
Forum CA SSO

CA SSO - OAuth Authentication

17 Mars 2016

2 © 2014 CA. ALL RIGHTS RESERVED.

Agenda

 OAuth History
 Why OAuth
 OAuth2 Roles
 General call flow
 Resource Owner Password Credentials Grant
 Authorization Code Grant
 Implicit Grant
 Resource Owner Password Credentials Grant
 OAut token format example
 CA SSO - Supported OAuth grant type
 CA SSO - Authentication Scheme
 CA SSO – OAuth configuration file
 CA SSO – OAuth Authentication sequence
 Demo

3 © 2014 CA. ALL RIGHTS RESERVED.

OAuth History

 OAuth began in November 2006 for developing
the Twitter OpenID implementation.

 The OAuth Core 1.0 final draft was released On December
2007.

 The OAuth 1.0 protocol was published as RFC 5849, an
informational Request for Comments, in April 2010.

 The OAuth 2.0 framework was published as RFC 6749, and
the Bearer Token Usage as RFC 6750, both standards track
Requests for Comments, in October 2012.

 OpenID Connect 1.0 is a simple identity layer on top of the
OAuth 2.0 protocol, in April 2015.

4 © 2014 CA. ALL RIGHTS RESERVED.

…

Why OAuth

CA SSO

Web based backends

Authentication
Authorization/

Session Management

RFC 6749 - OAUTH 2.0 Authorization
Framework

6 © 2014 CA. ALL RIGHTS RESERVED.

OAuth defines four roles:

 Resource owner
– An entity capable of granting access to a protected resource.

– When the resource owner is a person, it is referred to as an end-user.

 Resource server
– The server hosting the protected resources, capable of accepting and

responding to protected resource requests using access tokens.

 Client
– An application making protected resource requests on behalf of the

resource owner and with its authorization. The term "client" does not imply
any particular implementation characteristics (e.g., whether the application
executes on a server, a desktop, or other devices).

 Authorization server
– The server issuing access tokens to the client after successfully authenticating

the resource owner and obtaining authorization.

OAuth2 Roles

7 © 2014 CA. ALL RIGHTS RESERVED.

General call flow

8 © 2014 CA. ALL RIGHTS RESERVED.

Resource Owner Password Credentials Grant

The flow illustrated in Figure 3 includes the following steps:

A. The client requests an access token by authenticating with the authorization server and
presenting an authorization grant.

B. The authorization server authenticates the client and validates the authorization grant, and
if valid, issues an access token and a refresh token.

C. The client makes a protected resource request to the resource server by presenting the
access token.

D. The resource server validates the access token, and if valid, serves the request.

E. Steps (C) and (D) repeat until the access token expires. If the client knows the access token
expired, it skips to step (G); otherwise, it makes another protected resource request.

F. Since the access token is invalid, the resource server returns an invalid token error.

9 © 2014 CA. ALL RIGHTS RESERVED.

Authorization Code Grant

10 © 2014 CA. ALL RIGHTS RESERVED.

Authorization Code Grant

The flow illustrated in Figure 3 includes the following steps:

A. The client initiates the flow by directing the resource owner's user-agent to the
authorization endpoint. The client includes its client identifier, requested scope, local state,
and a redirection URI to which the authorization server will send the user-agent back once
access is granted (or denied).

B. The authorization server authenticates the resource owner (via the user-agent) and
establishes whether the resource owner grants or denies the client's access request.

C. Assuming the resource owner grants access, the authorization server redirects the user-
agent back to the client using the redirection URI provided earlier (in the request or during
client registration). The redirection URI includes an authorization code and any local state
provided by the client earlier.

D. The client requests an access token from the authorization server's token endpoint by
including the authorization code received in the previous step. When making the request,
the client authenticates with the authorization server. The client includes the redirection
URI used to obtain the authorization code for verification.

E. The authorization server authenticates the client, validates the authorization code, and
ensures that the redirection URI received matches the URI used to redirect the client in
step (C). If valid, the authorization server responds back with an access token and,
optionally, a refresh token.

11 © 2014 CA. ALL RIGHTS RESERVED.

Implicit Grant

12 © 2014 CA. ALL RIGHTS RESERVED.

Implicit Code Grant

The flow illustrated in Figure 3 includes the following steps:

A. The client initiates the flow by directing the resource owner's user-agent to the
authorization endpoint. The client includes its client identifier, requested scope, local state,
and a redirection URI to which the authorization server will send the user-agent back once
access is granted (or denied).

B. The authorization server authenticates the resource owner (via the user-agent) and
establishes whether the resource owner grants or denies the client's access request.

C. Assuming the resource owner grants access, the authorization server redirects the user-
agent back to the client using the redirection URI provided earlier. The redirection URI
includes the access token in the URI fragment.

D. The user-agent follows the redirection instructions by making a request to the web-hosted
client resource (which does not include the fragment per [RFC2616]). The user-agent
retains the fragment information locally.

E. The web-hosted client resource returns a web page (typically an HTML document with an
embedded script) capable of accessing thefull redirection URI including the fragment
retained by the user-agent, and extracting the access token (and other parameters)
contained in the fragment.

F. The user-agent executes the script provided by the web-hosted client resource locally,
which extracts the access token.

G. The user-agent passes the access token to the client.

13 © 2014 CA. ALL RIGHTS RESERVED.

Resource Owner Password Credentials Grant

14 © 2014 CA. ALL RIGHTS RESERVED.

Resource Owner Password Credentials Grant

The flow illustrated in Figure 3 includes the following steps:

A. The resource owner provides the client with its username and password.

B. The client requests an access token from the authorization server's token endpoint by
including the credentials received from the resource owner. When making the request, the
client authenticates with the authorization server.

C. The authorization server authenticates the client and validates the resource owner
credentials, and if valid, issues an access token.

15 © 2014 CA. ALL RIGHTS RESERVED.

OAut token format example

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Type: application/json;charset=UTF-8

Content-Length: 201

Date: Mon, 14 Mar 2016 14:37:09 GMT

{

"access_token" : "ya29.AHES6ZTtm7SuokEB-RGtbBty9IIlNiP9-eNMMQKtXdMP3sfjL1Fc",

"token_type" : "Bearer",

"expires_in" : 3600,

"refresh_token" : "1/HKSmLFXzqP0leUihZp2xUt3-5wkU7Gmu2Os_eBnzw74"

}

SiteMinder integration

17 © 2014 CA. ALL RIGHTS RESERVED.

CA SSO - Supported OAuth grant type

18 © 2014 CA. ALL RIGHTS RESERVED.

CA SSO - Authentication Scheme

Security Level

Authentication
url

OAuth providers
config file

Proxy Setup

19 © 2014 CA. ALL RIGHTS RESERVED.

CA SSO – OAuth configuration file

oauthproviders.xml

oauth.fcc

20 © 2014 CA. ALL RIGHTS RESERVED.

CA SSO – OAuth Authentication sequence

21 © 2014 CA. ALL RIGHTS RESERVED.

CA SSO – OAuth Authentication sequence

