
`

CA Secure Proxy Server

Technical Note

For

Tuning Parameters inside SPS

`

Table of Contents

Introduction ... 3

SPS Component Architecture ... 3

Tunable Sections inside SPS ... 4

1. Apache .. 4

2. Tomcat Connector ... 5

3. HttpClient ConnectionPool ... 6

4. JVM... 8

Tuning Secure Proxy Server for Concurrent Usage ... 9

`

Introduction
This technical note describes the tuning parameters that are available inside SPS for tuning

SPS performance.

SPS Component Architecture
SPS architecture consists of an HTTP listener (Apache) and a Tomcat Servlet container. The

following illustration shows the major components inside SPS:

The tunable sections of the SPS include Apache, Apache-Tomcat connector, HttpClient

ConnectionPool and the JVM.

Apache acts an Http-Listener inside SPS which forwards the request to embedded Tomcat engine

via the mod-jk. The HttpClient ConnectionPool is a pool of connections that SPS maintains for

establishing connections with the backend webservers.

`

Tunable Sections inside SPS

1. Apache

Since Apache (version 2.2.6) is acting as an Http-Listener inside SPS, it can be tuned from the

perspective of number of threads or max clients it can support concurrently.

The Apache server ships with a selection of Multi-Processing Modules (MPMs) which are

responsible for binding to network ports on the machine, accepting requests, and dispatching

children to handle the requests. The MPM modules with which Apache (used inside SPS) has

been built are as follows:

For Windows platform: mpm_winnt (The tunable parameters are available inside httpd.conf)

For UNIX platform: worker (The tunable parameters are available inside httpd-mpm.conf)

Below is the list of the important parameters that need to be tuned from the perspective of

number of Threads or max clients it can support:

Parameter Description Default

Value

ThreadsPerChild

This parameter sets the number of threads created by each

child process. The child creates these threads at startup and

never creates more. This parameter holds significance for

Windows platform since there is only one child process.

This parameter should be high enough to handle the entire

load of the server. For UNIX platform, where there are

multiple child processes, the corresponding parameter

would be MaxClients.

Consider increasing this value on Windows if more number

of concurrent connections/requests are expected.

250(for

Windows)

25(for

UNIX)

ThreadLimit This parameter sets the maximum configured value for

ThreadsPerChild for the lifetime of the Apache process.

This value is not present by default in the conf files.

1920(for

Windows)

64(for

UNIX)

MaxClients

This parameter sets the limit on the number of simultaneous

requests that will be served. Once a child process is freed at

the end of a different request, the connection will then be

serviced. It is only available for UNIX platform

Consider increasing this value if more number of

concurrent connections/requests are expected.

150(for

UNIX)

Please refer to the http://httpd.apache.org/docs/2.0/mpm.html for more details on the

configurable parameters that are available with MPM module

http://httpd.apache.org/docs/2.0/mod/mpm_winnt.html
http://httpd.apache.org/docs/2.0/mod/mpm_common.html#threadsperchild#threadsperchild
http://httpd.apache.org/docs/2.0/mpm.html

`

2. Tomcat Connector

Tomcat ajp13 connector receives the requests that are forwarded by Apache via mod_jk. The

Tomcat initialization is customized so it does not allow deployment of any external applications

or servlets. The standard Tomcat xml (server.xml) is not used for initialization. The tunable

parameters for Tomcat Ajp13 Connector are available inside server.conf (<sps_home>/secure-

proxy/proxy-engine/conf/server.conf). Below is the list of the parameters:

Parameter Description Default

Value

worker.ajp13.accept_count Number of request waiting in queue (queue length):

This represents the maximum queue length for incoming

connection requests when all possible request processing

threads are in use. Any requests received when the queue

is full are refused.

10

worker.ajp13.min_spare_thr

eads

Number of threads created at initialization time:

This represents the number of request processing threads

that will be created when this connector is initialized.

This attribute should be set to a value smaller than that set

for worker.ajp13.max_threads

10

worker.ajp13.max_threads Maximum number of concurrent connections possible:

This represents the maximum number of request

processing threads to be created by this connector, which

therefore determines the maximum number of

simultaneous requests that can be handled.

100

worker.ajp13.reply_timeout The maximum time (milliseconds) that can elapse between

any two packets received from proxy engine after which

the connection between HTTP listener and proxy engine is

dropped. A value of zero makes it to wait indefinitely

until response is received (default)

The parameter value should be kept equivalent to the

http_connection_timeout.

0

(infinite/

never

timeout)

worker.ajp13.retries The maximum number of times that the worker will send a

request to Proxy Engine in case of a communication error.

Each retry will be done over another connection. The first

time already gets counted, so retries=2 means one retry

after error

2

`

3. HttpClient ConnectionPool

The HTTP client component is used by the SPS to send requests over the wire to the backend

server and receive responses from the backend server. HttpClient ConnectionPool is a pool that

maintains the connections that are made with the backend web server by HttpClient component.

Below is the list of the tunable parameters that are available inside server.conf

(<sps_home>/secure-proxy/proxy-engine/conf/server.conf).

Parameter Description

(Note that below settings are per backend webserver)

Default

Value

http_connection_pool_min_

size

The minimum number of connections to a single

destination server that will be maintained by the SPS and

available for processing user requests.

It defines the minimum number of connections that would

be created when the first request is made to a particular

backend web server.

4

http_connection_pool_max_

size

The maximum number of connections between the SPS

and a destination server.

It defines the maximum number of connections that can be

made with a particular backend web server at a given

point of time. These connections would be available in the

pool. If all the connections are busy then the request will

have to wait for any of the connections to be available.

Note: Each connection established by the SPS creates a

socket. For UNIX operating systems, if the maximum size

of the connection pool is large, you might need to increase

the operating system’s limit on file descriptors to

accommodate the large number of sockets

20

http_connection_pool_incre

mental_factor

The increment factor when creating the connections.

It defines the number of connections that would be added

(in case the http_connection_pool_max_size has not

reached) to the pool if all the connections that are already

present in the pool are being used to process requests.

4

http_connection_pool_conn

ection_timeout

This parameter defines the Idle time for a connection (in

minutes or seconds as specified by the parameter

http_connection_pool_connection_timeout_unit) after

which the connection is closed and removed from the

pool.

1

http_connection_pool_conn

ection_timeout_unit

This parameter defines whether the value specified in the

http_connection_pool_connection_timeout is to be

considered in minutes or seconds.

minutes

`

Valid values are “minutes” or “seconds”

http_connection_pool_wait_

timeout

Timeout (in milliseconds) to be used to wait for an

available connection.

If all the connections present in the pool are busy at a

given point of time and the

http_connection_pool_max_size limit has reached then the

request would wait for this much amount of time before

getting timed out.

A timeout of zero means wait indefinitely.

0

(infinite/

never

timeout)

http_connection_pool_max_

attempts

Number of attempts to obtain a connection from the pool.

A value of zero causes it to attempt indefinitely.

This parameter is only applicable if wait timeout is not

zero

3

http_connection_timeout Timeout (in milliseconds) to be used for creating

connections and reading responses.

This parameter defines the socket timeout as well as it

limits the time that would be spent in establishing a

connection to backend web server. This would include the

time spent doing the host name translation and

establishing the connection with the backend web server

when creating sockets.

A timeout of zero means wait indefinitely.

The parameter value should be kept equivalent to the

worker.ajp13.reply_timeout.

0

`

4. JVM

The JVM tuning parameters can have major impact on performance especially on UNIX.

The JVM settings can be tuned via the SmSPSProxyEngine.properties (<sps_home>/secure-

proxy/proxy-engine/conf/SmSPSProxyEngine.properties) on Windows platform and via the

proxyserver.sh (<sps_home>\secure-proxy\proxy-engine\ proxyserver.sh) for UNIX platform.

Most important parameters are –Xms (default --256m) and –Xmx (default --512m) to define

proper memory usage by SPS

-Xms - This setting tells the JVM to set its initial heap size. By telling the JVM how much

memory it should initially allocate for the heap, we save it from growing the heap size frequently

-Xmx - This setting tells the JVM, the maximum amount of memory it should use for the heap.

Placing a hard upper limit on this number means that the Java process cannot consume more

memory than physical RAM available. This limit can be raised on systems with more memory.

 Note: Do not set this value to near or greater than the amount of physical RAM in your system

or it will cause severe swapping during runtime.

`

Tuning Secure Proxy Server for Concurrent Usage

Proper Tuning of Secure Proxy Server for concurrent usage is recommended so as to get the

optimum performance. The important factors that need to be considered for this are the user load

expected on the SPS, the speed of the backend web servers or the response time of the

applications deployed at the backend web servers.

The number of simultaneous requests that will occur in a given system is most largely dependent

on the speed (response time) of the backend applications. Below is an example

 100 virtual users are requesting a series of small 100 byte pages as fast as they can, will

not cause the SPS to have to handle more than 5-10 concurrent requests.

 The same 100 virtual users requesting a CGI that takes 1-2 seconds to respond will create

close to 100 concurrent requests.

The above example shows that if backend applications are slow then many simultaneous requests

can occur even at times of relatively light traffic. The parameters that determine the maximum

number of concurrent request that SPS can handle would be worker.ajp13.max_threads and the

http_connection_pool_max_size (per backend web server). Also Apache needs to be configured

for handling this many concurrent requests.

Since the request made to the SPS is intercepted by Apache first it should be the limiter for the

number of concurrent requests that SPS can handle. If the concurrent requests coming to SPS are

more than the max requests that Apache can handle then it can give a friendly error to the end

user and not forward the request to Tomcat

The timeout parameters (Tomcat/ajp13 timeout parameter and HttpConnectionPool timeout

parameters) available inside server.conf also play an important role. These timeout values have

been left at 0(never timeout) by default because their values will entirely be dependent on the

response time of the applications that are being hosted at the backend webserver.

If one of the backend servers for which SPS has been configured to forward the request is slow

or unresponsive it could affect the performance of SPS if timeouts are not configured properly,

i.e left as default. This slow backend server will not only eat up the HttpConnectionPool

connections but also start eating up the Tomcat/ajp13 connections since the previous requests

would be unresponsive for a large amount of time and the new requests for the same backend

web server will start getting queued up waiting for the available connection from the

HttpConnectionPool. This could finally lead to SPS becoming unresponsive since all the

Tomcat/Apache connection would get eaten up. The timeout parameters available in server.conf

will help in such a situation.

If connections in the HttpConnectionPool reach to the max limit, the newer requests will start to

queue up waiting for the connection to be available. These newer requests will, however,

continue to consume the Apache-Tomcat connections that could in turn lead to exceeding the

limit set for Apache-Tomcat connections. The http_connection_pool_wait_timeout parameter, if

appropriately used, will help time out these queued up requests, thereby preventing the Apache-

Tomcat connections to go beyond the limit.

`

The http_connection_timeout parameter helps to define the max time that would be spent in

establishing a connection to backend web server. If appropriately used, this parameter will also

time out those connections which have been waiting for long for the response from the backend

web server. Setting these timeout parameters judiciously can lead to considerable improvement

in performance of Secure Proxy Server. Please refer to the above tables for description of the

timeout parameters

Other factors such as a slow policy server installation and slow DNS resolution can also affect

the performance of Secure Proxy Server. These are more of an enterprise issues than something

you can control on the SPS.

