Table of Contents

1 - Delete server/device	5
1.1 Manual: Infrastructure Manager	5
1.2 Manual: Probe Configurations	5
1.3 Manual: Historical Console Alarms	6
1.4 Manual: UMP - USM	6
1.5 Manual: QoS	7
1.6 SSR/MCS	8
1.7 Manual: NAS address table	8
1.8 script: nimsoft_delete_device	9
1.8 Script logic	14
1.9 Debugging	15
2 - Nimsoft_generic.dat (settings)	16
3 - Create Windows Perl environment	18
4 - Create Linux Perl environment	21
4.1 install Perl base	21
4.2 Install C compiler	22
4.3 Install additional Perl Packages	22
4.3.1 Perl modules MySQL	23
4.3.2 Compiling Perl	24

New in 3.0:
- removerobot was not working correctly when hub was a remote hub
- we will now remove all cs_id's for the device
- devices are compared all case-insensitive
New in 3.1:
- added option -p to activate the prevent_rediscovery option (y,n) default: n
New in 3.2:
· When deleting with regex a lot of devices in 1 run (+ 3000) you could end with a deadlock
New in 3.3:
· All print statements are renumbered so that debugging is easier
· The whole section for MCS/SSR was revised/rewritten by Swat
· If you execute the Perl directly, you will need to install 3 extra packages:
· cpan install Win32::Console
· cpan install Term::ANSIColor
· cpan install Win32::Console::ANSI
· updated chapter “create Perl Windows environment”, because 3.3 uses some extra packages. This was done by recreating the whole Perl environment to check if the doc was accurate.
· Option –v is now splitted in:
· –t: verbose sql delete
· –v: normal verbose (except sql delete details)
· Tested in 9.0.2 and 9.1 (or 9.0.2 sp1)
· The “removerobot” command, to remove robots from IM, required the robotname in the exact case.
· Option –w”y” is used by probe_decom (with this probe you can delete a device by a simple “nimalarm”)

New in 3.4:
· Option –x”n” will add an extra search in the Q_QOS_DATA table to find QoS metrics that are not 100% formatted, example those without a ci_metric_id. The default, -x”n” will run the tool as before
· change the confusing return from the callback: "error_code: PDS_I 2 0" into "msg: return code: 0"
· probe_decom is updated with this new –x parameter
· nimsoft_generic.dat has a new parameter: sql_sriver. This gives you the possibility to use a newer MSSQL driver needed for TLS 1.2
· tested with UIM 9.20

The device delete/remove tool: nimsoft_delete_device.pl will try to remove all possible UIM entries/definitions/references for your requested server/device.

By default, the device to be deleted must be an exact match,
but via the -r"y" parameter you can switch to a regular expression device selection.

The tool will delete the device in:
· Infrastructure Manager
· USM View (new is that we will search for all occurrences of the device, meaning that we can remove multiple cs_id's)
· QoS
· Monitoring (MCS) (UIM 8.4 and higher)
· Alarm entries (nas_transction_log and nas_transaction_summary tables)
· NAS address table (default to: n)

The only place where we do not try to remove your device in the (remote) probe definitions, see section 1.2.

The first sections will describe the (manual) logic behind the tool for most of the steps. It's this explanation that is used in the tool/script to make the delete transparent. The tool explanation starts at chapter 1.8.

This tool can run on/with:
· Windows to MSSQL (nimsoft_delete_device.exe) and MySQL (nimsoft_delete_device_mysql.exe)
· Linux to Mysql/MariaDB (nimsoft_delete_device.bin) (version 2.9 of the tool)
· from an empty server to Linux (.bin) and Windows (.exe) with compiled version
· the best performance is to run the Perl version with a local Perl installed. See chapter 3 (Windows) or chapter 4 (Linux) for an example how to setup a Perl environment.

Pre-requisite: the tool can only run if an UIM robot is installed locally, so that the tool can use the UIM bus to communicate.

[bookmark: _Toc23750310]1 - Delete server/device

You can skip to section 1.8 if you're not interested in the manual commands that this tool will (try to) do automatically for you.
[bookmark: _Toc440960555][bookmark: _Toc440960507][bookmark: _Toc23750311]1.1 Manual: Infrastructure Manager

To remove a robot from IM you can use:
· HUB callback: removerobot
· hub config - robot tab and use the remove option

This can also be done via the PU command:

pu -u administrator -p xx -d 3 /your_domain/your_hub/robot_name/hub removerobot device_name

[bookmark: _Toc440960556][bookmark: _Toc440960508][bookmark: _Toc23750312]1.2 Manual: Probe Configurations

This is a manual task to remove the monitoring from the possible remote probes that are checking your device. Possible probes to consider:
1. snmpcollector
1. net_connect
1. rsp
1. icmp
1. ...

Note: this is the only place where this script cannot remove the definitions
Note: this tool will delete the related MCS profiles

[bookmark: _Toc440960557][bookmark: _Toc440960509]

[bookmark: _Toc23750313]1.3 Manual: Historical Console Alarms

Open console alarms will be removed when you close/acknowledge the open alarms.

If the NIS bridge was activated your alarms are also stored in SQL tables:
1. nas_transaction_log
1. nas_transaction_summary

Via a simple SQL query, you can remove all alarms for your device from these tables:

delete from NAS_TRANSACTION_LOG where hostname ='bgbulab00'
delete from NAS_TRANSACTION_SUMMARY where hostname ='bgbulab00'

[bookmark: _Toc440960558][bookmark: _Toc440960510]
[bookmark: _Toc23750314]1.4 Manual: UMP - USM

The procedure to delete a device is a 2-step procedure:
· obtain the cs_key(s)via sql query:

select name,ip,cs_key
from CM_COMPUTER_SYSTEM
where name ='bgbulab00'
orderby name

· use the discovery_server callback: remove_master_devices_by_cskeys and use the cs_key from previous query to specify the device
· if you set the prevent_rediscovery parameter to true the device will be flagged so that it cannot be added again

[bookmark: _Toc440960559][bookmark: _Toc440960511]

[bookmark: _Toc23750315]1.5 Manual: QoS

By using the query (-x”n”):

Select source,target,qos,probe,r_table,h_table,v_table,table_id from S_QOS_DATA wheresource='bgbulab00'

you can have a good idea what QoS are generated for your device.

[image:]

For each QoS you will need to execute 5 SQL delete statements:

DELETE from 'RN_QOS_DATA_0023' where table_id='1480'
DELETE from 'HN_QOS_DATA_0023' where table_id='1480'
DELETE from 'BN_QOS_DATA_0023' where table_id='1480'
DELETE from 'DN_QOS_DATA_0023' where table_id='1480'
DELETE from S_QOS_DATA where table_id ='1480'

An alternative query, that would include also match the name/source column if it's ip address (-x”y”):

select qd.origin, qd.robot, qd.probe, qd.qos, cs.name, qd.target, qd.r_table, qd.h_table, qd.table_id,cs.ip
from CM_COMPUTER_SYSTEM cs,CM_DEVICE d,CM_CONFIGURATION_ITEM ci,CM_CONFIGURATION_ITEM_METRIC cim,S_QOS_DATA qd
where d.cs_id = cs.cs_id and ci.dev_id = d.dev_id and ci.dev_id = d.dev_id and cim.ci_id = ci.ci_id and qd.ci_metric_id = cim.ci_metric_id
and cs.name ='bgbulab00'
orderby qd.origin,qd.robot,qd.probe

This query includes also all qos entries created by remote probes (sqlserver, pollagent, net_connect,..), but they exclude the qos entries not related to a device_id.

Note1: to delete QoS entries not related to a device_id you can use the tool: nimsoft_qos_delete.pl (also published in communities)
Note2: when using the option –x”n” we will run the 2 sql queries to find matching QoS metrics
[bookmark: _Toc440960560][bookmark: _Toc440960512]

[bookmark: _Toc23750316]1.6 SSR/MCS

In UIM 8.4 a new component MCS was introduced. (SSR was the nitial/old name)

MCS QoS entries related to the device that will be deleted will also be removed (QOS_MCS_ or QOS_SSR_)

In version 3.3 we will also delete the related MCS profiles.

Note: if you run a pre 8.4 UIM installation, you must use the option -m"n", else you will receive error messages that this tool tries to read sql tables that doesn't exist in your DB.

[bookmark: _Toc23750317]1.7 Manual: NAS address table

You can remove the devices in the NAS address table via
· NAS config - Name Services - Address Table - Delete option
· NAS callback: nameservice_delete

As an alternative you can also delete devices from this table via the PU command:

pu -u administrator -p xxx -d 3 /your_domain/your_hub/hub/nas nameservice_delete device_name

Note: the device name is case sensitive

[bookmark: _Toc23750318]1.8 script: nimsoft_delete_device

All previous delete steps, EXCEPT the (possible) remote probe configurations, can be done via the script: nimsoft_delete_device.

nimsoft_delete_device.pl -h"server1|server2"
(version: Nimsoft_Delete_Device (3.3))

Selection parameters:
 -h: device(s) to delete (| separated)
 -f: file path/file with servers to delete, 1 per line
 -o: filter on origin
 -c: filter on dedicated
 (Device, VirtualMachine, Host, HostSystem)
 -r: enable regex expressions on flags -h,-o,-c (y,n) default: n
Delete parameters:
 -p: prevent_rediscovery (y,n) default: n
 -q: delete QoS (y,n) default: y
 (QoS will not be deleted if -c is used)
 -i: delete in hub/IM (y,n) default: y
 -a: delete alarm (y,n) default: y
 -m: delete MCS profile records and QoS entries (y,n) default: n
 -n: delete in nas addresstable (y,n) default: n
 Display parameters:
 -l: list detailed list of selected QoS to delete (y,n) default: n
 -v: verbose (y,n) default: y
 -t: verbose on sql delete (y,n) default: n
Execution parameters:
 -s: simulate run (y,n) default: y
 -d: debug (y,n,p) default: n
 -x: device match on ip (y,n) default: y. n: will run an extra match on s_qos_data

The -h parameter accepts by default only an exact match, but you can define multiple servers, separated by a "|":
· -h"server1"
· -h"server1|server2|server3"

As alternative for the -h parameter you can use the -f parameter. This parameter will point to a path/file with servers to delete, 1 per line. Use "/" to point to the path definitions.

Example: -f"c:/temp/servers.txt"
When you add parameter -r"y" regex is activated and you can use:
· -h"^server1$" : if you want to specify an exact servername match
· -h"^bgbulab" : will match all servers starting with bgbulab
· -h"server1|server2|server3" : will match these 3 words in the servername, but also server11 or prodserver1 and testserver1.
· The optional -o parameter can be used to filter on origin in regex format. With this option you could remove a device, or all devices, from an origin.

Example: -o"xx_hub' -h".*" -r"y"

The optional -c parameter can be used to filter on the "dedicated" field in regex format. This field can be found in USM Inventory.

With the -p parameter you can decide if you want to be able to rediscover the device again (-p"n") or not (-p"y"). Default is: -p"n".

In pre 9.0.2 the excluded devices are noted in the file: \Nimsoft\probes\service\discovery_server\excluded_devices.csv

In 9.0.2 or higher, these devices are added in the database tables: CM_BLACKLIST_DEVICE and CM_BLACKLIST_COMPUTER_SYSTEM

With the -q parameter you can decide if you want to remove all QoS entries that match the source/server field. You can use y or n, default: y.

The -l parameter will give you extra detailed information about the QoS entries that are or will be deleted. You can use y or n, default: n

The -a parameter will delete all alarm entries in the nas_transaction_log and nas_transaction_summary tables, default: y.

The -i parameter will use the hub probe callback: removerobot to the correct owning hub to remove the entry from the hub, and at the same time Infrastructure Manager display, default: y.

The -m parameter will delete matching MCS QoS entries, default: y. If you are running a pre-8.4 version you must set this parameter to "n".

The -n parameter will use the nas probe callback: nameservice_delete to remove the device from the nas address table. Default: n.

The -d parameter will activate a debug execution. With -d"p" -s"y" we will show the PU commands needed to execute the 2 callbacks "removerobot" and "remove_master_devices_by_cskeys".

The –x parameter: will decide how the source will be matched for you QoS data. Default y.

When set to: y we will try to find well formatted/created QoS metrics where the source can also be an IP address.

When set to: n we will run an "extra" search directly on s_qos_data to find matching qos metrics that have no ci_metric_id (with -x"n" you will also find qos from: email_response, hubmon, some logmon that depending how they are created, mon_config_service, created by nas lua script, net_connect remote devices, …)

In simulation mode you will receive an indication how many QoS metrics will be selected by the first and optionally the second selection process.

By default we will run in simulation mode (-s"y"), we will only print what would be done without deleting anything. If you are ready to delete you add: -s"n" (no simulate).

Note: QoS sources that are not device names are not considered by this delete operation, but can be deleted by the nimsoft_qos_delete.pl script. Version 3.4 has a new parameter –x”n” that gives you the possibility to delete these QoS entries in the same run.

Example1: "regex" filter on device name. We want to delete all devices containg the regex (-r"y") string: bgbulab

perl nimsoft_delete_device.pl -h"bgbulab" -r"y"
*** Simulation run: no deletes are performed ***

step 1: We added device string: bgbulab
step 2: select device: bgbulab00 origin: bgbulab00_hub dedicated: Host
step 2: select device: bgbulab01 origin: bgbulab47_hub dedicated: Host
step 2: select device: bgbulab03 origin: bgbulab47_hub dedicated: Host
step 2: select device: bgbulab39 origin: bgbulab47_hub dedicated: Device
step 2: select device: bgbulab39 origin: bgbulab47_hub dedicated: Device
step 2: select device: bgbulab47 origin: bgbulab47_hub dedicated: Device
step 2: select device: bgbulab47 origin: bgbulab47_hub dedicated: VirtualMachine
step 2: select device: bgbulab47,1433 origin: bgbulab47_hub dedicated: Device
step 2: select device: bgbulab60 origin: bgbulab47_hub dedicated: Device
step 2: select device: bgbulab60 origin: bgbulab47_hub dedicated: Device
step 2: select device: bgbulab60 origin: bgbulab60_hub dedicated: Host
step 2: We found 11 matching devices in cm_computer_system (matching: bgbulab00,bgbulab01,bgbulab03,bgbulab39,bgbulab39,bgbulab47,bgbulab47,bgbulab47,1433,bgbulab60,bgbulab60,bgbulab60) (csids: 62,63,20,54,55,11,1,56,18,39,40)
step 3: delete devices bypassed due to simulation run
step 4.1: selected: 749 QoS (QoS total: 1336) (Use -l"y" to see qos details)
step 4.2: selected: 27 MCS QoS (Use -l"y" to see qos details)
step 4.1: delete QoS bypassed due to simulation run
step 4.2: delete MCS bypassed due to simulation run
step 5: delete alarms for 1 devices bypassed due to simulation run
step 6: delete in hub/IM for 1 devices bypassed due to simulation run

With the optional -l parameter you will receive a detailed list of QoS entries that will be deleted.

Note: it's normal that a same device is found more than once, this is the same view as you can see in USM Inventory. We will select all matching cs_ids in the discovery_server probe callback: remove_master_devices_by_cskeys.

Example2: "regex" filter on origin (-o)

perl nimsoft_delete_device.pl -o"bgbulab00" -h".*" -r"y"
*** Simulation run: no deletes are performed ***

step 1: We added device string: .*
 : filter on origin: bgbulab00
step 2: select device: 127.0.0.1 origin: bgbulab00_hub dedicated: Device
step 2: select device: bgbulab00 origin: bgbulab00_hub dedicated: Host
step 2: select device: chrlu01w81 origin: bgbulab00_hub dedicated: VirtualMachine
step 2: select device: nas-synology origin: bgbulab00_hub dedicated: Device
step 2: select device: prod.lhr1.service-now.com origin: bgbulab00_hub dedicated: Device
step 2: We found 5 matching devices in cm_computer_system (matching: 127.0.0.1,bgbulab00,chrlu01w81,nas-synology,prod.lhr1.service-now.com) (csids: 80,62,47,81,51)
step 3: delete devices bypassed due to simulation run
step 4.1: selected: 65 QoS (QoS total: 1336) (Use -l"y" to see qos details)
step 4.2: selected: 0 MCS QoS (Use -l"y" to see qos details)
step 4.1: delete QoS bypassed due to simulation run
step 4.2: delete MCS bypassed due to simulation run
step 5: delete alarms for 1 devices bypassed due to simulation run
step 6: delete in hub/IM for 1 devices bypassed due to simulation run

Note: it's normal that step 2 can list multiple times the same server name because if you look in UMP - USM - Inventory you will see some devices multiple times. We will select all matching cs_ids in the discovery_server probe callback: remove_master_devices_by_cskeys.
Note: all user and server settings are defined in the file nimsoft_generic.dat; see next section

[bookmark: _Toc23750319]1.8 Script logic

1. sql query: "select name, cs_key, nimbus_type from CM_COMPUTER_SYSTEM order by name"
2. match the (regex if -r"y") server list entered via -h on the column: name. This means that you can have multiple matches for the same server name if this table contains multiple entries for the same server.
From version 3.0 we will use "all" matching cs_id's in the discovery_server callback: remove_master_devices_by_cskeys.
3. if no match is found we will stop here by default, except if you used -x"n"
4. (optional) match the (regex) string entered via -o on the column name: origin.(if you use -h and -o, both must match before the device is removed)
5. (optional) match the (regex if -r"y") string entered via -c with the column: dedicated
6. all matches on: cs_keys are put in a comma separated string
7. callback probe discovery_serverremove_master_devices_by_cskeys with the list of cs_keys
8. if -c (dedicated) was used, stop here because dedicated has no match in the qos columns. (if needed, try to find a match via the tool: nimsoft_qos_delete)
9. sql query: "select qd.origin, qd.robot, qd.probe, qd.qos, cs.name, qd.target, qd.r_table, qd.h_table, qd.table_id,cs.ip from CM_COMPUTER_SYSTEM cs,CM_DEVICEd,CM_CONFIGURATION_ITEMci,CM_CONFIGURATION_ITEM_METRICcim,S_QOS_DATAqd where d.cs_id = cs.cs_id and ci.dev_id = d.dev_id and ci.dev_id = d.dev_id and cim.ci_id = ci.ci_id and qd.ci_metric_id = cim.ci_metric_id"
10. match the (regex if -r"y") server list with the "cs.name" (qd.source would be the hostname or the ip address depending on the probe, cs.name is always the host name) column, and if -o is used also with the "origin" column and create and execute sql delete statements for every encountered qos:
-DELETE from 'RN_QOS_DATA_0023' where table_id='1480'
-DELETE from 'HN_QOS_DATA_0023' where table_id='1480'
-DELETE from 'DN_QOS_DATA_0023' where table_id='1480'
-DELETE from 'BN_QOS_DATA_0023' where table_id='1480'
-DELETE from S_QOS_DATA where table_id ='1480
11. delete SSR/MCS related profiles and QoS entries
12. For each hostname found we will execute:
 - DELETE from nas_transaction_log where hostname = 'xxx'
 - DELETE from nas_transaction_summary where hostname = 'xxx'
13. Execute the query: “SELECT ip,os_major,os_minor,domain,hub,robot,origin,is_hub,robot_active,user_tag_1,user_tag_2,address,dev_name FROM CM_NIMBUS_ROBOT r,CM_DEVICE d where r.dev_id = d.dev_id” and create a hub table and a robot table.
14. For each selected device we can find thanks to the just created tables the related hub and the hub address.
15. For that device use callback: removerobot on the owning hub (if a hub was found)
16. For each matched device we use the nas callback: nameservice_remove (if -n"y")

[bookmark: _Toc23750320]1.9 Debugging

The most important customizations are located in nimsoft_generic.dat. The passwords for SQL and UIM access are encrypted by the: nimsoft_crypt.exe tool.
All references to domain, hub and robot are case sensitive and must be entered like you defined them during UIM setup.
When running in simulation mode the tool will only logon the SQL to get the needed information.
Only when you add -s"n", no simulation, we will need to logon to UIM.
The SQL select and delete calls are executed via a PERL DBI:ODBC interface. For MSSQL and MySQL the interfaces are included in the compiled version.
In non-simulation mode, we will need to do a logon into UIM to have the possibility to execute the probe callbacks. Here we need a robot installed locally to have the logon possibilities.
In case of doubt you can use the special debugging parameters:
-s"y" -d"p"
This activates simulation mode, but it will print a PU command to execute the callbacks: remove_master_device_by_cskey and removerobot.
So, you can copy the generated command and execute it from the local /nimsoft/bin directory.
This PU command will show you more in detail why the tool cannot execute the callback.

[bookmark: _Toc23750321]
2 - Nimsoft_generic.dat (settings)

All custom reporting tools use a common parameter file: nimsoft_generic.dat

-- UMP server & port & http/https
uim_server=ump_server_name
uim_port=80
uim_https=http

--- Nimsoft userid and crypted password (via nimsoft_crypt.exe)
uim_user=administrator
uim_password=gWL/M/ij/

--- Nimsoft domain, hub and robot to create address to the main hub
uim_domain=xxx_domain
uim_hub=xxx_hub
uim_robot=xxx

--- SQL server, userid, crypted password (via nimsoft_crypt.exe) and databasename
sql_server=sql_server_name
sql_user=sa
sql_password=gWL/M/ij/
sql_db=CA_UIM
sql_type=mssql
- sql_driver: "SQL Server" (=default) or a manual installed newer driver, example: "ODBC Driver 17 for SQL Server" (* no quotes around driver name *)
sql_driver=SQL Server

--- end of parameters ---

The 2 passwords are stored in an encrypted form. To generate this encrypted password, use:

nimsoft_crypt.exe your_password

As output, you will receive the string that you can copy as encrypted password in the above file.

Note: version 2.5 introduced a new nimsoft_generic.dat parameter: uim_https. This parameter is not used by this tool, but used by tools that need to access UIM via HTTPS, if activated.

Note1: this nimsoft_generic.dat is common between multiple tools. It is possible that the tool you are working with is not using all variables in this file.
Note2: if you use "sql_user=trusted" and use also "sql_password=" we will connect to MSSQL via a trusted connection. (=your logged on userid)
Note3: the uim_robot must be defined in the format/case that UIM recognize them. (like it's displayed in IM)
Note4: sql_driver: previously we used the hardcoded sql driver “SQL Server” that is by default installed in Windows systems. But when you want to connect to TLS 1.2 MSSQL you need to install (manually) a newer MSSQL driver (example: ODBC Driver 17 for SQL Server)
Note5: In case you receive a "communication error" while using a non-simulation execution of the tool, try to use the: /uim_domain/uim_hub/uim_robot values like you use it in nimsoft_generic.dat in the command:

pu -u administrator -p ??? /bgbulab47_domain/bgbulab47_hub/bgbulab47/discovery_server get_snmp_devices

This commands must give a normal output like:

[image:]

These names are case sensitive.

[bookmark: _Toc23750322]3 - Create Windows Perl environment

This tool contains the Perl source and compiled Perl.
If you want to create a Perl environment that can run this Perl source & optionally compile the source yourself, you can follow the documented steps.
Once the Perl environment is created you can compile the Perl source:

pp -C -o c:\unibat\nimsoft_delete_device.exe c:\unibat\nimsoft_delete_device.pl
pp -C -o c:\unibat\nimsoft_delete_device_mysql.exe -l="C:\strawberry\c\bin\libmysql__.dll" c:\unibat\nimsoft_delete_device.pl

Note1: you must execute this PP command from a command prompt with as directory where you placed:
1. nimsoft_delete_device.pl
1. nimsoft_generic.pm
Note2: the -l option is needed to include all dll modules to be able to execute the compiled module on an external server without Perl installed.

0. download from: http://strawberryperl.com/releases.html the file:
0. strawberry-perl-5.14.2.1-64bit.msi (it's a must that you download version 5.14.2)
0. install the msi in: c:\Strawberry64 (as an example)
0. verify that the following directories are in the system path:
2. C:\strawberry64\perl\bin
2. C:\strawberry64\perl\site\bin
2. C:\strawberry64\c\bin
0. refresh the command prompt or reboot the activate the path
0. deploy the probe: SDK_Perl to the main UIM server (this creates: C:\Program Files (x86)\Nimsoft\perllib)
0. copy the directories under: C:\Program Files (x86)\Nimsoft\perllib to C:\strawberry64\perl\lib
0. now you are ready to install additional packages via cpan (from command prompt): (you need internet access because these modules are get directly from cpan):
0. cpan install Crypt::RC4
0. cpan install XML::Simple
0. cpan install HTTP::Request
0. cpan install DBD::ODBC (here you will receive some messages, but it's normal)
0. cpan install MIME::Base64
0. cpan install Time::Piece
0. cpan install Time::Seconds
0. cpan install LWP::UserAgent
0. (cpan install -f WWW::Mechanize) (generates messages and can take a long time to complete)
0. cpan install PAR::Packer
0. cpan install MIME::Lite
0. cpan install Data::GUID
0. cpan install Sys::HostAddr
0. (cpan install XML::LibXML)
0. cpan –fi Statistics::LineFit
0. cpan install Math::Spline
0. cpan install DBD::CSV
0. (cpan install DBD::Chart)
0. cpan install Net::SNMP
0. pip http://strawberryperl.com/package/kmx/perl-modules-patched/Crypt-OpenSSL-Random-0.04_patched.tar.gz
0. (cpan -fi Net::SSL::ExpireDate) (generates a lot of messages and can take some time)
0. cpan install Win32::Console
0. cpan install Term::ANSIColor
0. cpan install Win32::Console::ANSI

Note: the lines between () are not needed to run the probe or utility but are packages that are also installed on the original Perl directory received from CA services. (and can be needed if you run other customized reports/tools/probes)

[bookmark: _Toc23750323]4 - Create Linux Perl environment

[bookmark: _Toc467224118][bookmark: _Toc23750324]4.1 install Perl base

- deploy Perl probe package (perl_linux_23_64)
- deploy Perl UIM SDK probe (SDK_Perl)
- add in /etc/bashrc:
PATH=/opt/nimsoft/perl/bin:$PATH
- add perl5lib
* Add a file in directory: /etc/profile.d example: setperl.sh
* add in this file:
export PERL5LIB=/opt/nimsoft/perllib:/root/perl5/lib/perl5:/root/perl5/lib/perl5:/root/perl5/lib/perl5
- login again or reboot to activate settings

[bookmark: _Toc467224119][bookmark: _Toc23750325]4.2 Install C compiler

- to install the c compiler (to install other packages):
Yum group install “Development Tools”
Yum install expat-devel
Probably the "Development Tools" will have added also version of Perl installed, but uimperl is first in definitions.
[bookmark: _Toc467224120][bookmark: _Toc23750326]4.3 Install additional Perl Packages

- Note: in this order this will install perl in /opt/nimsoft/perl
- Install now the additional Perl packages (needed by several chrlu01 utilities), all done by:
cpan install package (the first cpan install will ask to configure cpan)
-	cpan install Encode::Locale
-	cpan install File::Listing
-	cpan install HTML::Entities
-	cpan install HTML::HeadParser
- cpan install IO::HTML
- cpan install LWP::MediaTypes
- cpan install URI
- cpan install HTTP::Cookies
-	cpan install HTTP::Daemon
-	cpan install HTTP::Headers::Util
- cpan install HTTP::Negotiate
- cpan install YAML
- cpan install Net::HTTP
- cpan install WWW::RobotRules
-	cpan install LWP::UserAgent
-	cpan install XML::Simple
- cpan install Crypt::RC4
- cpan install File::Which
 - (check yum install perl-XML-LibXML-2.0018-5.el7.x86_64
- yum install libxml2
- yum install libxml2-devel
- cpan install XML::LibXML
- cpan install Win32::Console
- cpan install Term::ANSIColor
- cpan install Win32::Console::ANSI

[bookmark: _Toc467224121][bookmark: _Toc23750327]4.3.1 Perl modules MySQL

If you need the MySQL/MariaDB interface on a server without the DB itself:
· goto directory: /etc/yum.repos.d/ and create a file (example) mariadb.repo
· copy the following in the file (or generate the content via: https://downloads.mariadb.org/mariadb/repositories/#mirror=nucleus
#MariaDB 10.1 CentOS repository list - created 2016-11-18 06:47 UTC #http://downloads.mariadb.org/mariadb/repositories/
[mariadb] name = MariaDB
baseurl = http://yum.mariadb.org/10.1/centos7-amd64
gpgkey=https://yum.mariadb.org/RPM-GPG-KEY-MariaDB
gpgcheck=1
· add in bashrc:
export DBD_MYSQL_CFLAGS=-I/usr/local/mysql/include/mysql
export DBD_MYSQL_LIBS="-L/usr/local/mysql/lib/mysql -lmysqlclient"
export DBD_MYSQL_EMBEDDED=
export DBD_MYSQL_CONFIG=mysql_config
export DBD_MYSQL_NOCATCHSTDERR=0
export DBD_MYSQL_NOFOUNDROWS=0
export DBD_MYSQL_NOSSL=
export DBD_MYSQL_TESTDB=test
export DBD_MYSQL_TESTHOST=mysql_server
export DBD_MYSQL_TESTPASSWORD=xxx
export DBD_MYSQL_TESTPORT=3306
export DBD_MYSQL_TESTUSER=root
· run: yum install MariaDB-client
· yum install perl-DBD-mysql
· yum install mysql-devel
· yum install zlib-devel
· yum install openssl-devel
· cpan install DBD::mysql

Note: you will remark that sometimes a pre-requisite package can be missing, you will need to install the missing pre-requisite also. (here it's a big difference with Strawberry Perl on Windows that installs automatically all missing pre-requisites)
Note:If cpan is not initialized correctly, remove /root/.cpan (rm –rf /root/.cpan) and excutecpan again to reinit

[bookmark: _Toc467224122][bookmark: _Toc23750328]4.3.2 Compiling Perl

Note: if you want to compile Perl sources and you don't have the PP command you can install:
- Cpan install PAR
-	cpan install PAR::Packer

To compile a module:
pp -C -o test.bin test.pl
this to compile a very simple Perl
pp -C -o nimsoft_delete_device.bin -l /usr/lib64/libodbc.so.2 -l /usr/lib64/libmysqlclient.so nimsoft_delete_device.pl
this to compile a Perl that will access MySQL and you want to be able to execute this .bin from a standalone machine with no Perl and no MySQL client.

3

image1.png

image2.png

