
06-Jun-2018Date:

CA InterTest™ and CA
SymDump® - 11.0
Symbolic Support

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 3/69

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to as
the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2018 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Symbolic Support 4

Table of Contents

What is Symbolic Support? ... 8

How Does Symbolic Support Work? ... 9

Symbolic Support for Optimized Applications ... 10

Supported Compilers and Assemblers .. 12
Considerations for Using the Integrated Preprocessors .. 12

PROTSYM File .. 14

Sharing PROTSYM Files ... 15

Loading Symbolic Information ... 16

Creating a PROTSYM File .. 17
CAVHPROT .. 17

Adding Symbolic Information ... 19
IN25SYMC .. 20

IN25SYMC JCL ... 20

IN25SYMC Options ... 21

Controlling Printed Output with the CUTPRINT Option .. 21

Saving Your Listing for Online Display with the LISTER Option .. 22

Setting Data as Nonpurgeable ... 22

Required OS/VS COBOL Options ... 23

Executing IN25SYMC as a Standalone Program .. 23

Symbolic Support 5

Adding IN25SYMC to Your OS/VS COBOL Procedure .. 24

IN25COB2 ... 25

IN25COB2 JCL ... 26

IN25COB2 Options ... 26

Controlling Printed Output with the CUTPRINT Option .. 27

Saving Your Listing for Online Display with the LISTER Option .. 28

Setting Data as Nonpurgeable ... 28

Required COBOL Options ... 29

Executing IN25COB2 as a Standalone Program .. 30

Adding IN25COB2 to Your COBOL Procedure ... 30

Controlling Printed Output with the CUTPRINT Option .. 32

IN25SYMP ... 33

IN25SYMP JCL ... 34

IN25SYMP Options ... 34

Controlling Printed Output with the CUTPRINT Option .. 35

Saving Your Listing for Online Display with the LISTER Option .. 35

Setting Data as Nonpurgeable ... 36

Required PL/I Options ... 36

Executing IN25SYMP as a Standalone Program .. 37

Adding IN25SYMP to Your PL/I Procedure ... 38

IN25SYMA ... 39

IN25SYMA JCL ... 39

IN25SYMA Options ... 40

Controlling Printed Output with the CUTPRINT Option .. 40

Saving Your Listing for Online Display with the LISTER Option .. 41

Setting Data as Nonpurgeable ... 41

Required Assembler Options .. 42

Executing IN25SYMA as a Standalone Program .. 42

Adding IN25SYMA to Your Assembler Procedure .. 43

IN25LINK ... 44

IN25LINK JCL ... 45

IN25LINK Options ... 45

Identifying the Composite Module .. 45

Identifying the Main Program and Subroutines .. 46

Excluding Subroutines ... 46

Required Linkage Editor Options .. 48

Executing IN25LINK as a Standalone Program .. 48

Adding IN25LINK to Your Link-Edit Procedure ... 48

IN25SYMD .. 50

IN25SYMD Options ... 50

Symbolic Support 6

Maintaining a PROTSYM File ... 53
IN25UTIL JCL .. 53

IN25UTIL Functions .. 53

IN25UTIL Parameters ... 58

Dynamic Symbolic Support for CA Endevor Software Change Manager

60
Dynamic Symbolic Support Activation ... 60

Dynamic Symbolic Support Execution .. 60

Single Site ID .. 61

Multiple Site IDs .. 61

Listing Server .. 61

Define Unique PROC .. 61

PROC Customization .. 62

JCL Considerations ... 64

CA Endevor SCM Auto-Populate Activity Log ... 64

Restrictions for PL/I ... 66

How Postprocessors Store Symbolic Information 68
PROTSYM ... 68

Postprocessors .. 68

Execute Postprocessors .. 69

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 7/69

Symbolic Support
This section is intended as a reference for programmers using the symbolic support features of CA
Application Quality and Testing Tools.

What is Symbolic Support? (see page 8)
How Does Symbolic Support Work? (see page 9)
Symbolic Support for Optimized Applications (see page 10)
Supported Compilers and Assemblers (see page 12)
PROTSYM File (see page 14)
Sharing PROTSYM Files (see page 15)
Loading Symbolic Information (see page 16)

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 8/69

What is Symbolic Support?
The term refers to the use of source code information from application programs to symbolic support
enhance and simplify the use of CA Application Quality and Testing Tools products for z/OS.

Some of these products include:

CA InterTest Batch

CA InterTest for CICS

CA Optimizer/II

CA SymDump Batch

CA SymDump for CICS

These products provide application programmers with the critical tools needed to improve
productivity throughout the application life cycle. Symbolic support makes these products easier to
learn and use by speaking to programmers using terms that they recognize and understand from
their own source code.

For example, using symbolic support with an interactive debugger like CA InterTest Batch lets
programmers do the following:

Enter breakpoint commands right on the source listing display.

Stop execution at every label in a program.

Automatically display the values of referenced variables at each statement.

Easily display the value of any program variable.

Set conditional breakpoints based on variable values.

View a trace of all previously executed source statements.

Symbolic support eliminates the need to manually locate variables in storage, compute program
offsets for source statements, or determine which statements were executing. You do not need to
keep program listings open while debugging. All of this is done for you automatically when you use
symbolic support with the CA Application Quality and Testing Tools products for z/OS.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 9/69

How Does Symbolic Support Work?
When your application programs are compiled or assembled, symbolic information about the
program is written to various reports in the output listing. A program called a postprocessor reads
the output listing, collects the symbolic information, and stores it in a symbolic repository called a
PROTSYM.

Using the listing postprocessors to collect symbolic information does not alter your program in any
way. The listing produced by your compiler or assembler is used only as input. Your object module is
not altered. Only the PROTSYM is updated.

After the symbolic information has been stored in the PROTSYM, you can access the information by
any of the CA Application Quality and Testing Tools products to provide symbolic support for your
application.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 10/69

Symbolic Support for Optimized Applications
CA Application Quality and Testing Tools supports programs that have been optimized, either by the
COBOL compiler's OPTIMIZE option or by CA Optimizer or CA Optimizer/II. However, debugging and
post mortem analysis of these programs can sometimes result in unexpected behavior.

Note: The PL/I compilers are optimizing compilers.

Often as part of the optimization process, a compiler will relocate individual instructions, statements,
or even entire paragraphs so that the optimized program will run more efficiently. This means that
some or all of the instructions generated for a given statement may be moved to another statement,
or that some or all of the statements in a paragraph may be moved to another paragraph. When this
type of optimization occurs, the resulting object program and corresponding listing may not
accurately represent the relationship between the source statements and their generated object
code, or even between a paragraph label and the statements contained within the paragraph. As a
result, there may be times when the breakpoint intercept does not occur, or when the wrong
sequence of statements appears to be executed while single-stepping, or when the abending object
code does not correspond to the correct source statement. There may also be times when the
debugger appears to highlight the wrong statement at a breakpoint intercept or the dump analysis
identifies the wrong statement as the abending source statement.

These unexpected displays do not indicate that a program is being executed incorrectly or that an
abend is being incorrectly analyzed. They simply indicate that the debugger or dump analyzer
sometimes cannot accurately identify exactly which object code corresponds to which source
statement, or which statement is contained within which paragraph.

The CA Application Quality and Testing Tools products use the information in the compiler-generated
procedure map or offset report to establish the program offset for each statement and label in the
program. During execution or abend processing, the debugger or abend analyzer recognizes the start
of the new statement or label by matching the program offset of the currently executing instruction
with the PROTSYM information obtained from the compiler listing. Therefore, the accuracy with
which the debugger or abend analyzer can represent a breakpoint or other intercept or the abending
statement is only as good as the information in the compiler listing.

Inaccuracies may include, but will not be limited to:

Incorrect execution when using the SKIP, GO stmt# or CS stmt# commands

Failure to stop at a breakpoint at a paragraph label or statement

Unexpected or out of sequence highlighting of statements when single-stepping

Incorrect identification of the statement which contains the abending object code

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 11/69

Additionally, application abends may result from the use of the SKIP, GO stmt# or CS stmt#
commands because the optimized object code may have register requirements that do not support
changes to the flow of control. These commands should be avoided when debugging an optimized
program.

For the best debugging results, avoid using optimization whenever possible in your testing
environment. Production applications may be compiled with optimization, and debugging these
applications as they exist without recompiling is supported. However, be aware that you may
experience some of the inaccuracies listed previously under these circumstances.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 12/69

Supported Compilers and Assemblers
Symbolic information is currently supported for programs compiled or assembled by the following
IBM products:

OS/VS COBOL

OS PL/I

VS COBOL II

AD/CYCLE COBOL/370

COBOL for MVS

COBOL for VM

Enterprise COBOL for z/OS

Visual Age PL/I

PL/I for MVS and VM

Enterprise PL/I for z/OS

High Level Assembler for MVS and VM and VSE

Assembler H

Considerations for Using the Integrated
Preprocessors

The integrated CICS translator and integrated SQL coprocessor of Enterprise COBOL for z/OS are fully
supported by the postprocessor. It should be noted, however, that duplicate statement numbers for
those statements generated by the integrated preprocessors are not saved in the PROTSYM. The CA
Application Quality and Testing Tools products required this modification to the saved listing. In
addition, the compiler's LIST option is required to correctly load the symbolic information into the
PROTSYM file.

The postprocessor also supports the integrated CICS and SQL preprocessors of PL/I for z/OS.
However, programs that contain EXEC SQL INCLUDE statements for user-defined members still
require a separate precompile step. (EXEC SQL INCLUDE statements for SQLCA and SQLDA are
supported when using the integrated SQL preprocessor.) It should also be noted that duplicate
statement numbers for those statements generated by the integrated preprocessors are not saved in
the PROTSYM. The CA Application Quality and Testing Tools products required this modification to
the saved listing.

The integrated INCLUDE and MACRO preprocessors of PL/I for z/OS are not supported. A separate

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 13/69

The integrated INCLUDE and MACRO preprocessors of PL/I for z/OS are not supported. A separate
precompile step is required when incorporating external files into your program.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 14/69

PROTSYM File
The PROTSYM file is a VSAM relative record data set (RRDS) with an upper limit of approximately four
million 2 KB data records and capable of storing symbolic information for up to 147,000 application
programs at one time.

The PROTSYM file is defined by IDCAMS and must be initialized by program IN25UTIL before you can
add symbolic information.

Member CAVHPROT in CAI.CAVHJCL contains sample JCL that you can use to allocate and initialize a
PROTSYM file.

Note: The PROTSYM file cannot reside in the LSR pool.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 15/69

Sharing PROTSYM Files
Your PROTSYM files can be shared between CA Technologies products and across multiple systems
and environments. A single PROTSYM file contains symbolic information for both CICS and batch
programs.

Use RESERVE and DEQ macros when updating the PROTSYM file to allow sharing of the file between
regions and systems. The resource major name used in the RESERVE and DEQ macros is INTERTST. If
your installation uses a service that converts RESERVEs into cross-system ENQs, define the major
name INTERTST to the service.

Depending on your needs, you can maintain more than one PROTSYM file at your installation. All of
the CA Application Quality and Testing Tools products support the use of multiple PROTSYM files.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 16/69

Loading Symbolic Information
By modifying the JCL procedures used to compile or assemble your applications, you can
automatically update the symbolic information in your PROTSYM file every time a program is rebuilt.
This is the easiest way to help ensure that the symbolic information in your PROTSYM file matches
the executable for every program. This is also the method that CA Technologies recommends for
maintaining symbolic information.

Alternatively, you can save the listings from your compiles or assemblies and load the symbolic
information later as needed. If you choose this method, you can load symbolic information into your
PROTSYM file using a separate batch job. CA Technologies provides batch utilities that let you load
one or more program listings residing in partitioned data sets (PDS or PDSE), CA Librarian, CA
Panvalet, or CA Endevor SCM format.

Some of the CA Application Quality and Testing Tools products provide additional online functionality
for viewing and maintaining PROTSYM files. For more information about the online utilities for any CA
Technologies product, see the documentation for that product.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 17/69

Creating a PROTSYM File

CAVHPROT
Member CAVHPROT in CAI.CAVHJCL contains sample JCL for defining and initializing a PROTSYM file.
The INITIALIZE, UPDATE, DELETE, PURGE, and RELOAD functions are protected by a password or
external security. The default password is 12345678. To modify the password or enable external
security, run the member CAVHCONF in CAI.CAVHJCL with a modified version of member CAVHCONF
in CAI.CAVHMAC as input before you create your PROTSYM files. You can specify external security or
password protection, but not both.

Note: If you are installing one of the CA Testing and Fault Management products, be sure
to follow the instructions for creating the PROTSYM file in Configuring for the product you
are installing. Some products may provide custom JCL members that have been tailored for
use with the product.

CAVHPROT contains the following two steps:

Step 1 (DEFSYM) -- Invokes IDCAMS to define the PROTSYM file.

Step 2 (LOAD) -- Invokes IN25UTIL to initialize each of the PROTSYM records.

The following JCL for member CAVHPROT shows these two steps:

//CAVHPROT JOB
//DEFSYM EXEC PGM=IDCAMS,REGION=1024K
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE $PROTSYM$ CLUSTER PURGE
 SET MAXCC=0
 DEFINE CLUSTER (NAME($PROTSYM$) -
 REC($RECS$) -
 CISZ(2048) /* DO NOT CHANGE */ -
 VOLUME($SYMVOL$) -
 RECSZ(2040 2040) -
 SHR(4 4) -
 NUMBERED) -
 DATA (NAME($PROTSYM$.DATA))
/*
//LOAD EXEC PGM=IN25UTIL,REGION=2048K
//STEPLIB DD DSN=$LOADLIB$,DISP=SHR
//MESSAGE DD SYSOUT=*
//PROTSYM DD DSN=$PROTSYM$,DISP=SHR
//CARDS DD *
PASSWORD=$PASSWORD$
INITIALIZE
REPORT
/*
//

Make the following substitutions in member CAVHPROT:

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 18/69

1.

2.

3.

4.

5.

$PROTSYM$
The fully-qualified name of your new PROTSYM library.

$SYMVOL$
The volume on which the PROTSYM resides.

$RECS$
The primary space allocation in records. (See Notes 1 and 2.)

$PASSWORD$
The one- to eight-character PROTSYM update password for your installation, from CAVHCONF.
(See Note 3.)
If external security for the symbolic component is enabled in CAVHCONF, this keyword is not
required and will be ignored if it is specified.

$LOADLIB$
The product target library.

Submit the JCL to allocate and initialize a new PROTSYM file.

Do not allocate any secondary space.

The space required depends on many factors including the size of your programs, the number
of variables and labels, the average length of their names, and the LISTER options used for
loading symbolic information. We recommend an initial allocation of 10,000 records. You can
allocate new PROTSYM files as needed, and expand and reorganize existing files.

If you have not altered the installation default, specify PASSWORD=12345678.

The PROTSYM share parameters must be SHR(4,4).

To allow multiple program version support, include the MAXPGMVER=parameter.

Note: For more information about the MAXPGMVER parameter, see Maintaining a
.PROTSYM File (see page 53)

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 19/69

Adding Symbolic Information
You can add symbolic information to your PROTSYM files using the following postprocessors:

IN25SYMC (see page 20)
Loads symbolic information for programs compiled using:

OS/VS COBOL version 2.3 plus PTF8 or higher

CA Optimizer

IN25COB2 (see page 25)
Loads symbolic information for programs compiled using:

Enterprise COBOL for z/OS

IBM COBOL for VM

IBM COBOL for MVS and VM

AD/CYCLE COBOL/370

VS COBOL II

CA Optimizer/II

IN25SYMP (see page 33)
Loads symbolic information for programs compiled using:

Enterprise PL/I for z/OS

IBM PL/I for MVS and VM

Visual Age PL/I

OS PL/I

IN25SYMA (see page 39)
Loads symbolic information for programs compiled using:

High level Assembler for MVS and VM and VSE

Assembler H

IN25LINK (see page 44)
Reads IBM linkage editor output to collect and load subroutine mapping information for
composite load modules.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 20/69

IN25SYMD (see page 50)
Loads multiple COBOL, C, PL/I, and Assembler listings residing in PDS, PDSE, CA Librarian, CA
Panvalet, or CA Endevor SCM format.

IN25SYMC
Use program IN25SYMC to load symbolic information for programs compiled using OS/VS COBOL or
CA Optimizer.

You can execute IN25SYMC as a standalone batch job to load a single COBOL listing that has been
previously saved to a permanent file, or add it to your existing OS/VS COBOL or CA Optimizer JCL
procedure. The method you select depends entirely on the procedures at your own installation. Both
methods are described in this article.

IN25SYMC JCL (see page 20)
IN25SYMC Options (see page 21)
Required OS/VS COBOL Options (see page 23)
Executing IN25SYMC as a Standalone Program (see page 23)
Adding IN25SYMC to Your OS/VS COBOL Procedure (see page 24)

IN25SYMC JCL
The following table describes the DD statements used by IN25SYMC:

DDname Description

STEPLIB The load library containing IN25SYMC.

INPUT The listing that was written to SYSPRINT by the OS/VS COBOL compiler, or by CA
Optimizer, during compilation.

OUTPUT All or part of the original compiler listing is written to this file, depending on your request.

MESSAGE Any messages produced by IN25SYMC during postprocessing are written here.

PROTSYM The file to which the symbolic information is written.

CARDS The input control statements that define the request.

Note: If you are adding a new step for IN25SYMC to a JCL procedure, use program
IN25PARM to write your input control statements to the CARDS file.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 21/69

IN25SYMC Options
Options are passed to IN25SYMC using a parameter statement in the CARDS DD. Specify the
parameter statement as an in-stream control card, or when using a JCL procedure, generate it using
program IN25PARM.

The following JCL shows these options:

//IN25PARM EXEC PGM=IN25PARM,PARM='parameter statement'
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//CARDS DD DISP=(,PASS),DSN=&&CARDS,UNIT=SYSDA,SPACE=(TRK,(1,1))

Parameter statements in the CARDS DD must begin in column 1.

The program name is the only required field on the parameter statement. This positional parameter
defines the name that is used to store the symbolic information in the PROTSYM file. This name is
used by the CA Application Quality and Testing Tools products to locate the symbolic information and
is displayed when listing the contents of your PROTSYM.

In most cases, this name should be the same as the PROGRAM-ID. However, when loading symbolic
information for use with CA InterTest for CICS, you must specify the name of the CICS program
definition, or when using composite support, specify the monitor name.

The following example shows an in-stream parameter statement that you can use to save symbolic
information using the name ORDEDIT:

//CARDS DD *
ORDEDIT
/*

Controlling Printed Output with the CUTPRINT Option
Because you can load symbolic information from a permanent data set or a temporary listing file, you
can also print all or part of the listing generated by the compiler.

Append the CUTPRINT option to your parameter statement to control printing of the compiler listing
as follows:

,CUTPRINT=ALL
Do not print any of the compiler listing.

,CUTPRINT=MAP
Print the listing up to, but not including, the Data Division Map report.

,CUTPRINT=REF
Print the listing up to, but not including, the cross reference of data names.

The following sample parameter statement saves symbolic information for program ORDEDIT and
prints only the source code section of the compiler listing:

//CARDS DD *
ORDEDIT,CUTPRINT=MAP
/*

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 22/69

Note: Specify the CUTPRINT parameter only when you do not want all or part of your
listing printed. The entire listing is printed if this parameter is omitted.

Saving Your Listing for Online Display with the LISTER Option
Append the LISTER option to your parameter statement to control which portion of your source
listing is saved to the PROTSYM file as follows:

,LISTER=ALL
Saves the entire OS/VS COBOL listing.

,LISTER=MAP
Saves the OS/VS COBOL listing up to, but not including, the Data Division Map report.

,LISTER=REF
Saves the OS/VS COBOL listing up to, but not including, the cross reference of data names.

The following sample parameter statement saves symbolic information for program ORDEDIT, does
not print any of the listing, and saves the listing up to, but not including, the Data Division Map report
to the PROTSYM file:

//CARDS DD *
ORDEDIT,CUTPRINT=ALL,LISTER=MAP
/*

Notes:

If the LISTER parameter is omitted, no listing is saved in the symbolic file.

The LISTER parameter is required for use with CA Optimizer, CA SymDump Batch, and
CA InterTest Batch.

To reduce overhead and save space in your PROTSYM file, we recommend that you
specify LISTER=MAP when executing IN25SYMC.

Setting Data as Nonpurgeable
You can mark any saved symbolic data for this program as nonpurgeable. If a program's data is
marked as nonpurgeable, the data is not removed from the PROTSYM when deleting programs using
a purge interval batch run. However, you can delete the data by program name. For instructions on
deleting data from the symbolic file, see .Maintaining a PROTSYM File (see page 53)

To mark data as nonpurgeable, add the NOPURGE option to your parameter statement as the last
option.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 23/69

The following sample parameter statement saves symbolic information for program ORDEDIT, prints
the entire listing, saves the entire listing in the PROTSYM file, and does not let symbolic data be
removed from the symbolic file by a purge interval batch run.

//CARDS DD *
ORDEDIT,LISTER=ALL,NOPURGE
/*

Required OS/VS COBOL Options
The following compiler options are required to load symbolic information for OS/VS COBOL programs
into the PROTSYM file:

Option Description

CLIST or
PMAP

Produces a condensed Procedure Division map or full Assembler Procedure Division
map.

DMAP Produces a Data Division map.

NONUM Suppresses compiler-generated line numbers.

SXREF Produces a cross-reference of data and paragraph names.

VERB Produces a report of verb names.

The following compiler options are required to load symbolic information for a program compiled
using CA Optimizer into the PROTSYM file:

Option Description

DMAP or MDMAP Produces a Data Division map or merged Data Division map.

MLIST Produces a merged Procedure Division map.

NONUM Suppresses compiler-generated line numbers.

XREF Produces a cross-reference of data and paragraph names.

To use symbolic references in OS/VS COBOL, you must declare at least one data item in working
storage.

Executing IN25SYMC as a Standalone Program
Member CAVHSYMC in CAI.CAVHPROC contains sample JCL for executing postprocessor IN25SYMC as
a standalone batch job. Use this member to load symbolic information from previously saved OS/VS
COBOL listings.

//CAVHSYMC PROC PROTSYM=CAI.PROTSYM,
// NAME=XXXXXXXX,
// LISTLIB=USER.LISTLIB,
// MEMBER=XXXXXXXX,
// LISTER=ALL,
// CUTPRINT=ALL
//*
//IN25PARM EXEC PGM=IN25PARM,REGION=512K,
// PARM='&MEMBER,LISTER=&LISTER,CUTPRINT=&CUTPRINT'

//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 24/69

1.

2.

3.

4.

5.

//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//CARDS DD DSN=&&CARDS,DISP=(,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//*
//IN25SYMC EXEC PGM=IN25SYMC,REGION=2M
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//PROTSYM DD DISP=SHR,DSN=&PROTSYM
//INPUT DD DISP=SHR,DSN=&LISTLIB(&MEMBER)
//CARDS DD DSN=&&CARDS,DISP=(OLD,DELETE)
//OUTPUT DD SYSOUT=*,DCB=(LRECL=121,BLKSIZE=2440,RECFM=FBA)
//MESSAGE DD SYSOUT=*
//

You can override the following procedure variables:

Variable Description

PROTSYM Specifies the name of the symbolic file being updated.

NAME Specifies the name that is used to store the symbolic information in the PROTSYM file.
This name is used by the CA Application Quality and Testing Tools products to locate the
symbolic information and is displayed when listing the contents of your PROTSYM.

In most cases, this name should be the same as the PROGRAM-ID. However, when loading
symbolic information for use with CA InterTest for CICS, specify the name of the CICS
program definition, or for composite support, specify the monitor name.

LISTLIB Specifies the name of the partitioned data set containing the listing from the OS/VS
COBOL compiler or CA Optimizer.

MEMBER Specifies the name of the member in the listing library that contains the compiler listing
for the program being added.

LISTER Specifies how much of the listing to write to the OUTPUT file.

CUTPRINT Specifies how much of the listing to write to the OUTPUT file.

Adding IN25SYMC to Your OS/VS COBOL Procedure
To automatically update the symbolic information in your PROTSYM file whenever a OS/VS COBOL
program is compiled, you can add a postprocessor step directly to the JCL procedure that you use to
compile your programs. These same steps also apply to your CA Optimizer procedure.

Follow these steps to update your existing compile procedure:

Ensure that your compile step specifies all of the required OS/VS COBOL options.

Change the DD statement so that a temporary disk file is created for your listing, if the
SYSPRINT output from your compile step is written to SYSOUT.

Add a new IN25PARM step following your compile step to generate the parameter statement
for the postprocessor.

Add a new IN25SYMC step to postprocess the listing from the compile step. The INPUT DD on
this step refers to the same file as the SYSPRINT DD from the compile step.

Add a new IEBGENER step to print the compiler listing only if the compiler detects errors.

The following example shows modifications to a compile procedure:

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 25/69

The following example shows modifications to a compile procedure:

//COB EXEC PGM=IKFCBL00,REGION=4M,
// PARM='SOURCE,DMAP,SXREF,PMAP,VERB,NONUM,&OPTIONS' <= 1

 (Your existing DD statements for OS/VS COBOL)

//SYSPRINT DD DSN=&&LST,DISP=(NEW,PASS), <= 2
// UNIT=SYSDA,SPACE=(CYL,(1,2))
//*
//* GENERATE THE PARAMETER STATEMENT FOR IN25SYMC
//*
//CARDS EXEC PGM=IN25PARM,REGION=1M,COND=(4,LT), <= 3
// PARM='&MEMBER,LISTER=ALL'
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//CARDS DD DSN=&&CARDS,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//*
//* POST-PROCESS THE COMPILER LISTING
//*
//SYM EXEC PGM=IN25SYMC,REGION=4M,COND=(4,LT) <= 4
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//PROTSYM DD DSN=USER.PROTSYM,DISP=SHR
//OUTPUT DD SYSOUT=*,
// DCB=(LRECL=121,BLKSIZE=2420,RECFM=FBA)
//INPUT DD DSN=&&LST,DISP=(OLD,PASS) (See Note 1)
//CARDS DD DSN=&&CARDS,DISP=(OLD,DELETE) (See Note 2)
//MESSAGE DD SYSOUT=*
//*
//PRINT EXEC PGM=IEBGENER,COND=(5,GT,COB) <= 5
//SYSUT1 DD DSN=&&LST,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=*
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY

Notes:

If the SYSPRINT DD on your compile step refers to a permanent data set, the INPUT DD
for IN25SYMC must point to the same data set.

If you prefer to pass your parameter statement as an override in the invoking JCL,
delete the CARDS step, delete this DD statement, and add SYM.CARDS DD to your
invoking JCL member.

IN25COB2
Use program IN25COB2 to load symbolic information for programs compiled using any of the
following products:

Enterprise COBOL for z/OS

IBM COBOL for VM

IBM COBOL for MVS and VM

AD/CYCLE COBOL/370

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 26/69

VS COBOL II

CA Optimizer/II

Note: In this article, the term COBOL refers to any of the COBOL dialects supported by the
IBM compilers listed previously.

Execute IN25COB2 as a standalone batch job to load a single COBOL listing that has been previously
saved to a permanent file, or add it to your existing COBOL or CA Optimizer/II JCL procedure. The
method you select depends entirely on the procedures at your own installation. Both methods are
described in this article.

IN25COB2 JCL (see page 26)
IN25COB2 Options (see page 26)
Required COBOL Options (see page 29)
Executing IN25COB2 as a Standalone Program (see page 30)
Adding IN25COB2 to Your COBOL Procedure (see page 30)

IN25COB2 JCL
The following table describes the DD statements used by IN25COB2:

DDname Description

STEPLIB The load library containing IN25COB2.

INPUT The listing that was written to SYSPRINT by the COBOL compiler, or by CA Optimizer/II,
during compilation.

OUTPUT All or part of the original compiler listing is written to this file, depending on your request.

MESSAGE All messages produced by IN25COB2 during post processing are written to this file.

PROTSYM The file to which the symbolic information is written.

CARDS The input control statements that define the request.

Note: If you are adding a new step for IN25COB2 to a JCL procedure, use program
IN25PARM to write your input control statements to the CARDS file.

IN25COB2 Options
Options are passed to IN25COB2 using a parameter statement in the CARDS DD. Specify the
parameter statement as an in-stream control card, or when using a JCL procedure, generate it using
program IN25PARM as follows:

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 27/69

//IN25PARM EXEC PGM=IN25PARM,PARM='parameter statement'
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//CARDS DD DISP=(,PASS),DSN=&&CARDS,UNIT=SYSDA,SPACE=(TRK,(1,1))

Parameter statements in the CARDS DD must begin in column 1.

The program name is the only required field on the parameter statement. This positional parameter
defines the name that is used to store the symbolic information in the PROTSYM file. This name is
used by the CA Application Quality and Testing Tools products to locate the symbolic information and
is displayed when listing the contents of your PROTSYM.

In most cases, this name should be the same as the PROGRAM-ID. However, when loading symbolic
information for use with CA InterTest for CICS, you must specify the name of the CICS program
definition, or when using composite support, specify the monitor name.

The following example shows an in-stream parameter statement that can be used to save symbolic
information using the name ORDEDIT:

//CARDS DD *
ORDEDIT
/*

Controlling Printed Output with the CUTPRINT Option
Because you can load symbolic information from a permanent data set or a temporary listing file, you
can also print all or part of the listing generated by the compiler.

Append the CUTPRINT option to your parameter statement to control printing of the compiler listing
as follows:

,CUTPRINT=ALL
Do not print any of the compiler listing.

,CUTPRINT=MAP
Print the listing up to, but not including, the Data Division Map report.

,CUTPRINT=REF
Print the listing up to, but not including, the cross reference of data names.

The following sample parameter statement saves symbolic information for program ORDEDIT and
prints only the source code section of the compiler listing:

//CARDS DD *
ORDEDIT,CUTPRINT=REF
/*

Note: Specify the CUTPRINT parameter only when you do not want all or part of your
listing printed. The entire listing is printed if this parameter is omitted.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 28/69

Saving Your Listing for Online Display with the LISTER Option
Append the LISTER option to your parameter statement to control which portion of your source
listing is saved to the PROTSYM file, as follows:

,LISTER=ALL
Saves the entire COBOL listing.

,LISTER=MAP
Saves the COBOL listing up to, but not including, the Data Division map report.

,LISTER=REF
Saves the COBOL listing up to, but not including, the cross reference of data names.

The following sample parameter statement saves symbolic information for program ORDEDIT, does
not print any of the listing, and saves the listing up to, but not including, the Data Division map report
to the PROTSYM file:

//CARDS DD *
ORDEDIT,CUTPRINT=ALL,LISTER=MAP
/*

Notes:

If the LISTER parameter is omitted, no listing is saved in the symbolic file.

The LISTER parameter is required for use with CA Optimizer/II, CA SymDump Batch, and
CA InterTest Batch.

To reduce overhead and save space in your PROTSYM file, we recommend that you
specify LISTER=MAP when executing IN25COB2 unless compiling with Optimizer/II,
which requires LISTER=MMAP.

Setting Data as Nonpurgeable
You can mark any saved symbolic data for this program as nonpurgeable. If a program's data is
marked as nonpurgeable, the data is not removed from the PROTSYM when deleting programs using
a purge interval batch run. However, you can delete the data by program name. See Maintaining a

 for instructions on deleting data from the symbolic file.PROTSYM File (see page 53)

To mark data as nonpurgeable, add the NOPURGE option to your parameter statement as the last
option.

The following sample parameter statement saves symbolic information for program ORDEDIT, prints
the entire listing, saves the entire listing in the PROTSYM file, and does not let symbolic data be
removed from the symbolic file by a purge interval batch run.

//CARDS DD *
ORDEDIT,LISTER=ALL,NOPURGE
/*

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 29/69

Required COBOL Options
The following compiler options are required to load symbolic information for COBOL programs into
the PROTSYM file:

Option Description

MAP Produces a Data Division map.

NONUMBER Suppresses compiler-generated line numbers.

OFFSET or
LIST*

Produces a condensed Procedure map or full Assembler Procedure map.

XREF Produces a cross-reference of data and procedure names.

NOPT or OPT
(0)**

Produces breakpoints synchronized with source.

NOSTGOPT Prevents the compiler from discarding unreferenced data items. The NOSTGOPT option
is only valid for COBOL 5.1 and above.

* The LIST option is required when using the integrated CICS translator or integrated SQL coprocessor
of COBOL for z/OS.

** When a COBOL program is OPTIMIZED, your breakpoints may not get stopped exactly where you
think they should because the optimization is adding or modifying the generated code, and it may
not be synchronized with the related source statements in the listing.

The following compiler options are required to load symbolic information for a program compiled
using CA Optimizer/II into the PROTSYM file:

Option Description

INTERTST Required only when optimizing programs that are monitored using CA InterTest for
CICS.

MAP or
MMAP

Produces a Data Division map or merged Data Division map.

MMAP Required when optimizing programs that are monitored using CA InterTest for CICS.

MOFFSET Produces a merged Procedure map.

NONUM Suppresses compiler-generated line numbers.

XREF Produces a cross-reference of data and paragraph names.

Note: If you are using CA Optimizer/II r7 or higher, you can use the SYM compile-time
option to automatically load symbolic information into your PROTSYM file during
optimization. When using the SYM option, add a PROTSYM DD statement to your compile
/optimize step. No additional option requirements exist when using this method.

To use symbolic references in COBOL, you must declare at least one data item in working storage.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 30/69

Executing IN25COB2 as a Standalone Program
Member CAVHCOB2 in CAI.CAVHPROC contains sample JCL for executing postprocessor IN25COB2 as
a standalone batch job. Use this member to load symbolic information from previously saved COBOL
listings.

//CAVHCOB2 PROC PROTSYM=CAI.PROTSYM,
// NAME=XXXXXXXX,
// LISTLIB=USER.LISTLIB,
// MEMBER=XXXXXXXX,
// LISTER=ALL,
// CUTPRINT=ALL
//*
//IN25PARM EXEC PGM=IN25PARM,REGION=512K,
// PARM='&MEMBER,LISTER=&LISTER,CUTPRINT=&CUTPRINT'
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//CARDS DD DSN=&&CARDS,DISP=(,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//*
//IN25COB2 EXEC PGM=IN25COB2,REGION=2M
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//PROTSYM DD DISP=SHR,DSN=&PROTSYM
//INPUT DD DISP=SHR,DSN=&LISTLIB(&MEMBER)
//CARDS DD DSN=&&CARDS,DISP=(OLD,DELETE)
//OUTPUT DD SYSOUT=*,DCB=(LRECL=133,BLKSIZE=3990,RECFM=FBA)
//MESSAGE DD SYSOUT=*
//

You can override the following procedure variables:

Variable Description

PROTSYM Specifies the name of the symbolic file being updated.

NAME Specifies the name that is used to store the symbolic information in the PROTSYM file.
This name is used by the CA Application Quality and Testing Tools products to locate the
symbolic information and is displayed when listing the contents of your PROTSYM.

In most cases, this name should be the same as the PROGRAM-ID. However, when loading
symbolic information for use with CA InterTest for CICS, specify the name of the CICS
program definition, or for composite support, specify the monitor name.

LISTLIB Specifies the name of the partitioned data set containing the listing from the COBOL II
compiler or CA Optimizer/II.

MEMBER Specifies the name of the member in the listing library that contains the compiler listing
for the program being added.

LISTER Specifies how much of the listing to save in the PROTSYM file.

CUTPRINT Specifies how much of the listing to write to the OUTPUT file.

Adding IN25COB2 to Your COBOL Procedure
To automatically update the symbolic information in your PROTSYM file whenever a COBOL program
is compiled, you can add a postprocessor step directly to the JCL procedure that you use to compile
your programs.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 31/69

1.

2.

3.

4.

5.

Note: These same steps also apply to the CA Optimizer/II procedure.

Follow these steps to update your existing compile procedure:

Ensure that your compile step specifies all of the required COBOL options.

Change the DD statement so that a temporary disk file is created for your listing, if the
SYSPRINT output from your compile step is written to SYSOUT.

Add a new IN25PARM step following your compile step to generate the parameter statement
for the postprocessor.

Add a new IN25COB2 step to postprocess the listing from the compile step. The INPUT DD on
this step refers to the same file as the SYSPRINT DD from the compile step.

Add a new IEBGENER step to print the compiler listing only if the compiler detects errors.

The following example shows modifications to a compile procedure:

//COB EXEC PGM=IGYCRCTL,REGION=4M,
// PARM='S,MAP,X,LIST,NONUM,&OPTIONS' <= 1

 (Your existing DD statements for COBOL II)

//SYSPRINT DD DSN=&&LST,DISP=(NEW,PASS), <= 2
// UNIT=SYSDA,SPACE=(CYL,(1,2))
//*
//* GENERATE THE PARAMETER STATEMENT FOR IN25COB2
//*
//CARDS EXEC PGM=IN25PARM,REGION=1M,COND=(4,LT), <= 3
// PARM='&MEMBER,LISTER=ALL'
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//CARDS DD DSN=&&CARDS,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//*
//* POST-PROCESS THE COMPILER LISTING
//*
//SYM EXEC PGM=IN25COB2,REGION=4M,COND=(4,LT) <= 4
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//PROTSYM DD DSN=USER.PROTSYM,DISP=SHR
//OUTPUT DD SYSOUT=*,
// DCB=(LRECL=133,BLKSIZE=3990,RECFM=FBA)
//INPUT DD DSN=&&LST,DISP=(OLD,PASS) (See Note 1)
//CARDS DD DSN=&&CARDS,DISP=(OLD,DELETE) (See Note 2)
//MESSAGE DD SYSOUT=*
//*
//PRINT EXEC PGM=IEBGENER,COND=(5,GT,COB) <= 5
//SYSUT1 DD DSN=&&LST,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=*
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY

Notes:

If the SYSPRINT DD on your compile step refers to a permanent data set, the INPUT DD
for IN25COB2 must point to the same data set.

If you prefer to pass your parameter statement as an override in the invoking JCL,

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 32/69

If you prefer to pass your parameter statement as an override in the invoking JCL,
delete the CARDS step, delete this DD statement, and add SYM.CARDS DD to your
invoking JCL member.

Controlling Printed Output with the CUTPRINT Option
Because you can load symbolic information from a permanent data set or a temporary listing file, you
can also print all or part of the listing generated by the compiler.

Append the CUTPRINT option to your parameter statement to control printing of the compiler listing
as follows:

,CUTPRINT=ALL
Do not print any of the compiler listing.

,CUTPRINT=REF
Print the listing up to, but not including, the cross reference of data names.

The following sample parameter statement saves symbolic information for program ORDEDIT and
prints only the source code section of the compiler listing:

//CARDS DD *
ORDEDIT,CUTPRINT=REF
/*

Note: Specify the CUTPRINT parameter only when you do not want all or part of your
listing printed. The entire listing is printed if this parameter is omitted.

Saving Your Listing for Online Display with the LISTER Option

Append the LISTER option to your parameter statement to control which portion of your source
listing is saved to the PROTSYM file, as follows:

,LISTER=ALL
Saves the entire compiler listing.

,LISTER=REF
Saves the compiler listing up to, but not including, the cross reference of data names.

The following sample parameter statement saves symbolic information for program ORDEDIT, does
not print any of the listing, and saves the listing up to, but not including, the Data Division map report
to the PROTSYM file:

//CARDS DD *
ORDEDIT,CUTPRINT=ALL,LISTER=MAP
/*

Notes:

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 33/69

If the LISTER parameter is omitted, no listing is saved in the symbolic file.

The LISTER parameter is required for use with CA Optimizer/II, CA SymDump Batch, and
CA InterTest Batch.

To reduce overhead and save space in your PROTSYM file, we recommend that you
specify LISTER=MAP when executing IN25CPPR unless compiling with Optimizer/II,
which requires LISTER=MMAP.

Setting Data as Nonpurgeable

You can mark any saved symbolic data for this program as nonpurgeable. If a program's data is
marked as nonpurgeable, the data is not removed from the PROTSYM when deleting programs using
a purge interval batch run. However, you can delete the data by program name. See Maintaining a

 for instructions on deleting data from the symbolic file.PROTSYM File (see page 53)

To mark data as nonpurgeable, add the NOPURGE option to your parameter statement as the last
option.

The following sample parameter statement saves symbolic information for program ORDEDIT, prints
the entire listing, saves the entire listing in the PROTSYM file, and does not let symbolic data be
removed from the symbolic file by a purge interval batch run.

//CARDS DD *
ORDEDIT,LISTER=ALL,NOPURGE
/*

IN25SYMP
Use program IN25SYMP to load symbolic information for programs compiled using any of the
following products:

Enterprise PL/I for z/OS

IBM PL/I for MVS and VM

Visual Age PL/I

OS PL/I

Note: In this section, the term PL/I refers to any of the PL/I dialects supported by the IBM
compilers previously listed.

Execute IN25SYMP as a standalone batch job to load a single PL/I listing that has been previously
saved to a permanent file, or add it to your existing PL/I JCL procedure. The method you select
depends entirely on the procedures at your own installation. Both methods are described in this
article.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 34/69

IN25SYMP JCL (see page 34)
IN25SYMP Options (see page 34)
Required PL/I Options (see page 36)
Executing IN25SYMP as a Standalone Program (see page 37)
Adding IN25SYMP to Your PL/I Procedure (see page 38)

IN25SYMP JCL
The following table describes the DD statements used by IN25SYMP:

DDname Description

STEPLIB The load library containing IN25SYMP.

INPUTT The listing that was written to SYSPRINT by the PL/I compiler during compilation.

SYSPRINT All or part of the original compiler listing is written to this file, depending on your
request.

MESSAGE and
MSGS

Messages produced by IN25SYMP during postprocessing are written to these files.

PROTSYM The file to which the symbolic information is written.

CARDS The input control statements that define the request.

Note: If you are adding a new step for IN25SYMP to a JCL procedure, use program
IN25PARM to write your input control statements to the CARDS file.

IN25SYMP Options
Options are passed to IN25SYMP using a parameter statement in the CARDS DD. Specify the
parameter statement as an in-stream control card, or when using a JCL procedure, generate it using
program IN25PARM as follows:

//IN25PARM EXEC PGM=IN25PARM,PARM='parameter statement'
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//CARDS DD DISP=(,PASS),DSN=&&CARDS,UNIT=SYSDA,SPACE=(TRK,(1,1))

Parameter statements in the CARDS DD must begin in column 1.

The program name is the only required field on the parameter statement. This positional parameter
defines the name that is used to store the symbolic information in the PROTSYM file. This name is
used by the CA Application Quality and Testing Tools products to locate the symbolic information and
is displayed when listing the contents of your PROTSYM.

When loading symbolic information for use with CA InterTest for CICS, you must specify the name of
the CICS program definition, or when using composite support, specify the monitor name.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 35/69

The following example shows an in-stream parameter statement that you can use to save symbolic
information using the name ORDEDIT:

//CARDS DD *
ORDEDIT
/*

Controlling Printed Output with the CUTPRINT Option
Because you can load symbolic information from a permanent data set or a temporary listing file, you
can also print all or part of the listing generated by the compiler.

Append the CUTPRINT option to your parameter statement to control printing of the compiler listing
as follows:

,CUTPRINT=ALL
Prints none of the compile listing.

,CUTPRINT=REF
Terminates printing after the XREF table.

,CUTPRINT=OFFSET
Terminates printing after the table of offsets.

The following sample parameter statement saves symbolic information for program ORDEDIT and
terminates printing after the XREF table:

//CARDS DD *
ORDEDIT,CUTPRINT=REF
/*

Note: Specify the CUTPRINT parameter only when you do not want all or part of your
listing printed. The entire listing is printed if you omit this parameter.

Saving Your Listing for Online Display with the LISTER Option
Append the LISTER option to your parameter statement to control which portion of your source
listing is saved to the PROTSYM file, as follows:

,LISTER=ALL
Saves the entire PL/I listing.

,LISTER=REF
Saves only the source and XREF sections.

,LISTER=OFFSET
Saves the listing up to, and including, the table of offsets.

The following sample parameter statement saves symbolic information for program ORDEDIT, does
not print any of the listing, and saves only the source and XREF sections of the listing:

//CARDS DD *

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 36/69

//CARDS DD *
ORDEDIT,CUTPRINT=ALL,LISTER=REF
/*

Notes:

If the LISTER parameter is omitted, no listing is saved in the symbolic file.

The LISTER parameter is required for use with CA Optimizer/II, CA SymDump Batch, and
CA InterTest Batch.

Setting Data as Nonpurgeable
You can mark any saved symbolic data for this program as nonpurgeable. If a program's data is
marked as nonpurgeable, the data is not removed from the PROTSYM when deleting programs using
a purge interval batch run. However, you can delete the data by program name. See Maintaining a

 for instructions about deleting data from the symbolic file.PROTSYM File (see page 53)

To mark data as nonpurgeable, add the NOPURGE option to your parameter statement as the last
option.

The following sample parameter statement saves symbolic information for program ORDEDIT, prints
the entire listing, saves the entire listing in the PROTSYM file, and does not let symbolic data be
removed from the symbolic file by a purge interval batch run.

//CARDS DD *
ORDEDIT,LISTER=ALL,NOPURGE
/*

Required PL/I Options
The following compiler options are required to load symbolic information for PL/I programs when
using the OS PL/I or IBM PL/I for MVS and VM compiler:

AGGREGATE
ATTRIBUTES(FULL)
MAP
NEST
NOGONUM

NONUMBER
OPTIONS
SOURCE
STMT or GOSTMT
STORAGE
XREF(FULL)

The following compiler options are required to load symbolic information for PL/I programs when
using Enterprise PL/I for z/OS or Visual Age PL/I:

AGGREGATE
ATTRIBUTES(FULL)
LIMITS(NAME(31))

NOGONUM
NOSTMT
NUMBER

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 37/69

LIST
MAP
NATLANG(ENU)
NEST

OPTIONS
SOURCE
STORAGE
XREF(FULL)

Notes:

Because of special considerations, if you must use the %NOPRINT compiler option,
contact CA Support.

For the CA Application Quality and Testing Tools products to support date/time stamp
comparison between your symbolic information and your executables, you must select
TSTAMP=YES when installing your PL/I compiler.

CA InterTest Batch, CA SymDump Batch, and CA Optimizer/II display only controlled
variables.

When using the IBM PL/I for MVS and VM compiler, the ESD option is required for
programs that have controlled variables.

Executing IN25SYMP as a Standalone Program
Member CAVHSYMP in CAI.CAVHPROC contains sample JCL for executing postprocessor IN25SYMP as
a standalone batch job. Use this member to load symbolic information from previously saved PL/I
listings as follows:

//CAVHSYMP PROC PROTSYM=CAI.PROTSYM,
// NAME=XXXXXXXX,
// LISTLIB=USER.LISTLIB,
// MEMBER=XXXXXXXX,
// LISTER=ALL,
// CUTPRINT=ALL
//*
//IN25PARM EXEC PGM=IN25PARM,REGION=512K,
// PARM='&MEMBER,LISTER=&LISTER,CUTPRINT=&CUTPRINT'
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//CARDS DD DSN=&&CARDS,DISP=(,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//*
//IN25SYMP EXEC PGM=IN25SYMP,REGION=2M
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//PROTSYM DD DISP=SHR,DSN=&PROTSYM
//INPUTT DD DISP=SHR,DSN=&LISTLIB(&MEMBER)
//CARDS DD DSN=&&CARDS,DISP=(OLD,DELETE)
//SYSPRINT DD SYSOUT=*
//MESSAGE DD SYSOUT=*
//MSGS DD SYSOUT=*
//

You can override the following procedure variables:

Variable Description

PROTSYM Specifies the name of the symbolic file being updated.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 38/69

1.

2.

3.

4.

5.

Variable Description

NAME Specifies the name that is used to store the symbolic information in the PROTSYM file.
This name is used by the CA Application Quality and Testing Tools products to locate the
symbolic information and is displayed when listing the contents of your PROTSYM.

When loading symbolic information for use with CA InterTest for CICS, specify the name of
the CICS program definition, or for composite support, specify the monitor name.

LISTLIB Specifies the name of the partitioned data set containing the listing from the PL/I
compiler.

MEMBER Specifies the name of the member in the listing library that contains the compiler listing
for the program being added.

LISTER Specifies how much of the listing to save in the PROTSYM file.

CUTPRINT Specifies how much of the listing to write to the OUTPUT file.

Adding IN25SYMP to Your PL/I Procedure
To automatically update the symbolic information in your PROTSYM file whenever a PL/I program is
compiled, add a postprocessor step directly to the JCL procedure you use to compile your programs.

Follow these steps to update your existing compile procedure:

Ensure that your compile step specifies all of the required PL/I options.

Change the DD statement so that a temporary disk file is created for your listing, if the
SYSPRINT output from your compile step is written to SYSOUT.

Add a new IN25PARM step following your compile step to generate the parameter statement
for the postprocessor.

Add a new IN25SYMP step to postprocess the listing from the compile step. The INPUTT DD
on this step refers to the same file as the SYSPRINT DD from the compile step.

Add a new IEBGENER step to print the compiler listing only if the compiler detects errors.

The following example shows modifications to a compile procedure:

//PLI EXEC PGM=IBMZPLI,REGION=4M,
// PARM=('OBJ,X(F),A(F),OP,MAP,STG,AG,NEST,LIST', <= 1
// 'NIS,S,NOPT,LIMITS(NAME(31)),FLAG(W)')

 (Your existing DD statements for PL/I)

//SYSPRINT DD DSN=&&LST,DISP=(NEW,PASS), <= 2
// UNIT=SYSDA,SPACE=(CYL,(1,2))
//*
//* GENERATE THE PARAMETER STATEMENT FOR IN25SYMP
//*
//CARDS EXEC PGM=IN25PARM,REGION=1M,COND=(4,LT), <= 3
// PARM='&MEMBER,LISTER=ALL'
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//CARDS DD DSN=&&CARDS,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//*
//* POST-PROCESS THE COMPILER LISTING

//*

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 39/69

//*
//SYM EXEC PGM=IN25SYMP,REGION=4M,COND=(4,LT) <= 4
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//PROTSYM DD DSN=USER.PROTSYM,DISP=SHR
//SYSPRINT DD SYSOUT=*
//INPUTT DD DSN=&&LST,DISP=(OLD,PASS) (See Note 1)
//CARDS DD DSN=&&CARDS,DISP=(OLD,DELETE) (See Note 2)
//MESSAGE DD SYSOUT=*
//MSGS DD SYSOUT=*
//*
//PRINT EXEC PGM=IEBGENER,COND=(5,GT,PLI) <= 5
//SYSUT1 DD DSN=&&LST,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=*
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY

Notes:

If the SYSPRINT DD on your compile step refers to a permanent data set, the INPUTT DD
for IN25SYMP must point to the same data set.

If you prefer to pass your parameter statement as an override in the invoking JCL,
delete the CARDS step, delete this DD statement, and add SYM.CARDS DD to your
invoking JCL member.

IN25SYMA
Use program IN25SYMA to load symbolic information for Assembler programs into your PROTSYM
file.

Execute IN25SYMA as a standalone batch job to load a single Assembler listing that has been
previously saved to a permanent file, or add it to your existing Assembler JCL procedure. The method
you select depends entirely on the procedures at your own installation. Both methods are described
in this article.

IN25SYMA JCL (see page 39)
IN25SYMA Options (see page 40)
Required Assembler Options (see page 42)
Executing IN25SYMA as a Standalone Program (see page 42)
Adding IN25SYMA to Your Assembler Procedure (see page 43)

IN25SYMA JCL
The following table describes the DD statements used by IN25SYMA:

DDname Description

STEPLIB The load library containing IN25SYMA.

INPUT The listing that was written to SYSPRINT by the Assembler.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 40/69

DDname Description

OUTPUT All or part of the original Assembler listing is written to this file, depending on your
request.

MESSAGE Messages produced by IN25SYMA during postprocessing are written to this file.

PROTSYM The file to which the symbolic information is written.

CARDS The input control statements that define the request.

Note: If you are adding a new step for IN25SYMA to a JCL procedure, use program
IN25PARM to write your input control statements to the CARDS file.

IN25SYMA Options
Options are passed to IN25SYMA using a parameter statement in the CARDS DD. Specify the
parameter statement as an in-stream control card, or when using a JCL procedure, generate it using
program IN25PARM as follows:

//IN25PARM EXEC PGM=IN25PARM,PARM='parameter statement'
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//CARDS DD DISP=(,PASS),DSN=&&CARDS,UNIT=SYSDA,SPACE=(TRK,(1,1))

Parameter statements in the CARDS DD must begin in column 1.

The program name is the only required field on the parameter statement. This positional parameter
defines the name that is used to store the symbolic information in the PROTSYM file. This name is
used by the CA Application Quality and Testing Tools products to locate the symbolic information and
is displayed when listing the contents of your PROTSYM.

In most cases, this name should be the same as the first CSECT in the Assembler listing. When loading
symbolic information for use with CA InterTest for CICS, you must specify the name of the CICS
program definition, or when using composite support, specify the monitor name.

The following example shows an in-stream parameter statement that can be used to save symbolic
information using the name ORDEDIT:

//CARDS DD *
ORDEDIT
/*

Controlling Printed Output with the CUTPRINT Option
Because you can load symbolic information from a permanent data set or a temporary listing file, you
can also print all or part of the listing generated by the assembler.

Append the CUTPRINT option to your parameter statement to control printing of the assembler
listing as follows:

,CUTPRINT=ALL
Do not print any of the assembler listing.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 41/69

,CUTPRINT=REF
Stops printing the listing after the Cross Reference report.

The following sample parameter statement saves symbolic information for program ORDEDIT without
printing any of the listing:

//CARDS DD *
ORDEDIT,CUTPRINT=ALL
/*

Note: Specify the CUTPRINT parameter only when you do not want all or part of your
listing printed. The entire listing is printed if this parameter is omitted.

Saving Your Listing for Online Display with the LISTER Option
Append the LISTER option to your parameter statement to control which portion of your source
listing is saved to the PROTSYM file as follows:

,LISTER=ALL
Saves the entire assembler listing.

,LISTER=REF
Saves the listing up to, but not including, the Cross Reference report.

The following sample parameter statement saves symbolic information for program ORDEDIT while
printing and saving the listing up to, but not including, the Cross Reference report:

//CARDS DD *
ORDEDIT,CUTPRINT=REF,LISTER=REF
/*

Notes:

If the LISTER parameter is omitted, no listing is saved in the symbolic file.

The LISTER parameter is required for use with CA Optimizer/II, CA SymDump Batch, and
CA InterTest Batch.

Setting Data as Nonpurgeable
You can mark any saved symbolic data for this program as nonpurgeable. If a program's data is
marked as nonpurgeable, the data is not removed from the PROTSYM when deleting programs using
a purge interval batch run. However, you can delete the data by program name. See Maintaining a

 for instructions on deleting data from the symbolic file.PROTSYM File (see page 53)

To mark data as nonpurgeable, add the NOPURGE option to your parameter statement as the last
option.

The following sample parameter statement saves symbolic information for program ORDEDIT, prints

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 42/69

The following sample parameter statement saves symbolic information for program ORDEDIT, prints
the entire listing, saves the entire listing in the PROTSYM file, and does not let symbolic data be
removed from the symbolic file by a purge interval batch run.

//CARDS DD *
ORDEDIT,LISTER=ALL,NOPURGE
/*

Required Assembler Options
The following listing options are required to load symbolic information for assembler programs:

Option Description

DXREF DSECT Cross-Reference

ESD External Symbol Dictionary

NOBATCH Only one assembler source program is in the input source file

USING Using Map report

XREF(FULL) or XREF(SHORT) Full cross-reference or cross-reference of referenced names

Notes:

Do not suppress statements that define the start of a DSECT in the listing by PRINT OFF
or PRINT NOGEN.

High Level Assembler r2.0 users must also specify the LIST(121) option.

High Level Assembler r4.0 users must specify the THREAD option. The NOTHREAD
option is not supported.

Executing IN25SYMA as a Standalone Program
Member CAVHSYMA in CAI.CAVHPROC contains sample JCL for executing postprocessor IN25SYMA as
a standalone batch job. Use this member to load symbolic information from previously saved
Assembler listings.

//CAVHSYMA PROC PROTSYM=CAI.PROTSYM,
// NAME=XXXXXXXX,
// LISTLIB=USER.LISTLIB,
// MEMBER=XXXXXXXX,
// LISTER=ALL,
// CUTPRINT=ALL
//*
//IN25PARM EXEC PGM=IN25PARM,REGION=512K,
// PARM='&MEMBER,LISTER=&LISTER,CUTPRINT=&CUTPRINT'
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//CARDS DD DSN=&&CARDS,DISP=(,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//*
//IN25SYMA EXEC PGM=IN25SYMA,REGION=2M

//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 43/69

1.

2.

3.

4.

5.

//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//PROTSYM DD DISP=SHR,DSN=&PROTSYM
//INPUT DD DISP=SHR,DSN=&LISTLIB(&MEMBER)
//CARDS DD DSN=&&CARDS,DISP=(OLD,DELETE)
//OUTPUT DD SYSOUT=*, DCB=(RECFM=FBM,LRECL=121,BLKSIZE=2420)
//MESSAGE DD SYSOUT=*
//

You can override the following procedure variables:

Variable Description

PROTSYM Specifies the name of the symbolic file being updated.

NAME Specifies the name that is used to store the symbolic information in the PROTSYM file.
This name is used by the CA Application Quality and Testing Tools products to locate the
symbolic information and is displayed when listing the contents of your PROTSYM.

In most cases, this is the name of the first CSECT in the assembler listing. When loading
symbolic information for use with CA InterTest for CICS, specify the name of the CICS
program definition, or for composite support, specify the monitor name.

LISTLIB Specifies the name of the partitioned data set containing the Assembler listing.

MEMBER Specifies the name of the member in the listing library that contains the Assembler listing
for the program being added.

LISTER Specifies how much of the listing to save in the PROTSYM file.

CUTPRINT Specifies how much of the listing to write to the OUTPUT file.

Adding IN25SYMA to Your Assembler Procedure
To automatically update the symbolic information in your PROTSYM file whenever a program is
assembled, add a postprocessor step directly to the JCL procedure that you use to assemble your
programs.

Follow these steps to update your existing assembly procedure:

Ensure that your assemble step specifies all of the required Assembler options.

If the SYSPRINT output from your assemble step is written to SYSOUT, change the DD
statement so that a temporary disk file is created for your listing.

Add a new IN25PARM step following your assemble step to generate the parameter
statement for the postprocessor.

Add a new IN25SYMA step to postprocess the listing from the assemble step. The INPUT DD
on this step refers to the same file as the SYSPRINT DD from the assemble step.

Add a new IEBGENER step to print the Assembler listing only if errors were detected during
the assembly.

The following example shows modifications to an assembly procedure:

//ASM EXEC PGM=ASMA90,REGION=4M,
// PARM='LIST,OBJECT,XREF(FULL),ESD' <= 1

 (Your existing DD statements for the Assembler)

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 44/69

 (Your existing DD statements for the Assembler)

//SYSPRINT DD DSN=&&LST,DISP=(NEW,PASS), <= 2
// UNIT=SYSDA,SPACE=(CYL,(1,2))
//*
//* GENERATE THE PARAMETER STATEMENT FOR IN25SYMA
//*
//CARDS EXEC PGM=IN25PARM,REGION=1M,COND=(4,LT), <= 3
// PARM='&MEMBER,LISTER=ALL'
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//CARDS DD DSN=&&CARDS,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//*
//* POST-PROCESS THE COMPILER LISTING
//*
//SYM EXEC PGM=IN25SYMA,REGION=4M,COND=(4,LT) <= 4
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//PROTSYM DD DSN=USER.PROTSYM,DISP=SHR
//OUTPUT DD SYSOUT=*,DCB=(RECFM=FBM,LRECL=121,BLKSIZE=2420)
//INPUT DD DSN=&&LST,DISP=(OLD,PASS) (See Note 1)
//CARDS DD DSN=&&CARDS,DISP=(OLD,DELETE) (See Note 2)
//MESSAGE DD SYSOUT=*
//*
//PRINT EXEC PGM=IEBGENER,COND=(5,GT,ASM) <= 5
//SYSUT1 DD DSN=&&LST,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=*
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY

Notes:

If the SYSPRINT DD on your compile step refers to a permanent data set, the INPUT DD
for IN25SYMA must point to the same data set.

If you prefer to pass your parameter statement as an override in the invoking JCL,
delete the CARDS step, delete this DD statement, and add SYM.CARDS DD to your
invoking JCL member.

IN25LINK
Use program IN25LINK to define the additional symbolic information required for testing composite
modules using CA InterTest for CICS.

A composite module consists of separately compiled or assembled parts that are brought together
under a single module name by the IBM Linkage Editor. In CICS, a composite module has only one
CICS program definition. You can write the main program and the called subroutines in the same or
different languages.

The Composite Support feature of CA InterTest for CICS lets you test the subroutines of a composite
module as if they were separate programs with separate CICS program definitions. For more
information about this feature, see Composite Support (https://docops.ca.com/display/CAITSD11

./Composite+Support)

https://docops.ca.com/display/CAITSD11/Composite+Support
https://docops.ca.com/display/CAITSD11/Composite+Support
https://docops.ca.com/display/CAITSD11/Composite+Support

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 45/69

IN25LINK uses output from the IBM Linkage Editor and your own additional input cards to associate
the subroutines of a composite module with the monitor names you define. Typically, this program is
executed as a standalone batch job to load output from a single link step.

If the Symbolic File in the JCL PROTSYM DD statement was initialized to allow multiple program
version support, the IN25LINK control statement information will be associated with the latest or
most recently compiled program version specified by the .monitor-name

Note: While it is more efficient to use IN25LINK for composite support, you can provide the
same information online using the CA InterTest for CICS COMPOSITE command or CNTL
menu.

IN25LINK JCL (see page 45)
IN25LINK Options (see page 45)
Required Linkage Editor Options (see page 48)
Executing IN25LINK as a Standalone Program (see page 48)
Adding IN25LINK to Your Link-Edit Procedure (see page 48)

IN25LINK JCL
The following table describes the DD statements used by IN25LINK:

DDname Description

STEPLIB The load library containing IN25LINK.

INPUT The listing that was written to SYSPRINT by the IBM Linkage Editor.

OUTPUT All or part of the original listing is written to this file, depending on your request.

MESSAGE Messages produced by IN25LINK during postprocessing are written to this file.

PROTSYM The file to which the symbolic information is written.

CARDS The input control statements that define the relationships between your monitor names
and the subroutines of your composite module.

IN25LINK Options
Options are passed to IN25LINK using parameter statements in the CARDS DD. Parameter statements
in the CARDS DD must begin in column 1.

Identifying the Composite Module
The first parameter card is . It specifies the CICS program definition name of the composite required
module, beginning in column 1, as follows:

composite-name[,NOPURGE]

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 46/69

The program name specified in this parameter statement must be the same as the CICS program
definition name of the composite module.

You can also specify the NOPURGE option on this statement. This option specifies that symbolic
information for the composite module be purged from the PROTSYM file during a purge cannot
interval batch job.

Identifying the Main Program and Subroutines
Subsequent parameter cards optionally identify the main program and each subroutine that you
want to test separately. These cards can be entered in any order and must specify two names,
separated by commas, as follows:

link-name, monitor-name

link-name identifies the name of the control section as listed in the link-edit map, and must begin in
column 1. For a PL/I program, specify the name of the compiler-generated control section that ends
with '1'.

monitor-name specifies the name under which the program is monitored. Follow these rules in
selecting a :monitor-name

Each must be unique.monitor-name

The of a subroutine cannot be the same as a CICS program definition name.monitor-name

The can be identical to the .monitor-name link-name

Only the first parameter card is required; omit all subsequent cards. If you omit the subsequent
parameter cards, only the name of the composite module is stored in the PROTSYM file. When you
attempt to monitor the composite module with CA InterTest for CICS, you are prompted for
additional composite information.

Excluding Subroutines
By default, IN25LINK excludes subroutines with CEE, DFH, DLZ, IBM, IGZ, and ILB prefixes when it
reads the link-edit map. Usually, you will not want to test these programs.

You can change the default exclusion rules using a parameter card, positioned anywhere in the
CARDS file after the first card, beginning in column 1, as follows:

EXCLUDE=

(or)

EXCLUDE=name[,name,…,name]

Specifying EXCLUDE without any names instructs IN25LINK not to exclude any subroutines.

Specifying EXCLUDE= instructs IN25LINK to exclude subroutines whose names are xxxxxxxx
represented by . Specify the entire to exclude a specific subroutine, or specify a xxxxxxxx link-name
prefix to exclude a group of subroutines.

For example, to exclude all subroutines with the prefix ACA1, specify:

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 47/69

EXCLUDE=ACA1

Example

A composite module with the CICS program definition name BIGMOD consists of several separately
compiled programs and library modules. Its main program is named MAINMOD and is written in
COBOL.

BIGMOD also has three Assembler subroutines named SUBMODA, SUBMODB, and SUBMODC that
you want to test separately. None of the subroutines has its own CICS program definition entry.

After assembling SUBMODA, SUBMODB, and SUBMODC, you loaded their symbolic information by
executing postprocessor IN25SYMA. You selected monitor names of ASMMODA, ASMMODB, and
ASMMODC for the subroutines.

Next, you compiled MAINMOD and loaded its symbolic information by executing postprocessor
IN25COB2. You specified BIGMOD as the monitor name, matching the CICS program definition as
required.

The linkage editor combines the main program and its three subroutines, creating the composite load
module named BIGMOD. The link-edit map output for BIGMOD shows a main entry address of 160,
that BIGMOD has been replaced in the load library, and that it contains the following modules:

Control Section Origin Length Description
DFHECI 00 160 Command level COBOL stub
MAINMOD 160 78A8 Main program-COBOL
ILBOATB 7A08 11A COBOL library module
ILBOCOM0 7B28 73 COBOL library module
SUBMODA 7CA0 1200 Subprogram-Assembler
SUBMODB 8EA0 100 Subprogram-Assembler
SUBMODC 9EA1 93 Subprogram-Assembler

Sample JCL for the link-edit step and IN25LINK is shown as follows:

//*
//* Link Edit Step
//*
//LKED EXEC PGM=IEWL,......
//SYSLIB DD.....
//SYSLMOD DD.....
//SYSUT1 DD.....
//SYSLIN DD.....
//SYSPRINT DD DSN=&&INPUT,DISP=(,PASS),
// UNIT=SYSDA,SPACE=(TRK,(2,5)),
// DCB=(DSORG=PS,LRECL=121,BLKSIZE=2420,RECFM=FB)
//*
//* IN25LINK Step
//*
//POSTLINK EXEC PGM=IN25LINK,REGION=512K
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//INPUT DD DSN=&&INPUT,DISP=(OLD,DELETE)
//MESSAGE DD SYSOUT=*
//OUTPUT DD SYSOUT=*,
// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=2420)
//PROTSYM DD DSN=INTRTST.PROTSYM,DISP=SHR
//CARDS DD *
BIGMOD CICS program definition name of composite module
MAINMOD,BIGMOD link-name and monitor-name of main program
SUBMODA,ASMMODA link-name and monitor-name of subprogram
SUBMODB,ASMMODB link-name and monitor-name of subprogram
SUBMODC,ASMMODC link-name and monitor-name of subprogram
/*

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 48/69

1.

2.

3.

4.

Required Linkage Editor Options
If you are using DFSMS 1.1, you must specify the MAP parameter on the link-edit step.

Executing IN25LINK as a Standalone Program
Member CAVHLINK in CAI.CAVHPROC contains sample JCL for executing postprocessor IN25LINK as a
standalone batch job. Use this member to load composite information from a previously saved
Linkage Editor listing.

//CAVHLINK PROC PROTSYM=CAI.PROTSYM,
// LISTLIB=USER.LISTLIB
// MEMBER=XXXXXXXX
//*
//IN25LINK EXEC PGM=IN25LINK,REGION=2M
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//PROTSYM DD DISP=SHR,DSN=&PROTSYM
//INPUT DD DISP=SHR,DSN=&LISTLIB(&MEMBER)
//OUTPUT DD SYSOUT=*,DCB=(LRECL=121,BLKSIZE=2440,RECFM=FBA)
//CARDS DD DDNAME=CARDS
//MESSAGE DD SYSOUT=*

You can override the following procedure variables:

Variable Description

PROTSYM Specifies the name of the symbolic file being updated.

LISTLIB Specifies the name of the partitioned data set containing your saved IBM Linkage Editor
output listings.

MEMBER Specifies the name of the member in the listing library that contains the listing for the
composite module.

When invoking this JCL procedure, you must include a CARDS DD statement in the invoking JCL.

Adding IN25LINK to Your Link-Edit Procedure
To automatically update the symbolic information in your PROTSYM file whenever a program is link-
edited, you can add a postprocessor step directly to the JCL procedure that you use to link-edit your
programs.

Follow these steps to update your existing link-edit procedure:

Ensure that your link-edit step specifies all of the required link-edit options.

If the SYSPRINT output from your link-edit step is written to SYSOUT, change the DD
statement so that a temporary disk file is created for your listing.

Add a new IN25PARM step following your link-edit step to generate the parameter statement
for the postprocessor.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 49/69

4.

5.

Add a new IN25LINK step to postprocess the listing from the link-edit step. The INPUT DD on
this step refers to the same file as the SYSPRINT DD from the link-edit step.

Add a new IEBGENER step to print the linkage editor listing only if errors were detected during
the link.

The following example shows modifications to a link-edit procedure:

//LINK EXEC PGM=IEWL,REGION=2M,
// PARM='LIST,LET,XREF,MAP' <= 1

 (Your existing DD statements for the link edit)

//SYSPRINT DD DSN=&&LST,DISP=(NEW,PASS), <= 2
// UNIT=SYSDA,SPACE=(CYL,(1,2))
//*
//* GENERATE THE PARAMETER STATEMENT FOR IN25LINK
//*
//CARDS EXEC PGM=IN25PARM,REGION=1M,COND=(4,LT), <= 3
// PARM='&MEMBER'
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//CARDS DD DSN=&&CARDS,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//*
//* POST-PROCESS THE LINK EDIT OUTPUT
//*
//SYM EXEC PGM=IN25LINK,REGION=4M,COND=(4,LT) <= 4
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//PROTSYM DD DSN=USER.PROTSYM,DISP=SHR
//OUTPUT DD SYSOUT=*,DCB=(RECFM=FBM,LRECL=121,BLKSIZE=2420)
//INPUT DD DSN=&&LST,DISP=(OLD,PASS) (See Note 1)
//CARDS DD DSN=&&CARDS,DISP=(OLD,DELETE) (See Note 2)
//MESSAGE DD SYSOUT=*
//*
//PRINT EXEC PGM=IEBGENER,COND=(5,GT,LINK) <= 5
//SYSUT1 DD DSN=&&LST,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=*
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY

Notes:

If the SYSPRINT DD on your link-edit step refers to a permanent data set, the INPUT DD
for IN25LINK must point to the same data set.

If you prefer to pass your parameter statement as an override in the invoking JCL,
delete the CARDS step, delete this DD statement, and add SYM.CARDS DD to your
invoking JCL member.

Note: Using this method, IN25PARM only generates the first parameter card identifying the
name of the composite module. No subsequent cards are generated. This serves only to
identify the name of the composite module, which is stored in the PROTSYM file. When
you attempt to monitor the composite module with CA InterTest for CICS, you may be
prompted for additional composite information.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 50/69

IN25SYMD
Use program IN25SYMD to load symbolic information from multiple COBOL, Assembler, C, or PL/I
listings into your PROTSYM in a single run.

The following table describes the DD statements used by IN25SYMD:

DDname Description

STEPLIB The load library containing IN25SYMD.

PROTSYM The file to which the symbolic information is written.

LISTLIB The data set name of the PDS, PDSE, CA Librarian library, CA Panvalet library, or CA
Endevor SCM library containing the listings to be added.

REPORT An execution summary is written to this file.

OPTIN The input control statements that define the request.

When you load symbolic information from CA Endevor SCM, ensure that the CA Endevor SCM
AUTHLIB, CONLIB, and the data set containing C1DEFLTS are either in LINKLIST or in the STEPLIB
concatenation. When you load symbolic information from CA Librarian or CA Panvalet, ensure that
the CA Librarian or CA Panvalet CAILIB is either in Linklist or in the STEPLIB concatenation.

IN25SYMD Options (see page 50)

IN25SYMD Options
Options are passed to the IN25SYMD using parameter statements in the OPTIN DD. Specify the
parameter statements as an in-stream file.

Parameter statements contain one or more control statements, separated by commas, and each
having the following syntax:

keyword=value

Specify the following option keywords to IN25SYMD:

Keyword Description

LTYP Identifies the library type of the listing library specified by the LISTLIB DD statement. This
keyword is required. Valid values are:

PDS -- Partitioned data set (including PDSE)

SEQ -- Sequential data set (see Note)

LIB -- CA Librarian library

PAN -- CA Panvalet library

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 51/69

Keyword Description

NDV -- CA Endevor SCM library

FROM Identifies the member name for single listings, the starting member name for a range of
members, or a name prefix with trailing asterisk. This keyword is required.

TO Identifies the last member name in a range of members.

MSG Identifies the message reporting level. Valid values are:

ALL -- displays all messages.

RC -- displays a one-line return code message for each program.

NONE -- suppresses all messages.

Note: When LTYP=SEQ is specified, the sequential file contains only one program listing.
Specify the symbolic name using the FROM keyword, omit the TO keyword, and change the
LISTLIB DD name to INPUT.

When using LTYP=NDV, you must also change the EXEC card to the following JCL:

//STEP1 EXEC PGM=NDVRC1,PARM='IN25SYMD',REGION=4M

Examples

This section contains postprocessor IN25SYMD examples.

Example 1

All of the programs with the prefix PAY are loaded into the PROTSYM file from a CA Librarian library,
with all of the messages displayed in the REPORT file.

//STEP1 EXEC PGM=IN25SYMD,REGION=4M
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//PROTSYM DD DISP=SHR,DSN=USER.PROTSYM
//LISTLIB DD DISP=SHR,DSN=USER.LIBRARIAN.LIBRARY
//REPORT DD SYSOUT=*
//OPTIN DD *
 LTYP=LIB,FROM=PAY*,MSG=ALL
/*

Example 2

Program COBDEMO is loaded into the PROTSYM file from a sequential listing file, with messages
suppressed. Note that the DD statement for the LISTLIB has been renamed to INPUT for LTYP=SEQ.

//STEP1 EXEC PGM=IN25SYMD,REGION=4M
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//PROTSYM DD DISP=SHR,DSN=USER.PROTSYM
//INPUT DD DISP=SHR,DSN=USER.SEQ.LISTING
//REPORT DD SYSOUT=*
//OPTIN DD *
 LTYP=SEQ,FROM=COBDEMO,MSG=NONE
/*

Example 3

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 52/69

Example 3

Programs whose names begin with C, D, or E are loaded into the PROTSYM file from a partitioned
data set. A one-line return code message is written to the REPORT file for each program.

//STEP1 EXEC PGM=IN25SYMD,REGION=4M
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//PROTSYM DD DISP=SHR,DSN=USER.PROTSYM
//LISTLIB DD DISP=SHR,DSN=USER.PDS.LIBRARY
//REPORT DD SYSOUT=*
//OPTIN DD *
 LTYP=PDS,FROM=C,TO=E9999999,MSG=RC
/*

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 53/69

Maintaining a PROTSYM File
The IN25UTIL batch utility program maintains and reports on the symbolic file. This program runs in
batch, separate from the postprocessors that are used to load symbolic information into the symbolic
file. This article describes how to maintain the PROTSYM file using IN25UTIL.

IN25UTIL JCL
Member CAVHUTIL in CAI.CAVHJCL contains the following sample JCL for executing IN25UTIL:

// JOB
//IN25UTIL EXEC PGM=IN25UTIL,REGION=2M
//STEPLIB DD DISP=SHR,DSN=CAI.CAVHLOAD
//PROTSYM DD DISP=SHR,DSN=USER.PROTSYM
//OUTPUT DD SYSOUT=*,DCB=(LRECL=133,BLKSIZE=3990)
//MESSAGE DD SYSOUT=*
//CARDS DD *
(input cards go here)

/*

The following table describes the DD statements used by IN25UTIL:

DDname Description

STEPLIB The load library containing IN25UTIL.

PROTSYM The file on which maintenance or reporting is being performed.

MESSAGE Output and messages from IN25UTIL are written to this file.

OUTPUT Output from the PRINT function is written to this file.

UNLOAD Program is written to this file by the UNLOAD function.

RELOAD Program is read from this file by the RELOAD function.

CARDS Contains the function request statements.

IN25UTIL Functions
IN25UTIL functions are requested using control statements in the CARDS file. All control statements
in the CARDS file must begin in column 1.

Note: Some of the following functions support parameters that modify the function results.
Supported parameters are noted in the function description. For complete parameter
descriptions, see .IN25UTIL Parameters (see page 58)

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 54/69

DELETE=name
Deletes all symbolic data for the program specified by name.
The PASSWORD control statement, if specified, must precede the DELETE control statement.
You can use generic program names on the DELETE control statement. Use a trailing wildcard (*)
in the program name to delete all matching programs.
The DELETE function supports the following parameters: AFTERDATETIME, ALL,
BEFOREDATETIME, DATETIME, NEWEST, OLDEST. You cannot use these parameters with a generic
program name.

Example: Delete Symbolic Information by Program

The following example deletes all symbolic data for program ORDEDIT and the oldest version of
program TEST1. It also deletes all programs that start with COB.

//UTILITY JOB
//STEP1 EXEC PGM=IN25UTIL
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//MESSAGE DD SYSOUT=*
//PROTSYM DD DSN=CAI.PROTSYM,DISP=SHR
//CARDS DD *
PASSWORD=12345678
DELETE=ORDEDIT,ALL
DELETE=TEST1,OLDEST
DELETE=COB*
/*

INITIALIZE
Initializes the symbolic file. This function must always be run after a symbolic file is created using
VSAM Access Method Services.
For a newly defined file, the IN25UTIL program preformats all records. If you perform this
function for an existing file, all symbolic data is removed.
The PASSWORD control statement, if specified, must precede the INITIALIZE control statement.
The INITIALIZE function supports the MAXPGMVER and USEDSPACEMSG parameters.

Examples: Initialize a Symbolic File

The following example initializes a symbolic file without support for multiple program versions:

//UTILITY JOB
//STEP1 EXEC PGM=IN25UTIL
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//MESSAGE DD SYSOUT=*
//PROTSYM DD DSN=CAI.PROTSYM,DISP=SHR
//CARDS DD *
PASSWORD=12345678
INITIALIZE
/*

The following example initializes a symbolic file that allows for up to three versions of each program:

//UTILITY JOB
//STEP1 EXEC PGM=IN25UTIL
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//MESSAGE DD SYSOUT=*
//PROTSYM DD DSN=CAI.PROTSYM,DISP=SHR
//CARDS DD *
PASSWORD=12345678
INITIALIZE,MAXPGMVER=3
/*

PASSWORD=pw

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 55/69

PASSWORD=pw
Specifies a password that is required when maintaining the symbolic file. You need to specify the
password only once per execution, but it must precede the first update request.
The value specified must match the value of the SYMPSWD keyword in the CAVHCONF macro.
If EXTSEC=SYMBOLIC is enabled on the CAVHCONF macro, then the PASSWORD=pw statement is
not required and will be ignored.
The default installation password is 12345678.

PRINT=name
Prints the newest or most recent version of the program on the PROTSYM file specified by name.
Ensure to provide the OUTPUT DDname.
The PRINT function supports the following parameters: AFTERDATETIME, ALL, BEFOREDATETIME,
DATETIME, NEWEST, OLDEST.

Example: Print a Program Listing

The following example prints the newest saved listing for program ORDEDIT, all saved listings for
program TEST1, and all listings for program TEST2 that were saved after 28 January, 2014:

//UTILITY JOB
//STEP1 EXEC PGM=IN25UTIL
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//MESSAGE DD SYSOUT=*
//OUTPUT DD SYSOUT=A,DCB=(LRECL=133,BLKSIZE=3990)
//PROTSYM DD DSN=CAI.PROTSYM,DISP=SHR
//CARDS DD *
PRINT=ORDEDIT
PRINT=TEST1,ALL
PRINT=TEST2,AFTERDATETIME=2014/01/28
/*

PURGE=nnn
Removes symbolic data for any program that has not been compiled or assembled within the
number of days specified by , where is a decimal number from 1 to 365.nnn nnn
The PASSWORD control statement, if specified, must precede the PURGE control statement.
Data for programs loaded using the NOPURGE postprocessor option are not affected by this
function.

Example: Purge Symbolic Information by Age

The following example purges all programs that have not been compiled or assembled within the last
20 days:

//UTILITY JOB
//STEP1 EXEC PGM=IN25UTIL
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//MESSAGE DD SYSOUT=*
//PROTSYM DD DSN=CAI.PROTSYM,DISP=SHR
//CARDS DD *
PASSWORD=12345678
PURGE=20
/*

RELOAD=name
Reloads all symbolic data from a dataset to the symbolic file for the program specified by . name
To reload symbolic data for all programs, specify RELOAD=ALL. Ensure to provide the RELOAD
DDname with the following DCB parameter:

DCB=(RECFM=FB,LRECL=2042,BLKSIZE=20420)

The PASSWORD control statement, if specified, must precede the RELOAD control statement.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 56/69

The PASSWORD control statement, if specified, must precede the RELOAD control statement.
You can use generic program names on the RELOAD control statement. Use a trailing wildcard (*)
in the program name to reload all matching programs.
The RELOAD function supports the following parameters: AFTERDATETIME, ALL,
BEFOREDATETIME, DATETIME, NEWEST, OLDEST. These parameters cannot be used with a
generic program name.
You can rename a program that is being a reloaded by providing a new program name after the
RELOAD control statement and any multiversion subparameters. You cannot rename a program
when you specify a generic program name.

Example: Reload Programs

The following example reloads the newest version of program ORDEDIT and all versions that were
processed in February, 2015. It also reloads the oldest version of ORDEDIT while renaming it to
ORDEDIT2 and reloads all programs that start with COB.

//UTILITY JOB
//STEP1 EXEC PGM=IN25UTIL
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//MESSAGE DD SYSOUT=*
//RELOAD DD DISP=SHR,DSN=USER.UNLOAD,
// DCB=(RECFM=FB,LRECL=2042,BLKSIZE=20420)
//PROTSYM DD DSN=CAI.PROTSYM,DISP=SHR
//CARDS DD *
PASSWORD=12345678
RELOAD=ORDEDIT
RELOAD=ORDEDIT,DATETIME=2015/02
RELOAD=ORDEDIT,OLDEST,ORDEDIT2
RELOAD=COB*
/*

REPORT
Produces a Symbolic File report that contains statistics and a detailed report on each program.

Example: Generate Reports

//UTILITY JOB
//STEP1 EXEC PGM=IN25UTIL
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//MESSAGE DD SYSOUT=*
//PROTSYM DD DSN=CAI.PROTSYM,DISP=SHR
//CARDS DD *
REPORT
/*

UNLOAD=name
Unloads all symbolic data from the symbolic file to a dataset for the program specified by name.
To unload symbolic data for all programs, specify UNLOAD=ALL. Ensure to provide the UNLOAD
DDname with the following DCB parameter:

DCB=(RECFM=FB,LRECL=2042,BLKSIZE=20420)

You can use generic program names on the UNLOAD control statement. Use a trailing wildcard (*)
in the program name to unload all matching programs.
The UNLOAD function supports the following parameters: AFTERDATETIME, ALL,
BEFOREDATETIME, DATETIME, NEWEST. You cannot use these parameters with a generic
program name.

Example: Unload Programs

The following example unloads all versions of program ORDEDIT that were processed after 31

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 57/69

The following example unloads all versions of program ORDEDIT that were processed after 31
December, 2014. It also unloads all programs that start with COB.

//UTILITY JOB
//STEP1 EXEC PGM=IN25UTIL
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//MESSAGE DD SYSOUT=*
//PROTSYM DD DSN=CAI.PROTSYM,DISP=SHR
//UNLOAD DD DSN=USER.UNLOAD,
// DISP=(NEW,CATLG,CATLG),SPACE=(CYL,(5,10),RLSE),
// DCB=(RECFM=FB,LRECL=2042,BLKSIZE=20420)
//CARDS DD *
UNLOAD=ORDEDIT,AFTERDATETIME=2014/12/31
UNLOAD=COB*
/*

UPDATE
Updates the values for the USEDSPACEMSG parameter. The PASSWORD control statement, if
specified, must precede the UPDATE control statement.

Example: Update a PROTSYM Parameter

The following example sets the USEDSPACEMSG parameter of the symbolic file to 80:

//UTILITY JOB
//STEP1 EXEC PGM=IN25UTIL
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//MESSAGE DD SYSOUT=*
//PROTSYM DD DSN=CAI.PROTSYM,DISP=SHR
//CARDS DD *
PASSWORD=12345678
UPDATE,USEDSPACEMSG=80
/*

Example: Reorganize the Symbolic File

The following example reorganizes or changes the size of the symbolic file. This job unloads all
programs, deletes and defines the symbolic file, initializes the symbolic file, reloads all programs, and
generates a system report.

//UTILITY JOB
//UNLOAD EXEC PGM=IN25UTIL
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//SYSUDUMP DD SYSOUT=*
//MESSAGE DD SYSOUT=*
//UNLOAD DD DSN=USER.RELOAD,
// DISP=(NEW,CATLG,CATLG),SPACE=(CYL,(5,10),RLSE),
// DCB=(RECFM=FB,LRECL=2042,BLKSIZE=20420)
//PROTSYM DD DSN=CAI.PROTSYM,DISP=SHR
//CARDS DD *
UNLOAD=ALL
/*
//IDCAMS EXEC PGM=IDCAMS,COND=(0,NE,UNLOAD)
//SYSUT1 DD UNIT=SYSDA,VOL=SER=SYMVOL,DISP=SHR
//SYSIN DD *
 DELETE 'CAI.PROTSYM'
 DEFINE CLUSTER (NAME(CAI.PROTSYM) -
 VOLUME(SYMVOL) -
 FILE(SYSUT1) -
 CYLINDERS(20) -
 CISZ(2048) -
 RECSZ(2040 2040) -
 SHR(4 4) -
 NUMBERED) -
 DATA (NAME(CAI.PROTSYM.DATA))
/*

//RELOAD EXEC PGM=IN25UTIL,COND=(0,NE,UNLOAD)

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 58/69

//RELOAD EXEC PGM=IN25UTIL,COND=(0,NE,UNLOAD)
//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR
//SYSUDUMP DD SYSOUT=*
//MESSAGE DD SYSOUT=*
//RELOAD DD DISP=SHR,DSN=USER.RELOAD,
// DCB=(RECFM=FB,LRECL=2042,BLKSIZE=20420)
//PROTSYM DD DSN=CAI.PROTSYM,DISP=SHR
//CARDS DD *
PASSWORD=12345678
INITIALIZE
RELOAD=ALL
REPORT
/*

IN25UTIL Parameters
Some functions support parameters that modify the function results. The functions that support
these parameters are noted in the function description.

AFTERDATETIME=YYYY/MM/DD HH:MM:SS
Applies the function to all versions of the saved source listing for the program specified by name
which were compiled after the specified date timestamp.
You can provide a partial timestamp by omitting time values starting from the smallest unit of
time.

Note: A partial timestamp can also be provided for BEFOREDATETIME and DATETIME.

ALL
Applies the function to all versions of the saved source listing for the program specified by . name
Do not confuse the ALL parameter with the RELOAD=ALL and UNLOAD=ALL functions.

BEFOREDATETIME=YYYY/MM/DD HH:MM:SS
Applies the function to all versions of the saved source listing for the program specified by name
which were compiled before the specified date timestamp.

DATETIME=YYYY/MM/DD HH:MM:SS
Applies the function to all versions of the saved source listing for the program specified by name
which were compiled on the specified date timestamp.

MAXPGMVER
Indicates the number of versions of a single program the PROTSYM will allow (up to 255). The
default value is 1, which indicates no multiple program versions. For assembler programs,
multiple program version support uses the HLASM compile date/time on the listing that has the
format 2014/08/04 08.36. Hence, multiple program listings for the same program that are
compiled within the same minute are not supported.

NEWEST
Applies the function to the newest version of the saved source listing for the program specified by

.name

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 59/69

OLDEST
Applies the function to the oldest version of the saved source listing for the program specified by

.name

USEDSPACEMSG
Specifies the limit of used space in PROTSYM in percentage. When the limit is reached, the
SYM070 message is issued. If the value equals 0, the SYM070 message is not issued.

0Default:
0-99Values:

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 60/69

Dynamic Symbolic Support for CA Endevor
Software Change Manager

Dynamic symbolic support is an automated way to update your PROTSYM files. Dynamic symbolic
support is available to all CA Endevor SCM for Mainframe customers. This feature helps ensure that
the correct symbolic is used for debugging, diagnostics, or measurements. The CA SymDump and CA
InterTest products support the automatic updating of symbolic files (PROTSYM).

Dynamic Symbolic Support Activation (see page 60)
Dynamic Symbolic Support Execution (see page 60)
Listing Server (see page 61)
Define Unique PROC (see page 61)
PROC Customization (see page 62)
JCL Considerations (see page 64)
CA Endevor SCM Auto-Populate Activity Log (see page 64)

Dynamic Symbolic Support Activation
When symbolic information is required for a program, the testing tools product looks for this
information in the PROTSYM files specified for the program that is being debugged or reviewed.

If one of the PROTSYM entries matches the compile date and time, that entry in the PROTSYM is
used. If a matching entry is not found, and if dynamic symbolic support is activated, the system
attempts to locate the CA Endevor SCM footprint and the listing associated with the load module
library, from where the load module was loaded.

If a match is found, the system automatically post-processes the CA Endevor SCM listing into a
designated PROTSYM file so that the correct symbolics are used without any interruption or program
setup.

Dynamic symbolic support is activated based on individual product installation and option settings.
However, the service that dynamic symbolic support provides is centrally delivered through the
symbolic common components. We recommend that you install only one copy of the symbolic
common components.

Dynamic Symbolic Support Execution
Dynamic symbolic support execution depends on whether your site has installed CA Endevor SCM,
and whether your installation uses a single CA Endevor SCM site ID or multiple CA Endevor SCM site
IDs.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 61/69

Single Site ID
Users with a single CA Endevor SCM site ID have the following options:

Have one copy of C1DEFLTS.

Run dynamic symbolic support in the address space of the CA Technologies testing tools product.

Note: To implement dynamic symbolic support in a testing tools environment, see
Interfaces and Compatibility (https://docops.ca.com/display/CAITSD11

./Interfaces+and+Compatibility)

Multiple Site IDs
Users with multiple CA Endevor SCM site IDs have the following options:

Have multiple C1DEFLTS.

Allow dynamic symbolic support for multiple site IDs to be implemented using the Listing Server.

Note: If you are using dynamic symbolic support in a CICS environment, the Listing Server
methodology is always used regardless of the number of site IDs.

Listing Server
When dynamic symbolic support service is requested, Listing Server is spawned as a started task
(STC) through CA CCI.

Note: Data set CAI.CAVHPROC contains a sample PROC that can be used to start the Listing
Server.

Define Unique PROC
Define a unique PROC in your PROCLIB for each CA Endevor SCM site ID in your environment.

Each copy of the PROC must have the following PROCNAME:

https://docops.ca.com/display/CAITSD11/Interfaces+and+Compatibility
https://docops.ca.com/display/CAITSD11/Interfaces+and+Compatibility
https://docops.ca.com/display/CAITSD11/Interfaces+and+Compatibility

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 62/69

Each copy of the PROC must have the following PROCNAME:

xxxxxxxy

xxxxxxx is the first seven characters of the PROCNAME defined in the testing tools product.

y, the eighth character, is your CA Endevor SCM site ID.
For example, if the first seven characters of the PROCNAME are INTNDVR and the CA Endevor
SCM site ID is 4, the PROCNAME defined in your PROCLIB is INTNDVR4.

Note: The first seven character names defined in your PROCLIB must match the
PROCNAME defined to the CA Technologies testing tools product.

PROCNAME is defined in the following elements by product:

CA InterTest Batch is defined in IN25SITE

CA SymDump Batch is defined in CAOUXFDR

CA InterTest for CICS is defined in IN25OPTS

CA SymDump for CICS is defined in IN25OPTS

CA Mainframe Application Tuner is defined in the TUNUDEFS member of the option library

PROC Customization
The sample PROC can be found in CAI.CAVHPROC. When modifying the PROC, consider the following
recommendations:

Specify MSGLEVEL= (1,1) on the JOB statement so that a more comprehensive view of the events
leading up to a problem can be obtained. Set MSGCLASS to a class that does not get purged
immediately after job termination. A sample JOB statement is shown next:

//INTNDVR4 JOB (JOBACNT),MSGLEVEL=(1,1),MSGCLASS=X

Remove the STEPLIB DD statement containing the CAI.CAVHLOAD data set name if the data sets
that contain the symbolic common components are defined in the LINKLIST. A sample STEPLIB DD
statement is shown next:

//STEPLIB DD DSN=CAI.CAVHLOAD,DISP=SHR <== MODIFY

Note: The load module data sets containing symbolic common components must be APF-
authorized.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 63/69

The MODLRESP DD statement specifies the model space allocation (for CA Endevor for SCM
response files) to override the default of (TRK, (5,5)). Depending on your requirement, you can
override this limit to avoid SB37s. A sample MODLRESP DD statement is shown next:

//MODLRESP DD DUMMY,SPACE=(CYL,(1,1)) MODEL FOR RESPONSE DATASET

The MODLLIST DD statement specifies the model space allocation (for CA Endevor for SCM listing
files) to override the default of (TRK, (5,5). Depending on your requirement, you can override this
limit to avoid SB37s. A sample MODLLIST DD statement is shown next:

//MODLLIST DD DUMMY,SPACE=(CYL,(5,5)) MODEL FOR LISTING DATASET

The SRVPRINT DD statement is used to log CA CCI activities. The presence of SRVPRINT triggers
logging information across all dynamic symbolic support components, including CA Endevor for
SCM activities, system assigned DDnames and space allocated for all the work files. A sample
SRVPRINT DD statement is shown next:

//SRVPRINT DD SYSOUT=* <== COMMENT OUT TO TURN OFF LOGGING

Note: We strongly recommend that you do not comment out this DD statement because
the information is critical for CA Technical Support to help you resolve any problems you
encounter.

The DSSLOG DD statement is used to log dynamic symbolic support-related diagnostic messages
including Binder errors and CA CCI feedback messages. A sample DSSLOG DD statement is shown
next:

//DSSLOG DD SYSOUT=* <== COMMENT OUT TO TURN OFF DSS LOGGING

Note: We strongly recommend that you do not comment out this DD statement because
the information is critical for CA Technical Support to help you resolve any problems you
encounter.

The JOBLOG DD statement is used to trigger message extraction when any subtask encounters
critical errors or abends. The extracted messages, including PSW and the registers when the
abend occurred, are reported back to the remote host. A sample JOBLOG DD statement is shown
next:

//JOBLOG DD SYSOUT=* <== REQUIRED FOR REPORTING REMOTE FAILURES

Note: We strongly recommend that you do not comment out this DD statement because
the information is critical for CA Technical Support to help you resolve any problems you
encounter.

If the data sets containing the CA Endevor SCM C1DEFLTS, CA Endevor SCM CSIQLOAD (CONLIB), and
CSIQAUTH (AUTHLIB) data sets are not defined in the LINKLIST, also define these data sets in the
STEPLIB DD statement concatenation.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 64/69

Note: CONLIB must be defined with a DDName of CONLIB. not part of the STEPLIB
concatenation.

JCL Considerations
For single C1DEFLTS environment, in addition to the DD statements required to run the CA
Technologies testing tools product, you must take the following actions:

If the data sets containing the load module libraries of the symbolic common components are not
defined in the LINKLIST, define them using the STEPLIB DD statement concatenation.

Note: The load module data sets containing symbolic common components must be APF-
authorized.

If the data sets containing the CA Endevor SCM C1DEFLTS, CA Endevor SCM CSIQLOAD (CONLIB),
and CSIQAUTH (AUTHLIB) data sets are not defined in the LINKLIST, also define these data sets in
the STEPLIB DD statement concatenation.

Note: CONLIB must be defined with a DDName of CONLIB, not part of the STEPLIB
concatenation.

Set//SRVPRINT DD SYSOUT=* to trigger dynamic symbolic support related logging

Set//DSSLOG DD SYSOUT=* to receive the messages extracted from the list server when you have
a multiple user environment.

Note: The DSSLOG DD statement is not required for a single C1DEFLTS environment.

CA Endevor SCM Auto-Populate Activity Log
The following is a sample Auto Populate Activity Log that displays a list of activities with details such
as date and time of each dynamic symbolic support event.

*** IN25NDVR STARTED AT: 05182011.15021439.
*** L O G F I L E DDNAME:SYS00045
*** ALLOCATING PROTSYM INPUTT FILE.
*** PROTSYM INPUTT FILE ALLOCATED. DDNAME: SYS00046 SPACE=(TRK,(50,50))
*** ALLOCATING PROTSYM OUTPUT FILE.
*** PROTSYM OUTPUT FILE ALLOCATED. DDNAME: SYS00047 SPACE=(TRK,(50,50))
*** ALLOCATING PROTSYM CARDS FILE.
*** PROTSYM CARDS FLE ALLOCATED. DDNAME: SYS00048 SPACE=(TRK,(01,01))
*** ALLOCATING PROTSYM MESSAGE FILE.

*** PROTSYM MESSAGE FLE ALLOCATED. DDNAME: SYS00049 SPACE=(TRK,(01,03))

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 65/69

*** PROTSYM MESSAGE FLE ALLOCATED. DDNAME: SYS00049 SPACE=(TRK,(01,03))
*** ALLOCATING PROTSYM MSGS FILE.
*** PROTSYM MSGS FLE ALLOCATED. DDNAME: SYS00050 SPACE=(TRK,(01,03))
*** ALLOCATING PROTSYM REPORT FILE.
*** PROTSYM REPORT FILE ALLOCATED. DDNAME: SYS00051 SPACE=(TRK,(01,03))
*** ALLOCATING NDVR MESSAGE FILE. *
*** NDVR MESSAGE FILE ALLOCATED. DDNAME: SYS00052 SPACE=(TRK,(01,03))
*** ALLOCATING RESPONSE FILE ***
*** NDVR RESPONSE FILE ALLOCATED. DDNAME: SYS00053 SPACE=(TRK,(05,05))
*** ALLOCATING LISTING FILE. ***
*** NDVR LISTING FILE USED AS INPUT TO PROTSYM POST PROCESSOR ALLOCATED. DDNAME: SYS00
054 SPACE=(CYL,(05,05))
** FOOTPRINT:
 @TTOOLSQABASE COBQAA05 COBCICS PRD 10104...15:35.0......&\...\{.
*** CALLING ENDEVOR API FOR AEPRE OPTION ***
*** BALRING TO ENA$NDVR ****
*** ENDEVOR API STARTED AT: 15:02:14:57 NDVRELEM:COBQAA05 NDVRNAM2:COBQAA05
*** ENDEVOR API ENDED AT: 15:02:17:05
*** ENDEVOR AEPRE API FUNCTION RETURNED RC 0 ***
*** ALLOCATING PROTSYM FILE. DSN: AD1QA.SYMDUM85.GUI.NDVRSYM.NDV14
*** PROTSYM FILE ALLOCATED. DDNAME: SYS00066
*** ADDING COBQAA05 AS COBQAA05 TO PROTSYM DSN: AD1QA.SYMDUM85.GUI.NDVRSYM.ND
*** IN25CDRV RETURN CODE = 0 ***
*** CALLING NDVR TO TERMINATE API ***
*** ENA$NDVR API TERMINATED. ***
*** IN25NDVR ENDED AT: 05182011.15021770.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 66/69

Restrictions for PL/I
Follow these restrictions when using symbolic support:

Controlled Variables are not supported. For example:

DCL A CTL;

In the DCL above, there would be no symbolic support and CORE='A' would not work.

Use of redefine is not supported. For example:

DCL A CHAR(10);
DCL B DEF A;

In the example above, displaying B with CORE would not work.

Adjusted variables are not supported. For example:

PROC1 : PROC;
DCL SIZE BIN FIXED(15,0) INIT(10);
PROC2 : PROC;
DCL ARRAY(SIZE) BIN(15,0);
END;
END;

In the example above, an array could not be displayed using CORE.

Individual array entries are not supported. For example:

CORE= 'A(5)'

This array entry will not work.

Duplicate symbol names in the same PROC are not supported. For example:

DCL A CHAR(5);
DCL 1 Z,
2 P BIN FIXED,
2 A BIN FIXED;

Using the previous example, when CORE='A' is issued, unpredictable results occur. However, the
same variable name in different PROCs is supported. For example:

PROC1 : PROC;
DCL A CHAR;
PROC2 : PROC;
DCL A BIN FIXED;

In the previous example, if CORE='A' were issued in 'PROC1', then the value of 'A' for 'PROC1'
would be displayed. If 'PROC2' had been executed to display the value of 'A' in 'PROC2', use the
following command: CORE='PROC2:A'.

Variables that use the PL/I ALLOC and FREE commands can be looked at with CORE only after the
ALLOC executes and before the FREE executes. For example:

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 67/69

DCL A BASED(P); ... cannot view "A".
ALLOC A; ... can use CORE to view "A".
FREE A; ... can no longer view "A".

Variables declared in a block can't be viewed until the execution of that PROC's PROC/BEGIN
statement. For example:

PROC2 : PROC;
DCL Z CHAR; ... cannot view "P".
 ... can view "Z"..
PROC2 : PROC;
DCL P CHAR; ... can view "P".
 ... can view "Z"..

At least one automatic variable must be declared in a program for symbolics to function.

Only one label can appear on a PROC statement. For example:

LABEL1 : LABEL2 : PROC ;

This is not supported.
Use of the PL/I pre-processor options %NOPRINT, NUMBER, GONUM, and MARGINI is prohibited.
If you must use %NOPRINT, call CA.

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 68/69

How Postprocessors Store Symbolic
Information

PROTSYM (see page 68)
Postprocessors (see page 68)
Execute Postprocessors (see page 69)

When your application programs are compiled or assembled, symbolic information about the
program is written to various reports in the output listing. A program called postprocessor reads the
output listing, collects the symbolic information, and stores it in a symbolic repository called a
PROTSYM.

PROTSYM
The is a VSAM RRDS defined by IDCAMS and initialized using the symbolic utility program PROTSYM
IN25UTIL.

For more information about creating a PROTSYM file, see .Creating a PROTSYM File (see page 17)

Postprocessors
Several postprocessors exist to extract symbolic information from the supported compilers and
assemblers. Each postprocessor is discussed in detail in Adding Symbolic Information (see page 19) .

Postprocessor Supported Compilers

IN25SYMC OS/VS COBOL

IN25COB2 Enterprise COBOL for z/OS and OS/390

IBM COBOL for OS/390 and VM

IBM COBOL for MVS and VM

AD/CYCLE COBOL/370

VS COBOL II

IN25SYMP Enterprise PL/I for z/OS and OS/390

IBM PL/I for MVS and VM

IN25SYMA IBM High Level Assembler for MVS, VM, and VSE

Assembler H

Additionally, a batch utility driver program, IN25SYMD, is provided to enable loading of more than

CA InterTest™ and CA SymDump® - 11.0

06-Jun-2018 69/69

Additionally, a batch utility driver program, IN25SYMD, is provided to enable loading of more than
one member from a library in a single execution.

For more information about IN25SYMD, see Symbolic Support.

Execute Postprocessors
To automatically invoke or execute the postprocessors in batch, use the sample JCL procedures
provided in CAI.CAVHPROC or modify your COBOL, PL/I, or Assembler procedures. The method you
select depends on the requirements of your installation. Examples of each method are provided in
the section.Adding Symbolic Information (see page 19)

Alternatively, load your PROTSYM files online from the CAIPRINT Repository viewer using the SYM
primary command in CA SymDump Batch.

For more information about loading symbolic information from the viewer, see CAIPRINT Repository
.Viewer (https://docops.ca.com/display/CAITSD11/CAIPRINT+Repository+Viewer)

If you have installed and activated the dynamic symbolic support for CA Endevor SCM feature, the
system automatically populates or postprocesses symbolic files if there are mismatches, and thus
saves you program setup time.

For more information, see Dynamic Symbolic Support (https://docops.ca.com/display/CAITSD11
./Dynamic+Symbolic+Support)

Using the listing postprocessors to collect symbolic information does not change your program in any
way. The listing produced by your compiler or assembler is used only as input. Your object module is
not changed. Only the PROTSYM is updated.

https://docops.ca.com/display/CAITSD11/CAIPRINT+Repository+Viewer
https://docops.ca.com/display/CAITSD11/CAIPRINT+Repository+Viewer
https://docops.ca.com/display/CAITSD11/Dynamic+Symbolic+Support
https://docops.ca.com/display/CAITSD11/Dynamic+Symbolic+Support
https://docops.ca.com/display/CAITSD11/Dynamic+Symbolic+Support

	What is Symbolic Support?
	How Does Symbolic Support Work?
	Symbolic Support for Optimized Applications
	Supported Compilers and Assemblers
	Considerations for Using the Integrated Preprocessors

	PROTSYM File
	Sharing PROTSYM Files
	Loading Symbolic Information
	Creating a PROTSYM File
	CAVHPROT

	Adding Symbolic Information
	IN25SYMC
	IN25SYMC JCL
	IN25SYMC Options
	Controlling Printed Output with the CUTPRINT Option
	Saving Your Listing for Online Display with the LISTER Option
	Setting Data as Nonpurgeable

	Required OS/VS COBOL Options
	Executing IN25SYMC as a Standalone Program
	Adding IN25SYMC to Your OS/VS COBOL Procedure

	IN25COB2
	IN25COB2 JCL
	IN25COB2 Options
	Controlling Printed Output with the CUTPRINT Option
	Saving Your Listing for Online Display with the LISTER Option
	Setting Data as Nonpurgeable

	Required COBOL Options
	Executing IN25COB2 as a Standalone Program
	Adding IN25COB2 to Your COBOL Procedure
	Controlling Printed Output with the CUTPRINT Option

	IN25SYMP
	IN25SYMP JCL
	IN25SYMP Options
	Controlling Printed Output with the CUTPRINT Option
	Saving Your Listing for Online Display with the LISTER Option
	Setting Data as Nonpurgeable

	Required PL/I Options
	Executing IN25SYMP as a Standalone Program
	Adding IN25SYMP to Your PL/I Procedure

	IN25SYMA
	IN25SYMA JCL
	IN25SYMA Options
	Controlling Printed Output with the CUTPRINT Option
	Saving Your Listing for Online Display with the LISTER Option
	Setting Data as Nonpurgeable

	Required Assembler Options
	Executing IN25SYMA as a Standalone Program
	Adding IN25SYMA to Your Assembler Procedure

	IN25LINK
	IN25LINK JCL
	IN25LINK Options
	Identifying the Composite Module
	Identifying the Main Program and Subroutines
	Excluding Subroutines

	Required Linkage Editor Options
	Executing IN25LINK as a Standalone Program
	Adding IN25LINK to Your Link-Edit Procedure

	IN25SYMD
	IN25SYMD Options

	Maintaining a PROTSYM File
	IN25UTIL JCL
	IN25UTIL Functions
	IN25UTIL Parameters

	Dynamic Symbolic Support for CA Endevor Software Change Manager
	Dynamic Symbolic Support Activation
	Dynamic Symbolic Support Execution
	Single Site ID
	Multiple Site IDs

	Listing Server
	Define Unique PROC
	PROC Customization
	JCL Considerations
	CA Endevor SCM Auto-Populate Activity Log

	Restrictions for PL/I
	How Postprocessors Store Symbolic Information
	PROTSYM
	Postprocessors
	Execute Postprocessors

