Developing an Eclipse Plug-in for
CA Gen Studio

Contents
T Ao [V 4T] o F PSPPI PPRR PR 2
Y= 0] o TSI 0= o TS 2
Prepare for developing the PIUS-iN......oo e e e e e e e e e st e e e e e e e e e e ennnnnes 4
(@00 0T U T =4 el e 1Y SR 4
IMPOrting the ECHPSE PrOJECE....uuuuiiiiiiieieee et e e e e e e e e e et rr e e e e e e e e e s sannnrnbrrreeeaeaeeenan 5
Development of the sample plug-in eXplain@d..........coooiiiiiiiiiiee e e e 7
General Structure of the PIUG-IN ... e e e e e e e e rn e e s 8
Declaring the Action BloCk NaVvigator VIEWuiiiieiireeei it eeeccnrrre e e e e e e s e snan e eee s 12
Configuring the Action BIOCK NaVIgator.....ccii i e e e e e ee e 14
Providing contents for Action BIOCK NAVIgator.......uuueeeieiiiiiicciiiieeeeee e 16
(DI] E\ViTaT-4F ot dToT 0 I o] [oTol . o] o] o 1] o £ [=- SR 21
Developing Text Editor for Action Block Description......cccivcecciiiiiiiieiee e 24
DEfINING POISPECTIVE ..uviiiiiieie i ittt erc e e e e e e e e e s e e st te e e e e eeeeeeesssasertaaaeeeeeeeessenannssnranneeees 28
Testing and deploying @ NEW PIUG-IN ... e e e e e e e e e e rre e e e e e e e e e e e snnnenes 31

V10 010 T [V2P PP PPPTPPPRR 31

Introduction

This document shows how to develop an uncomplicated Eclipse plug-in for CA Gen Studio. The Eclipse
project with a fully functioning plug-in is provided along with this document. The plug-in shows how to
integrate external tools with the existing functionality of Gen Studio, and how to access the local
encyclopedia using the JMMI Application Program Interface (API) software for CA Gen.

The Gen Studio is built on top of the Eclipse Rich Client Platform (RCP). Eclipse RCP is designed to serve
as an open tools platform and is architected so that its components can be used to build just about any
client application. The minimal set of plug-ins needed to build a rich client application is collectively
known as the Rich Client Platform. This platform includes the minimal set of plug-ins needed to build a
platform application with a user interface. The smallest possible application needs two plug-ins,
org.eclipse.uiandorg.eclipse.core.runtime, and their respective prerequisites.

The Gen Studio is based on a dynamic plug-in model and the Ul, and is built on top of RCP using the
same toolkits and extension points as any another product build using the Eclipse framework. The layout
and function of Gen Studio is under control of the plug-in’s contributing functionality. You can find all
plug-ins constituting the CA Gen Studio in the installation directory. This is a collection of plug-ins
developed by CA, plug-ins from other Eclipse Projects, and some plug-ins developed by third-parties.

This paper provides basic information, allowing a developer familiar with Eclipse and plug-ins to create
plug-ins that extend the functionality of Gen Studio. The JMMI Application Program Interface classes
and the RCP framework allow CA Gen customers and Open Initiative partners to write software to
retrieve and update encyclopedia information.

Sample Plug-in

As an example, imaginary Company is developing commercial applications using CA Gen. The Company
would like to have additional functionality in their Gen Studio allowing action block descriptions to be
reviewed by dedicated technical writers. These technical writers will use CA Gen Studio to open and
change descriptions in the text editor, and save them back to the model.

After installing the sample plug-in, users are able to open Gen Studio, select dedicated perspective,
select action blocks, and edit their descriptions. Model is opened, saved and closed using Gen Studio’s
standard functionality. Users are presented with a dedicated navigator view showing an expanded list of
action blocks for any opened model. Editor is launched after selecting one or more action blocks and
selecting Open Editor from the popup menu. One or more editor panes open in the central part of the
workbench window. Users are prompted by the system to save contents of the description in the model
each time editor is closed and description text has been updated. Additionally, information, such as
(XXXX — we want to tell the user what information to expect) is displayed in the property view.

The following screen shows CA Gen Studio with sample plug-in installed. Plug-in opens a dedicated
perspective consisting of two views and one editor, when activated.

a8 GA Gen Studio =] a!

File Navigate Edit Wi New PerSpeCthE

&f® Maintaining Descri

s =

P2 Action Block Navigator ©2 ## ACTION_BLOCK_1 53 = O |/ 3 properties 23 Sl

= ST When the Workbench is launched, the first

= é‘,desc:[DESCRIP‘T‘IOP-IS] (opened) ‘,'r:: to select where the ?fﬁ'k?pac?.ShC'Jld Property Value
- = the d Yo work will be st¢ .

& Mg N:M:.)@ ick the i i = Properties

ACTION_BLOCK_2 pic - Locarie Description Length 256
Modification Date 20091027
Modification Time 163613

Navigation Text Editor
View
Property
View

& 1items selected

The first view shown in the left pane is the Action Block Navigator and is used to show opened models,
allow expanding, and show list of action blocks within the model. The second view is the Description
Text Editor for the action block selected. Editors are opened in the editor area of the workspace in the
central part of the workbench window. Each action block description can be opened in the text editor by
selecting any number of action blocks in the Action Block Navigator and selecting action, Edit Action
Block Description from the popup menu. The third view is Property view, which is a generic type of view
made available by the Eclipse framework as a standard feature. Selecting items in the Action Block
Navigator displays some basic properties of the selected items to appear in the Property view.

Users can open many instances of the editors for different action blocks. Contents of the editor can be
saved at any time by clicking Save. The Editor can be closed at any time by clicking Close ** on the right
side of the editor tab. The plug-in displays a prompt asking if the user wants the contents of the changed
description to be saved back in the model. All editor tabs have the - symbol in front of the action
block name to show that contents of the editor has been changed since the last Save action, and its
state is considered to be dirty. This is standard behavior in many applications developed using the
Eclipse framework.

Prepare for developing the plug-in

Developing the plug-in using the Eclipse SDK is a relatively simple process assuming the user has an
understanding of the Eclipse plug-in architecture and practical skills in using development tools included
with the Eclipse SDK.

CA Gen Studio is built on top of Eclipse 3.4 and all development should be done using the same version
of the Eclipse SDK used to build Gen Studio. The sample project was developed using Eclipse Classic 3.4.
You can download required software from the following address:

http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.4-
200806172000/eclipse-SDK-3.4-win32.zip

It is recommended that you always check the CA Gen Technical Requirements for the correct version of
the Eclipse used to build the current version of CA Gen Studio.

The classic Eclipse download has the Eclipse Platform, Java Development Tools, and Plug-in
development environment. This download includes sources and both user and programmer
documentation. You will need to have CA Gen 8.0 or higher installed on the same workstation. This is all
you need to develop the sample plug-in.

Configuring Eclipse
Installation of Eclipse is a simple process

1. Unzip the downloaded file.
2. Create a shortcut for the eclipse.exe file.

Eclipse displays the Workspace Launcher asking you to choose the location of your workspace.
Initially, the workspace should be any empty folder. Eclipse creates all the required
infrastructure of the workspace when opening it for the first time. You will notice that a newly
opened workspace does not have any projects.

You need to configure your workspace before you start developing a plug-in to be integrated with CA
Gen Studio. Development and all tests should be done in the framework of CA Gen Studio. CA Gen must
be installed on the workstation you are using for this projectas it needs to be visible to the Eclipse SDK.

1. Open the Preferences dialog box to configure the workspace.
2. Select Plug-in Development, Target Platform to open the required preference settings.

The Preferences dialog shows how to set preferences.

type filter text Target Platform & -

+ ie’t’erd Specify the platform against which the workspace plug-ins will be compiled and tested:
+ AN —
¥ Help Location: | C:\Program Files\CA\Gen r8\Gen\GenStudio v [Browse... J [Reset
* ;nsta"NDdate [JBuid target platform based on the target's installed plug-ins
+ Java ————
= Plug-in Development Plug-ns | Environment || Launching Arguments | Implicit Dependendies | Source Code Locations
API Baselines # [v] @] ¢:\eclipse\plugins Reload §
API Errors/Warnings ¥ [7] @) c:\Program Files\CA\Gen r8\Gen\GenStudio\plugins
Compilers
Editors
Enable Selected k>
|
5 funebug
+ Team B

536 of 536 selected.
Group plug-ins by location

Pre-defined Targets

[g

@ [OK]L Cancel }

The Target Platform page allows you to set the target platform plug-in content for the plug-ins you are
developing and testing. You need to use a mix of plug-ins from Eclipse Classic and several plug-ins
installed on your workstation by CA Gen. Both collections of plug-ins should be referring to exactly the
same versions of the plug-ins. If the versions are not the same, the target environment will not function
correctly.

The Plug-ins tab shows all the plug-ins found at the specified target location. Only the plug-ins checked
are in the target content. Unchecked plug-ins are ignored by the Plug-in Development Environment. By
default, all plug-ins are checked.

Importing the Eclipse project
A fully functioning Eclipse project for the sample plug-in comes with this document. It is recommended
that you import the project to your workspace and review its contents after reading this document.

Use the imported project to verify that your target definition and development environment is correct,
and that the plug-in can be deployed and run successfully.

Where do they access the Import Existing Projects into Workspace wizard? We should tell them where
to access it.

1. Openthe Import Existing Projects into Workspace wizard.

Impont: E]@
Select

\
Create new projects from an archive file or directory. I[A I!

Select an import source:
type filter text |

9 @ General

'@i Existing Projects into Workspace

D File System
P % Preferences

® = ovs

@ (Z Plug-in Development
@ (> Run/Debug

(= Team

® | <Back | Next> || Fmsh || cancel |

Click Next.
3. Select the location where the project is stored.
Select the Copy Projects into Workspace check box so a content is copied into your workspace,

keeping the original untouched as a backup.

A new project is created in your workspace and Package Explorer displays the new project.:

‘AI:g Package Explorer 23 fg Hierarchy ‘ = 0]

= b‘J gen.plugin.example
[#--2%) JRE System Library [JavaSE-1.6]
[#-®, Plug-in Dependencies
=-E src
=} gen.plugin.example
i [+ @ Activator.java
=} gen.plugin.example.editors
@~ [J) ContentProvider.java
- [J) DescriptionTextEditor.java
[+ @ DescriptionTextInput.java
m DescriptionTextStorage.java
- [J) EditorSaveSelectionDialog.java
- 1] LabelProvider.java
- 1] ModelClosingListener.java
- @ (9] utity.java
=} gen.plugin.example.perspectives
P @ [J) DescriptionHandlingPerspective.java
=} gen.plugin.example.views
- 1] AcblkbsdAdapterFactory.java
Ex) @ AcblkbsdPropertySource.java
- 1] ActionBlockNavigatorView.java
- 1] LaunchEditorActionDelegate.java
[+ E] ModelPropertySource.java
[+ E] ViewContentProvider.java
- [J] viewLabelProvider.java
(= Action Sets
(= icons
: @ action_block.gif
0] edit.qif
4 @ navigator.aif
@ perspective.gif
(> META-INF
: @ build.properties
&} plugin.xml
E3 b‘J gen.utilities.example

[+

Development of the sample plug-in explained

The simplest way to develop and maintain a plug-in is to use the special wizards and editors provided
with the Plug-in Development Environment. Wizards are capable of generating a basic plug-in and basic
code implementing plug-in functionality. The plug-in manifest editor is used to edit the XML description
contained in the plugin.xml file, which is a plug-in manifest file.

There are a number of XML definitions and classes to develop when implementing desired functionality.
No one single class is particularly complex to develop. Most classes extend some other classes, reusing
functionality that already exists in Eclipse. Complexity is in mutual inter-dependencies between different

runtime components and it is necessary to have good understanding of the functionality of the Eclipse
framework.

We can group all the tasks as follows:

* Developing the action block navigator view. Common Navigator Framework (CNF) is used to
closely integrate with Gen Studio. This framework was used to create Gen Common Navigator,
which is used in the project.

* Showing properties of selected nodes in the navigator. The existing generic Property view is
used, which may require some interconnection of components within a plug-in.

* Developing an editor allowing editing text of the action block description. The action block
description is a block of text of limited size and Eclipse provides extensive support to build the
editor.

* Developing a dedicated Eclipse perspective accommodating our two views and single editor. The
perspective is fully integrated with Gen Studio.

The rest of this document will focus on explaining more important parts of the sample plug-in code..

General Structure of the plug-in
The process of developing a plug-in includes adding number elements to the plug-in manifest
file plugin.xml, and development of a number of Java classes implementing plug-in functionality.

The plug-in, in this example, describes how the plug-in extends the platform and how it implements its
functionality. The manifest file is written in XML and is parsed by the platform when the plug-in is
loaded into the platform. All the information needed to display the plug-in in the Ul, such as icons, menu
items, and so on, is contained in the manifest file. The implementation code is loaded only when the
plug-in needs to be run; this concept is referred to as lazy loading.

The usual method to define extensions is to use the plug-in editor. However, this document shows
native xml to explain the definition required to run this plug-in. This is a more consistent way of
presenting and allows direct reference to the extension point reference manual.

The Extensions dialog shows all extensions created to allow the sample plug-in to work as designed.

[3) ActionBlockNavigatorView.java £3 fm LaunchEditorActionDelegate.java

=g

4 genphon cxample 1T

% Extensions

All Extensions laz

Define extensions for this plug-in in the following section.

(=)= org.edipse.ui.perspectives
- é@ Maintaining Descriptions (perspective)
[=-4= com.ca.gen.studio.common.workspace.perspectives
P [X] gen.plugin.example.perspectives.DescriptionHan
=-%= org.edipse.ui.views
[X] Gen Tools (category) [
“Te Action Block Navigator (view)
== com.ca.gen.studio.common.workspace.views
[X) Gen Tools (gencategory)
[(genview)
=-%= org.edipse.ui.editors
4 Desaiption Editor (editor)
(=-<= org.edipse.ui.navigator.navigatorContent
- @-[X) Action Block Viewer Content (navigatorContent)
== org.edipse.ui.navigator.viewer
@-[X] (viewer)
® [X] gen.plugin.example.views. ActionBlockNavigatory
@®[X] gen.plugin.example.views.ActionBlockNavigator
(=-%= org.edlipse.ui.popupMenus

#-[X] com.ca.gen.jmmi.objs.popup (objectContribution

——

O%&®
Extension Details

Set the properties of the selected extension. Required fields are denoted
by ™%,

Show extension point description
44 Open extension point schema
:37 Find dedlaring extension point

Overview | Dependendies |Runtime |Extensions | Extension Points | Buid | MANIFEST.MF | plugin.xml | build. properties

There is a number of classes that need to be developed. The following table contains brief descriptions
of all implementation classes used by the plug-in.

Class Name Function

package gen.plugin.example

Activator Our plug-in specifies in the manifest file a concrete
subclass of AbstractUIPlugin. This class consists
mostly of convenience methods for accessing various
platform utilities, and it may also implement
start ()and stop () methods that define the
lifecycle of the plug-in within the platform.

package gen.plugin.example.editors

ContentProvider This class implements the

IStructuredContentProvider interface and is
used to find all opened text editors having a modified
action block description. These editors are marked dirty
and a special dialog box will use the list of action block
descriptions that should be saved in the model.

DescriptionTextEditor This class extends a standard TextEditor class which
implements a basic functionality allowing editing text.
Method doSave () is overridden, providing a
customized sequence of saving the modified action block
description back in the model rather than in the text file.

DescriptionTextInput This class extends Plat formObject class and
implements the IStorageEditorInput interface. A
unique class in needed since the implementation of
IStorage input to an editor is an object in the Gen model.
All editor inputs must implement the TAdaptable
interface so extensions can be managed by the platform's
adapter manager. Class PlatformObject provides
default implementation of the TAdaptable interface.

DescriptionTextStorage This class extends Plat formObject and implements
the IStorage interface. A unique non-default
implementation of the interface is needed because the
action block description is stored in the Gen model object
rather than in the text file. Storage objects has to
implement the IAdaptable interface so extensions can be
managed by the platform's adapter manager. Class
PlatformObject provides defaultimplementation of
IAdaptable interface.

EditorSaveSelectionDialog This class extends ListSelectionDialog, whichis
a standard dialog soliciting a list of selections from the
user. This class is configured with an arbitrary data model
represented by content and label provider objects. The
getResult () method returns the selected elements.
This class is used to display a list of dirty editors and asks

the user to decide if saving the modified action block
contents in the model is required.

LabelProvider This class implements the ILabelProvider interface
and provides icons and action block names to be
displayed on the list of opened action block description
editors, which are marked as dirty, and need its contents
saved.

ModelClosingListener This class implements IModelListener. Its main
function is to provide save contents sequence for all
opened action block description editors marked as dirty.
Saving contents sequence is activated whenever any of
the opened models in the Gen Studio is in the closing
state. This class is invoked during start up of the plug-in
and it adds itself to the list of Mode 1Manager listeners.
This listener unregisters itself from the Mode1Manager
when the plug-in stops.

Utility This is the utility class, which has a number of static
methods producing a list of open and dirty editors in the
workspace.

package gen.plugin.example.perspectives

DescriptionHandlingPerspective This class implements the IPerspectiveFactory
interface and generates the initial page layout and visible
action set for a page.

package gen.plugin.example.views

AcblkbsdAdapterFactory This class implementsthe TAdapterFactory
interface. The Acblkbsd object can be selected from
the Action Block Navigator, but does not implement the
IPropertySource interface. Therefore, Property
view cannot correctly display properties of the action
block. This class allows substitution of Acb1kbsd with
the other object that can be used by the Property view.

AcblkbsdPropertySource This class implements the ITPropertySource interface
and can be used by Property view.

ActionBlockNavigatorView This class extends the standard
GenCommonNavigator class.

LaunchEditorActionDelegate This class implements the IObjectActionDelegate

interface. Implementing this interface for an object action
selected from the popup menu for the Action Block
Navigator view launches the description text editor for
the selected action blocks.

ViewContentProvider This class implements three interfaces:
¢ IStructuredContentProvider,
* ITreeContentProvider
* IModelSourcelistener
The main purpose of this class is to provide a list of action

blocks for the selected data source and display them as
children nodes in the tree view of the Action Block
Navigator. This class also listens to what model sources
are currently opened so the tree view can be refreshed
accordingly.

ViewLabelProvider This class extends the LabelProvider class and is
responsible for providing icons and names for action
blocks displayed in the tree view of the Action Block
Navigator.

Declaring the Action Block Navigator view

Declaring the Action Block Navigator view is the first step. Most perspectives in Eclipse applications have
a Navigator view displaying a tree of data. Gen Studio is no different as each perspective displays its
own navigator. Some aspects of the navigator content is common between all the various navigators.
In particular, the displaying of models with their behaviors is shared between all navigators. The Action
Block Navigator is no exception. The Common Navigator Framework (CNF) will be used to develop the
Navigator.

We expect the navigator to display a list of models as seen by Gen Studio. Expanding the node of the
opened model source displays a list of all action blocks defined in the model. This list allows selection of
one or more action blocks and asks the editor to open, displaying the current action block description
for editing. The first part of behavior, displaying model sources, should be inherited from the Gen
Common Navigator. Data representing action blocks in the model are provided by the purpose written
contents provider. The Common Navigator Framework (CNF) provides the extension mechanism.

The First step is always to define a new extension in the plugin.xml file.

<extension

point="org.eclipse.ui.views">
<category
name="Gen Tools"
id="gen.plugin.example">
</category>
<view
name="Action Block Navigator"

icon=" 1
category="ger
class="gen .ActionBlockNavigatorVi
id="gen.plugin.example.views.ActionBlockNavigatorView"
</view>

</extension>

%

The extension point org.eclipse.ui.views is astandard way to define additional views for the
workbench. This extension point, in this case, creates an implementation class for viewing. The
ActionBlockNavigatorView is the chosen view. Implementation of the view extends the
GenCommonNavigator class and inherits all behavior. Below is the implementation code.

backage gen.plugin.example.views;

import com.ca.gen.studio.navigator.GenCommonNavigator;

public class ActionBlockNavigatorView extends GenCommonNavigator {
public static final String /D = "gen.plugin.example.views.ActionBlockNavigatorView";
public ActionBlockNavigatorView() {

super();

}

A new view needs to be registered with Gen Studio by adding an extra element to the plugin.xml
manifest file. The Gen Studio provides a special extension point
com.ca.gen.studio.common.workspace.views to register the regular view with Gen Studio.

<extension
point="com.ca.gen.studio.common.workspace.views">
<gencategory
id="gen.plugin.example.utilities"
label="Gen Tools"
mnemonic="T"
priority="600">
</gencategory>
<genview
gencategoryid="gen.plugin.example.utilities"”
id="gen.plugin.example.views.ActionBlockNavigatorView"
mnemonic="E"
priority="100">
</genview>
</extension>

Note that regular views are hidden with Gen Studio unless the view is further extended by a genview
extension. Once a genview extension is defined, the view will display in the Window, Show View

menu.

Gen Studio also supports categories for the views so views can be grouped into categories. However,
regular categories are hidden within Gen Studio. To group views into categories and sub-categories,
reference the newly added gencategory from a genview. It is possible to add genview to any
gencategory already defined within the product if the gencategory contributing plug-in is
referenced appropriately. See CA Gen Studion dialog below.

SARSETISTUGI

File Edit | Window Help

- Show Perspective » l
———— I web Service Access »
|6 Maintz Cloe Pereect Web View U »
f ose Perspective
Action PStep Interface > = H
h Close All Perspectives P
Save Perspective As... Support »

' Properties 52
Property

i Reset Perspective...
b d e Gen Tools *| Action Block Navigator |

Preferences |

The CA Gen Stdio dialog shows that the collection of Gen Studio views has a new category, Gen Tools,
and that there is an Action Block Navigator view defined as part of the category.

Configuring the Action Block Navigator

Configuring Action Block Navigator view is the second step. This section defines the contents of the view.
The Action Block Navigator uses the tree view to display data. The top level is a list of model sources and
is assembled by Gen Studio. The list is updated to reflect the action taken by the Gen Studio users. The
list is updated each time a new model opened, closed, was saved or used. The Action Block Navigator is

refreshed to show changes to the updated list. Each model source with an opened model allows

expanding tree nodes and shows the action blocks defined in the associated model. The list of action

blocks for each opened model source is created by the purpose written content provider class.

Some additional entries to the plug-in manifest file are now needed.

<extension
point="org.eclipse.ui.navigator.navigatorContent">
<navigatorContent
activeByDefault="true"
contentProvider="gen.plugin.example.views.ViewContentProvider"
id="gen.plugin.example.views.ActionBlockNavigator.content"
labelProvider="gen.plugin.example.views.ViewLabelProvider"
name="Action Block Viewer Content"
priority="highest"
providesSaveables="false">
<triggerPoints>
<or>
<instanceof
value="com.ca.gen.studio.model.core.source.IModelSource">
</instanceof>
</oxr>
</triggerPoints>
<possibleChildren>
<or>
<instanceof
value="com.ca.gen.jmmi.objs.Acblkbsd">
</instanceof>
</or>
</possibleChildren>
</navigatorContent>
</extension>
<extension

Eclipse framework has a special extension point
org.eclipse.ui.navigator.navigatorContent to declare how contents of the navigator
view is assembled. The above declaration indicates that we need to develop two special classes: first to
provide array of the action blocks for any specific model source and second to provide labels for objects
to be displayed in the tree view. Class ViewContentProvider is for data objects and class
ViewLabelProvider is for labels. Both classes are used when object instantiating class
IModelSource is selected in the navigator view.

<extension
point="org.eclipse.ui.navigator.viewer">
<viewer
viewerId="gen.plugin.example.views.ActionBlockNavigatorView"
popupMenuId="gen.plugin.example.menu">
<options>
<property
name="org.eclipse.ui.navigator.enforceHasChildren"
value="
</property>
<property
name="org.eclipse.ui.navigator.hidelLi
value="true">
</property>
</options>
</viewer>
<viewerContentBinding

true">

viewerId="gen.plugin.example.view

m
b
T
0
of
F
[s]
=]
83}
-
[s]
a
w
4
2
W
I
Q
o
ot
0
H
'
|
5
m
v

<includes>
<contentExtension
isRoot="true"
pattern="com.ca.gen.studio.model.ui.navigator.modelContent">
</contentExtension>
<contentExtension
isRoot="false"
pattern="gen.plugin.example.views.ActionBlockNavigator.content">
</contentExtension>
</includes>
</viewerContentBinding>
<viewerActionBinding
viewerId="gen.plugin.example.views.ActionBlockNavigatorView">
<includes>
</includes>
</viewerActionB3inding>
</extension>

The org.eclipse.ui.navigator.viewer element defines more configurations for a common
viewer. For example, the extension may provide a custom popup menu id and set some other
properties. In addition, nested configuration elements give full control over the structure and behavior
of the popup context menu. The viewerContentBinding binds defined content extensions
(through the navigatorContent extension point) to viewers (defined through the
org.eclipse.ui.views extension point).

Above declaration indicates that Gen Studio will provide root level objects and action block navigator
contents will provide children nodes.

Above declaration indicates also that our navigator will have two types of pop-menus depending on
what node has been selected.

Popup for selected model source will show action applicable to the model like Close Model.

i %8 ACTION_BLOCK Open Mode

% ACTION_BLOCK Close Model

Save Mode

¥ Remove From List

Model Preferences...

The extension point popupMenu defines action whenever action block objects is being selected.
Opening text editor to edit action block description is the only action defined. See below.

<extension
point="org.eclipse.ui.popupMenus">
<objectContribution
adaptable="false"
id="com.ca.gen.jmmi.objs.popup"”
objectClass="com.ca.gen.jmmi.objs.Acblkbsd">
<action
class="gen.plugin.example.views.LaunchEditorActionDelegate"
enablesFor="+"
icon="icons/edit.gif"
id="gen.plugin.example.menu"
label="Edit Action Block Description"
state="false"
tooltip="Open action block description in the text editor."/>
</objectContribution>

</extension>

Providing implementation of LanuchEditorActionDelegate will allow display the following
popup menu when one or more action blocks are selected in the Action Block Navigator.

Popup menu for action block is showing action Edit Action Block Description.

s ActionBlock Navigator 52 . = B[

[] ~
= @&, desc:[DESCRIPTIONS] (opened)
s _J ACTION BLg
| _§ o N
% ACTION_BLC [#| Edit Action Block Description

Providing contents for Action Block Navigator
Our next step is to explain purpose and how are working two classes providing contents for the tree
view used by the Action Block Navigator to list of action blocks for each opened model.

Model Source and Model
There are two classes representing model in Gen Studio:

* com.ca.gen.jmmi.Model

* com.ca.gen.studio.model.core.source.IModelSource
The Model represents an actual opened model. It is the gateway to the actual model data. It contains
listener support for when actual model data changes. The IModelSource represents a handle to an
actual IMMI Model. The actual model may or may not be open. The IModelSource can be thought
of as a persistent aspect of a model within the tool, whereas the JMMI Model is the actual model itself.
Two plug-ins makeup the JMMI model-access:

* com.ca.gen.studio.model.core

* com.ca.gen.studio.model.ui
These plug-ins will need to be added as dependencies for any plug-in needing to access model data.
Models are opened, saved, closed, etc via two manager classes:

* TIModelSourceManager

®* TIModelSourceUIManager

Ideally, a contributing plug-in would not need to add code to open, save, and close a model. Instead the
Gen Studio plug-ins would perform those operations. However, a plug-in should listen and react to
these model state changes. For instance when a model is closed, a view or editor displaying model data
should refresh or close as needed. The listener must implement the ITModelSourcelListener
interface and register the listener with the ITModelSourceManager.

The main listeners involved with model access are:
* IModelSourcelistener
* IModellistener
* TIDataChangedListener
* TIUOWListener
Implementing contents provider
Top level contents (root nodes) are provided by the Gen Studio and we do not have to worry about it.

However, we need to develop two classes providing children whenever model source node is selected
and expanded.

First class is ViewContentProvider. It implements three interfaces:

IStructuredContentProvider, ITreeContentProvider and IModelSourcelistener.

Therefore, our ViewContentProvider class has to implement a number of methods which are
invoked when navigating thru the tree view.

Retrieving information about action blocks
There are two important methods of the ViewContentProvider class responsible providing

contents when user starts expanding nodes of the tree view. They are hasChildren () and
getChildren().

Method hasChildren() is invoked to check if there any children for the specified parent. The following
fragment of code is responsible to do just that.

@Override
public boolean hasChildren(Object object) {
if (object instanceof IModelSource) {
IModelSource modelSource = (IModelSource) object;
if (modelSource.isOpened()) {
Model model = modelSource.getModel();
List<Objld> list;
try {
list = model.getObjlds(ObjTypeCode.ACBLKBSD);
return list.size() > 0;
} catch (EncyUnsupportedOperationException e) {
e.printStackTrace();
}
}
}
return false;

}

We need to check if object is instance of model source and model is opened. Next we need to retrieve
list of object Ids for type ACBLKBSD and check if list is empty or not.

Method getChildren () returns array of objects representing children nodes for the provided parent
node.

@Override
public Object[] getChildren(Object object) {
if (object instanceof IModelSource) {
IModelSource modelSource = (IModelSource) object;
if (modelSource.isOpened()) {
Model model = modelSource.getModel();
List<Objld> list;
try {
list = model.getObjlds(ObjTypeCode.ACBLKBSD);
Acblkbsd[] array = new Acblkbsd[list.size()];
inti=0;
for (Objld objld : list) {
array[i] = (Acblkbsd) MMObj.getinstance(model, objld);
i++;
}
return array;
} catch (EncyUnsupportedOperationException e) {
e.printStackTrace();
}
}
!
return new Object[] {};

}

Again, object implementing TModelSource interface is used to get model. Again, please notice that
only opened models can be searched. All other model sources are ignored and empty object array is
returned by the method. Instance of Mode1 class is returned by the getModel () method. We are
looking for list of all object Ids for object type ACBLKBSD. Array of objects Acb1kbsd matching selected
list is created and populated by getting the instances of the Acb1kbsd objects.

Listening to the changes in data sources
A number of methods have to be implemented because our class implements
IModelSourceListener interface. They are as follows.

* modelSourceAdded ()

* modelSourceChanged ()
* modelSourceClosed()
* modelSourceDirtied()

* modelSourceOpened ()

Those methods are executed whenever some important action in Gen Studio is taken like opening or
closing model sources. Each above action can cause that Action Block Navigator has to be refreshed to
reflect current state of the model sources.

These methods are executed only when this class adds itself to list of listeners provided by Gen Studio.

The following snapshot of code shows how to register and unregister contents provider class as listener.

public ViewContentProvider() {
ModelCorePlugin.getDefault().getModelSourceManager()
.addModelSourcelistener(this);

}

@Override
public void dispose() {
ModelCorePlugin.getDefault().getModelSourceManager()
.removeModelSourcelistener(this);

The second snapshot shows how to invoke refresh method of the tree viewer from the contents
provider.

private void refreshViewer() {
viewer.getControl().getDisplay().asyncExec(new Runnable() {
@Override
public void run() {
viewer.refresh();
}
1;
}

Implementing label provider

Second class we need to provide is ViewLabelProvider. This class extends existing
LabelProvider class and we need to override two methods. Method getText () is responsible to
provide name of action block and method get Image () suitable icon visualizing action block in the
tree viewer.

public String getText(Object object) {
if (object instanceof Acblkbsd) {
Acblkbsd acblkbsd = (Acblkbsd) object;
return acblkbsd.getName();
}

return

}

public Image getimage(Object object) {
String imageKey = null;
if (object instanceof Acblkbsd) {
return Activator.getimageDescriptor("icons/action_block.gif").createlmage();
}
return PlatformUl.getWorkbench().getSharedimages().getimage(imageKey);
!

As you can see in the above snapshot we expect the only object that need to have text and icon
returned is object of type Acb1lkbsd. Text and icon for model source object is assigned by Gen Studio’s
label provider.

Displaying action block properties

Property view is made as part of our perspective and used to display properties of the selected nodes in
the Action Block Navigator tree view. Selecting root model source node will display basic information
about model. This information is provided by Gen Studio. However, we would like to display some
information about selected action block as well. This is how it is done.

Property View is generic type of the view. The Properties view displays properties for whatever is
selected in the workbench. This view listens to all possible selections done anywhere in Gen Studio and
checks if it can display any properties associated with the selected objects. It is able to display properties
of only those objects which implement ITPropertySource interface. We would like to display some
basic information about action block represented by the Acb1kbsd object. Unfortunately all object
classes like: Acblkbsd and MMObj do notimplement IPropertySource interface by the
definition. We need to use Eclipse Adapter technology to overcome this problem.

The Properties view goes through a few steps to sort out how it's going to display properties. First, it
determines whether or not the selected object implements the TPropertySource interface. If it
does, it uses the selected object directly after casting it to ITPropertySource. If that check fails, the
Property view then determines whether or not the selected object implements the TAdaptable
interface. If the selected object is adaptable, it is asked—via the getAdapter () method—for an
adapter with the TPropertySource type. The getAdapter () method either returns an object of
the appropriate type or null if it cannot be adapted to the requested type. If the method returns an
adapter, it is used by the Property view to gather properties (if it is null the Property view shows
nothing).

In our case adapter framework actually go get the AdapterManager trying to find suitable object to
represent our object and pass it to the Property view. This is object of type
AcblkbsdPropertySource.

The following snapshot shows AcblkbsdAdaptorFactory implementing IAdapterFactory. This
class getAdapter() method is invoked to substitute instance of Acblkbsd class by the instance of
AcblkbsdPropertySource class.

public class AcblkbsdAdapterFactory implements |AdapterFactory {

public AcblkbsdAdapterFactory() {
Platform.getAdapterManager|().registerAdapters(this, AcblkbsdPropertySource.class);

}

public void dispose() {
Platform.getAdapterManager().unregisterAdapters(this, AcblkbsdPropertySource.class);
1

@SuppressWarnings("unchecked")
private static Class[] SUPPORTED_TYPES = new Class[] { IPropertySource.class };

@SuppressWarnings("unchecked")
public Class[] getAdapterList() {
return SUPPORTED_TYPES;

}

@SuppressWarnings("unchecked")
@Override
public Object getAdapter(Object object, Class adapterType) {
if (adapterType.isInstance(object))
{
return object;
!
if (IPropertySource.class.equals(adapterType)) {
return new AcblkbsdPropertySource(
(Acblkbsd) object);
}
return null;
!
}

We need to register adaptor factory with the AdaptorManager. It can be done as a first thing after
plug-in is activated. Method registerAdaptor () takes two parameters. First one is factory itself
and second is type of object to be adapted. Please notice that adapter is unregistered when plug-in is
stopped.

The following snapshot of code shows two methods responsible for registration and un-registration of
our adaptor factory. They are start () and stop () methods of the Activator class.

public void start(BundleContext context) throws Exception {
super.start(context);
modelClosinglListener = new ModelClosingListener();
log = getlLog();
plugin = this;
factory = new AcblkbsdAdapterFactory();
IAdapterManager manger = Platform.getAdapterManager();
manger.registerAdapters(factory, Acblkbsd.class);

public void stop(BundleContext context) throws Exception {
plugin = null;
super.stop(context);
IAdapterManager manger = Platform.getAdapterManager();
manger.unregisterAdapters(factory, Acblkbsd.class);
factory = null;
modelClosingListener.dispose();

Object substituting instance of Acb1kbsd class is an instance of the AcblkbsdPropertySource
class. It implements proper ITPropertySource interface and can be processed successfully by the
Property view.

Two methods getPropertyDescriptors () and getPropertyValue () are responsible to
provide all required contents for the Property view.

The below sample code defines what property label should be used and how to obtain property value
for the each action block.

@Override
public IPropertyDescriptor[] getPropertyDescriptors() {
if (propertyDescriptors == null) {
propertyDescriptors = new Vector<PropertyDescriptor>();
}
PropertyDescriptor propertyDescriptor = new PropertyDescriptor(
new Integer(S_LENGTH), "Description Length");
propertyDescriptor.setCategory(PROPERTIES);
propertyDescriptors.add(propertyDescriptor);
propertyDescriptor = new PropertyDescriptor(
new Integer(S_MODDATE), "Modification Date");
propertyDescriptor.setCategory(PROPERTIES);
propertyDescriptors.add(propertyDescriptor);
propertyDescriptor = new PropertyDescriptor(
new Integer(S_MODTIME), "Modification Time");
propertyDescriptor.setCategory(PROPERTIES);
propertyDescriptors.add(propertyDescriptor);
return (IPropertyDescriptor[]) propertyDescriptors
.toArray(new |PropertyDescriptor[propertyDescriptors.size()]);

}

@Override
public Object getPropertyValue(Object object) {
int key = ((Integer) object).intValue();
switch (key) {
case S _LENGTH:
return new Integer(achlkbsd.getDesc().length());
case S MODDATE:
return new Integer(acblkbsd.getModdate());
case S MODTIME:
return new Integer(acblkbsd.getModtime());
default:
break;
}

return null;

Developing Text Editor for Action Block Description

At this point we are able to expand opened model sources showing all action blocks defined in the
model. We are able also to show some properties of the action block and size of the text constituting its
description. We need to create text editor now which we can use for editing text contents and properly
integrate editor with Gen Studio.

Eclipse provides support for creating editors that operate on a text. The framework has been designed in
several layers of increasing coupling to the Eclipse Platform. We are going to use parts that can be used
only within a running Eclipse Platform application such as Gen Studio. We do not need to create very
powerful editor. We need to develop something simple with little work.

Defining editor
We need add additional element to the plug-in manifest file extending org.eclipse.ui.editors.
Class DescriptionTextEditor is our editor implementation class.

<extension
point="org.eclipse.ui.editors">
<editor
name="Description Editor"
icon="icons/action block.gif"
contributorClass="org.eclipse.ui.texteditor.BasicTextEditorActionContributor"
class="gen.plugin.example.editors.DescriptionTextEditor"
id="gen.plugin.example.editors.DescriptionTextEditor">
</editor>
</extension>

Preparing input for the editor

The DescriptionTextInput class extends PlatformObject class and implements
IStorageEditorInput interface. We need to have our own class since our implementation of
IStorage input to an editor is object in the Gen model. All editor inputs must implement the
IAdaptable interface so extensions can be managed by the platform's adapter manager. Class
PlatformObject provides defaultimplementation of IAdaptable interface.

The DescriptionTextStorage class extends PlatformObject and implements IStorage
interface. We need our own non default implementation of the interface because action block
description is stored in the Gen model object rather than in the text file. Storage objects have to
implement the TAdaptable interface so extensions can be managed by the platform's adapter
manager. Again class PlatformObject provides default implementation of TAdaptable interface.

The DescriptionTextStorage has two methods. Method getContents () is responsible for
getting input stream to load description text into the text editor. Method updateGenObject () takes
modified text from the editor of the action block description and saves as property of the action block.

The following snapshot of code shows how it is done.

@Override
public InputStream getContents() throws CoreException {
return new ByteArraylnputStream(description.getBytes());

}

public void updateGenObject(String description) {
Model model = mmObj.getModel();
if (model.isReadOnly()) {

return;

}
model.beginUnitOfWork();
mmObj.setTextProperty(PrpTypeCode.DESC, description);
mmObj.setIntProperty(PrpTypeCode.MODDATE, getCurrentDate());
mmObj.setIntProperty(PrpTypeCode.MODTIME, getCurrentTime());
model.commitUnitOfWork();

private int getCurrentDate() {
Calendar now = Calendar.getinstance();
int date = now.get(Calendar.YEAR) * 10000
+ (now.get(Calendar. MONTH) + 1) * 100
+ now.get(Calendar.DAY_OF MONTH);
return date;

}

private int getCurrentTime() {
Calendar now = Calendar.getinstance();
int time = now.get(Calendar.HOUR_OF_DAY) * 10000
+ now.get(Calendar.MINUTE) * 100 + now.get(Calendar.SECOND);
return time;

}

Launching editor

As it was already mentioned user can right click on the Action Block Navigator and if some action blocks
are selected than user is presented with possibility to launch text editor. Class
LaunchEditorActionDelegate is responsible for the action.

<extension
point="org.eclipse.ul.popupMenus">
<objectContribution
adaptable="false"
id="com.ca.gen.jmmi.obkjs.popup”
objectClass="com.ca.gen.jmmi.okjs.Acblkbsd">
<action
class="gen.plugin.example.views.LaunchEditorActionDelegate"”
enablesFor="+"
icon="icons/edit.gif"
id="gen.plugin.example.menu"
label="Edit Action Block Description"
state="false"
tooltip="Open action block description in the text editor."/>
</objectContribution>

</extension>

The LaunchEditorActionDelegate class implements IObjectActionDelegate interface.
Implementing this interface for an object action selected from popup menu for the Action Block
Navigator view. It is used to launch description text editor for the selected action blocks.

The following snapshot shows how implement run () method. We are checking first if text editor is

opened for the selected action block. We do not want open another instance of the editor for the same
action block.

@Override
public void run(lAction action) {
if (selection != null) {
List<?> list = ((IStructuredSelection) selection).toList();
for (Object object : list) {
if (object instanceof Acblkbsd) {
openEditor((Acblkbsd) object);
}
}
}
}

private void openEditor(Acblkbsd acblkbsd) {
if (Utility.isEditorAleadyOpened(acblkbsd)) {
return;
}
IStorageEditorinput input = new DescriptionTextInput(new DescriptionTextStorage(acbhlkbsd));
IWorkbenchPage page = site.getWorkbenchWindow().getActivePage();
if (page !=null) {
try {
page.openEditor(input,
"gen.plugin.example.editors.DescriptionTextEditor");
} catch (PartInitException e) {
Activator.log.log(new MultiStatus(Activator.PLUGIN_ID,
IStatus.ERROR,
"A workbench part cannot be initialized correctly”, e));

Saving and Closing Editor

DescriptionTextEditor overrides two methods of the TextEditor. They are doSave () and
doSaveAs ().

The following snapshot of the code shows how it done. Please notice that method doSaveAs() does not
have any statements. We want modified description to be saved only in the action block object from it
comes from.

@Override
public void doSave(IProgressMonitor progressMonitor) {
try {
DescriptionTextStorage storage = (DescriptionTextStorage) ((DescriptionTextInput) getEditorinput())
.getStorage();
storage
.updateGenObject(getSourceViewer().getTextWidget()
.getText());
super.doSave(progressMonitor);
setPartName(storage.getMmObj().getTextProperty(PrpTypeCode.NAME));
} catch (CoreException e) {
Activator.log
log(new MultiStatus(
Activator.PLUGIN_ID,
IStatus.ERROR,
"A status object describing the cause of the exception”,

e));

@Override
public void doSaveAs() {
!

@Override
public void propertyChanged(Object source, int propld) {
if (propld == |EditorPart.PROP_DIRTY && firstTime) {
firstTime = false;
return;
} else if (propld == |EditorPart.PROP_DIRTY) {
setPartName("*" + getPartName());
}
}

Defining Perspective

Last action is to define on a dedicated perspective using elements defined earlier. The definition of a
new perspective is a two steps process. Firstly, we need to add a perspective extension to the plug-in
manifest file. Secondly, we define a perspective class for the extension within the plug-in.

Gen Studio is architected to have a perspective designed for each aspect of the product. To contribute
our perspective to Gen Studio we must add
com.ca.gen.studio.common.workspace.perspectives.genperspective extension
for the previously added perspective. The following snapshot shows two extensions added to the
plugin.xml file.

<extension
point="org.eclipse.ul.perspectives">
<perspective
name="Maintaining Descriptions"
icon="icons/perspective.gif"
class="gen.plugin.example.perspectives.DescriptionHandlingPerspective"”
id="gen.plugin.example.perspectives.DescriptionHandlingPerspective">
</perspective>
</extension>
<extension
point="com.ca.gen.studio.common.workspace.perspectives">
<genperspective
id="gen.plugin.example.perspectives.DescriptionHandlingPerspective"
mnemonic="M"
priority="9383">
</genperspective>
</extension>

We need to develop DescriptionHandlingPerspective class which implements
IPerspectiveFactory interface. Eclipse executes method createInitialLayout () when
perspective is created first time. The below implementation code adds two views to the perspective.
Action Block View is added on the left of editor area and Property View is designated on right side of the
editor area. Editor area occupies central part of the window and is used to open text editor allowing edit
action block descriptions.

public class DescriptionHandlingPerspective implements |PerspectiveFactory {
private |Pagelayout factory;

public DescriptionHandlingPerspective() {
super();

}

public void createlnitialLayout(IPagelayout factory) {
this.factory = factory;
addViews();
addViewShortcuts();

}

private void addViews() {

factory.setEditorAreaVisible(true);

IFolderLayout topleft = factory.createFolder("topLeft",
IPagelayout.LEFT, 0.20f, factory.getEditorArea());

toplLeft.addView(ActionBlockNavigatorView./D);

IFolderLayout topRight = factory.createFolder("topRight”,
IPagelayout.RIGHT, 0.25f, factory.getEditorArea());

topRight.addView(IPagelayout./D_PROP_SHEET);

private void addViewShortcuts() {
factory.addShowViewShortcut(ActionBlockNavigatorView./D);
factory.addShowViewShortcut(IPagelLayout./D_PROP_SHEET);

Regular perspectives are hidden within Gen Studio, but those with the additional genperspective
extension are displayed in the Window->Show Perspective menu and on the Welcome View page. Our
perspective has name Maintaining Descriptions is added to the bottom of the submenu.

) CAGen Studio)
File Edit | Window Help

S| & Web Service Access Designer

- Show View > = .
Maintz Web View UI Generation
o Close Perspective PStep Interface Designer

k Action Close All Perspectives
Save Perspective As... ©® Maintaining Descriptions

=) de Reset Perspective...

% preferences

Testing and deploying a new plug-in

The Eclipse SDK provides a powerful environment for testing plug-ins. It is beyond the scope of this
document to explain in detail how to test and debug plug-in application. There are many published
articles and books explaining in great detail how to do it. You find also in those publications how to
package and deploy ready plug-in.

Summary

These Gen Studio classes allow the CA Gen customers and Open Initiative partners to write software to
retrieve and update encyclopedia information and integrate its functionality with Gen Studio. Sample
plug-in used in this knowledge document do not show full potential of this new interface, but it should
convince you that writing such plug-ins should not be too difficult.

This knowledge document does not show every detail of how plug-in functioning. Reader really needs to
look into the complete source code to find out how certain things work. The Eclipse SDK allows run plug-
in the Gen Studio context in the debug mode. It would be very helpful to follow logic to better
understand interdependences between classes constituting sample plug-in.

