CD SWAT

DevTlest 9.5.1

G

technologies

How-To

Editing a Virtual Service
Image (VSI)

Prepared by: Surya Suravarapu
Date: November 2016

Table of Contents

Purpose

Virtual Service Image

Components of @ VSi fil€......couiiiiiiiiiiiii
Transactions Tab...uuiu i
Some Useful FUNCLIONSvvvieiiiiie e e e aes
Service IMage Tab ..

Magic String and Magic Dates

MagiC StriNGS v
MagiC DAtes ...oviiiiiiiiii

Match Styles

Operation MatCh ...
Signature MatChocvviii
EXact Matchcoviviiii
MatCh SCriPt. .

Debugging Matching

Matching in Portalo.viiiiie e

Purpose

The virtual service image (vsi) file is a critical component that makes up the virtual service. The purpose
of this document is to describe the vsi file and talk about different matching mechanisms, match scripts
and other concepts like magic strings.

Virtual Service Image

A Virtual service comprises of two
files, the virtual service image (vsi)
file and a virtual service model
(vsm) file. A vsi file is the file
which contains the actual request
and response information along
with definition of the matching
criteria including match scripts.
Let’s explore the different
components of a vsi file below.

Components of a vsi file

A vsi file comprises of the below

components / sections. Vsi file

comprises of two tabs

a. Transactions
» The default view
when we open a
vsi, it comprises of
the actual request
/ response
information
including
arguments,
attributes, meta
data and match
criteria including
match script.
b. Service Image
» This tab consists of

Image Name field
and the response
definitions for
unknown stateless
and conversational
requests (response
in case of a
request mismatch).

Transactions Tab

Stateless Transactions

Transactions

[Blatgiess transecionst ~ | (& (€, W |+ 4 [@ 2| B % | & |2 | @

ladduserobject
userCbiect_accounts_balance 1! {{.. 1}
userGbiect_accounts_name_L: {{...}-
userCbject _accounts_type_L: {{.
userChject _accounts_balan
userChiect _accounts_name_2: primary
userCbiect_accounts_type_2: {{...}}
userObject_addresses_cty: {{...}}
userChiect _addresses_ine1: {{...}}
userChject_addresses_line2: {{...}}
LserGbisct_addresses_state: TX
userChiect _addresses_zp: {{...}}
userChject _emal: {{...}}
wserObiect_frame: {{...}}
userCbiect_name: {...}}
userChiect_login: {{...}}

userChject newFlag: {{...}}
userchiect phone: {{...}}

pserObject pwd: pass
userChiect_roleKey: {{...}}
laddUserObject
bserCbiect_accounts_balance_1: {{...}}
userObject _accounts_name.
LserGhisct_accounts_type_|
userChject _accounts_balan
bserChiect _accounts_name
userCbiect_accounts_tyj
userGhisct_addresses
pserChiect_addresses_linet: {{...}+
userChiect_addresses_state: TX
userChject _addvesses_zp: {{...}}

v

0

Conversations

E 2, WebServicestlodel X | 42, koskVs X |

Service Image | Transactions |

Transactions

Conversation 1

irEem|esO-iBRIRES

demos, pass
B

1264540397639 196

1264540397639196,... 12635403976 39196,...

1264540397639 196 1264540397639 196 1264540397639638,... | |-34feb41d: 1266c5dc. .

1264540397639196,.,, | | 1264540397639 196,... | | 1264540357639196,..,

1264540357639 196, 1264540397639136,. [-34feb41d: 1266chdc.
1264540337635196
o

-34feba1d: 128660, -34feba1d: 1286c6dc.

-34feh41d: 1266c6dc. 126454039 7639196 -34feb1d: 1266ckdc. .|
[deleteToken |

-34febe1d: 1266c6dc...
B

The transactions tab comprises of
different transactions that make up
the contents of the virtual service.
The transactions inside a virtual
service can be either stateless
transactions or conversations
depending on whether a service is
stateful or stateless or both.

Some Useful Functions

Transactions Selection

| service image | Transactions |

Transactions

Stickes bensoctions 7 (21| &, W | 1 4 |©[2] H %A= |&

Stateless transactions

Managing Conversations

Service Image | Transactions |

Transactions

Conversation 1

CEe w2 O-BR[RE(2

[Toggle the display of the panel for managing the list of convﬂsr;_atlémf;ﬂ

Some of the useful functions in the
Transactions tab are as given.

[Service Image | Transactions |

[comerstons—~ (@), W |+ » @] 1|8 %% | =&
B

Type:

Token pattern: |-DDhDDhDh:DDDAHDDDDDD: Dhih @
Pattern example: |-01686322:406f3356631:-2c8d

Starter

Conversation 1 Name:

e
8

Service Image | Transactions |

Transactions
Fotdess arcaciond - & 6,/0 [1+ O E|B %% =@

Create a new. hl

Create new transactions

This will help us add new
Transactions to the existing list.
This requires more effort as we
need to configure everything from
operation name to response xml
manually. This can also be
achieved by clicking on the just
below transactions frame.

Service Image | Transadmnsl
4100
listUscrs

r

addUserObiect

I
&

Delete transactions

This will help us with deleting
transactions (including META and
specific instances) from the
existing list. This can also be
achieved by clicking on below
the transactions frame.

Transactions

counts_balars

sserCbject_addresses
serCbject_addresses_|
sserObject_addresses_state: TX

We can also delete specific
transaction instances or META
instance under a transaction by
clicking on below the META /
Specific instances frame.

Service Image | Transactions

Transactions

S pawcims - @119, 1|+ O G/ H 3| & £ 1@

ladduserobiect
Move the selected transaction later in its sibling list.

Juser Object_accounts_balance_t: 1.}

[Service 1mage | Transactions |

Transactions

s vaacirs = (@] 0 |73 | @[5B %[%= @

userObject_accounts_balance_t: (.} [Move the selected transaction earlierin its sibling list.]
et Obiect accoines nam 15 4.4

i

Move transactions

This will help us with moving the
transactions up and down in the
image file. This will help adjust the
order in which matching happens
for the transactions. The
transactions which are earlier in the
sibling list get matched first and so
on.

| Service Image | Transactions |

Transactions

|stoteess ransoctons ~ & |6, W | T & [©]:2| B %] %

adduserobiect

Regenerate magic strings and date variables across all transactions,

Regenerate Magic Strings

This will help us with regenerating
the magic strings and date
variables across all transactions.
This is useful if we make changes in
the responses / request arguments
and would like the magic string to
be regenerated accordingly (across
all transactions). We can also do it
individually at instance level in
transaction by selecting Magic
String check box under Request
Data-> Arguments section.

[Service Image | Transactions |

Transactions

coveratn s ~|@| % W 2O HEHL [Z|S

Highlight as if CLOSE

g Highlight as if WIDE
S i354a75et E Highlight as if LOOSE

Drop down a menu to select how navigation should be highlighted, if at all

Highlight on the tolerance for the transaction

EQ%&?SEEIQB

1313094687566 193..

Navigation highlight

This will help us select options for
navigation highlight for stateful
conversations.

Service Image | Transactions

Transactions

Toggle ID Display

This will help us toggle the display
of ID for transactions. This ID is
very helpful in debugging to identify
which instance is getting matched
etc.

Service Image Tab

Service Inage | Transactons|

Response for Unknown Conversational Request]
Image name: vs_Weather WS V1.0 [Body | MetaData]

Created on: Jun 30, 2016 9:41:35FM Yo Document 8
Last modified: Ju 5, 2016 4:40:43PM
roten Textview @}

<faultscring>The LISA VSE service could mot match yo
<detaily

Body | MetaDats

<?xml version="1.0" encoding="UTF-872> -
El<S:Envelope xmins:S="http://schemas.xmlsoap.org/soap/envel[)|
0 <s:soay> L
Bl <S:Fault xmins:n I
<faultcoders:s:
<faultstring>The LISA VSE

B e ————— »

Approximate memory usage: 20,461 bytes Think time spec: [0 a

Service Image tab comprises of
the virtual service image file name
and the responses to be sent back
in case of an unknown request
(conversational / stateless).
Unknown request is a request that
fails to match with any of the
recorded / captured transactions.
This tab also provides an estimate
of the memory usage by the image
file.

Magic String and Magic Dates

Magic String is a very useful
feature of DevTest, the gives
virtual services ability to respond
dynamically to requests.
Depending on the incoming
request, virtual services will be
able to provide with appropriate /
meaningful response through use
of this feature.

Magic Strings

Magic String is a form of dynamic
parameterization of arguments.
VSE examines the request,
response and parameterizes the
response values that match with
the arguments or parameters in
the request.

For example, consider the addUser
operation. When a new user gets
added to the application, this
service returns the status and new
user details. The user id that is
present in the response and which
is also part of the request is the
magic string in this case.

oooooooooo

As shown in the image, the login
field matches with the username
field of request. Hence, the login
field in response is parameterized
with the request argument
username. The magic string is
saved as
‘=request_username;/*webapp-
1809697075554*/.

In this case, even though we
recorded addition of only one user
to the application, when we send a
request with a different user, the
virtual service will be able to
respond correctly for that user.

{{ }} is a standard notation for
properties within DevTest. The
response will return back ‘webapp-
1809697075554' as value if there
is no value in username
(‘request_username’) argument in
the request.

Magic Dates

During recording, the response is
parsed and any date values that
match a wide range of supported
date formats are converted into
magic dates. Magic date calculates
the delta (difference) of the date
value in the response with the
current date and populates the value
in response. Magic date format is
{{=doDateDeltaFromCurrent("Date
Format”,”Delta”;/*Default Value*/)}
. In the below example, magic date
is

{{=doDateDeltaFromCurrent(“yyyy-
MM-dd”,”-17D");/*2016-06-18*/}}

LTy 2l

nnnnn

HADDPMS 5

: ﬂ; msma‘i_,

In this example, a delta value of
'-17D’ denotes that the date in
response is 17 Days before the
current date. The date value will be
dynamically computed in response
based on the current date time.
Some valid parameters for delta are
D: Days, H: Hours, M: Minutes, S:
Seconds, Ms: Milliseconds.

Another variant of magic date is
doDateDeltaFromRequest, which is
used when a date is used as a
parameter in the request and also
seen in the response.

P 30838
FeauestDats: 2016-06-17

SN0t 106 quOL ;| 1/ 72016-06-18/1 1|/ Darex

MAD R M4

'n; BEE o fs

In this example, we have a date field
in the request named RequestDate.
We also have a date field in response
called Date. The magic string is set

as {{=doDateDeltaFromRequest
("yyyy-MM-dd”,”1D"); /*2016-06-
18*/}%

Match Styles

Match style: :Exact

Operation:

b Reguest Da Cperation

The different match styles define
how matching will be performed
between the incoming request and
the requests which are part of the
captured transactions within the
image file. The different match
styles within DevTest are as given
below.

e Operation Match

e Signature Match

e Exact Match

Operation Match

As the name suggests, in this style
of matching, match is performed
only on the operation name. This
matching style does not consider
the signature or the values.

For example, consider the weather
service forecast operation below.
The operation has ZIP as the
argument in the request signature.
If we change the META instance to
Operation Match from Signature
Match (Default), irrespective of
which signature we send, a match
will be performed as long as the
operation matches.

Connection Connection
WSDL URL: ~ |8 wsDLURL:

Service: - Port: v| Service: - Port:
Operation: - |8 On Error: Abort the Test ~ | Operation: | v |8 OnError: |Abort the Tes
Endpoint: | hittp: /localhost: 3001/ Weather WS /Weather.asmx +| Endpoint: |http:/flocalhost:8001/WeatherWs Weather asmx

1 Visud XML | <% Raw XML | 22 Headers | &

<?xml version="1.0" encoding="utf-8"2>
<soapenv:Envelope x¥mlns:soapenv="hrip:/ w3 . org/

</GetCityForecastByZIP>
</soapenv:Body>
</soapenv:Envelope>

[<scap:Envelope xmlns:sosp="http://www
] <=soap:Body>

| <?xml version="1.0" encoding="utf-8"2>

<seapenv:Body> [l <GetCityForecastByZIPResponse xmlns="a
<BetCityForecastByZIF xmlns="nttp://ws.cdyr |0 <GecCityForecastByZIPResult>
<UserId>Useri</UserId> <Success>truec/Success>
<ZIP>30338</ZIE> <ResponseText>City Found</ResponseText>

<State>GA</State>
<City>Atlanta</City>
<WeatherStationCity>Atlanta</WeatherStacs
<ForescastResult>

<Forscast>

The request being triggered has a
different signature then the
captured transaction. Still, in case
of operation match, response will
be sent back as operation match is
successful.

Signature Match

In this style of matching, match is
performed not only on the
operation name, but also on the
signature of the request. The
request argument values are not
considered for matching.

Meta match is always signature
match by default. If the incoming
request does not match any of the
specific instances that were
recorded, as long as the signature
matches, it will match the META
instance and default response will
be sent back.

Service Inage| Transactions

Transactions

Sitelss bansctins +| (@) [0, W | ¢ 4 |2 B & |%|Z|@

¥ RequestData

%
etWeatherInformation A et
GetCityForecastByzip
oottyte Match style: [Eqnatire =
Operation: [GetCityForecastByZP a
(7] Alow dupicate speciic transactions

iz

Ip: 3
etCityForecastByZIP
IP: 11749
GetCityForecastByZIP
IP; 33326

Arguments [Attributes | Meta Data)

Name Name inSession Comparison Operator Value Magic String DstePatten Case Sensitive

30338 &)

+ [

i] »

As shown in the example, we have
recorded the transactions for
Weather forecast operation for 3
different locations. If we send a 4th
Location which has not been
recorded, as long as the layout
matches, it will match META
instance and send back default
response.

Camecton
WSDL URL
Sereie <] Part
Operation = @ OnError dbort e Test
Endposnt: W Jocanast 00 VeI WS/ Bty S3m

<, readers | f Attachmants
PETEN

<z1e>3384k/ 2185
ByZ:

=
<l | wsoe -a

= Pore:

. =@ 00 Error: [Aoort e Tent
< || Endoint: ni:jdocaboct 8001 eatier v esther sams

Exact Match

Anything

M

o =

W

=
Regular Expression
Property Expression

In this style of matching, match
should happen on the operation
name, signature as well as values
being sent as part of request

arguments. In case of an exact
match, we can define the
comparison that needs to be

performed with the recorded values
through a comparison operator. The
different comparison operators are
as given below.

Depending on the requirement, one
of the comparison operators can be
chosen.

Service Image | Transactons

Transactions

Stateless transactons v | (& [0, W |+ & [© 2| B % |

Find:

.etWeatherInformation
[GetGityForecastBy2ZIP

(] (W]

Match style: [Exact
Operation: GetCityForecastByzIP
v Request Data

Kl
@*‘Es:

Arguments | Attributes | Meta Data

Name NameinSession Comparison Operator Value MagicString Date Pattem Case Sensitve
iz - s 0

Cornecton

wesoL R

ser = Pt
2 @8 OnError abortmeTast

D) AR EE00 LR her VIS Westher aer

armsssdszies
socnyziEs

o i)

Comcion

<l wsovum -la

Service = port =

-] Operation s @ Oontmor sentmee -
ot s forahos=a00 s herE et s

In the example, we are performing
match for weather forecast
operation. We have a specific
instance for ZIP 33326 with
forecast for that location as
response. When we set the exact
match to be equal to ‘=’ that value,
when we trigger a request with this
zip code, it should match that
instance and return weather
forecast for Fort Lauderdale.

Match Script

In some of the scenarios where the
existing matching styles do not
meet the requirements, we have
the option of defining a match script
to perform the matching. The
match script will over write the
normal matching mechanism.

We can right click in the Match
Script section to insert a sample
match script with some commonly
used methods, which will be useful
in writing a match script to meet the
requirements.

A match script must return a
Boolean value (either true or false).
In case a match script returns true,
match will be performed on that
instance. If a match script returns
false, the matcher will proceed to
the next instance for matching.

One other return value that can be
sent by a match script is
‘defaultMatcher.matches()".

Returning this value will access the
normal matching engine. It
evaluates the requests for a match
as though there were no match
script, and returns a boolean - false
if they do not match, true if they do.

¥ Transaction Basics
Match style: [Bxact
Operation: GetCityForecastByZIP

» Request Data
¥ Match Script

String incomingValue = incomingRequest.getArguments().get("ZIF").toString():

return true;
if (incomingValue.equalsIgnoreCase ("11749")) {

return defaultMatcher.matches();

return false:

An example match script can be as
given. In this example, the match
script is defined for the instance of
ZIP 11749’

In case of ZIP values 30338 and
33326, response of ZIP ‘11749’ is
only sent and also for ZIP 11749,
regular matching will be performed
ignoring the match script. For all
other ZIP values, this instance will
not be matched.

In a real world scenario, when we
want a certain response to be sent
back for multiple inputs, we can
define a match script where we look
for those inputs and match that
particular instance, instead of
defining individual instances for all
of those values.

Debugging Matching

vsE
ry Lot Moot
& Vinual Services b Recordings
Total Running Offtine Fail Total Recording Offine
Action_ Category > Name ¥ ResoucelType v Sams Y WY UpL B Group ¥ Execstion > Capacity_~
= & | V5.Dema_Samplev1 .. € 3002:hitp o od ;
= & VS Weather WS_V1D.) 800L:hitp:: MWeather 1 od dema 7 Moster. 1
“] v
r VS_Weather_WS_V1.0 Inspector
¢ Req
Operation MatchTyge Timestamp Arguments.
GetCityForecasteyZIP = 0710612016 95619 AM = e
1 H -
‘What Happened Events
Timestamp Event Short Inf tong Info
ualse
Match Type
VSE respanded from
[222) Gy ForecastByZIR
pr—
< > 1 1 v
VS_Weather_WS_V1.0 Inspector
Opers Timestamg Arguments
GeCiyForecastiyvzIP 0770612016 9:58:19 A i .
[4 = [v
Excution step Events
Execution Siep Name Timestamp Event Shart Info tang Infa
Us \FO: Inbound Request (071070, "aperation' GerClty orecastByZIP", ‘srument
& INFO: N D L1
Property set B request_11P B33
SSE19AM Propenyset BHTTP_seqment A0 B westherws
1| » « 5ok b v

Think Scale™ Auto-Nest_ T

100 Enabled

We can debug matching by looking
at the inspection view in DevTest
Portal. In order to debug, we need
to enable display of id’s (explained
earlier in the document) in
workstation, which will help us
identify different instances, due to a
uniqgue ID assignment to the
instances.

We can perform match debugging
by changing the logging properties
in logging.properties file as below.

log4j.logger.VSE can be set to INFO
mode to see the matching details in
the inspection view. It can also be
set to DEBUG or TRACE for more
detailed logs in vse_xxx.log file,
where xxx is the service image
name.

It is recommended to set
log4j.logger.VSE property to INFO
or WARN for production use.

Logging.properties file

5l logaing propertes £ |
Tog43 -ogger profiler—oFF

log43.appender. Al-com. itko.util.logés . TimedRollingFileAppender
logé3.appender.Al.File=${1isa.cupdir}/${LISA_LOG}
1log43.appender.Al.MaxFileSize=10MB
log43.appender.Al.MarBackupIndex—5

log4j.appender.Al.layou <.log4].EnhancedPatternlayout
1og43.appender. nPattern—3d{I1508601}{UTC}Z (3d{HH:mm}) [%t] %-5p $-30c - imin

ing to other log destinations, comment out the next line
util.log4s.TimedRollingFilehppender

1og43 .appender VSEAPD. File=$ (1isa. tmpdir} /vse_matches.log

1ogé) .appender. VSEAPD. MaxFilesize=10M8

1og43 .appender . VSEAPE. MaxBackupIndex=20
Log43 .appender . VSEAPP. Layout—oxrg.apache . 10g4] . EnhancedPatte rnlayous
logt).appender.VSEAPE. layout .ConversionPatcern—+d {ISOS601} {UTC}Z (Sd{HH:imm}) [2] $-5p - tmen

Keep a separate log for advise:
ory leaks, etc. It is delib:

ents. Tnis logger warns of potential configuration issues, potential
1y kept separate to the application 10g £o minimize noise.

Service log file logging after setting
log style to DEBUG.

Matching in Portal

DevTest portal is web based app
that is planned to be the primary
user interface for DevTest. At this
time, portal provides a subset of
most commonly used DevTest
features. With every release, more
and more features are getting
added to the DevTest portal.We can
view virtual services information in
DevTest portal. At this time, we can
only view the virtual service image
related information in the DevTest
Portal. In order to view service
image, we need to first set the
project where the image file is
present.

[T

The project name can be selected
from the drop down ‘Current
Project’ on top right of the portal
page as shown.

If we would like to create a new
project, we can do so by clicking on

the gear icon E next to the drop
down as shown below.

