
2

COBOL V5 Migration Strategies

Dave Kartzman, Compuware

Email: David.Kartzman@Compuware.com

3

Wednesday

16710: COBOL V5
User Experience

Background

4

COBOL V5: CliffsNotes

• Significant rewrite by IBM

- leverage Code Generator code used in Java and C/C++
- catch up with z/OS hardware improvements
- aggressive optimization (CPU and memory intensive compile)
- (more or less) compatible with previous COBOL compilers
- (more or less) can run combined with older COBOL executables

• Runtime Performance improvements
- We see 5-7% at our customers (highs in the 9-11% range)
- IBM says up to 20% or more in certain cases.

5

COBOL V5
Win-Win

For customers

- possible budget

savings

- software catches

up to hardware

- IBM

commitment

For IBM

- common

code paths

- reinvigorate a

significant
money maker

- growth path

6

Risk

Reward

COBOL 5 Migration

Effort

7

Wednesday

16710: COBOL V5
User Experience

Migration

8

First Steps

1. Read these Books!
Migration Guide –

GC14-7383-03
Programming Guide

SC14-7382-03

For Systems programmers:
Performance Guide – COBOL 5.1.1- Paper

http://www-01.ibm.com/support/docview.wss?uid=swg27042388&aid=1

9

First Steps

1. Read Migration Guide

2. Create a project!

a) Scope
b) Effort
c) Expectations

10

1 2 3 4

Project Timeline

Time

3IBM grace period for running two COBOL versions¹

¹ talk with IBM

preliminary
organic

app-driven
completion

11

Preliminary Work

• Simplify migration by completing these items beforehand

• Do not order COBOL v5.2 until you’re happy with the
preliminary work!

1

12

Preliminary Work1

a Get current

13

Preliminary Work1

a Get current

b Complete LE runtime migration

14

Preliminary Work1

a Get current

b Complete LE runtime migration

bc Convert Load libraries to PDSE˟

15

Preliminary Work1

a Get current

b Complete LE runtime migration

bc Convert Load libraries to PDSE

d SCM product to drive all compiles

16

Preliminary Work1

e Order and install COBOL v5.2 and apply latest PTFs!

¹ Likely to involve many PTF’s – don’t forget ISV’s too.

17

Preliminary Work1

e

f Implement COBOL v5.2 in SCM driven compiles

• JCL changes
• decide on certain compile options

• ARCH
• NUMPROC
• OPT
• SSRANGE
• STGOPT

Order and install COBOL v5

18

1 2 3 4

Project Timeline

Time

3

19

Organic changes2

a Pilot project

20

Organic changes2

a Pilot project

b Migrate programs as they come up for changes.

• Bug fixes

• Active development

• How much added regression testing?

21

Organic changes2

a Pilot project

b Migrate programs as they come up for changes.

• Bug fixes

• Active development

• How much added regression testing?

bc Publish results
• CPU savings
• % complete (total, by application)

22

Organic changes

Challenges

• Expect “devil is in the details” type problems at this point.

• Exception criteria? Who decides the exceptions?

• When to move to step 3? What about code freeze time periods?

2

b

23

1 2 3 4

Project Timeline

Time

3

24

Application Groups drive speed of migration3

At the application
/ project level

a
b

c

Continue to migrate
as changes come up

Concentrate on
performance
opportunities

Convert entire application
or application component

25

1 2 3 4

Project Timeline

Time

3

26

Final checkpoint

• Confident of conversion effort – willing to retire the older COBOL

• Go through one code freeze cycle?

4

27

1 2 3 4

Project Timeline

Time

3

28

1 2 3 4

Project Timeline

Time

3

preliminary work

organic migration

application driven

final checkpoint

IBM grace period for two compilers

29

Project Analysis

• Did the project meet expectations?

• CPU savings

• $ savings

• effort

• What about the remaining COBOL programs?

5

30

Project by Group

SCM Admin

Systems Applications

31

Project by Group

SCM Admin

Systems Applications
1. Compile JCL
2. Compile options

a) At each promotion level

3. No-go gates

32

Project by Group

SCM Admin

Systems Applications

1. LE Conversion
2. PDSE conversion
3. Currency

33

Project by Group

SCM Admin

Systems Applications

1. Application
Migration

2. Regression testing

34

Wednesday

16710: COBOL V5
User Experience

Considerations

35

Compile Options

Option Consideration

OPT(n) Recommend OPT(0)
during development;
OPT(2) for last compile.

ARCH Lowest common
denominator

SSRANGE not in production

NUMPROC PFD. If NOPFD, why?

Binary Optimizer

RULES Helps identify
performance and coding
issues

36

Optimization

• OPTIMIZE(0) specifies limited optimizations, which result in
the shortest compilation time. TEST option is not needed to
use Xpediter for full debugging capability

• OPTIMIZE(1) specifies optimizations that improve
application runtime performance. Optimizations include:

– basic inlining

– simplification of complex operations into equivalent simpler
operations

– removal of some unreachable code and block rearrangement.

– Compiling with TEST will allow full debugging

• OPTIMIZE(2) specifies further optimizations:

– more aggressive simplifications and instruction scheduling.

– When the TEST option is specified, some debug capabilities
are available.

36

37

Older Environments

Environment Consideration

OS/VS COBOL Doesn’t mix with COBOL 5

VS COBOL II If NORES – cannot mix with COBOL 5

Storage Eye-catchers May be removed (STGOPT) during COMPILE.

AMODE(24) Part of migration – to remove this restriction?

38

Abend Personality

Index over-runs:

• May change from S0C7 to S0C4

• Over-run itself may corrupt / re-corrupt / un-corrupt index

- Removes forensics

- Applications may reach out to systems to help solve

39

New IBM Compiler output

• Previous versions of the compiler output would display the
BLL, BLF and BLW cells for each of the variables in the File
Section, Program Storage Section and Linkage Section

• The new compiler output does not display the offset from
the BLW pointer anymore. All 77, 88 and 01 group level
variable names are located in the ‘Static Map’.

– Elementary variables are not listed in the static map. In the
Working-Storage area, the elementary level variables are
denoted by an offset from the group level

• To find the value of the variable, one must find the
location of the group level in the static map and add
the offset of the variable from the group level (found
in the program-storage section)

39

40

Pre 5.2 Compiler Listing

40

41

Finding Value of Variable using COBOL 4.2
and Earlier

41

42

With the 5.2 compiler listing

42

43

With the 5.2 compiler listing

43

44

With the 5.2 compiler listing

44

45

New IBM Compiler output

• Finding the value of the index has become more
problematic under 5.2. The Indices and the offset are listed
in the static map. However, when you go to the storage, the
value is an offset.

– You have to calculate the value of the offset against the length
of the array level plus 1. The initial index value location was at
offset 0 of the array.

45

46

Finding the Value of the Indices under COBOL
5.2

46

47

Finding the Value of the Indices under COBOL
5.2

47

48

Finding the Value of the Indices under COBOL
5.2

48

49

Finding the Value of the Indices under COBOL
5.2
• From the compiled listing, the HOLD-TABLE array is 4000

bytes long. Each occurrence of HOLD-AREA is 1000 bytes
and HOLD-LINE is 50 bytes long.

• Since the value of REG-IX is 3000, and represents the
offset within the array, the value of the index can be
calculated by dividing the offset by the length of the array
(3000/1000 = 3) and then adding 1. This is necessary
because the array actually starts at offset 0. So the value of
the index is 4

• HOLD-IX’s value is 50. The length of HOLD-LINE is 50, so
the value of HOLD-IX is 50/50 + 1 or 2

49

50

Questions?

