

How-To
Editing a Virtual Service

Image (VSI)

Prepared by: Surya Suravarapu
Date: November 2016

CD SWAT

DevTest 9.5.1

Table of Contents

Purpose 3

Virtual Service Image 3
Components of a vsi file .. 3
Transactions Tab .. 4
Some Useful Functions ... 4
Service Image Tab ... 7

Magic String and Magic Dates 7
Magic Strings .. 7
Magic Dates .. 8

Match Styles 9
Operation Match .. 9
Signature Match .. 10
Exact Match .. 11
Match Script .. 12

Debugging Matching 13
Matching in Portal .. 14

Purpose

The virtual service image (vsi) file is a critical component that makes up the virtual service. The purpose

of this document is to describe the vsi file and talk about different matching mechanisms, match scripts

and other concepts like magic strings.

Virtual Service Image

A Virtual service comprises of two

files, the virtual service image (vsi)

file and a virtual service model

(vsm) file. A vsi file is the file

which contains the actual request

and response information along

with definition of the matching

criteria including match scripts.

Let’s explore the different

components of a vsi file below.

Components of a vsi file

A vsi file comprises of the below

components / sections. Vsi file

comprises of two tabs

a. Transactions

 The default view

when we open a

vsi, it comprises of

the actual request

/ response

information

including

arguments,

attributes, meta

data and match

criteria including

match script.

b. Service Image

 This tab consists of

Image Name field

and the response

definitions for

unknown stateless

and conversational

requests (response

in case of a

request mismatch).

Transactions Tab

Stateless Transactions

Conversations

The transactions tab comprises of

different transactions that make up

the contents of the virtual service.

The transactions inside a virtual

service can be either stateless

transactions or conversations

depending on whether a service is

stateful or stateless or both.

Some Useful Functions

Transactions Selection

Managing Conversations

Some of the useful functions in the

Transactions tab are as given.

Create new transactions

This will help us add new

Transactions to the existing list.

This requires more effort as we

need to configure everything from

operation name to response xml

manually. This can also be

achieved by clicking on the just

below transactions frame.

Delete transactions

This will help us with deleting

transactions (including META and

specific instances) from the

existing list. This can also be

achieved by clicking on below

the transactions frame.

We can also delete specific

transaction instances or META

instance under a transaction by

clicking on below the META /

Specific instances frame.

Move transactions

This will help us with moving the

transactions up and down in the

image file. This will help adjust the

order in which matching happens

for the transactions. The

transactions which are earlier in the

sibling list get matched first and so

on.

Regenerate Magic Strings

This will help us with regenerating

the magic strings and date

variables across all transactions.

This is useful if we make changes in

the responses / request arguments

and would like the magic string to

be regenerated accordingly (across

all transactions). We can also do it

individually at instance level in

transaction by selecting Magic

String check box under Request

Data-> Arguments section.

Navigation highlight

This will help us select options for

navigation highlight for stateful

conversations.

Toggle ID Display

This will help us toggle the display

of ID for transactions. This ID is

very helpful in debugging to identify

which instance is getting matched

etc.

Service Image Tab

Service Image tab comprises of

the virtual service image file name

and the responses to be sent back

in case of an unknown request

(conversational / stateless).

Unknown request is a request that

fails to match with any of the

recorded / captured transactions.

This tab also provides an estimate

of the memory usage by the image

file.

Magic String and Magic Dates

Magic String is a very useful

feature of DevTest, the gives

virtual services ability to respond

dynamically to requests.

Depending on the incoming

request, virtual services will be

able to provide with appropriate /

meaningful response through use

of this feature.

Magic Strings

Magic String is a form of dynamic

parameterization of arguments.

VSE examines the request,

response and parameterizes the

response values that match with

the arguments or parameters in

the request.

For example, consider the addUser

operation. When a new user gets

added to the application, this

service returns the status and new

user details. The user id that is

present in the response and which

is also part of the request is the

magic string in this case.

As shown in the image, the login

field matches with the username

field of request. Hence, the login

field in response is parameterized

with the request argument

username. The magic string is

saved as

‘=request_username;/*webapp-

1809697075554*/’.

In this case, even though we

recorded addition of only one user

to the application, when we send a

request with a different user, the

virtual service will be able to

respond correctly for that user.

{{ }} is a standard notation for

properties within DevTest. The

response will return back ‘webapp-

1809697075554’ as value if there

is no value in username

(‘request_username’) argument in

the request.

Magic Dates

During recording, the response is

parsed and any date values that

match a wide range of supported

date formats are converted into

magic dates. Magic date calculates

the delta (difference) of the date

value in the response with the

current date and populates the value

in response. Magic date format is

{{=doDateDeltaFromCurrent(“Date

Format”,”Delta”;/*Default Value*/)}

. In the below example, magic date

is

{{=doDateDeltaFromCurrent(“yyyy-

MM-dd”,”-17D”);/*2016-06-18*/}}

In this example, a delta value of

‘-17D’ denotes that the date in

response is 17 Days before the

current date. The date value will be

dynamically computed in response

based on the current date time.

Some valid parameters for delta are

D: Days, H: Hours, M: Minutes, S:

Seconds, Ms: Milliseconds.

Another variant of magic date is

doDateDeltaFromRequest, which is

used when a date is used as a

parameter in the request and also

seen in the response.

In this example, we have a date field

in the request named RequestDate.

We also have a date field in response

called Date. The magic string is set

as {{=doDateDeltaFromRequest

(”yyyy-MM-dd”,”1D”); /*2016-06-

18*/}}

Match Styles

The different match styles define

how matching will be performed

between the incoming request and

the requests which are part of the

captured transactions within the

image file. The different match

styles within DevTest are as given

below.

 Operation Match

 Signature Match

 Exact Match

Operation Match

As the name suggests, in this style

of matching, match is performed

only on the operation name. This

matching style does not consider

the signature or the values.

For example, consider the weather

service forecast operation below.

The operation has ZIP as the

argument in the request signature.

If we change the META instance to

Operation Match from Signature

Match (Default), irrespective of

which signature we send, a match

will be performed as long as the

operation matches.

The request being triggered has a

different signature then the

captured transaction. Still, in case

of operation match, response will

be sent back as operation match is

successful.

Signature Match

In this style of matching, match is

performed not only on the

operation name, but also on the

signature of the request. The

request argument values are not

considered for matching.

Meta match is always signature

match by default. If the incoming

request does not match any of the

specific instances that were

recorded, as long as the signature

matches, it will match the META

instance and default response will

be sent back.

As shown in the example, we have

recorded the transactions for

Weather forecast operation for 3

different locations. If we send a 4th

Location which has not been

recorded, as long as the layout

matches, it will match META

instance and send back default

response.

Exact Match

In this style of matching, match

should happen on the operation

name, signature as well as values

being sent as part of request

arguments. In case of an exact

match, we can define the

comparison that needs to be

performed with the recorded values

through a comparison operator. The

different comparison operators are

as given below.

Depending on the requirement, one

of the comparison operators can be

chosen.

In the example, we are performing

match for weather forecast

operation. We have a specific

instance for ZIP 33326 with

forecast for that location as

response. When we set the exact

match to be equal to ‘=’ that value,

when we trigger a request with this

zip code, it should match that

instance and return weather

forecast for Fort Lauderdale.

Match Script

In some of the scenarios where the

existing matching styles do not

meet the requirements, we have

the option of defining a match script

to perform the matching. The

match script will over write the

normal matching mechanism.

We can right click in the Match

Script section to insert a sample

match script with some commonly

used methods, which will be useful

in writing a match script to meet the

requirements.

A match script must return a

Boolean value (either true or false).

In case a match script returns true,

match will be performed on that

instance. If a match script returns

false, the matcher will proceed to

the next instance for matching.

One other return value that can be

sent by a match script is

‘defaultMatcher.matches()’.

Returning this value will access the

normal matching engine. It

evaluates the requests for a match

as though there were no match

script, and returns a boolean - false

if they do not match, true if they do.

An example match script can be as

given. In this example, the match

script is defined for the instance of

ZIP ‘11749’.

In case of ZIP values 30338 and

33326, response of ZIP ‘11749’ is

only sent and also for ZIP 11749,

regular matching will be performed

ignoring the match script. For all

other ZIP values, this instance will

not be matched.

In a real world scenario, when we

want a certain response to be sent

back for multiple inputs, we can

define a match script where we look

for those inputs and match that

particular instance, instead of

defining individual instances for all

of those values.

Debugging Matching

We can debug matching by looking

at the inspection view in DevTest

Portal. In order to debug, we need

to enable display of id’s (explained

earlier in the document) in

workstation, which will help us

identify different instances, due to a

unique ID assignment to the

instances.

We can perform match debugging

by changing the logging properties

in logging.properties file as below.

log4j.logger.VSE can be set to INFO

mode to see the matching details in

the inspection view. It can also be

set to DEBUG or TRACE for more

detailed logs in vse_xxx.log file,

where xxx is the service image

name.

It is recommended to set

log4j.logger.VSE property to INFO

or WARN for production use.

Logging.properties file

Service log file logging after setting

log style to DEBUG.

Matching in Portal

DevTest portal is web based app

that is planned to be the primary

user interface for DevTest. At this

time, portal provides a subset of

most commonly used DevTest

features. With every release, more

and more features are getting

added to the DevTest portal.We can

view virtual services information in

DevTest portal. At this time, we can

only view the virtual service image

related information in the DevTest

Portal. In order to view service

image, we need to first set the

project where the image file is

present.

The project name can be selected

from the drop down ‘Current

Project’ on top right of the portal

page as shown.

If we would like to create a new

project, we can do so by clicking on

the gear icon next to the drop

down as shown below.

