
1

The CA-IDMS Database and Applications User Association

https://communities.ca.com
September 2011, Number 75

INSIDE THIS ISSUE
Letter from the Editor.. .1

Message from Internat ional Chair . . .3

Mainframe Continuity for CA IDMS...3

IUA/EIUA Appl icat ion Developer Forum URL...4

Gett ing to IDMS V18 Without wait ing for CA-MSM...4

Scalable Cloud Computing with IDMS...7

z/OS CPU Ef fect iveness:. . .11

Introducing the CA IDMS HTML Bookshel f. . .14

Help desk archives.. .15

Backward Compatabi l i ty Tr iv ia Quest ion . . .15

Record In Using L ist Not Used By Dialog . . .15

Record In Using L ist Not Used By Dialog – End Game . . .15

CPU Increase . . .16

Submit JCL to JESRDR . . .17

Writ ing to a queue from a COBOL subprogram . . .18

IDMS SQL DML related quest ion . . .19

Link ing Rules Extended and not with DC and Batch . . .20

ADSO Area Readies – Br ief Refresher . . .21

DC-COBOL Link to a ADSO Dialog . . .23

THE publication of the IDMS User Association

LETTEr from THE EDITor

(continued on page 3)

As this issue “goes to press” the
IUA is now represented in the
cyber world in two ways:

1. https://communities.ca.com/
web/ca-idms-iua-eiua-global-
user-community - the place to
go for “everything IUA”:

Current discussion threads 	
from IDMS-L and original
posts to the Message Board

Archives of “IUA Connections” and “IDMS 	
Connections – including PDF’s of back issues that
were previously published only as “hard copy”

User Contributed Library	

Up-to-the minute news	

Wiki and Blog	

Photos, pictures of memorabilia, etc, etc	

2. mailto: idms-l@listserv.iuassn.com the long standing
IDMS-L List Server – which contains current
discussion threads that originate either on IMDS-L or
on the IUA/EIUA Message Board

Starting up new “threads” on the Message Board is still far
too rare an occurrence (maybe “NOOAK posts”?) – but I
remain hopeful that people will realize that posts on IUA/
EIUA Community Message Board also go to IDMS-L,
and vice-a-versa, so it doesn’t matter where you start
your discussion thread!

Speaking of IDMS-L! In this issue we feature a number
of threads extracted from “the archives” that I keep for
Connections – when it looks like the topic is particularly
relevant and may be worth re-visiting at some point in the
future. So – for the threads that made it into this issue –
their future has arrived. I hope you enjoy these “oldies but
goodies”.

www.obj-ex.com
Photo by: BdwayDiva1 at flickr.com

Your bosses may think IDMS is “legacy,”
but do they know this graduate can write Java or .NET

applications - right now - that use IDMS data? Not only that,
she’ll do it several times faster than she could using a

relational database!

Using our NoDML Document Oriented technology, you open a
document, update it, and save it with three calls. Even a

newbie can do that! To learn how you can build world-class
offerings using our Cloud Computing technology for IDMS

call us at +1 (480) 588-7776

or email us at: info@obj-ex.com

She
already
knows how
to use
IDMS!

Experts in IDMS Integration

3

mESSagE from
INTErNaTIoNaL
CHaIr
By Linda Casey

Editorial.. cont’d from page 1

(continued on page 4)

Please note that a number of the threads are probably
more relevant to the development side of the IT
organization than to DBAs – so by all means please
circulate copies of “IDMS Connections” to your analysts,
designers and coders. While you’re at it, please mention
to those team members about the IUA/EIUA Community
Message Board Forum specifically for Application
Development issues at https://communities.ca.com/web/
ca-idms-iua-eiua-global-user-community/message-board/

Remember that the purpose of the IUA is to share about
both IDMS, the DBMS, and IDMS’s developer tool kit
(ADSO, OLQ, Culprit, DML programming in Assembler
and Cobol, IDMS/SQL and so forth) – so by sharing
your copies of “IDMS Connections” you are doing your
part to help the IUA to meet it’s primary objective.

And now – I am pleased to be able to present for your
enjoyment and information - another issue of “IDMS
Connections”. Tom Hebert shows how IDMS can fit
into a “Cloud Computing” environment, providing some
lively industry commentary along the way. Also, many
thanks to Chris Hoelscher, to CA for its support, and to
the IDMS-L “posters” whose contributions are reflected
in this issue.

That’s all there is – because there is no more!

Gary Cherlet
mailto:gary.cherlet@sa.gov.au
Justice Technology Services (Department of Justice -
South Australia)
IUA Board Member Responsible for IDMS Connections
President Australian IDMS Database User Group
(OZIUA)

What does the IUA mean to
you?

In early August, Terry Schwartz, functioning as the
chair of the nomination committee, posted a request for
nominations for the IUA board positions available in this
year’s election cycle. While we will be voting via a poll at
the communities’ site, we will be concluding the elections
at our annual meeting CA World.

Much to my chagrin, there was little response to his
request. So let me ask you, the membership of the IDMS
User Association, a few questions:

1. What can we do as a community to revitalize
membership involvement?

2. What do you, as members of the IUA what from the
IUA?

3. What do your fellow members of the IUA as a
collective mean to you?

4. Is there something the IUA could do that would
benefit your company?

Given the economic climate and maturity of the product,
what has worked in the past for the IUA doesn’t seem to
be working with today’s version of the IUA.

So let me challenge each and every one of you to ponder
these questions and work with fellow members in the
message boards within the IUA/EIUA communities to
offer constructive ideas, suggestions, and concerns.

A new message category has been created for this
discussion. Enter the message board and go to “The IUA
in 2011 - Community Revitalization “category. Four
threads, one for each topic, have been created for your
input. Please note, Gary will not be cross posting this
to the IDMS-L so the only place to voice your input is
within communities. To stay involved with the discussion,
you may subscribe at the category level or subscribe to the
individual topics of interest.

The board will be meeting in November and your input is
vital to the direction we take the IUA in the coming years.

maINframE CoNTINUITy for
Ca IDmS
Like you, CA Technologies is also facing the challenge
of Mainframe Continuity. It is imperative that we
successfully train new software engineers to replace our
mainframe workforce as they near retirement so that we
can continue to provide high quality product support to
you, and deliver innovation and value with new product
releases.

In 2005, CA Technologies started a program for new
Computer Science (or a related discipline) graduates
in Europe. In 2009, this program was expanded to
the United States. Our Prague-based European team
continues to grow. In the U.S., each class in 2009, 2010,
and 2011 added 20 new associate software engineers who
were recruited from top Computer Science programs
across the country. These new engineers are now working
on various CA Technologies mainframe product teams.

The new U.S. associate software engineers spend their
first two months attending our Mainframe Training
Program in Plano, Texas. While there, they are introduced
to the mainframe and learn that System z is the enterprise

4

(continued on page 5)

Mainframe Continuity.. cont’d from page 3

IUa/EIUa appLICaTIoN
DEvELopEr forUm UrL:
https://communities.ca.com/web/ca-idms-iua-eiua-global-
user-community/message-board/-/message_boards?_19_
mbCategoryId=0&#p_19

Remember to subscribe at the Message Board level to get
regular updates for all Message Board Categories, or just
subscribe to one or more Categories of interest!

computing system that 90% of the Fortune 1000
companies rely on for their most important business
needs. Topics covered in the Plano training include the z/
OS operating system, the user interface for developing on
the mainframe, an embedded UNIX-oriented operating
system, programming in Assembler language, and the
REXX scripting language. Along the way they also learn
about popular mainframe transaction servers, databases,
file structures, and change management systems. As
part of their training, the new software engineers are
introduced to the CA Technologies executives who run
our Mainframe Business Unit, learning from them the
tremendous benefits that CA Technologies customers
realize from our mainframe software products.

After completing their basic training in Plano, the
graduates go back to one of the CA Technologies main
U.S. development centers (Plano, TX; Framingham, MA;
Pittsburgh, PA; Lisle, IL; Ewing, NJ; Islandia, NY) where
they immediately start working with their new product
teams. Continuing the learning process within their
respective teams includes working with senior software
engineers on product issues and new releases. CA IDMS
was one of the first product lines to benefit from this
program when new engineers were hired in Prague in
2005 to join the CA IDMS product team. The new
engineers learned quickly and are playing a significant role
in the development and testing of new CA IDMS releases,
which included CA IDMS and CA Visual DBA Versions
17.0 and 18.0.

The CA IDMS team also benefited when new U.S.
software engineers from our 2009, 2010, and 2011 classes
joined the team in our Framingham MA development
center. Like their Prague counterparts, the U.S. software
engineers have been quick to learn, and they played a key
role in the development and testing of CA IDMS Version
18.0. Now, both the Prague and U.S. software engineers
are part of the global team working with senior software
engineers on the next CA IDMS release.

It is hard to believe that it has been over six years since
we first started training new software engineers on the
CA IDMS team–but the great results are proof positive.
Our plans are to continue investing in new engineers to
maintain the momentum we started in 2005 so we can
continue to support you on CA IDMS well into the 21st
century.

From the ‘CA IDMS Management Team’

gETTINg To IDmS v18 WITHoUT
WaITINg for Ca-mSm
Chris Hoelscher, Humana Inc.
Being the “eager beaver” that I am, and knowing that
IDMS V18 will save our organization money, I have
spent much time building a reliable and repeatable
installation methodology without waiting for CA-MSM
to be installed at our site, and I would like to share this
methodology with the IDMS community.

The first question might be “why NOT wait for CA-MSM
to Install IDMS V18? The first answer is that Humana
does not yet have plans to have CA-MSM installed. The
second answer is that, even if CA-MSM was installed, I
would want to execute the install process manually before
allowing an automated process perform the same tasks
(this is akin to my 11th grade physics teacher who required
us to pass a slide rule proficiency test before allowing us
the use of hand-held calculators (keep in mind this was
1973).

However, not exploiting CA-MSM does not mean
ignoring the CA-MSM methodology altogether – I
patterned my install methodology after how (I think)
CA-MSM operates; thus I separated my process into
4 phases: ACQUISITION (getting the software files
on my mainframe), INSTALLATION (creating and
populating software libraries), DEPLOYMENT (copying
libraries from the “install” environment to the runtime
environment(s)), and CONFIGURATION (customizing
the software for our site usage (actually – I even split this
into pre- and post- DEPLOYMENT phases, so perhaps
there are actually 5 phases). So let’s get to it. Following
is a list of the steps I used to get my CA-IDMS V18
environment up and running.

Under the heading of the ACQUISITION phase, it
was necessary to determine my UNIX root directory
– I then need to run a job to create the needed UNIX
subdirectories; in my case I ran:

Then, I went to the CAT support site, to the download
center, selected products, selected CA IDMS/DB – MVS,
18.0 for the release, and clicked on GO – I was taken
to another page where you I was presented with a list
of objects to download – I selected CA IDMS/DB
PRODUCT PACKAGE, made note of the object name
(I00000DOA00.pax.Z), and clicked DOWNLOAD .
I was then taken to a DOWNLOAD METHOD page.
I selected FTP REQUEST (I chose FTP REQUEST
rather than DOWNLOAD MANAGER so that I can
FTP directly to the Mainframe). I was sent an email
informing me that the file has been placed for FTP. When
I got the email(about 2 minutes after I selected FTP
REQUEST) , I clicked on the provided link which took
me to the REVIEW DOWNLOAD REQUESTS
page, clicked on the Preferred FTP Instructions associated

5

Getting to IDMS V18.. cont’d from page 4

(continued on page 6)

with the correct order #, and took note of the Host,
Username, Password, and FTP Location information. I
exited the CA website.

I then FTP’d the base install file directly to my UNIX
subdirectory as follows:

I downloaded the documentation directly to the PC, as
Mainframe bookmanager-format documentation was
not created for IDMS v18 (not a happy day for me).
Additionally, there were NO Product Authorization
sheets to download as they no longer exist for IDMS V18.

Next, I unpacked the install object into constituent UNIX
files:

I then used invoked TSO ISHELL to edit the just-
unpacked file UNZIPJCL – I made the required
customization changes and submitted the job. We do not
have ACS rules in place to direct placement of datasets
based upon their HLQ, and this job does not have the
ability to specify a STORCLAS (specifying VOLUME
was ignored by our default SMS rules) , so I needed to
move (using ADRDSSU) the created datasets to more
appropriate volumes after completion of UNZIPJCL.
This completed the ACQUISITION phase of the
implementation process.

In the INSTALLATION phase, the steps looked
somewhat (but not totally) familiar to what I have done
in the past. First, the SAMPJCL dataset (or the dataset
that contains member AGJSEDIT if it is copied) needed
to be defined to my TSO session in the SYSPROC
allocation – I did this by adding the following line in our
TSO login script dataset member

Next, I customized the AGJSEDIT member based on our
site standards. A lesson I learned the hard way is the both
DASDHLQ and SMPETEMP should be different from
each other and different from for the values specified
for GLOBALHLQ, CAIT0HLQ, PRODHLQ, and
SAMPHLQ (which all were assigned the same value).
Next ,I edited AGJ1ALL , at the command line typed
AGJSEDIT and the customized changes auto-magically
appear (the alternative would have been to make the
changed by hand for each member to be submitted). This
member, which allocates SMP/E, target, and distribution
libraries, was then submitted. After successful execution
of AGJ1ALL, I did the same with AGJ2CSI (allocate and
format the CSI).

Before going further, it should be noted that in IDMS
V18, ALL products (with the exception of a few optional
interfaces) are installed, whether you intend (or are
licensed) to use them. AGJ3RECD (SMP/E RECEIVE)
is next up – I commented out the culprit interface FMIDs
and RECEIVED the remaining 2 FMIDs (IDMS base
and IDMS CICS support).DO NOT RUN AGJ3RECT
if you are installing from the internet downloaded file – it
is used only for a TAPE –based install. AGJ4APP (SMP/E
APPLY) is next, with the same commenting (twice)
required. AGJ5ACC (SMP/E ACCEPT), again with
required commenting, completed the INSTALLATION
phase.

It is certainly true that what I performed in
CUSTOMIZATION PT I could be deferred to the first
iteration of PT II but I chose to do as much as possible as
early as possible to get that work out of the way. Having
said that, following are the steps I followed.

In the 1.	 HLQ.CAGJSRC dataset, I edited member
CFIG#JCL, manually customized the changes
I needed (this job was not created to utilize AS-
GJEDIT), and submitted. This job creates and
populates a new dataset, HLQ. CAISAG.CONFIG.
This dataset contains the familiar jobs needed for the
remainder CUSTOMIZATION phase.

Once 2.	 HLQ. CAISAG.CONFIG has been cre-
ated and populated by CFIG#JCL , customize the
JOBCARD and SETUP members to meet your needs,
Then it’s time to edit your “old friend” (?) VARB-
LIST. There are a few changes for this release:

The product selection area is slightly changed a.	
(YES vs INSTALL) (I guess because you’ve
already installed them);

Some products have been rolled into others b.	
(TSO INTERFACE is no longer selectable,
it is now an unconditional part of UCF, TP/
CICS is no longer selectable, it is an uncondi-
tional part of IDMS CICS SUPPORT) and

The TOOLS and ENDEAVOR products are c.	
now customizable as part of the base install,
and there are 4 NEW datasets that are cre-
ated as part of this process, the “CUSTOM”
libraries:

6

Getting to IDMS V18... cont’d from page 5

(continued on page 7)

SRCLIB, kinda sorta like the old i.	
PPOPTION library,

JCLLIB, kinda sorta like the old ii.	
SAMPJCL library,

LNKLIB (new; link edit parms), iii.	
and

LOADLIB (kinda sorta like, but in iv.	
addition to, the old DBA.LOAD-
LIB)

It should be noted at this point that for IDMS V18, CAT
has reversed a 20-year approach (presumably to parallel
CA-MSM), and no longer uses SMP/E to customize site-
specific customizable load modules (this will come as a
relief to many - I had spent much time over the past 20
years getting almost all my customizations installed under
SMP/E).

I customized VARBLIST (much of it does not pertain
to upgrading from a previous release) and ran CAISAG.
I looked at the resulting members (JOBxx in my case)
stored in HLQ. CAISAG.CONFIG, and made changes
to VBARBLIST where needed and reran CAISAG to my
satisfaction.

JOB01 allocates the CUSTOM libraries – the sizes
provided may or may not be suitable for your site,
depending upon how many versions of source, JCL, or
link parms you have. At this point I created additional
libraries: I created custom loadlibs to parallel every
runtime library that is used – this allows me to get
the customized load modules into parallel libraries
now, and simple perform a one-to-one move during
DEPLOYMENT.

Additionally, the CAT process would have you add the
CUSTOM.LOADLIB to your CV startup and batch jobs

– I chose not to, opting instead to use the existing runtime
(and parallel install) DBA.LOADLIBs for this purpose,
already in our CV startups and batch jobs. JOB02
populates the source templates. JOB03 as delivered would
assemble/link the source members into the CUTOM.
LOADLIB –I chose instead to split JOB03 into many
many jobs, one for each module to be customized, with
multiple steps for each version of the customized module.
Why?

I chose not to use the CUSTOM.LOADLIB library, I had
many version of the source members that needed to be
individually assembled (SRTT, SYSIDMS, SVC, CINT,
INTC, etc) and I had IDMS system customizations for
which no JCL was provided (SYSIDMS, RHDCFSTB,
IDMSUXIT (new), ADS USERBIFs, FE Tables). In
created JCL for customization where it was not provided,
and separate versions of source, JCL, and link parms
where it DID exist, and ran these in place of JOB03.

Some new modules to discuss:

RHDCPINT creates a module to determine what 	
products are intended to be used (LMP keys still
determine what products may be legally used) – the
contents of RHDCPINT can be seen in DCPROFIL

– but not all products are displayed there (CICS
Support is not displayed),

WTOEXIT is now a standalone module and MUST 	
be run from an authorized load library if z/IIP is
desired – also – the delivered WTOEXIT now checks
for a log full condition (DC050004) and need not
be added as a customization,

RHDCVEND does something but I am not sure 	
what – it is delivered, we re-link it but do not change
anything about it, so I am not sure on this one, and

IDMSUXIT is the root anchor for system exits such 	
as IDMSIOX2.

After much experimentation, I got all the source, JCL,
and link parms correct, and got the load modules where
I wanted them. This completed the CUSTOMIZATION
PT I phase. Next, I had our system folks run JOB04
(CAIRIM), after, of, course, I had given the modules in
HLQ.APFLIB (including a new module CAIXDOA$)
The usual caveats still apply as to how and when to run
CAIRIM.

We move ahead in time to the day of implementation.
I started with the DEPLOYMENT phase. The
DEPLOYMENT phase was, in fact, the easiest to
accomplish. I merely backed up all the runtime files
that were about to be overlaid, and then copied the
Install libraries (both CAT-provided and user created)
to the corresponding runtime libraries. Then, on to
CUSTOMIZATION PT II.

In CUSTOMIZATION PT II, I returned to HLQ.
CAISAG.CONFIG.

JOB05 copies the DMCL/DBTABLE load modules 	
(that own the dictionaries and catalogs) to the install
environment for use in subsequent jobs).

JOB06 creates JCL copybooks.	

JOB07 updates system thingies (protocols attributes 	
messages). If each CV to be migrated has its own
SYSTEM dictionary, run the appropriate steps
multiple times.

JOB08 was empty for me. 	

JOB09 updates the SYSDIRL dictionary, updates 	
SYSGEN components, and generates SYSTEM 99.

JOB10 updates the APPLDICT dictionaries with 	
system thingies. Again: multiple APPLDICTs,
multiple executions.

JOB11 and JOB12 were empty for me. 	

JOB13 updates TOOLDICT entities. 	

JOB14 executes a SYSGEN to reflect TOOL 	
products.

JOB15 was empty. 	

JOB16 copies the SYSTEM 99 programs and tasks 	
to SYSTEM 90. Repeat this job for each SYSTEM
used by CVs being migrated.

JOBs 17 and 18 were empty. 	

7

Getting to IDMS V18... cont’d from page 6

I then performed the following: Had our CICS folks
update the CICS PPT with the input provided, format the
LOGs and JOURNALs, remove the TOOLs loadlib from
the Startup JCL, Started the CVs: Verify CICS access,
TSO access, Batch access, and online access.

Additional thoughts: before CUSTOMIZATION PT
II, I saved off any messages, modules, or subschemas
(SYSDIRL only) that were either created or customized –
I re-applied the customization or re-added them after the
CUSTOMIZATION PT II.

I did not overlook the CAT-provided documentation; the
install guide, best practices guide, and the new features
guide (for the past several releases), and system operations
guide were essential in making this happen correctly.

As I continue to refine this process as our environments
are move to V18, look for updates on IDMS-L or in
CONNECTIONS for updates, or you may contact me
off-line at choelscher@humana.com.

SCaLabLE CLoUD CompUTINg
WITH IDmS
Introduction

Cloud Computing is the best thing to happen to IDMS
in many years. I bet your organization has heard about
Cloud Computing but I doubt its implications are fully
understood as it relates to IDMS.

What if management decides they want to use software
products like SAP, SalesForce.com and others who
have embraced Service Oriented Architecture? What if
management would really like to create new mission-
critical, high-volume applications that take advantage
of the architectures and technology inherent in Cloud
Computing? What if you have IDMS? How will you
get them there, intelligently, without throwing babies out
with the bath water?

I can tell you this. Screen scraping isn’t going to do
it. The likelihood that your current ADS dialogs relate
directly to the needs of the Cloud is near zero. Porting
isn’t going to do it either. Building an entirely new system
on a new database platform and cutting over to it in one
day is not feasible or it would likely have been done by
now.

The way to move forward is to keep IDMS, allow current
applications to exist for
the duration of their
economic life, and wrap
IDMS with an
architecture that allows
you to use Cloud
Computing to the benefit
of your organization.

Here is another bit
of news. Relational is actually old and it is not a perfect
choice for the Cloud. It is certainly no better than IDMS.

If there is no advantage to
using relational databases
on the Cloud then, there is
no advantage to converting
away from IDMS.

In fact there is a nascent movement out there called
“NoSQL”, which does not literally mean no SQL but
more closely means “Not only SQL”. It has taken a while,
but the exclusive, iron-clad grip that relational has held
regarding data is beginning to loosen.

So let’s explore Cloud Computing and IDMS. It could be
just what the doctor ordered.

Cloud Computing vs. “The Cloud”
For this discussion, let’s define the difference between

“Cloud Computing” and “The Cloud.” Cloud Computing
is a design and implementation architecture. “The Cloud”
refers to the collection of Cloud Computing Services
available on the Internet.

We use Cloud Computing because we want to follow
an architecture that allows us to safely invest in our
applications. We expose services for internal and external
use following the same architecture.

What is Cloud Computing?

Cloud Computing is more than putting up a web site
that scrapes screens or reads from a copy of the IDMS
data. Participation in Cloud computing brings new
requirements and risks. Meeting these requirements and
mitigating these risks can only be accomplished using a
well-defined architecture.

Major Internet players and industry leaders are driving the
evolution of the Internet from a collection of servers into
a fabric of interconnected Cloud Computing services. It
is only logical that private networks migrate toward the
same architecture. It’s driven by users and consumers, not
the accountants and DBAs. Most users tend to think in
terms of documents, for example, purchase order, sales
order, bill of material, and work order. You create, file,
and retrieve documents. You sort through them and
aggregate their contents. It is natural that computer
systems will evolve to a model more easily understood by
the consumers.

Cloud Computing is interoperable. Any platform,
operating system, or database can participate as long as it
follows the rules and the architecture sets out the rules.

In Cloud Computing documents rule - not relational row
sets. The old client/server row set-based world made us
massage IDMS into a more limited format. We had no
choice because virtually all client/server tools were built
around the relational model. That was a disadvantage.
But Clouds are built around the users, and the users want
documents. This levels the playing field between IDMS
and Relational. If there is no advantage to using relational
databases on the Cloud then, there is no advantage to
converting away from IDMS. New Cloud applications
can coexist with existing ADS and COBOL applications
and share the same IDMS databases.

When properly implemented, Cloud Computing
represents an evolutionary leap forward in flexibility,
security, scalability and reliability. We can no longer take
comfort in the statement “Someday those guys in the
client server world will figure out that mainframers know
production computing better than anyone.” The fact is

(continued on page 8)

8

that Cloud Computing is every bit as reliable, manageable
and useable as a mainframe, and it scales extremely well.

If you have used services like YouTube, Bing Maps, and
Google maps, then you have used Cloud Computing.
These are no longer merely web sites. Sure, Bing Maps
is a web site but you also get Bing Maps data from other
sites like hotel chains, airlines, and car rental companies.
For example, Marriott does not transfer you to the Bing
Maps web site in order to show you a hotel location.
They call a web service provided by Microsoft and show
you the results in their web page.

Exploring further, a Cloud is a collection of accessible
services that provide services to clients. The services
offer data in such a way that many different platforms
can consume the data. The current method of choice
for accomplishing this task is the Simple Object Access
Protocol (SOAP) which underpins services in a Service
Oriented Architecture, the core design model used
in Cloud Computing. Cloud services hide their own
implementation from their consumers. In other words,
if you call Microsoft Bing Maps or Google Maps for
geographic data, you have no idea how or where they
are servicing your request. The Cloud resides in or on
physical resources that host, maintain, and service the
infrastructure required to deploy, execute, secure, and
maintain the services. You don’t need to know the details
in order to use them.

You are not in the Cloud because you merely put a web
site on the internet. Your ISP’s email service is not a
Cloud Service. SalesForce.com can be a Cloud service
and so can Google Apps or Office 365. It depends on
how you use them. You have to integrate them into your
enterprise systems, making them part of the fabric that
comprises your organization’s Cloud. To do that you need
to build and consume SOAP-based services.

Clouds don’t have to be connected to, or limited by,
the internet. You can develop private Clouds and take
advantage of the design architecture. In fact, most
organizations should keep most of their Cloud private and
only interface to the outside world when necessary.

Requirements
If you are to offer and consume services in a Cloud, there
are rules you will be forced to follow and requirements
you will have to meet. Here are a few:

Clouds are multi-platform and heterogeneous. The
Cloud is not an exclusive club. All operating systems are
welcome, and the data flowing in and out must not be
platform dependent. This is what makes XML an enabler
of Cloud computing. The format of an integer is always
the same in an XML document while it could be very
different on the platforms sending and receiving the
document.

The consumer of a service does not know or care how
the service is implemented. It can be on UNIX, Linux,
Windows, z/VSE, z/OS, or some other platform. You
cannot expose your callers to a platform-specific nuance.

It follows that today’s Clouds use an XML 	
document-style interface. Similar to a text editor,

you open a document, make changes to a document
and store a document. Security says whether or
not you are allowed to do these things. You are
not Cloud friendly if your client must call you three
hundred times to get 300 rows of data. The client
should be given a document in one call and that
document would contain the 300 rows. To perform
updates, the client changes the document and sends
it in for update. The service updates the underlying
database after it passes edits. This is the model we
use to interface with IDMS.

Currently “The Cloud” is based on TCP/IP because 	
the internet is based on TCP/IP. However, there
is no reason that a private Cloud implementation
inside your company cannot use other network
protocols if they are more efficient and appropriate
to the situation.

Clouds scale. Most definitions of Cloud computing 	
require that service capacity be expandable by merely
adding more machines. This type of scalability is
how Google is able to service the massive number of
search requests they receive each second.

Clouds are reliable. Adding multiple machines 	
increases reliability as long as the loss of a machine
will not kick users out of the service. Sessions
must be managed so that any particular call can
be handled by the first available machine. Best
practices for handling session data is moving
towards cluster-wide cache services.

Autonomous transactions rule. If you want reliability 	
and scalability in your Cloud, you can’t serve up
database cursors to the clients. It’s safe to say that
merely exposing ODBC or JDBC from a server
is not Cloud computing. Process an entire set of
data in a single call, in a single transaction that is
completed when the request is completed. This
uncouples you from specific servers and allows the
next request to be processed on a different server.

It is clear that building applications for the Cloud without
forethought would be no better than building applications
for IDMS with no forethought. Neither is a good idea. It
follows that a well-thought-out architecture is needed.

Software Architecture
Cloud computing is gaining traction and it is showing
up in more and more places. There are software and
infrastructure architectures being developed to meet the
requirements of Cloud Computing.

Current Best Practice is to use Software Layers such as
Presentation, Service, Application, Business Rules and
Data. The following is a greatly simplified diagram of
one such possible architecture.

Scalable Cloud Computing... cont’d from page 7

(continued on page 9)

9

Calls generally flow from the upper layers to the lower
ones. The Presentation Layers call the Service Layer. The
Service Layer calls the Business Layer and so on. Layers
are not normally bypassed. For example, it would be rare,
but possible, for the Service Layer to call the Data Layer
directly. That would occur only if the Business Layer has
nothing to add.

But lower-level layers NEVER call higher level layers, nor
do they perform functions meant for higher levels. For
example, if the Service Layer were to call the Presentation
Layer, how would it know what type of presentation
facilities are available? It makes no sense.

Let’s describe each layer from the bottom up.

Data Layer
Contains interface programs that retrieve and update
data. Data sources could be databases, file systems, or
even the service layer interfaces of other members in the
Cloud (e.g., Google Maps). Programs in this layer could
use IDMS SQL, XMLQuery, custom service programs
(ADS dialog and TCPIP). You could even call your
favorite screen scraper in this layer, if you don’t care about
scalability. One thing you don’t do here is embed business
rules in stored procedures. It destroys your ability to
apply the same sets of business rules to multiple data
sources.

Business Layer
This layer has a number of purposes. It calls various data
sources using the data layer and massages the data for
presentation in reports, web pages, and forms. This is a
time-consuming function, as this is where transformation

from a database row or record model into the document
model needed by today’s presentation options occurs.
XMLQuery produces XML documents natively which
greatly simplifies the task in this regard.

The business layer also takes in documents, and applies
changes made to those documents to the underlying data
sources. This is where edits are performed and database
update methods are called. Object oriented techniques
are often employed in this area after organizing the object
design around the logical entity relationship structure of
the business.

It is important to note that the closer you get to a “read
the XML document,” “change the XML document” and

“store the XML document” model, the easier it will be for
the presentation systems. This paradigm easily transports
to web sites, forms, cell phones, pads, and many other
devices. Placing all the edits and code transformations
(edit and code tables) here avoids having them duplicated
in the presentation layer.

Service Layer

The Service Layer facilities are generally used to allow
consumers on one machine to call services on another. If
all the layers are installed in the same machine, there is no
need to call a service. The application could merely load
and call the DLL or subroutine locally, unless caching is
needed.

It follows that the Service layer is usually a simple gateway,
allowing the Business layer methods to be called remotely
across the Cloud’s network. It is like a proxy server
but with some extras. There are many occasions where
caching XML documents can avoid repeated calls to the
Data layer. Imagine, if you would, an application that
presents the same data on various pages, or controls, in
many different ways and you don’t know which way the
user will choose to see the data first. In this environment,
each component in the Presentation layer will call the
Business layer for a document, for example a purchase
order. One may graph the data. Another may present it
in a grid, and others as individual lines. You don’t want
each of these requests to hit your IDMS database every
time. In that scenario you might use a caching facility
in the Service layer. The caching service keeps XML
documents in a rapidly accessible location (memory or
local database) for a period of time. Therefore the first
call to the Business layer would retrieve data from IDMS
and store it in the cache before it returns the document.
Subsequent requests would be fulfilled from the cache and
not overburden your data source.

This solution may lead you to ask the question, “What if
the data in IDMS changes while the item is in the cache?
Wouldn’t I get old data?” The answer is “yes,” but there
are a number of ways to deal with the situation. One
way is to remove the items in the cache when they reach
a certain age. Another is to refresh only when the user
logs off. This way the user’s data is static and consistent
for the duration of their logon. A third method is to use
triggers in the IDMS database to send messages to the
cache and replace items in the cache automatically when
they change in IDMS. If you think about it, is that not

(continued on page 10)

Scalable Cloud Computing... cont’d from page 7

10

what we have done with Data Warehouses and replicated
databases? Finally, infrequently updated items would
never expire. Edit and code tables are good examples.

At first glance the Service Layer seems simple. It’s just a
remote procedure call (RPC). However, it is the Service
Layer that offers the key to performance, scalability and
reliability.

Presentation Layer
This is the layer that interfaces directly with application
users. It can be Windows or Linux forms, web sites,
personal data devices, cell phones, reporting subsystems
and anything not yet invented. The Presentation Layer
primarily interfaces with the Business Layer.

Reading data and calling other web services (like Google
maps) from the Presentation Layer should be avoided.
Implement these interfaces at lower levels so additional
parts of your application can take advantage of them in
the future.

Physical Deployment
The following diagram shows one option for deployment.
There is no reference to platforms or operating system.
Deployment can occur on any of, or any mix of, the
following platforms: Mainframe, Linux, Windows, UNIX,
and others.

Internet
The Internet needs little discussion as we all know it is
an open network. It’s the Wild West of computing. Be
careful out there!

DMZ
The DMZ is a special subnet under your control offering
web sites and Cloud Computing services for use by the
public and/or trusted business partners and individuals.
The machines in the DMZ usually have two network
adapters: one facing the Internet and the other facing
the DMZ. Because there is an adapter connected to the
Internet, for security reasons it is a very good idea to
deploy as little as possible to these machines.

I would strive to limit the DMZ to Presentation and
Services - no business rules, limited caching of data, and
NO DATABASES. You want to have so little in the
DMZ that if a hacker were to break in there would be
nothing for him to steal. Calls from the DMZ into the
private network should be secured so that a miscreant user
would not possess the credentials needed to call private
subnet services.

You can see my first reference to “clusters” in the DMZ.
Clusters facilitate scalability and reliability. Did you ever
wonder how Google is able to accommodate the level of
traffic and transactions that it handles with the response
time it delivers? They do it using clusters of machines.
Imagine hundreds or thousands of machines each taking
requests in parallel. These machines are clones, each
performing exactly the same function. There is usually
a network device in front of a cluster that allows all the
machines in the cluster to share the same IP address.
Requests are passed to machines on a round-robin
basis. If you find yourself short on capacity, merely add
additional machines to the cluster. If a machine fails, it
drops out of the cluster and the requests are handled by
other machines. So there it is - scalability and reliability.

Private Subnet
The private subnet represents the networks inside
your organization. Here you can find private clusters
whose purpose is to perform the real work for requests
coming from both the DMZ as well users inside your
organization. This is where you locate your Data,
Business and Inside Service Layers, and where you put
your mission-critical applications and management
systems.

Given the levels of demand anticipated in the Cloud, or
in your private Cloud, it should be obvious that you
cannot keep relational cursors open across conversations
with users. IDMS DC can handle this using the TCPIP
line driver, but how many PTERMs can an IDMS region
handle, enough to support every Google user? I think
not. For this reason data processing in the Cloud is
autonomic. That basically means one call, one transaction.
The only database sessions that exist are the ones being
actively processed right now. Nothing is kept in the
database region across conversations with users. That
requirement leads us to use the document model.

The term for this concept is “sessionless.” It’s not just for
Google. It applies to enterprise transaction processing as
well.

The nice thing about Cloud Computing’s document
orientation is that documents are easily cached and easily
retrieved from caches. It goes like this. A user signs into

Scalable Cloud Computing... cont’d from page 9

(continued on page 11)

11

their favorite mobile phone provider and asks to see call
detail which will be retrieved from the database in the
form of an XML document. The web site calls a service
that first checks to see if a copy of the XML document is
in the cache. If it is found in the cache, no database call is
needed and the document is presented to the user. If it’s
not in the cache, the service retrieves the XML document
from IDMS (in this case using XMLQuery), puts it into
the cache, and then it is displayed to the user. The cached
version of the document is available for a specified period
of time, i.e. their logon session. So when the user asks
to see the same data again, there is no need to call IDMS
again.

The downside of web and application cluster usage is
that each request from a given user may in fact run on
a different machine making logon session management
a challenge. This challenge can be addressed using
enterprise caching mechanisms like nCache, Microsoft
AppFabric Caching, Java Caching system, and others.

A cache server
cluster makes
objects in the
cache available
to all machines
in the cluster,
essentially
improving
the cache’s
scalability and
reliability.

If the cache
needs to be up-to-date at all times, a trigger loop can be
created by combining a cache with IDMS triggers. When
the triggers fire they extract the latest data from IDMS
and update items in the cache. There are many ways to
combine technical options for minimized demand on
IDMS and maximized performance.

Summary
The advent, or evolution, of Cloud Computing has
loosened the grip that relational databases have on data.
That does not mean that relational is obsolete. It has
strengths and those strengths will continue to be used.
However, recent innovations surrounding IDMS have
made it easier to write IDMS applications for Cloud
Computing.

It now makes more sense than ever to keep your data
in IDMS, yet proceed to take advantage of Cloud
Computing. I will explore this topic in detail at CA
World and hope to see you all there!

Author Biography
Tom Hebert began using IDMS as CIO at Purolator
Products in 1982. He has since been a Director of
Development at Cullinet, VP of Development at CA, a
Management Consultant, and is currently the President of
ObjEx Inc. Tom has expertise in both Cloud Computing
design and development as well as deep experience in
IDMS. He welcomes follow-up contact at tom.hebert@
obj-ex.com or +1 (480) 588-7776.

z/oS CpU EffECTIvENESS:
TImE USED aND TCb TImE
ExpLaNaTIoN
The document TEC550739 is attached

Components:
CA IDMS/DB: 17.0
CA IDMS/DC: 17.0, 18.0

Last Modified Date: 22.07.2011
Document ID: TEC550739
Tech Document

Description:
This document includes information on the following
topics:

How the CPU Effectiveness Values are Captured
Formula to calculate CPU effectiveness
CPU Time under TCBs
Values, Calculations, and CPU Usage
Example CPU Usage Calculation
Putting it all Together
I/O requests issued by IDMS
IDMS Wait Time

Solution:
For information on these topics please refer to link 'z/OS
Time used and TCB Time'.

CPU Effectiveness
CPU effectiveness is the percentage comparison of
CPU time to wall-clock time while the IDMS subtask
(operating system TCB) was processing. For example, if
IDMS is dispatched and uses one second of CPU time but
it takes two seconds of wall-clock time to receive the one
second of CPU time, the CPU effectiveness is 50 Percent.

As described in the IBM documentation and referenced in
the following sections, there are certain interruptions that
occur after a TCB is dispatched, but before it voluntarily
gives up control. These interruptions result in the CPU
being taken away from the address space currently active
and instead executing instructions. The CPU time spent
while handling these interruptions is not charged to the
address space being interrupted.

The IBM System Management Facilities guide (SMF),
discusses the use of the TIMEUSED macro to account for
CPU time used by a TCB; IDMS utilizes this macro.

How the CPU Effectiveness Values are Captured
Consider a typical case where IDMS voluntarily gives
up control of the CPU because it temporarily has no
work to do. It is waiting for external events, such as the
completion of a database I/O or a terminal operator
hitting an Enter key. In this situation the following steps
occur:

Scalable Cloud Computing... cont’d from page 10

The way to move forward is to keep
IDMS, allow existing applications
to exist for the duration of their
economic life and wrap IDMS with
an architecture that allows you to use
Cloud Computing to the benefit of
your organization.

(continued on page 12)

12

1. When an external event occurs, the IDMS system is
dispatched by the operating system.

 One of the first instructions the IDMS system issues
is a STCK instruction. This gives you the time of day
(TOD clock) at the point you were dispatched. For
this example, this is Time 1.

2. When the IDMS system has no additional work to
process it gives control back to the operating system.
One of the last functions the IDMS system does is
issue another STCK instruction.

 This gives IDMS the time of day just before it gives
control back to the operating system. Call this Time 2.

3. After giving up control to the operating system, the
IDMS system is in a wait status. The elapsed time is the
difference between time 1 and time 2.

 Note: IDMS might not have had control of the CPU
during the entire time. For example, the operating
system could have taken control due to some external
interrupt, or some other higher-priority address space
might have been given control even though IDMS had
work to do.

4. While the IDMS system is dispatched, between 1 and 2,
it requests from the operating system the CPU time it
actually used.

 The SMF 30 record for this run was extracted and
the values displayed SMF 30 record in the Processor
Account section. The field SMF30CPT is the TCB
time used by the IDMS TCB. In this case it is 30.35
seconds:

Formula to calculate CPU Effectiveness
Use the following formula to calculate CPU effectiveness:

TIMEUSED

CPU Effectiveness = STCK End – STCK Start x 100%

CPU Time under TCBs
The SMF 1.12 manual describes CPU time under TCBs
as: “Times under TCBs that are included or excluded
in CPU time fields of SMF records.” It describes the
included andexcluded time as: “Included TCB Times”

Timing values accumulated for the address space under
TCB control include:

Problem program time	

SVCs	

Lock spins encountered in an MP	

Environment	

EMS (emergency signals between CPUs) interrupt 	
occurring within a lock spin

Abend/Abterm	

User SPIE	

ESPIE exit processing.	

Times excluded are: (These times are not reported in the
SMF 30 record)

External interrupt time	

Page fault processing time, including resolving page 	
faults from expanded storage

CPU stopped time if the QUIESCE command is 	
used

Attention pro	 cessing time for TSO/E.

The following times are excluded but are available in the
SMF 30 record):

I/O interrupt time (accumulated separately in 	
SMF30IIP)

Swap-out/swap-in processing	

I/O error recovery processing (accumulated 	
separately in SMF30RCT)

Managing hyperspaces	

Program check handling.	

Values, Calculations and CPU Usage
Consider you have the wall-clock time and the IDMS
address space had work to do from the two STCK
commands we previously mentioned, and then the TCB
CPU time used from the TIMEUSED macro. Based
on the IBM SMF documentation, the TIMEUSED
value returned excludes specific times for the items such
as Paging, Swapping, and external interrupts. Higher
priority work can get control from an external interrupt.

Therefore, CPU effectiveness is the ratio of the CPU time
used by the IDMS system to the time it took to get that
amount of CPU. Theoretically, the CPU effectiveness
could be 100 percent, meaning you are dispatched for (x)
amount of wall-clock time and never had the CPU take
over from IDMS due to an external interrupt. However,
100 percent effectiveness is not realistic.

To begin with, some time is not recorded, such as the
time used during a shutdown process. This time is small
in the overall scheme of things, but it is not accounted for.

The longer a system runs, the less significant this
shutdown time becomes. Additionally, there will always
be interrupts.

The main factor to consider when evaluating CPU
effectiveness is the impact higher priority work has, as
well as how Work Load Managed and LPAR balancing
affect your processing.

Example CPU Usage Calculation
The following scenario demonstrates the CPU effectiveness
values and how the CPU time displayed by IDMS, and
used in the CPU effectiveness, can be cross-checked with
SMF 30 step termination records, which are subtype
05. We took the values from the Processor Accounting
Section of the SMF 30 record.

CPU Effectiveness... cont’d from page 11

(continued on page 13)

13

CPU Effectiveness... cont’d from page 12

We started an IDMS system was started and executed a
series of online transactions, using a network simulation
tool. We issued DCMT commands and shut the system
down.

The SMF 30 record for this run was extracted and the
values displayed SMF 30 record in the Processor Account
section. The field SMF30CPT is the TCB time used by
the IDMS TCB. In this case it is 30.35 seconds:

********* RECORD 1 *********************************

 SMF30CPT SMF30CPS SMF30ICU SMF30ISB SMF30JVU SMF30IVU SMF30JVA
 30.35 3.73 .11 .00 .00 .00 .00
 SMF30IVA SMF30IST SMF30IDT SMF30IIP SMF30RCT SMF30HPT SMF30CSC
 .00 .00 .15 1.06 .00 .00 .00
 SMF30ASR SMF30ENC SMF30DET SMF30CEP SMF30OFA SMF30EFA SMFDETOI
 .00 .00 .00 .00 .00 .00 .00
 SMF3TIOC SMFETIOC SMDETIOC SMF4CEPI SMF3TOZ SMFETOZ SMFDTOZ
 .00 .00 .00 .00 .00 .00 .00
 SMFTZOCP SMETZOCP SMDTZOCP SMETZQ SMDTZQ
 .00 .00 .00 .00 .00 .00 .00

DCMT DISPLAY SUBTASK EFFECTINVESS output
taken just prior to shut down.

Note: The value under Total CPU time for the TCB
column. In this case, the value is 29.65 seconds. The
reason for the difference between this value and the
SMF30CPT field is the Shutdown time previously
mentioned. This is the value returned from TIMEUSED
and used in the CPU Effectiveness calculation.

Also note the value under Elapsed time for the TCB
column. This is the time IDMS system was dispatched. In
this case it is 45.19 seconds.

 Subtask Elapsed time Total CPU time %
 Name TCB SRB TCB S RB TCB
 -------- -------------- -------------- -------------- -------------- ---
 MAINTASK 00:00:45.1978 00:00:00.0000 00:00:29.6552 00:00:00.0000 65
 -------- -------------- -------------- -------------- -------------- ---
 Totals 00:00:45.1978 00:00:00.0000 00:00:29.6552 00:00:00.0000 65

The CPU Effectiveness is calculated by dividing the Total
CPU time by the Elapsed time.

In this case: 29.65 / 45.19 = .65, which gives us a CPU
effectiveness of 65 percent.

This example shows the IDMS address space was
dispatched for 45 seconds to get the 29 seconds of CPU
time it needed. In other words it took 16 seconds longer
than it would have to process the workload, which was
due to the external interrupts.

Going back to the SMF 30 record, you can see the
SMF30IIP field accounted for 1.06 seconds of the 16
seconds lost due to external interrupts. The other fields as
documented in the SMF manual are zero. The remaining
15 seconds lost are attributed to the items mentioned
in the SMF manual as not being recorded. These are
mentioned above and repeated here for ease of reference.

Times excluded (not reported in the SMF 30 record) are:

External interrupt time	

Page fault processing time, including resolving page 	
faults from expanded storage

CPU stopped time if the QUIESCE command is 	
used

Attention processing time for TSO/E.	

Putting it all together
For production systems, with respect to response
time and throughput, anything above 90 percent is
generally considered good. We have seen reports of CPU
effectiveness in the high 90s. The real determining factor
with respect to response time and throughput is meeting
your Service Level Agreement (SLA). In other words, if
you are meeting your SLAs and the CPU effectiveness
value is 40 percent, this is probably acceptable. However,
the SLA and effectiveness vary from site to site. The
other point is a CPU effectiveness value of 40 percent
means response time and throughput can be improved
by changes that reduce the external interrupts such as
higher priority work, paging, swapping, to name a few
improvable items.

I/O requests issued by IDMS
All database I/O operations within IDMS are done
asynchronously. The IDMS system issues an I/O request
and continues processing other work and tasks. It does
not wait for the I/O to complete. Therefore, an I/O issued
by IDMS does not affect the ELAPSED TIME field,
with the exception for the minor amount noted in the
discussion of I/O interrupts and SMF30IIP.

IDMS wait time
As we discuss in this document, IDMS processes I/O
requests asynchronously. As long as some IDMS user task
or IDMS system task—such as the Master task—has work
to do, the IDMS system does not voluntarily give up
control of the CPU. For example, user task X might need
to wait for database I/O, but IDMS finds that user task
Y can run. In that case, IDMS does not give up control
of the CPU. However, there are times when every IDMS
task is waiting for an external resource. For example, all
user tasks might be waiting for database I/O and system
tasks such as drivers are waiting for terminal input. At
that point, the IDMS system voluntarily gives up control
and enters a wait state. At some later point, one of
external resources becomes available and the operating
system wakes up the IDMS system. At that point, the
IDMS system begins processing again.

The periods spent in a wait state are not relevant to this
discussion of CPU effectiveness. No CPU time is changed
against the IDMS system during this time, and this time
is not included in the elapsed time shown in IDMS CPU
effectiveness displays.

DoN’T forgET
To forWarD

CoNNECTIoNS
To oTHErS IN yoUr

orgaNISaTIoN

14

INTroDUCINg THE Ca IDmS HTmL bookSHELf

Document ID: TEC550792

Tech Document

Title: CA IDMS Version 18.0 Documentation
 introduction

The HTML Bookshelf provides a single Help screen
where you access the entire CA IDMS documentation
set, with your choice of HTML and PDF formats. The
HTML versions give you robust online viewing and
search capabilities, while PDF versions provide you with
a print-friendly option. This gives you instant access with
the power to search the entire CA IDMS library from an
easy, simple to use HTML interface.

Features
The CA IDMS HTML Bookshelf features include:

A single help screen that displays all documentation 	
for the Version 18.0.00 release.

All books listed both alphabetically and by category. 	
View all items, or limit your view to specific books
or categories.

An all-in-one search tool that searches the entire 	
documentation set and returns matches found in
both the HTML and PDF formatted documentation,
without the need for a specialized .PDX index file.

Additional links for using the bookshelf, 	
downloading Acrobat Reader, and contacting CA.

Opening the HTML Bookshelf
You can view the HTML bookshelf online, or you can
download to a local drive.

Note: You must have an appropriate license and
registration to access CA Support Online.

To access the CA IDMS HTML Bookshelf
From any machine with Internet access, open the CA
IDMS Bookshelf directly from CA Support Online:
https://support.ca.com/cadocs/7/CA%20IDMS%20
DB%20Version%2018%200%2000-ENU/Bookshelf.
html.

You can stop here to view, search, and read, or continue
the following steps to download the Bookshelf to a local
drive.

To download the CA IDMS HTML Bookshelf

Locate and click the Download this Bookshelf 1.
hyperlink.

Follow the instructions to save the file to a local 2.
drive.

Extract the .zip file when the download is 3.
complete.

Double-click or run the bookself.html file to 4.
open the Bookshelf.

SEND arTICLE
CoNTrIbUTIoNS
To gary CHErLET aT:
gary.CHErLET@Sa.gov.aU

15

(continued on page 16)

Backward Compatability Trivia Question
From: IDMS Public Discussion Forum [IDMS-L@
LISTSERV.IUASSN.COM]; on behalf of; Rozeboom,
Kay [DAS] [KAY.ROZEBOOM@IOWA.GOV]
Sent: Tue 11/09/2007 10:42 PM
Subject: Backward Compatability Trivia Question

After upgrading from R16 SP2 to R16 SP4, we had two
ADS dialogs that were misbehaving. The problem was
fixed by recompiling them under SP4.

The surprising part is that these dialogs had last been
compiled in 1986!

They were still working fine last week, after 21 years,
and 5 different releases of IDMS. Now that’s backward
compatibility.

Trivia question: What is your oldest ADS dialog load
module, that is still being used in production?

Kay Rozeboom
State of Iowa
Information Technology Enterprise
Department of Administrative Services

HELp DESk arCHIvES

Record In Using List Not Used By Dialog
From: Agency Developer

To: DL: Help Desk

Subject: DC 177022 RECORD IN USING RECORD
LIST NOT USED BY DIALOG

Hi,

Dialog GOF0026D displays a list of ORG-UNITs Offices
for a user to select from.

If the user presses F3 function key the dialog abends with
the following (From the editor: F3 is an ADSA Response
that Invokes a Function mapped to a Cobol program –
the Function definition has a list of “Using Records” that
are known to the ADSA Application).

This would indicate that the dialog is trying to move
a value to a field in a record that is not known to the
dialog. In this case GUT01-WORK-RECORD.

Cheers

BROWSE -DIALOG GOF0026D HAS ABENDED.. COLUMNS 001 079
COMMAND ===> SCROLL ===> CSR
*** TOP OF DATA ************************************** CA-IDMS/ADSALIVE ***

ACCEPT DIALOG INTO WGR-DIALOG-NAME.
MOVE CURSOR-ROW TO WGR-CURSOR-ROW.
MOVE CURSOR-COLUMN TO WGR-CURSOR-COLUMN.
MOVE AGR-FUNC-DESCRIPTION TO WGR-STORE-
VALUE4.
MODIFY MAP TEMP CURSOR WGR-CURSOR-ROW WGR-CURSOR-
COLUMN.
MODIFY MAP PERM FOR ALL ERROR FIELDS EDIT IS
CORRECT.
IF AGR-NEXT-FUNCTION NE 'WHLPFL03'
THEN
 MOVE SPACES TO GUT01-SUB-MESSAGE.
DC177022 APPLICATION ABORTED. RECORD IN USING RECORD LIST NOT USED BY
DIALOG
EXECUTE NEXT
FUNCTION.
MOVE SPACES TO AGR-MAP-
RESPONSE.
*** BOTTOM OF DATA *********************************** CA-IDMS/ADSALIVE ***

To: Agency Developer

From: Help Desk

Subject: RE: DC 177022 RECORD IN USING
RECORD LIST NOT USED BY DIALOG

The problem is not with the MOVE statement – if the
record wasn’t associated with the dialog it would not have
compiled. The problem is actually with the EXEC NEXT
FUNCTION. What is happening is that the EXEC results
in a LINK to the DC-Cobol JIS Help program.

Because the dialog does not have one of the records used
by that program associated with the dialog – the system
is not able to pass addressability down to the Cobol
program. Unfortunately the message does not tell us
which record – so a little detective work is needed. This
is probably a job for the ADS team. At the end of this
e-mail is the message text associated with the DC177022
message from the display provided by Roland

HTH – cheers

MESSAGE ID DC177022

SEVERITY 1

DESTINATION LOG

MESSAGE TEXT APPLICATION ABORTED.
RECORD IN USING RECORD LIST NOT USED BY
DIALOG

DEFINITION DC177022 APPLICATION
ABORTED. RECORD IN USING RECORD LIST
NOT USED BY DIALOG

While processing an EXECUTE NEXT FUNCTION
command, the system determined that the next function
is a user program and that one of the records in the
program’s USING record list is not used by the dialog.
Therefore, the link to the program cannot pass the record
address.

A snap dump is generated.

Either recompile the dialog, adding the record as a work
record or a subschema record or change the application
so that passing this record to the program is not required.

Record In Using List Not Used By Dialog – End
Game
This issue was followed up with CA on the basis that if
the record is known to ADSA – then it doesn’t matter
whether or not the record is also associated with the
Linking/Invoking dialog in the ADSA structure. The
address of the record is known to ADSA and so ought to
be able to passed to the Program Function in the ADS
Application structure.

16

(continued on page 17)

Help Desk Archives... cont’d from page 15

Here is the resultant Apar from CA:

Apar TF24693
PRODUCT: CA IDMS/DB-MVS RELEASE: 17.0
PROB #: 4141_ FN: TF24693 FT: ABW DATE: 6 JUN 2011
DC177022 ON LINK TO PROGRAM USING GLOBAL RECORD

ADS application abend ‘DC177022 RECORD IN
USING RECORD LIST NOT USED BY DIALOG’
will occur when either execute next function or a global
response is requested, but not every record needed by
the LINKed-TO program is defined to the current dialog.
The passed records must be defined to each dialog that
might be current whenever the LINK to the program is
requested.

This PTF will allow ADS runtime to pass ADSA-defined
global records to ADSA-defined global Cobol responses.

SYMPTOMS:
An ADSA-defined Global Response that LINKs to
a program passing ADSA-defined Global Records
will abend with ‘DC177022 RECORD IN USING
RECORD LIST NOT USED BY DIALOG’ whenever
the passed record is not also defined to the current dialog
or menu.

IMPACT:
Any dialog that LINKs to a Cobol program with a
USING list of records will not not compile unless all
records in the list are defined to the current dialog.

However, when a dialog LINKs to Cobol via execute.next.
function, the passed record list is defined through ADSA
so initial testing will not fail with DC177022 until that
application function is tested.

The worst case is when a global Cobol function is added
to an application to be initiated via a global response.
Every dialog must be recompiled to add all records in the
USING list. Menus will require coding an intermediate
mapless dialog and a local response to initiate the globally
accessible Cobol program.

CIRCUMVENTION:
Change every dialog defined in the application with the
Cobol program as a ‘valid response’ to include all records
that must be passed to the Cobol program.

Pre-requisites RO32382 and RO33169 and Apar
TF24693

CPU Increase
From: From X

To: IDMSVENDOR-L@LISTSERV.IUASSN.COM

Subject: CPU Increase

Hello All:

I assume expanding an area will result in increased
runtime, I/O, and CPU time, especially if performing area
sweeps.

Can anyone provide a percentage of increase that one
would expect to see in runtime, I/O and CPU if we
doubled the size of an area?

Is there a rule of thumb that can be used?

To: From X
From: IDMS-L@LISTSERV.IUASSN.COM
Subject: Re: CPU Increase
From X,

The answer is the infamous “it depends”. Are you doing
an EXPAND PAGE to just double the page size. Then
the amount of I/O will be the same, the CPU should not
noticeably change, same thing for the runtime. If you are
doing an UNLOAD/RELOAD, keeping the same page
size but double the number of pages then you should see
twice the number of I/O.

This in turn will double the amount of CPU that is used
to get those I/O and ince I/O is usually a large chuck
of batch wall clock time, then your runtime is going to
increase accordingly.

There are some other caveats. If you are double the size
because the areas are almost full, then you probably also
have a large amount of overflow records and possibly
fragmented records.

In this case, if you do an EXPAND PAGE you will still
have the extra I/O for the overflow and fragment records.
If you do the UNLOAD/RELOAD you would hopefully
remove all of the overflow and fragment records. Also,
these comments really only apply to those programs doing
area sweeps.

Another issue is that these same batch jobs are rarely as
simple as sweeping a single area. You are usually sweeping
one area and processing other records in other areas. So
the increase in runtime, I/O, and CPU is proportional to
just the time the program spends in the area sweep.

I am hoping I didn’t simplify this too much, but you can
see where this is a lot involved in this and no easy way to
name a ‘rule of thumb’ that could be any where close to
accurate.

If you are not really that interested in accuracy, just state
if you are doubling the area in size you are doubling the
runtimes, I/O, CPU , etc... :-)

CPU Increase
To: From X
From: IDMS-L@LISTSERV.IUASSN.COM

Subject: Re: CPU Increase

Let me EXPAND a bit on previous comments, and
UNLD some of my thoughts. This gets into the
uglier details that were avoided, so those with delicate
constitutions should move on to the next message in your
inbox at this point.

First question is how much of the access to the AREA
is via sweep, how much CALC/VIA? For a complex

17

Help Desk Archives... cont’d from page 16

application/environment this is going to be difficult to
determine.

Even for one program (as suggested) it’s not a
straightforward answer.

Here are the considerations for each type of access
(either within a single program or global to the
system):

For CALC/VIA/Index/DIRECT: as suggested, an
unloaded/reloaded AREA could save some I/Os due to
reduction in the amount of CALC overflows. Even for
an XPAG, this will happen over time (as records come
and go), but shouldn’t show any immediate impact. For
guesstimation purposes this can probably be ignored
and this portion of the CPU/elapsed time/IOs can be
considered constant.

For sweeps: the total amount of I/Os goes up, by
whatever factor, based on change in number of pages.
The elapsed time should keep in step with the I/O count.
The CPU increase % will lag this, possibly by a large
factor.

IDMS spends part of the cycles processing the request,
part of the cycles doing I/O.

Since the same number of requests are being processed
(until more records are added), the “processing” portion
of the CPU should remain constant, while the CPU
needed to perform th I/Os goes up proportionately to the
size expansion. So depending on how dense the record
populates the AREA, this portion is greater or lesser (the
fewer records, the greater the percentage of CPU spent
just doing I/Os).

The trick then is to somehow analyze a workload (single
program or entire CV) and categorize it into these two
components.

For a batch job, a product like STROBE might be able to
supply sufficient data to allow a projection. Possibly even
for a CV, although that would be messier.

Cheers

Submit JCL to JESRDR
From: FromX

To: IDMS-L@LISTSERV.IUASSN.COM

Subject: DC COBOL question

I have a technical question I was hoping you could help
me with... when using DC COBOL, what would be the
top 3 methods (in your shop) for submitting a JCL to
the JESRDR queue for processing? The DC COBOL
program in question would be called by various ADS
dialogues when it was found necessary to submit this job
for further processing to occur.

We have an assembler program we use to LINK to from
an ADS dialogue that will submit a job, but it doesnt
seem to be working when we call it from DC COBOL.

Any and all suggestions would be warmly greeted and
highly appreciated.

Regards

To: From X

From: IDMS-L@LISTSERV.IUASSN.COM

Subject: DC COBOL question

We use DC-Cobol for job submissions - used to use
WRITE PRINTER statements to a “printer” which
through JCL was pointed at INTRDR - the usual
technique. We have since switched to using the CA-
Spool provided API for dropping the JCL through there

- avoids JCL images being written (and journalised) to
DC-Queue as you do WRITE PRINTERs, then read
and DELETED (and journalised) as the images are
written to the printer. We have a lot of DC-Queue activity
and getting rid of this overhead reduced deadlocking
significantly. I can send you some sample code if you’re
interested. Having just the one “submitter” allowed us to
make this a global change by modifying just the one DC-
Cobol program.

HTH - cheers

From: From X

To: IDMS-L@LISTSERV.IUASSN.COM

Subject: DC COBOL question

Also, I would love some code samples, it sounds like what
we would have done in CICS by writing to a TD queue
identified with the internal reader.

Looking forward to hearing from ya!

Regards

To: From X
From: IDMS-L@LISTSERV.IUASSN.COM
Subject: DC COBOL question

Here’s the sysgen and JCL bits and pieces that you’ll need
to provide the “plumbing” for flushing JCL statements
out to the INTRDR:

(continued on page 18)

IUA/EIUA User Contributed
Library Has been seeing some action
lately – here is the URL:
https://communities.ca.com/web/
ca-idms-iua-eiua-global-user-
community/document-library/-/
document_library
Why not check it out?

18

(continued on page 19)

XXJISRDR DD SYSOUT=(A,INTRDR),
XX DCB=(RECFM=F,LRECL=80,BLKSIZE=80)

DIS SYS 1 WITHO ALL.
*+ ADD SYSTEM 1
*+ SYSTEM ID IS SYST0001
*+ .
DIS PTE JISRDR WITHO HIST.
*+ ADD PTERM JISRDR
*+ ENABLED
*+ IN LINE JISRDR
*+ MAXIMUM ERRORS IS 3
*+ PRINTER CLASS IS 1
*+ READBUFFER
*+ TYPE IS SYSOUTT
*+ PAGE LENGTH IS 60
*+ PAGE WIDTH IS 121
*+ .
DIS LTE JISRDR WITHO HIST.
*+ ADD LTERM JISRDR
*+ ENABLED
*+ PRINTER
*+ NOBANNER
*+ CHECKPOINT IS SYSTEM
*+ CONTROL IS SYSTEM
*+ PRIORITY IS 0
*+ PTERM IS

Here’s the WRITE PRINTER statements (commented
out because they are from the program that now uses the
CA-Spool API instead of this method) - you will do this
first one as many times as there are JCL statements to
be submitted - whether they are passed to you in a work
record, scratch area or whatever:

*******>>>>>>>>WRITE PRINTER FROM W-JCL-LINE
*******>>>>>>>> LENGTH 80 DESTINATION 'JISRDR'

The following WRITE PRINTER you do once at the end
- the ‘/*EOF’ tells JES that is the last statement for the job
and it flushes the buffer - otherwise you will have to wait
until one or more jobs have been submitted to “flush” the
earlier job out onto the INTRDR:

*******>>>>>>>>MOVE '/*EOF' TO W-JCL-LINE
*******>>>>>>>>WRITE PRINTER ENDRPT FROM W-JCL-LINE
*******>>>>>>>> LENGTH 80 DESTINATION 'JISRDR'
*******>>>>>>>>COMMIT TASK ALL

If you’re interested in the CA-Spool side of things let me
know - HTH - cheers

Help Desk Archives... cont’d from page 17

Writing to a queue from a COBOL subprogram
From: From X

To: IDMS-L@LISTSERV.IUASSN.COM

Subject: Re: Writing to a queue from a COBOL
subprogram

Thanks for all the comments and suggestions so far. Some
clarification:

my subprogram does write a database record as well, 	
and so I still need binds in my subprogram.

I am currently not passing the subschema-control 	
and extending the run unit to my subprogram

this subprogram will be called from many different 	
programs, so I am leery to do anything that will
commit the data in the calling programs.

So if the FINISH TASK finishes all run-units, including
the one from the calling program, does it also commit
what was done in the calling program thus far?

To: From X

From: IDMS-L@LISTSERV.IUASSN.COM

Subject: RE: Writing to a queue from a COBOL
subprogram

There have been many suggestions in this thread - one
that I have not seen is the use of COMMIT ALL in the
subprogram. COMMIT ALL only affects the one run unit

- the ALL says to COMMIT both DB work AND Queue
work.

This command will NOT impact any other run units
associated with the batch task. Note that there is also a
COMMIT ALL TASK which would impact other run
units.

HTH – cheers

From: From X

To: IDMS-L@LISTSERV.IUASSN.COM

Subject: RE: Writing to a queue from a COBOL
subprogram

I tried your suggestion with a COMMIT ALL instead of
the FINISH TASK, and everything worked fine the first
time I called my subprogram and when I returned from
it, but the second time I called it I got a 5077 error code
on the BIND TASK statement. So it seems like I still
need a FINISH TASK in order to be able to BIND TASK
again...

BIND TASK.
COPY IDMS SUBSCHEMA-BINDS.
MOVE 0 TO RETURN-CODE-E064.
READY INVLOG2-AREA USAGE-MODE IS UPDATE
 ON ANY-ERROR-STATUS
 MOVE 99 TO RETURN-CODE-E064.
READY IXINVLOG2-AREA USAGE-MODE IS UPDATE
 ON ANY-ERROR-STATUS
 MOVE 99 TO RETURN-CODE-E064.
READY IXINVDTE2-AREA USAGE-MODE IS UPDATE
 ON ANY-ERROR-STATUS
 MOVE 99 TO RETURN-CODE-E064.
PERFORM 2000-PROCESS.
COMMIT ALL.
FINISH.

19

Help Desk Archives... cont’d from page 18

(continued on page 20)

To: From X
From: IDMS-L@LISTSERV.IUASSN.COM

Subject: RE: Writing to a queue from a COBOL
subprogram

I’ve made some suggested changes to the code you
supplied. Note the removal of all “full stops” and the
addition of the “end-if ” after the “ON” statement -
the “ON” generates an “IF” statement that needs a
corresponding “end-if ”. Note also the MAJOR change to
the code - to wit the

“if dml-sequence = 0
..................

End-if” sequence.

This causes your program to only do the BIND-READY
sequence the first time it is called. It will leave the Run
Unit open for the next CALL thus giving you some
performance improvements if it is called multiple times
during the same batch job execution.

Now - about the open Run Unit because you now no
longer execute a FINISH of any description - as long as
the Cobol MAINLINE program - the one in the EXEC
PROG statement in the JCL - issues a FINISH TASK -
then all the Run Units left open in this way will be ended.

Here’s the code:

MOVE 0 TO RETURN-CODE-E064

If dml-sequence = 0
 BIND TASK
 COPY IDMS SUBSCHEMA-BINDS
 READY INVLOG2-AREA USAGE-MODE IS UPDATE
 ON ANY-ERROR-STATUS
 MOVE 99 TO RETURN-CODE-E064
 End-if
 READY IXINVLOG2-AREA USAGE-MODE IS UPDATE
 ON ANY-ERROR-STATUS
 MOVE 99 TO RETURN-CODE-E064
 End-if
 READY IXINVDTE2-AREA USAGE-MODE IS UPDATE
 ON ANY-ERROR-STATUS
 MOVE 99 TO RETURN-CODE-E064
 End-if
End-if
PERFORM 2000-PROCESS
COMMIT ALL
.

Here is a bit of the techo stuff as I understand it - there
was a major architectural change in Rel 12.0 - as
previously each Run Unit did show up independently
(and still does under the Run Unit screen - all with the
same task code - but there is now only one task in the task
code screen).

With the advent of the “mini CV” architecture a client-
server relationship between the batch region (any external
region) and the CV was implemented. Each external
region connects on a single TCE/DCE pair - all the run
units are represented by a chain of secondary LTE’s that
are created “on the fly” with each BIND.

I have written a “Run Unit” generator program that
proves that I can have hundreds of Run Units hanging off
of a single, batch TCE. This is demonstrated each time a
batch task ends with one or more open Run Units - you
see a whole lot of “DNS DTS client server” messages - I
can’t access the mainframe to show an example - this is all
to do with the “client-server” relationship being broken in
an unstructured manner.

HTH – cheers

IDMS SQL DML related question
From: FromX
To: IDMS-L@LISTSERV.IUASSN.COM

Subject: IDMS SQL DML related question

Hi,

I am pretty new to IDMS world and I have a question.
Can IDMSBCF through JCL allow me to do multiple
row updates in a given record? If so would there be any
cons to this method of update multiple rows? Our shop
uses DMLO and other online tools. It seems they only
use COBOL programs to do such updates otherwise it is
DMLO (one by one).

The update query is of the following form:

Loop through all the Table1 records ##If the field CODE-TABLE= 'E' then
If the field CUSTOMER-STATUS = 'R ' then
Set the field CUSTOMER-STATUS to 'D '

Thanks,

To: FromX
From: IDMS-L@LISTSERV.IUASSN.COM
Subject: Re: IDMS SQL DML related question

Hi From X:

If you have the IDMS SQL option, and if you’ve created
an SQL schema for your network schema, you could
update the database with the following SQL query:

UPDATE table1
 SET CUSTOMER_STATUS = 'D'
 WHERE (CODE_TABLE = 'E' AND
 CUSTOMER_STATUS = 'R');

If you don’t have the SQL option, you won’t be able to
use SQL against the database.

However, you do indicate you have DMLO. You could
write a DMLO CLIST to loop through the database and
do the updates. Please refer to the IDMS DML Online
documentation or use HELP during a DMLO session.

Hope this helps!
Regards,

20

Help Desk Archives... cont’d from page 19

Linking Rules Extended and not with DC and Batch
From: FromX
To: IDMS-L@LISTSERV.IUASSN.COM

Subject: Linking Rules Extended and not with DC and
Batch

Hi,

I was in a meeting here at the Navy Base concerning an
on-line called program in an ADS environment which
needed to be extended. Naturally, other related questions
were raised, so I volunteered (I haven’t learned yet) to
write up an explanation.

Would anyone care to peruse the following and comment,
correct, or whatever? Any insight would be appreciated,
especially one that tells me my attempt actually already
exists in an accurate form and where to find it.

BOLDS, ITALICS, INDENTIONS and the like have
disappeared on the copy. I used some underline dashes to
help.

Thank you in advance...

LINKING FROM NON-DC TO DC PROGRAMS
AND VICE-VERSA CONSIDERATIONS

Definitions:

MODE: MODE statement in IDMS programs set to
either; BATCH, IDMS-DC, or DC-BATCH

PA: Calling Program

PB: Called Program (that is, PA calls PB)

BATCH Pgm: any program running in an LPAR region
started by JCL. MODE can only be BATCH, DC-
BATCH, or non-existent. (no access to IDMS)

ON-LINE Pgm: any program running inside the IDMS-
CV LPAR region, and started by a link or transfer from
an ADS dialog or another program, or initiated by a
TASK name in an IDMS session or a timer task. The
program can also be an ADS dialog or non-IDMS.

Assumptions:

AUTOSTATUS appendage to the MODE statements will
not be addressed in this paper.

BATCH Pgms

Linking When The Run Unit IS NOT Extended (That is,
SUBSCHEMA-CONTROL IS NOT passed from PA to
PB.)

PA and PB can each be any acceptable BATCH Pgm
mode.

Linking When The Run Unit IS Extended

(That is, SUBSCHEMA-CONTROL IS passed from PA
to PB.)

PA and PB must both be either BATCH or DC-BATCH

ON-LINE Pgms

Note: ADS will be treated separately at the end of each
part..

Linking When The Run Unit IS NOT Extended

PA can be any acceptable ON-LINE Pgm mode. PB can
be any callable program type.

When a program is called from ADS and issues a
DC-RETURN statement to return back to the ADS
environment or a DC-RETURN NEXT TASK CODE
to navigate to another TASK Code, it must be MODE
IDMS-DC to issue those statements.

The program can be BATCH if it calls another program
which issued the DC-RETURN commands.

Linking When The Run Unit IS Extended

PA and PB must both be either IDMS-DC or BATCH.

When a program is called from ADS, it must be MODE
IDMS-DC to accept the DC Communications block
(SUBSCHEMA-CONTROL) from ADS.

Take Care

To: FromX
From IDMS-L@LISTSERV.IUASSN.COM

Subject: RE: Linking Rules Extended and not with DC
and Batch

I think that you are wrestling with a couple of issues here.
Firstly - the MODE - defines the protocol that is used to
access IDMS services. What the MODE does is directs
the pre-compiler to generate different code to pass to the
compiler.

In a BATCH environment the IDMS calls are to a
module called IDMS, while DC-BATCH the calls go to
IDMSDCBI and DC calls go to IDMSCOBI. Depending
on the MODE different functionality is supported based
on the environment that your program has indicated it
will be running in.

MODE is BATCH does not support any but Database
verbs, DC-BATCH supports all database verbs PLUS
the WRITE PRINTER and QUEUE related commands.
MODE is DC supports all of the above, plus SCRATCH,
STORAGE, TERMINAL, MAPPING and other “DC”
type functionality.

Secondly the issue that you are dealing with has to
do with accessibility to SUBSCHEMA-CONTROL
and already bound RUN UNITs. In order to have any
communication with IDMS requires SUBSCHEMA-
CONTROL - which is used to at a minimum pass
the DB/DC verbs being invoked, other verb specific
parameters, and receive status information back.

Whether or not a RUN UNIT is extended decides
whether or not an existing, already BOUND
SUBSCHEMA-CONTROL is passed to the CALLED

(continued on page 21)

21

(continued on page 22)

program. In the case where an existing Run Unit is
extended the CALLED program receives SUBSCHEMA-
CONTROL in its LINKAGE SECTION.

In fact the CALLED program can chose to ignore this
SUBSCHEMA-CONTROL (using a DUMMY place
holder in the Procedure Division USING statement)
and BIND its own RUN UNIT with a SUBSCHEMA-
CONTROL that is in its WORKING STORAGE.

When there is no RUN UNIT extension - the CALLED
program MUST establish its own SUBSCHEMA-
CONTROL and issue the appropriate house keeping
commands - BIND RUN UNIT and so forth.

It might issue the FINISH after each call - or if it will
be CALLED multiple times it might do only the BIND
on the first call and FINISH on the last call - or can rely
on the mainline to do a FINISH TASK which explicitly
finishes all bound RUN UNITS associated with the entire
TASK.

Confused? So are lots of people - if there’s anything I can
do to clarify please let me know - cheers

Help Desk Archives... cont’d from page 20

ADSO Area Readies – Brief Refresher
From: FromX
To: IDMS-L@LISTSERV.IUASSN.COM

Subject: COBOL exit programs vs. ADS mapless dialogs

Can anyone offer insight as to the pros and cons of using
an ADS mapless dialog versus a COBOL exit program
for commonly-used code that we want to call from several
ADS dialogs?

Historically we have typically preferred using ADS
mapless dialogs, as ADS has more built-in functions, etc.
than does COBOL. However, often we find that later
on we need the same processing done in batch, and often
end up writing a COBOL batch version anyway. Are we
better off just writing a COBOL exit program that we
can call from ADS? Then we can easily clone and modify
when we need a batch version. (We have started to do
this more and more for any processing that we suspect we
may need in batch as well at some point).

I understand that there are different run unit issues to
consider with each. (With a COBOL exit, the ADS
calling dialog's run unit will stay open while the COBOL
program begins and ends its own run unit, unless we
either do a commit before the call or code the dialog and
COBOL program so as to specifically extend the run unit;
whereas with a mapless dialog, the ADS calling dialog's
run unit either finishes when we call the mapless dialog
which then starts its own run unit, or extends its run unit
to the mapless dialog depending on the subschemas and
ready usage modes, whether we specifically extend it, etc.)

We also have some "include modules" that we sometimes
use for commonly-used code, but we find the downside

to those are that a change requires regenning of all the
calling dialogs, resulting in extra work for us and more
interruption for our users.

We have some processing that is commonly and frequently
used throughout our application. Are there performance
considerations to doing it in one way vs. the other?

Any feedback would be most appreciated.

To: FromX
From: IDMS-L@LISTSERV.IUASSN.COM

Subject: RE: COBOL exit programs vs. ADS mapless
dialogs

FromX - I have some detailed stats on this very subject -
they include performance for iterating within the "called"
program from 10 to 10,000 times on a single "call" - and
for iterating once inside the "called" module which was

"called" 10 thru 10,000 times. Some very interesting
results - at the end of the day the answer will be - "it all
depends upon a great many variables". When I have a
chance I'll send a detailed reply complete with graphs, etc.

'til then - cheers

From: FromX

To: IDMS-L@LISTSERV.IUASSN.COM

Subject: RE: COBOL exit programs vs. ADS mapless
dialogs

Thanks very much for the information...very interesting
stuff, and different than what I would have expected.
Oddly enough, I would have expected ADS to be a more
efficient language than COBOL (I guess I assumed that
newer is always better and faster, which apparently isn't
always the case).

I am still confused about one issue with COBOL exits
though. My understanding is as follows...when a dialog
updates a record, it does an exclusive lock on that record
and those directly associated with it. This means that no
one else can even read that record until the lock is released
by a COMMIT ALL or by the run unit ending. When a
dialog calls a COBOL exit, unless it passes the subschema-
control parameter, the COBOL exit will open a new run
unit, and the dialog's run unit remains open.

So if a dialog updates a record, then calls a COBOL exit
without passing subschema-control, and that COBOL
program reads the record that has just been updated, I
would expect the COBOL program to deadlock with the
calling dialog, yet we have places where it does exactly
that and doesn't deadlock. (It does if the COBOL
program tries to update the same record). Am I wrong
in that the lock prevents the record from being read by
another run unit?

Thanks very much again for taking the time and trouble
to share your information with me.

22

Help Desk Archives... cont’d from page 21

To: FromX
From: IDMS-L@LISTSERV.IUASSN.COM

Subject: RE: COBOL exit programs vs. ADS mapless
dialogs

With regard to your "not deadlocking" issue - hmmmm
- I need to speculate here. If the Cobol program readies
in RETRIEVAL and the system generation says
RETRIEVAL NOLOCK - then I suspect that you would
see the behaviour that you have observed. Ready in an
update mode or change the system generation parameter
and I would expect the deadlock scenario.

I'd be interested to know the READY usage mode and
whether you have RETRIEVAL LOCK or NOLOCK -
just for my own information.

I forwarded my benchmark results to Greg Beedy at CA -
just in case comments about ADS vs. Cobol performance
start coming out on IDMS-L he will at least be aware of a
possible source for the information. Early next year I'll re-
run the benchmark on z/OS 1.9 and Release 16 SP(3).

Take care - cheers - Gary

From: FromX
To: IDMS-L@LISTSERV.IUASSN.COM

Subject: RE: COBOL exit programs vs. ADS mapless
dialogs

Your hunch is correct, and makes a lot of sense. As you
suspected, our SYSGEN statement is set to retrieval
nolock, and the ready usage mode in the cobol exits where
I've noticed this happening is retrieval. I've since read up
in the documentation, and it definitely sounds like it is
our scenario. Thanks for steering me in that direction.

One question about your benchmark COBOL vs. ADS
results... did you do any tests where the cobol program/
mapless dialog did a lot of database I/O? I wonder if
ADS does that more efficiently?

Many thanks again for all your information......

To: FromX
From: IDMS-L@LISTSERV.IUASSN.COM

Subject: RE: COBOL exit programs vs. ADS mapless
dialogs

Thanks for letting me know about your sysgen settings -
it's one thing to know something theoretically - it's good
when that's how it actually works in practice.

Cheers

To: FromX

From: IDMS-L@LISTSERV.IUASSN.COM

Subject: RE: COBOL exit programs vs. ADS mapless
dialogs

Sorry - I missed the "follow on question":

One question about your benchmark COBOL vs. ADS
results...did you do any tests where the Cobol program/
mapless dialog did a lot of database I/O? I wonder if ADS
does that more efficiently?

No - I didn't bother benchmarking Cobol vs. ADS
database retrievals - although I did benchmarks with
regards to a main dialog doing database work - then
LINKing to Cobol (one test) ADS (another test) - where
the sub-routine also does some database work - both tests
repeated for extending and not extending run units. From
an efficiency point of view - avoid currency saves, use
the smallest possible subschema, and extend run units
whenever you can.

As for the relative efficiency of accessing the database
- you need to remember that ADS does extra work on
every database call - depending on your sysgen settings
(re: retrieval NOLOCK) and your ADSC dialog compile
options (see the "Retrieval locks are kept" option - default
is turned ON - if you turn OFF you can reduce this
overhead). So even on the database accessing front -
Cobol is likely to win in many instances.

HTH - cheers

(continued on page 23)

ADSO Area Readies – Brief Refresher
From: From X
To: IDMS-L@LISTSERV.IUASSN.COM

Subject: Adso ready of areas.

I need a refresher. I know that ADSO dialogs do not
explicitly code ready areas and do binds like Cobol
programs do. The question is, which areas does ADSO
actually ready? All the areas in the subschema that a dialog
got compiled with? Or does ADSO look at the records
(and thus areas) that are actually referenced in the code
and the ADS compile? Is there a ptf that influences this
behaviour optionally?

To: From X

From: IDMS-L@LISTSERV.IUASSN.COM

Subject: RE: Adso ready of areas.

I believe that there is one way to explicitly control the
otherwise implicit behaviour of the compiler's creation of
the Ready Area Table (RAT):

Code READY ALL NOREADY	

Code individual READY statements for each 	
required AREA and USAGE MODE

As pointed out in other replies - it does not matter where
in the code the READY statements are coded - beginning,
end, or middle - they are "compiler directives" and
determine the contents of the RAT.

Also, as pointed out, the READY statements are only
executed by ADS at run time when the first executable

23

DC-COBOL Link to a ADSO Dialog
From: From X
To: IDMS-L@LISTSERV.IUASSN.COM

Subject: DC-COBOL Link to a ADSO Dialog

Good Morning all,

Has anyone successfully done a link to an ADSO dialog
from an dc-cobol?

Thanks ……….

To: From X
From: IDMS-L@LISTSERV.IUASSN.COM
Subject: RE: DC-COBOL Link to a ADSO Dialog

A couple of approaches that would let you use ADS
code from DC-Cobol:

1) Using TCP/IP - set up a port with the supplied
generic listener and associate it with a task code that
is the name of a mainline ADS dialog and invokes
ADSORUN1 - the mainline dialog can have the
TCP/IP "smarts" and act as a "wrapper" for the
existing code so it doesn't need to be modified - have
the DC-Cobol program connect to the port using
TCP/IP. With this approach the code is also usable
from Java and .Net applications, as well as programs
on other mainframes, CICS applications and so
forth - anybody who can use TCP/IP can access the
code.

Help Desk Archives... cont’d from page 22

DML verb is encountered.

This can be confusing at times - since a LINK ... USING
(.... SUBSCHEMA-CONTROL ...) will also cause a
Run Unit to be bound (if there is not already a bound
Run Unit) and the READYs to execute so that the
Subschema Control for a bound Run Unit can be passed
in the LINK.

If "NO" READY statements are coded then all of the
Areas in the Subschema are Readied with the Subschema
default or explicit usage modes. Each explicit READY in
the ADS code only serves to override this default mode.

Just as you can code READY ALL NOREADY - you
can code READY ALL Usage-Mode to explicitly set the
Usage for ALL areas in the Subschema to the specified
mode.

When you use a READY ALLL compiler directive - the
compiler creates a single entry in the RAT that has an

"ALL" flag as well as the nominated usage Mode.

In the case of READY ALL NOREADY the RAT
contains a single entry indicating NOREADY, and then
an entry for each explicitly code Area Ready.

HTH

2) "Wrap" the existing code with an ADS mainline
dialog that is invoked (i.e. "called") as an SQL "called
Procedure" - the DC-Cobol program can then use
an SQL "call" or "select" to activate the ADS code -
with this approach and with CA-Server in place the
code is also usable from Java and .Net applications,
as well as batch and online programs.

Just a thought - neither solution is a direct "call"
solution but they both give you access to the code
through industry standard interfaces.

HTH - cheers

From: From X
To: 'IDMS Public Discussion Forum'
Subject: RE: DC-COBOL Link to a ADSO Dialog

Thanks for all the responses on this. I opened an issue
with CA, they say you can link from a dc-cobol to an ads
dialog.

I want to thank Randy and Daphne from CA Tech
Support for their help.

Here are the instructions from level 2:

It should be possible for a cobol program to LINK to an
ADS dialog.

The cobol program must include:

 WORKING-STORAGE SECTION.
 COPY IDMS UNIVERSAL-COMMUNICATIONS-ELEMENT VERSION 2.

and

 PROCEDURE DIVISION.
 MOVE 'UMBR' TO UCE-IDENT-02.
 MOVE 'dialog name' TO UCE-ACTIVE-TASK-02.
 TRANSFER TO 'ADSORUN1' RETURN
 USING UNIVERSAL-COMMUNICATIONS-ELEMENT.

The dialog must also be compiled with version 2 of record
UNIVERSAL-COMMUNICATIONS-ELEMENT if
data will be passed within it.

Data can also be passed between cobol and ADS in the
other fields in the UNIVERSAL-COMMUNICATIONS-
ELEMENT record, or scratch, or queue, etc., but neither
passed database records nor SSCTRL can be used by the
dialog.

If this is a cobol menu LINKing to an existing ADS
application, there will be minimal interaction between the
cobol program and ADS and implementation problems
will be minimal.

If you are adding an existing ADS mapless dialog as a
subroutine to an existing cobol program, the interaction
between the pieces in possible deadlocks, currency errors
after the ADS @FINISH TASK, queue out-of-sync errors
after a rollback, etc. could be complex.

Thanks again ……….

Lesson learned: when you don’t get the answer you
want the first time – keep on asking!

24

International Chair
Company: Managing Member
 Run Right, LLC
Email: lindajcasey@runrightllc.com

Secretary/Treasurer
Email Coordinator
Bob Wiklund
Company: Tiburon Technologies
Address: 17101 W. Gable End Lane,
 Surprise, AZ 85387
Phone: 623 594-6022
Email: bob_wiklund@tiburontech.com

International Vice Chair
Contributed Software Librarian
Laura Rochon
Company: Ajilon Professional Services
Address: 22 Jolliet, St-Bruno,
 Quebec J3V 4Z1 Canada
Phone: 514-943-8290
Fax: 450 441-6880
Email: l.rochon@videotron.ca

European IUA Representative
Steve Rundle
Company: British Telecom BT Group plc.
Address: PP2B33 Angel Centre,
 403 St. John Street, London
 EC1V 4PL UK
Phone: +44 (0)20 7777 6920
Fax: +44 (0)20 7777 6921
Email: steve.rundle@bt.com

Board Member
Terry Schwartz
Company: Perot Systems
Address: PO Box 269005
Phone: 972 577-3722
Email: terry.Schwartz@ps.net

Board Member
Craig McGregor
Axciom
craig.mcgregor@acxiom.com

Board Member
Diane Montstream
Allen Systems Group
diane.montstream@asg.com

Board Member
Jan Rabaut
jan.rabaut@dexia.be

Editor
Gary Cherlet
Justice Technology Services
South Australian Department of Justice
gary.cherlet@sa.gov.au

Desktop Publishing
Rebecca Shaw 404 247 8269
shawrh@bellsouth.net

IDMS Connections is a bi-annual
publication of the CA-IDMS Database
and Applications User Association
(IUA). It is designed to promote its
members’ objectives. IDMS Connections
is not responsible for the opinions
expressed by its writers and editors.

Information User Association
401 N. Michigan Ave.
Chicago, IL 60611-4267
Phone: 312/321-6827
Fax: 312/245-1081

Internet: iua@iuassn.org
Web: http://iuassn.org

