Legacy System Interaction with Composer Applications

Session 340

Richard Allen Texas Instruments

1

- Overview the need for Legacy System
 Integration
- Define the Legacy Wrapper
- Describe techniques for using Legacy Wrappers
- Discuss how legacy system integration and CBD co-exist

2

What is a Legacy System?

- An existing system that performs business functions
- The system can be:
 - Existing system in need of replacement
 - Existing system adequately satisfying business needs
 - Package
- Legacy system can be built with Composer

3

© Texas Instruments 1996

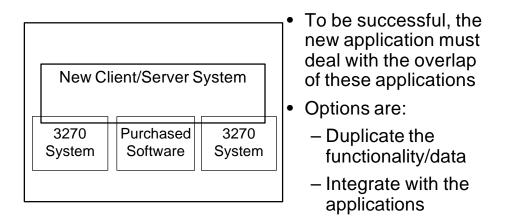
Need for Legacy System Integration

Cost

- Most organizations have portfolio of applications that support the business
- These applications represent the core business of an organization
- These systems represent significant investments
- Cost of replacing these systems would be prohibitive

Need for Legacy System Integration

Complexity


- First generation of client/server systems can be characterized as pilot applications
- The integration with legacy applications is ignored or minimized
- The next generation of client/server applications will address large-scale business problems

5

Integrating with legacy applications is a requirement

© Texas Instruments 1996

Typical Client/Server Architecture

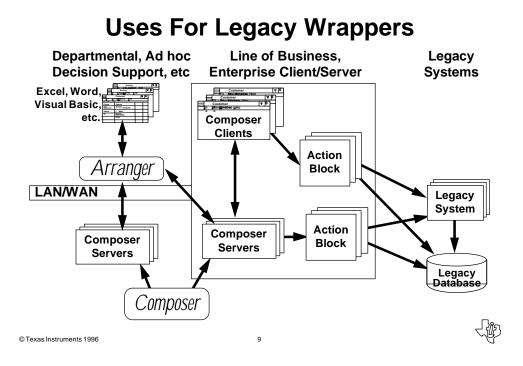
6

What is the Answer?

- Many alternatives exist:
 - Build a data warehouse
 - Distribute data
 - Develop a new system
- Leverage emerging software/techniques to integrate with legacy applications

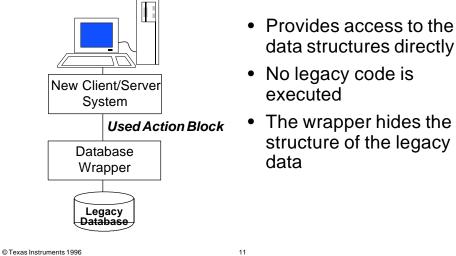
Legacy Wrapping

8


7

© Texas Instruments 1996

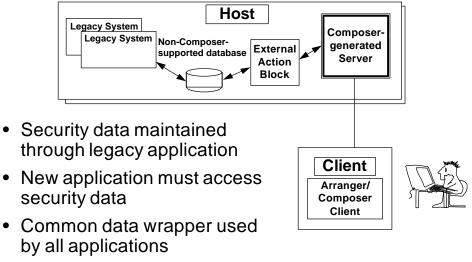
- Mechanism of surrounding the legacy application
- Allows for a clean interface so that new systems can access information in the legacy application
- Acts as an API which accesses the legacy system
- · Can run on a variety of platforms


Types of Legacy Wrappers

- There are two types of Legacy Wrappers:
 - Data Wrapper
 - Application Wrapper

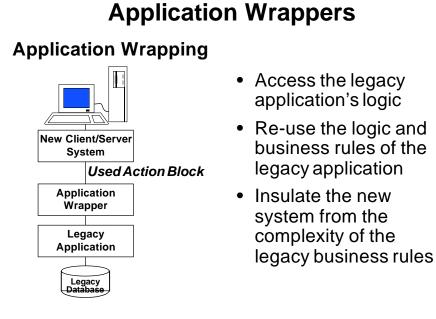
Data Wrappers

Database Wrapping


- The wrapper hides the structure of the legacy

Data Wrappers

- Data wrappers have three layers:
 - New client/server application
 - Data wrapper
 - Legacy database
- Wrapper can access relational or non-relational data structures
- Wrapper action block can either be internal or external



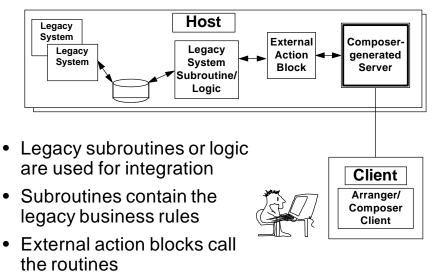
Example of a Data Wrapper

13

Common data wrapper used

© Texas Instruments 1996

© Texas Instruments 1996


Application Wrappers

- Application consists of four layers:
 - New client/server application
 - Application wrapper
 - Legacy system
 - Legacy database
- · Application logic is used to access the data
- Wrapper process does not need to consider the data format
- Application logic can be accessed through screens, gateways, and subroutines

15

© Texas Instruments 1996

Application Wrappers Examples

Defining Legacy Wrappers in Composer

- Legacy Wrappers are defined as action blocks
- These action blocks can be either internal or external action blocks
- The internal action blocks can only be used for wrapping supported relational databases
- Legacy wrapper can exist at the client or server depending on the technology

17

© Texas Instruments 1996

Defining Legacy Wrappers

- One action block should be created for each discrete interface
- Enables the wrappers to be reused throughout a variety of systems
- Facilitates the maintenance of the wrapper action blocks

Defining Wrappers Example

Legacy Application Functions	Wrappers Defined
Display Customer	Display Customer Wrapper
List Customer	List Customer Wrapper
Update Customer	Update Customer Wrapper
Create Customer	Create Customer Wrapper

© Texas Instruments 1996

Defining Wrappers–Views

- Import and Export views represent the message to and from the legacy system
- The views can be created using either entity types or worksets
- Entity Views must be implemented in the Technical Design Diagram
- Worksets are recommended for wrappers
 - Do not have entity type requirements
 - Provide for isolation of data

Steps

- Identify the interface requirements
- Define wrappers to support the interface
- Create a workset that supports the wrapper
- Create an external action block stub in the model
- Generate the EAB stub
- Write the custom code to access the legacy system
- Use the wrapper in the new application

21

© Texas Instruments 1996

Approaches for Creating Wrappers

- Defining a standard set of action blocks
 - Higher reuse enabled
 - Used when significant interfacing required
- Creating the action blocks on an as-needed basis
 - Duplicate interfaces may be developed
 - Used when less integration is required
- Combination of both
 - Major interfaces are built
 - Others built as needed

Legacy Wrappers and CBD

- Legacy Wrappers share common characteristics with CBD operations
 - Provide access to business logic
 - Use abstraction to isolate data
 - Enable reuse
- Legacy Wrappers are defined at a lower level
 - Wrappers are API calls
 - Several wrappers can make up an operation

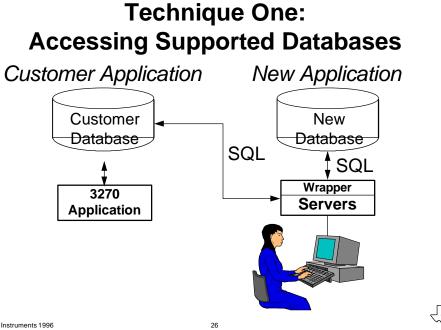
23

© Texas Instruments 1996

Techniques For Legacy Wrapping

- Accessing Composer-supported databases
- Accessing non-Composer-supported databases
- Accessing applications through an Application Programming Interface (API)
- Accessing applications through the screens

24


 Accessing applications using gateways products

Technique One: Accessing Supported Databases

- Composer-supported databases are accessed directly
- Example of a data wrapper
- Composer action diagramming statements are used to manipulate the legacy database
- An easy option if the legacy application is built with Composer
- Databases created outside Composer can also be supported with this option

25

© Texas Instruments 1996

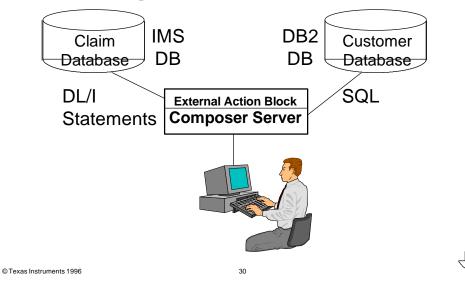
Technique One: Accessing Supported Databases

- Provides easy access to the legacy database by the new application
- · Legacy database must be modeled
- Provides for forward engineering

Special Considerations

27

- Model the legacy application
 - Composer-built database Migrate
 - Non-Composer database Reverse Engineer
 - Ensure that the Composer definition matches the physical structures



Technique Two: Accessing Non-Supported Databases

- Non-supported databases are accessed directly
- Example of a data wrapper
- External action block is used to manipulate the legacy database
- Enables access to data structures like:
 - IMS
 - VSAM
 - Flat Files

© Texas Instruments 1996

Technique Two: Accessing Non-Supported Databases

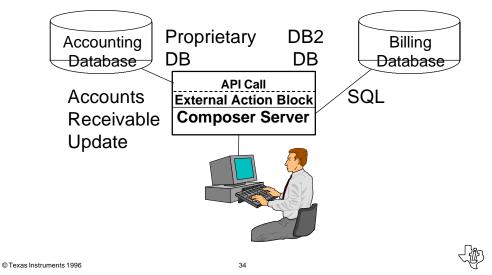
- Provides easy access to the legacy database
- Enables high-performance interfaces to be built
- Similar process to accessing supported databases
- Technique can access data regardless of how it is stored

31

© Texas Instruments 1996

Technique Three: Accessing Applications through API's

- Legacy application is accessed through the logic of the legacy application
- The legacy application logic can be:
 - I/O routines
 - Sub-Programs
 - API's from vendor packages
- Example of application wrapping



Technique Three: Accessing Applications through API's

- Enables the wrapping of business logic and data access logic
- Hides the complexity of the legacy business logic and data structures
- Application needs only to understand the interface to the wrapper

Technique Three: Accessing Applications through API's

Technique Four: Accessing Applications through Screens

- Most organizations have a large population of screen-based applications
- These applications execute under TP Monitors such as CICS or IMS
- Screens typically represent the only knowledge of the existing application

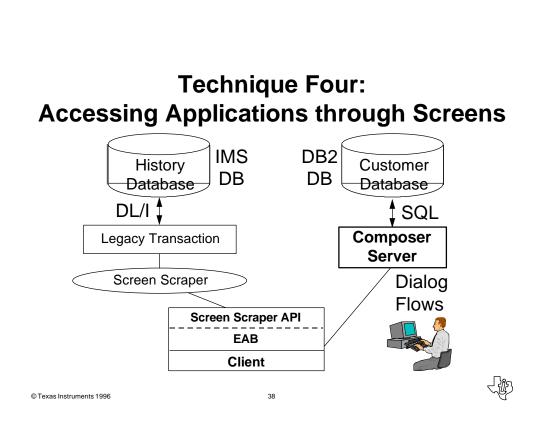
Technique Four: Accessing Applications through Screens

35

- "Screen Scraper" software is available from a variety of software vendors including:
 - IBM

© Texas Instruments 1996

- Logitech
- Platinum
- And many more...
- These packages typically allow screen definitions to be imported
- These definitions can be manipulated in programs

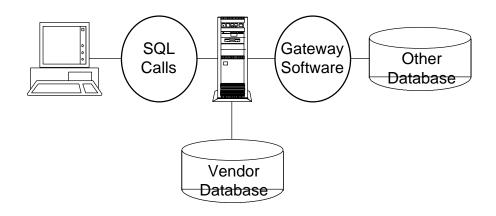

© Texas Instruments 1996

Technique Four: Accessing Applications through Screens

- Enables wrapping of application logic without modification
- Example of an application wrapper
- All functionality of the application can be accessed
- Developer does not need to know the internals of the application

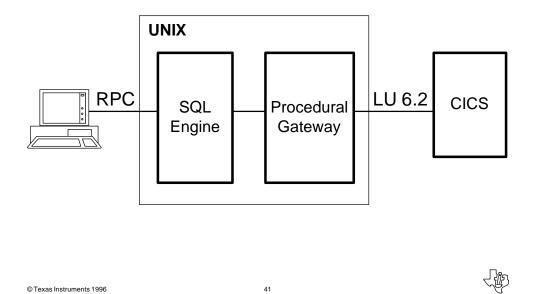
© Texas Instruments 1996

Integration through "screen scraping" not as robust as other options


Technique Five: Accessing Applications through Gateways

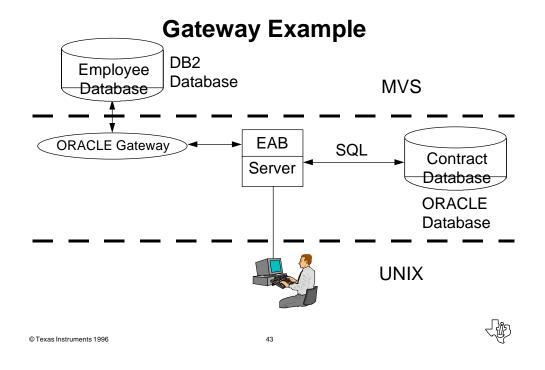
- Gateways are an emerging technology for accessing legacy applications
- Technology provided primarily by the database vendors
- There are two types of gateway products:
 - Data gateway
 - Procedural gateway
- Gateways developed to allow developers common syntax for a variety of legacy applications

39


© Texas Instruments 1996

Data Gateways

Procedural Gateways



Gateway Techniques

- Gateway products provide the capability to produce both data and application wrappers
- For data gateways, follow the steps for the non-supported database technique
- For procedural gateways, follow the steps for the API technique

42

• The gateway products will require setup

Summary

44

• Mechanism of surrounding the legacy application

- Allows for a clean interface between old and new systems
- Acts as an API which
 accesses the legacy system
- Documented in TI Methods guide Legacy Application Interworking (Part # 2641080-0001)

Summary

Many techniques are available:

- Accessing Composer-supported databases
- Accessing non-Composer-supported databases
- Accessing applications through an Application Programming Interface (API)
- Accessing applications through the screens

45

 Accessing applications using gateway products

© Texas Instruments 1996

Legacy System Interaction with Composer Applications

Session 340

Richard Allen Texas Instruments

46