
1

UMP (USM) Slow Performance Guide and Troubleshooting Checklist 1.1

Updated: June 29, 2016
Author: Steve Danseglio

Summary:

This Knowledge Base Article provides a guide and troubleshooting checklist for analyzing some of the
most common UMP/USM performance issues such as slow response time, slow USM loading, slow alarm
view loading, pages loading indefinitely, slow data retrieval, and other slow performance response and
delay-related issues.

Note that a ‘generally acceptable’ response time for UMP/USM is 0-10 seconds. This range is based on
Support and customer feedback. If loading USM consistently takes more than 10 seconds then please run
through the following checklist items.

Background:

‘Slow’ UMP/USM performance can be caused by a variety of factors which can differ from one
environment to another. This guide provides items to check for narrowing down the potential cause(s)
contributing to slow performance. It also provides suggestions to help alleviate issues which may be
contributing to slow performance.

Environment:

 CA UIM 8.2 or higher

 All relevant UIM/UMP hotfixes should be applied. Hotfixes are downloadable from:

http://www.ca.com/us/support/ca-support-online/product-content/recommended-
reading/technical-document-index/ca-unified-infrastructure-management-hotfix-index.aspx

 Database: Microsoft SQL Server 2012 or higher

 Database Server machine specifications
For CA UIM Database Server requirements based on deployment size, please refer to this link:

https://docops.ca.com/display/UIM84/Prepare+Your+Server+Hardware#PrepareYourServerHar
dware-DatabaseServerRequirements

WARNING:

Your DBA should be consulted before running any of the queries listed below or referenced by this
Article. Moreover, to be safe, queries should be tested within your CA UIM Test/Dev environment
before use in Production.

http://www.ca.com/us/support/ca-support-online/product-content/recommended-reading/technical-document-index/ca-unified-infrastructure-management-hotfix-index.aspx
http://www.ca.com/us/support/ca-support-online/product-content/recommended-reading/technical-document-index/ca-unified-infrastructure-management-hotfix-index.aspx
https://docops.ca.com/display/UIM84/Prepare+Your+Server+Hardware#PrepareYourServerHardware-DatabaseServerRequirements
https://docops.ca.com/display/UIM84/Prepare+Your+Server+Hardware#PrepareYourServerHardware-DatabaseServerRequirements

2

Instructions:

 Determine what version of Microsoft SQL Server database you are running.

To do so, execute the query

 Select @@VERSION

Then expand the column to view and copy the entire resultant string showing the version:

 Microsoft SQL Server 2012 - 11.0.2100.60 (X64)
 Feb 10 2012 19:39:15
 Copyright (c) Microsoft Corporation
 Enterprise Edition (64-bit) on Windows NT 6.0 <X64> (Build 6002: Service Pack 2) (Hypervisor)

IMPORTANT:
For CA UIM we highly recommend using Microsoft SQL Server 2012 or higher, and Enterprise
Edition, NOT Standard. The Enterprise Edition takes advantage of all of the benefits of true
partitioning where SQL Standard edition does not such as:

a) Online partitioning
b) Partition Switching
c) Table and Index partitioning
d) Partition Table Parallelism
e) Allows you to take advantage of the related data_engine configuration settings

We do not recommend using Microsoft SQL Server Standard Edition in medium to large installs
given the limited feature set.

 Determine the total size of your CA UIM database. A query to check current database size and

space available for the CA UIM/Nimsoft SLM database is shown below. Replace the name of the
database with the name of your own CA UIM database and then run it.

use CA_UIM
go
sp_spaceused
go

Is your CA UIM database size greater than 1 TB? If so, please note that running one or more of the
queries listed in this document may take a longer time than expected. If your database is not being
administered by a DBA, and fragmentation is not being checked and defragmented on a regular
daily/weekly basis, or partitioning has not been enabled, this may be also contributing to ‘slow’
performance. Note also that CA UIM databases that are > 1 TB require regular periodic
administration and tuning.

 Determine the level of database fragmentation (for key USM tables fragmentation should be less

than 30%). This is one of the first steps to take in the process and it is a key step.

S_QOS_DATA
CM_COMPUTER_SYSTEM
CM_CONFIGURATION_ITEM

3

CM_CONFIGURATION_ITEM_METRIC
CM_DEVICE
CM_CONFIGURATION_ITEM_DEFINITION
CM_CONFIGURATION_ITEM_METRIC_DEFINITION
NAS_ALARMS
NAS_TRANSACTION_SUMMARY
NAS_TRANSACTION_LOG

Listed below is a query to check the level of fragmentation for all tables or some of the key USM
tables using a modified WHERE clause:

SELECT dbschemas.[name] as 'Schema',
dbtables.[name] as 'Table',
dbindexes.[name] as 'Index',
indexstats.avg_fragmentation_in_percent,
indexstats.page_count
FROM sys.dm_db_index_physical_stats (DB_ID(), NULL, NULL, NULL, NULL) AS
indexstats
INNER JOIN sys.tables dbtables on dbtables.[object_id] = indexstats.[object_id]
INNER JOIN sys.schemas dbschemas on dbtables.[schema_id] = dbschemas.[schema_id]
INNER JOIN sys.indexes AS dbindexes ON dbindexes.[object_id] =
indexstats.[object_id]
AND indexstats.index_id = dbindexes.index_id
WHERE indexstats.database_id = DB_ID()
ORDER BY indexstats.avg_fragmentation_in_percent desc

--This query can be modified to focus on specific tables by appending the table name to the 'where' clause:

 -- WHERE indexstats.database_id = DB_ID() AND dbtables.[name] like '%<table_name_string>%'

Please also refer to the following Knowledge Article “Defragmentation of NimsoftSLM database” for more
information at this link:

http://ecm.ca.com/KB/Pages/authoring/create-KB-Article.aspx?kbid=TEC000004098

Note that executing a fragmentation check for all or some large tables may take a long time depending on the
number of rows. You may choose to run this query after hours or on the weekend if/when the database is not
as busy.

It is also important to note the page count of the query as well. A table that has very few rows is more

efficiently read in as a heap than incurring the cost of an index seek. Therefore, you’ll always see 99%

fragmentation on indexes that are built against small tables.

 Determine how long the data is actually being retained in the tables
Determine how ‘old’ the raw data is in the RN tables and make a decision whether or not you need
to execute a purge of old unwanted data manually (versus using the data_engine) so you can bring
your tables up to date. You may have to manually purge the data because there may be one or more
reasons why the data_engine retention settings are not taking effect, e.g., the nightly data
maintenance job is not completing.

See SQL query statement example below, ‘purging of data by date’

--Purge of data by date.
--See date (as per sampletime below which you need to adjust before running this)

http://ecm.ca.com/KB/Pages/authoring/create-KB-Article.aspx?kbid=TEC000004098

4

Script to check what you’ll be deleting:

declare table_id_cursor cursor for select table_id from s_qos_data
declare @sql varchar(1000)
declare @r_table varchar(64)
declare @h_table varchar(64)
declare @table_id int

OPEN table_id_cursor
FETCH NEXT FROM table_id_cursor into @table_id
WHILE @@FETCH_STATUS = 0
BEGIN
set @r_table = (select r_table from S_QOS_DATA where table_id = @table_id)
set @h_table = (select h_table from S_QOS_DATA where table_id = @table_id)
set @sql = 'select COUNT(*) from ' + @r_table + ' where table_id = ' +
CAST(@table_id AS varchar(10)) + ' and sampletime < ''2014-01-01
00:00:00'''
EXECUTE(@sql)
set @sql = 'select COUNT(*) from ' + @h_table + ' where table_id = ' +
CAST(@table_id AS varchar(10)) + ' and sampletime < ''2014-01-01
00:00:00'''
EXECUTE(@sql)
FETCH NEXT FROM table_id_cursor into @table_id
END
CLOSE table_id_cursor
DEALLOCATE table_id_cursor

Script to actually delete the data (WARNING-> BACK UP YOUR DATABASE
FIRST!!!)

declare table_id_cursor cursor for select table_id from s_qos_data
declare @sql varchar(1000)
declare @r_table varchar(64)
declare @h_table varchar(64)
declare @table_id int

OPEN table_id_cursor
FETCH NEXT FROM table_id_cursor into @table_id
WHILE @@FETCH_STATUS = 0
BEGIN
set @r_table = (select r_table from S_QOS_DATA where table_id = @table_id)
set @h_table = (select h_table from S_QOS_DATA where table_id = @table_id)
set @sql = 'delete from ' + @r_table + ' where table_id = ' +
CAST(@table_id AS varchar(10)) + ' and sampletime < ''2014-01-01
00:00:00'''
EXECUTE(@sql)
set @sql = 'delete from ' + @h_table + ' where table_id = ' +
CAST(@table_id AS varchar(10)) + ' and sampletime < ''2014-01-01
00:00:00'''
EXECUTE(@sql)
FETCH NEXT FROM table_id_cursor into @table_id
END
CLOSE table_id_cursor

5

DEALLOCATE table_id_cursor

Depending on how much data is in the database you may have to use a slightly different
approach/query than the one described above. See the section “How to purge data without
running out of memory or resources” towards the end of this document.

 Note that when you reduce data retention using the data_engine settings, “Delete raw data older
than ‘x’ days” it must be done on smaller time periods of data at a time in a stepped fashion of 15-
20 days at a time until you reach your goal, otherwise the data maintenance will most likely not
have a chance to finish in time during the nightly maintenance period.

That being said, once again this should be tested in a Test/DEV environment first and reviewed and
approved by your CA UIM DBA BEFORE using it in Production. Your DBA may have their own
preferred method to purge old data from the database.

 Determine if there are very large tables from specific probes
For example, probes such as exchange_monitor, ntperf, interface_traffic, vmware, etc., could be
collecting tons of data, and the QOS_* tables may contain millions of rows. To quickly see the
number of rows for the QOS being collected in the database you can click on the Status button in
the data_engine:

Run this query in MS SQL Server studio to display row count and data size:

USE [CA_UIM]
GO
CREATE TABLE #temp (
table_name sysname ,
row_count INT,
reserved_size VARCHAR(50),

6

data_size VARCHAR(50),
index_size VARCHAR(50),
unused_size VARCHAR(50))
SET NOCOUNT ON
INSERT #temp
EXEC sp_msforeachtable 'sp_spaceused ''?'''
SELECT a.table_name,
a.row_count,
COUNT(*) AS col_count,
a.data_size
FROM #temp a
INNER JOIN information_schema.columns b
ON a.table_name collate database_default
= b.table_name collate database_default
GROUP BY a.table_name, a.row_count, a.data_size
ORDER BY CAST(REPLACE(a.data_size, ' KB', '') AS integer) DESC
DROP TABLE #temp

Once you have this information, this will help guide you how to proceed. For example if you find the
largest tables are RN_QOS_DATA_* tables then you should look to find out which probe’s QOS is
associated with those tables and find out if an excessively large amount of monitoring was enabled.

In some cases it is best to disable any unnecessary monitoring and collection of QOS where the

tables are building too fast and the rows added to the tables per hour or day are very high, e.g.,

greater than 2000. Note that some probes enable a ton of monitoring ‘out of the box,’ e.g.,

exchange_monitor performance (perfmon) monitors, and hence those tables can build very quickly.

You may want to prune the data/truncate the tables if your response times are slow due to these

tables. Note that as of the writing of this document, there is currently a new version of the perfmon

probe. The old perfmon probe was erroneously creating CI entries in the CI_CONFIGURATION_ITEM

table for each dynamic monitoring profile that was created in response to the monitoring requested

from the Exchange Monitoring probe. No QOS data is ever generated for these CI’s so they should

not be created as CI’s. The new perfmon build no longer creates the CI records hence the table is

not constantly updated with a ton of new entries each hour. If you need further information about

this please contact CA support for more information.

Microsoft SQL Server profiler and other tools may help you determine which jobs are taking the
longest/most resources. SQL Server profiles can e started from the Tools Menu within SQL Server
Management studio.

https://msdn.microsoft.com/en-us/library/ms173799%28v=sql.110%29.aspx

Note also that enabling UMP/USM debug mode will reveal which tables are being accessed during
performance issues.

https://msdn.microsoft.com/en-us/library/ms173799%28v=sql.110%29.aspx

7

You should also check to see if the samples are being deleted properly from the RN Tables, by

looking at the oldest 'sampletime' value in the raw data tables and make sure it is not older than the

amount of data that should be retained (as per the data_engine settings).

You can check the data_engine retention settings (“Delete raw data older than” GUI option, or

delete_raw_samples value in Raw Configure mode) and compare it to the results of a query such as:

SELECT * from RN_QOS_DATA_0122 ORDER BY sampletime ASC

The data should not be older than the retention settings allow.

Also make sure the database is set to use a "SIMPLE" recovery model and not "FULL,” but more
importantly the best practices listed here in the Article: “CA UIM (Nimsoft) Database Best Practices
for MS SQL Server” should be reviewed and followed:

http://ecm.ca.com/KB/Pages/authoring/create-KB-Article.aspx?kbid=TEC000003224

 Disk I/O on the MS SQL Server

Determine and Analyze I/O Wait
I/O Wait is the percentage of time your processors are waiting on the disk. On UNIX/Linux you can
check your I/O wait percentage via top. If your I/O wait percentage is greater than (1/# of CPU
cores) then your CPUs are waiting a significant amount of time for the disk subsystem to catch up.
On Windows you could use the Resource Monitor Disk stats or specific queries such as below.

DMV - sys.dm_io_virtual_file_stats

This DMV will give you cumulative file stats for each database and each database file including both
the data and log files. Based on this data you can determine which file is the busiest from a read
and/or write perspective.

The output also includes I/O stall information for reads, writes and total. The I/O stall is the total
time, in milliseconds, that users waited for I/O to be completed on the file. By looking at the I/O
stall information you can see how much time was waiting for I/O to complete and therefore the
users were waiting.

Note that the data that is returned from this DMV is cumulative data, which means that each time
you restart MS SQL Server, the counters are reset. Since the data is cumulative you can run this
once and then run the query again in the future and compare the deltas for the two time periods. If
the I/O stalls are high compared to the length of the time period then you may have an I/O

bottleneck. Here is a sample query you can use. Note you can use the ORDER BY and sort the
results differently, e.g., ORDER BY io_stall DESC, and so on.

SELECT
cast(DB_Name(a.database_id) as varchar) as Database_name,
b.physical_name, *

http://ecm.ca.com/KB/Pages/authoring/create-KB-Article.aspx?kbid=TEC000003224

8

FROM
sys.dm_io_virtual_file_stats(null, null) a
INNER JOIN sys.master_files b ON a.database_id = b.database_id and a.file_id =
b.file_id
ORDER BY Database_Name

 Network speed/available bandwidth

Check connection speed (upload/download) from the specific clients/browser and also on/from the
local UMP machine itself, e.g., http://www.speedtest.net/

 Determine the size of the nas transactionlog.db file on the primary hub.

It should not be larger than ~300 MB

 Compare local versus remote connections and performance
Check performance/response times using the specific browser developer tools or Fiddler2 and
identify the longest timings – see example screen shot below.

 Perform network tests

You can use ping/tracrt/traceroute or other tools such as iPerf and determine if there is any network
latency to/from the UMP machine(s) and database being accessed. Ask your network team to check
using their own tool if necessary.

 Verify if there is a proxy in front of UMP and verify its configuration.

 Multi-UMP environment

In the case of multi-UMP instances, verify if the UMP instances have been installed and configured
correctly as per the Help documentation and if there is a Load Balancer in front of UMP, verify its
configuration as well. You may want to test each UMP instance by accessing each node directly to
see if they respond better than going through the VIP.

http://www.speedtest.net/

9

 UMP machine specifications
For CA UIM Database Server requirements based on deployment size, please refer to this link:

https://docops.ca.com/display/UIM84/Prepare+Your+Server+Hardware#PrepareYourServerHardwa
re-UMPServerRequirements

 Key wasp settings

 wasp memory
 Increase the maximum Java memory allocated to the wasp probe. Minimum recommendation
 for med-large environment:

java_mem_max = -Xmx8192m
java_mem_init = -Xms2048m

nimpool_timeout
If you are getting errors like connection I/O error, socket error, connection timeout then try
increasing nimpool timeout in the wasp configuration to 300 seconds.

 Database partitioning and status

Is the data_engine database partitioning option enabled and has partitioning been completed?

How to determine if tables were partitioned/partitioning was completed:

This query will show you the partitions for a given table (just change the number in the RN table):

declare @lTableName varchar(max) = 'RN_QOS_DATA_0001';

select
'Table Name' = o.name,
'Partition Number' = p.partition_number,
Rows = p.Rows,
'Partition Range' = case when prv.value is null then '< ' +
convert(varchar(10),(select convert(datetime, min(prv.value)) from sys.objects
inner join sys.indexes i on o.object_id = i.object_id and i.index_id = 1 inner
join sys.partitions p on i.index_id = p.index_id inner join sys.partition_schemes
s on i.data_space_id = s.data_space_id left outer join sys.partition_range_values
prv on s.function_id = prv.function_id where prv.boundary_id = 1), 120)
else '>= ' + convert(varchar(10),prv.value,120) + ' and < '+ convert(varchar(10),
dateadd(DD, 1, convert(datetime, prv.value)), 120) end,
'Days From Today' = isnull(case convert(nvarchar(5), datediff(day, sysdatetime(),
convert(datetime, prv.value))) when '0' then '0 *** TODAY ***' else
convert(nvarchar(5), datediff(day, sysdatetime(), convert(datetime, prv.value)))
end, nchar(8734))
from
sys.objects o
inner join sys.indexes i on o.object_id = i.object_id and i.index_id = 1
inner join sys.partitions p on p.object_id = i.object_id and p.index_id=i.index_id
inner join sys.partition_schemes ps on i.data_space_id=ps.data_space_id

https://docops.ca.com/display/UIM84/Prepare+Your+Server+Hardware#PrepareYourServerHardware-UMPServerRequirements
https://docops.ca.com/display/UIM84/Prepare+Your+Server+Hardware#PrepareYourServerHardware-UMPServerRequirements

10

left outer join sys.partition_range_values prv on ps.function_id=prv.function_id
and prv.boundary_id+1=p.partition_number
where o.name like @lTableName
group by o.name, o.object_id, p.partition_number, p.rows, prv.value
order by o.name asc;

***Tables are generally partitioned in sequential order, so if you run this in the last table, you will
know if it completed. That is how you can tell for sure.

The other place to look is the tbnlogging table. It should have an entry for spn_de_DataMaint
indicating that the data_engine maintenance has completed. If that table is empty:

Set the table_maintenance_loglevel in the data_engine to log to the tbnLogging table. We can
then see what specifically the data_engine does on table maintenance.

1. Deactivate the data_engine probe
2. Using Raw Configure mode (SHIFT + right click->Raw Configure), set the loglevel to '6'

and set the table_maintenance_loglevel to '6'
3. set the "logsize" key to 50000 so you can also watch/search the log.

To check the table results/activity, you can execute this query but note that table maintenance
may take some time to finish and you’ll see rows being added in the query output as the
maintenance run continues when you run:

select * FROM tbnLogging where Event like '%spn_de_DataMaint%' order by id DESC

Below is an example from the tbnlogging table during data_engine partitioning activity:

> spn_de_PartitionAdmin__CreateIndexes(DN_QOS_DATA_0007 DN_QOS_DATA_0007 DN

psnDN_QOS_DATA_0007)

- create partition scheme psnDN_QOS_DATA_0007 as partition pfnDN_QOS_DATA_0007

all to ([primary])

- create partition function pfnDN_QOS_DATA_0007(datetime) as range right for

values

('20160306','20160307','20160308','20160309','20160310','20160311','20160312','

20160313','20160314','20160315','20160316','20160317','20160318','20160319','20

160320','20160321','20160322','20160323','20160324','20160325','20160326','2016

0327','20160328','20160329','20160330','20160331','20160401','20160402','201604

03','20160404','20160405','20160406','20160407','20160408','20160409','20160410

','20160411','20160412','20160413','20160414','20160415','20160416','20160417',

'20160418','20160419','20160420')

- Final RetentionTime = 30 Extra partitions = 15

- tbn_de_DataMaintConfig RetentionTime = 30 Extra partitions = 15

> spn_de_PartitionAdmin__PartitionTable(DN_QOS_DATA_0007 DN)

> spn_de_DataMaint_DeleteOldData(DN, 7, Apr 5 2016 12:00AM)

< spn_de_DataMaint_DeleteOldData(HN, 7, Apr 5 2016 12:00AM) ---> OK

< spn_de_PartitionAdmin__ShiftTable(HN_QOS_DATA_0007,HN,2016-04-05 00:00:00)

deleted null rows ---> OK

What you will see in the tbnlogging table is an entry like this: “spn_de_DataMaint <” and

“spn_de_DataMaint >”. The “<” and “> indicate the start and end of maintenance. It may have

an entry for each qos id, and the ids will be sorted in ascending order, so when the last one

completes, it is done.

11

Note that there is no ‘final’ log message or entry.

It will do the partitioning on the tables one by one in ascending order. When the last table is

done, it is completed.

 data_engine Indexing

o Ensure that the data_engine option for index maintenance, is enabled for you database. This
allows more efficient database maintenance. For more information please refer to:

https://docops.ca.com/ca-unified-infrastructure-management-probes/en/alphabetical-
probe-articles/data_engine/data_engine-versions-8-0-8-3/v8-0-data_engine-im-
configuration

 Maintenance Tables

o Check the row count for maintenance_* tables and see if it has > 500 records. This may

contribute to performance problems. These tables may need to be truncated.

select count(*) from MAINTENANCE_SCHEDULE
select count(*) from MAINTENANCE_SCHEDULE_MEMBERS
select count(*) from MAINTENANCE_WINDOW

The effects of too many entries in these tables may case USM slow performance or you may see the
flash plugin crashes/hangs the browser. This could apply to other scenarios where there are very
large tables or tables that contain a lot of corrupt data.

First take note of the number of rows in each of these maintenance tables:

select count(*) from maintenance_window;
select count(*) from maintenance_schedule;

A high number of expired maintenance schedules can slow down USM performance, e.g., > 300. You
can check for those via the USM if it is responsive enough or in the database under the table
MAINTENANCE_SCHEDULE, and also for schedule entries in the table MAINTENANCE_WINDOW that
are not linked to a SCHEDULE_ID.

These entries are being checked when you open the USM, and this can cause slow performance as
well. Unfortunately, at this moment the deletion of expired schedules does not cause the entries in
the MAINTENANCE_WINDOW to be deleted, and we found that when you do this manually, it will

https://docops.ca.com/ca-unified-infrastructure-management-probes/en/alphabetical-probe-articles/data_engine/data_engine-versions-8-0-8-3/v8-0-data_engine-im-configuration
https://docops.ca.com/ca-unified-infrastructure-management-probes/en/alphabetical-probe-articles/data_engine/data_engine-versions-8-0-8-3/v8-0-data_engine-im-configuration
https://docops.ca.com/ca-unified-infrastructure-management-probes/en/alphabetical-probe-articles/data_engine/data_engine-versions-8-0-8-3/v8-0-data_engine-im-configuration

12

improve USM performance (removing expired schedules from MAINTENANCE_SCHEDULE and
orphaned entries from MAINTENANCE_WINDOW.

Even if the row counts are above 300, this could slow down USM performance/response time.

You could then delete from maintenance_window using the END_TIME timestamp as a filter and/or
maintenance_schedule using SCHEDULE_NAME or START_TIME as a filter to reduce the number of
rows. You can delete based on date, Ad Hoc schedules, etc. to minimize the entries.

Moving forward, UIM development may institute cleanup of the maintenance tables but that has
not yet been implemented.

Also pay close attention to the CM_CONFIGURATION_ITEM table as too many rows, e.g., > 1.5M can
slow down USM display rendering.

Check this table for dirty data using this query:

declare @str varchar(255)
declare @i int
set @str = ''
set @i = 32
while @i <= 127
begin
set @str = @str + '|' + char(@i)
set @i = @i + 1
end

select * from cm_configuration_item
where ci_name like '%[^' + @str + ']%' escape '|'

--then if you see corrupt data, use DELETE FROM to delete those rows.

--delete from cm_configuration_item
--where ci_name like '%[^' + @str + ']%' escape '|'

 Check nas table row counts

o Check the nas tables in the database, e.g., nas_alarms, nas_transaction_summary etc. to see
if they have very high row counts, e.g., if they contain more than 3000 rows, it could take
time for UMP/USM to load alarms. You can check the tables directly by running a select
count(*) from <nas_table> from MS SQL Server Studio to see if it takes a long time to return
the results.

 Check UMP Machine resources

o Check overall resource utilization and resource availability in detail, e.g., CPU, Memory, I/O.

Keep in mind that you can implement some self-health monitoring by using probes such as
cdm, processes, and other probes to monitor the UMP machine and create performance
reports so you can see trends over time, e.g., for CPU, Memory etc. Also note that in some

13

cases a simple restart of the primary hub and UMP can resolve slow performance which may
be due to resource utilization issues.

 Check Microsoft SQL Server Memory

o To support a large UIM environment, you need a minimum of 64 GB of RAM and likely 128

GB RAM with SQL dynamically managing its own memory (not limited). See Memory-

>Server Properties in SQL Server. Make sure you are not consistently using all of the

allocated SQL Memory, and/or there is no significant room to expand.

Helpful links:

o Server Memory Server Configuration Options
https://msdn.microsoft.com/en-us/library/ms178067.aspx?f=255&MSPPError=-2147217396

o Optimizing Server Performance Using Memory Configuration Options

https://technet.microsoft.com/en-us/library/ms177455%28v=sql.105%29.aspx

 UMP/USM slowness due to data ‘Loading’ issues

o Check for corrupt data. Sometimes it is necessary to search for and eliminate corrupt data

in tables such as S_QOS_DATA, NAS_ALARMS, CM_COMPUTER_SYSTEM, etc. especially
when the UMP/USM cannot display the data or the page displays and remains at “Retrieving
data..." or the interface/module simply never finishes ‘loading’ data or hangs. The queries
referenced in the Article links below can be run in the SLM portlet or a database tool such as
MS SQL Server studio. See examples of corrupt/bad data below highlighted in yellow.

o How to search for bad/special/non-printable characters in MS SQL Server

http://ecm.ca.com/KB/Pages/authoring/create-KB-Article.aspx?kbid=TEC000005335

o How to search for bad/special/non-printable characters in MySQL

https://msdn.microsoft.com/en-us/library/ms178067.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/ms177455%28v=sql.105%29.aspx
http://ecm.ca.com/KB/Pages/authoring/create-KB-Article.aspx?kbid=TEC000005335

14

http://ecm.ca.com/KB/Pages/authoring/create-KB-Article.aspx?kbid=TEC000005283

 Anti-Virus

o Check to make sure that antivirus or network security is not interfering with the connection

between UMP and the client browser (Check UMP machine and local browser session.) The
UMP Machine should have a FULL exception for all CA UIM (Nimsoft) programs in the Anti-
Virus configuration. In some rare cases we have seen AV blocking/scanning when it
shouldn’t due to a bug in the vendor’s AV software.

Additional Information:

UMP Debug Mode

You can enable UMP’s debug mode for USM or other portlets exhibiting slow
performance/loading. This allows you to reveal the underlying queries being run when the data
is being fetched from the database/tables. You can then test/manipulate and test them
manually to see how they perform.

Please refer to this Knowledge Article, “How can I enable DEBUG mode for UMP, USM,
ListViewer or Performance Report displays?” at the following link, for more detailed information:

http://ecm.ca.com/KB/Pages/authoring/create-KB-Article.aspx?kbid=TEC000003890

Poor performing queries
To identify slow running/poor performing queries in general without using debug mode you can
run a query like this to generate a table of stats and the poor performing queries:

SELECT top 15
 creation_time
 ,last_execution_time
 ,total_physical_reads
 ,total_logical_reads
 ,total_logical_writes
 , execution_count
 , total_worker_time
 , total_elapsed_time
 , total_elapsed_time / execution_count avg_elapsed_time
 ,SUBSTRING(st.text, (qs.statement_start_offset/2) + 1,
 ((CASE statement_end_offset
 WHEN -1 THEN DATALENGTH(st.text)
 ELSE qs.statement_end_offset END
 - qs.statement_start_offset)/2) + 1) AS statement_text
FROM sys.dm_exec_query_stats AS qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st
ORDER BY total_elapsed_time / execution_count DESC;

Diagnostic Queries

http://ecm.ca.com/KB/Pages/authoring/create-KB-Article.aspx?kbid=TEC000005283
http://ecm.ca.com/KB/Pages/authoring/create-KB-Article.aspx?kbid=TEC000003890

15

Listed below are a few diagnostic queries to help you assess performance of the backend
Microsoft SQL Server as it relates to UMP/USM response times, data/portlet loading and/or
performance.

 Identify current users, sessions and processes

 exec sp_who2

Provides information about current users, sessions, and processes in an instance of the
Microsoft SQL Server Database Engine. The information can be filtered to return only
those processes that are not idle, that belong to a specific user, or that belong to a
specific session.

 Wait Stats

 SELECT * FROM sys.dm_os_wait_stats ORDER BY wait_time_ms desc

 Identify current requests

 select * from sys.dm_exec_requestsfs

 Returns information about each request that is executing within SQL Server.

How to purge data without running out of memory or resources

There are various ways of effectively purging unnecessary/outdated data from a large database
(> 1 TB) but here is one that I found to be effective. This approach should not be used/executed
during business hours as it can take significant time to complete.

Make sure that the date is NOT set too far out to delete any records; this (the sampletime value)
is a “check valve” to control what data should be deleted.

The sampletime value can be tested and then adjusted to delete a small amount of data of
course, and then increased once successful.

----- purge script -----
-- Note that the TOP (<value>) should be increased each time until all of the unwanted data has
been purged

DECLARE qos_def_cursor CURSOR READ_ONLY FAST_FORWARD FOR SELECT DISTINCT
qos_def_id FROM S_QOS_DATA;
DECLARE @sql VARCHAR(1000);
DECLARE @r_table VARCHAR(64);
DECLARE @h_table VARCHAR(64);
DECLARE @qos_def_id VARCHAR(4);

OPEN qos_def_cursor

FETCH NEXT FROM qos_def_cursor INTO @qos_def_id WHILE @@FETCH_STATUS = 0

16

BEGIN
 SET @r_table = 'RN_QOS_DATA_' + RIGHT('0000' + @qos_def_id, 4);
 SET @h_table = 'HN_QOS_DATA_' + RIGHT('0000' + @qos_def_id, 4);

 SET @sql = 'DELETE TOP (3000) FROM ' + @r_table + ' WHERE sampletime
< ''2016-06-20 00:00:00.000''';
 PRINT CHAR(13) + CHAR(13) + 'Deleting from ' + @r_table;
 EXECUTE(@sql)

 SET @sql = 'DELETE TOP (3000) FROM ' + @h_table + ' WHERE sampletime
< ''2016-06-20 00:00:00.000''';
 PRINT CHAR(13) + 'Deleting from ' + @h_table;
 EXECUTE(@sql)

 FETCH NEXT FROM qos_def_cursor INTO @qos_def_id;
END

CLOSE qos_def_cursor;
DEALLOCATE qos_def_cursor;

-- check results against a given table
-- select * from rn_qos_data_0001 order by sampletime DESC

----- end script -----

The script needs to be run with the 'top' argument, and then each time it finishes, increase the
top <value> and run it until ALL of the older data has been deleted, e.g., change the 'top' value
to:

1000
3000
5000
10000
50000
100000
500000
1000000
5000000

Below are some examples from a production system of how long it may take to purge the data.

3000 records – 4min
10000 records – 7min
50000 records – 25min
100000 records – 40min
500000 records – 1hr30min
1000000 records – 2hr30min
5000000 records – 3hr

17

As you can see, each run with a higher top value will take longer than the previous run.

You can check the results before and then after the query is executed using:

select count(*) from RN_QOS_DATA_0001 order by sampletime ASC
(and check the date)

Misc:

There is a known UMP/USM performance issue when the browser is displayed on a Mac's Retina
Display screen (effective resolution 2880x1800). When the browser is displayed on a non-retina
display (resolution 1920x1080), USM performance is very good, as expected. UIM 8.3.1. There is
an available hotfix for this issue. If you need it please contact CA UIM Support.

