

Version 2.1.2

Layer 7
OAuth Toolkit
User Manual

Copyright © 2014 CA. All rights reserved.

This documentation and any related computer software help programs (hereinafter referred to as the
“Documentation”) are for your informational purposes only and are subject to change or withdrawal by
CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in
whole or in part, without the prior written consent of CA. This Documentation is confidential and
proprietary information of CA and may not be disclosed by you or used for any purpose other than as
may be permitted in a separate confidentiality agreement between you and CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the
Documentation, you may print a reasonable number of copies of the Documentation for internal use
by you and your employees in connection with that software, provided that all CA copyright notices and
legends are affixed to each reproduced copy.

The right to print copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason,
it is your responsibility to certify in writing to CA that all copies and partial copies of the Documentation
have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW OR AS AGREED BY CA IN ITS APPLICABLE LICENSE
AGREEMENT, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF M6ERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER
OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT, BUSINESS
INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable
license agreement and such license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is
subject to the restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and
DFARS Section 252.227-7014(b)(3), as applicable, or their successors.

Contents

List of Figures ... ii
List of Tables ... iii
Chapter One: Getting Started ... 1
Installing the OAuth Toolkit ... 1

Installing the OTK Database .. 5
Completing the [Create OTK Database] Tab ... 6
Using the [OTK Schema] Tab ... 9

Conflict Resolution ... 9
Uninstalling the OAuth Toolkit ... 10

Understanding the OAuth Toolkit Architecture .. 10
Getting Help ... 11
Chapter Two: Post Configuration .. 13
Post Configuration Steps .. 13

Step 1: Import Public Certificate ... 13
Step 2: Verify the OAuth Database Schema ... 13
Step 3: Configure Authentication .. 14

Step 1: Implement a Federated Identity Provider for the SAML Grant Type 14
Step 2: Implement a Federated Identity Provider for Validation and Storage Endpoints
 ... 15
Step 3: Add Validation of SAML Token Signer to SAML Token Grant_Type Policies ... 16
Step 4: Add Checking of Client Certificate to Validation and Storage Endpoints 16

Step 4: Verify the OAuth Manager ... 17
Step 5: Verify the OAuth Test Client .. 17

Integration with API Portal .. 17
Chapter Three: Using the OAuth Toolkit ... 21
Working with the OAuth Manager .. 21

Manage Clients .. 21
Manage Tokens .. 24

Working with the OAuth 1.0 Toolkit .. 26
OAuth 1.0 Test Client ... 26

Verifying the Test Client .. 27
Configuring the Test Client to access other OAuth protected services 28

Working with the OAuth 2.0 Toolkit .. 29
OAuth 2.0 Test Client ... 29

Enabling the Client .. 29
Running the Client .. 30
Getting an Access Token .. 30
Testing the Client .. 31
Refreshing a Token ... 32
Clearing the Current Session ... 32

 i

Contents

Restricting the OAuth 2.0 Grant Types ... 32
Change Resource Owner Authentication .. 33
Adding SLA Rules ... 34

Chapter Four: Customizing the OAuth Toolkit .. 35
Configuring a Corporate Brand ... 35
Using the Customer’s Identity Provider .. 37
Configuring the Session Lifetime ... 37
Customizing the Token Lifetime ... 38
Adding OAuth Authorization Capabilities to Existing API ... 39
Appendix A: Related APIs for OAuth Toolkit ... 41

Clientstore API ... 41
API for registering a client application/client_key .. 41
API for deleting a client ... 42
API for revoking a client_key .. 42
API for updating a client ... 43
API for requesting values of a given client .. 43
API for requesting values of a given client_key ... 44
API for requesting values of a given client, client_key at once 46
Tokenstore API .. 46
API for registering a token. Additionally the API will add the creation time. 46
API for updating a token ... 48
API for revoking token... 48
API for deleting a token .. 49
API for retrieving token values ... 49
API for retrieving temporary token values ... 50
OAuth Validation Point (OVP) API ... 51
OVP API used during the token issuing process ... 51
OVP API used when clients access resources ... 54

List of Figures
Figure 1: OAuth Toolkit Installer dialog ... 2
Figure 2: [Create OTK Database] tab .. 6
Figure 3: [OTK Schema] tab .. 9
Figure 4: Components within their preferred network zones .. 11
Figure 5: OAuth Manager - Manage Clients .. 22
Figure 6: OAuth Manager - Manage Clients - List Keys .. 23
Figure 7: OAuth Manager - Manage Tokens ... 24
Figure 8: OAuth V1 Client ... 26
Figure 9: OAuth Client: Downloading the requested resources ... 28
Figure 10: OAuth Client: Receiving the requested resources .. 28

ii

Contents

Figure 11: OAuth 2.0 Authorization Server ... 31
Figure 12: Current Access Token .. 31
Figure 13: Using an access token to call an API .. 32
Figure 14: Refreshing an Access Token ... 32
Figure 15: Clearing a session .. 32
Figure 16: Adding SLA Rules sample .. 34
Figure 17: Creating a branding template .. 36
Figure 18: Changing the identity provider to the customer’s identity provider 37
Figure 19: Example: Protecting a resource with the OAuth 2.0 Runtime Authorization Fragment . 39

List of Tables
Table 1: OAuth Toolkit Installer settings ... 2
Table 2: Configuring the [Create OTK Database] tab ... 6
Table 3: Descriptions for OAuth Manager - Manage Clients section ... 22
Table 4: Field descriptions for OAuth Manager - Manage Clients – List Keys section 23
Table 5: Descriptions for OAuth Manager - Tokens section ... 25
Table 6: Test Client setting descriptions ... 26
Table 7: Token lifetime context variables for OAuth 1.0 .. 38
Table 8: Token lifetime context variables for OAuth 2.0 .. 38
Table 9: Context variables set by the Require OAuth 2.0 Token policy .. 39

iii

Contents

iv

Layer 7 OAuth Toolkit User Manual, v2.1.2

Chapter One:
Getting Started

The Layer 7 OAuth Toolkit provides a full featured and standards compliant OAuth
1.0 and 2.0 solution.

This implementation conforms to the following specifications:

OAuth 1.0: http://tools.ietf.org/html/rfc5849

OAuth 2.0: http://tools.ietf.org/html/rfc6749

This implementation may provide incomplete support for the following draft
specifications:

MAC: https://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-01#section-3.2

Base 64: https://tools.ietf.org/html/rfc4648#section-5

Note: Be careful when using the Layer 7 OAuth Toolkit against draft
specifications. These specifications may change without notice, possibly
causing the OAuth Toolkit to produce incorrect results.

Installing the OAuth Toolkit
The CA API Gateway - Policy Manager provides an installer that configures and
installs the OAuth Toolkit.

 To install the Layer 7 OAuth Toolkit:

1. Start the Policy Manager.

2. Select the folder (or create a new folder) under which the OAuth Toolkit will be
installed, in a folder named OAuth. If a folder is not selected, then the Toolkit will
be installed off the root folder. For more information on working with folders, see
“Services and Policies” in the Layer 7 Policy Manager User Manual.

IMPORTANT: Do not install the OAuth Toolkit over any existing
installation of the toolkit.

3. Select [Tasks] > Additional Items > Install OAuth Toolkit in <folder> from the
Main Menu (on the browser client, from the Manage menu). The <folder> is the
location of the OAuth folder from step 2. The OAuth Toolkit Installer dialog
appears.

Chapter One: Getting Started 1

http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-01%23section-3.2
https://tools.ietf.org/html/rfc4648%23section-5

 Layer 7 OAuth Toolkit User Manual, v2.1.2

Figure 1: OAuth Toolkit Installer dialog

4. Configure the dialog as follows:

Table 1: OAuth Toolkit Installer settings

Setting Description

Installation Folder

Install to Folder This displays the folder that was selected in step 2. This is where the OAuth Toolkit
will be installed. If no folder was selected, then the default is to install into a folder
named "OAuth" off of the root ("/").

Note: To use another folder, click [Cancel] to exit the installer dialog, select the other
folder, and then restart the installer.

Select OAuth Toolkit components to install

OAuth 1.0 Select the Core Services and Test Client check box to install the OAuth 1.0 core
services and test clients.

2 Chapter One: Getting Started

Layer 7 OAuth Toolkit User Manual, v2.1.2

Setting Description

OAuth 2.0 Select the Auth Server and Test Clients check box to install the OAuth 2.0
authorization server and test clients.

Note: Even if OAuth 2.0 is not selected for installation, you may still see a “OAuth
2.0” folder created. This folder stores policy fragments that may be required for
validation purposes by the OAuth Toolkit.

SecureZone OVP Select the OVP - OAuth Validation Point check box to install the SecureZone OAuth
Validation Point (OVP) onto the Gateway. These endpoints provide validation services
for the OAuth protocol for requests that must contain valid OAuth tokens.

Clear the OVP - OAuth Validation Point check box if this Gateway is to be deployed in
the DMZ.

Tip: If you intend to use OAuth 2.0, you will need to have an OVP available for token
validation. This OVP can either be installed on the same machine or be available via
an external call. CA recommends deploying the OVP in your network’s Trusted Zone
on a separate Gateway, but you can also call out to your own OVP. For more
information on the recommended deployment patterns, refer to “Understanding the
OAuth Toolkit Architecture” on page 10.

SecureZone Storage These endpoints provide an API for CRUD (Create, Read, Update, Delete) services for
tokens and for OAuth client information. Session information is also stored in these
folders.

1. Select the Token and Client Store check box to deploy the token store on the
Gateway. This contains the client and token store endpoints.

 Clear the Token and Client Store check box if this Gateway is to be deployed in
the DMZ.

2. Create a JDBC connection to the token and client store:

a. Click [Manage JDBC Connections].

b. Click [Add].

c. Enter a Connection Name (for example, “OAuth”).

d. Choose a Driver Class. If you are deploying the token store on a CA API
Gateway, a common choice would be MySQL Community Edition
(“com.mysql.jdbc.Driver”).

e. Enter a JDBC URL (for example: “jdbc:mysql://localhost:3306/otk_db” for a
token store located in a MySQL database called "otk_db" deployed on the
local Gateway).

f. Enter a User Name and Password.

g. Click [Test] to test the connection to the token store.

h. If the test succeeds, click [OK] and then click [Close].

For more information, see “Managing JDBC Connections” in the Layer 7 Policy
Manager User Manual.

Note: If no connection is chosen, then the default connection shown (OAuth) will
be used. If this connection does not exist, it will be displayed as a missing item
during the conflict resolution check. If you continue the installation, you must
ensure that this connection is created later.

Chapter One: Getting Started 3

 Layer 7 OAuth Toolkit User Manual, v2.1.2

Setting Description

3. Select the Integrate with the Layer 7 API Portal check box if you are deploying
this Gateway in conjunction with the Layer 7 API Portal. This will ensure that your
deployment utilizes the OTK's OAuth capabilities, rather than those of the API
Portal.

Note the following once you enable this integration:

• The “/oauth/clientstore/*” endpoint looks up client information via the
Lookup API Key assertion, rather than from the OAuth Toolkit database.

• The OAuth Manager can no longer be used to configure clients, as this is
managed by the API Portal.

Note: You will receive a warning if the Lookup API Key assertion is not available.
If this happens, please contact CA Technical Support for assistance.

Tip: If you intend to use OAuth 2.0, you will need to have a token store available. This
token store can either be installed on the same machine or be available via an
external call. CA recommends deploying the token store in your network’s Trusted
Zone on a separate Gateway, but you can also call out to your own token store. For
more information on the recommended deployment patterns, refer to “Understanding
the OAuth Toolkit Architecture” on page 10.

To test your OAuth Toolkit installation, refer to Chapter Two, “Post Configuration”.

OAuth Manager Select the Manager utility... check box to install the Manager utility for the Client and
Token store. This applies to both OAuth 1.0 and 2.0.

Version Prefix

Prefix resolution URIs
and Policy Names

Select this check box to add a prefix to the URIs and policy names. This is useful if
you wish to version the installation or have a side-by-side installation. A prefix avoids
naming conflicts in the routing URI and policy names. The prefix will be used to:

• Prefix the resolution URI for each created published service (Note: All services
use URI resolution in the OAuth Toolkit)

• Update any services that route to an OAuth endpoint to route to the URI with the
prefix instead

• Prefix each created policy fragment name

If a prefix is entered, an example URL is shown to illustrate how the prefix will be
used.

Note: The components listed in the table above were designed to be
installed on the same Gateway. If your environment requires that
components be split across different Gateways, additional post
configuration will be required. Contact CA Technical Support for
assistance at support@layer7tech.com.

5. Click [Manage OTK Database] if you need to create an OTK database. Refer to
“Installing the OTK Database” below for details.

6. Click [Install] to begin the installation of the OAuth Toolkit. An installation
summary is displayed when installation is successfully completed.

4 Chapter One: Getting Started

mailto:sales@layer7tech.com

Layer 7 OAuth Toolkit User Manual, v2.1.2

If there are conflicts or missing items that prevent the OAuth Toolkit from being
installed, these will be listed in a conflicts dialog. Correct the issues and try
installing the toolkit again.

Installing the OTK Database
The Manage OTK Database dialog box is used to create a new OAuth Toolkit
Database or to view/copy the OTK database schema.

 To access the Manage OTK Database dialog box:

1. Click [Manage OTK Database] on the OAuth Toolkit Installer. The following tabs
are displayed in the Manage OTK Database dialog box:

• Create OTK Database: Used to install the OTK database.

• OTK Schema: Used to view or copy the OTK schema.

2. Complete the [Create OTK Database] tab (see Figure 2 and Table 2 below).

3. Click [Close] to close the Manage OTK Database dialog, if necessary.

Chapter One: Getting Started 5

 Layer 7 OAuth Toolkit User Manual, v2.1.2

Completing the [Create OTK Database] Tab

The [Create OTK Database] tab is used to create the MySQL OAuth Toolkit database
and configure a JDBC Connection to the new database.

Figure 2: [Create OTK Database] tab

Complete the tab as follows:

Table 2: Configuring the [Create OTK Database] tab

Setting Description

MySQL Configuration

MySQL Database Server Host Enter the hostname or IP address of the server where the MySQL database is
located.

MySQL Database Server Port Enter the port number for the MySQL database server.

Admin Username Enter the user name of the admin user.

Note: The user must have all the required privileges on the target server where
the OTK database is installed. These privileges include: ALL and GRANT
OPTION.

6 Chapter One: Getting Started

Layer 7 OAuth Toolkit User Manual, v2.1.2

Setting Description

Admin Password Enter the password for the admin user.

New OTK Database Configuration

OTK Database Name Enter the name for the new OTK database, maximum 64 characters (for
example, “otk_db”).

MySQL User Enter the name of the MySQL user. You may specify an existing MySQL user or
enter a new username.

This is the name of the user you will be entering when you create a new JDBC
connection. See “SecureZone Storage” in Table 1 on page 2 for more
information on creating the JDBC connection.

Create User Select this check box to treat the name of the MySQL User entered as a new
user. A new user with this name will be created.

Clear this check box to treat the name of the MySQL User entered as an
existing user.

Fail if user already exits When creating a new user, select this check box to prevent an existing user’s
password from being overwritten. This is helpful if you have specified to create
a new user, but accidentally entered an existing username.

Clear this check box to create a new user even if a user with that name already
exists. This will update the user’s password with the new one that you specify
here.

OTK MySQL User Password From the drop-down list, select the password for the MySQL user specified
above. If the password you require is not listed, click [Manage Stored
Passwords] to add it to the list of stored passwords. This is the password that
the JDBC Connection uses.

Tip: You cannot type the password directly here; it must be defined in the
Gateway's secure password storage.

To add a new stored password:

1. Click [Add].

2. Enter a Name and then fill in the password fields.

3. Click [OK].

4. Click [Close].

For more information, see “Manage Stored Passwords” in the Layer 7 Policy
Manager User Manual.

MySQL Host Grants Grant information is required for the MySQL user to access the new OTK
database. By default, access from the localhost is configured.

• Click [Add] to grant access to another hostname. Valid hostnames or IPV4
or IPV6 addresses are supported. Netmasks are also supported.

• Click [Edit] to modify an existing hostname.

• Click [Remove] to delete a hostname from the grant list.

Chapter One: Getting Started 7

 Layer 7 OAuth Toolkit User Manual, v2.1.2

Setting Description

Tip: You can enter “%” as a hostname to indicate that users can access the
OTK database from any host.

Gateway JDBC Connection Configuration

New JDBC Connection Name Enter a name for the JDBC Connection that will be created, maximum 128
characters. This is the name of the JDBC connection you will enter when
creating a new JDBC connection. See “SecureZone Storage” in Table 1 on page
2 for more information on creating the JDBC connection.

After the database has been created, a new JDBC Connection with the
specified name will be created, which can then be referenced from policies.
This name will be visible in the “Map Policy JDBC Connection” drop-down list in
Figure 1 and will also be visible in the Manage JDBC Connections task in the
Policy Manager.

The connection will be configured to use a secure password reference for the
MySQL user’s password.

Click [Create Database] to install the database schema using the supplied
parameters.

When the database is created, you can view it in the [OTK Schema] tab or you can
click [Close] to close the Manage OTK Database dialog box.

8 Chapter One: Getting Started

Layer 7 OAuth Toolkit User Manual, v2.1.2

Using the [OTK Schema] Tab

Figure 3: [OTK Schema] tab

The [OTK Schema] tab simply displays the database schema for the OAuth Toolkit
database. You can view the schema or copy the contents via the Clipboard.

Conflict Resolution
The OAuth Toolkit Installer checks for potential conflicts in the following areas before
the installation begins:

• Service routing conflicts

• Policy conflicts

• Certificate conflicts

• Encapsulated Assertion conflicts

Chapter One: Getting Started 9

 Layer 7 OAuth Toolkit User Manual, v2.1.2

• Missing JDBC connections

• Missing assertions

If conflicts are detected, you may either continue or cancel the installation.
Continuing an installation with detected conflicts will result in the following:

• Any service with a conflicting URI will not be installed.

• Any policy fragment with a conflicting name will not be installed.

• Any reference to a conflicting fragment will instead reference the existing
fragment.

Alternatively, you can cancel the installation when conflicts are detected and either
uninstall the conflicting services/policies or choose a different install prefix to avoid
the conflict.

IMPORTANT: If you cancel the installation while items are actively being
installed, you may need to manually delete items that were installed—
canceling does not perform a rollback.

Uninstalling the OAuth Toolkit
To uninstall the OAuth Toolkit, delete the install folder and then manually delete the
database.

Understanding the OAuth Toolkit Architecture
The OAuth Toolkit comes separated in logically different components. This section
explains how the components can be introduced within the network environment.

Conceptually these components are available:

• OAuth Validation Point (OVP)

• This is an endpoint that validates incoming requests for OAuth 1.0 and
OAuth 2.0. It is accessed via a REST API.

• API Proxy

• The CA API Gateway holding the OAuth installation enforcing the OAuth token
requirement.

• Clientstore

• All oauth_consumer_keys (OAuth 1.0) and client_ids (OAuth 2.0) are stored
here. The clientstore is accessable via a REST API.

• Tokenstore

• All tokens are stored here. The clientstore is accessable via a REST API.

10 Chapter One: Getting Started

Layer 7 OAuth Toolkit User Manual, v2.1.2

• Sessionstore

• This endpoint provides caching and session services to the OTK
components. This allows OTK components to avoid going to the database in
calls to clientstore and tokenstore APIs.

• Resource Server

• This server provides endpoints to access resources. These endpoints require
a valid OAuth token.

See the following graphic which displays the components within their preferred
network zones.

Figure 4: Components within their preferred network zones

Getting Help
The Layer 7 OAuth Toolkit is a working OAuth implementation designed for maximum
flexibility. This allows you to configure it for your particular performance requirements
and deployment environment.

For professional help with tailoring the Layer 7 OAuth implementation to meet your
needs, please contact CA Technical Support at support@layer7tech.com.

Chapter One: Getting Started 11

mailto:sales@layer7tech.com

 Layer 7 OAuth Toolkit User Manual, v2.1.2

12 Chapter One: Getting Started

Layer 7 OAuth Toolkit User Manual, v2.1.2

Chapter Two:
Post Configuration

After the OAuth Toolkit is installed, it is recommended that you perform the post-
configuration steps to ensure that everything is set up correctly.

Post Configuration Steps

Step 1: Import Public Certificate
The Gateway needs to “trust” its own SSL certificate before you can use the test
clients. To do this, import the Gateway’s public certificate into the certificate store of
the Gateway.

 To import the public certificate:

1. In the Policy Manager, choose [Tasks] > Manage Certificates. The Manage
Certificate dialog appears.

2. Click [Add]. The Add Certificate Wizard appears.

3. In Step 1 of the wizard, choose Retrieve via SSL Connection (HTTPS or LDAPS
URL) and then enter https://localhost:8443 in the adjacent field.

4. Click [Next] to display wizard in Step 2.

5. Click [Next] to display wizard in Step 3.

6. Select the check boxes for:

Outbound SSL Connections
Signing Certificates for Outbound SSL Connections
Signing Client Certificates
Signing SAML Tokens

7. Click [Finish] to complete the wizard.

8. Click [Close] to close the Manage Certificates dialog.

Step 2: Verify the OAuth Database Schema
Verify the database schema by using the [OTK Schema] tab in the Manage OTK
Database dialog box. For more information, refer to “Using the [OTK Schema] Tab” on
page 9.

Chapter Two: Post Configuration 13

 Layer 7 OAuth Toolkit User Manual, v2.1.2

Step 3: Configure Authentication
By default, the policies installed by the OAuth Toolkit are not usable until you
configure authentication for the endpoints. This process involves the following steps:

1. Implement a Federated Identity Provider for the SAML Grant Type

2. Implement a Federated Identity Provider for Validation and Storage Endpoints

3. Add Validation of SAML Token Signer to SAML Token Grant_Type Policies

4. Add Checking of Client Certificate to Validation and Storage Endpoints

Step 1: Implement a Federated Identity Provider for the SAML
Grant Type

By default, support for the SAML Token grant type is disabled in the policies delivered
in the OAuth Toolkit. Do the following if you intend to enable support for this grant
type:

1. Run the Manage Trusted Certificates task to ensure that any needed certificates
have been imported. This includes the Gateway’s own default SSL certificate and
the SSL certificate of any Gateway that is connecting as a client.

For more information, see Managing Trusted Certificates in the Layer 7 Policy
Manager User Manual.

2. Create a Federated Identity Provider with the following attributes:

Wizard
Step

Setting Value

1 Provider Name

Credential Source Type Allowed

OAuth SAML Identity Provider

SAML Token

2 Trusted Certificates Add the trusted certificates of the
SAML issuing parties:

• Gateway’s own default SSL
certificate

• SSL certificate of any Gateway
that is connecting as a client

3 Certificate Validation Options Validate Certificate Path

For more information, see Federated Identity Provider Wizard in the Layer 7
Policy Manager User Manual.

14 Chapter Two: Post Configuration

Layer 7 OAuth Toolkit User Manual, v2.1.2

Step 2: Implement a Federated Identity Provider for Validation
and Storage Endpoints

1. If not already done in Step 1, run the Manage Trusted Certificates task to ensure
that any needed certificates have been imported. This includes the Gateway’s
own default SSL certificate and the SSL certificate of any Gateway that is
connecting as a client.

For more information, see Managing Trusted Certificates in the Layer 7 Policy
Manager User Manual.

2. Create a Federated Identity Provider with the following attributes:

Wizard
Step

Setting Value

1 Provider Name

Credential Source Type Allowed

OAuth Client Identity Provider

X.509 Certificate

2 Trusted Certificates Do not add any trusted certificates.
Confirm when warned that all users
will need their certificates to be
imported individually.

3 Certificate Validation Options Validate Certificate Path

For more information, see Federated Identity Provider Wizard in the Layer 7
Policy Manager User Manual.

3. For each client that will be connecting to the validation and storage endpoints
(possibly including this Gateway itself), create a Federated User within this new
FIP with (as their imported certificate) the client’s certificate for its outbound TLS
connection:

a. Right-click on the new “OAuth Client Identity Provider” and select Create
User. The Create Federated User dialog appears.

b. Complete the dialog as follows:

• X509 Subject DN: Enter the complete DN of the client certificate that will
be imported for this user. For example, if the client Gateway has a
certificate with a DN of “CN=gateway.example.com” then you must enter
“CN=gateway.example.com” here.

• Login/Email/User Name: Complete as necessary.

• Define Additional Properties: Select check box.

c. In the Properties dialog for the user, select the Certificate tab.

d. Click Import and then import the SSL certificate of the client Gateway as this
user’s certificate. For example:

Chapter Two: Post Configuration 15

 Layer 7 OAuth Toolkit User Manual, v2.1.2

• If the Gateway hosting the validation and storage endpoints is
connecting to itself over localhost, select the Import from Private Key’s
Certificate Chain option and choose the default SSL key (which by
default has the alias “ssl”).

• If an external client Gateway will be connecting to the validation and
storage endpoints, select the Retrieve via SSL Connection (HTTPS or
LDAPS URL) option and type a URL that leads to a listen port on the
client Gateway that uses its default SSL key as its server certificate. For
example, “https://clientgateway.example.com:8443”.

4. Save the new Federated User.

For more information, refer to these topics in the Layer 7 Policy Manager User
Manual:

Creating a Federated User
Federated User Properties

Step 3: Add Validation of SAML Token Signer to SAML Token
Grant_Type Policies

By default, support for the SAML Token grant type is disabled in the policies delivered
in the OAuth Toolkit. Do the following if you need to enable support for this grant type:

1. In the Policy Manager, connect to the Gateway that implements the OAuth Toolkit
endpoint /auth/oauth/v2/token.

2. Replace the Stop Processing assertion in the SAML grant type branch with an
Authenticate Against Identity Provider assertion.

• Choose OAuth SAML Identity Provider as the identity provider and then close
the assertion properties.

3. Right-click the Authenticate Against Identity Provider assertion in the policy
window and choose Select Target Message.

4. Set the message target to “Other Context Variable” named bearerToken.

The assertion label in the policy should now read: ${bearerToken}: Authenticate
against OAuth SAML Identity Provider.

Step 4: Add Checking of Client Certificate to Validation and
Storage Endpoints

In this step, you will update the OAuth storage and validation endpoints to use a
Federated Identity Provider to check the client certificate.

1. In the Policy Manager, connect to the Gateway that implements the validation
and storage endpoints.

2. Open each endpoint listed below and replace the Stop Processing assertion at
the top of the policy with an Authenticate Against Identity Provider assertion.

16 Chapter Two: Post Configuration

https://clientgateway.example.com:8443/

Layer 7 OAuth Toolkit User Manual, v2.1.2

• Choose the OAuth Client Identity Provider as the identity provider.

Update these endpoints within the folder “SecureZone – OVP”:

/oauth/validation/v1/authorize
/oauth/validation/validate/v1/signature
/oauth/validation/v2/authorize
/oauth/validation/validate/v2/granttype
/oauth/validation/validate/v2/refreshtoken
/oauth/validation/validate/v2/token
/oauth/validation/validate/v2/tokenrequest

Update these endpoints within the folder “SecureZone – Storage”:

/oauth/clientstore/*
/oauth/tokenstore/*
/oauth/session/*

Step 4: Verify the OAuth Manager
After the components are installed, verify that the OAuth Manager is working
correctly. This manager is used for both OAuth 1.0 and 2.0.

Prerequisite: To perform the OAuth Manager and OAuth Test Client verification, you
will need a browser that has access to the endpoints configured on the CA API
Gateway.

To verify that the OAuth Manager is working correctly, run through the steps under
“Manage Clients” and “Manage Tokens” under “Working with the OAuth Manager”
starting on page 21.

Step 5: Verify the OAuth Test Client
You should also run the appropriate test client after installation to ensure that it is
working correctly.

 To verify the OAuth Test Client:

If you have integrated the OAuth Toolkit with the Layer 7 API Portal, be sure to follow
the steps under “Integration with API Portal” below first.

• To verify the test client for OAuth 1.0, see “OAuth 1.0 Test Client” on page 26”.

• To verify the test client for OAuth 2.0, see “OAuth 2.0 Test Client” on page 29.

Integration with API Portal

If you chose to integrate the OAuth Toolkit with the Layer 7 API Portal (see Figure 1 on
page 2), you must perform the following steps before you can test your deployment:

1. Start the Policy Manager and connect to your Gateway.

Chapter Two: Post Configuration 17

 Layer 7 OAuth Toolkit User Manual, v2.1.2

2. Expand the “API Portal Integration” folder in the list of services and folders
(lower-left corner of the Policy Manager).

3. Expand the “SecureZone - Storage” folder.

4. Expand the “OAuthClientStore” folder.

5. Double-click oauth/clients [/oauth/clientstore/*]. The policy associated with this
endpoint is displayed in the policy window.

6. Click [Show Assertion Numbers] in the Policy Toolbar (upper-right corner of the
Policy Manager). This displays line numbers next to each line in the policy.

7. Double-click line 6 and then change the value in the Expression text box from
“true” to “false”.

8. Click [OK] to close the properties.

9. Click [Save and Activate] in the Policy Toolbar. You can now verify the test clients.

IMPORTANT: After verifying the test clients, repeat steps 1-9, but this time
for step 7, reset the Expression value from “false” to “true”.

18 Chapter Two: Post Configuration

Layer 7 OAuth Toolkit User Manual, v2.1.2

Chapter Two: Post Configuration 19

Layer 7 OAuth Toolkit User Manual, v2.1.2

Chapter Three:
Using the OAuth Toolkit

The OAuth toolkit provides an implementation of both OAuth 1.0 and 2.0. Additionally
test clients are provided for both and a simple client and token management
application.

Note: The OAuth Toolkit currently does not perform any SCOPE validation.
Be sure to manually verify that clients who request a SCOPE value are
actually registered to receive it.

Working with the OAuth Manager
The OAuth Manager is a basic tool that displays information about registered client
applications and users that have granted applications access to their resources.

Note: The OAuth Manager was designed as a simple tool to help get
customers started with OAuth. It was not designed to manage their
enterprise OAuth solution.

The OAuth Manager provides these two functions:

• Manage Clients and Client Keys

• Manage Tokens

The OAuth Manager displays registered client applications and applications that were
granted by users.

Manage Clients

Note: Client management is not available via the OAuth Manager if the
Layer 7 OAuth Toolkit has been integrated with the Layer 7 API Portal (see
Figure 1 on page 2).

 To manage clients using the OAuth Manager:

1. Open a browser and navigate to this URL:

https://<Gateway_host>:8443/oauth/manager

The OAuth Manager welcome screen is displayed.

2. Click [Manage Clients] to list, delete, and register client applications.

Chapter Three: Using the OAuth Toolkit 21

 Layer 7 OAuth Toolkit User Manual, v2.1.2

Figure 5: OAuth Manager - Manage Clients

The following table describes each element on the OAuth Manager screen for
client applications.

Table 3: Descriptions for OAuth Manager - Manage Clients section

Field Description

client_ident A unique identifier of this client. It is unique within the used client store

name The name of the client application This name will be displayed in the grant/deny dialog
during the authorization process.

type The type is either “public” or “confidential”. Used with OAuth 2.0.

description An optional description of this client

organization The organization that has registered this client

registered_by The user that has registered this client

created The time this client was registered. The provided text clients have “0” as the value

action • Delete: Click this to delete the client. Use this action with care, as deleting the
client application will also delete all tokens issued for this client.

• Edit: Click this to edit the values on the Manage Client screen. Edit with caution—
for example, if you change the consumer_key or the consumer_key_secret,
existing client applications will no longer be able to access a protected resource
endpoint.

• List Keys: Will display a list of existing client keys for this client

register client Displays the client registration screen (). Complete the fields and then click [Register].
The application is now available within the environment.

22 Chapter Three: Using the OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

The registration page is used for OAuth 1.0 and OAuth 2.0 clients. Some fields
may only apply to one of the types. Values for handling “SCOPE” and
“ENVIRONMENT” are collected but rules for validating these values must be
implemented. There is no general rule defined in the OAuth specifications for
this.

3. Click [List Keys] to view the client_keys.

Figure 6: OAuth Manager - Manage Clients - List Keys

This page is used for OAuth 1.0 and OAuth 2.0 clients. Some fields may only
apply to one of the types.

Table 4: Field descriptions for OAuth Manager - Manage Clients – List Keys section

Field Description

client_ident The unique identifier of the “owning” client

client_name The name of the “owning” client

client_key In OAuth 1.0 it is the “oauth_consumer_key”; in OAuth 2.0 it is the “client_id”

secret The associated client key secret

scope The scope of this key

callback In OAuth 2.0 this is “redirect_uri”. In Oauth 1.0 it can either hold “oob” or a valid URI.
In OAuth 2.0 this can be one or a list of URIs

environment The environment used with this key

expiration The date until this key is valid. “0” indicates “forever”

status Either “ENABLED” or “DISABLED”. Disabled tokens will cause resource requests to be
denied

created The time this token was created

created_by The user who created this key

Chapter Three: Using the OAuth Toolkit 23

 Layer 7 OAuth Toolkit User Manual, v2.1.2

4. Select an action to perform:

• Revoke: Click this to revoke (delete) the client key. All tokens for that client
key will also be revoked.

• Edit: Click this to edit the key—for example, to change the STATUS, or to
disable the key.

Note: Disabling a client key will not disable the tokens for that client key. It
only prevents the client key from being used for any future tokens.

• Disable Tokens: Click this to disable all tokens for the client key. Note: To
disable and re-enable individual tokens, see Figure 7.

Manage Tokens
 To manage tokens using the OAuth Manager:

1. Open a browser and navigate to this URL:

https://<Gateway_host>:8443/oauth/manager

The OAuth Manager screen is displayed.

2. Click [Manage Tokens] to view values of issued tokens, and to disable or revoke
tokens.

Figure 7: OAuth Manager - Manage Tokens

The following table describes each element on the OAuth Manager screen for
tokens.

24 Chapter Three: Using the OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

Table 5: Descriptions for OAuth Manager - Tokens section

Field Description

token The access_token issued to the client application when it was granted

secret The secret of this access_token if available

expiration The token is valid until this time

rtoken A refresh_token if available

rexpiration The expiration date of the refresh token

scope The scope for this token

resource_owner The user who has granted this token

client_key In OAuth 1.0 it is the “oauth_consumer_key”; in OAuth 2.0 it is the “client_id”

client_name The associated client name

status Either “ENABLED” or “DISABLED”. Disabled tokens will cause resource requests to be
denied

created The time this token was created

3. Select an action to perform:

• Revoke: Click this to revoke (delete) the token.

Note: Expired tokens are automatically deleted when a new token is
issued. This is performed by the policy fragment “Delete expired
tokens”, which is invoked each time the “/oauth/tokenstore/*”
endpoint is called. If you experience performance issues related to
deleting expired tokens, disable this fragment in the oauth/tokens
policy and call it in a different manner.

• DISABLE: For enabled tokens, click this to disable the token.

• ENABLE: For disabled tokens, click this to re-enable the token

Chapter Three: Using the OAuth Toolkit 25

 Layer 7 OAuth Toolkit User Manual, v2.1.2

Working with the OAuth 1.0 Toolkit

OAuth 1.0 Test Client
The test client is used to verify installation changes and to access OAuth 1.0/1.0a-
secured API endpoints of platforms. This section describes how it works and how it
can be configured.

Note the following security precautions when using the test client:

• The test client should not be installed on product systems.

• The test client should not be installed on a Gateway that is available on the
internet.

• You should modify the test client to use your own specific client credentials.

• You should remove the test client from the OAuth Manager when it is no longer
needed.

 To run the test client:

• Open a browser and navigate to this URL:

https://<Gateway_host>:8443/oauth/v1/client

The OAuth V1 Client welcome screen is displayed.

Figure 8: OAuth V1 Client

The following table describes each setting on the test client.

Table 6: Test Client setting descriptions

Setting Description

Your name The client will use this name to associate received tokens with the current user. This
can be any name; it is not verified and is easily changed. This makes it useful if more
than one developer is using the client at the same time. The default user name
“system” is used if none was provided.

26 Chapter Three: Using the OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

Setting Description

AccessResources The client will request a request_token at the authorization server.

Reuse existing
access_token if it exists?

Select this check box to reuse an access_token for the current consumer_key, if the
user has already received one from an earlier session. If the token exists, the client
will directly access the resources.

Clear this check box to not reuse an existing access_token and instead reissue a new
one.

Notes: (1) The OAuth token lifetime is configurable. (2) The client does not know
whether the token has expired. If it has, the server will return either nothing or an error
message and another session must be started.

Verifying the Test Client

Before running the test client for the first time, you should test that it is working
properly.

 To verify the test client:

1. Start the test client.

2. For the purposes of testing, you may click [AccessResources] with entering a
name. You will see a notification stating that “system” will be used as the
username. Click [OK] to confirm proceeding without a username. You are
redirected to the authorization endpoint of the OAuth server, which also is the
resource server. Before the redirect occurs, the client has already received a
request_token issued by the request endpoint.

3. The next screen displays the login page of the Authorization server. Enter the
login credentials of a user from the internal identity provider and then click
[Grant].

You will be redirected back to the client application. The client will receive the
authorized request_token and a verification code. The client uses those values
to exchange them for an access_token.

4. After the client receives the access_token, the download page is displayed. Click
[Download] to receive the requested resources.

Chapter Three: Using the OAuth Toolkit 27

 Layer 7 OAuth Toolkit User Manual, v2.1.2

Figure 9: OAuth Client: Downloading the requested resources

At this point, the client has used the issued access_token and the test client
verification is complete.

Figure 10: OAuth Client: Receiving the requested resources

Configuring the Test Client to access other OAuth protected
services

The following configurations can be modified:

• Application name

• consumer_key, consumer_key_secret

• resource endpoint

• request, authorize and token endpoint

All modifications can be made in the policy using the Policy Manager in the
/oauth/v1/client policy.

28 Chapter Three: Using the OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

Working with the OAuth 2.0 Toolkit
All OAuth 2.0 features are implemented using policies in the Policy Manager, making
it possible to customize the entire OAuth process. This chapter describes some of the
more common customizations.

OAuth 2.0 Test Client
The test client is used to verify installation changes and to access OAuth 2.0-secured
API endpoints of platforms. This section describes how it works and how it can be
configured.

Note: Client management is not available via the OAuth Manager if the
Layer 7 OAuth Toolkit has been integrated with the Layer 7 API Portal (see
Figure 1 on page 2).

Note the following security precautions when using the test client:

• The test client should not be installed on product systems.

• The test client should not be installed on a Gateway that is available on the
internet.

• You should modify the test client to use your own specific client credentials.

• You should remove the test client from the OAuth Manager when it is no longer
needed.

Enabling the Client

 To enable the OAuth 2.0 test client:

1. Navigate to the following URL in a browser:

https://< Gateway_host >:8443/oauth/manager

2. Click [Manage Clients].

3. Click [List Keys] of the client with the name “OAuth2Client”

4. Click [Edit]

5. Edit [Callback URL] and replace “<YOUR_SSG>” with the protocol, hostname
and port of your Gateway; for example: https://acmecorp.com:8443

Note that there are two replacements to be performed.

6. Click [Save].

7. Click [Manage Client  List Keys] and verify that the client key has been
updated.

Chapter Three: Using the OAuth Toolkit 29

 Layer 7 OAuth Toolkit User Manual, v2.1.2

Tip: Click [Manage Clients] to list, delete, and register client applications.
Click [Manage Tokens] to list, and revoke access tokens granted to client
applications.

Running the Client

 To run the OAuth 2.0 test client:

• Navigate to the following URL in a browser:

https://<Gateway_host>:8443/oauth/v2/client/authcode

The OAuth Client Test Application screen is displayed. Each control on the screen
is described in the following sections.

Additional notes about the client apps:

• On the left sidebar of this page, you can navigate between the other OAuth 2.0
Test Clients:

Authorization Code
Implicit
Client Credentials
Resource Owner Password Credentials
SAML

• On the left sidebar of this page, you can navigate to OAuth Manager:

OAuth Manager (This link only works if the protocol and port is the same as used
with the client application; for example: https/8443.)

• Each client app maintains its own token. Each time you initiate a new OAuth
session, the current access token is overwritten.

The access token in memory is used to call the API of your choice. In the
case of SAML, a SAML token is also maintained in memory and overwritten
each time you initiate a new one.

Tip: Each OAuth 2.0 Test Client tests its own grant type. If you are only
using a subset of the available OAuth grant types, you can ignore the
other test clients.

Getting an Access Token

 To get an access token before calling an API:

1. In the OAuth Test Client, click [Initiate]. The OAuth 2.0 Authorization Server page
is displayed.

30 Chapter Three: Using the OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

Figure 11: OAuth 2.0 Authorization Server

2. Enter your credentials and then click [Grant]. You will be redirected back to the
client application with an access token and a refresh token.

Figure 12: Current Access Token

Testing the Client

 To test using the access token to call an API on the CA API Gateway:

1. Enter a target URL in the Target field (see ).

2. Click [Call API] (see ). The client app will use the access token currently
residing in memory as a credential to call the target API.

The resulting response for this call will be displayed below the Target field (see
).

Chapter Three: Using the OAuth Toolkit 31

 Layer 7 OAuth Toolkit User Manual, v2.1.2

Figure 13: Using an access token to call an API

Refreshing a Token

 To refresh an existing OAuth access token:

Certain grant types support refresh tokens. This is indicated by the presence of a
[Refresh] button.

• To refresh an existing OAuth access token, click the [Refresh] button.

Figure 14: Refreshing an Access Token

Clearing the Current Session

 To clear the current test client session:

• Click the [Clear Session] button on the OAuth client page. This starts a new test
and clears all the parameters in the clients.

Figure 15: Clearing a session

Restricting the OAuth 2.0 Grant Types
By default, the OAuth Authorization Server enables the following OAuth grant types:

Authorization code
Implicit

32 Chapter Three: Using the OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

Client Credentials
Resource owner password credentials
SAML

To restrict the different grant types that you want to support for your use cases,
disable the branches that implement the ones you do not wish to support in the
token endpoint policy. Set this to “At least one assertion must evaluate to true” with
the comment “grant types” in endpoint.

/auth/oauth/v2/token

For more information on disabling a branch, see Disabling an Assertion in the Layer 7
Policy Manager User Manual.

Tip: In the Policy Manager, click [Show Comments] in the policy tool bar to
see comments in the policy window.

Change Resource Owner Authentication
The authorization and token endpoint policies authenticate the resource owner. In
the initial installation, the Internal Identity Provider is used to achieve this
authentication. You may want to attach a different authentication source for your
purpose.

For more information, refer to the following sections:

• Authenticate User or Group Assertion in the Layer 7 Policy Authoring User
Manual

• Working with Identity Providers in the Layer 7 Policy Manager User Manual

Advanced Tip: If you change the way resource owner authentication is done
by either the OAuth authorize or token endpoint policies, there may be
downstream consequences. By default, these policies are set to
authenticate against the Gateway's Internal Identity Provider using the
Authenticate Against Identity Provider assertion. This assertion sets the
${request.authenticatedUser} context variable at runtime and this variable is
subsequently used by both the authorize and token endpoint policies to set
another context variable representing the resource owner. If you change the
resource owner authentication to another method that does not set the
${request.authenticatedUser} context variable, then the OAuth authorize and
token endpoint policies must be adjusted to set the resource owner context
variables appropriately. (Tip: Use the Find command ([Ctrl]+F) in the policy
window to search for “authenticatedUser” to find where these changes may
need to be made.)

Chapter Three: Using the OAuth Toolkit 33

 Layer 7 OAuth Toolkit User Manual, v2.1.2

Adding SLA Rules
In addition to authenticating these various identities, you may want to add SLA rules
associated with their use of the Authorization Server. Figure 16 shows an example of
using the Apply Throughput Quota assertion to prevent a client from refreshing the
access token more than 10 times per second.

Figure 16: Adding SLA Rules sample

For more information, see “Apply Throughput Quota Assertion” in the Layer 7 Policy
Authoring User Manual.

34 Chapter Three: Using the OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

Chapter Four:
Customizing the OAuth Toolkit

All OAuth Toolkit features are implemented using policies in the Policy Manager, making
it possible to customize the entire OAuth process. This chapter describes some of the
more common customizations.

Configuring a Corporate Brand
The OAuth toolkit comes with a simple policy-generated web page that is presented
to end users as part of the Authorization process. This chapter describes how to
replace this page with a template that conforms to a specific corporate style or
theme. It is important that the pages presented by the Authorization server reflect
your corporate style to help orient users by indicating the source of the page they are
viewing.

The following steps describe how to create a themed template and configure the
Gateway to use this template for the Authorization pages.

When the client is redirected to the authorization endpoint for the user login to
grant/deny a request, the authorization server’s website can be displayed.

 To customize the authorization web page to configure a corporate brand:

1. Create the HTML template. This can contain references to images and
stylesheets. The easiest way to create this page is to take an existing HTML page
and replace the actual content with the following tag:

<!--oauth_content_placeholder-->

This comment value will be replaced dynamically with a <div> element
containing all necessary values for the login/ grant/ deny dialogs.

Chapter Four: Customizing the OAuth Toolkit 35

 Layer 7 OAuth Toolkit User Manual, v2.1.2

Figure 17: Creating a branding template

When the authorize policy executes the downloaded web page, the above place
holder will be searched and be replaced with a <div> element containing the
relevant markup. The <div> element will include the login form, Grant and Deny
buttons, as well as required error messages such as “Authentication Denied”.

Note: The HTML template can reference other resources provided that
they are located in the same folder as the template. This means all
images and style sheets must not be in subfolders.

2. Point the authorize policy to the web page by configuring the variables in policy
fragment “OAuth 1.0 Context Variables” or “OAuth 2.0 Context Variables” (as
appropriate to your installation).

Set these variables to point to your website (for example:
http://myhost.com/website.html):

• OAuth 1.0: host_oauth_v1_server_website_baseuri

• OAuth 2.0: oauth2_auth_template_path

Set these variables to point to the host, including the protocol (for example,
http://myhost.com):

• OAuth 1.0: oauth_v1_server_website_baseuri

• OAuth 2.0: host_oauth2_auth_server

36 Chapter Four: Customizing the OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

Using the Customer’s Identity Provider
For this initial installation, the internal identity provider built into the Gateway is used
to authenticate users. You can change this to use the customer’s identity provider
(also known as Identity Management System (IDMS)). To do this, edit the policy for
the authorization endpoint. The reference to the Internal Identity Provider can be
changed to use the customer’s identity provider. For example, Figure 18 illustrates
changing the Internal Identity Provider to using an LDAP Identity Provider.

Advanced Tip: If you change the authentication to use the customer’s
identity provider rather than the Internal Identity Provider, consider the
downstream consequences. Specifically, if a policy is modified to not use the
Authenticate Against Identity Provider or Authenticate User or Group
assertions, the value of the ${request.authenticatdUser} context variable
(which captures the name of the authenticated user) will need to be
updated.

Figure 18: Changing the identity provider to the customer’s identity provider

Note: The policy fragment shown Figure 18 is an example—your fragment
and the line numbers may differ.

Configuring the Session Lifetime
To speed up the policy processing time, the OAuth Toolkit uses a combination of
caching and session persistence to reduce the number of calls to the token store
and client store endpoints. This functionality is provided by the “oauth/session”
endpoint. The policy fragment “/oauth/validation/validate/v1/signature” uses the
session endpoint to cache the client_key and access_token values.

The token properties are stored in the session, but the expiry is determined by the
expiration property within the token. The cachAge controls how long the token will be
in session and it also controls how long the client properties will be in session.

Chapter Four: Customizing the OAuth Toolkit 37

 Layer 7 OAuth Toolkit User Manual, v2.1.2

Customizing the Token Lifetime
It is possible to change the lifetime of tokens. The policy fragment “Token Lifetime
Context Variables” contains the context variables that govern the lifetime of
generated tokens. You can modify this policy as needed.

The following table describes the token lifetime variables.

Table 7: Token lifetime context variables for OAuth 1.0

Variable Description

oauth_v1_access_token_lifetime_s Controls the lifetime of access tokens.

Set to “0” (zero) to make the token invalid
immediately.

Default: 86400 (seconds)

oauth_v1_request_token_lifetime_s Controls the lifetime of request tokens.

Set to “0” (zero) to make the token invalid
immediately.

Default: 300 (seconds)

oauth_v1_consumer_key_lifetime_m Controls the lifetime of OAuth consumer keys.

The default of “0” (zero) means an indefinite
lifetime.

Default: 0 (minutes)

Table 8: Token lifetime context variables for OAuth 2.0

Variable Description

oauth2_auth_code_lifetime_sec Controls the lifetime of issued OAuth codes.

Set to “0” (zero) to make the code invalid
immediately.

Default: 600 (seconds)

oauth2_access_token_lifetime_sec Controls the lifetime of issued access tokens.

Set to “0” (zero) to make the token invalid
immediately.

Default: 3600 (seconds)

oauth2_refresh_token_lifetime_sec Controls the lifetime of issued refresh tokens.

Default: 604800 (seconds)

38 Chapter Four: Customizing the OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

Adding OAuth Authorization Capabilities to
Existing API

To control access to an API using OAuth, include either the “Require OAuth 1.0
Token” or “Require OAuth 2.0 Token” policy fragment. These fragments verify that
the request contains a valid OAuth access token.

The following illustration shows how to protect a resource with the OAuth 2.0 runtime
authorization fragment.

Figure 19: Example: Protecting a resource with the OAuth 2.0 Runtime Authorization
Fragment

Additionally, the “Require OAuth 2.0 Token” policy fragment creates context variables
that contain some of the attributes associated with the OAuth session for the token
presented. This OAuth session information can be used from within the service policy
to implement additional rules.

Table 9: Context variables set by the Require OAuth 2.0 Token policy

Context Variable Description

${session.client_id} The OAuth client ID to which the access token is issued.

${session.expires_at} A timestamp (in long format) that represents a time after
which the access token is no longer valid.

${session.scope} The scope associated with the access token.

${session.subscriber_id} The authenticated resource owner authenticated as part
of the original OAuth handshake for this access token.

You can also add global OAuth Authorization rules directly within the “Require OAuth
1.0 Token” or “Require OAuth 2.0 Token” policy fragment. In this case, these rules
apply the same way to all APIs that are protected with this OAuth fragment.

Chapter Four: Customizing the OAuth Toolkit 39

 Layer 7 OAuth Toolkit User Manual, v2.1.2

40 Chapter Four: Customizing the OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

Appendix A:
Related APIs for OAuth Toolkit

The OAuth Toolkit is using the APIs provided by the different components. The APIs
can be used by any other third party client.

Three different APIs are provided and are required. All APIs support HTTP GET and
HTTP POST (content-type: application/x-www-form-urlencoded). The need for SSL can
be configured by simply modifying the policy using the Policy Manager. In this
appendix, “HTTP” is used to keep the documentation consistent.

Tip: Values within brackets followed by a “?” are optional parameters;
for example: (¶meter=value)?

Clientstore API

This API allows CRUD operations using different endpoints and parameters to
manage client applications and client keys (client_id, oauth_consumer_key).

All endpoints described will start here:

<Gateway_host_and_port>/ oauth/clientstore/*

For example:

http://my.securespan.gateway.com:8080/oauth/clientstore/store

API for registering a client application/client_key

The API will add the creation time.

1. /store?client_ident=<value>&name=<value>&org=<value>®istered_by=
<value>&type=<value>(&description=<value>)?

• client_ident: the unique identifier of this client within the clientstore

• name: the name given for this client

• org: the organization that is registering this client

• registered_by: the user who registers

• type: for OAuth 2.0, select “confidential” or “public”

• description: enter an optional description

2. /store?client_ident=<value>&client_key=<value>&secret=<value>®istered_
by=<value>&status=<value>&scope=<value>&callback=<value>&environment
=<value>&expiration=<value>. This registers a new client_key.

Appendix A: Related APIs for OAuth Toolkit 41

 Layer 7 OAuth Toolkit User Manual, v2.1.2

• client_ident: the identifier of the associated client

• client_key: the registered client_key

• secret: the secret for this client_key

• registered_by: user who registers

• status: either ENABLED or DISABLED

• scope: used with OAuth 2.0

• callback: in OAuth 2.0 named as “redirect_uri”. The URI a user client will be
redirected to if it not contains “oob”

• environment: any value can be used to create client_key. This will be used in
environments like “test”, “integration” or “production”

• expiration: either “0” (forever) or a timestamp. The OAuth Toolkit uses
milliseconds

3. /store?client_ident=<value>&name=<value>&org=<value>®istered_by=
<value>&type=<value>&description=<value>&client_key=<value>&secret=
<value>&status=<value>&scope=<value>&callback=<value>&environment=
<value>&expiration=<value>

This registers a new client and a client_key. This is the default when using the
OAuth Manager to register a new client.

The response will always be either one of the following.

• status: 200, content-type: text/plain, body: Persisted

• status: 400, content-type: text/plain, body: Client value could not be persisted

API for deleting a client

• /delete?client_ident=<value>

• client_ident: will delete the associated client and all client_keys owner by
this client

The response will always be either one of these:

• status: 200, content-type: text/plain, body: {no-of-clients} client(s) deleted

• status: 400, content-type: text/plain, body: client could not be deleted

API for revoking a client_key

• /revoke?client_key=<value> OR /revoke?client_ident=<value>

• If client_key: this client_key gets deleted

• If client_ident: all client_keys for this client will be deleted

The response will always be either one of these:

42 Appendix A: Related APIs for OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

• status: 200, content-type: text/plain, body: {no-of-clients} client_key(s) deleted

• status: 400, content-type: text/plain, body: client_key(s) could not be deleted

API for updating a client

1. /update?client_ident=<value>&name=<value>&type=<value>&description=
<value>&org=<value>

• client_ident: the client identified by the client_ident will be updated

• name: the new name (may be empty)

• type: the new type (may be empty)

• description: the new description (may be empty)

• org: the new organization (may be empty)

2. /update?client_key=<value>&status=<value>&scope=<value>&callback=
<value>&environment=<value>&secret=<value>

• client_key: update the values of the given client_key

• status: the new status

• scope: the new scope

• callback: new callback (redirect_uri)

• environment: set the new environment

• secret: new secret

The response will always be one of these:

• status: 200, content-type: text/plain, body: {no-of-clients} client(s) updated

• status: 200, content-type: text/plain, body: {no-of-clients} client_key(s) updated

• status: 400, content-type: text/plain, body: client values could not be updated

API for requesting values of a given client

These APIs will use the given parameters as the search parameter in selecting only
certain clients. All of these APIs accept the additional parameter “format”. “Format”
can either take the value “xml” (which is the default) or “json”. If it is “json”, the
values will be returned as a JSON message.

1. /get

• returns all values of all registered clients. No keys are included

2. /get?name=<value>&

• name: the name of the client as a filter

3. /get?name=<value>&org=<value>

Appendix A: Related APIs for OAuth Toolkit 43

 Layer 7 OAuth Toolkit User Manual, v2.1.2

• name: the name of the client as a filter

• org: the organization of the client

4. /get?org=<value>

• org: the organization of the client

5. /get?registered_by=<value>

• registered_by: all clients registered by the given parameter

6. /get?registered_by=<value>&org=<value>

• registered_by: all clients registered by the given parameter

• org: the organization

7. /get?client_key=<value>

• client_key: client values that “own” the given client_key

8. /get?client_ident=<value>&

• client_ident: the unique identifier identifying a certain client

The response will always be one of these:

• status: 200, content-type: text/xml, body:

• status: 200, content-type: application/json, body:

• status: 400, content-type: text/plain, body: Non-valid parameter list for this
operation

API for requesting values of a given client_key

These APIs will use the given parameters as a search parameter in selecting only
certain client_keys. All of these APIs accept the additional parameter “format”.

<values xmlns=
"http://ns.l7tech.com/2012/11/otk-clientstore">
 <value index="value">
 <client_ident>value</client_ident>
 <name> value </name>
 <type> value </type>
 <description> value </description>
 <organization> value </organization>
 <registered_by> value </registered_by>
 <created> value </created>
 </values>
</values>

@index: represents the no.
of the value element in the
resulting list of value
elements. It is not a
constant value for this
value element

<values>
 <value>*
</values>

{"values": {"value": [
 {
 "organization": "value",
 "index": value,
 "created": value,
 "description": "value",
 "name": "value",
 "type": "value",
 "client_ident": value,
 "registered_by": "value"
 }
]}}

{"values": ""}

44 Appendix A: Related APIs for OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

“Format” can either take the value “xml” (which is the default) or “json”. If it is “json”,
the values will be returned as a json message.

1. /getKey

• returns all values of all client_keys

2. /getKey?client_key=<value>

3. /getKey?name=<value>

• name: the name of the client used for this key

4. /getKey?name=<value>&org=<value>

• name: the name of the client used for this key

• org: the name of the organization used for this key

5. /getKey?org=<value>

• org: the name of the organization used for this key

6. /getKey?client_ident=<value>

• client_ident: the identifier of the client issued for this key

The response will always be one of these:

• status: 200, content-type: text/xml, body:

• status: 200, content-type: application/json, body:

• status: 400, content-type: text/plain, body: Non-valid parameter list for this
operation

{"values": {"value": [
 {
 "created_by": "value",
 "index": value,
 "environment": value,
 "scope": "value",
 "client_key": "value",
 "created": "value",
 "status": value,
 "expiration": "value",
 "callback": "value",
 "secret": "value",
 "client_ident": "value",
 "client_name": "value"
 }
]}}

{"values": ""}

<values xmlns=
"http://ns.l7tech.com/2012/11/otk-clientstore">
 <value index="value">
 <client_ident>value</client_ident>
 <client_name> value </client_name>
 <client_key> value </client_key>
 <secret> value </secret>
 <scope> value </scope>
 <callback> value </callback>
 <environment> value </environment>
 <expiration> value </expiration>
 <status> value </status>
 <created> value </created>
 <created_by0
 </value>
</values>

@index: represents the no.
of the value element in the
resulting list of value
elements. It is not a
constant value for this
value element

Appendix A: Related APIs for OAuth Toolkit 45

 Layer 7 OAuth Toolkit User Manual, v2.1.2

API for requesting values of a given client, client_key at once

These APIs will use the given parameters as search parameter to select certain
clients and client_keys. All of these APIs accept the additional parameter “format”.
“Format” can either take the value “xml” (which is the default) or “json”. If it is “json”,
the values will be returned as a json message.

• /getAll

“/getAll” can always be used with the same parameters as for “/get” and “getKey”. It
will respond with the content of the selected client and client_key.

The response will always be one of these:

• status: 200, content-type: text/xml, body:

• status: 200, content-type: application/json, body:

• status: 400, content-type: text/plain, body: Non-valid parameter list for this
operation

Tokenstore API

This API allows CRUD operations using different endpoints and parameters to
manage tokens.

All endpoints described will start here:

<Gateway_host_and_port>/ oauth/tokenstore/*

For example:

http://my.securespan.gateway.com:8080/oauth/tokenstore/store

API for registering a token. Additionally the API will add the
creation time.

1. /store?token=<value>&expiration=<value>&client_key=<value>&client_name=
<value>&callback=<value>&scope=<value>(&resource_owner=<value>)?(&sec
ret=<value>)?. Registers a temporary token.

<values xmlns=
"http://ns.l7tech.com/2012/11/otk-clientstore">
 <clients>
 <values> … </values>
 </clients>
 <keys>

 <values> … </values>

 </keys>

</values>

“<clients>” contains the

same “values” element as

explained for client

results

{"values": {
 "keys": {"values": {"value": [...]}},
 "clients": {"values": {"value": [...]}}
}}

46 Appendix A: Related APIs for OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

• token: the token, either a request_token (OAuth 1.0) or an
authorization_code (OAuth 2.0) to be stored

• expiration: the date this token expires (the OAuth Toolkit is using ms)

• client_key: the client_key issued for this token

• client_name: the client issued for this token

• callback: the callback uri. “redirect_uri” in OAuth 2.0

• scope: the scope used with OAuth 2.0

• resource_owner: the resource_owner who granted this token. This is
optional because the initial OAuth 1.0 request_token was not granted when
it was issued

• secret: the secret for this token. This is optional because OAuth 2.0 does not
have one.

2. /store?token=<value>&secret=<value>&expiration=<value>&client_key=<value
>&status=<value>&temp_token=<value>. Registers access_tokens used with
OAuth 1.0.

• token: the access_token

• secret: the shared secret for this token

• expiration: the date this token expires (the OAuth Toolkit is using ms)

• client_key: the client_key issued for this token

• status: either ENABLED or DISABLED. DISABLED tokens will cause a request
to fail

• temp_token: the temporary token exchanged for this token

• This API will add the client_name and resource_owner of the temp_token

3. /store?token=<value>&expiration=<value>&client_key=<value>&resource_own
er=<value>&status=<value>&scope=<value>&client_name=<value>&secret=<
value>(&rtoken=<value>&rexpiration=<value>)?. Registers access_token used
with OAuth 2.0. Optionally also a given refresh_token (rtoken) and refresh_token
expiration (rexpiration).

• token: the access_token

• expiration: expiration: the date the token expires (the OAuth Toolkit is using
ms)

• client_key: the client_key issued for this token

• resource_owner: the resource_owner who granted this token

• status: either ENABLED or DISABLED. DISABLED tokens will cause a request
to fail

Appendix A: Related APIs for OAuth Toolkit 47

 Layer 7 OAuth Toolkit User Manual, v2.1.2

• scope: the scope

• client_name: the client name issued for this token

• secret: the secret for this token. This is optional because it is only used for
token type “MAC”

• rtoken: the refresh token is available

• rexpiration: the refresh token expiration date (if available)

The response will always be one of these:

• status: 200, content-type: text/plain, body: persisted

• status: 400, content-type: text/plain, body: Token could not be persisted

API for updating a token

Tip: You can also update the status of an access token by submitting the
parameters “status” and “token”.

1. /update?token=<value>&resource_owner=<value>

• token: the token to be updated. This is a temporary token (request_token).

• resource_owner: the resource_owner assigned to the token

2. /update?token=<value>&expiration=<value>&verifier=<value>

• token: token to be updated. This is a temporary token (request_token)

• expiration: when the token expires (in milliseconds)

• verifier: the verifier assigned to this token

The response will always be one of these:

• status: 200, content-type: text/plain, body: {no-of-tokens} token(s) updated

• status: 400, content-type: text/plain, body: Tokens could not be updated

API for revoking token

This API works for long-living tokens only.

1. /revoke?client_key=<value>&resource_owner=<value>

• client_key: revokes the token of this client_key

• resource_owner: the resource owner who granted the token to be revoked

2. /revoke?client_key=<value>

3. /revoke?resource_owner=<value>

4. /revoke?token=<value>

• token: the token to be revoked

48 Appendix A: Related APIs for OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

The response will always be one of these:

• status: 200, content-type: text/plain, body: {no-of-tokens} token(s) revoked

• status: 400, content-type: text/plain, body: Token could not be revoked

API for deleting a token

• /delete?temp_token=<value>|token=<value>|rtoken=<value>|client_key=
<value>. Only one of these parameters at once.

• temp_token: the temporary token to delete

• token: the access_token to delete. This will include an assigned
refresh_token

• rtoken: the refresh token to delete. This will include an assigned
access_token

• client_key: all tokens issued for this client_key, includes temporary and long
living tokens

The response will always be one of these:

• status: 200, content-type: text/plain, body: {no-of-tokens} token(s) deleted

• status: 400, content-type: text/plain, body: Token could not be deleted

API for retrieving token values

These APIs will use the given parameters as search parameter to select only certain
tokens. All of these APIs accept the additional parameter “format”. “Format” can
either take the value “xml” (which is the default) or “json”. If it is “json”, the values
will be returned as a json message.

1. /get

• No parameters, all values of all long-living tokens will be returned

2. /get?token=<value>|rtoken=<value>|resource_owner=<value>|client_key=<v
alue>|status=<value>. One parameter at once only.

• token: all values of the given token (which is an access_token)

• rtoken: all token values of the given refresh_token

• resource_owner: all token values the given resource_owner has granted

a. client_key: all token values of tokens issued for the given client_key

b. status: all token values according to the given status (ENABLED
|DISABLED)

3. /get?client_key=<value>&resource_owner=<value>

• client_key: all token values of tokens issued for the given client_key in
combination with the given resource_owner

Appendix A: Related APIs for OAuth Toolkit 49

 Layer 7 OAuth Toolkit User Manual, v2.1.2

The response will always be one of these:

• status: 200, content-type: text/xml, body:

• status: 200, content-type: application/json, body:

• status: 400, content-type: text/plain, body: Non-valid parameter list for this
operation

API for retrieving temporary token values

These APIs will use the given parameters as search parameter to select only certain
temporary tokens. All of these APIs accept the additional parameter “format”.
“Format” can either take the value “xml” (which is the default) or “json”. If it is “json”,
the values will be returned as a json message.

1. /getTemp

• no parameters: Will return all token values of all temporary tokens

2. /getTemp?token=<value>|resource_owner=<value>|client_key=<value>. Only
one parameter at once.

• token: all token values of this temporary token

• resource_owner: all token values of temporary tokens granted by this
resource_owner

• client_key: all temporary token values issued for given client_key

3. getTemp?token=<value>&verifier=<value>|client_key=<value>&resource_owne
r=<value>. Only one combination of parameters at once.

<values xmlns=
"http://ns.l7tech.com/2012/11/otk-tokenstore">
 <value index="value">
 <token> value</token>
 <secret> value </secret>
 <expiration>value </expiration>
 <rtoken> value </rtoken>
 <rexpiration> value </rexpiration>
 <scope> value </scope>
 <resource_owner>. value </resource_owner>
 <client_key> value </client_key>
 <client_name> value </client_name>
 <status> value </status>
 <created> value </created>
</value>

<values>
 <value>*
</values>

{"values": {"value": [
 {
 "index": value,
 "client_key": "value",
 "scope": "value",
 "rtoken": "value",
 "created": value,
 "status": "value",
 "expiration": value,
 "token": "value",
 "resource_owner": "value",
 "secret": "value",
 "rexpiration": value,
 "client_name": "value"
 }
]}}

@index: represents the no.
of the value element in the
resulting list of value
elements. It is not a
constant value for this
value element

{"values": ""}

50 Appendix A: Related APIs for OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

The response will always be one of these:

• status: 200, content-type: text/xml, body:

• status: 200, content-type: application/json, body:

• status: 400, content-type: text/plain, body: Non-valid parameter list for this
operation

OAuth Validation Point (OVP) API

There are several endpoints that are used to validate requests using OAuth. Each
endpoint handles different topics within the OAuth dance.

The first group of endpoints is used during the process of issuing tokens, while the
second group is used when clients request protected resources.

All endpoints described will start here:

<Gateway_host_and_port>/oauth/validation/*

For example:

http://my.securespan.gateway.com:8080/oauth/validation/v1/authorize

If an endpoint contains “v1”, then it is used by OAuth 1.0. “v2” is used by OAuth 2.0

OVP API used during the token issuing process

1. /oauth/validation/v1/authorize?token=<value>&expiration=<value>&verifier=<
value>
Used to authorize a request_token and make it available in exchange for an
access_token

<values xmlns=
"http://ns.l7tech.com/2012/11/otk-tokenstore">

 <value index="value">
 <token> value </token>
 <secret> value </secret>
 <expiration> value </expiration>
 <scope> value </scope>
 <resource_owner> value </resource_owner>
 <client_key> value </client_key>
 <client_name> value </client_name>
 <created> value </created>
 <callback> value </callback>
 <verifier> value </verifier>
 </value>
</ l >

<values>
 <value>*
</values>

{"values": {"value": [
 {
"index": value,
 "client_key": " value ",
 "scope": " value ",
 "created": value,
 "expiration": value,
 "token": " value ",
 "callback": " value ",
 "verifier": " value ",
 "resource_owner": " value ",
 "secret": " value ",
 "client_name": " value "
 }
]}}

@index: represents the no.
of the value element in the
resulting list of value
elements. It is not a
constant value for this
value element

{"values": ""}

Appendix A: Related APIs for OAuth Toolkit 51

 Layer 7 OAuth Toolkit User Manual, v2.1.2

• token: the temporary token to be authorized

• expiration: the new expiration date that will be used if the token is valid

• verifier: the verifier used if the token is valid

The validation includes the following validation steps:

• the expiration date has not expired

• a resource_owner must be assigned to the token

• a callback must be assigned to the token

• the token store is updated. The token can be exchanged for an
assess_token

The response will always be one of these:

• status: 200, content-type: text/xml, body

• status: 401, content-type: text/xml, body

2. /oauth/validation/validate/v2/granttype?callback=<value>&client_key=
<value>&token=<value>

 Used to validate grant types (only auth_code validated here)

• callback: the redirect_uri passed in by the client

• client_key: the associated client_key

• token: the temporary token (authorization_code)

The validation includes the validation steps:

• client_key must match the one that was used when the token was generated

• the expiration date must not be expired

• a callback must either be empty or equal to the one used when the token
was generated

The response will always be one of these:

• status: 200, content-type: text/xml, body

<validation xmlns="http://ns.l7tech.com/2012/11/otk-ovp">
 <result>valid</result>
 <callback>value</callback>
</validation>

<validation xmlns="http://ns.l7tech.com/2012/11/otk-ovp">
 <result>invalid</result>
</validation>

<validation xmlns="http://ns.l7tech.com/2012/11/otk-ovp">
 <result>valid</result>
 <scope>the scope used when the token was generated</scope>
 <resource_owner>the resource_owner who granted this
token</resource_owner>
</validation>

52 Appendix A: Related APIs for OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

• status: 401, content-type: text/xml, body

3. /oauth/validation/validate/v2/refreshtoken?client_key=<value>&rtoken=
<value>&scope=<value>

 Used to validate a refresh_token

• client_key: the client_key issued for this token

• rtoken: the refresh_token to be validated

• scope: the scope to be used

The validation includes the validation steps:

• client_key must match the one that was used when the token was generated

• the expiration date must not be expired

• the status must be ENABLED

The response will always be one of these:

• status: 200, content-type: text/xml, body

• status: 401, content-type: text/xml, body

4. /oauth/validation/validate/v2/tokenrequest?client_key=<value>&secret=
<value>

 Used to validate a the client credentials when requesting an access_token

• client_key: the client_key

• secret: secret for the client_key

The validation includes the validation steps:

• the secret

• the expiration date must not be expired

• the status must be ENABLED

<validation xmlns="http://ns.l7tech.com/2012/11/otk-ovp">
 <result>invalid</result>
</validation>

<validation xmlns="http://ns.l7tech.com/2012/11/otk-ovp">
 <result>valid</result>
 <scope>the if scope is empty the scope used when the token was generated , if
not the given one</scope>
 <resource_owner>the resource_owner who granted this token</resource_owner>
</validation>

<validation xmlns="http://ns.l7tech.com/2012/11/otk-ovp">
 <result>invalid</result>
</validation>

Appendix A: Related APIs for OAuth Toolkit 53

 Layer 7 OAuth Toolkit User Manual, v2.1.2

The response will always be one of these:

• status: 200, content-type: text/xml, body

• status: 401, content-type: text/xml, body

OVP API used when clients access resources

1. /oauth/validation/validate/v2/token (oauth parameters)

• Used to validate “oauth” parameters. The validation depends on the token
type. If it is “MAC” or “BEARER”, the expiration date and the status will be
verified

The response will always be one of these:

• status: 200, content-type: text/xml, body

• status: 401, content-type: text/xml, body

Note: The OAuth Validation Point caches validated tokens to improve
performance. The default cacheAge context variable for the token at
/oauth/validation/validate/v2/token in SecureZone OVP is 60 seconds.
This means that a revoked token may continue to be authorized for up
to 60 seconds beyond revocation. Be sure to review this default to
ensure that it conforms to the security policy at your organization.

2. /oauth/validation/validate/v1/signature (oauth parameters)

Used to validate “oauth_signature”

• The signature will be verified

• The client_key will be verified

• expiration date has not expired

<validation xmlns="http://ns.l7tech.com/2012/11/otk-ovp">
 <result>valid</result>
 <type>the type fo the client</type>
 <client_name>the name of the client</client_name>
 <scope> the scope used when the token was generated </scope>
</validation>

<validation xmlns="http://ns.l7tech.com/2012/11/otk-ovp">
 <result>invalid</result>
</validation>

<validation xmlns="http://ns.l7tech.com/2012/11/otk-ovp">
 <result>valid</result>
 <client_key> the associated client key </client_key>
 <resource_owner>the resource owner who granted the token</resource_owner>
 <scope>the scope used when the token was generated</scope>
 <expiration>the tokens expiration date</expiration>
</validation>

<validation xmlns="http://ns.l7tech.com/2012/11/otk-ovp">
 <result>invalid</result>
</validation>

54 Appendix A: Related APIs for OAuth Toolkit

Layer 7 OAuth Toolkit User Manual, v2.1.2

• status is ENABLED

• The token will be verified

• Expiration date has not expired

• status is ENABLED (for access_tokens only)

• For authorized request token, the verifier must exist in the tokenstore

The response will always be one of these:

• status: 200, content-type: text/xml, body

status: 401, content-type: text/xml, body

Note: The OAuth Validation Point caches validated signatures to
improve performance. The default cacheAge context variable for the
signature at /oauth/validation/validate/v1/signature in SecureZone
OVP is 30 seconds. This means that an accepted signature will be
cached for 30 seconds. Be sure to review this default to ensure that it
conforms to the security policy at your organization.

<validation xmlns="http://ns.l7tech.com/2012/11/otk-ovp">
 <result>valid</result>
 <client_name>value</client_name>
</validation>

<validation xmlns="http://ns.l7tech.com/2012/11/otk-ovp">
 <result>invalid</result>
</validation>

Appendix A: Related APIs for OAuth Toolkit 55

 Layer 7 OAuth Toolkit User Manual, v2.1.2

56 Appendix A: Related APIs for OAuth Toolkit

	List of Figures
	List of Tables
	Chapter One: Getting Started
	Installing the OAuth Toolkit
	Installing the OTK Database
	Completing the [Create OTK Database] Tab
	Using the [OTK Schema] Tab

	Conflict Resolution
	Uninstalling the OAuth Toolkit

	Understanding the OAuth Toolkit Architecture
	Getting Help
	Chapter Two: Post Configuration
	Post Configuration Steps
	Step 1: Import Public Certificate
	Step 2: Verify the OAuth Database Schema
	Step 3: Configure Authentication
	Step 1: Implement a Federated Identity Provider for the SAML Grant Type
	Step 2: Implement a Federated Identity Provider for Validation and Storage Endpoints
	Step 3: Add Validation of SAML Token Signer to SAML Token Grant_Type Policies
	Step 4: Add Checking of Client Certificate to Validation and Storage Endpoints

	Step 4: Verify the OAuth Manager
	Step 5: Verify the OAuth Test Client
	Integration with API Portal

	Chapter Three: Using the OAuth Toolkit
	Working with the OAuth Manager
	Manage Clients
	Manage Tokens

	Working with the OAuth 1.0 Toolkit
	OAuth 1.0 Test Client
	Verifying the Test Client
	Configuring the Test Client to access other OAuth protected services

	Working with the OAuth 2.0 Toolkit
	OAuth 2.0 Test Client
	Enabling the Client
	Running the Client
	Getting an Access Token
	Testing the Client
	Refreshing a Token
	Clearing the Current Session

	Restricting the OAuth 2.0 Grant Types
	Change Resource Owner Authentication
	Adding SLA Rules

	Chapter Four: Customizing the OAuth Toolkit
	Configuring a Corporate Brand
	Using the Customer’s Identity Provider
	Configuring the Session Lifetime
	Customizing the Token Lifetime
	Adding OAuth Authorization Capabilities to Existing API
	Appendix A: Related APIs for OAuth Toolkit
	Clientstore API
	API for registering a client application/client_key
	API for deleting a client
	API for revoking a client_key
	API for updating a client
	API for requesting values of a given client
	API for requesting values of a given client_key
	API for requesting values of a given client, client_key at once
	Tokenstore API
	API for registering a token. Additionally the API will add the creation time.
	API for updating a token
	API for revoking token
	API for deleting a token
	API for retrieving token values
	API for retrieving temporary token values
	OAuth Validation Point (OVP) API
	OVP API used during the token issuing process
	OVP API used when clients access resources

