Table of Contents

1 - Probe_decom	3
1.1 prevent_rediscovery set to n	3
1.2 prevent_rediscovery set to y	3
2 - probe_decom installation	4
3 - probe_decom.cfg configuration	9
4 - Nimsoft_generic.dat configuration	12
5 – MySQL setup	14
5 - start probe_decom	15
6 - probe_decom logic flow	16
7 - Setup Perl environment	18

The custom probe: probe_decom is a probe version of the existing utility nimsoft_delete_device.pl. (Published on CA UIM communities and included in this package)

This probe makes it possible that an end user issues a Nimalarm to request the decommissioning of a device.

The nimalarm will be matched by a NAS profile that will repost the request into a custom queue "decom".

Once the probe receives the alarm from the queue, it will call the Perl: nimsoft_delete_device.pl. (or the compiled version) This tool will/can remove the device in:
· Infrastructure Manager
· USM View
· QoS
· Monitoring profiles (MCS)
· Alarm entries
· NAS address table (default to: n)

Updated:

- 1.0:
· first version. Probe source was copied from probe_maint_on as start template
· moved all options for the external Perl: nimsoft_delete_device.pl to the cfg file: probe_decom.cfg to avoid hard coding option in the probe
- 1.1:
· update in probe_decom.pl and nimsoft_delete_device.pl to give a clear alarm if there is a sql login failure (naturally the pending request is not removed)
- 1.2:
· extra checks for input parameters option_p that will set prevent_rediscovery to y or n
· 1.3:
· the probe now accepts from nimalarm: decom and decomperm. This will set dynamically the option_p to y or n.
Note: check if your nas ao rule for decom defines the message string: /^decom/ accepts the new messages from nimsoft_delete_devices.pl (version 3.3, included in this probe package) to display errors only in the console.
· 1.3.1:
· added option compiled in the cfg file to make it possible to run this probe_decom and nimsoft_delete_device in the compiled format
· both Perl sources are now available and included in compiled format
· 1.3.2:
· The compiled version of probe_decom.exe missed a library
· Update doc for MySQL
· 1.3.4:
· Nimsoft_delete_device has a new option –x to decide how qos data is searched in the DB. (default: y). This parameter can now be used in probe_decom by option_x in probe_decom.cfg.

[bookmark: _Toc462049677][bookmark: _Toc21618672]1 - Probe_decom

The probe probe_decom is a customized solution that makes it possible to remove a device and its related information from UIM.

The decommission request can be issued by any user on any server where an UIM robot is installed by the use of Nimalarm. This tool can be found in the /nimsoft/bin directory.

[bookmark: _Toc21618673]1.1 prevent_rediscovery set to n

nimalarm -l 1 "decom servername"

[bookmark: _Toc21618674]1.2 prevent_rediscovery set to y

Nimalarm –l 1 “decomperm servername”

The decom/decomperm alarm is matched by a NAS AO profile that will repost the message to a custom queue "decom". This new, user created, ATTACH queue "decom" will hold all pending decommission requests until the probe will/did process them.

For each request the probe will execute the external Perl: nimsoft_delete_device.pl. This also means that a new version of this Perl can be included without a change in the probe; it’s enough that this Perl is copied into the directory /nimsoft/probes/custom/probe_decom

[bookmark: _Toc21618675]2 - probe_decom installation

-pre-requisites:

· having Strawberry Perl 5.14.2 installed/copied with the needed packages or copied the Strawberry Perl library received from CA and put the directory in the path or use the .exe version of the probe (= a compiled version of the probe) See appendix on how you can create from scratch a valid Perl environment with the needed packages.
· Or: set the probe_decom.cfg option “compiled=y” to use the compiled format. It is NOT recommended, for performance reasons, to use the compiled versions.

- You will receive a probe file: probe_decom_x.x.zip. This zip file must be dragged/copied to the hub archive from where it can be copied to the main hub.

[bookmark: _GoBack]- Create a NAS profile to trap the decom alarms. The action type must be: repost and the subject must be: decom.

[image:]

Note1: don't select the level 0 (= CLEAR) else you could create a looping rule.
Note2: use as message string: /^decom/, this will accept the alarms starting with “decom” and “decomperm”

- Customize probe_decom.cfg (see next section). This file contains all probe related parameters.
- Customize nimsoft_generic.dat. This file contains all UIM server and security settings.
- in the IM GUI, on your primary hub, edit the probe: probe_decom and verify if the path to Perl is correct.

[image:]

Command points to the perl.exe executable

or

If you use the .exe version:
 - Command: probe_decom.exe
 - arguments: (erase the content)

[image:]
Command points to the compiled executable in the probe_decom directory.

- in the IM GUI select your primary hub probe and select the Queues tab and select: New
[image:]

This new queue will hold all decom requests in case the probe is not (yet) active. This queue will also buffer incoming requests until it is processed by the probe.

Note: by default, we start the Perl version of the probe. If for any reason you prefer a compiled version, we can switch very quickly to that version.

[bookmark: _Toc21618676]3 - probe_decom.cfg configuration

Probe_decom.cfg is a parameter file that contains all user, password and server definitions.

<setup>
--- logfile in same directory as the perl and cfg file
 logfile = probe_decom.log
--- logsize
 logsize = 200000
--- debug mode
 debug = y
--- queue subject (the ATTACH queue, with this subject, MUST be pre-allocated manually)
 queue = decom
--- restart probe after x errors found to post alarm
 restart_after = 5
--- error alarms are using suppression key:
 suppkey = probe_decom
--- remove decom alarm when processed
 remove_msg = y
--- uim user & password (only used when running manually)
 uim_user = administrator
 uim_password = gWL/M/ij/Dvonp0=
--- -r: activate regex for options: -h, -o and -c
 option_r = n
--- -o: filter on origin
 option_o =
--- -q: delete qos
 option_q = y
--- -i: delete in hub/im
 option_i = y
--- -a: delete in nas_transaction_log & nas_transaction_summary
 option_a = n
--- -m: delete mcs records
 option_m = y
--- -v: verbose
 option_v = y
--- -v: verbose on sql delete
 option_t = n
--- -s: simulate run
 option_s = n
--- -p: prevent_rediscovery (y,n) (this will be the default for decom request, a decomperm request will override this option to: y)
 option_p = n
--- -x: get data directly from s_qos_data (n) or link tables: CM_COMPUTER_SYSTEM, CM_DEVICE, CM_CONFIGURATION_ITEM, CM_CONFIGURATION_ITEM, CM_CONFIGURATION_ITEM_METRIC and S_QOS_DATA (y)
(old behaviour: y)
 option_x = y
--- compiled: do you use want to call the compiled nimsoft_delete_device.exe?
 compiled = n
</setup>

The password is stored in an encrypted form. To generate this encrypted password, use:

nimsoft_crypt.exe your_password

As output you will receive the string that you can enter as password in the above file.

· Logfile: filename for the log file
· Logsize: size for the logfile
· Debug: if you want to see more info in the log file located in the probe directory
· Queue: ATTACH queue that will be used by the probe. This queue must be created manually via the HUB gui.
· Suppkey: suppression key used by the probes own alarms
· Remove_msg: do you want to Clear the original decom alarm when the delete is ended. (normally set to: y)
· Uim_user: UIM IM user used when running probe as a standalone Perl for debugging reasons (in standalone mode there will be much more details in the output)
· Uim_password: encrypted UIM password for uim_user
· option_r: do you want to activate the regex option for the server and origin fields? (default: n)
· option_o: do you want to filter on origin
· option_q: do you want to delete all QoS for this device (default: y)
· option_i: delete device info in hub/im (default: y)
· option_a: delete alarm info in nas_transaction_log and nas_transaction_summary (default: n)
· option_m: delete MCS info (default: y)
· option_t: verbose on sql delete (default: n)
· option_v: verbose (default: y)
· option_s: simulate run (default: n)
· option_p: this option will set the prevent_discovery option of the callback remove_master_device_by_cskey when using the decom as first word in the Nimalarm. When set to y the delete option will result in the device to be flagged as non rediscoverable. The same device cannot be discovered again. This is done by UIM:
· pre 9.0.2: device is added in a file: excluded_devices.csv from directory: discovery_server
· 9.0.2: device is added as an entry in table: CM_BLACKLIST_DEVICE and CM_BLACKLIST_COMPUTER_SYSTEM
· option_x: qos search (default: y) by setting this option to n you can instruct to search in the “old” way in s_qos_data for qos entries to be removed. (see nimsoft_delete_device doc to see the 2 sql queries that are used)
[bookmark: _Toc510337169]

[bookmark: _Toc21618677]4 - Nimsoft_generic.dat configuration

All custom reporting tools use a common parameter file: nimsoft_generic.dat

-- UMP server & port & (http or https)
uim_server=server_ump
uim_port=80
uim_https=http

--- Nimsoft userid and crypted password (via nimsoft_crypt)
uim_user=administrator
uim_password=gWL/M/ij/Dv
--- Nimsoft domain, hub and robot to create address to the main hub (CASE sensitive!!!)
uim_domain=uim_domain
uim_hub=uim_hub
uim_robot=uim_robot

--- SQL server, userid, crypted password (via nimsoft_crypt) and database name
sql_server=server_sql
sql_user=sa
sql_password=gWL/M/ij/D
sql_db=CA_UIM
- sql_type: mssql or mysql
sql_type=mssql

--- end of parameters ---

The 2 passwords are stored in an encrypted form. To generate this encrypted password, use:

nimsoft_crypt.exe your_password

As output, you will receive the string that you can copy as encrypted password in the above file.

Note: version 2.5 introduced a new nimsoft_generic.dat parameter: uim_https. This parameter is not used by this tool, but used by tools that need to access UIM via HTTPS, if activated.

Note1: this nimsoft_generic.dat is common between multiple tools. It is possible that the tool you are working with is not using all variables in this file.
Note2: if you use "sql_user=trusted" and use also "sql_password=" we will connect to MSSQL via a trusted connection. (=your logged on userid)
Note3: the uim_robot must be defined in the format/case that UIM recognize them. (like it's displayed in IM)
Note4: In case you receive a "communication error" while using a non-simulation execution of the tool, try to use the: /uim_domain/uim_hub/uim_robot values like you use it in nimsoft_generic.dat in the command:

pu -u administrator -p ??? /bgbulab47_domain/bgbulab47_hub/bgbulab47/discovery_server get_snmp_devices

This commands must give a normal output like:

[image:]

These names are case sensitive.

[bookmark: _Toc21618678]5 – MySQL setup

In case your CA_UIM database is running on MySQL you need:
· in nimsoft_generic.dat, parameter “sql_type=mysql”
· the next step is only needed when you are running the compiled versions:
· rename nimsoft_delete_device.exe into nimsoft_delete_device_mssql.exe
· copy from the zip: probe_decom_extra_files.zip the file: nimsoft_delete_device_mysql.exe in directory ../probes/probe_decom
· rename nimsoft_delete_device_mysql.exe into nimsoft_delete_device.exe

[bookmark: _Toc21618679]5 - start probe_decom

After the initial deployment of the probe it's not started by default because you need all the previous customizations steps. If all these steps are done you can start the probe and select the "view log" option"

probe_decom: step 0.01: 1 - received: decom chrlu01w11 - set prevent_rediscovery to n
probe_decom: *** Simulation run: no deletes are performed ***
probe_decom: step 0.03: Start processing devices
probe_decom: step 1.01: We added device string: chrlu01w11
probe_decom: step 2.02: select device: chrlu01w11 cs_id: 13437 origin: bgbulab dedic: Host
probe_decom: step 2.02: select device: chrlu01w11 cs_id: 13438 origin: bgbulab57_hub dedic: Device
probe_decom: step 2.05: We found 2 matching devices in cm_computer_system (matching: chrlu01w11,chrlu01w11) (csids: 13437,13438)
probe_decom: [30;43mstep 3.02: delete devices bypassed due to simulation run[0m
probe_decom: step 4.03: selected: 25 QoS (QoS total: 779) (Use -l"y" to see QoS details)
probe_decom: step 4.05: selected: 0 SSR/MCS QoS (Use -l"y" to see QoS details)
probe_decom: step 4.06: delete QoS bypassed due to simulation run
probe_decom: step 4.07: delete MCS/SSR bypassed due to simulation run
probe_decom: step 5.07: delete alarms for 2 devices (cs_id's) bypassed due to simulation run
probe_decom: step 6.05: Delete in hub/IM for 2 devices (cs_id's) bypassed due to simulation run
probe_decom: step 8.00: normal end of Nimsoft_Delete_Device (v3.3)
probe_decom: step 9: 1 - remove request from queue for: decom chrlu01w11
probe_decom: step x: 1 - alarm_level=CLEAR message=decom chrlu01w11 source= suppression=

This log will also contain detailed info about every decom request.

If you try to decommission a non-existent device "aaaa" you will see in level 1 (informational) in the console:
probe_decom - step 2.06: No server match was found in the cm_computer_system table (aaaa)

[bookmark: _Toc21618680]6 - probe_decom logic flow

Note: some of the explained steps can by bypassed by switches in probe_decom.cfg.
This new probe will monitor the attach queue "decom" and will process all (pending) requests.

- once the probe is ready to process the queue he will send an alarm with severity 1:

probe_decom - ready attaching to queue: decom and we can now process decom requests

- when a new "decom\decomperm" enters the queue, the probe will call the external Perl: nimsoft_delete_device.pl with the parameters found in probe_decom.cfg:

Note: when you use decom as first word in nimalarm the option_p value will be used to set the prevent_rediscovery opton. When you use decomperm as first word in the Nimalarm we will override, for that device, the option_p=”y”.

1. sql query: "select name, cs_key, nimbus_type from CM_COMPUTER_SYSTEM order by name"
2. match the (regex only if -r"y") server list entered via -h on the column: name. You can have multiple matches for the same server name if this table contains multiple entries for the same server
3. if no match is found we will stop here by default
4. (optional) match the (regex if -r"y") string entered via -o on the column name: origin.
5. (optional) match the (regex if -r"y") string entered via -c with the column: dedicated
6. all matches on: cs_keys are put in a comma separated string
7. callback probe discovery_serverremove_master_devices_by_cskeys with the list of cs_keys
8. if -c (dedicated) was used, stop here because dedicated has no match in the qos columns. (try to find a match via the tool: nimsoft_qos_delete)
9. sql query if option_x=y : "select qd.origin, qd.robot, qd.probe, qd.qos, cs.name, qd.target, qd.r_table, qd.h_table, qd.table_id,cs.ip from CM_COMPUTER_SYSTEM cs,CM_DEVICEd,CM_CONFIGURATION_ITEMci,CM_CONFIGURATION_ITEM_METRICcim,S_QOS_DATAqd where d.cs_id = cs.cs_id and ci.dev_id = d.dev_id and ci.dev_id = d.dev_id and cim.ci_id = ci.ci_id and qd.ci_metric_id = cim.ci_metric_id"
10. match the (regex) server list with the "cs.name" (qd.source would be the hostname or the ip address depending on the probe, cs.name is always the host name) column, and if -o is used also with the "origin" column and create and execute sql delete statements for every encountered qos:
-DELETE from 'RN_QOS_DATA_0023' where table_id='1480'
-DELETE from 'HN_QOS_DATA_0023' where table_id='1480'
-DELETE from 'DN_QOS_DATA_0023' where table_id='1480'
-DELETE from 'BN_QOS_DATA_0023' where table_id='1480'
-DELETE from S_QOS_DATA where table_id ='1480
11. delete MCS related profiles and QoS entries
12. If -a"y": for each hostname found we will execute:
 - DELETE from nas_transaction_log where hostname = 'xxx'
 - DELETE from nas_transaction_summary where hostname = 'xxx'
13. Execute the query: “SELECT ip,os_major,os_minor,domain,hub,robot,origin,is_hub,robot_active,user_tag_1,user_tag_2,address,dev_name FROM CM_NIMBUS_ROBOT r,CM_DEVICE d where r.dev_id = d.dev_id” and create a hub table and a robot table.
14. For each selected device we can find thanks to the 2 just created tables the related hub and the hub address.
15. For that device use callback: removerobot on the owning hub (if a hub was found)
16. For each matched device we use the nas callback: nameservice_remove (if -n"y")

Note: when a DB connect/login failure is detected in nimsoft_delete_device the probe will not remove the request from the queue and will retry in 3 minutes.

·

[bookmark: _Toc21618681]7 - Setup Perl environment

This tool contains the Perl source and compiled Perl version.
If you want to create a Perl environment that can run this Perl source & optionally compile the source yourself you can follow the documented steps.
Once the Perl environment is created you can compile the Perl source:
pp -C -o c:\unibat\nimsoft_delete_device.exe c:\unibat\nimsoft_delete_device.pl
pp -C -o c:\unibat\nimsoft_delete_device_mysql.exe -l="C:\strawberry\c\bin\libmysql__.dll" c:\unibat\nimsoft_delete_device.pl
Note1: you must execute this PP command from a command prompt with as directory where you placed/copied:
1. nimsoft_delete_device.pl (only an example source name)
1. nimsoft_generic.pm
Note2: the -l option is needed to include all dll modules to be able to execute the compiled module on an external servers without Perl installed.
0. download from: http://strawberryperl.com/releases.html the file:
0. strawberry-perl-5.14.2.1-64bit.msi (it's a must that you download version 5.14.2)
0. install the msi in: c:\Strawberry64 (or any other directory)
0. verify that the following 3 directories are in the system path:
2. C:\strawberry64\perl\bin
2. C:\strawberry64\perl\site\bin
2. C:\strawberry64\c\bin
0. refresh the command prompt or reboot to activate the path
0. deploy the probe: SDK_Perl to the main UIM server (this creates: C:\Program Files (x86)\Nimsoft\perllib)
0. copy the directories under: C:\Program Files (x86)\Nimsoft\perllib to C:\strawberry64\perl\lib
0. now you are ready to install additional packages via cpan (from command prompt): (you need internet access because these modules are get directly from cpan):
0. cpan install Crypt::RC4
0. cpan install XML::Simple
0. cpan install HTTP::Request
0. cpan install DBD::ODBC (here you will receive some messages, but it's normal)
0. cpan install MIME::Base64
0. cpan install Time::Piece
0. cpan install Time::Seconds
0. cpan install LWP::UserAgent
0. (cpan install -f WWW::Mechanize) (generates messages and can take a long time to complete)
0. cpan install PAR::Packer
0. cpan install MIME::Lite
0. cpan install Data::GUID
0. cpan install Sys::HostAddr
0. (cpan install XML::LibXML)
0. cpan –fi Statistics::LineFit
0. cpan install Math::Spline
0. cpan install DBD::CSV
0. (cpan install DBD::Chart)
0. cpan install Net::SNMP
0. pip http://strawberryperl.com/package/kmx/perl-modules-patched/Crypt-OpenSSL-Random-0.04_patched.tar.gz
0. (cpan -fi Net::SSL::ExpireDate) (generates a lot of messages and can take some time)
0. cpan install Win32::Console
0. cpan install Term::ANSIColor
0. cpan install Win32::Console::ANSI
0. cpan install Parallel::ForkManager

Note: the lines between () are not needed to run the probe or utility but are packages that are also installed on the original Perl directory received from CA services. (and can be needed if you run other customized reports/tools/probes)

16

image3.png

image4.png

image5.png

image1.png

image2.png

