
qos_aggregate v1.6

QOS_AGGREGATE V1.6

Release history
Version Author Comments

1.0 Gijsbert Wiesenekker Initial release.

1.1 Gijsbert Wiesenekker Supports multiple monitors, source and alarm expressions.

1.2 Gijsbert Wiesenekker Supports delta qos, delta alarms, speed QoS, speed alarms and 
receive alarms.

1.3 Gijsbert Wiesenekker Code cleanup. QoS messages are now prefixed with the name 
of the probe.

1.4 Gijsbert Wiesenekker The documentation is now in PDF format.

1.5 Gijsbert Wiesenekker The probe now supports dynamic source and targets for the 
QoS messages. The code has been greatly simplified in 
preparation to support delta, speed and moving average 
calculations through the expression. AS A CONSEQUENCE 
THIS VERSION NO LONGER SUPPORTS DELTA AND 
SPEED CALCULATIONS, THIS WILL BE ADDED BACK 
IN THE NEXT RELEASE.

1.6 Added a discard option to discard strings from the target.

Description
This probe subscribes to QoS messages and performs calculations on the subscribed QoS messages. 
You can for example take the average of three QoS values. The aggregate will be published as a 
new QoS message.

Installation
Ensure SDK_Perl 5.04 or greater is deployed to the robot that will run qos_aggregate.
Deploy the probe.

Usage
For troubleshooting you can also run the probe from the command-line using:
qos_aggregate.bin [-u <username>] -p <password>

on Windows or
./qos_aggregate.pl [-u <username>] -p <password>

on Linux. The username/passsword is required to login to Nimbus. The default username is 
administrator.

Configuration
Double click the probe in Infrastructure Manager to raw configure it or edit the configuration file 
with a text-editor (recommended):

Name Optional/Required Description
loglevel Optional. The default is 1. Controls the amount of debug information written

to the logfile.

1



qos_aggregate v1.6

Name Optional/Required Description
logfile Optional. The default is 

qos_aggregate.log
The name of the logfile.

logsize Optional. The default is 1000000. The maaximum size of the logfile. The logfile 
will be rotated if the size is exceeded.

interval Optional. The default is 600. The interval at which the probe should check if 
all QoS messages have been received for the 
defined monitors. The interval should be smaller 
than any of the intervals for all QoS watchers (see
below).

The <monitors> section defines the monitors. For each monitor you specify:

Name Optional or required Description
description Optional A description of the monitor.
active Optional. The default 

is no.
If set to yes the monitor is active, if set to no
the monitor will be skipped. This allows you 
to keep monitors for future reference.

qos_definition Required. The qos_definition of the aggregated QoS 
consists of the name, the group, the 
description, the unit and the abbreviation of 
the unit separated by a ‘:’. For example:
IOSTAT_TPS:QOS_APPLICATION:tps:numbe
r:nr

The QoS name will be prefixed by the 
(impersonated) probe name.

qos_float Optional. The default 
is 0.

If equal to 0 the aggregated QoS messages 
will be published as an integer value. If equal
to 1 the aggregated QoS messages will be 
published as a floating-point value.

prid Optional. If defined the aggregated QoS messages will 
be sent as if originating from probe prid. 
This allows you to enhance other probes, and
makes it very easy to add these QoS 
messages to existing list-views and 
performance charts.

source Required. The source of the QoS. You can use a static 
value but also any valid Perl eval() 
expression as described below.

target Required. The target of the QoS. You can use a static 
value but also any valid Perl eval() 
expression as described below.

2



qos_aggregate v1.6

Name Optional or required Description
join Optional. The default 

is source.
If regular expressions are used for the QoS 
messages the probe must be able to 
determine which QoS messages have to be 
aggregated. join specifies the field that 
should be the same for these QoS messages. 
Currently the keywords source, target and
sourcetarget are supported.

expression Required. Any valid Perl eval() expression to 
calculate the aggregated value of the QoS 
message as described below.

alarm_eval Optional. The default 
is undefined.

A comma-separated list of any valid Perl 
eval() expression that refers to the Perl 
variable $e to determine if an alarm has to be
sent. The Perl variable $e will be set to the 
aggregated value. Optionally the expression 
can be prefixed by the alert level using any 
of the keywords INFO:, WARNING:, 
MINOR:, MAJOR: or CRITICAL: For 
example if you want a warning alarm to be 
sent if the aggregated value is between 1 and 
2 and a critical alarm if the value is greater 
than 3 you use
alarm_eval = WARNING:($e > 1) and 
($e < 2),CRITICAL:($e > 3)

interval Optional. The default 
is 600.

The interval in which all of the subscribed 
QoS messages should occur.

The <qos> section specifies the QoS messages to subscribe to as follows:

Name Optional or required Description
name Required The name of the QoS to subscribe to.
source Required The source of the QoS to subscribe to. It can 

be set to a static value, but also to any valid 
Perl regular expression without the leading 
and trailing ‘/’.

target Required The target of the QoS to subscribe to. It can 
be set to a static value, but also to any valid 
Perl regular expression without the leading 
and trailing ‘/’.

3



qos_aggregate v1.6

Name Optional or required Description
discard Required A Perl regular expression to discard strings 

in the target so that they can be joined. Some
of the vmware targets for example contain 
not only the disk name but also a description 
so this allows you to select only the 
diskname.

receive_alarm Optional If specified an alert will be generated if a 
QoS has not been received during 
(receive_alarm * samplerate) seconds. 

The source of the subscribed QoS messages is stored in a Perl array @s in the order specified in the 
configuration file, so
$s[0] will contain the source of the first subscribed QoS message,
$s[1] will contain the source of the second subscribed QoS message,
$s[2] will contain the source of the third subscribed QoS message,
etc.
This allows you to construct a value for the source of the aggregated QoS using a Perl string 
expression like $s[0] . $[s1] . $s[2]

The target of the subscribed QoS messages is stored in a Perl array @t in the order specified in the 
configuration file, so
$t[0] will contain the target of the first subscribed QoS message,
$t[1] will contain the target of the second subscribed QoS message,
$t[2] will contain the target of the third subscribed QoS message,
etc.
This allows you to construct a value for the source of the aggregated QoS using a Perl string 
expression like $t[0] . t[s1] . $t[2]

The samplesvalues of the subscribed QoS messages are collected in a buffer. The buffer contains the
sampletime and the samplevalue of the QoS messages.
When all slots in the buffer have been filled, the probe checks if the time between the oldest and 
newest message is less than or equal to the interval time. If so, the aggregate value is calculated as 
follows:

The samplevalues of the subscribed QoS messages are stored in a Perl array @v in the order 
specified in the configuration file, so
$v[0] will contain the samplevalue of the first subscribed QoS message,
$v[1] will contain the samplevalue of the second subscribed QoS message,
$v[2] will contain the samplevalue of the third subscribed QoS message,
etc.

The QoS expression can refer to the array @v. You can use the variable $e that will be set to the 
value of the aggregated QoS in an alarm expression.
Two examples:
If you want to alert if the aggregated QoS value is below 10 you use the alarm expression:
alarm = $e < 10

4



qos_aggregate v1.6

The following configuration file gives an example on how to scale back interface traffic to Kbit/sec:

<monitors>
   <0>
      description = scale interface traffic to Kbit
      active = no
      qos_definition = INTERFACE_TRAFFIC_KBIT:QOS_APPLICATION:Kbit:kb
      qos_float = 1
      source = $s[0]
      target = $t[0]
      expression = $v[0] / 1024
      alarm_eval = $e > 2
      interval = 600
      <qos>
         <0>
            name = QOS_INTERFACE_TRAFFIC
            source = .*
            target = .*
         </0>
      </qos>
   </0>
</monitors>

The following configuration file gives an example on how to calculate total IOPS for all VMware 
guests:

<monitors>
   <0>
      description = calculate percentage datastore used
      active = no
      qos_definition = TOTAL_IOPS:QOS_APPLICATION:Number:nr
      qos_float = 1
      source = $s[0]
      target = $t[0]
      join = sourcetarget
      expression = ($v[0] + $v[1] )
      interval = 600
      <qos>
         <0>
            name = name-of-qos-for-read-iops
            source = .*
            target = .*
............discard = Disk Average Read Requests Per Second$
         </0>
         <1>
            name = name-of-qos-for-write-iops
            source = .*
            target = .*
............discard = Disk Average Write Requests Per Second$
         </1>
      </qos>
   </0>
</monitors>

5


	QOS_AGGREGATE V1.6
	Release history
	Description
	Installation
	Usage
	Configuration


