
Entropy is costing time and money.

Why shouldn’t you care?

Alan Baugher, Sr. Principal Architect

March, 2017 (Refresh)

2 © 2017 CA. ALL RIGHTS RESERVED.

Entropy Quick Test on Unix/Linux Servers
The Entropy range is from 0 - 4096

Execute this command on your Linux/Unix platforms:

watch -n 1 cat /proc/sys/kernel/random/entropy_avail

If the return value is less than 1000, then please think about adding an Entropy Pump to all of your server(s).

Open another Putty Window, then execute this command to emulate a password command:

time dd if=/dev/random bs=8 count=1 2> /dev/null | base64

Want to know what processes are using Entropy? Execute this command:

lsof | grep -E "/dev/[u]{0,1}random“ {assumes that lsof is installed & user has access to run this command}

*** Please do NOT use the “software hack” of replacing /dev/random with a soft link from /dev/urandom ***
*** The OS, upon any update, may rebuild the device driver of /dev/random ; /dev/random is a BLOCKING device driver ***

3 © 2017 CA. ALL RIGHTS RESERVED.

Entropy Impacts to Business & Infrastructure
▪ Business Concerns:

– User Experience
– Reliability
– Productivity decreased while waiting for systems.
– Cost

▪ Over-purchase of assets to address perceived low performance with existing environment infrastructure
▪ Resources (Internal/Vendor/Consultants) waiting on cycle of solutions for testing or production use

– Audit Impact of FIPS-140-2 functionality.

▪ Technical Concerns:
– Performance for ALL JVM (Weblogic / JBOSS / WebSphere)

▪ Startup time is increased
▪ LDAP/S binds duration is increased.

– Performance & Install for CA IM JCS (IAMCS) with FIPS
▪ Connections to endpoints with SSL/TLS security is increased
▪ Impact to LDAP/S and JDBC/S
▪ Install will fail if FIPS is enabled

– Performance for CA SSO/Siteminder
▪ LDAP/S binds may take over 90+ seconds instead of < 1 second
▪ Startup time is increased.
▪ Installation time is increased.

– Any SSL/TLS/Certs Generation solutions on UNIX/Linux - Including Any Directory or Database solution.

4 © 2017 CA. ALL RIGHTS RESERVED.

BUSINESS HIGH LEVEL SUMMARY

▪ Entropy is used to secure the Cloud and Servers
– It is used for all eCommerce sites, financial sites, etc.
– It is ubiquitous for ALL security solutions
– It is used in ALL J2EE platforms (Oracle Weblogic, IBM Websphere, RHEL JBOSS)
– It is used for HTTPS, JDBC(S), LDAPS, etc. protocols.

▪ Compliance
– Is Your Entropy “random” enough?

– http://www.forbes.com/2009/07/30/cloud-computing-security-technology-cio-network-cloud-computing.html

– https://www.schneier.com/blog/archives/2013/10/insecurities_in.html

– Cost
▪ Is Entropy making you over purchase hardware for perceived performance challenges?

– The very design of Entropy on Linux/UNIX platforms, with default settings, impacts startup and ongoing processes that
appear to be “slow” or “halt”.

▪ Do NOT accept default settings
– Require the IT team investigate use of entropy “pumps” to drive performance before the next investment of H/W for

performance issues.

http://www.forbes.com/2009/07/30/cloud-computing-security-technology-cio-network-cloud-computing.html
https://www.schneier.com/blog/archives/2013/10/insecurities_in.html

5 © 2017 CA. ALL RIGHTS RESERVED.

TECHNICAL HIGH LEVEL SUMMARY

▪ Background:
– OS vendors have configured OS packages (OpenSSL/SSHD/Libcrypt) to default to /dev/urandom for FIPS-

140-2 and non-FIPS certification.

– Most non-OS vendor cryptography software is hard coded or default configured to use /dev/random on

Linux/UNIX OS

– /dev/random is passive and a “blocking” device driver

▪ Recommendation:
– Do NOT follow advice that destroy the trust relationship between /dev/random and /dev/urandom with

softlinks [OS will likely rebuild them away; and you will be back to original challenge]

– Use a “pump” to push in entropy to /dev/random ”well”. [which will “feed” /dev/urandom]

– Pick an acceptable source for the “pump” to maintain FIPS-140-2 certification. [Acceptable sources are

hardware inducing “entropy”]

▪ Validation:
– Monitor startup times before and after using a “pump”.

▪ Get the performance expected from your virtualized environment!

6 © 2017 CA. ALL RIGHTS RESERVED.

What is Entropy / Entropy Pool
- An Entropy Pool is used by cryptography routines within
software, e.g. SSL, TLS, Certificates, encryption software,
etc.
-Two device drivers exist on UNIX/Linux OSes to support use
of an entropy pool.

- /dev/random collects it’s randomness via environment
(physical input via mouse, CPU, Keyboard, Clock, USB
devices, etc.). This is the default driver used by
cryptography software (direct/indirect), to ensure a high
level of confidence in the security of the output.

-/dev/urandom collect it’s randomness by reusing the
existing “entropy pool”, which provides pseudo-random
numbers.

-Many OS vendors have passed FIPS-140-2 certifications for
OpenSSL/SSHD/Libcrypt using /dev/urandom; as long as the
underlying trust relationship between /dev/random and
/dev/urandom is not disturbed.

/dev/random

/dev/urandom

Software
routine to

“reuse”
entropy pool

7 © 2017 CA. ALL RIGHTS RESERVED.

What are these device drivers?

- /dev/random is used by default for all cryptography
routines (direct/indirect) and is a “blocking” device driver.

Challenge: Intensive encryption processes may deplete
the entropy pool of /dev/random and appear to “halt”
software until the entropy pool is filled by additional
environmental randomness.

This is observable during installation of certain encryption
solutions where no cpu/no memory is used; until entropy
pool number is sufficient for an installation to continue.
/dev/random is consider a “blocking” pool for this reason,
to ensure security.

-/dev/urandom is a “non-blocking” device driver that
is constantly refreshed by the reuse of the entropy pools
to provide pseudo-random numbers. This device driver
never gets depleted.

/dev/random

/dev/urandom

Software
routine to

“reuse”
entropy pool

8 © 2017 CA. ALL RIGHTS RESERVED.

Why is this a concern or issues?

Greater Challenge for virtual / headless servers:

The environmental devices used to populate /dev/random are
reduced and may not be configured to refresh the population of
randomness to /dev/random.

When the entropy pool is depleted, software with cryptography
routines are severely impacted with regards to performance,
e.g. start-up duration of software, bind durations, generation of
certificates, etc.

Example:
J2EE (Oracle Weblogic/IBM WebSphere/RHEL JBOSS) startup
may take > 15minutes instead of < 5minutes.

Web Access Control solutions bind to LDAP/S user store may
take 90+ seconds to complete.

-/dev/urandom is constantly refreshed by the reuse of the
entropy pools. This device driver never gets depleted, even for
“virtual/headless” servers.

/dev/rando
m

/dev/urando
m

Software
routine to

“reuse”
entropy pool

9 © 2017 CA. ALL RIGHTS RESERVED.

How to address this entropy challenge on
virtualized / headless servers

10 © 2017 CA. ALL RIGHTS RESERVED.

OS RNGD Daemon

The OS RNGD (random number generator daemon) was introduced soon after entropy pools were created.

yum –y install rng-tools

This solution acts as a “pump” for /dev/random from any available hardware device driver that can be used for refreshing
the entropy on a scheduled basis. Any “supported” hardware may be used as “input” and “output” to /dev/random.

This ensure that the entropy pool is being populated by “environmental” processes and NOT software pseudo random
generators to gain a high confidence in the level of security provided by the entropy pool.

This tool is available on most UNIX/Linux Flavors (RHEL/CentOS/SuSE/Ubuntu/etc.) or can be downloaded/compiled for the
UNIX/Linux OS.

No financial cost for use or deployment of this tool.

This tool is provided with a configuration file, that allows an administrator to define how often to “prime the pump” to
refresh /dev/random. The configuration file is available under /etc/sysconfig/rngd

11 © 2017 CA. ALL RIGHTS RESERVED.

RNGD & Entropy Pool with Hardware
Device

- RNGD daemon/service will “pull”
randomness from an existing
“supported” physical asset and push this
into the /dev/random entropy pool.

Settings within RNGD config file may
limit that only ½ of the Entropy Pool is
populated via this daemon, to avoid
overwhelming/ dominating the Entropy
Pool with data from one hardware
device.

/dev/random

/dev/urandom

Software
routine to

“reuse”
entropy pool

RNGD

12 © 2017 CA. ALL RIGHTS RESERVED.

RNGD & Entropy Pool with no hardware
devices

- If no hardware devices are available, then RNGD
may be configured to pull entropy from the
pseudo device driver. This will provide an entropy
pool that is partly filled (1/2) by environment and
partly (1/2) by software pseudo encryption
processes.

- This process is consider to be generally
acceptable for non-Production systems & non-FIPS
Production systems, to improve performance for
solutions that use cryptography, e.g. Apache, J2EE
platforms (RHEL JBOSS, IBM WebLogic, Oracle
Websphere), Web Access Control solutions,
SSL/TLS, LDAP(S), etc.

Example:
EXTRAOPTIONS="-i -o /dev/random -r
/dev/urandom-t 10 -W 2048"

/dev/random

/dev/urandom

Software
routine to

“reuse”
entropy pool

RNGD

1- Acceptable for DEV/QA/TEST environments
2- Acceptable for Production Non-FIPS environments after
client’s security/architect team has reviewed, validated
against client’s security policy, and performed an assessment.

13 © 2017 CA. ALL RIGHTS RESERVED.

Alternative Methods

▪ HAVEGED (See notes further down in deck)

▪ Alternatives offered by JVM Vendors
– See Entropy and JVM page for full list

▪ Alternatives viewed from search results on Google consolidate
down to one common “software hack”
– Not recommended:

– This is not the best or a good answer, as it remove ALL environmental noise, and constantly reuses the

same encryption pool; and will impact FIPS compliance for ALL software.
▪ mv /dev/random /dev/random.org
▪ ln-s /dev/urandom/dev/random

14 © 2017 CA. ALL RIGHTS RESERVED.

Check what application/ solutions are using
/dev/random or /dev/urandom

▪ Don’t guess, find out what application(s) are using the
Entropy Pool.

– lsof | grep-E "/dev/[u]{0,1}random"

15 © 2017 CA. ALL RIGHTS RESERVED.

Entropy and JVM Notes
• BEST: (All environments) {Impact: All solutions + JVM} {FIPS compliant}
–Use hardware and the RNGD daemon to keep /dev/random populated. Existing hardware may be sufficient, so test this first.
-Use EGD daemons that harvest volatile hardware (HAVEGED) to keep /dev/random populated. {Not clear if this is FIPS compliant}

• BETTER: (DEV/TEST/QA/PROD environments) {Impact: JVM only} {FIPS compliant}
–Change the java configuration in a way that '/dev/urandom' is not mapping directly to '/dev/random'.
–Change the file $JAVA_HOME/jre/lib/security/java.security: securerandom.source=file:/dev/urandom into securerandom.source=file:/dev/./urandom
–{/dev/urandomdoesn’t work due to unknown path issue; must use .}

• BETTER: (DEV/TEST/QA/PROD environments) {Impact: JVM only} {FIPS compliant}
–Add an Java option during startup of the JVM: (Oracle Recommendation): -Djava.security.egd=file:/dev/./urandom
•{/dev/urandomdoesn’t work due to unknown path issue; must use .}

• GOOD: (DEV/TEST/QA) {Impact: All solutions + JVM} {FIPS compliant}
–Use with RNGD service until hardware can be obtained (NOTE: Using –r /dev/urandom is NOT FIPS compliant, but this give ½ environmental randomness, which is still pretty good}
•rngd -r /dev/urandom -o /dev/random -t 10
–{make the number lower to increase refresh of entropy pool}

•Edit /etc/sysconfig/rngd EXTRAOPTIONS="-i -o /dev/random -r /dev/urandom-t 10 -W 2048“

• OK-TESTING ONLY: (DEV/TEST/QA environments) {Impact: All solutions + JVM} {NOT FIPS compliant}
Not Recommended: This is not the best or a good answer, as it remove ALL environmental noise, and constantly reuses the same encryption pool.

{This will impact FIPS compliance for ALL software; including SSHD/LIBCRYPT functions}

•mv /dev/random /dev/random.org
•ln-s /dev/urandom/dev/random

• JUMP START Randomness pool: {All environments; add process to boot rc script of OS}
–dd if=/dev/zero of=filename.iso bs=1G count=50 {where filename.isois any large file}

16 © 2017 CA. ALL RIGHTS RESERVED.

Add extra options here

Try first with NO extra options to see if there are any issues

#EXTRAOPTIONS=“”

If Hardware exist and check entropy with the following command:
watch -n 1 cat /proc/sys/kernel/random/entropy_avail shows less than 1000 &&
lsof| grep -E "/dev/[u]{0,1}random" and this show the service under question
then set the refresh time from default of 60 seconds to 10 second (may go lower)
#EXTRAOPTIONS="-t 10 -W 2048 »
#
Used for WebAppServersJVM, CA IM JCS (IAMCS), CA Siteminder

EXTRAOPTIONS=“-i -r /dev/urandom -o /dev/random -t 10 -W 2048“
or
EXTRAOPTIONS="-r /dev/urandom -o /dev/random -W 4096"

Example of OS RNGD Configuration File
/etc/sysconfig/rngd

17 © 2017 CA. ALL RIGHTS RESERVED.

Example of using the following variables:
EXTRAOPTIONS="-i -o /dev/random -r /dev/urandom-t 10 -W 2048“ will give a large pool of 130-1800 to use. Very adequate

18 © 2017 CA. ALL RIGHTS RESERVED.

Is /dev/urandom acceptable to use for FIPS processes?

▪ According to the NIST site for certification of FIPS-140-2, many vendors are using
/dev/urandom as their seed for their various security modules. /dev/urandom is
considered to have high security confidence if it is ONLY populated via /dev/random.
– Red Hat Enterprise Linux 6.2 OpenSSH Server Cryptographic Module v2.1

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1792.pdf

▪ FIPS-140-2 Certification requires use of a pseudo random number and the solution to
inspect the “randomness” of the pseudo random number prior to consumption.

▪ What is NOT considered to have high security confidence:
– Moving the OS security layer of /dev/random and replacing it with a soft link from /dev/urandom
– Using a process to replenish /dev/random from data from /dev/urandom (that was previously fed by

/dev/random – basically using old data)

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1792.pdf

19 © 2017 CA. ALL RIGHTS RESERVED.

Is /dev/urandom acceptable to use for normal
encryption (non-FIPS) processes?

▪ http://man7.org/linux/man-pages/man4/random.4.html
– Or execute man 4 random (2013-03-05)

▪ Usage
If you are unsure about whether you should use /dev/random or /dev/urandom, then probably you want to use

the latter. As a general rule, /dev/urandom should be used for everything except long-lived GPG/SSL/SSH keys.

Software that reads from the /dev/urandom device will not be blocked, waiting for more entropy.

As a result, if there is not sufficient entropy in the entropy pool, the returned values are theoretically vulnerable to a

cryptographic attack on the algorithms used by the driver.

Knowledge of how to do this is not available in the current non-classified literature, but it is theoretically possible that

such an attack may exist. If this is a concern in your application, use /dev/random instead.

http://man7.org/linux/man-pages/man4/random.4.html

20 © 2017 CA. ALL RIGHTS RESERVED.

References
RFC 1750, "Randomness Recommendations for Security“ (Dec. 1994)
▪ http://www.ietf.org/rfc/rfc1750.txt
Analysis of the Linux Random Number Generator (Mar. 2006)
▪ http://www.pinkas.net/PAPERS/gpr06.pdf
IBM Description of random / urandom in AIX
▪ http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.files/doc/aixfiles/rando

m.htm
HP-UX Strong Random Number Generator
▪ https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=KRNG11I
PRNGD - Pseudo Random Number Generator Daemon
▪ http://prngd.sourceforge.net/00README
DIEHARDER TOOL TO CHECK RANDOMNESS
▪ http://www.phy.duke.edu/~rgb/General/dieharder/dieharder.html
▪ http://www.phy.duke.edu/~rgb/General/dieharder.php
NIST Example of FIPS-140-2 Certification / Red Hat Enterprise Linux 6.2 OpenSSH Server Cryptographic Module
v2.1 (10/2012)
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1792.pdf
HAVEGED - Newer EGD Daemon / “Harvesting Hardware Volatile States” & Algorithm
▪ http://www.issihosts.com/haveged/ & https://www.irisa.fr/caps/projects/hipsor/

http://www.ietf.org/rfc/rfc1750.txt
http://www.ietf.org/rfc/rfc1750.txt
http://www.pinkas.net/PAPERS/gpr06.pdf
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.files/doc/aixfiles/random.htm
https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=KRNG11I
http://prngd.sourceforge.net/00README
http://www.phy.duke.edu/~rgb/General/dieharder/dieharder.html
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1792.pdf
http://www.issihosts.com/haveged/
https://www.irisa.fr/caps/projects/hipsor/

21 © 2017 CA. ALL RIGHTS RESERVED.

Commands / Tools to test Entropy Daemons

DIEHARDER TOOL TO CHECK RANDOMNESS of /dev/urandom
▪ http://www.phy.duke.edu/~rgb/General/dieharder/dieharder.html
▪ http://www.phy.duke.edu/~rgb/General/dieharder.php
▪ dieharder -d 1 -g XX -t 1000000

– Where XX is the number for /dev/urandom
– May download with yum install dieharder

A view in to /dev/urandom

cat /dev/urandom | head -n 10 | sha1sum | awk '{print $1}

[root@imwa001 weblogic]# cat /dev/urandom | head -n 10 | sha1sum | awk '{print $1}'
55ee44e953a39eca74641025f038e7fa86a7d7d3
[root@imwa001 weblogic]# cat /dev/urandom | head -n 10 | sha1sum | awk '{print $1}'
85f3b7397822c5e6110161acf9a214d766cc5b3d
[root@imwa001 weblogic]# cat /dev/urandom | head -n 10 | sha1sum | awk '{print $1}'
30bc813dc740c7df5886dcb68ba6d674ba198482

watch -n 1 cat /proc/sys/kernel/random/entropy_avail
Every 1.0s: cat /proc/sys/kernel/random/entropy_avail Wed Oct 2 14:43:32 2013
1990

lsof | grep -E "/dev/[u]{0,1}random”

rngd 2034 root 3r CHR 1,9 0t0 3847 /dev/urandom
rngd 2034 root 4u CHR 1,8 0t0 3846 /dev/random
java 2700 root 15r CHR 1,8 0t0 3846 /dev/random
java 2700 root 16r CHR 1,9 0t0 3847 /dev/urandom
java 2700 root 24r CHR 1,8 0t0 3846 /dev/random
java 3099 dsa 28r CHR 1,8 0t0 3846 /dev/random
java 3099 dsa 29r CHR 1,9 0t0 3847 /dev/urandom
java 3099 dsa 33r CHR 1,9 0t0 3847 /dev/urandom
java 3099 dsa 34r CHR 1,9 0t0 3847 /dev/urandom
java 3099 dsa 35r CHR 1,9 0t0 3847 /dev/urandom
java 3099 dsa 54r CHR 1,9 0t0 3847 /dev/urandom
java 3099 dsa 62r CHR 1,9 0t0 3847 /dev/urandom
httpd 4104 root 10r CHR 1,9 0t0 3847 /dev/urandom
java 4364 weblogic 277r CHR 1,8 0t0 3846 /dev/random
java 4364 weblogic 278r CHR 1,9 0t0 3847 /dev/urandom
java 4364 weblogic 299r CHR 1,8 0t0 3846 /dev/random
java 4364 weblogic 300w CHR 1,8 0t0 3846 /dev/random
firefox 5487 idmadmin 22r CHR 1,9 0t0 3847 /dev/urandom
java 5889 root 252r CHR 1,8 0t0 3846 /dev/random
java 5889 root 253r CHR 1,9 0t0 3847 /dev/urandom
httpd 6760 apache 10r CHR 1,9 0t0 3847 /dev/urandom
httpd 6761 apache 10r CHR 1,9 0t0 3847 /dev/urandom
httpd 6762 apache 10r CHR 1,9 0t0 3847 /dev/urandom
httpd 6763 apache 10r CHR 1,9 0t0 3847 /dev/urandom
httpd 6764 apache 10r CHR 1,9 0t0 3847 /dev/urandom
httpd 6765 apache 10r CHR 1,9 0t0 3847 /dev/urandom
httpd 6766 apache 10r CHR 1,9 0t0 3847 /dev/urandom

http://www.phy.duke.edu/~rgb/General/dieharder/dieharder.html
http://www.phy.duke.edu/~rgb/General/dieharder.php

22 © 2017 CA. ALL RIGHTS RESERVED.

Dieharder Test of /dev/urandom
#===#

dieharder version 3.31.1 Copyright 2003 Robert G. Brown

#===#

Id Test Name | Id Test Name | Id Test Name

#===#

| 500 /dev/random |501 /dev/urandom | |

#===#

Condensed list to display only /dev/random and
/dev/urandom

Best test is to run with 1,000,000 for validation,
but this will likely take days to complete on some
systems.

dieharder -d 1 -g 500 -t 1000

rng_name |rands/second| Seed |

/dev/random| 1.23e+04 |1654375713|

#===#

test_name |ntup| tsamples |psamples| p-value |Assessment

#===#

diehard_operm5| 0| 1000| 100|0.67309912| PASSED

dieharder -d 1 -g 501 -t 1000

rng_name |rands/second| Seed |

/dev/urandom| 7.71e+04 |3445980102|

#===#

test_name |ntup| tsamples |psamples| p-value |Assessment

#===#

diehard_operm5| 0| 1000| 100|0.18839539| PASSED

Test of /dev/random with just 1000 random
test samples (instead of default 10,000 for
quick check)

PASSES randomness.

Test of /dev/urandom with just 1000 random
test samples (instead of default 10,000 for
quick check)

PASSES randomness

23 © 2017 CA. ALL RIGHTS RESERVED.

Best Solution – Tool To Harvest Volatile Hardware States for
Entropy Non-FIPS requirements

HAVEGED – Harvest Volatile HW Components EGD Daemon
http://www.issihosts.com/haveged
HAVEGED Algorithm
https://www.irisa.fr/caps/projects/hipsor/

http://www.issihosts.com/haveged
https://www.irisa.fr/caps/projects/hipsor/

24 © 2017 CA. ALL RIGHTS RESERVED.

An HW Volatile Entropy Generator: HAVEGED
https://www.irisa.fr/caps/projects/hipsor/

▪ HAVEGE (HArdware Volatile Entropy Gathering

and Expansion) is a user-level software unpredictable random

number generator for general-purpose computers that

exploits these modifications of the internal volatile hardware

states as a source of uncertainty. During an initialization

phase, the hardware clock cycle counter of the processor is

used to gather part of this entropy.

▪ Its free and open source, highly recommended in the

VM/Cloud community. “GNU LESSER GENERAL PUBLIC LICENSE”

https://www.irisa.fr/caps/projects/hipsor/license.php

▪ It addresses the HW entropy challenge for virtualized servers.

▪ Two columns: A display of the random entropy pool, first

when running haveged and then immediately after haveged

process is killed.

▪ Note the decrease in entropy availability without a “pump” to

/dev/random.

• # pkill -9 haveged

• $ while true; do cat

/proc/sys/kernel/random/ent

ropy_avail; sleep 1; done

• 1331

• 1076

• 821

• 575

• 334

• 131

• 150

• 179

• 132

• 178

• 186

• 133

• 160

• 131

• 165

• #/usr/sbin/haveged -w 1024

• $ while true; do cat

/proc/sys/kernel/random/entr

opy_avail; sleep 1; done

• 3090

• 2863

• 2626

• 2380

• 2029

• 1146

• 3963

• 3708

• 3453

• 3198

• 2965

• 2722

• 2467

• 1458

• 1203

• 4093

https://www.irisa.fr/caps/projects/hipsor/license.php

25 © 2017 CA. ALL RIGHTS RESERVED.

Why use HAVEGED for an Entropy Pool?

- HAVEGE daemon/service will “pull”
randomness from an existing “volatile“
physical asset of the CPU and CLOCK; and push
this into the /dev/random entropy pool.

* No confirmation if this is FIPS compliant, but
early versions of this tool did pass randomness
checks based on Lempel–Ziv compression test,
entropy test, chi2 test, Monte Carlo tests from
ent,3 the FIPS-140-2 test suite for random
number generators [FIPS-140-2 2001], the
DIEHARD suite and the NIST statistical suite for
random number generator [p341,section 5.1
of havege-tomacs.pdf].
See links below for additional reading & a self
test using dieharder toolset at the end of the
deck.

/dev/random

/dev/urandom

Software
routine to

“reuse”
entropy pool

HAVEGED

http://www.issihosts.com/haveged/downloads.html (latest release 1.7)
https://www.irisa.fr/caps/projects/hipsor/publications/havege-tomacs.pdf
https://www.irisa.fr/caps/projects/hipsor/publications/havege-rr.pdf

http://www.issihosts.com/haveged/downloads.html
https://www.irisa.fr/caps/projects/hipsor/publications/havege-tomacs.pdf
https://www.irisa.fr/caps/projects/hipsor/publications/havege-rr.pdf

26 © 2017 CA. ALL RIGHTS RESERVED.

Comparison of HAVEGED versus OS RNGD
How does haveged run-time testing compare to rng-tools-4?
Assuming you have a rngd entropy source, the operation of rngd and haveged are similar.

The rngd test suite, FIPS140-2, is run at start-up and continuously on 20000 bit blocks; test failures on a block, discard the data and
retry up to a configured limit.
Haveged runs a test suite based upon AIS31.
• AIS31 consists of a suite of tests to detected 'statistically anomalous behavior', procedure A, and a suite of more theoretical tests, procedure B.
• AIS31 procedure A consists of a disjointedness test on a block of 65k*48 bits followed by 257 repetitions of a 5 test suite run on successive 20000 bit blocks; the 5 tests

consist of the 4 tests in FIPS140-1 augmented with an auto-correlation test.
• AIS32 procedure B consists of distribution tests for 10,000 runs of 1, 2, 4, 8 bit sequences followed by a 256 K bit entropy estimate (Coron's test).

Testing schedule is determined command line parameters, the defaults require both Procedure A and Procedure B to both be
completed at start up and all output to pass Procedure B incrementally (data is output as long as the no individual test failures have
occurred in the active test procedure operating on internally buffered data).

FIPS140-1 and FIPS140-2 differ only by acceptance limits. FIPS140-2 has slightly more stringent limits, but the FIPS140-1 limits are
baked into a retry strategy that guarantees a working RNG will not shut down due to a false alarm.
• The haveged default for internal buffering ensures that no single test failure has occurred in the last ~2MB of generated data.
• When an error is detected, internal data is discarded until the active test procedure is completed; if only a single error occurred in

the test procedure, the retry will initiated and output will resume only after the retry completes successfully.
• Errors that cannot be recovered by the retry procedure are fatal.
Haveged testing is performed directly on the collection buffer contents. Note that both AIS test procedures require several MB of
input to complete (the procedure B requirement depends on input and is not fixed) and any test sequence including procedure B will
not have any fixed buffer alignment.

http://www.issihosts.com/haveged/faq.html

http://www.issihosts.com/haveged/faq.html

27 © 2017 CA. ALL RIGHTS RESERVED.

Example: Install & start haveged
yum install haveged
==
Package Arch Version Repository Size

==
Installing:
haveged x86_64 1.3-2.el6 epel 51 k

Transaction Summary
==
Install 1 Package(s)

Total download size: 51 k
Installed size: 159 k
Is this ok [y/N]: y
Downloading Packages:
haveged-1.3-2.el6.x86_64.rpm | 51 kB 00:00
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : haveged-1.3-2.el6.x86_64 1/1
Verifying : haveged-1.3-2.el6.x86_64 1/1

Installed:
haveged.x86_64 0:1.3-2.el6

Complete!

#/etc/init.d/haveged start NOTE: haveged starts with the following switches -w 1024 -v 1 & K25haveged rc script are deployed in all rc levels

#watch -n 1 cat /proc/sys/kernel/random/entropy_avail
1820

http://www.issihosts.com/haveged/faq.html

http://www.issihosts.com/haveged/faq.html

28 © 2017 CA. ALL RIGHTS RESERVED.

haveged Release Notes
Release Notes
Version 1.7c Correct additional run-time test alignment problems on mips.
Version 1.7b Correct run-time test alignment problems on sparc and mips. Correct ppc detection in build.
Version 1.7a Correct VPATH issues and modify check target to support parallel builds and changes in automake 1.13 test harness. Updated sample spec file and other
documentation changes.
Version 1.7 The build and sources have been restructured to provide a devel package containing the haveged RNG implementation. Updated documentation, man(8) and man(3)
pages, additional build and usage samples are provided. The potential for a rare syssegv resulting from the 1.6 changes has been removed.
Version 1.6a Fix typo that broke generic build procedure.
Version 1.6 The run time test implementation has been corrected to remove an alignment fault that appeared in AIS test0 on arm64 hosts. The build procedure for
clock_gettime() support has been altered to provide better control (now an override for all architectures) and correctly determine dependencies. Minor typos and inaccuracies in
the source and man have been corrected.
Version 1.5 A run time test option has been added to haveged that enables the execution of one or both of the principle AIS-31 test suites at haveged initialization and/or
continuously during subsequent output. The command option permits the run time tests to be configured to trade off test overhead with test rigor to meet differing application
needs. Reasonable default values are provided for daemon and direct invocations. For further details on the testing implementation see the haveged documentation. Several
changes have also been made to make haveged work better with both the systemd and sysv init systems.
Version 1.4 The haveged build has been extended to support s390 and 'generic' architectures based upon clock_gettime(). A general cleanup of the build scripts includes the
ability to install non-RedHat init scripts without patching the build. The haveged collection loop has been rewritten to support multiple instances and add additional diagnostics
which are being used to further improve haveged. Tuning logic for the collection has been totally rewritten to replace buggy cpuid code and incorporate additional information
obtained from the /proc and /sys file systems. An experimental multi-threaded option is also provided for those hoping to spread haveged cpu load over multi-processes.
Version 1.3 Haveged has been reorganized to allow its collection mechanism to be better accessed directly through the file system. This reorganization includes the option to
suppress the daemon interface in the build so that haveged can now be used in those circumstances where the use of /dev/random is unavailable or inappropriate. This also
means that haveged can now be built and used on non-linux systems. For example, the current tarball builds unmodified in mingw on Windows. A new command argument has
been added to provide more precise control over file system output including unlimited piped output. The new man page provides many examples of how the new haveged file
output features can be used in a linux environment.
Version 1.2 After quite a while, I finally returned to modernizing the build. If you have a recent compiler, the build will use compiler intrinsics to replace the previous inline
assembly. This is still somewhat experimental, but may help with build reliability. There are a couple of other features still in the works, but the move to intrinsic had been sitting
around for a while and it was time to push it out.

http://www.issihosts.com/haveged/faq.html

http://www.issihosts.com/haveged/ais31.html
http://www.issihosts.com/haveged/faq.html

29 © 2017 CA. ALL RIGHTS RESERVED.

haveged man page
haveged(8) SYSTEM ADMINISTRATION COMMANDS haveged(8)

NAME haveged - Generate random numbers and feed linux random device.

SYNOPSIS haveged [options]

DESCRIPTION
The HAVEGE (HArdware Volatile Entropy Gathering and Expansion) algorithum harvests the indirect effects of hardware events on hidden processor state (caches, branch predictors, memory translation tables, etc)

to generate a random sequence. The effects of interrupt service on processor state are visible from userland as timing variations in program execution speed. Using a branch-rich calculation that fills the processor
instruction and data cache, a high resolution timer source such as the processor time stamp counter can generate a random sequence even on an "idle" system.

In Linux, the hardware events that are the ultimate source of any random number sequence are pooled by the /dev/random device for later distribution via the device interface. The standard mechanism of harvesting
randomness for the pool may not be sufficient to meet demand, especially on those systems with high needs or limited user interaction. Haveged provides a daemon to fill /dev/random whenever the supply of random
bits in /dev/random falls below the low water mark of the device.

Haveged also provides a direct file system interface to the collection mechanism that is also useful in other circumstances where access to the dev/random interface is either not available or inappropriate.
In either case, haveged uses HAVEGE to maintain a 1M pool of random bytes consumed by the interface. The principle inputs to havaged are the sizes of the processor instruction and data caches used to setup the

HAVEGE collector. The haveged default is a 4kb data cache and a 16kb instruction cache. On machines with a cpuid instruction, haveged will attempt to select appropriate values from internaltables.
Although CISC architectures appear insensitive to tuning parameters, there is no guarantee that manual tuning of the algorithm may not be required under some circumstances. The output of the HAVEGE random

number generator should be verified on any installation before the haveged is put into production.

OPTIONS
-d nnn, --data=nnn Set data cache size to nnn KB. Default is 16 or as determined by cpuid.
-f file, --file=file Set output file path for non-daemon use. Default is "sample", use ’-’ for stdout.
-i nnn, --inst=nnn Set instruction cache size to nnn KB. Default is 16 or as determined by cpuid.
-n nnn, --number=nnn Set number of bytes written to the outputfile. The value may be specified using one of the suffixes k, m, g, or t. The upper bound of this value is "16t" (2^44 Bytes = 16TB). A value of 0

indicates unbounded output and forces output to stdout.
-r n, --run=n Set run level for daemon interface:

n = 0 Run as daemon - must be root. Fills /dev/random when the supply of random bits falls below the low water mark of the device. This argument is required if the daemon interface is not present. If the daemon
interface is present, this takes precedence over any -r value.

n = 1 Display configuration info and terminate.
n > 1 Write <n> kb of output. Deprecated (use -n instead), only provided for backward compatibility.

-v n, --verbose=n Set output level 0=minimal, 1=config/fill items, use -1 for all diagnostics.
-w nnn, --write=nnn Set write_wakeup_threshold of daemon interface to nnn bits. Applies only to run level 0.
-?, --help This summary of program options.

30 © 2017 CA. ALL RIGHTS RESERVED.

Haveged test with Dieharder Test Tool
#haveged -n 0 | dieharder -g 200 –a Note: This will redirect haveged to redirect to
standard out and be piped to the dieharder tool for all tests

Writing unlimited bytes to stdout

#===#

dieharder version 3.31.1 Copyright 2003 Robert G. Brown

#===#

rng_name |rands/second| Seed |

stdin_input_raw| 1.26e+07 |1852405611|

#===#

test_name |ntup| tsamples |psamples| p-value |Assessment

#===#

diehard_birthdays| 0| 100| 100|0.57204797| PASSED

diehard_operm5| 0| 1000000| 100|0.22740140| PASSED

diehard_rank_32x32| 0| 40000| 100|0.34454555| PASSED

diehard_rank_6x8| 0| 100000| 100|0.72587068| PASSED

diehard_bitstream| 0| 2097152| 100|0.87414660| PASSED

diehard_opso| 0| 2097152| 100|0.90934123| PASSED

diehard_oqso| 0| 2097152| 100|0.79747155| PASSED

diehard_dna| 0| 2097152| 100|0.15915145| PASSED

diehard_count_1s_str| 0| 256000| 100|0.80153306| PASSED

diehard_count_1s_byt| 0| 256000| 100|0.28228396| PASSED

diehard_parking_lot| 0| 12000| 100|0.59549008| PASSED

diehard_2dsphere| 2| 8000| 100|0.60221896| PASSED

diehard_3dsphere| 3| 4000| 100|0.73160681| PASSED

diehard_squeeze| 0| 100000| 100|0.21997442| PASSED

diehard_sums| 0| 100| 100|0.33592286| PASSED

diehard_runs| 0| 100000| 100|0.16586980| PASSED

diehard_runs| 0| 100000| 100|0.19743906| PASSED

diehard_craps| 0| 200000| 100|0.93811739| PASSED

diehard_craps| 0| 200000| 100|0.77791422| PASSED

marsaglia_tsang_gcd| 0| 10000000| 100|0.70035080| PASSED

marsaglia_tsang_gcd| 0| 10000000| 100|0.88573232| PASSED

sts_monobit| 1| 100000| 100|0.20199896| PASSED

sts_runs| 2| 100000| 100|0.50203144| PASSED

sts_serial| 1| 100000| 100|0.57145849| PASSED

sts_serial| 2| 100000| 100|0.99728890| WEAK

sts_serial| 3| 100000| 100|0.39048937| PASSED

sts_serial| 3| 100000| 100|0.47442603| PASSED

Writing unlimited bytes to stdout

#===#

dieharder version 3.31.1 Copyright 2003 Robert G. Brown

#===#

rng_name |rands/second| Seed |

stdin_input_raw| 1.26e+07 |1852405611|

#===#

test_name |ntup| tsamples |psamples| p-value |Assessment

#===#

sts_serial| 4| 100000| 100|0.53625707| PASSED

sts_serial| 4| 100000| 100|0.87733703| PASSED

sts_serial| 5| 100000| 100|0.77618814| PASSED

sts_serial| 5| 100000| 100|0.95254941| PASSED

sts_serial| 6| 100000| 100|0.90680814| PASSED

sts_serial| 6| 100000| 100|0.90834109| PASSED

sts_serial| 7| 100000| 100|0.99152198| PASSED

sts_serial| 7| 100000| 100|0.97731071| PASSED

sts_serial| 8| 100000| 100|0.99992149| WEAK

sts_serial| 8| 100000| 100|0.94573178| PASSED

sts_serial| 9| 100000| 100|0.67810844| PASSED

sts_serial| 9| 100000| 100|0.69787074| PASSED

sts_serial| 10| 100000| 100|0.47718471| PASSED

sts_serial| 10| 100000| 100|0.15000932| PASSED

sts_serial| 11| 100000| 100|0.83363869| PASSED

sts_serial| 11| 100000| 100|0.76524505| PASSED

sts_serial| 12| 100000| 100|0.77666185| PASSED

sts_serial| 12| 100000| 100|0.81076453| PASSED

sts_serial| 13| 100000| 100|0.65461525| PASSED

sts_serial| 13| 100000| 100|0.41736194| PASSED

sts_serial| 14| 100000| 100|0.76388123| PASSED

sts_serial| 14| 100000| 100|0.95750449| PASSED

sts_serial| 15| 100000| 100|0.44765617| PASSED

sts_serial| 15| 100000| 100|0.95942496| PASSED

sts_serial| 16| 100000| 100|0.96609352| PASSED

sts_serial| 16| 100000| 100|0.29583714| PASSED

rgb_bitdist| 1| 100000| 100|0.88305416| PASSED

rgb_bitdist| 2| 100000| 100|0.99299193| PASSED

rgb_bitdist| 3| 100000| 100|0.65802931| PASSED

rgb_bitdist| 4| 100000| 100|0.09075015| PASSED

rgb_bitdist| 5| 100000| 100|0.83084595| PASSED

rgb_bitdist| 6| 100000| 100|0.94459210| PASSED

rgb_bitdist| 7| 100000| 100|0.95300756| PASSED

31 © 2017 CA. ALL RIGHTS RESERVED.

Haveged test with Dieharder Test Tool - Cont
Writing unlimited bytes to stdout

#===#

dieharder version 3.31.1 Copyright 2003 Robert G. Brown

#===#

rng_name |rands/second| Seed |

stdin_input_raw| 1.26e+07 |1852405611|

#===#

test_name |ntup| tsamples |psamples| p-value |Assessment

#===#

rgb_bitdist| 8| 100000| 100|0.33944028| PASSED

rgb_bitdist| 9| 100000| 100|0.80409346| PASSED

rgb_bitdist| 10| 100000| 100|0.94020509| PASSED

rgb_bitdist| 11| 100000| 100|0.34379239| PASSED

rgb_bitdist| 12| 100000| 100|0.90682130| PASSED

rgb_minimum_distance| 2| 10000| 1000|0.72170090| PASSED

rgb_minimum_distance| 3| 10000| 1000|0.23678838| PASSED

rgb_minimum_distance| 4| 10000| 1000|0.26514932| PASSED

rgb_minimum_distance| 5| 10000| 1000|0.04750104| PASSED

rgb_permutations| 2| 100000| 100|0.30467809| PASSED

rgb_permutations| 3| 100000| 100|0.31786194| PASSED

rgb_permutations| 4| 100000| 100|0.85236736| PASSED

rgb_permutations| 5| 100000| 100|0.15300707| PASSED

rgb_lagged_sum| 0| 1000000| 100|0.38856307| PASSED

rgb_lagged_sum| 1| 1000000| 100|0.71141770| PASSED

rgb_lagged_sum| 2| 1000000| 100|0.86041387| PASSED

rgb_lagged_sum| 3| 1000000| 100|0.16291541| PASSED

rgb_lagged_sum| 4| 1000000| 100|0.29922795| PASSED

rgb_lagged_sum| 5| 1000000| 100|0.44457983| PASSED

rgb_lagged_sum| 6| 1000000| 100|0.54351269| PASSED

rgb_lagged_sum| 7| 1000000| 100|0.78409626| PASSED

rgb_lagged_sum| 8| 1000000| 100|0.52550097| PASSED

rgb_lagged_sum| 9| 1000000| 100|0.45489981| PASSED

rgb_lagged_sum| 10| 1000000| 100|0.36117553| PASSED

rgb_lagged_sum| 11| 1000000| 100|0.88815984| PASSED

rgb_lagged_sum| 12| 1000000| 100|0.75740093| PASSED

rgb_lagged_sum| 13| 1000000| 100|0.59917945| PASSED

rgb_lagged_sum| 14| 1000000| 100|0.51503885| PASSED

rgb_lagged_sum| 15| 1000000| 100|0.12363640| PASSED

rgb_lagged_sum| 16| 1000000| 100|0.76457875| PASSED

rgb_lagged_sum| 17| 1000000| 100|0.28353930| PASSED

rgb_lagged_sum| 18| 1000000| 100|0.20149867| PASSED

rgb_lagged_sum| 19| 1000000| 100|0.74975963| PASSED

Writing unlimited bytes to stdout

#===#

dieharder version 3.31.1 Copyright 2003 Robert G. Brown

#===#

rng_name |rands/second| Seed |

stdin_input_raw| 1.26e+07 |1852405611|

#===#

test_name |ntup| tsamples |psamples| p-value |Assessment

#===#

rgb_lagged_sum| 20| 1000000| 100|0.96746973| PASSED

rgb_lagged_sum| 21| 1000000| 100|0.09536836| PASSED

rgb_lagged_sum| 22| 1000000| 100|0.69548033| PASSED

rgb_lagged_sum| 23| 1000000| 100|0.54947341| PASSED

rgb_lagged_sum| 24| 1000000| 100|0.12359811| PASSED

rgb_lagged_sum| 25| 1000000| 100|0.77946198| PASSED

rgb_lagged_sum| 26| 1000000| 100|0.17835252| PASSED

rgb_lagged_sum| 27| 1000000| 100|0.05929038| PASSED

rgb_lagged_sum| 28| 1000000| 100|0.09040543| PASSED

rgb_lagged_sum| 29| 1000000| 100|0.15581580| PASSED

rgb_lagged_sum| 30| 1000000| 100|0.49753473| PASSED

rgb_lagged_sum| 31| 1000000| 100|0.36269951| PASSED

rgb_lagged_sum| 32| 1000000| 100|0.13122735| PASSED

rgb_kstest_test| 0| 10000| 1000|0.35487536| PASSED

dab_bytedistrib| 0| 51200000| 1|0.09280526| PASSED

dab_dct| 256| 50000| 1|0.93192984| PASSED

Preparing to run test 207. ntuple = 0

dab_filltree| 32| 15000000| 1|0.23519794| PASSED

dab_filltree| 32| 15000000| 1|0.06541734| PASSED

Preparing to run test 208. ntuple = 0

dab_filltree2| 0| 5000000| 1|0.46434559| PASSED

dab_filltree2| 1| 5000000| 1|0.15917186| PASSED

Preparing to run test 209. ntuple = 0

dab_monobit2| 12| 65000000| 1|0.83659955| PASSED

“These tests for randomness are not a proof of randomness.
However, it may be considered as an indicator that finding and exploiting a
bias in the generated sequences would be very difficult, particularly for a
nondeterministic random number generator.”
Ref: https://www.irisa.fr/caps/projects/hipsor/publications/havege-tomacs.pdf

https://www.irisa.fr/caps/projects/hipsor/publications/havege-tomacs.pdf

32 © 2017 CA. ALL RIGHTS RESERVED.

CENTOS 6.4 x64 dieharder test of haveged daemon

33 © 2017 CA. ALL RIGHTS RESERVED.

Questions?

