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Can you teach an old dog new tricks? Can you connect the next- 

generation technology with what's running today?  This 

interactive session explores ways that you can leverage the value 

of your CA IDMS systems by integrating them with modern 

applications. Using the example of the Java Persistence 

Architecture and Hibernate as a starting point, this session 

discusses approaches that customers have used to access  

CA IDMS data and applications from web-based applications. 
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 Object-Relational Mapping Concepts 

 Java Persistence API 

 Relational-Network Mapping 

 Sample JPA access to Employee database 

 Enhancements discussion 

agenda 
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 From wikipedia.org: 

− “a programming technique for converting data between incompatible 

type systems in object oriented programming languages” 

− “virtual object database” used within the programming language 

 Persistence 

− Objects stored, somewhere 

− Serialization 

− Database 

 

 

what is object-relational mapping? 
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 Programmer concentrates on business logic 

 Programmer works with application objects 

 Provider takes care of persistence 

 No need to code database interface calls 

 Limited need to code SQL 

why use object-relational mapping? 
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object-relational mapping concepts 
 

 Class 

 Object 

 Attribute 

 Relationship 

 Table 

 Row 

 Column 

 Referential constraint 

 

Object (Java) Relational (SQL) 
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object-relational mapping software components 
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 Provider run time 

− Generates SQL 

− Reflection 

− Mapping definitions 

 Object definition tools 

− Schema definition 

− Reverse engineering 
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schema generation 
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 Automatically generates DB schema from objects 

 Most useful for prototyping DB 

 Physical tuning always manual 

 Over-reliance on ORM can lead to poor DB design 

 DBA should do final design 
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reverse engineering 
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 Create object definitions from database 

 Most application databases already exist 

 Not biased toward a single application  

 Most ORM frameworks provide reverse engineering tool 

 Uses database metadata API’s to discover 

− Entities 

− Attributes 

− Relationships 
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 Java Persistence API 

 Application Programming Interface 

− Defined in Java 5 SE and EE 

− javax.persistence package 

 EJB 3.0 

 Service Provider Interface (SPI) 

 Providers 

− Hibernate (also has own API) 

− OpenJPA 

− Others 

JPA 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



12 

JPA architecture 

Application 

JPA Provider 

JDBC Driver 

SQL DBMS 

Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



JPA entities 
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 Entity 

− Represents application object 

− May represent database table 

− POJO 

 EntityManager 

− Manages state and life cycle of entity 

− Create 

− Remove 

− Find 

− Query 

− Transaction 
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reflection and annotations 
how JPA works 
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 Reflection 

− Discover classes, fields, methods in code 

− Depends on coding conventions (get, set, etc.) 

 Annotations 

− Metadata in code about classes, fields, methods 

− Relate Java objects to database tables 

− Language feature introduced in J2SE 5 

− @<name>(optional arguments) 

− Extensive use of defaults 

− Alternative to XML descriptor files 
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JPA annotations  
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 @Entity 

 @Table 

 @Column 

 @Id 

 @OneToMany 

 @ManyToMany 

 @Inheritance 

 Many more… 
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JPA and CA IDMS SQL databases 
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 CA IDMS  is like most other relational databases 

 Schema generation 

− DDL not quite standard 

− Add referential constraints manually 

 Reverse engineering relatively complete 

 Most CA IDMS databases are not SQL defined 
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JPA and CA IDMS Network databases 
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 Includes most CA IDMS applications 

 Access via SQL 

 No schema generation 

 Reverse engineering with customization 

 “Impedance mismatch” 

− Elements 

− Sets 

− Foreign Keys 
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relational-network mapping 
 

 Table 

 Row 

 Column 

 Referential constraint 

 

 Record definition 

 Record occurrence 

 Field 

 Set 

 

 

Relational (SQL) Network (CA IDMS) 
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 Syntax extensions 

 Views 

 Table procedures 

 Embedded foreign keys 

relational-network mapping 
techniques to overcome impedance mismatch 
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JPA example 
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 Employee database 

− EMPLOYEE 

− COVERAGE 

 Entity classes 

− Employee 

− Coverage  

 Syntax extensions 

− Set specification 

− ROWID pseudo-column 

EMPLOYEE 

415 

EMP-ID-0415 

EMP-DEMO-REGION 

F 116 CALC 

DN 

COVERAGE 

400 

EMP-COVERAGE 

INS-DEMO-REGION 

F 16 VIA 

EMP-COVERAGE 
NPO MA FIRST 
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reverse engineered employee class 

@Entity 

@Table(name="EMPLOYEE", schema="EMPSCHM") 

public class Employee implements Serializable { 

 private short empId0415; 

 private String empFirstName0415; 

 // private member variables for each column... 

 

 public Employee() {} 

 

 @Id 

 @Column(name="EMP_ID_0415",  

  nullable=false, precision=4, scale=0) 

 public short getEmpId0415() { 

  return this.empId0415; 

 } 

 // access methods for each member variable... 

} 
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reverse engineered coverage class 

@Entity 

@Table(name="COVERAGE",schema="EMPSCHM" 

public class Coverage implements Serializable { 

 private byte selectionYear0400; 

 private byte selectionMonth0400; 

 // private member variables for each column... 

 

 public Coverage() {} 

  

 @Column(name="SELECTION_YEAR_0400",     

  nullable=false, precision=2, scale=0) 

 public byte getSelectionYear0400() { 

  return this.selectionYear0400; 

 } 

 // access methods for each member variable... 

} 
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 Owner and member object references 

 Manufacture a “primary key” in member 

 Overcome lack of foreign key in member 

− Set specification 

 

 

 

 

 

model set relationship 

 SELECT E.*, C.*  

  FROM EMPLOYEE E, COVERAGE C  

  WHERE "EMP-COVERAGE" 
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modified employee class 
add reference to member objects 

@Entity 

@Table(name=“EMPLOYEE",schema="EMPSCHM" 

public class Employee implements Serializable { 

 … 

 private List<Coverage> coverage; 

 … 

 @Transient 

 public List<Coverage> getCoverage() { 

  return this.coverage; 

 } 

 … 

} 
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modified coverage class 
add reference to owner object 

@Entity 

@Table(name="COVERAGE",schema="EMPSCHM" 

public class Coverage implements Serializable { 

 … 

 private Employee employee; 

 … 

 @Transient 

 public Employee getEmployee() { 

  return this.employee; 

 } 

 … 

} 
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modified coverage class 
add ROWID as primary key 

@Entity 

@Table(name="COVERAGE",schema="EMPSCHM" 

public class Coverage implements Serializable { 

 … 

 private byte[] rowId; 

 … 

 @Id 

 @Column(name="ROWID",  

  nullable=false, precision=4, scale=0) 

 public byte[] getRowId() { 

  return this.rowId; 

 } 

 … 

} 
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modified employee class 
use set specification instead of foreign key 

@Entity 

 

@SqlResultSetMapping( 

 name = "EmpCoverageResultOpt", entities = {  

  @EntityResult(entityClass=Coverage.class)}) 

 

@NamedNativeQuery( 

 name="GetEmpCoverageOpt", 

 query="SELECT c.ROWID, c.* FROM " + 

 "EMPSCHM.EMPLOYEE e, EMPSCHM.COVERAGE c " + 

 "WHERE EMP_ID_0415 = :empID " + 

 "AND \"EMP-COVERAGE\"", 

 resultSetMapping="EmpCoverageResultOpt") 

 

@Table(name=“EMPLOYEE",schema="EMPSCHM" 

public class Employee implements Serializable { 
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populate set occurrence objects 

EntityManagerFactory emf =    

Persistence.createEntityManagerFactory("NonSqlJPA"); 

EntityManager em = emf.createEntityManager(); 

 

Employee e = em.getReference(Employee.class, 23); 

 

Query q = em.createNamedQuery("GetEmpCoverage"); 

q = q.setParameter(1, 23); 

List<Coverage> l = List<Coverage>)q.getResultList(); 

e.setCoverage(l); 

 

Iterator<Coverage> ci = e.getCoverage().iterator(); 

while (ci.hasNext()){ 

 Coverage c = ci.next(); 

 c.setEmployee(e);   

} 
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set occurrence mapped to objects 
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c.ROWID c.YEAR c.TYPE 

08010202 2008 F 

08010204 2009 F 

08010210 2010 M 

08010303 2011 F 

EMP 
23 

COV 
2008 

COV 
2009 

COV 
2010 

COV 
2011 

Database Set 
Occurrence 

Named Query Result Set 

Java Objects 

Employee e = {23, Joe, …} 

List<Coverage> coverage =  {e, 08010202, 2008, F, …} 

{e, 08010204, 2009, F, …} 

{e, 08010210, 2010, M, …} 

{e, 08010303, 2011, F, …} 
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update member 

EntityTransaction tx = em.getTransaction(); 

 

tx.begin(); 

 

Iterator<Coverage> ci = e.getCoverage().iterator(); 

while (ci.hasNext()) { 

 Coverage c = ci.next(); 

 if (c.getType() == 'M') { 

  em.lock(c, LockModeType.PESSIMISTIC_WRITE); 

    c.setType0400('F'); 

 } 

} 

tx.commit(); 
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 Varies by provider and DBMS 

− versioning 

 Concurrency and locking 

− Optimistic 

− Pessimistic 

 

update implementation 
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 Supported by Hibernate 

 Checks all columns for changes 

 

optimistic locking 

@org.hibernate.annotations.Entity( 

     dynamicUpdate = true, 

     optimisticLock = 

org.hibernate.annotations.OptimisticLockType.ALL) 

 

UPDATE EMPSCHM.COVERAGE SET TYPE_0400=?  

 where ROWID=?  

  AND INS_PLAN_CODE_0400=?  

  AND SELECTION_DAY_0400=?  

  AND SELECTION_MONTH_0400=? 

  AND … 
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 Use with JPA 

 Uses positioned update, sort of 

 

pessimistic locking 

em.lock(c, LockModeType.PESSIMISTIC_WRITE); 

c.setType0400('M');       // update one column 

tx.commit(); 

 

SELECT T0.ROWID FROM EMPSCHM.COVERAGE T0 

 WHERE T0.ROWID = ? FOR UPDATE 

 

UPDATE EMPSCHM.COVERAGE SET TYPE_0400 = ? 

 WHERE ROWID = ?  
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 The remove object method generates SQL to delete the row: 

 

delete 

em.remove(c);   

 

DELETE FROM EMPSCHM.COVERAGE WHERE ROWID = ? 

   

em.remove(e);   

 

DELETE FROM EMPSCHM.EMPLOYEE WHERE EMP_ID_0415 = ?   
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 Usually need foreign keys 

 Alternative is use of a procedure 

insert member 
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relational to network mapping 
tradeoffs 

SQL Extensions Views Table Procedures Foreign Keys 

– Non-standard SQL 

– No new programs 

– No application 

changes 

– No restructure 

– Set support limited 

to SELECT, UPDATE, 

DELETE 

– Use standard SQL 

– No new programs 

– No application 

changes 

– No restructure 

– Set support limited 

to SELECT, UPDATE, 

DELETE 

– Use standard SQL 

– New programs 

required to 

implement 

procedures 

– No application 

changes 

– No restructure 

– Full set support 

encapsulated in 

procedure  DML 

statements 

– Use standard SQL 

– No new programs 

– Limited application 

changes usually 

required 

– Targeted restructure 

usually required 

– Full set support as 

referential 

constraints in SQL 

statements 

36 Copyright © 2011 CA.  All rights reserved.  All trademarks, trade names, service marks and logos referenced herein belong 

to their respective companies. CA confidential and proprietary. No unauthorized copying or distribution permitted. 



foreign keys 
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 Easier support for INSERT 

 JPA recognizes relationship 

− Reverse engineering of object definitions 

− Generated SQL 

 Still need primary key in member 
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reverse engineered employee class 
generated relationship for foreign key 

@Entity 

@Table(name=“EMPLOYEE",schema="EMPSCHM" 

public class Employee implements Serializable { 

 … 

 private List<Coverage> coverage; 

 … 

 @OneToMany(mappedBy="employee", 

  targetEntity=Coverage.class, 

  fetch=FetchType.EAGER, 

  cascade=CascadeType.ALL) 

 public List<Coverage> getCoverage() { 

  return this.coverage; 

 } 

 … 

} 
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reverse engineered coverage class 
 generated relationship for foreign key 

@Entity 

@Table(name="COVERAGE",schema="EMPSCHM" 

public class Coverage implements Serializable { 

 … 

 private Employee employee; 

 … 

 @ManyToOne(optional=false) 

 @JoinColumn(name=EMP_ID_0400, udpatable=false) 

 public Employee getEmployee() { 

  return this.employee; 

 } 

 … 

} 
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tips for using JPA 
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 Exceptions can be vague 

 Use Type 2 driver for debugging 

− Can use Type 4 for production 

 Enable SQL trace 

− Use ODBC Administrator 

 Displays generated SQL statements 
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 SQL DDL enhancements 

− Add referential constraint with ALTER TABLE? 

 Enhanced foreign key support for set members 

− Foreign implied by owner primary key? 

− Restructure option to add foreign key? 

− Virtual option for foreign key? 

− Useful if limited set options supported? 

 Enhanced primary key support for set members 

− More persistent ROWID? 

− Virtual primary key for via member? 

 

discussion of potential enhancements 
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 Object-Relational Mapping Concepts 

 Java Persistence API 

 Relational-Network Mapping 

 Sample JPA access to Employee database 

 Enhancements discussion 

summary 
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Q&A 



Exhibition Center: related technologies 

 Booth 516 – CA IDMS 

 



Please scan this 
image to fill in 
your session 
survey on a 
mobile device or 
complete a hard 
copy session 
evaluation form 

Session #  MI340SN 



Mainframe networking lunch 

Engage in CA solution discussion with your peers and  

CA experts  

 

Where:   Exhibition Center 

When: Tuesday and Wednesday 

Time:      12:00pm – 1:15pm 
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