
.

CA Plex C# Best Practices

Example Document

Creating packages and code libraries
and managing C# source code and
application artifacts

CA Plex version 6.1

Created by:

In collaboration with IIDEA Solutions and CCH, and assistance from CA.

Published with the kind permission of the South Carolina Judicial Department

http://adcaustintech.com/

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 2

Contents
1. Introduction ... 3

2. Use of assemblies and modules when creating code libraries ... 3

3. Creating and using assemblies ... 4

4. Considerations when packaging your model ... 5

5. Software required on the build server .. 6

6. Modelling C# Code Libraries in Plex .. 7

7. Setting up the build server and installing Cruise Control .. 10

8. Development life cycle .. 20

Appendix ... 23

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 3

1. Introduction

This document is intended to serve as a practical guide to the use of the C# in a CA Plex

development organization. It contains basic explanations of the concepts behind C# / .NET

development, and provides guidance on usable mechanisms to implement different practices. It is

not intended to be a set of standards, but can be used as guidance for an organization to

incorporate .NET packaging into their CA Plex development standards.

This document was created in collaboration between ADC Austin and CA reference customers,

and represents practices that are in production use. In the case where there are alternatives

present or the CA Plex manual is unclear, recommendations in bold underline.

2. Use of assemblies and modules when creating code libraries
The following diagram shows the basic structure of assemblies, packages (namespaces), and

classes as they related to Plex model. For more detailed information, please consult the Plex help

topic Chapter 18 Packaging and deploying applications.

CA Plex allows you to create 2 types of code libraries:

i. Assembly – These are the building blocks of the .NET framework and contain

 manifest data about its contents. Assemblies can be made up of packages or other

 code libraries.

ii. Module – Usually are contained within an assembly, Modules do not contain any

 manifest data as that is stored in the assembly.

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 4

 Modules are used for the following situations:

i. Multi language assembly - If the assembly contains source files with different

languages, they have to be split out into different modules within the assembly.

ii. Small download footprint - If the assembly is downloaded at runtime to an

HTTP site, it is recommended that the code is divided up into the code that will be

required at login and accessing the application, and then into logical areas of

functionality. This makes the download much faster as code is only downloaded

when it is needed.

iii. Shared code. – If you have code that is shared by multiple assemblies you can

place those functions in a module and attach it to multiple assemblies. The

literature suggests care is taken when using this approach as any changes made to

that code will mean that the entire assembly will have to be created and shipped.

Therefore it is recommended that shared code be placed in its own assembly.

 Given that only C# code is managed in .NET (and currently C# code is only created on the server

 on PLEX and not downloaded to the client), the use of modules is not recommended.

From the Plex manual note the following recommendation. Although default code libraries

should be used in certain circumstances for unit testing, they should not be used for production

implementation due the problems with maintainability.

Plex C# functions can be built outside of the Code Library modeling concept, using the

Default Package and Code Library settings in the Generate and Build options. However,

as a best practice for .NET application deployment, it is recommended that Plex

generated C# functions be arranged by Package and Code Library. As with Java, the

Package objects define the namespace boundaries into which the Function classes are

defined. The Code Library object is the main compilation block for a Plex .NET

application; and to allow maximum flexibility, can be created as either a module or an

assembly.

Another reason for the recommendation to package all functions is cross-model references –

code will not be generated properly if defaulting techniques are used. All functions should be

assigned to an explicit package. It is recommended that the CA Package Tool be utilized for

package creation.

3. Creating and using assemblies

While having many assemblies has advantages in terms of maintenance and distribution, there

are tradeoffs with the performance of the application. The more assemblies you have the less

efficient your application will be. This is because when the application runs, it will open all the

assemblies in the assembly list (note that the CA Plex manual is unclear on this topic, but this

has been determined to be the case with the current Plex version). Therefore it is recommended

that fewer assemblies are used. In most cases this does not mean that all functions should be

put in a single assembly, as this would make maintenance difficult.

As part of creating this document, interviews were conducted with a large C#/PLEX developers,

including a software house who has been using C# for 3 years. Their application has thousands

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 5

of Plex functions, but they have less than 10 assemblies. The key is having enough assemblies to

make management straightforward while achieving acceptable performance at run time.

Performance can be improved at runtime by giving consideration to the order of your assemblies

in the assembly list. An assembly list works much like a library list – at run time the application

will look in each assembly, starting at the beginning of the list, until it finds the first instance of

the function in needs.

Therefore when packaging your application it is recommended that consideration is given to the

frequency that functions are called. Functions that are called frequently should be packaged

together and the resulting assembly should be placed first or high in the list. Rarely used

functions should also be packaged together and the assembly should be placed last in the list.

The packages in the middle should be designed around function areas since it is more efficient

for a function to call another function within the same assembly.

4. Considerations when packaging your model

Taking all the above into consideration and knowledge of the application, the list of assemblies

would look something like this, with our recommendation being somewhere between 3-10

assemblies.

 Core functions called frequently (Date/Common routines, Reads to common tables)

 Subsystem A

 Subsystem B

 Subsystem Z

 Core functions called infrequently (updates to common tables)

There are several techniques for adding CA Plex functions to packages. It is recommended that an

approach be taken that is easy to implement from a standards point of view, but that is also efficient.

This is most commonly done by placing entire entities into packages, and to create a separate

package or packages for unscoped functions (or scope to entities). This works well in most cases for

dividing models into subsystems without burdening the developer. In some cases that may lead to

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 6

less efficient assemblies (perhaps some entities are read only in most cases), so depending on the

performance packaging structure may be more complex.

This must be used with care. For example, you may choose to add read functions to one package and

write functions to another. It should be noted that this should only be used in rare circumstance, if

there are extreme performance concerns. In almost all circumstances this is not recommended,

the performance gains are slight compared to the significant extra overhead of modeling

packages in this manner.

It is recommended that a function be placed in only one package/namespace. Assemblies can

contain more than one package, and assemblies can contain assemblies. This is not important from a

performance standpoint (the number and structure of the final assembly list is the key), but may be

helpful from an application understandability point of view. Regarding the use of stub functions

(function call definitions in one model where the called function resides in another, unreferenced

model), it is important to understand that stub packages that match the package in the called model

must be created.

It is recommend that packages be used to model the overall application structure, and not be

used as a version control technique (i.e. packaging a “patch” into a special package /

assembly). Packaging in the version control technique leads to difficulties in building the

application, and we believe will lead to errors and application problems. We did not interview any

C# development shop using packages / assemblies in a version control manner, and were strongly

advised against it.

On package and assembly names – it is recommended to avoid embedded spaces and special

characters. Although .NET has one set of rules for naming that includes some special characters, we

have found that other 3
rd

 party applications and other languages like Java have more restrictive

naming requirements so this is the safest approach.

5. Software required on the build server

 When setting up a server to do the builds, you will need the following software installed.

i. Cruise Control – A tool for managing automated builds on the server. Download from

http://sourceforge.net/projects/ccnet/files/

Select CruiseControl.NET-1.x.x-SPX-Setup.exe

ii. Microsoft.NET Framework Version 2.0 and 3.5 – You can download from:

http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-

8EDD-AAB15C5E04F5&displaylang=en

Or if you install CA PLEX v6.1 on the server there is an option to install the .net

framework.

iii. Microsoft.NET Framework Version 2.0 Software Development Kit (SDK) - You can

download from:

http://www.microsoft.com/downloads/details.aspx?FamilyID=fe6f2099-b7b4-4f47-a244-

c96d69c35dec&displaylang=en

http://sourceforge.net/projects/ccnet/files/
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=fe6f2099-b7b4-4f47-a244-c96d69c35dec&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=fe6f2099-b7b4-4f47-a244-c96d69c35dec&displaylang=en

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 7

iv. Subversion – This is the repository. Download from http://www.visualsvn.com/server/

v. Tortoise – A good front end UI for managing and working with Subversion. Download

from http://tortoisesvn.net/downloads

vi. NANT – Allows you to write scripts to manage the automated build process. Download

from http://sourceforge.net/projects/nant/

vii. IIS – Microsoft‟s internet server. This is available from the XP Professional disc. This

link tells you how to install IIS.

 http://www.webwizguide.com/kb/asp_tutorials/installing_iis_winXP_pro.asp

6. Modelling C# Code Libraries in Plex

The next section shows the modeling of the C#/.NET application in Plex. We are using the supplied

CA “SalesSystem” model typically located in the following directory:

C:\Users\Public\Documents\CA\Plex\6.1\Samples\Dot NET Support and Code Libraries

Two types of CA Plex objects must be modeled, Code Libraries and Packages.

Code Libraries

There are two code libraries, type Assembly. Refer to the screen shot for an example of the triples

http://www.visualsvn.com/server/
http://tortoisesvn.net/downloads
http://sourceforge.net/projects/nant/
http://www.webwizguide.com/kb/asp_tutorials/installing_iis_winXP_pro.asp

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 8

Note that some labels defined by the triples should have descriptive information entered into the label

name value

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 9

Packages (Name Spaces)

There are two packages in the SalesSystem model, and one (PDate) as a library model. Functions

are set up directly in the package. For large model, it is recommended to scope entities to the

package for ease of maintenance.

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 10

7. Setting up the build server and installing Cruise Control

i. Configure a website on IIS for the CruiseControl.Net Dashbboard.

Go to control panel and in „Classics View‟ select Administrative Tools. Open Internet

Information Services and find the Default Website in the tree.

Select the Default Web Site. Right click and select Properties. Go to the Home

Directory Tab. The local path will be C:\inetpub\wwwroot. Change the Local Path by

prompting to the Cruise Control Dashboard. The default loacation is:

 C:\Program Files\CruiseControl.NET\Webdashboard. Press OK.

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 11

Open Internet Explorer and type: http://localhost. The Cruise Control Dashboard will

display

Note: In VisualSVN server properties, checkbox “Use secure connection (https://)” has

to be unchecked in order to be reached by Cruise Control.NET

ii. Install CCTray

a. Click on Download CCTray link on the left panel of CC Dashboard.

http://localhost/

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 12

b. Save the file.

c. Execute the file saved and follow the wizard instructions.

d. Open the CCTray already installed

e. Select File  Settings on the top menu

f. Click on Build Projects tab and click on Add buton

g. Click on Add Server button

h. Select the option “Connect directly using .NET remoting”

i. Leave the default value (localhost) or type it

j. Click OK

k. Projects should be displayed in the right panel

l. Select the project to be added to CCTray and click on OK button

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 13

m. Click on OK button

n. Project selected will be displayed in CCTray

iii. Folders Structure

a. C:\CC.Net\SalesSystem  Root directory of the project. Here is the

SalesSystem.Build file

b. C:\CC.Net\SalesSystem\Actifacs  Folder that keeps CC log files

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 14

c. C:\CC.Net\SalesSystem\Deploy  Folder that keeps all the .dll files generated.

This path is defined in the SalesSystem.build file

d. C:\CC.Net\SalesSystem\WorkingDirectory  Folder used to keep the latest

version of the files. This path is defined in the SalesSystem.build file

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 15

iv. ccnet.config file. It‟s located in C:\Program Files\CruiseControl.NET\server\ folder and

contains the definitions of the projects that will be displayed in the Cruise Control

Dashboard. The most important tag are the follows:

a. <project name="SalesSystem - Get latest version">. Obtains the latest version

of the files committed in repository.

i. <trunkUrl>http://sc-

training.eimsdirect1.local:8080/svn/SalesSystem/trunk</trunkUrl> is the

path where the source code has been committed.

ii. <username>&svnusername;</username> is the valid user to log into the

repository.

iii. <password>&svnpassword;</password> is the valid user to log into the

repository.

iv. <triggers>

<intervalTrigger buildCondition="IfModificationExists" />

 </triggers>.

Trigger blocks allow you to specify when CruiseControl.NET will start a new

integration cycle.
<intervalTrigger> is used to specify that an integration should be run

periodically.

IfModificationExists, means that SalesSystem - Get latest version project

will only be triggered if modifications have been detected.

b. <project name="SalesSystem - Clean">. Deletes the folder

C:\CC.Net\SalesSystem\Deploy\Gen\Bld

i. <triggers>

<projectTrigger project="SalesSystem - Get latest version" />

</triggers>.

<projectTrigger> is used to trigger a build when the specified dependent

project has completed its build; so, in this case, SalesSystem – Clean

project will start after SalesSystem - Get latest version has completed its

build.

ii. <tasks>.

 <nant>

 &nant.exe;

 <buildArgs>-

D:client.dir=&deployDirectoryBase;\Integration\SalesSystem\</buildArgs

>

 <buildFile>C:\CC.Net\SalesSystem\SalesSystem.build</buildFile>

 <targetList>

 <target>SalesSystem.Clean</target>

 </targetList>

 </nant>

 </tasks>

<task> blocks are the action elements of CruiseControl.Net. They're the

elements that do things, like executing a program, etc

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 16

<buildFile> is the name of the build file to run.

<buildArgs> are the arguments to pass through to NAnt

<targetList> is a list of targets to be called.

c. <project name="SalesSystem - Build">. Compiles the project

i. <triggers>

<projectTrigger project="SalesSystem - Clean" />

</triggers>

<project Trigger> is used to trigger a build when the specified dependent

project has completed its build; so, in this case, SalesSystem – Build

project will start after SalesSystem - Clean has completed its build.

ii. <tasks>

 <nant>

 &nant.exe;

 <buildArgs>-D:server.publishdir=&deployDirectoryBase;\Integration\ -

D:server.configuration=Integration</buildArgs>

 <buildFile>C:\CC.Net\SalesSystem\SalesSystem.build</buildFile>

 <targetList>

<target>SalesSystem.Build</target>

 <target>Order.Build</target>

 <target>Support.Build</target>

 </targetList>

 </nant>

</tasks>

<task> blocks are the action elements of CruiseControl.Net. They're the

elements that do things, like executing a program, etc
<buildFile> is the name of the build file to run.

<buildArgs> are the arguments to pass through to NAnt

<targetList> is a list of targets to be called.

<target>. In this case we have three targets; they‟re in charge of launch the

build of SalesSystem.csproj, Order.csproj and Support.csproj respectively.

If more projects have to be build more <target> tags have to be added.

Also, targets have to be defined in the SalesSystem.build files described

below

v. SalesSystem.build file. It‟s located in C:\CC.Net\SalesSystem folder and it contains

the target that can be executed by NAnt and CC. The most important tag are the

follows:

a. Properties:

i. <property name="root" value="${project::get-base-directory()}" />. In

this case C:\CC.Net\SalesSystem is the root folder.

ii. <property name="msbuild.exe"

value="C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\MSBuild.

exe" overwrite="false"/>. File that will be user to build the projects.

iii. <property name="server.configuration" value="obj" overwrite="false"/>.

Folder where configuration files will be saved

iv. <property name="deploy.dir" value="${root}\Deploy\Gen\Bld\"

overwrite="false"/>. Folder where projects compiled will be saved

.

b. Targets:

i. <target name="SalesSystem.Clean">

 <echo message="${deploy.dir}"/>

 <delete dir="${deploy.dir}" failonerror="false" /> <!--Deletes folder

C:\CC.Net\SalesSystem\Deploy\Gen\Bld -->
<mkdir dir="${deploy.dir}"/> <!--Creates folder

C:\CC.Net\SalesSystem\Deploy\Gen\Bld -->
 </target>

ii. <target name="SalesSystem.Build">

 <exec program="${msbuild.exe}"

workingdir="${root}\WorkingDirectory\Integration\Gen\Src"

failonerror="true">

 <arg

value="${root}\WorkingDirectory\Integration\Gen\Src\SalesSystem.csproj

"/>

<arg line="/t:Build /p:Configuration=${server.configuration}

/p:OutputPath=${deploy.dir}\SalesSystem /verbosity:quiet"/>

 </exec>

 </target>

 SalesSystem.csproj. This project, generated by PLEX, has two

properties that have to be changed in order to obtain the source

code from the right place and to save the result .dll file in the

desired place; that properties are:

a. <SrcDir>C:\CC.Net\SalesSystem\WorkingDirectory\Integ

ration\Gen\Src</SrcDir>

b. <BldDir>C:\CC.Net\SalesSystem\Deploy\Gen\Bld<

/BldDir>

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 18

iii. <target name="Order.Build">

<exec program="${msbuild.exe}"

workingdir="${root}\WorkingDirectory\Integration\Gen\Src"

failonerror="true">

<arg

value="${root}\WorkingDirectory\Integration\Gen\Src\Order.cspr

oj"/>

<arg line="/t:Build

/p:Configuration=${server.configuration}

/p:OutputPath=${deploy.dir}\Order /verbosity:quiet"/>

</exec>

</target>

 Order.csproj. This project, has been generated using Code

Library Wizard from PLEX; in this project we have to add a

reference in order to be reached by NAnt and avoid compilation

problems; the line that have to be added in the Order.csproj file

is:

a. <Reference

Include="$(PlexInstallDirectory)\Ob.NET\Release\Plex.O

bRun.dll" />

This line must be placed in the <ItemGroup> block

<ItemGroup>

 <Reference Include="$(PlexRuntime)">

 <SpecificVersion>False</SpecificVersion>

 <Private>False</Private>

 </Reference>

 <Reference Include="System" />

 <Reference Include="System.Data" />

 <Reference Include="System.Xml" />

 <Reference

Include="$(PlexInstallDirectory)\Ob.NET\Release\Plex.ObRu

n.dll" />

</ItemGroup>

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 19

iv. <target name="Support.Build">

<exec program="${msbuild.exe}"

workingdir="${root}\WorkingDirectory\Integration\Gen\Src"

failonerror="true">

<arg

value="${root}\WorkingDirectory\Integration\Gen\Src\Support.cs

proj"/>

<arg line="/t:Build

/p:Configuration=${server.configuration}

/p:OutputPath=${deploy.dir}\Support /verbosity:quiet"/>

</exec>

</target>

 Support.csproj. This project, has been generated using Code

Library Wizard from PLEX; in this project we have to add a

reference in order to be reached by NAnt and avoid compilation

problems; the line that have to be added in the Order.csproj file

is:

a. <Reference

Include="$(PlexInstallDirectory)\Ob.NET\Release\Plex.O

bRun.dll" />

This line must be placed in the <ItemGroup> block

<ItemGroup>

 <Reference Include="$(PlexRuntime)">

 <SpecificVersion>False</SpecificVersion>

 <Private>False</Private>

 </Reference>

 <Reference Include="System" />

 <Reference Include="System.Data" />

 <Reference Include="System.Xml" />

 <Reference

Include="$(PlexInstallDirectory)\Ob.NET\Release\Plex.ObRu

n.dll" />

</ItemGroup>

v. <target name="Commit.Add">

 <exec program="C:\Program Files\VisualSVN Server\bin\svn.exe"

 commandline="add --force *.*"

 workingdir="${assemblies.dir}" />

 <exec program="C:\Program Files\VisualSVN Server\bin\svn.exe"

 commandline="commit -m"Release" --

username PJL --password PJL"

 workingdir="${assemblies.dir}" />

 </target>

 Commit.Add target is used to upload the new files generated to

repository path.

 The files to be uploaded must be placed into

C:\CC.Net\SalesSystem\Assemblies folder and they will be

committed into http://sc-

training.eimsdirect1.local:8080/svn/SalesSystem/Assemblies path

http://sc-training.eimsdirect1.local:8080/svn/SalesSystem/Assemblies
http://sc-training.eimsdirect1.local:8080/svn/SalesSystem/Assemblies

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 20

8. Development life cycle

The next section describes the recommended developer workflow for C# development. This workflow is

utilized AFTER the initial setup of the model for C#, including packaging, .NET assembly modeling,

etc.

Developers

Using this methodology, developers should not use the Code Library Wizard during normal

development. Instead developers should rely on the Default Code Library Name in their Gen and Build

options defined below.

When you generate and build code, CA Plex will automatically create an assembly with the name of the

default code library. This assembly should be first in the developer‟s code library list so it runs when

they test.

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 21

For example, let‟s say that the application is made up of assembly1 through assembly5. In the

developer‟s environment, their code library list should look like this:

PJLTEST

assembly1

assembly2

assembly3

assembly4

assembly5

Checking tested code into subversion

Once the developer has tested their code, they should update the group model and update the repository

with their new code and only their new code. A developer should never generate code that they are not

working on. At this point any new functions must be packaged in the model. With regard to building the

code and creating assemblies on the server, there are two options.

1. Using CA PLEX

a. The developer has put any new functions in packages and if they have created any new

packages they must be put into assemblies in the model.

b. Once the model is updated to the group and the code has been updated to the repository, a

model can be extracted on the server. Any new code can be extracted from the repository and

built from within CA Plex. The Code library wizard should also be used to recreate the

assemblies. These assemblies should be updated to the repository.

c. The developer should delete their test assembly (PJLTEST in the example above) and the

new assemblies should be extracted from the repository. The developer has the latest

functionality from other developers and is running their recent changes from the correct

assemblies. They can continue developing and any functions they build will be written to

their test assembly.

2. Using Cruise Control

a. The developer has put any new functions in packages. Since under cruise control the

assemblies do not need to be managed in CA Plex any packages that are to be added to an

assembly must be added to the csproj file for an assembly. As an example, if we have an

assembly called Order, there will be a file called Order.csproj. If I add a package called

SummaryTables it needs to be added to the Order.csproj as shown below in the first and last

highlighted lines.

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 22

b. Cruise Control will rebuild any updated or new functions in the repository and create the

associated assemblies. We can configure Cruise Control to do this as soon as it detects a

change, or at a specified time such as 4am every night. It can also be triggered on demand.

c. Developers then get the update assemblies from the source repository.

d. After the new assemblies are extracted, the developer should delete their test assembly

(PJLTEST in the example above) and the new assemblies should be extracted from the

repository. The developer has the latest functionality from other developers and is running

their recent changes from the correct assemblies. They can continue developing and any

functions they build will be written to their test assembly.

Either of these work flows can be modified over time to suit your exact needs. ADC Austin

recommends cruise control for large applications, as a proven production-quality solution that can

more completely automate the C# build process.

Packages and .NET Assemblies Best Practices for CA Plex.

Prepared by ADC Austin. Page 23

Appendix

Document from CA Plex Sample Model

.NET Support and Code Libraries

Sample Model

Introduction
CA Plex r6.0 introduces the ability to generate your server-based applications as .NET managed
code applications. Functions given a language of C# are generated as C# class files, which are
then compiled into assemblies and are run using the CA Plex .NET runtime.

Whilst many of the concepts associated with Plex .NET applications will be very familiar to most
Plex developers, the .NET platform introduces a number of new concepts and improvements
which this document addresses.

The main topics that this guide covers are:

(1) Prerequisites: What you need to have installed in order to successfully run these examples.
(2) Running a Simple Client-Server Application: Shows the steps required in order to generate,

build and run a Plex application based over the pattern libraries.
(3) Using the Plex .NET Runtime Service: Shows how you can configure Plex generated .NET

Server applications to use the new Plex .NET Runtime Service.
(4) Visual Studio 2005 Integration: This section shows how to integrate Plex generated .NET

applications with other client applications.
(a) Stateful Calls: Shows how you can make calls into the Plex runtime where a client is

bound to a Plex runtime server instance, so that transaction, cursor and other information
is maintained between calls to the runtime. This example is based over a Windows
Application developed in C#.

(b) Stateless Calls: Shows how you can make calls into the Plex runtime where a client is not
bound to a Plex runtime server instance. This example is based over an ASP.NET Web
Application, also developed in C#.

(5) Using Code Library Objects to Create Assemblies: This section shows you how to divide your
application into logical deployment units, and how to deploy these units as an application.

.NET Support and Code Libraries

Sample Model

(1) Prerequesites
In order to run this example, you will need a minimum of the following installed on your PC.

(1) CA Plex r6.0 or later version.
(2) Microsoft SQL Server: You should be able to build the database schemas for this

example against any version of SQL Server, although SQL Server 2005 is
recommended. For a comparison of SQL Server 2005 editions, refer to the Microsoft SQL
Server Website.

(3) Microsoft .NET Framework Version 2.0 Redistributable Package: The version
recommended is v2.0.50727, and is available from the Microsoft .NET Framework
Website. It is also installed by default with Microsoft Visual Studio 2005.

(4) Microsoft Visual Studio 2005: Although the .NET Framework Version 2.0
Redistributable Package contains the tools necessary to build generated C# source code,
you will need to install Visual Studio 2005 in order to compile the Plex generated
unmanaged C++ Client applications used in this example, and also to integrate your
generated Plex .NET server applications with other 3

rd
 party client applications. This is

especially true if you would like to take advantage of the new CA Plex r6.0 .NET Runtime
API layer. Version 8.0.50727 or above is recommended.

http://www.microsoft.com/sql/default.mspx�
http://www.microsoft.com/sql/default.mspx�
http://www.microsoft.com/downloads/details.aspx?familyid=0856eacb-4362-4b0d-8edd-aab15c5e04f5&displaylang=en�
http://www.microsoft.com/downloads/details.aspx?familyid=0856eacb-4362-4b0d-8edd-aab15c5e04f5&displaylang=en�

.NET Support and Code Libraries

Sample Model

(2) Running a Simple Client-Server Application

Introduction

The following example uses the sample model SalesSystem.mdl that can be found in the

Samples\Dot NET Support and Code Libraries\ directory.
The sample consists of three relatively simple entities that comprise a Sales Order System;
Order.Header, Order.Detail and SalesSurrogateSystem; the latter is a support entity used to
maintain information on order keys that have been allocated.

As you can probably imagine, Order.Detail is owned by Order.Header. Both Header and Detail
obtain their primary keys automatically by inheriting from patterns that allocate surrogate keys.
Header inherits from FOUNDATION/Surrogate and Detail inherits from
FOUNDATION/SurrogateOwned (so that the primary keys are allocated uniquely within their
super-ordinate keys).

All three entities have database tables and views associated with them, and as such, they inherit
from STORAGE/RelationalTable.

In order to generate and build this example targeting a Windows C++ client running to a C# .NET
server, we simply need to set the relevant variants for the libraries attached to SalesSystem from
which it inherits. Because the Windows C++ client is the default variant for the client pattern
libraries, this only means we have to set the STORAGE library to a variant of ‘.NET server’.

This has already been set in the SalesSystem model for you. The only thing you need to do in
order to run the example is to generate it, build it and configure the Plex .NET Runtime so that the
client can call the server. The following steps will walk you through this process.

.NET Support and Code Libraries

Sample Model

Steps to Create and Run the Application
(1) First, you will need to configure the database to which you wish to run to. In order for Plex to

build the necessary table and view schemas, you will need to configure an ODBC data
source to connect to the database. The remainder of this document will reference a data
source called ‘development’ that connects to a SQL Server 2005 instance.

(2) With the model open, go to the Generate and Build window by selecting ToolsGenerate
and Build… from the main menu. Take a few moments to review the settings associated with
the model by selecting BuildGenerate and Build Options…. Out of all the settings, take
special note of the following:

(a) Build Directories: Make sure that you set the build directories.
(b) C# Generation Options: This tab contains options that affect the generated C# source

code. Currently, the only option is the Default generation package. This defines the .NET
namespace into which a Plex generated C# function will be placed if it is not assigned to
a Plex Package object. As none of the functions in this simple example have been
modeled into packages, this will be the namespace into which our generated C# classes
will be placed.

(c) System Definitions/<Local machine name>/C# Build: This tab contains the options
required for building C# source code.
(i) Build for .NET CLR Debugging: Does exactly what it says.
(ii) Default Code Library Name: Defines the name of the assembly dll into which Plex

generated C# functions will be placed when they are built from the standard
Generate and Build window. Deploying Plex generated .NET applications will be the
subject of a separate discussion on Code Libraries.

.NET Support and Code Libraries

Sample Model

(iii) Additional References: Allows you to specify additional .NET assemblies that your
Plex generated C# functions might reference. For example, you may add C# source
code to your action diagrams that reference external .NET components or pre-built
Plex C# functions from another Plex model.

(d) System Definitions/<Local machine name>/Database Build: This is where you set the
options used when generating database schemas to an SQL database. Make sure you
select the ODBC data source you defined in (1) so that Plex can automatically generate
the necessary database schemas.

(3) Select the subject area called ‘Generate and Build Me’, and generate the source for this
subject area (BuildGenerate). You should be prompted to generate 37 objects. Once the
generation has completed take a look at the directory into which the source has been
generated.

(4) Reselect the subject area ‘Generate and Build Me’, and build the source for this subject area

(BuildBuild). You should be prompted to build 15 C++ functions and 22 C# functions/ODBC
objects.

(5) Highlight the Function in the Subject Area ‘Create an Executable for Me’ and select
BuildCreate Exe in order to create a client executable entry point for the application. Now
look at the generation directories to see the locations of the various binaries that comprise
this application.

The ‘Gen’ directory contains all the C++ source and
ODBC schemas

A new directory called ‘Src’ is created under the
root where the C# source is to be generated. The
actual source is generated into directories that
match the Plex Package names into which the
Function objects will be generated. Note that if we
didn’t define a Packages for Functions, that they
are assigned to the Default Generation Package
from the C# Generation Options.

The new ‘Bld’ directory corresponds to the ‘Src’
directory created during generation. It contains the
entire source built from the ‘Src’ directory. In this
example, it relates to a single assembly called
SalesSystem.dll. This is called a ‘default assembly’
that the Plex .NET runtime can reference in order
for clients to make calls to any function generated
for the local model.

The ‘Release’ directory contains all of the
unmanaged C++ client binaries, consisting of dll,
pnl, exe and ini files.

.NET Support and Code Libraries

Sample Model

(6) In order for the Plex generated .NET Server application to connect to the database, an

OLEDB.NET connection must be used. This example uses a Microsoft Data Link (UDL) file in

order to connect to the database. A sample UDL file is located in the Samples\Dot NET
Support and Code Libraries\ directory for you to configure for your particular

database. Double-click the file in order to configure it. The following shows

SalesSystem.udl configured to access the development database described in (1).

(7) Now locate the Plex .NET Runtime directory under the main CA Plex r6.0 directory (called

‘Ob.NET’). The Plex .NET Runtime is structured as follows.

The top-level Ob.NET directory contains various batch
files used to simplify the installation of the Plex .NET
Dispatch Service.

The ‘bin’ directory contains both Debug and Release
versions of the Plex .NET runtime.

The ‘bld’ directory contains build support files used to
compile Plex generated C# source; these files were
used when compiling the C# source in step (4).

.NET Support and Code Libraries

Sample Model

In order to run our Plex client-server application, we must first configure the Plex .NET Runtime
instance that we wish to run the generated Plex .NET server application under. Because we will
be running the server application as a console application which is started via

PlexRuntimeConsole.exe, we need to configure the configuration file

PlexRuntimeConsole.exe.config.

(a) You can configure the Plex .NET Runtime using the new CA Plex .NET Management

Console. Start the interface by double-clicking the executable

PlexManagementConsole.exe, which is located in the

<PlexDirectory>\Ob.NET\bin\Release\ directory or use the start menu item –

Start/Programs/CA/CA Plex r6.1/Plex .NET Tools/Application Management Console. By
default, the CA Plex .NET Management Console opens two configuration files –
PlexRuntimeConsole and PlexGenericRuntime. For the .NET Console runtime, we need
to update the PlexRuntimeConsole configuration file.

(b) The .NET Management Console allows you to maintain configuration information on the

following items.

The top-level node contains the global configuration
information for the .NET runtime instance, such as
maximum clients, default culture information, logging
type and listener ports.

‘Environments’ contains configuration data that is on a
per-connection basis, such as assembly and additional
resource locations, connection culture information,

‘C#/RPG/Java’ nodes contain the configuration data
needed to make n-tier connections to other platforms
that host Plex generated applications.

Environment nodes also contain one or more
Database nodes. These contain configuration
information used when connecting to databases via
the Plex .NET runtime. The primary one of interest is
the UDLFileName setting.

.NET Support and Code Libraries

Sample Model

(8) Highlight the environment called ‘Default’ to see its settings. Highlight the AssemblyList

parameter, browse to the assembly SalesSystem.dll built in step (5), and click OK.

Highlight the database called ‘Default’ under the environment and browse to the
SalesSystem.udl file defined in step (6), and click OK.

(9) Save the configuration file by selecting FileSave All, and exit the Plex .NET Management
Console.

(10) To start the server application, double-click the PlexRuntimeConsole.exe executable or

use the start menu item Start/Programs/CA/CA Plex r6.1/Plex .NET Tools/Start .NET
Runtime Console. A DOS-style command window should appear, telling you that the Plex
.NET Runtime Console has been started, and is listening for requests on port 1998 (this is
defined in the Port setting under the root node of the configuration file).

.NET Support and Code Libraries

Sample Model

(11) Locate the Plex generated client application in Samples\Dot NET Support and Code
Libraries\Gen\Release\ directory. In order for the Plex generated client to call the

server application, it needs to be configured to connect to the server (although the client and
server are running on the same machine, the principle is the same as if they were located on

different machines). To configure the client runtime, open the file HeaderGrid.ini. This

contains a section called [RemoteCSharp] that contains the connection information to

connect to the .NET server. The primary values of interest are:

(a) System: The name of the system on which the Plex .NET server application resides.
(b) Port: The port number that the remote machine is listening on.
(c) Environment: The name of the environment on the server that contains the configuration

information for the application.

Because this example is running to the local machine, on port 1998 using the default
environment, these values can be left as they are.

(12) To run the application, double-click HeaderGrid.EXE to start the client application. Try out

the application by doing the following:

(a) Enter some header records using the ‘Add new data.’ Button.
(b) Enter some detail records for a selected header by selecting the ‘Detail’ button.

You can check the server status by checking the text log file associated with the server
runtime. You should see trace messages created in a file called

PlexRuntimeConsole.TCPIP.1998.<timestamp>.log each time a server function is

called (this can be switched off by a configuration setting in the runtime). The log file location
is C:\Documents and Settings\All Users\Application Data\CA\Plex\6.1\ob.Net\log or
C:\ProgramData\CA\Plex\6.1\ob.Net\log, depending on the OS. The trace messages should
all be informational, and should look as follows.

.NET Support and Code Libraries

Sample Model

You have the choice of directing Plex .NET Runtime messages to either a trace log file, or the
Application Event Log. You can select where to send the messages via the configuration file
associated with the Plex runtime you are executing.

The trace file or event log should also be the first place to look if you have problems with your
Plex .NET Runtime.

.NET Support and Code Libraries

Sample Model

(13) Close the client application and the Plex .NET Runtime Console before continuing to the next
section.

.NET Support and Code Libraries

Sample Model

(3) Using the Plex .NET Runtime Service

Introduction
In addition to running the Plex .NET Runtime as a console application, you can also run your
server applications under a service on the target machine.

Running your Plex .NET server applications under a service has a few noticeable benefits:

(1) You can configure multiple ports on which to service Plex client applications. These are

called ‘Listeners’, each of which has their own unique configuration information, memory
space and state information.

(2) The configuration of these listeners can be carried out by the Plex .NET Management
Console interface, thereby making it simple to manage the application instances you have
installed and running on a particular server, even remotely.

(3) You can obtain extended diagnostic information on your running Plex .NET server application
instances for each listener. This includes information on active threads, database
connections, SQL statement execution and remote n-tier connections that have been made in
the runtime.

In this example, we will configure the application generated in section (2) Running a Simple
Client-Server Application to use the new Plex .NET Runtime Service.

Steps to Configure the Plex .NET Runtime Service
(1) If you selected the .NET Runtime option on the Plex install ‘Select Features’ screen, the CA

Plex r6.1 .NET Runtime Service should be already installed. To install the service, you need

to use the .NET Framework utility installutil on the service executable

\Ob.NET\bin\Release\PlexRuntimeService.exe.

For convenience, batch files to install and uninstall the service are installed in the Ob.NET

directory. To install the service, double-click on the batch file

\Ob.NET\InstallService.bat. Once installed, you should be able to see the Plex .NET

Runtime Service installed under the Services node in the Microsoft Management Console. Do
not start the service yet – we will do that a bit later.

(2) Now open the Plex .NET Management Console. You should see a service node appear
under the root machine node in the left-hand tree view. The red square against the service

.NET Support and Code Libraries

Sample Model

node denotes that the service is currently stopped. You can now use the Plex .NET
Management Console to control the service installed on the local machine.

(3) Select the service node, and select ServiceStart in order to start the Plex .NET Runtime

Service. After a brief pause, the service node icon should change from showing a red square
to showing a green arrow, showing that the status of the service has changed into the
running state. The service node should also have a (+) next to it showing that it contains
additional information. Expand the service node and select the listener node called ‘Default’
running under the service.

(4) To make sure that we’re not using the default listener, stop it by selecting
ServiceListenersStop. You should see that the green arrow icon next to the listener
node changes to a red square. The configuration and information nodes under the listener
should also disappear.

(5) To add a new listener, select ServiceListenersAdd… You should be presented with a

dialog to enter the unique listener details, which consist of the following:

A Listener node represents one
Plex .NET Runtime instance
running on the server.

Each listener node contains its
own set of configuration
information displayed under the
listener node.

If a listener node is running, then
additional information on that
runtime instance is available in the
information nodes.

.NET Support and Code Libraries

Sample Model

(a) Listener name: The name used to identify the listener. This name is also used to set the
name of the .config file used to store the configuration information on the server for the
runtime instance.

(b) Port number: This is the unique port number that the listener will take incoming requests
from Plex client applications.

(c) Autostart: By selecting autostart, the listener will start running as soon as the .NET
Runtime Service starts. If autostart is not enabled, then the listener must be started
manually once the service enters the running state.

Enter ‘Listener2006’ for the listener name, 2006 for the port number and leave autostart set to
true, then select ‘OK’.

(6) You should see that Listener2006 has been added under the service, and because it was set
to autostart, it should be running. Select the new listener node in order to load the
configuration file associated with it. Highlight configuration node and select
AddEnvironment to create a new environment entry. Enter ‘SalesSystem’ for the
environment name, and press enter.

.NET Support and Code Libraries

Sample Model

In the AssemblyList parameter of the newly added environment, and enter the path to the

assembly SalesSystem.dll built in the previous example.

(7) Highlight the database called ‘Default’ under the new environment. Browse to the
SalesSystem.udl file.

(8) Save the configuration file by selecting FileSave All. This will save the configuration file
onto the server. If you want to view the configuration file it is located in the same directory

where the service executable resides (i.e. \Ob.NET\bin\Release\).

.NET Support and Code Libraries

Sample Model

(9) The service and listener are now ready to receive connections from a Plex client application.

Locate the Plex generated client application in Samples\Dot NET Support and Code
Libraries\Gen\Release\ directory. Open the file HeaderGrid.ini, and change the

section called [RemoteCSharp] as highlighted below.

[RemoteCSharp]
System=localhost
OpSys=WINCLR
Protocol=WINTCPIP
Port=2006
Environment=SalesSystem
Timeout=60
Client Encoding=Windows-1252
Program=
Path=
Buffer Size=1
Package=

(10) Start the client application and make sure everything works as expected; it should work

exactly as it did before. Now start up a second client on the same machine, and make some
more server calls by adding, updating or deleting records.

(11) Open up the Plex .NET Management Console and look at the following information displayed

for the listener.

(a) Listener node: Shows properties associated with the listener, such as current number of
clients connected, total number of clients serviced and other runtime configuration
properties such as the logging type and level.

(b) Thread node: Shows information on each individual client currently connected to the
listener, such as the machine name, IP address and number of client to server calls.

(c) DBConnections node: Shows information on each database connection currently
active, such as connection string and connection type.

(d) Views node: Shows information on the individual SQL statements currently open. You
can see the SQL statements executed and the Plex server functions they were called
from.

(e) Remote conversations node: Shows any .NET Server to .NET/Java/System i
connections that might be active against the listener.

(f) Logs node: Shows runtime log messges.

.NET Support and Code Libraries

Sample Model

(12) Close the client applications and stop the Plex .NET Runtime Service before continuing to the
next section.

.NET Support and Code Libraries

Sample Model

(4) Visual Studio 2005 Integration

Introduction
The CA Plex .NET Runtime allows simple integration with other applications based on the .NET
platform by using the DataSet and other associated classes from the System.Data namespace in
the .NET Framework.

When calling a Plex generated function, a DataSet represents either the input or output variable
groups associated with that function. DataTables are used to represent the individual variables
within the input or output group; with individual DataColumns used to represent the fields of those
variables.

InHeaderBlockFetch (.Input)

Control

Position RowsFetched

OrderNumber

0‘Y’

0

Position

OutHeaderBlockFetch (.Output)

FetchedData

OrderNumber CustomerName OrderDate

1 Rob’s Records 01/01/2006

2 Kiyoshi’s Lamp Co. 02/02/2006

64 Cheeky’s Loop Store 10/21/2006

This section consists of two examples, showing both a stateful and stateless call into the Plex
runtime.

A DataSet represents a parameter
interface variable group from Plex.
Input contains both input and dual
variables.

A DataTable represents one variable
on the parameter interface.

A DataColumn contains the
information on one field in the variable
on the parameter interface.

A DataRow contains the actual field
data passed to and from the function
call. If the variable is a single instance,
then there will only be one DataRow in
the DataTable instance. If the variable
is a MOV, then there will be a
DataRow object for each instance
passed to or from the function.

.NET Support and Code Libraries

Sample Model

At the end of a stateful call into the Plex runtime, the thread used by the client is maintained for
subsequent calls into the runtime. This allows a client application to maintain cursors between
calls into the Plex runtime.

At the end of a stateless call into the Plex runtime, the thread used by the client is discarded.
Thus any cursors that may have been opened during the call are lost. To make a stateless call

into the Plex runtime, you need to use the static callFunction() method exposed on the

ObRun.ObUtils.ObUserApi class.

.NET Support and Code Libraries

Sample Model

(A) Stateful Calls

(1) Open Visual Studio 2005 and create a new Visual C# Windows Application project, or open

the supplied Windows Client project. The following shows a screenshot with the settings for

the completed example under the \Samples\Dot NET Support and Code
Libraries\Visual Studio 2005 Clients\ folder.

(2) Open Form1.cs in design view, and add a DataGridView control to the dialog.

.NET Support and Code Libraries

Sample Model

(3) Double-click on the main body of the form to add an event to handle the Load event for
Form1. Visual Studio should jump to the code view for Form1.cs file, in a new method called

private void Form1_Load(object sender, EventArgs e).

(4) Select ProjectAdd Reference… from the main menu. From the Browse tab, navigate to

where the Plex .NET Runtime is located (this should be under the \Ob.NET\bin\Release\

directory). Add Plex.ObRun.dll and Plex.Controls.dll as references to your project.

.NET Support and Code Libraries

Sample Model

(5) Add the following code at the start of Form1.cs after the using sections for the .NET runtime.

using ObRun.ObMain;
using ObRun.ObUtils;

(6) Add the following code to the method private void Form1_Load(object sender,
EventArgs e):

DataSet dsInput; // A DataSet to hold the input parameters.
DataSet dsOutput; // A DataSet to hold the output parameters.
DataSet dsOutputGrid; // A DataSet to hold the data to be displayed on the grid.

// Create a new Plex .NET Runtime instance.
ObApplicationUser app = new ObApplicationUser();

// Initialize dsInput with:
// - A DataTable that is initialized with the default
// CallInfo structure for the call.
// - DataTables that contain each of the input/dual variables
// used for the call.
dsInput = ObUserApi.getInputParmDataSet("Order.HeaderBlockFetch_ObIn");

// Set up any additional call information in the CallInfo DataTable.
dsInput.Tables["CallInfo"].Rows[0]["Environment"] = "Default";

// Set up any additional parameters for the call in the appropriate
// DataTable instances.
// Note the use of 'In' to prefix the table name.
dsInput.Tables["InHeaderBlockFetch_Position"].Rows[0]["OrderNumber"] = 0;

.NET Support and Code Libraries

Sample Model

dsInput.Tables["InHeaderBlockFetch_Control"].Rows[0]["S5trh2n"] = "Y";

// Create the schema for the accumulated dsOutputGrid.
// Note: We could have waited until dsOutput was populated and then cloned
// it's schema, but this shows the use of another Plex runtime API.
dsOutputGrid = ObUserApi.getObVariableGroupXAsDataSet("Order.HeaderBlockFetch_ObOut");

// The FetchedData output MOV is returned initialized, so clear it prior to use.
dsOutputGrid.Tables["OutHeaderBlockFetch_FetchedData"].Clear();

// Set the DataGridView.DataSource object to the FetchedData MOV.
// FetchedData is one of the output variables returned in dsOutput as
// a DataTable object.
// Note the use of 'Out' to prefix the table name.
String returnedStatus = " ";
Int32 rowsFetched = 0;
while (returnedStatus == " ")
{
 // Call the Plex function via the Plex ObCallManager.obCallFunction() method.
 dsOutput = app.M_ObCallMgr.obCallFunction(dsInput);

 // Set up the returnedSatus and rowsFetched values passed back.
 returnedStatus = dsOutput.Tables["PlexSystem"].Rows[0]["Returned"].ToString();
 rowsFetched =
Int32.Parse(dsOutput.Tables["InHeaderBlockFetch_Control"].Rows[0]["S5trh30"].ToString());

 if (rowsFetched > 0)
 {
 // Use the ImportRow method to copy from dsOutput to dsOutputGrid.
 for (int i = 0; i < rowsFetched; ++i)
 {
 DataRow dr = dsOutput.Tables["OutHeaderBlockFetch_FetchedData"].Rows[i];
 dsOutputGrid.Tables["OutHeaderBlockFetch_FetchedData"].ImportRow(dr);
 }
 }

 // Set up the parameter DataSets for the next call.
 dsInput = ObUserApi.getInputParmDataSet("Order.HeaderBlockFetch_ObIn");
 dsInput.Tables["CallInfo"].Rows[0]["Environment"] = "Default";
 dsInput.Tables["InHeaderBlockFetch_Control"].Rows[0]["S5trh2n"] = "N";
 dsOutput.Clear();
}
 // Set the DataGrid DataSource equal to the DataTable built from the
 // Blockfetch call.
 dataGridView1.DataSource = dsOutputGrid.Tables["OutHeaderBlockFetch_FetchedData"];

(7) Compile the project by selecting BuildBuild Solution.

(8) Before running the example, you need to have Plex .NET Runtime configuration information

in the configuration file associated with the Windows Forms executable. The simplest way to
do this is to copy the configuration file you used to run the example in section (2) Running a
Simple Client-Server Application.

Copy the file \Ob.NET\bin\Release\PlexRuntimeConsole.exe.config to the

location where your client executable will be executed, and change its name to Windows
Client.exe.config, as shown in the following diagram.

.NET Support and Code Libraries

Sample Model

(9) Run the example by selecting DebugStart Debugging. You should see a Windows form

appear, loaded with the Order Header data that you entered in the first example.

Windows Client.exe.config is a

copy of the .NET Runtime Console
.config file used in the previous
example. It is used to locate the class
files generated for the Plex .NET
Server Application.

Order.Header.BlockFetch
recalled here by C# logic until
EOV is reached.

.NET Support and Code Libraries

Sample Model

(B) Stateless Calls

(1) Open Visual Studio 2005 and create a new web site by selecting FileNewWeb Site….

Call the web site ‘ASP.NET Client’, and place it on the local file system under the Visual
Studio 2005 Clients folder. Choose a language of C# for the code behind pages

associated with the web application.

The following shows a screenshot with the completed settings for the example under the \
Samples\Dot NET Support and Code Libraries\Visual Studio 2005
Clients\ folder.

(2) Open Default.aspx in design view, and add a GridView and Button web control to the

dialog.

.NET Support and Code Libraries

Sample Model

(3) Double-click on the newly added button on the page to add an event to handle the Click
event. Visual Studio should jump to the code-behind source associated with the aspx page,

called Default.aspx.cs, and be positioned on a new method called protected void
Button1_Click(object sender, EventArgs e).

(4) Select Web SiteAdd Reference… from the main menu. From the Browse tab, navigate to

where the Plex .NET Runtime is located (this should be under the \Ob.NET\bin\Release\

directory). Add Plex.ObRun.dll and Plex.Controls.dll as references to your project.

.NET Support and Code Libraries

Sample Model

(5) Add the following code at the start of Default.aspx.cs after the using sections for the

.NET runtime.

using ObRun.ObMain;
using ObRun.ObUtils;

(6) Add the following code to the method protected void Button1_Click(object
sender, EventArgs e):

DataSet dsInput; // A DataSet to hold the input parameters.
DataSet dsOutput; // A DataSet to hold the output parameters.

// Create a new Plex .NET Runtime instance.
ObApplicationUser app = new ObApplicationUser();

// Initialize dsInput with:
// - A DataTable that is initialized with the default
// CallInfo structure for the call.
// - DataTables that contain each of the input/dual variables
// used for the call.
dsInput = ObUserApi.getInputParmDataSet("Order.HeaderStatelessBlockFetch_ObIn");

// Set up any additional call information in the CallInfo DataTable.
dsInput.Tables["CallInfo"].Rows[0]["Environment"] = "Default";

// Set up any additional parameters for the call in the appropriate
// DataTable instances.
// Note the use of 'In' to prefix the table name.
dsInput.Tables["InHeaderStatelessBlockFetch_Position"].Rows[0]["OrderNumber"] = 0;

.NET Support and Code Libraries

Sample Model

dsInput.Tables["InHeaderStatelessBlockFetch_Control"].Rows[0]["S5trh2n"] = "Y";

// Call the Plex function.
dsOutput = ObUserApi.callFunction(dsInput, false);

// Set the DataGridView.DataSource object to the FetchedData MOV.
// FetchedData is one of the output variables returned in dsOutput as
// a DataTable object.
// Note the use of 'Out' to prefix the table name.
GridView1.DataSource = dsOutput.Tables["OutHeaderStatelessBlockFetch_FetchedData"];
GridView1.DataBind();

(7) Compile the project by selecting BuildBuild Solution.

(8) Before running the example, you need to have Plex .NET Runtime configuration information

in a configuration file associated with the ASP.NET web application. When running in a web
application, the Plex .NET Runtime looks for configuration information in either the

web.config file associated with the web application, or in a configuration file called

Plex.ObRun.dll.config.

The simplest way to do this is to copy the configuration file you used to run the example in
section (2) Running a Simple Client-Server Application, renaming it

Plex.ObRun.dll.config, and placing it in the directory where the web application will be

executing from.

Copy the file \Ob.NET\bin\Release\PlexRuntimeConsole.exe.config to the

location where your client executable will be executed, and change its name to

Plex.ObRun.dll.config, as shown in the following diagram.

(9) Run the example by selecting DebugStart Debugging. You should see a Microsoft
Internet Explorer window open that contains the button added. Press the button and the
method added in step (6) should be called, binding the FetchedData DataRows returned into
the GridView control.

Plex.ObRun.dll.config is a copy

of the .NET Runtime Console .config
file used in the first example. It is used
to locate the class files generated for
the Plex .NET Server application and
make database connections.

.NET Support and Code Libraries

Sample Model

.NET Support and Code Libraries

Sample Model

Troubleshooting
1. Problem: You receive the following exception at runtime:

An unhandled exception of type 'System.Configuration.ConfigurationErrorsException' occurred in
System.Configuration.dll

Additional information: An error occurred creating the configuration section handler for
Dispatchers/Service_x0020_Dispatcher_x0020_Debug/Environments/Default/Default: Exception has been
thrown by the target of an invocation.

Solution: Make sure the following Plex runtime assemblies are located in the directory where

your .NET Forms application is running from. The highlighted Plex.Controls.dll files

may not be copied by default.

2. Problem: You receive the following exception at runtime:

An unhandled exception of type 'System.NullReferenceException' occurred in Windows Client.exe

Additional information: Object reference not set to an instance of an object.

Solution: The Windows Client.exe.config or Plex.ObRun.dll.config file your

.NET application is trying to load does not have the correct configuration information stored

within it. Copy the PlexRuntimeConsole.exe.config file into the directory where your

.NET Forms application is running from, or the current directory where you are debugging
your ASP.NET application from and rename it accordingly.

Notes
1. You do not need to have the Plex .NET Runtime Service running in order for these examples

to work. The Windows Forms application process contains the Plex .NET Runtime instance
being used.

.NET Support and Code Libraries

Sample Model

(5) Using Code Library Objects to Create .NET Assemblies

Introduction
For large-scale projects, generating C# source and compiling it into one assembly is less than
ideal. If one function changes, then the whole assembly effectively must be changed. Also the
size could be prohibitively large; making the application impossible to install and administer.

To solve this problem, Plex has introduced the concept of Code Libraries. These objects can be
modeled to contain a logical subset of an application; the subsets could be functional units of an
application, or could be functions that define a revision of an application.

The following document outlines the steps required in order to create multiple assemblies that
contain CA Plex generated C# functions.

(A) Modelling Code Libraries
First, you must create Code Library objects that define the subsets of the application that you
want to deploy. The top-level Code Library objects will ultimately get created as assemblies, so
the triples that you define against the Code Library reflect the attributes and manifest information
that will be created in each assembly.

A Code Library must contain one or more Package objects, which in turn, must contain one or
more Function objects. The following shows a typical structure for a Code Library, as seen in the
Plex Object Browser.

Top-level (unscoped) Code Library called
‘Order’; this will be created as an assembly unit
of the application.

The Code Library contains one Package object,
in this case called ‘Order’ (although the name
could be anything). Note that the Code Library
object does not scope the Package – as such,
the Package object could be contained in
multiple Code Libraries.

The package contains multiple Function objects.
This association between Package and Function
objects is the same as in previous releases; as
such you can reuse any of the Package
modeling you may already have in your models,
if you so wish.

.NET Support and Code Libraries

Sample Model

Because Plex functions cannot be added directly to the Code Library object, they must first be
scoped to Package objects. This can be achieved by using the PKG contains FNC triple. The
following shows a Package called ‘Order’ that contains the server functions associated with the
Order.Header and Order.Detail entities.

The Package information for a function will define the .NET Namespace into which the classes
associated with that function will be generated.

This Package object is associated with the Code Library by using the CDL Comprises PKG
triple. By doing this, you can view the contents of the Code Library in the Plex Object Browser.

The following shows the triples for a Code Library called Order which is contained in the
SALESSYSTEM sample local model.

.NET Support and Code Libraries

Sample Model

There are a number of descriptive label objects in the above list, such as ‘Company name’,
‘Copyright information’, ‘Trademark information’ and ‘Product’. These labels should have their
values coded into their literal values as follows:

You have now modeled your Code Library and are in a position to generate the source used to
create it.

If you have followed the examples right from the start, you do not have to generate any C# code
in order to create your assemblies. In the first example, you generated your source code, and
then compiled it into the Plex .NET Default Assembly. The information in this generated code is
completely independent of any Code Library in which you place it. It is perfectly acceptable to
generate, build and test your application using the default assembly created from the generate
and build window, and then create your .NET assembly units at a later point in your development
cycle – all without having to regenerate a single line of code.

Note: Because Package information is generated into the source for a function in the form of
namespace information, you must make sure your any package modeling you wish to do is
completed before you generate your application source.

All information specific to the Code Library objects being created is generated and compiled into
the target assemblies by the new CA Plex Code Library Deployment Wizard.

.NET Support and Code Libraries

Sample Model

(B) Packaging and Deploying a Code Library
In order to create an Assembly from a Code Library, you need to use a new Plex tool called the
Plex Code Library Deployment Wizard.

Note 1: Because this tool uses the Plex COM API interface you must make sure that the PlexAPI
interface is registered on your target machine. This should be taken care of by the Plex install
process, but if you need to perform this step manually, please refer to the Troubleshooting
section at the end of this document.

Note 2: To launch the Wizard, select Code Library Wizard menu item from the Tools menu.

Starting the wizard should show the welcome screen, select ‘Next’ to start the packaging and
deployment process.

The next screen lists the unscoped Code Library objects that are present in your model, and are
have enough information to allow the creation of an Assembly.

Select the Code Library objects that you wish to deploy and select ‘Next’.

.NET Support and Code Libraries

Sample Model

The next screen shows the options that the Wizard will use when creating the assemblies. These
options are defaulted from the Generate and Build options from the current local model, but can
be overridden if required.

.NET Support and Code Libraries

Sample Model

If you set the Preview Output option to True (the default is False), then the next screen allows you
to review the Code Libraries you have selected for deployment. You can drill down into the
libraries and see their packages and functions that will be contained within them.

.NET Support and Code Libraries

Sample Model

Selecting ‘Next’ opens the ‘Plugin Options’ screen that does not require any changes.

.NET Support and Code Libraries

Sample Model

Selecting ‘Next’ will start the assembly build process.

The next screen shows the output of the build process; you should see that your assemblies are
created without any errors or warnings.

You can only select ‘Next’ when the build has completed.

.NET Support and Code Libraries

Sample Model

Congratulations - You should have successfully created an assembly that contains the required
Plex functions.

Select ‘Finish’ to close the Code Library Deployment Wizard.

.NET Support and Code Libraries

Sample Model

But what actually got created? And how do we use them?

The directory in which the Code Library Assemblies reside is based on the target directory that
specified in the build options (step 3 of the wizard). The actual directory will depend on whether
you selected Release or Debug as your build option.

These are named after the CDL File name NME property you specified when you modeled your
Code Library object.

.NET Support and Code Libraries

Sample Model

You can see the contents of the assembly using the Il Dissasembler tool shipped with the .NET
Framework.

In order to use the assemblies with the Plex runtime, you need to specify the names of the
assemblies in the AssemblyList entry in the configuration file for the .NET Runtime you are
using.

Multiple entries can be made in this field, and at runtime, it is searched in a similar manner to a
PATH variable or a Java Class Path. Also, in a similar manner to the PATH and Java Class Path
entries, multiple entries are separated by semicolons.

.NET Support and Code Libraries

Sample Model

.NET Support and Code Libraries

Sample Model

Troubleshooting
(1) Problem: You receive the following error when launching the Code Library Deployment

Wizard:

Solution: Register the PlexAPI COM interface. To do this, go to a command line, change
into your Plex installation directory and enter the following command:

Plex.exe /RegServer

	CAPlexCSharpBestPractices.pdf
	Dot NET Support sample model document
	Introduction
	(1) Prerequesites
	(2) Running a Simple Client-Server Application
	Introduction
	Steps to Create and Run the Application

	(3) Using the Plex .NET Runtime Service
	Introduction
	Steps to Configure the Plex .NET Runtime Service

	(4) Visual Studio 2005 Integration
	Introduction
	(A) Stateful Calls
	(B) Stateless Calls
	Troubleshooting
	Notes

	(5) Using Code Library Objects to Create .NET Assemblies
	Introduction
	(A) Modelling Code Libraries
	(B) Packaging and Deploying a Code Library
	Troubleshooting

