be a covering index, which enhances

performance at the cost of disk space.

To enable covering indexes on existing RN_QOS_DATA-tables, run the following

commands.

Note: The index update may take several hours, depending on database size.

declare @tName varchar (100)
declare @time varchar (30)

Declare tableHasMax CURSOR FOR
 select
 'RN_QOS_DATA_' + reverse (stuff ('0000' , 1 ,
len (cast (s. qos_def_id as varchar (max))), reverse (cas t (s. qos_def_id
as varchar (max)))))
 from S_QOS_DEFINITION s
 where hasmax = 1 and type = 0
 order by qos_def_id asc
OPEN tableHasMax
Fetch tableHasMax into @tName

WHILE @@FETCH_STATUS = 0
BEGIN

 set @time = convert (varchar (30), getdate (), 121);

 RAISERROR('%s %s starting' , 0 , 1 , @time, @tname) WITH NOWAIT;

 exec spn_utl_IndexAdmin__DropIndex @TableName = @tName, @Target
= 'Idx1' ;

 exec spn_utl_IndexAdmin @mode ='createindex' , @IndexName='Idx1' ,
@IndexColumns ='(sampletime, table_id) include (samplerate,
samplevalue, samplemax, tz_offset)' , @IndexType ='nonclustered' ,
@IndexOptions ='(fillfactor=75)' , @TableNamePattern =@tName

 RAISERROR('%s %s done' , 0 , 1 , @time, @tname) WITH NOWAIT;

 Fetch tableHasMax into @tName
 END
CLOSE tableHasMax
DEALLOCATE tableHasMax

declare @tName varchar (100)
declare @time varchar (30)

Declare tableHasMax CURSOR FOR
 select

 'RN_QOS_DATA_' + reverse (stuff ('0000' , 1 ,
len (cast (s. qos_def_id as varchar (max))), reverse (cast (s. qos_def_id
as varchar (max)))))
 from S_QOS_DEFINITION s
 where hasmax = 0 and type = 0
 order by qos_def_id asc
OPEN tableHasMax
Fetch tableHasMax into @tName

WHILE @@FETCH_STATUS = 0
BEGIN

 set @time = convert (varchar (30), getdate (), 121);

 RAISERROR('%s %s starting' , 0 , 1 , @time, @tname) WITH NOWAIT;

 exec spn_utl_IndexAdmin__DropIndex @TableName = @tName, @Target
= 'Idx1' ;

 exec spn_utl_IndexAdmin @mode ='createindex' , @IndexName='Idx1' ,
@IndexColumns ='(sampletime, table_id) include (samplerate,
samplevalue, tz_offset)' , @IndexType ='nonclustered' , @IndexOptions
='(fillfactor=75)' , @TableNamePattern =@tName

 RAISERROR('%s %s done' , 0 , 1 , @time, @tname) WITH NOWAIT;

 Fetch tableHasMax into @tName
 END
CLOSE tableHasMax
DEALLOCATE tableHasMax

A third suggestion is to not use the DATEADD function on index columns. Here

is an example report_engine query template that illustrates a potentially slow

query:

SELECT

 AVG(samplevalue), STDEV(samplevalue), MIN(samplevalue), MAX(samplevalue),

MIN(samplerate)

FROM

 <rn_table> WITH (NOLOCK)

WHERE

 DATEADD(s,ISNULL(tz_offset,25200) - 25200,sampletime) between '<startdate>’ and

'<enddate>'

and

 table_id = <table_id>

The first two options, which cover revising the index scheme, will allow the

above example to run faster.

The alternative shown here is to not use the DATEADD function on index

columns (an alternative is to force it to use Idx1). Here is a suggested revision to

the above example query:

SELECT

 AVG(samplevalue), STDEV(samplevalue), MIN(samplevalue), MAX(samplevalue),

MIN(samplerate), COUNT(*)

FROM

 rn_qos_data_0001_xxx WITH (NOLOCK)

WHERE

 sampletime between '2010 - 10- 08 09:00:00.000' and '2010 - 10- 08 17:00:00.000'

and

 table_id = 2931842

Best Practices for Clustered and Non-Clustered
Indexing

Large amount of selects on a table, create a clustered index on the primary key

of the table. Then create non-clustered indexes for all other columns used in

selects and searches. Put non-clustered indexes on foreign key/primary key

columns that are used in joins.

-
Add non-clustered indexes for queries that return smaller result sets. Large

results will have to read more table pages anyway so they will not benefit as

much from a non-clustered index.

Add to columns used in WHERE clauses that return exact matches.

If a clustered index is not used on these columns, add an index for collections of

distinct values that are commonly queried such as a first and last name column

group.

Add for all columns grouped together for a given query that is expensive or very

common on a large data table.

Add to foreign-key columns where joins are common that are not covered by

the clustered index.

 C

This section lists SQL code to perform the following tasks:

• Get_db_info_sqlserver

• get_index_fragmentation

• Fix_index_fragmentation

• Find_missing_nodes_in_dynamic_views

• DefragindexesBasedOnFragmentation (generic)

• Shrink_transaction_log_sqlserver • Most costly unused indexes • Top Costly Missing Indexes • Indexes with the most contention • Most logically fragmented Indexes • Tables without clustered index • Tables with primary key, without clustered index • Objects with no indexes / Foreign keys that are not indexed • Number of indexes per table • Top SQL with highest CPU • Top SQL with highest I/O • Top SQL with highest Duration

This script provides a listing of data tables, sorted by size. Note that this is also

included in the more general get info script that follows.

-- where is the data
CREATE TABLE #temp (
table_name sysname ,
row_count INT ,
reserved_size VARCHAR(50),
data_size VARCHAR(50),
index_size VARCHAR(50),
unused_size VARCHAR(50))
SET NOCOUNT ON
INSERT #temp
EXEC sp_msforeachtable 'sp_spaceused ''?'''
SELECT a . table_name ,
a. row_count ,
COUNT(*) AS col_count ,
a. data_size
FROM #temp a
INNER JOIN information_schema . columns b
ON a . table_name collate database_default
= b . table_name collate database_default
GROUP BY a . table_name , a . row_count , a . data_size
ORDER BY CAST(REPLACE(a. data_size , ' KB' , '') AS integer) DESC
DROP TABLE #temp
go

This script provides a summary of the NIS deployment size, what is being

monitored, probe versions, frequently used probes, database size, data

location, and information on specific data tables.

-- use NimsoftSLM -- < -- update this with your db name
-- go

-- summary of deployment size
select '1. # qos definitions' as i tem, COUNT(*) as cnt from
S_QOS_DEFINITION
union
select '2. # qos objects' , COUNT(*) from S_QOS_DATA
union
select '3. # robots' , COUNT(*) from CM_NIMBUS_ROBOT where is_hub = 0
and alive_time > DATEADD(hh, - 1, getdate ())
union
select '4. # hubs' , COUNT(*) f rom CM_NIMBUS_ROBOT where is_hub = 1
and alive_time > DATEADD(hh, - 1, getdate ())
union
select '5. # computer systems' , COUNT(*) from CM_COMPUTER_SYSTEM
where alive_time > DATEADD(hh, - 1, getdate ());

-- whats being monitored
select probe , COUNT(distinct qos) as QOS, COUNT(distinct source) as
#sources , COUNT(distinct target) as #targets
from S_QOS_DATA
group by probe
order by #targets desc , QOS desc

-- is everything running the same versions?
select probe_name , pkg_version , COUNT(*) as cnt from CM_NIMBUS_PROBE
where active = 1
and probe_name in ('controller' , 'hub')
group by probe_name , pkg_version ;
go

-- most frequently used probes
select probe_name , count (*) as Cnt
from CM_NIMBUS_PROBE
group by probe_name
order by Cnt desc
go

-- how big is our database
sp_spaceused

go

EXEC sp_helpindex 'RN_QOS_DATA_0001'

go

-- where is the data
CREATE TABLE #temp (
table_name sysname ,
row_count INT ,

reserved_size VARCHAR(50),
data_size VARCHAR(50),
index_size VARCHAR(50),
unused_size VARCHAR(50))
SET NOCOUNT ON
INSERT #temp
EXEC sp_msforeachtable 'sp_spaceused ''?'''
SELECT a . table_name ,
a. row_count ,
COUNT(*) AS col_count ,
a. data_size
FROM #temp a
INNER JOIN information_schema . columns b
ON a . table_name collate database_default
= b . table_name collate database_default
GROUP BY a . table_name , a . row_count , a . data_size
ORDER BY CAST(REPLACE(a. data_size , ' KB' , '') AS integer) DESC
DROP TABLE #temp
go

-- get info on a specific table
-- sp_help RN_QOS_DATA_0008

USE NimsoftSLM
GO

print DB_NAME();

-- get fragmentation
SELECT object_name (IPS . object_id) AS [TableName] ,
 SI . name AS [IndexName] ,
 IPS . avg_fragmentation_in_percent ,
 IPS . Index_type_desc ,
 ps . row_count ,
 IPS . avg_fragment_size_in_pages ,
 IPS . avg_page_space_used_in_percent ,
 IPS . record_count ,
 IPS . ghost_record_count ,
 IPS . fragment_count ,
 IPS . avg_fragment_size_in_pages
FROM sys . dm_db_index_physical_stats (db_id (DB_NAME()), NULL, NULL,
NULL , 'LIMITED') IPS
-- FROM sys.dm_db_index_physical_stats(db_id(N'NimsoftSLM - NMStopo'),
NULL, NULL, NULL , 'LIMITED') IPS
INNER JOIN sys . tables ST WITH (nolock)
 ON IPS . object_id = ST. object_id
INNER JOIN sys . indexes SI WITH (nolock)
 ON IPS . object_id = SI . object_id
 AND IPS . index_id = SI . index_id
INNER JOIN sys . dm_db_partition_stat s ps
 on IPS . object_id = ps . object_id

 AND ps . index_id = IPS . index_id
WHERE ST. is_ms_shipped = 0
ORDER BY IPS . avg_fragmentation_in_percent desc , SI . name desc
GO

f n

msdb.. [DBA_RebuildIndexesBasedOnFragmentation] @maxfrag =30.0 ,
@maxdensity =90.0 , @databasename = 'NimsoftSLM' , @rebuild =1

f

-- # of origins not matching
select cs . origin as cmOrigin , d. origin as sqdOrigin , count (*) from
CM_COMPUTER_SYSTEM cs inner join CM_NIMBUS_ROBOT r on cs . ip = r . ip
and cs . origin = r . origin inner join S_QOS_DATA d on cs . ip = d . host
where d . origin <> r . origin group by cs . origin , d . origin order by
count (*) desc

-- query to see if origins match up between CM_COMPUTER_SYSTEM,
CM_NIMBUS_ROBOT, S_QOS_DATA select cs.origin as cmOrigin, r.origin
as robotOrigin, d.origin as sqdOrigin ,
len (cs . origin) as cmOriginLen , len (r . origin) as robotOriginLen ,
len (d. origin) as sqdOriginLen ,
*
from CM_COMPUTER_SYSTEM cs
inner join CM_NIMBUS_ROBOT r
on cs . ip = r . ip
and cs . origin = r . origin
inner join S_QOS_DATA d
on cs . ip = d . host
where d . origin <> r . origin

-- query to see if origins match up between CM_COMPUTER_SYSTEM and
CM_NIMBUS_ROBOT
select cs . origin as cmOrigin , r . origin as robotOrigin ,
len (r . origin) as robotOriginLen , len (cs . origin) as cmOriginLen ,*
from CM_COMPUTER_SYSTEM cs inner join CM_NIMBUS_ROBOT r on cs . ip =
r . ip where cs . origin <> r . origin

-- query to update origins where S_QOS_DATA doesn’t match the others
begin transaction
 update d set d . origin = r . origin
 from S_QOS_DATA d
 inner join CM_COMPUTER_SYSTEM cs
 on cs . ip = d . host
 inner join CM_NIMBUS_ROBOT r
 on cs . ip = r . ip
 and cs . origin = r . origin
 where d . origin <> r . origin
commit transaction

 -- looking for the device from S_QOS_DATA
 select * from S_QOS_DATA d
 left join CM_CONFIGURATION_ITEM_METRIC m
 on d . ci_metric_id = m. ci_metric_id
 left join CM_CONFIGURATION_ITEM i
 on m. ci_id = i . ci_id
 left join CM_DEVICE c
 on i . dev_id = c . dev_id
 where d . probe = 'cdm' and
 d . robot = ''

 -- device info
 select * from CM_DEVICE d
 where d . cs_id = ''
 or d . dev_id = ''

 -- looking for the device from CM_COMPUTER_SYSTEM
 select * From CM_COMPUTER_SYSTEM s
 left join CM_GROUP_MEMBER cm
 on s . cs_id = cm. cs_id
 left join CM_GROUP cg
 on cg . grp_id = cm. grp_id
 where s . ip = ''
 or s . name = ''
 or s . cs_id = ''

 -- all left joins to see where things break down
 select distinct
 c . dev_id ,
 r . address nimbus_address ,
 r . ip robotip ,
 r . domain ,
 r . hub hubname ,
 s . name robotname ,
 cg . name groupname ,
 s . nimbus_type ,
 d .source source,
 d . origin ,
 s . os_type os_major ,
 s . os_name os_minor ,
 s . os_version ,
 s . os_description ,
 d . ci_metric_id ,
 d . qos ,
 d . target ,
 d . r_table ,
 d . probe ,
 d . table_id ,
 d . samplevalue value
 from S_QOS_DATA d
 left join CM_CONFIGURATION_ITEM_METRIC m
 on m. ci_metric_id =d. ci_metric_id
 left join CM_CONFIGURATION_ITEM i
 on i . ci_id = m. ci_id
 left join CM_DEVICE c
 on c . dev_id = i . dev_id

 left join CM_COMPUTER_SYSTEM s
 on c . cs_id = s . cs_id
 left join CM_GROUP_MEMBER cm
 on c . cs_id = cm. cs_id
 left join CM_GROUP cg
 on cg . grp_id = cm. grp_id
 left join CM_NIMBUS_ROBOT r
 on s . ip = r . ip and
 r . origin = d . origin
 where
 d . probe = 'cdm'
 -- and d.robot = ''
 -- and d.origin = ''

-- query used by dynamic views to build the tree no des
 select distinct
 c . dev_id ,
 r . address nimbus_address ,
 r . ip robotip ,
 r . domain ,
 r . hub hubname ,
 s . name robotname ,
 cg . name groupname ,
 s . nimbus_type ,
 d .source source,
 d . origin ,
 s . os_type os_major ,
 s . os_name os_minor ,
 s . os_version ,
 s . os_description ,
 d . ci_metric_id ,
 d . qos ,
 d . target ,
 d . r_table ,
 d . probe ,
 d . table_id ,
 d . samplevalue value
 from S_QOS_DATA d,
 CM_CONFIGURATION_ITEM_METRIC m,
 CM_CONFIGURATION_ITEM i,
 CM_DEVICE c,
 CM_COMPUTER_SYSTEM s,
 CM_GROUP_MEMBER cm,
 CM_GROUP cg,
 C M_NIMBUS_ROBOT r
 where
 m. ci_metric_id =d. ci_metric_id and
 i . ci_id = m. ci_id and
 c . dev_id = i . dev_id and
 c . cs_id = s . cs_id and
 c . cs_id = cm. cs_id and
 cg . grp_id = cm. grp_id and
 s . ip = r . ip and
 r . origin = d . origin and
 d . probe = 'cdm'
 UNION
 select distinct

 c . dev_id ,
 r . address nimbus_address ,
 r . ip robotip ,
 r . domain ,
 r . hub hubname ,
 s . name robotname ,
 cg . name groupname ,
 s . nimbus_type ,
 d .source source,
 d . origin ,
 s . os_type os_major ,
 s . os_name os_minor ,
 s . os_version ,
 s . os_description ,
 d . ci_metric_id ,
 d . qos ,
 d . target ,
 d . r_table ,
 d . probe ,
 d . table_id ,
 d . samplevalue value
 from S_QOS_DATA d,
 CM_CONFIGURATION_ITEM_METRIC m,
 CM_CONFIGURATION_ITEM i,
 CM_DEVICE c,
 CM_COMPUTER_SYSTEM s,
 CM_GROUP_MEMBER cm,
 CM_GROUP cg,
 CM_NIMBUS_ROBOT r
 where
 m. ci_metric_id =d. ci_metric_id and
 i . ci_id = m. ci_id and
 c . dev_id = i . dev_id and
 c . cs_id = s . cs_id and
 c . cs_id = cm. cs_id and
 cg . grp_id = cm. grp_id and
 r . origin = d . origin and
 d . probe = 'RSP'

USE [msdb]
GO
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

CREATE PROCEDURE [dbo] . [DBA_RebuildIndexesBasedOnFragmentation]

(
 @maxfrag float = 15.0 -- Maximum level of acceptable
fragmentation

 , @maxdensity float = 75.0 -- Minimum level of acceptable
density
 , @databasename NVARCHAR(512) -- Database name to process , only
one database at a time
 , @rebuild bit = 0 -- Define if we can rebuild
indexes. If we don't have ENT edition then we may need our data to
still available
 , @debug bit = 0 -- Don't maintain indexes , show
me the queries.
)

AS

SET NOCOUNT ON ;

DECLARE @schemaname sysname ; -- Table schema

DECLARE @objectname nvarchar (512); -- Table/view name

DECLARE @indexname nvarchar (512); -- Index name

DECLARE @indexid INT ; -- Index Id

DECLARE @currentfrag float ; -- Index fragmentation level
to compare against the defined thresh old

DECLARE @currentdensity float ; -- Index Density level to
compare against the defined threshold

DECLARE @partitionnum VARCHAR(10); -- Partition number (always
1 if index is NOT partitioned)

DECLARE @partitioncount bigint ; -- Partitions count (always
1 if index is NOT partitioned)

DECLARE @indextype VARCHAR(18); -- Index type (clustered ,
Non- clustered , XML ,..etc). Used for logging

DECLARE @updatecommand NVARCHAR(MAX); -- used to hold an
intermediate query

DECLARE @command NVARCHAR(MAX); -- used to hold an
intermediate query

DECLARE @page_locks INT ; -- Is Page_locks is enabled
on index ?

DECLARE @has_lob INT ; -- Does table has any LOBs ?

DECLARE @db_id INT ; -- Database ID

DECLARE @object_type CHAR(1); -- Object type (U= user
table , V = View)

DECLARE @server_edition bit ; -- instance edition
(1=Enterprise , 0= other) to determine if index can be rebuilt ONLINE

/*

We will be creating a table in MSDB to keep track of maintained
indexes.

This can help in tracking which indexes were maintains , time it took
, fragmentation level , ...etc

*/

IF (SELECT OBJECT_ID('msdb..index_maintenance_log')) IS NULL
 BEGIN
 CREATE TABLE msdb.. index_maintenance_log
 (
 Db NVARCHAR(512) NOT NULL
 , idx NVARCHAR(512) NOT NULL
 , IndexType VARCHAR (64) NOT NULL
 , currentfrag float NOT NULL
 , time_ datetime NOT NULL DEFAULT GETDATE() -- Time when the
index maintenance was done
 , notes VARCHAR(450) NULL
) ON [PRIMARY]
 END

/*
Create a temp table to hold indexes information (table , index
fragmentation , index name , ...etc to later loop on them)
*/

CREATE TABLE #work_to_do (
 IndexID INT NOT NULL
 , IndexName NVARCHAR(512) NULL
 , TableName NVARCHAR(512) NULL
 , Tableid INT NOT NULL
 , SchemaName VARCHAR(255) NULL
 , IndexType VARCHAR(18) NOT NULL
 , PartitionNumber INT NOT NULL
 , PartitionCount INT NULL
 , CurrentDensity float NOT NULL
 , CurrentFragmentation float NOT NULL
 , page_locks INT NULL
 , Has_lob INT NOT NULL DEFAULT 0
 , object_type VARCHAR(1)
 , Index_disabled bit NOT NULL DEFAULT 0 -- Is index disabled ?
)

IF NOT exists (SELECT name FROM master . sys . databases WHERE name =
@databasename AND state_desc = 'Online' AND is_read_only =0)
BEGIN
EXEC (' Raiserror (''This database doesn''t exist OR indexes can''t
be updated : ' +@databasename +''',10,1)')
RETURN;
END
-- Get server edition to see if Online can be used
SELECT @server_edition = CASE WHEN CAST (SERVERPROPERTY ('edition')
AS NVARCHAR(200)) LIKE '%enterprise%' THEN 1 ELSE 0 END
--- Log the start of work against database

if @debug =0
begin
INSERT INTO msdb.. index_maintenance_log (Db, idx
, IndexType , currentfrag , notes)
VALUES (@databasename , 'NONE' , 'NONE' , 0.0 , 'Db_start')
end
-- Get the tables , indexes info beside fragmentation level
-- We will be skipping small tables (< 512 Pages)
INSERT INTO #work_to_do (
 IndexID , Tableid , IndexType , PartitionNumber , CurrentDensity ,
CurrentFragmentation
)
 SELECT
 fi . index_id
 , fi . OBJECT_ID
 , fi . index_type_desc AS IndexType
 , CAST(fi . partition_number AS VARCHAR(10)) AS PartitionNumber
 , fi . avg_page_space_used_in_percent AS CurrentDensity
 , fi . avg_fragmentation_in_percent AS CurrentFragmentation
 FROM sys . dm_db_index_physical_stats (DB_ID(@databasename), NULL,
NULL, NULL, 'SAMPLED') AS fi
 WHERE (fi . avg_fragmentation_in_percent >= @maxfrag OR
fi . avg_page_space_used_in_percent < @maxdensity)
 AND page_count > 512
 -- Skip heaps
 AND fi . index_id > 0
/*
 Because dm_db_index_physical_stats doesn't include all info we need
, we will join the result with some catalog views
to assign the index names, schema names, table names ,partition
counts and other information
*/

SET @updatecommand =
'UPDATE #work_to_do SET TableName = o.name, SchemaName = s.name,
IndexName = i.Name ,page_locks =
i.allow_page_locks,ob ject_type=o.type ,Index_disabled = i.is_disabled
,PartitionCount = (SELECT COUNT(*) pcount
FROM '
 + QUOTENAME(@databasename) + '.sys.Partitions p
where p.Object_id = w.Tableid
AND p.index_id = w.Indexid)
,Has_lob=isnull ((select top 1 col.user_type_id from ' +
QUOTENAME(@databasename)+ '.sys.columns col INNER JOIN ' +
QUOTENAME(@databasename) + '.sys.types ty ON col.user_type_id =
ty.user_type_id WHERE col.object_id=w.Tableid AND (ty.name
IN(''xml'',''image'',''text'',''ntext'') OR (ty.name
IN(''var char'',''nvarchar'',''varbinary'') AND col.max_length = - 1)))
,0)
FROM '
 + QUOTENAME(@databasename) + '.sys.objects o INNER JOIN '
 + QUOTENAME(@databasename) + '.sys.schemas s ON o.schema_id =
s.schema_id
INNER JOIN #work_to_do w ON o.object_id = w.tableid INNER JOIN '
 + QUOTENAME(@databasename) + '.sys.indexes i ON w.tableid =
i.object_id and w.indexid = i.index_id
' ;
 -- print @updatecommand

BEGIN Try
 EXEC(@updatecommand)
END try

-- Log the error to SQL server log
BEGIN Catch
SELECT @updatecommand = 'Smart indexing error : ' + @databasename + '
: ' + ERROR_MESSAGE ()
 RAISERROR (@updatecommand, 16, 1) WITH LOG
END catch
/*
Declare a cursor to loop over all indexes that have fragmentation
level more than threshold or page density less than threshold
*/

DECLARE rebuildindex CURSOR FOR
 SELECT
 object_type
 , has_lob
 , page_locks
 , QUOTENAME(IndexName) AS IndexName
 , TableName
 , SchemaName
 , IndexType
 , PartitionNumber
 , PartitionCount
 , CurrentDensity
 , CurrentFragmentation
 FROM #work_to_do i
 WHERE Index_disabled = 0 -- Indexes processes must be
enabled
 ORDER BY TableName , IndexID ;

-- Open the cu rsor.
OPEN rebuildindex ;
-- Loop through the tables, indexes and partitions.
FETCH NEXT
 FROM rebuildindex
 INTO @object_type , @has_lob , @page_locks , @indexname, @objectname ,
@schemaname, @indextype , @partitionnum , @partitioncount ,
@currentdensity , @currentfrag ;
WHILE @@FETCH_STATUS = 0
BEGIN
-- We will process indexes only with Page_locks enabled
IF @page_locks = 1
BEGIN
 -- Initial block that applied to all cases
 SELECT @command = 'ALTER INDEX ' + @indexname + ' ON ' +
QUOTENAME(@databasename) +' .' + QUOTENAME(@schemaname) + '.' +
QUOTENAME(@objectname);
 -- If the index is >=30 fragmented ad issue and @rebuild parameter
= 1 then REBUILD Otherwise REORGANIZE.
 -- We will defragment indexes on views
 IF @currentfrag >= 30 AND @object_type <> 'v'
 BEGIN;
 SELECT @command = @command + CASE @Rebuild WHEN 1 THEN
' REBUILD ' ELSE ' REORGANIZE ' END ;

 -- We can REORGANIZE a single index partition but cannot REBUILD a
single index partition O NLINE.
 -- Also , we can't rebuild an index online if it has LOBs
(Varchar(max) , nvarchar(max) , textetc)

 IF @has_lob = 0 AND @partitioncount <= 1 AND
@server_edition = 1 AND @Rebuild = 1
 SELECT @command = @command + ' WITH(ONLINE = ON) ' ;
 -- Index is partitioned , define the
partition number
 IF @partitioncount > 1
 SELECT @command = @command + ' PARTITION=' +
@partitionnum ;
 -- Index will be reorganized , we will
compact the LOBs
 IF @Rebuild = 0
 SELECT @command = @command + ' WITH (
LOB_COMPACTION = ON)'
 END;
IF @currentfrag < 30 OR @object_type ='v'
 BEGIN;
 SELECT @command = @command + ' REORGANIZE ' ;
 IF @partitioncount > 1
 SELECT @command = @command + ' PARTITION=' +
@partitionnum ;
 SELECT @command = @command + ' WITH (LOB_COMPACTION =
ON)'
 END;
 -- @debug= 1 ; We need to see the T - SQL command only , not
running it
 IF @debug = 1
 PRINT @command
 ELSE
 BEGIN
 BEGIN Try
 EXEC (@command);
 -- Log the index operation
 If @debug =0
 Begin
 INSERT INTO msdb.. index_maintenance_log (Db, idx
, IndexType , currentfrag)
 VALUES (@databasename , QUOTENAME(@schemaname) +
'.' + QUOTENAME(@objectname) + '.' + @indexname
, @indextype , @currentfrag)
 End
 END Try
 BEGIN Catch
 SELECT @command = 'Smart indexing error : ' + @command
+ ' : ' + ERROR_MESSAGE ()
 RAISERROR (@command, 16, 1) WITH LOG
 END Catch
 END
END

-- @page_locks = 0

ELSE

BEGIN

INSERT INTO msdb.. index_maintenance_log (Db, idx
, IndexType , currentfrag , notes)
VALUES (@databasename , QUOTENAME(@schemaname) + '.' +
QUOTENAME(@objectname) + '.' + @indexname , @indextype , @currentfrag
, 'page locks are disabled')
END

 FETCH NEXT FROM rebuildindex INTO
@object_type , @has_lob , @page_locks , @indexname, @objectname ,
@schemaname, @indextype , @partitionnum , @partitioncount ,
@currentdensity , @currentfrag ;

END;

-- Close and deallocate the cursor.

CLOSE rebuildindex ;

DEALLOCATE rebuildindex ;

-- Log the End of work against database
If @debug =0
Begin
INSERT INTO msdb.. index_maintenance_log (Db, idx
, IndexType , currentfrag , notes)
VALUES (@databasename , 'NONE' , 'NONE' , 0.0 , 'Db_End')
End

-- Clean the log table (11+ days old)

Delete FROM msdb.. index_maintenance_log WHERE time_ < GETDATE() – 10

s

-- Useful links: http://msdn.microsoft.com/en-us/library/ms178037.aspx

-- MAKE SURE RECOVERY MODE IS SET TO SIMPLE
--
--
ALTER DATABASE [NimsoftSLM] SET RECOVERY SIMPLE WITH NO_WAIT

-- see whats available (or full)
DBCC SQLPERF(LOGSPACE);

-- backup
backup log NimsoftSLM with truncate_only

-- shrink
DBCC SHRINKFILE (NimsoftSLM_log , 1);

-- Create required table structure only.
-- Note: this SQL must be the same as in the Database loop given in
the following step.
SELECT TOP 1
 DatabaseName = DB_NAME()
 , TableName = OBJECT_NAME(s. [object_id])
 , IndexName = i . name
 , user_updates
 , system_updates
 -- Useful fields below:
 -- , *
INTO #TempUnusedIndexes
FROM sys . dm_db_index_usage_stats s
INNER JOIN sys . indexes i ON s . [object_id] = i . [object_id]
 AND s . index_id = i . index_id
WHERE s. database_id = DB_ID()
 AND OBJECTPROPERTY(s. [object_id] , 'IsMsShipped') = 0
 AND user_seeks = 0
 AND user_scans = 0
 AND user_lookups = 0
 AND s . [object_id] = - 999 -- Dummy value to get table structure.
;

-- Loop around all the databases on the server.
EXEC sp_MSForEachDB 'USE [?];
-- Table already exists.
INSERT INTO #TempUnusedIndexes
SELECT TOP 50
 DatabaseName = DB_NAME()
 ,TableName = OBJE CT_NAME(s.[object_id])
 ,IndexName = i.name
 ,user_updates
 ,system_updates
FROM sys.dm_db_index_usage_stats s
INNER JOIN sys.indexes i ON s.[object_id] = i.[object_id]
 AND s.index_id = i.index_id
WHERE s.database_id = DB_ID()
 AND OBJECTPROPERTY(s.[object_id], ''IsMsShipped'') = 0
 AND user_seeks = 0
 AND user_scans = 0
 AND user_lookups = 0
 AND i.name IS NOT NULL -- Ignore HEAP indexes.
ORDER BY user_updates DESC ; '
-- Select records.
SELECT TOP 30 * FROM #TempUnusedIndexes ORDER BY [user_updates] DESC
-- Tidy up.
DROP TABLE #TempUnusedIndexes

SELECT TOP 30

 [Total Cost] = ROUND(avg_total_user_cost * avg_user_impact *
(user_seeks + user_scans), 0)
 , avg_user_impact
 , TableName = statement
 , [EqualityUsage] = equality_columns
 , [InequalityUsage] = inequality_columns
 , [Include Cloumns] = included_columns
FROM sys . dm_db_missing_index_groups g
INNER JOIN sys . dm_db_missing_index_group_stats s
 ON s . group_handle = g . index_group_handle
INNER JOIN sys . dm_db_missing_index_details d
 ON d. index_handle = g . index_handle
ORDER BY [Total Cost] DESC ;

Select top 50 dbid =database_id , objectname =object_name (s. object_id)
 , indexname =i . name, i . index_id -- , partition_number
 , row_lock_count , row_lock_wait_count
 , [block %] =cast (100.0 * row_lock_wait_count / (1 +
row_lock_count) as numeric (15, 2))
 , row_lock_wait_in_ms
 , [av g row lock waits in ms] =cast (1.0 * row_lock_wait_in_ms / (1
+ row_lock_wait_count) as numeric (15, 2))
into #tmp
from sys . dm_db_index_operational_stats (1, NULL, NULL, NULL) s
 , sys . indexes i
where 1 =2

EXEC sp_MSForEachDB 'use [?]; declare @dbid int; set @dbid = db_id();
insert into #tmp
Select top 20 dbid=database_id, objectname=object_name(s.object_id)
 , indexname=i.name, i.index_id -- , partition_number
 , row_lock_count, row_lock_wait_count
 , [block %]=cast (100.0 * row_lock_wait_count / (1 +
row_lock_ count) as numeric(15,2))
 , row_lock_wait_in_ms
 , [avg row lock waits in ms]=cast (1.0 * row_lock_wait_in_ms / (1
+ row_lock_wait_count) as numeric(15,2))
from sys.dm_db_index_operational_stats (@dbid, NULL, NULL, NULL) s
 ,sys.indexes i
where objectproperty(s.object_id,''IsUserTable'') = 1
and i.object_id = s.object_id
and i.index_id = s.index_id
order by row_lock_wait_count desc'

select top 30 db_name(dbid) as DBName,*
from #tmp where dbid > 4 and row_lock_wait_count <> 0
order by row_lock_wait_count desc

SELECT TOP 30
 sc . name + '.' + OBJECT_NAME(s. [object_id]) 'table' , o . type

 , IndexName = i . name
 , [Fragmentation %] =
avg_fragmentation_in_percent , i . allow_page_locks , sum(p. rows) as rowCnt
, page_co unt FROM sys . dm_db_index_physical_stats (db_id (),null, null,
null, null) s INNER JOIN sys . indexes i ON s . [object_id] =
i . [object_id]
 AND s . index_id = i . index_id

join sys . partitions p
on i . object_id = p . object_id
and i . index_id = p . index_id

join sys . objects o
on i . object_id = o . object_id

join sys . schemas sc
on o . schema_id = sc . schema_id

WHERE s. database_id = DB_ID()
 AND i . name IS NOT NULL -- Ignore HEAP indexes.
 AND OBJECTPROPERTY(s. [object_id] , 'IsMsShipped') = 0

group by sc . name + '.' + OBJECT_NAME(s. [object_id]) ,
o. type , i . name, avg_fragmentation_in_percent , i . allow_page_locks , page_co
unt
ORDER BY [Fragmentation %] DESC

SELECT convert (varchar(200) , NULL) as DB, OBJECT_NAME(OBJECT_ID)
as TableName ,
convert (int , 0) as RowNum
into #tmp
 FROM SYS. INDEXES
 WHERE 1=2

exec sp_msforeachdb 'use [?]; if ''?'' in
(''tempdb'',''master'',''model'',''msdb'') return;
insert into #tmp(DB,TableName,RowNum)
SELECT ''?'',OBJECT_NAME(i.OBJECT_ID), sum(p.row s)
 FROM SYS.INDEXES i
join sys.partitions p
 on i.object_id = p.object_id
 and i.index_id = p.index_id
 WHERE i.INDEX_ID = 0
 AND OBJECTPROPERTY(i.OBJECT_ID,''IsUserTable'') = 1
 Group BY OBJECT_NAME(i.OBJECT_ID)'

select * from # tmp
where [tableName] not like 'spt_%'
order by Rownum desc

SELECT convert (varchar (200),NULL) as DB, OBJECT_NAME(OBJECT_ID)
as TableName ,
convert (int , 0) as RowNum
into #tmp
 FROM sys.indexes
 WHERE 1=2

exec master .. sp_msforeachdb 'use [?]; if ''?'' in
(''tempdb'',''master'',''model'',''msdb'') return;
insert into #tmp(DB,TableName,RowNum)
SELECT ''?'',OBJECT_NAME(i.OBJECT_ID), sum(p.rows)
 FROM sys.indexes i
join sys.partitions p
 on i.object_id = p.object_id
 and i.index_id = p.index_id
 WHERE i.INDEX_ID = 0
 AND OBJECTPROPERTY(i.OBJECT_ID,''IsUserTable'') = 1
 and OBJECT_NAME(i.OBJECT_ID) not in

(
SELECT
 T.TABLE_NAME
FROM INFORMATION_SCHEMA.TABLES AS T
WHERE NOT EXISTS
 (SELECT * FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS AS TC
 WHERE CONSTRAINT_TYPE = ''PRIMARY KEY''
 AND T.TABLE_NAME = TC.TABLE_NAME)
 AND T.TABLE_TYPE = ''BASE TABLE''
)
 Group BY OBJECT_NAME(i.OBJECT_ID)'

select * from #tmp
where [tableName] not like 'spt_%'
order by Rownum desc

IF OBJECT_ID('tempdb..#t1') IS NOT NULL DROP TABLE #t1

IF OBJECT_ID('tempdb..#FKTable') IS NOT NULL DROP TABLE #FKTable

-- Create index temp table
CREATE TABLE #t1
(do integer default (0),
index_name varchar (100),
index_descrip varchar (200),
index_keys varchar (200),
table_name varchar (100))

-- Create FK temp table

CREATE TABLE #FKTable
(fk_name varchar (100),
fk_keys varchar (200),
fk_keyno int ,
table_name varchar (100))

-- Collect and uppdate all index info
EXEC sp_msforeachtable "insert #t1 (index_name, index_descrip,
index_keys) exec sp_helpindex '?'; update #t1 set table_name = '?',
do = 1 where do = 0"
UPDATE #t1 SET table_name = replace (table_name , '[' , '')
UPDATE #t1 set table_name = replace (table_name , ']' , '')

-- Collect all index info
INSERT INTO #FKTable
SELECT OBJECT_NAME(constid) AS FKName, COL_NAME(fkeyid , fkey) AS
FKColumn, keyno ,
s. name + '.' + OBJECT_NAME(fkeyi d) AS TabName
FROM sysforeignkeys k
JOIN sys.objects c
ON k . constid = c . object_id
JOIN sys.schemas s
ON c . schema_id = s . schema_id

-- If FK have two or more columns add them in one row to be able to
compare with index columns.

DECLARE @FKName AS VARCHAR(200), @FKColumn as VARCHAR(100)

DECLARE FKCurusor CURSOR FOR
SELECT OBJECT_NAME(constid) AS FKName, COL_NAME(fkeyid , fkey) AS
FKColumn
FROM sysforeignkeys k
JOIN sysobjects c
ON k . constid = c . id
WHERE keyno > 1
ORDER BY keyno

DELETE FROM #FKTable WHERE fk_keyno > 1

OPEN FKCurusor
FETCH NEXT FROM FKCurusor INTO @FKName, @FKColumn
WHILE (@@FETCH_STATUS = 0)
BEGIN

UPDATE #FKTable SET
fk_keys = fk_keys + ', ' + @FKColumn
WHERE fk_name = @FKName

FETCH NEXT FROM FKCurusor INTO @FKName, @FKColumn

END

CLOSE FKCurusor
DEALLOCATE FKCurusor
/*

SELECT * FROM #FKTable ORDER BY table_name

SELECT * FROM #t1 ORDER BY table_name
*/
PRINT '

FK MISSING Indexes

------- '

SELECT DISTINCT table_name , fk_name
FROM #FKTable f1
WHERE NOT EXISTS (
SELECT fk_name
FROM #FKTable f
INNER JOIN #t1 t
ON f . table_name = t . table_name
WHERE f1 . fk_name = f . fk_name
AND fk_keys = index_keys)

with x as
(select tablename , name, count (*) as cnt from #tmp2
group by tablename , name
)
select * from (
select tablename , count (cnt) as cnt2 from x
where tablename not like 'sys%' and name not like '_WA%'
group by tablename) as y
where cnt2 > 5 order by cnt2 desc

with x as (SELECT TOP 1000
 [Average CPU used] = total_worker_time / qs . execution_count
, [Total CPU used] = total_worker_time
, [Execution count] = qs . execution_count
, [Individual Query] = SUBSTRING (qt . text , qs . statement_start_offset / 2,
 (CASE WHEN qs. statement_end_offset = - 1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt . text)) * 2
 ELSE qs . statement_end_offset END -
qs . statement_start_offset)/ 2)
, [Parent Query] = qt . text
, DatabaseName = DB_NAME(qt . dbid)
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text (qs . sql_handle) as qt
WHERE total_worker_time / qs . execution_count > 200
ORDER BY [Total CPU used] DESC
)
select * from x order by [Execution count] desc

with x as (SELECT TOP 1000
 [Average IO] = (total_logical_reads + total_logical_writes) /
qs . execution_count
, [Total IO] = (total_logical_reads + total_logical_writes)
, [Execution count] = qs . execution_count
, [Individual Query] = SUBSTRING (qt . text , qs . statement_start_offset / 2,
 (CASE WHEN qs. statement_end_offset = - 1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt . text)) * 2
 ELSE qs . statement_end_offset END -
qs . statement_start_offset)/ 2)
 , [Parent Query] = qt . tex t
, DatabaseName = DB_NAME(qt . dbid)
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text (qs . sql_handle) as qt
where (total_logical_reads + total_logical_writes) /
qs . execution_count > 1000
ORDER BY [Total IO] DESC)
select * from x order by [Execution count] desc

with x as (SELECT TOP 1000
[Total time] = total_elapsed_time ,
[Average time] = total_elapsed_time / qs . execution_count
, [Execution count] = qs . execution_count
, [Individual Query] = SUBSTRING (qt . text , qs . statement_start_offset / 2,
 (CASE WHEN qs. statement_end_offset = - 1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt . text)) * 2
 ELSE qs . statement_end_offset END -
qs . statement_start_offset)/ 2)
, [Parent Query] = qt . text
, DatabaseName = DB_NAME(qt . dbid),
creation_time , last_execution_time
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text (qs . sql_handle) as qt
where total_elapsed_time / qs . execution_count > 1000
ORDER BY [Total time] DESC)
select * from x order by [Execution count] desc

	Legal Notices
	Contact Nimsoft
	Document History
	Contents
	Chapter 1: Introduction
	About this Guide
	Background on the Nimsoft Information Store

	Chapter 2: Nimsoft Information Store
	NIS within Nimsoft Monitor
	NIS Schema Overview
	Relationships between Tables
	Database Tables
	RN_QOS_DATA_ table columns
	RN_tables Indexes
	About Table Partitioning
	Manual Table Partitioning

	Chapter 3: Prerequisites
	Supported Database versions
	Hardware Requirements
	About Database Performance

	Chapter 4: General Best Practices
	General
	Storage
	Backup
	Periodic Maintenance

	Chapter 5: Best Practices for SQL Server
	Checklist
	Network communication
	Cluster environment
	Windows configuration
	Disks and SANs
	SAN considerations
	SQL server instance configuration
	Database level configuration
	Database maintenance and backup strategy
	Additional Resources

	Chapter 6: Performance Analysis
	Checklist
	Example Query (Wait Statistics)
	Example Results

	Chapter 7: Troubleshooting
	Appendix A: Updating Table Indexes
	Performing Analysis on QoS sample data tables
	SqlServer
	Oracle
	Mysql

	Appendix B: Advanced Indexing Topics
	Advanced indexing when using report_engine/group_server
	Option One
	Option Two
	For new QoS data
	For existing QoS data
	For tables using the samplemax field:
	For tables without the samplemax field:

	Option Three

	Best Practices for Clustered and Non-Clustered Indexing
	Best Practices for Clustered Indexes
	Best Practices for Non-clustered Indexes

	Appendix C: SQL Tools and Scripts
	Get db size info
	Get_db_info_sqlserver
	get_index_fragmentation
	fix_index_fragmentation
	find_missing_nodes_in_dynamic_views
	sp_Generic_DefragindexesBasedOnFragmentation
	shrink_transaction_log_sqlserver
	Most costly unused indexes
	Top Costly Missing Indexes
	Indexes with the most contention
	Most logically fragmented Indexes
	Tables without clustered index
	Tables with primary key, without clustered index
	Objects with no indexes / Foreign keys that are not indexed
	Number of indexes per table
	Top SQL with highest CPU
	Top SQL with highest I/O
	Top SQL with highest Duration

	Appendix D: TNT2 Data Model

