
modern application 
development with CA IDMS™ 



modern application 
development with CA IDMS™ 

MI340SN 

Next-Generation Mainframe Management 

Dave Ross 

CA Technologies 



abstract 

Dave Ross 

CA Technologies, Manager, Software Engineering 

Can you teach an old dog new tricks? Can you connect the next- 

generation technology with what's running today?  This 

interactive session explores ways that you can leverage the value 

of your CA IDMS systems by integrating them with modern 

applications. Using the example of the Java Persistence 

Architecture and Hibernate as a starting point, this session 

discusses approaches that customers have used to access  

CA IDMS data and applications from web-based applications. 

3 Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



4 

 Object-Relational Mapping Concepts 

 Java Persistence API 

 Relational-Network Mapping 

 Sample JPA access to Employee database 

 Enhancements discussion 

agenda 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



5 

 From wikipedia.org: 

− “a programming technique for converting data between incompatible 

type systems in object oriented programming languages” 

− “virtual object database” used within the programming language 

 Persistence 

− Objects stored, somewhere 

− Serialization 

− Database 

 

 

what is object-relational mapping? 
 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



6 

 Programmer concentrates on business logic 

 Programmer works with application objects 

 Provider takes care of persistence 

 No need to code database interface calls 

 Limited need to code SQL 

why use object-relational mapping? 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



object-relational mapping concepts 
 

 Class 

 Object 

 Attribute 

 Relationship 

 Table 

 Row 

 Column 

 Referential constraint 

 

Object (Java) Relational (SQL) 

7 Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



object-relational mapping software components 

8 

 Provider run time 

− Generates SQL 

− Reflection 

− Mapping definitions 

 Object definition tools 

− Schema definition 

− Reverse engineering 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



schema generation 

9 

 Automatically generates DB schema from objects 

 Most useful for prototyping DB 

 Physical tuning always manual 

 Over-reliance on ORM can lead to poor DB design 

 DBA should do final design 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



reverse engineering 

10 

 Create object definitions from database 

 Most application databases already exist 

 Not biased toward a single application  

 Most ORM frameworks provide reverse engineering tool 

 Uses database metadata API’s to discover 

− Entities 

− Attributes 

− Relationships 

 

 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



11 

 Java Persistence API 

 Application Programming Interface 

− Defined in Java 5 SE and EE 

− javax.persistence package 

 EJB 3.0 

 Service Provider Interface (SPI) 

 Providers 

− Hibernate (also has own API) 

− OpenJPA 

− Others 

JPA 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



12 

JPA architecture 

Application 

JPA Provider 

JDBC Driver 

SQL DBMS 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



JPA entities 

13 

 Entity 

− Represents application object 

− May represent database table 

− POJO 

 EntityManager 

− Manages state and life cycle of entity 

− Create 

− Remove 

− Find 

− Query 

− Transaction 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



reflection and annotations 
how JPA works 

14 

 Reflection 

− Discover classes, fields, methods in code 

− Depends on coding conventions (get, set, etc.) 

 Annotations 

− Metadata in code about classes, fields, methods 

− Relate Java objects to database tables 

− Language feature introduced in J2SE 5 

− @<name>(optional arguments) 

− Extensive use of defaults 

− Alternative to XML descriptor files 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



JPA annotations  

15 

 @Entity 

 @Table 

 @Column 

 @Id 

 @OneToMany 

 @ManyToMany 

 @Inheritance 

 Many more… 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



JPA and CA IDMS SQL databases 

16 

 CA IDMS  is like most other relational databases 

 Schema generation 

− DDL not quite standard 

− Add referential constraints manually 

 Reverse engineering relatively complete 

 Most CA IDMS databases are not SQL defined 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



JPA and CA IDMS Network databases 

17 

 Includes most CA IDMS applications 

 Access via SQL 

 No schema generation 

 Reverse engineering with customization 

 “Impedance mismatch” 

− Elements 

− Sets 

− Foreign Keys 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



relational-network mapping 
 

 Table 

 Row 

 Column 

 Referential constraint 

 

 Record definition 

 Record occurrence 

 Field 

 Set 

 

 

Relational (SQL) Network (CA IDMS) 

18 Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



19 

 Syntax extensions 

 Views 

 Table procedures 

 Embedded foreign keys 

relational-network mapping 
techniques to overcome impedance mismatch 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



JPA example 

20 

 Employee database 

− EMPLOYEE 

− COVERAGE 

 Entity classes 

− Employee 

− Coverage  

 Syntax extensions 

− Set specification 

− ROWID pseudo-column 

EMPLOYEE 

415 

EMP-ID-0415 

EMP-DEMO-REGION 

F 116 CALC 

DN 

COVERAGE 

400 

EMP-COVERAGE 

INS-DEMO-REGION 

F 16 VIA 

EMP-COVERAGE 
NPO MA FIRST 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



21 

reverse engineered employee class 

@Entity 

@Table(name="EMPLOYEE", schema="EMPSCHM") 

public class Employee implements Serializable { 

 private short empId0415; 

 private String empFirstName0415; 

 // private member variables for each column... 

 

 public Employee() {} 

 

 @Id 

 @Column(name="EMP_ID_0415",  

  nullable=false, precision=4, scale=0) 

 public short getEmpId0415() { 

  return this.empId0415; 

 } 

 // access methods for each member variable... 

} 

 Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



22 

reverse engineered coverage class 

@Entity 

@Table(name="COVERAGE",schema="EMPSCHM" 

public class Coverage implements Serializable { 

 private byte selectionYear0400; 

 private byte selectionMonth0400; 

 // private member variables for each column... 

 

 public Coverage() {} 

  

 @Column(name="SELECTION_YEAR_0400",     

  nullable=false, precision=2, scale=0) 

 public byte getSelectionYear0400() { 

  return this.selectionYear0400; 

 } 

 // access methods for each member variable... 

} 

 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



23 

 Owner and member object references 

 Manufacture a “primary key” in member 

 Overcome lack of foreign key in member 

− Set specification 

 

 

 

 

 

model set relationship 

 SELECT E.*, C.*  

  FROM EMPLOYEE E, COVERAGE C  

  WHERE "EMP-COVERAGE" 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



24 

 

 

modified employee class 
add reference to member objects 

@Entity 

@Table(name=“EMPLOYEE",schema="EMPSCHM" 

public class Employee implements Serializable { 

 … 

 private List<Coverage> coverage; 

 … 

 @Transient 

 public List<Coverage> getCoverage() { 

  return this.coverage; 

 } 

 … 

} 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



25 

 

 

modified coverage class 
add reference to owner object 

@Entity 

@Table(name="COVERAGE",schema="EMPSCHM" 

public class Coverage implements Serializable { 

 … 

 private Employee employee; 

 … 

 @Transient 

 public Employee getEmployee() { 

  return this.employee; 

 } 

 … 

} 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



26 

 

 

modified coverage class 
add ROWID as primary key 

@Entity 

@Table(name="COVERAGE",schema="EMPSCHM" 

public class Coverage implements Serializable { 

 … 

 private byte[] rowId; 

 … 

 @Id 

 @Column(name="ROWID",  

  nullable=false, precision=4, scale=0) 

 public byte[] getRowId() { 

  return this.rowId; 

 } 

 … 

} 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



27 

modified employee class 
use set specification instead of foreign key 

@Entity 

 

@SqlResultSetMapping( 

 name = "EmpCoverageResultOpt", entities = {  

  @EntityResult(entityClass=Coverage.class)}) 

 

@NamedNativeQuery( 

 name="GetEmpCoverageOpt", 

 query="SELECT c.ROWID, c.* FROM " + 

 "EMPSCHM.EMPLOYEE e, EMPSCHM.COVERAGE c " + 

 "WHERE EMP_ID_0415 = :empID " + 

 "AND \"EMP-COVERAGE\"", 

 resultSetMapping="EmpCoverageResultOpt") 

 

@Table(name=“EMPLOYEE",schema="EMPSCHM" 

public class Employee implements Serializable { 

 
Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



28 

populate set occurrence objects 

EntityManagerFactory emf =    

Persistence.createEntityManagerFactory("NonSqlJPA"); 

EntityManager em = emf.createEntityManager(); 

 

Employee e = em.getReference(Employee.class, 23); 

 

Query q = em.createNamedQuery("GetEmpCoverage"); 

q = q.setParameter(1, 23); 

List<Coverage> l = List<Coverage>)q.getResultList(); 

e.setCoverage(l); 

 

Iterator<Coverage> ci = e.getCoverage().iterator(); 

while (ci.hasNext()){ 

 Coverage c = ci.next(); 

 c.setEmployee(e);   

} 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



set occurrence mapped to objects 

29 

c.ROWID c.YEAR c.TYPE 

08010202 2008 F 

08010204 2009 F 

08010210 2010 M 

08010303 2011 F 

EMP 
23 

COV 
2008 

COV 
2009 

COV 
2010 

COV 
2011 

Database Set 
Occurrence 

Named Query Result Set 

Java Objects 

Employee e = {23, Joe, …} 

List<Coverage> coverage =  {e, 08010202, 2008, F, …} 

{e, 08010204, 2009, F, …} 

{e, 08010210, 2010, M, …} 

{e, 08010303, 2011, F, …} 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



30 

update member 

EntityTransaction tx = em.getTransaction(); 

 

tx.begin(); 

 

Iterator<Coverage> ci = e.getCoverage().iterator(); 

while (ci.hasNext()) { 

 Coverage c = ci.next(); 

 if (c.getType() == 'M') { 

  em.lock(c, LockModeType.PESSIMISTIC_WRITE); 

    c.setType0400('F'); 

 } 

} 

tx.commit(); 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



31 

 Varies by provider and DBMS 

− versioning 

 Concurrency and locking 

− Optimistic 

− Pessimistic 

 

update implementation 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



32 

 Supported by Hibernate 

 Checks all columns for changes 

 

optimistic locking 

@org.hibernate.annotations.Entity( 

     dynamicUpdate = true, 

     optimisticLock = 

org.hibernate.annotations.OptimisticLockType.ALL) 

 

UPDATE EMPSCHM.COVERAGE SET TYPE_0400=?  

 where ROWID=?  

  AND INS_PLAN_CODE_0400=?  

  AND SELECTION_DAY_0400=?  

  AND SELECTION_MONTH_0400=? 

  AND … 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



33 

 Use with JPA 

 Uses positioned update, sort of 

 

pessimistic locking 

em.lock(c, LockModeType.PESSIMISTIC_WRITE); 

c.setType0400('M');       // update one column 

tx.commit(); 

 

SELECT T0.ROWID FROM EMPSCHM.COVERAGE T0 

 WHERE T0.ROWID = ? FOR UPDATE 

 

UPDATE EMPSCHM.COVERAGE SET TYPE_0400 = ? 

 WHERE ROWID = ?  
 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



34 

 The remove object method generates SQL to delete the row: 

 

delete 

em.remove(c);   

 

DELETE FROM EMPSCHM.COVERAGE WHERE ROWID = ? 

   

em.remove(e);   

 

DELETE FROM EMPSCHM.EMPLOYEE WHERE EMP_ID_0415 = ?   

 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



35 

 Usually need foreign keys 

 Alternative is use of a procedure 

insert member 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



relational to network mapping 
tradeoffs 

SQL Extensions Views Table Procedures Foreign Keys 

– Non-standard SQL 

– No new programs 

– No application 

changes 

– No restructure 

– Set support limited 

to SELECT, UPDATE, 

DELETE 

– Use standard SQL 

– No new programs 

– No application 

changes 

– No restructure 

– Set support limited 

to SELECT, UPDATE, 

DELETE 

– Use standard SQL 

– New programs 

required to 

implement 

procedures 

– No application 

changes 

– No restructure 

– Full set support 

encapsulated in 

procedure  DML 

statements 

– Use standard SQL 

– No new programs 

– Limited application 

changes usually 

required 

– Targeted restructure 

usually required 

– Full set support as 

referential 

constraints in SQL 

statements 

36 Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



foreign keys 

37 

 Easier support for INSERT 

 JPA recognizes relationship 

− Reverse engineering of object definitions 

− Generated SQL 

 Still need primary key in member 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



38 

 

 

reverse engineered employee class 
generated relationship for foreign key 

@Entity 

@Table(name=“EMPLOYEE",schema="EMPSCHM" 

public class Employee implements Serializable { 

 … 

 private List<Coverage> coverage; 

 … 

 @OneToMany(mappedBy="employee", 

  targetEntity=Coverage.class, 

  fetch=FetchType.EAGER, 

  cascade=CascadeType.ALL) 

 public List<Coverage> getCoverage() { 

  return this.coverage; 

 } 

 … 

} 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



39 

 

 

reverse engineered coverage class 
 generated relationship for foreign key 

@Entity 

@Table(name="COVERAGE",schema="EMPSCHM" 

public class Coverage implements Serializable { 

 … 

 private Employee employee; 

 … 

 @ManyToOne(optional=false) 

 @JoinColumn(name=EMP_ID_0400, udpatable=false) 

 public Employee getEmployee() { 

  return this.employee; 

 } 

 … 

} 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



tips for using JPA 

40 

 Exceptions can be vague 

 Use Type 2 driver for debugging 

− Can use Type 4 for production 

 Enable SQL trace 

− Use ODBC Administrator 

 Displays generated SQL statements 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



41 

 SQL DDL enhancements 

− Add referential constraint with ALTER TABLE? 

 Enhanced foreign key support for set members 

− Foreign implied by owner primary key? 

− Restructure option to add foreign key? 

− Virtual option for foreign key? 

− Useful if limited set options supported? 

 Enhanced primary key support for set members 

− More persistent ROWID? 

− Virtual primary key for via member? 

 

discussion of potential enhancements 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



42 

 Object-Relational Mapping Concepts 

 Java Persistence API 

 Relational-Network Mapping 

 Sample JPA access to Employee database 

 Enhancements discussion 

summary 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



Q&A 



Exhibition Center: related technologies 

 Booth 516 – CA IDMS 

 



Please scan this 
image to fill in 
your session 
survey on a 
mobile device or 
complete a hard 
copy session 
evaluation form 

Session #  MI340SN 



Mainframe networking lunch 

Engage in CA solution discussion with your peers and  

CA experts  

 

Where:   Exhibition Center 

When: Tuesday and Wednesday 

Time:      12:00pm – 1:15pm 

 

 



terms of this presentation 
for information purposes only 

Copyright © 2011 CA. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to 
their respective companies. 

This presentation was based on current information and resource allocations as of November 2011 and is subject to change or 
withdrawal by CA at any time without notice. Notwithstanding anything in this presentation to the contrary, this presentation 
shall not serve to (i) affect the rights and/or obligations of CA or its licensees under any existing or future written license 
agreement or services agreement relating to any CA software product; or (ii) amend any product documentation or 
specifications for any CA software product. The development, release and timing of any features or functionality described in 
this presentation remain at CA’s sole discretion. Notwithstanding anything in this presentation to the contrary, upon the general 
availability of any future CA product release referenced in this presentation, CA will make such release available (i) for sale to 
new licensees of such product; and (ii) to existing licensees of such product on a when and if-available basis as part of CA 
maintenance and support, and in the form of a regularly scheduled major product release. Such releases may be made available 
to current licensees of such product who are current subscribers to CA maintenance and support on a when and if-available 
basis.  In the event of a conflict between the terms of this paragraph and any other information contained in this presentation, 
the terms of this paragraph shall govern. 

Certain information in this presentation may outline CA’s general product direction.  All information in this presentation is for 
your informational purposes only and may not be incorporated into any contract. CA assumes no responsibility for the accuracy 
or completeness of the information. To the extent permitted by applicable law, CA provides this presentation “as is” without 
warranty of any kind, including without limitation, any implied warranties or merchantability, fitness for a particular purpose, or 
non-infringement. In no event will CA be liable for any loss or damage, direct or indirect, from the use of this document, 
including, without limitation, lost profits, lost investment, business interruption, goodwill, or lost data, even if CA is expressly 
advised in advance of the possibility of such damages. CA confidential and proprietary. No unauthorized copying or distribution 
permitted. 

47 Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



thank you 


