
October 11-13, 2009
Amsterdam

On the Fly Transformation Into CA Gen

Mustafa Arikan, Arikan Productivity Group GesmbH
mustafa.arikan@arikan.at

Session Track 3
12th October 11:30 12:10

October 11-13, 2009
Amsterdam

Biography

• Mustafa Arikan studied industrial engineering, mathematics
and computer science in Istanbul and in Vienna and
finished his education in 1986. He has meanwhile 29 years
industrial experience in IT and operations research. He
worked for vendors like IBM and as technology partner of
Computer Associates for various large scale companies and
won many IT awards throughout his career so far. His
companies serve in Austria and Turkey and in cooperation
with partners in over 10 countries mainly in software
modernization.

October 11-13, 2009
Amsterdam

Agenda

Software Modernization.
Legacy Code
Program Transformation.
Goal of Legacy Transformation.
Transformation.
Modernization state-of-the-art
Metamodel Based Transformation
Documentation
Demo.

October 11-13, 2009
Amsterdam

Software Modernization

• Legacy Transformation, or legacy modernization, refers to the rewriting
or porting of a legacy system to a modern computer programming
language, software libraries, protocols, or hardware platform.
Sometimes referred to as software migration, legacy transformation
aims to retain and extend the value of the legacy investment through
migration to new platforms.

• Some parts of this presentation are taken from WIKIPEDIA.
• www.wikipedia.org

http://en.wikipedia.org/wiki/Porting
http://en.wikipedia.org/wiki/Legacy_system
http://en.wikipedia.org/wiki/Computer_programming

October 11-13, 2009
Amsterdam

Software Modernization – Legacy Code

• A legacy code is any application based on older technologies and
hardware, such as mainframes, that continues to provide core services
to an organization. Legacy applications are frequently large and difficult
to modify, and scrapping or replacing them often means re-engineering
an organization’s business processes as well. However, more and more
applications that were written in so called modern languages like java
are becoming legacy. Whereas 'legacy' languages such as Cobol are top
on the list for what would be considered legacy, newer languages can
be just as monolithic, hard to modify, and thus, be candidates of
modernization projects

http://en.wikipedia.org/wiki/Legacy_application

October 11-13, 2009
Amsterdam

Modernization – Program Transformation

• Re-implementing applications on new platforms in this way can reduce
operational costs, and the additional capabilities of new technologies
can provide access to functions such as web services and integrated
development environments. Once transformation is complete and
functional equivalence has been reached the applications can be
aligned more closely to current and future business needs through the
addition of new functionality to the transformed application. The recent
development of new technologies such as program transformation by
software modernization enterprises have made the legacy
transformation process a cost-effective and accurate way to preserve
legacy investments and thereby avoid the costs and business impact of
migration to entirely new software.

http://en.wikipedia.org/wiki/Program_transformation

October 11-13, 2009
Amsterdam

Goal of Legacy Transformation

• The goal of legacy transformation is to retain the value of the legacy
asset on the new platform. In practice this transformation can take
several forms. For example, it might involve translation of the source
code, or some level of re-use of existing code plus a Web-to-host
capability to provide the customer access required by the business. If a
rewrite is necessary, then the existing business rules can be extracted
to form part of the statement of requirements for a rewrite.

• When a software migration reaches functional equivalence, the
migrated application can be aligned more closely to current and future
business needs through the addition of new functionality to the
transformed application.

http://en.wikipedia.org/wiki/Computer_platform
http://en.wikipedia.org/wiki/Rewrite_(programming)

October 11-13, 2009
Amsterdam

Transformation

• PL/1

• COBOL

• CA Gen

• UML

• JAVA

• MSSQL

• ORACLE

October 11-13, 2009
Amsterdam

Transformation
http://www.omg.org/docs/admtf/07-12-01.pdf

October 11-13, 2009
Amsterdam

Metamodel

• Metamodeling, or meta-modeling in software
engineering and systems engineering among other
disciplines, is the analysis, construction and
development of the frames, rules, constraints,
models and theories applicable and useful for
modeling a predefined class of problems. As its
name implies, this concept applies the notions of
meta- and modeling.

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Meta-

October 11-13, 2009
Amsterdam

Formal Grammar

• A formal language is a set of words, i.e. finite strings of letters, symbols,
or tokens. The set from which these letters are taken is called the
alphabet over which the language is defined. A formal language is often
defined by means of a formal grammar (also called its formation rules);
accordingly, words that belong to a formal language are sometimes
called well-formed words (or well-formed formulas).

• A formal grammar (sometimes simply called a grammar) is a set of
rules for forming strings in a formal language. These rules that make up
the grammar describe how to form strings from the language's alphabet
that are valid according to the language's syntax. A grammar does not
describe the meaning of the strings—only their location and the ways
that they can be manipulated

http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Symbol_(formal)
http://en.wikipedia.org/wiki/Symbol_(formal)
http://en.wikipedia.org/wiki/Symbol_(formal)
http://en.wikipedia.org/wiki/Alphabet_(computer_science)
http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/Formation_rule
http://en.wikipedia.org/wiki/Well-formed_formula
http://en.wikipedia.org/wiki/Formation_rule
http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Valid
http://en.wikipedia.org/wiki/Syntax_(programming_languages)
http://en.wikipedia.org/wiki/Semantics

October 11-13, 2009
Amsterdam

Metamodel Creation from Tool MM

October 11-13, 2009
Amsterdam

Metamodel Generation from Grammar

• Text

October 11-13, 2009
Amsterdam

Documentation

October 11-13, 2009
Amsterdam

DEMO

October 11-13, 2009
Amsterdam

Q&A

	On the Fly Transformation Into CA Gen
	Biography
	Agenda
	Software Modernization
	Software Modernization – Legacy Code
	Modernization – Program Transformation
	Goal of Legacy Transformation
	Transformation
	Transformation
	Metamodel
	Formal Grammar
	Metamodel Creation from Tool MM
	Metamodel Generation from Grammar
	Documentation
	DEMO
	Q&A

