

Trilogy 2.3
Installation and Administration

Guide

Trilogy 2.3 Administrator Guide Page 1 of 275
www.trinem.com

Trilogy 2.3 Administrator Guide Page 2 of 275
www.trinem.com

Table of Contents

1 Introduction ... 6

 What is Trilogy? ... 6 1.1

 About This Book ... 7 1.2

 Typographical Conventions .. 7 1.3

 Symbols Used in This Book .. 8 1.4

2 Trilogy – Overview ... 9

 Trilogy Jobs ... 9 2.1

 The Trilogy Configuration File ... 10 2.2

2.2.1 Client ... 10
2.2.2 Server ... 10

 Running Server Side Scripts with Trilogy ... 13 2.3

 Trilogy Client Service .. 14 2.4

3 Installation Guide .. 16

 Installing a Trilogy Server .. 16 3.1

3.1.1 Windows .. 16
3.1.2 Unix .. 19

 Installing a Trilogy Client ... 21 3.2

3.2.1 Windows .. 21
3.2.2 Unix .. 23

 Licensing the Trilogy Server ... 25 3.3

 Starting the Trilogy Server .. 27 3.4

3.4.1 Windows .. 27
3.4.2 Unix .. 28

 Testing the installation .. 28 3.5

3.5.1 UNIX client ... 28
3.5.2 Windows client .. 29

 Stopping the Trilogy Server ... 30 3.6

3.6.1 Windows .. 30
3.6.2 Unix .. 30

4 Trilogy Dialogs .. 31

 Creating Dialogs ... 31 4.1

 Differences between Unix and Windows Trilogy Dialogs 35 4.2

 Creating Password Fields ... 36 4.3

 Adding a Title to the Dialog .. 37 4.4

 Creating Drop Down Lists .. 38 4.5

 Pre-Populating Dialogs .. 41 4.6

 Pre-Populating Dialogs Containing Drop Down Lists................................. 43 4.7

 Checkboxes and Radio Buttons ... 45 4.8

4.8.1 Creating Checkboxes and Radio Buttons ... 45
4.8.2 Pre-populating Dialogs containing Radio Buttons and Checkboxes 47

Trilogy 2.3 Administrator Guide Page 3 of 275
www.trinem.com

 Disabling Fields .. 48 4.9

 Renaming the Buttons ... 48 4.10

 Validating Dialog Data ... 49 4.11

 Validating Command Line Parameters Before Displaying Dialog 51 4.12

 Using the Same Script to perform Multiple Functions 52 4.13

 Creating Named Frames in Dialogs ... 54 4.14

 Grouping Radio Buttons with Named Frames .. 56 4.15

 Creating Tabbed Dialogs .. 58 4.16

 Adding Banners .. 60 4.17

 Creating Dialogs with Scripts ... 63 4.18

 Creating an Icon in the System Tray ... 65 4.19

5 The List Box ... 67

 Introduction ... 67 5.1

 List Box Directives .. 68 5.2

5.2.1 Controlling the List Box Appearance .. 68
5.2.2 Creating List Box Content ... 68
5.2.3 Identifying List Box Column Names ... 69
5.2.4 Identifying List Box Column Widths ... 70
5.2.5 Auto Sizing Columns .. 71
5.2.6 Creating Hidden Columns ... 72
5.2.7 Controlling List Box Width .. 72
5.2.8 Controlling List Box Height ... 73
5.2.9 Adding an “Apply” Button to the Dialog .. 73
5.2.10 Sorting the List Box ... 73
5.2.11 Automatic Sorting ... 73
5.2.12 Controlling List Box Selections .. 74
5.2.13 Selecting List Box Rows ... 75
5.2.14 Automatically Selecting List Box Rows ... 76
5.2.15 Adding a Right-Click Menu to the List Box .. 79
5.2.16 Automatically Refreshing the List Box .. 81
5.2.17 Adding Double Click to the List Box ... 81
5.2.18 Adding Icons to Each Row .. 82
5.2.19 Row Context ... 82
5.2.20 Controlling List Box Script Execution .. 85

 Example – Building a List Box Application .. 86 5.3

6 Linking Fields .. 91

 Introduction to Linked Fields .. 91 6.1

 Creating Linked Fields. .. 91 6.2

 Linking Drop Down Lists .. 91 6.3

 Linking radio buttons and checkboxes ... 95 6.4

 Linking a Field to the List Box .. 97 6.5

 Linking List Box to Fields ... 97 6.6

 Linking Data Entry Fields ... 98 6.7

 Linking a Field to Itself .. 99 6.8

 Caveats ... 100 6.9

7 Linking Jobs .. 102

Trilogy 2.3 Administrator Guide Page 4 of 275
www.trinem.com

 Controlling Access .. 102 7.1

 Overview of Job Linking ... 102 7.2

 Preventing Jobs from Running .. 103 7.3

8 Groups and the Group Processor 106

 Overview ... 106 8.1

 Group Processor Plug-In .. 106 8.2

 Controlling Job Access ... 107 8.3

 Group Processor Functions ... 108 8.4

9 Trilogy Client Service for Windows 114

 Overview ... 114 9.1

 Installing Trilogy Client as a Service .. 114 9.2

 System Tray Icon ... 115 9.3

 Running Jobs from the System Tray .. 116 9.4

 Sending “Balloon” Notifications ... 118 9.5

9.5.1 Notifying Groups ... 119
9.5.2 Notifying Users ... 120
9.5.3 Notifying Client Machines ... 120
9.5.4 Automatic Notification Routing .. 120
9.5.5 Balloon Icon Types .. 121
9.5.6 Balloon Display Order .. 122
9.5.7 Standard Output As Balloon Message ... 122

 Notify Users of Job Running ... 122 9.6

 Client Port Number ... 123 9.7

 Advanced Configuration – Communicating Across Subnets 124 9.8

10 The Scheduler ... 127

 Introduction ... 127 10.1

 Specifying a Scheduled Job .. 127 10.2

 Related Directives ... 128 10.3

10.3.1 NotifyRunGroup .. 128
10.3.2 Environment ... 128
10.3.3 Param .. 128

 Specifying Run Times .. 128 10.4

 Specifying Run Days ... 129 10.5

 Specifying Run Dates .. 130 10.6

 Specifying Run Months .. 131 10.7

 Setting Standard Input .. 132 10.8

 Dependent Jobs .. 132 10.9

 Environment Variables .. 134 10.10

11 Trilogy - Command Line Options 135

 Trilogy Client ... 135 11.1

 Trilogy Server .. 137 11.2

Trilogy 2.3 Administrator Guide Page 5 of 275
www.trinem.com

12 Server Side Job Control .. 138

 Introduction ... 138 12.1

 Environment .. 138 12.2

 Trilogy Server Environment ... 140 12.3

 How Jobs are started .. 140 12.4

12.4.1 Unix/Linux Servers .. 140
12.4.2 Windows Servers .. 141

 Buffering ... 141 12.5

12.5.1 Unix/Linux .. 142
12.5.2 Windows .. 142
12.5.3 UseTTY Directive ... 142

 Standard Input ... 142 12.6

 Receiving Standard Input .. 144 12.7

 Listing Running Jobs ... 145 12.8

 Stopping Server-Side Jobs ... 146 12.9

12.9.1 Unix/Linux Servers .. 146
12.9.2 Windows Servers .. 146

 Server Side Scripts – Environment Variables set by Trilogy 147 12.10

 Running Jobs in Background .. 149 12.11

13 trilogy.conf – Reference Guide 150

14 Trilogy Scripting Engine .. 217

 Introduction ... 217 14.1

 Using the Trilogy Scripting Engine Client Side – Overview 219 14.2

 Using the Trilogy Scripting Engine Server Side – Overview 219 14.3

 Scripting Engine Methods .. 220 14.4

Index .. 272

Trilogy 2.3 Administrator Guide Page 6 of 275
www.trinem.com

1 Introduction

 What is Trilogy? 1.1
Trilogy is a client-server utility that allows predefined tasks to be run on a Trilogy

Server either on request from a Trilogy Client or automatically via a built-in

scheduler. Native GUI Dialogs can be presented at the client so that a client user

can interact with these server-side scripts. These dialogs are defined at the

server using simple text-based files and can be populated with values from

scripts run on the server. Thus – once a machine has a Trilogy Client installed -

entire GUI-based client-server applications can be easily created and made

available to end-users without any further software distribution being required.

Trilogy makes it simple to create client/server applications – server code can be

written in any language with which the programmer is familiar. There are no new

APIs to learn, no libraries to link. Instead, Trilogy allows the server-side script to

access the client GUI dialog via environment variables and Trilogy takes the

server-side script’s standard output and error streams and uses them to

populate the client dialog. Because of this it is easy to re-use existing scripts and

turn them into client/server applications with minimal effort.

Trilogy has a number of advantages over other technologies (such as web

servers and browsers):

 Small footprint. Both server and client are small applications that can be

launched quickly. A Trilogy client dialog will typically open in less than a

second (depending on complexity).

 Native Look-and-Feel. Trilogy renders the dialog as a native GUI tailored

to the platform on which it is running. Users can interact with the

application in the same way as they would interact with any other native

application.

 Extend Existing tools. Most IDEs, SCM tools and other applications allow

local client programs to be invoked from inside their environment. Trilogy

dialogs can then be presented as though they were a natural part of the

tool, extending its capability and allowing for sophisticated integrations

that feel “natural” (where launching a separate product or using a web

page would not).

 Agile Development. Dialogs can be created in seconds that would take

hours of development using other tools. A change can be made on the

server which is then visible instantly at the client with no software

distribution required.

 Multi-platform. Dialogs can be created once and will display natively on

any platform on which the client can run.

 Simple Scripting. Server-side scripts can be written in whatever language

is desired including (but not limited to) Shell Scripts, VBScript JScript,

Python, Perl, C++ etc. These scripts interact with the client-side dialog

using environment variables and by printing lines to their standard

output. Trilogy takes care of all the complex client-server communication.

 Leverage Existing Investment. It is easy (and quick) to re-use existing

scripts and turn them into client-server applications.

 Easy launch. Windows users can run (and interact with) server-side

scripts by clicking on the Trilogy Icon in the Windows Notification Area

(System Tray).

Trilogy 2.3 Administrator Guide Page 7 of 275
www.trinem.com

 Notifications. Server scripts (running on any platform) can send out

balloon-style notifications to Windows Users. Users can quickly see when

jobs are running without having to open another application window.

 Easy File Transfer. Files can be uploaded and downloaded using a secure

transfer between client and server.

Trilogy clients are:

GUI Client Tool (Windows, Unix or Linux - launched by command line)

Trilogy Client Service for Windows (Docked in System Tray)

Trilogy Scripting Engine for Windows (COM Object)

 About This Book 1.2

Some basic scripting knowledge is assumed. Examples throughout the book are

provided in a number of languages such as Unix Shell Script and Windows

VBScript. There is no “preferred” language for Trilogy – any server-side script

(or binary executable) that can be invoked from a command line interface and

that can read environment variables can interact with a client-side Trilogy

Dialog.

 Typographical Conventions 1.3

Throughout this manual, the following typographical conventions apply:

Courier Text shown in this font indicates computer output or program

listing.

Courier Bold Text shown in this font indicates text that should be entered by

the user.

Trilogy 2.3 Administrator Guide Page 8 of 275
www.trinem.com

 Symbols Used in This Book 1.4

The following symbols are used to highlight areas of text that are of particular

interest:

Text Highlighted with this symbol refers to a point raised

elsewhere in the manual.

Text Highlighted with this symbol refers to important points

Text Highlighted with this symbol refers to Microsoft

Windows only (either client side or server side).

Trilogy 2.3 Administrator Guide Page 9 of 275
www.trinem.com

2 Trilogy – Overview

 Trilogy Jobs 2.1
A Trilogy Job runs on a Trilogy Server. A Trilogy job can be invoked either from a

Trilogy Client or from Trilogy’s built-in scheduler. If a Trilogy client is invoking a

job on the Trilogy server it does so be specifying its Trilogy Job Name. This name

is used by the Trilogy server to ascertain the actual path of the program to

invoke along with any other directives or attributes that controls the server-side

program execution. There are a number of advantages to this approach:

 If you wish to move the location of the script (or indeed, the script name

itself) you can do so simply by telling Trilogy server the new location and

file name – there are no amendments needed at the client.

 The "real" path is not visible at the client. This has a security benefit.

 Server jobs can run as any user without the need to provide a

username/password to the client.

 Only specified scripts can be run on the remote server – if Trilogy doesn’t

know about it, a client can’t run it.

The mapping of Trilogy Jobs to actual path and file names is done in the Trilogy

configuration file trilogy.conf on the Trilogy server node. The format and

content of this configuration file is detailed in the next section.

If the Trilogy configuration file specifies a dialog for the Trilogy Job, this dialog is

presented at the client automatically. The user then interacts with this dialog and

the server-side job is run only when the user clicks “OK”. Any scripts invoked

during this process can ascertain the contents of the Trilogy dialog by reading

environment variables that are set by Trilogy before the scripts are run.

Scripts running on Windows Servers can also determine the

content of the client-side dialog by using methods contained

within the Trilogy Scripting Engine.

All communication between Trilogy clients and servers is encrypted. You can

therefore include passwords in the interactions between client and server without

it being sent across the network in free-text.

Trilogy 2.3 Administrator Guide Page 10 of 275
www.trinem.com

 The Trilogy Configuration File 2.2
trilogy.conf exists on both Trilogy client and server nodes. It has a similar

syntax on both nodes:

2.2.1 Client

Server=<name>

Port=<port num>

<Server Name>:

 HostName=<name>

 Port=<port num>

<Server Name>:

 HostName=<name>

 Port=<port num>

2.2.2 Server

Server=localhost

Port=<port num>

Trilogy Name:

 Directive=Value

 Directive=Value

Trilogy Name:

 Directive=Value

 Directive=Value

On the client, the Server= directive specifies the default location of the Trilogy

server. If no other host is specified when the client is invoked, the request is

made to this default server.

Trilogy server installations automatically install a client.

Because of this the trilogy.conf file contains both server

and port directives. The server directive is purely for the

client’s use and points it at the local server (localhost) by

default.

The Port= directive exists on both server and client. It indicates the port number

on which the Trilogy server is listening for incoming requests:

When the Trilogy server starts, it reads this port number from its trilogy.conf

file and begins to listen on that port.

When a Trilogy client makes a request it does so to the Server and Port specified

in its trilogy.conf file.

Trilogy 2.3 Administrator Guide Page 11 of 275
www.trinem.com

On the command line client, the port number and server

name can be overridden with the –b and -p switches.

Similarly, the Trilogy Scripting Engine can override the

settings in the local trilogy.conf file by the use of the

SetPort and SetServerName methods.

See Command Line Options and Trilogy Scripting Engine

later in this document for more information.

The trilogy.conf file on the Trilogy client allows for multiple Trilogy Server

Instances to be defined. For example, suppose the client file is defined like this:

Server=Homer

Port=2301

Bart:

 Server=Burns

 Port=2302

Marge:

 Server=Maggie

 Port=2303

Lisa:

 Server=Lisa

 Port=2301

In this example, Trilogy client requests will normally be routed to the Trilogy

Server listening on port 2301 on the Server Homer. However, if the user

specifies a different server (for example by using the –b flag on the Trilogy

command-line client) then the request is routed to the server and port

associated with the specified identifier. Thus:

trilogy –b Marge MYJOB

This will send a request to the Trilogy Server listening on port 2303 on the server

Maggie.

If the specified identifier is not found in the local trilogy.conf, the client will

perform normal OS-based hostname resolution to determine the server location.

Unless the port number has been specified otherwise, the port used is the

default set at the top of the trilogy.conf file.

The trilogy.conf file on the Trilogy server also includes the mapping of the

Trilogy Jobs that are specified in the calls from the clients. Each Trilogy Job is

defined on its own line, left justified and ending with a colon (:). Beneath the

Trilogy Job entry is a list of Trilogy Directives that define how Trilogy should

respond to requests from a client to invoke the particular Trilogy Job. A blank

line ends the entry-set for this Trilogy Job. This format is known as a Stanza File.

A stanza entry consists of one or more directives. A Directive is constructed in

the format:

Trilogy 2.3 Administrator Guide Page 12 of 275
www.trinem.com

DirectiveName=Value

For example, consider the following entry in the server's trilogy.conf:

validate_user_name:

 Program=/home/trilogy/programs/verify_user_name

This tells Trilogy that any request from a client to run "validate_user_name" will

actually result in the execution of the server side script:

/home/trilogy/programs/verify_user_name

Any parameters passed to the Trilogy client are automatically

passed to the server-side script. You can also use a Trilogy

directive to set parameters which are passed to the job

automatically.

The "Value" part of the directive can include environment variables. Thus, if you

want to place scripts relative to the TRILOGYHOME directory, you could enter:

validate_user_name:

 Program=$TRILOGYHOME/programs/verify_user_name

Note, though, that environment variables in Program directives are only read

when the Trilogy server is started. Creating new environment variables after this

point will not result in them being available to Trilogy until it is restarted.

Trilogy 2.3 Administrator Guide Page 13 of 275
www.trinem.com

 Running Server Side Scripts with Trilogy 2.3

At its most basic, Trilogy can run jobs on its server based either on requests

from Trilogy clients or when its built-in scheduler determines that a job needs to

be run. For client interactions, any data appearing on the Standard Input of the

client will be routed to the standard input of the server-side script. For the

Command Line client, the default output behaviour is for the standard output of

the server job (Stdout) to appear as the standard output of the client. The

standard error output of the server job (Stderr) appears as a pop-up box on the

client. These options can be overridden on the server with the trilogy.conf

stanza directives stdout= and stderr= respectively, thus:

stdout=display|discard|popup|report|filechooser:<filename>|file:<fil

ename>

stderr=display|discard|popup|report|filechooser:<filename>|file:<fil

ename>

The options are:

display send the relevant stream from the server-side job to

the relevant stream of the invoking client. This is the

default for the standard output stream.

discard ignore all output from the relevant stream.

popup sends all output from the relevant stream to a pop-

up dialog box on the client. This is the default for the

standard error stream.

report sends the relevant stream to a scrollable textbox on

the client. This textbox is contained within a dialog

that gives total run time and (when the server-side

job completes) the job’s exit code. A user can

therefore see the output of the server-side job as it

runs in “real time”. Only one report box can exist for

a particular job. If both stdout and stderr are set to

“report”, only one report dialog is opened at the

client and both streams appear in it.

filechooser:<filename> a dialog is opened, allowing the user to select a file

on the client to which the stream should be written.

The default location and filename is given by the

<filename> argument.

file:<filename> specifies a client-side file to which the stream

contents should be written.

Note that the appearance of the pop-up dialog box varies slightly depending if

the output is from standard error or standard output:

Trilogy 2.3 Administrator Guide Page 14 of 275
www.trinem.com

stderr=popup

stdout=popup

This ensures that the dialogs appear in the Windows convention, with the

appropriate icon displayed either for an error (standard error) or for information

(standard output)

 Trilogy Client Service 2.4

This section only applies to Windows Clients.

Windows clients can install Trilogy Client as a Service. In this case a Trilogy Icon

is visible in the Desktop Notification Area.

Here is an example of the Trilogy Client running as a Service on a client PC and

present in the Notification Area:

When Trilogy Client is running as a Service, the user can interact with the

Notification Area Icon. The user can:

 Right-Click to invoke jobs on one or more Trilogy Server(s)

Trilogy 2.3 Administrator Guide Page 15 of 275
www.trinem.com

 Receive “Balloon” style notifications from jobs running on Trilogy Servers.

 Receive a visual indication when specific Trilogy jobs are running on the

Trilogy Server.

The jobs a user can select from the Notification Area Icon can be determined by

the user groups of which the user is a member.

Here is an example of a user right-clicking on the Trilogy Icon within the

Notification Area:

Jobs that are to be shown within the Notification Area are identified by directives

within the server-side trilogy.conf configuration file.

Similarly, “Balloon” style notifications can be sent to individual users, all users or

users within certain user groups. This can be done from either Unix or Windows

Servers:

User groups for access control and for balloon style notifications are determined

via a “plug-in” mechanism at the Trilogy Server. Trilogy Server ships with plug-

ins for file-based user groups. Other plug-ins are available for download from the

Trinem website (for example, a plug-in is available for CA Technologies Software

Change Manager).

Trilogy 2.3 Administrator Guide Page 16 of 275
www.trinem.com

3 Installation Guide

 Installing a Trilogy Server 3.1

3.1.1 Windows
 Insert the installation CD into the CD Drive.

 The installation wizard may start automatically. If it does not…

o Open Windows Explorer

o Navigate to the CD Drive containing the Trilogy installation media

o Double-click the setup.exe icon.

 If your machine does not have the Visual C++ run-time libraries installed, you

will be presented with the following dialog:

 Should this dialog be presented then you will need to click “Install” in order to

install the pre-requisite C++ libraries.

 Once the pre-requisite C++ runtime libraries have been installed (or if they

are already installed) you will see a welcome page as follows:

 Click “Next”

 Read and confirm acceptance of the license conditions by clicking “I Agree”

and clicking “Next”. The following dialog will be displayed:

Trilogy 2.3 Administrator Guide Page 17 of 275
www.trinem.com

 Installing a Trilogy Server automatically installs a Trilogy Client. On this

screen, you can select whether to register the Trilogy Client and Server as

windows services. This has the advantage of starting the Trilogy Client and

Server automatically whenever the server is rebooted. The Trilogy Client

Service is used to place a Trilogy Icon in the System Tray (Notification Area)

on the desktop for selecting and running remote jobs and for receiving

“Balloon” style notifications from the Trilogy Server. The option to register the

Trilogy Server is selected by default; that for the client is not. If you do not

wish the server to be registered as a service then deselect this option before

continuing. If you wish the Trilogy Client to be started as a service, then

select the “Register Trilogy Client as a Windows Service” before continuing.

 Click “Next”. The following dialog is displayed:

 This is where you set the port number on which the Trilogy Server will listen

for incoming requests. It defaults to 2301. If you want to change this default,

do this here.

Trilogy 2.3 Administrator Guide Page 18 of 275
www.trinem.com

 Click “Next”. The following dialog is displayed:

 Confirm the install folder (defaults to c:\Program Files\Trinem\Trilogy on

32-bit Windows machines or C:\Program Files (x86)\Trinem\Trilogy on

64-bit Windows machines). Change this if required.

 Click “Next”. You are presented with a dialog that indicates that the software

installation is about to begin. This is the last point in which you can click

“back” to change the installation folder. If you wish to proceed, click “Next”

and the software installation will begin.

 If you are upgrading from a previous version of Trilogy, then you will be

notified that a trilogy.conf file already exists. A dialog box will be

presented with three options:

 Select one of the options and click OK to continue.

o Keep Existing trilogy.conf (Recommended) retains the original

trilogy.conf. All server-side job definitions are retained. This is the

recommended approach. However, if you are upgrading from a Trilogy

1.x or 2.1 installation you will not have the new DEMO jobs created

which demonstrates the new features.

o Backup Existing trilogy.conf. The existing configuration file is renamed to

trilogy.conf.orig and a new trilogy.conf is created, containing the

port number specified in the installation dialog and the new DEMO jobs.

o Remove Existing trilogy.conf. The trilogy.conf is simply replaced with

the new version.

 Installation of the Windows server is now complete. A temporary license key

(trilogy.lic) is created automatically in the installation directory (the same

directory in which trilogy.conf is located). This temporary license key is for

Trilogy 2.3 Administrator Guide Page 19 of 275
www.trinem.com

30 days and supports up to 2 remote clients. This will be sufficient to evaluate

the Trilogy software. If you wish to run Trilogy permanently you will need to

copy a new license file to the installation directory. See “Licensing the Trilogy

Server” below for more information.

 Note, installing a server automatically installs a client. You cannot install a

server without a client.

3.1.2 Unix

 Login to the Unix server as root. If you do not have root access then see

below.

 Insert the installation CD into the CD Drive.

 Mount the CD if necessary using the appropriate “mount” command. Some

systems may auto-mount the CD.

 Create a directory where you want Trilogy to be installed. The owner of the

directory is not important but the user who starts the Trilogy daemon process

must have at least read access to the directory.

 Copy the appropriate “tar” file to this directory. The tar file is located on the

CD media under:

UNIX/<platform>/TrilogyServer_<platform>.tar.gz

 Navigate to the Trilogy directory. Uncompress the tar file by entering:

gunzip TrilogyServer_<platform>.tar.gz

 Extract the contents of the tar file with:

tar xvf TrilogyServer_<platform>.tar

 An “install” directory will have been created. Navigate to this directory:

cd install

 Run the install script located in this directory:

./install.sh

 The license is displayed. Use the space bar to page through the license

agreement. At the end of the agreement, you will be asked if you accept the

terms of the license. If you do enter Y and press enter.

 You will be asked to enter a port number on which the Trilogy Server will

listen for incoming requests. Hit ENTER to accept the default (2301) or enter

a new number here.

 If this is an upgrade from a previous release of Trilogy, then you will be

prompted that a trilogy.conf file already exists. You then have options to

either keep this file (recommended), backup the existing file or to simply

overwrite the file with a new version.

o Keep Existing trilogy.conf (Recommended) retains the original

trilogy.conf. All server-side job definitions are retained. This is the

Trilogy 2.3 Administrator Guide Page 20 of 275
www.trinem.com

recommended approach. However, if you are upgrading from a Trilogy

1.x installation you will not have the new DEMO job created which

demonstrates the new linked and disabled fields feature.

o Backup Existing trilogy.conf. The existing configuration file is renamed to

trilogy.conf.orig and a new trilogy.conf is created, containing the

port number specified in the installation dialog and the new DEMO job.

o Remove Existing trilogy.conf. The trilogy.conf is simply replaced with

the new version.

 Trilogy Server installation is now complete.

 You should then copy your license file to the installation directory. This is the

same directory in which the trilogy.conf file is located. You can download a

demo license for evaluation from http://www.trinem.com. See “Licensing the

Trilogy Server” below for more information.

 Set the PATH to include $TRILOGYHOME/bin.

Server Installation for non-root users:

If you do not have root access to the server machine, then you will not be able to

mount the CD media. You will have to extract the TrilogyServer_<plat>.tar file

for your particular platform and copy it to an appropriate area on the Server. Then

unzip and extract the contents of the tar file and run install.sh as above.

http://www.trinem.com/

Trilogy 2.3 Administrator Guide Page 21 of 275
www.trinem.com

 Installing a Trilogy Client 3.2

3.2.1 Windows

Note, if you have previously installed a Trilogy Server on this

node, you will have a client installed automatically. These

instructions should be followed to install a client on remote

nodes only.

 Insert the installation CD into the CD Drive.

 The installation wizard may start automatically. If it does not…

o Open Windows Explorer

o Navigate to the CD Drive containing the Trilogy installation media

o Double-click the setup.exe icon.

 If your machine does not have the Visual C++ run-time libraries installed,

you will be presented with the following dialog:

 If this dialog is presented then click “Install” in order to install the pre-

requisite C++ libraries.

 Once the pre-requisite C++ runtime libraries have been installed (or if they

are already installed) you will see a welcome page as follows:

Trilogy 2.3 Administrator Guide Page 22 of 275
www.trinem.com

 Click “Next”

 Read and confirm acceptance of the license conditions by clicking “I Agree”

and clicking “Next”. The following dialog will be displayed:

 Enter the name of the node where the Trilogy Server is running and change

the default port number on which the server is listening (if required).

The “Server Name” entered during the install sets the

default server name and port number in the client side

trilogy.conf file. On the command line client, the port

number and server name can be overridden with the –b and

-p switches.

Similarly, the Trilogy Scripting Engine can override the

settings in the local trilogy.conf file by the use of the

SetPort and SetServerName methods.

See Command Line Options and Trilogy Scripting Engine

later in this document for more information.

 Click “Next”. The following dialog is displayed:

Trilogy 2.3 Administrator Guide Page 23 of 275
www.trinem.com

 Confirm the installation folder (defaults to c:\Program

Files\Trinem\Trilogy). Change this if required.

 Click “Next”. You are presented with a dialog that indicates that the software

installation is about to begin. This is the last point in which you can click

“back” to change the installation folder. If you wish to proceed, click “Next”

and the software installation will begin.

 Installation of the Windows client is now complete.

3.2.2 Unix

Note, if you have previously installed a Trilogy Server on this

node, you will have a client installed automatically. These

instructions should be followed to install a client on remote

nodes only.

 Login to the Unix server as root. If you do not have root access then see

below.

 Insert the installation CD into the CD Drive.

 Mount the CD using the appropriate “mount” command.

 Create a directory where you want the Trilogy client to be installed.

 Copy the appropriate “tar” file to this directory. The tar file is located on the

CD media under:

UNIX/<platform>/TrilogyClient_<platform>.tar.gz

 Navigate to the Trilogy directory. Uncompress the tar file by entering:

gunzip TrilogyClient_<platform>.tar.gz

 Extract the contents of the tar file with:

tar xvf TrilogyClient_<platform>.tar

Trilogy 2.3 Administrator Guide Page 24 of 275
www.trinem.com

 An “install” directory will have been created. Navigate to this directory:

cd install

 Run the install script located in this directory:

./install.sh

 The license is displayed. Use the space bar to page through the license

agreement. At the end of the agreement, you will be asked if you accept the

terms of the license. If you do enter Y and press enter.

 You will then be prompted to enter the default location of the Trilogy Server.

This is the machine name on which the Trilogy Server is running. The client

machine must be able to resolve this name to an IP address.

 You will then be prompted to enter the port number on which the Trilogy

Server is listening for incoming connections. This defaults to 2301. If you

want to accept this default, then just hit ENTER. Otherwise, enter your

desired port number and hit enter.

The “Server Name” and “port number” entered during the

Unix Client Install sets the default server name and port

number in the client side trilogy.conf file. On the command

line client, the port number and server name can be

overridden with the –b and -p switches.

 Installation of the client is now complete. Note that the environment variable

TRILOGYHOME needs to be defined for any user wishing to invoke the Unix

Trilogy client. You can do this either in the central profile (/etc/profile or

/etc/.login) or in any “wrapper” scripts you are using to invoke Trilogy.

TRILOGYHOME needs to point to the directory containing the trilogy.conf

file.

Client Installation for non-root users:

If you do not have root access to the client machine, then you will not be able to

mount the CD media. You will have to extract the

TrilogyClient_<platform>.tar file for your particular platform and copy it to

an appropriate area on the Server. Then unzip and extract the contents of the

tar file and run install.sh as above.

Trilogy 2.3 Administrator Guide Page 25 of 275
www.trinem.com

 Licensing the Trilogy Server 3.3

When Trilogy Server is first installed it automatically creates

a 30-day, two user license. Follow the steps below to replace

this temporary key with a permanent key specific to your

organisation.

Licensing covers the expiry date of the server, the number of client nodes that

are allowed to connect to it and (optionally) the hostname of the server node.

This is done by entries in a license file. This file is called trilogy.lic and is

located in the $TRILOGYHOME directory on the server node.

Trilogy clients are not licensed. They check for their continued validity against

the Trilogy Server specified in the trilogy.conf file. In practice, this means

that a new license can be applied system-wide by editing the appropriate

trilogy.lic on the server node only.

Here is an example trilogy.lic:

LICENSE KEY: MOGQ-BNSO-VWIA-YYPG-BWVI

CUSTOMER NAME: demo

EXPIRY DATE: 31/08/08

NODES: 10

The expiration date is specified in European Date Format

(DD/MM/YYYY)

The customer name, expiry date and permitted number of clients (NODES) are

encrypted in the license key. Therefore, changes to any of these fields require a

new license key to be generated. Trinem will supply an appropriate

trilogy.lic.

Do not attempt to edit the file. If the license key is not recoded to match the

other fields, the license file will be considered invalid and the Trilogy Server will

not start.

The NODES field specifies how many unique client nodes are allowed to connect

to the server. When a Trilogy Client connects to a Trilogy Server, its hostname is

recorded by the server. This hostname is regarded as a unique client identifier.

Once the number of unique hostnames has been recorded, subsequent

connection requests from new clients (whose hostnames have not previously

connected) are refused.

This technique means that multiple connections are permitted from a single

client with the loss of only one end-user license.

Trilogy 2.3 Administrator Guide Page 26 of 275
www.trinem.com

If the license is node-locked (i.e.: it will only run on a

particular server) then the license file contains an additional

HOSTNAME: line and the license key itself is longer.

Trilogy 2.3 Administrator Guide Page 27 of 275
www.trinem.com

 Starting the Trilogy Server 3.4

3.4.1 Windows

 Ensure that the server has been licensed with the appropriate entries in the

%TRILOGYHOME%/trilogy.lic file.

 The windows server can be started either from the command line (DOS

Prompt) or by registering it as a Windows Service. The advantage of

registering the server as a service is that it can be automatically started when

the box is booted and it does not occupy a DOS box.

 To register the Windows Trilogy Server as a service:

 Open a DOS Prompt

 Navigate to the folder where you installed Trilogy (%TRILOGYHOME%).

 Enter trilogyserver –install

 Open Control Panel

 Depending on platform, either double-click on “Services” or double-click on

“Administrative Tools” and then double-click on “Services”.

 Locate the “Trilogy Server” entry. Click on the start button.

 The Trilogy Server process is now running.

On XP platforms and later you can choose to have the

Trilogy Server run as a different user. Right Click on the

“Trilogy Server” entry, select “Properties” and then click on

the “Log On” tab. Remember that all jobs run by Trilogy

inherit the permissions of the user who started the Trilogy

Server. It may therefore be advantageous to select a non-

system user to start the Trilogy Server.

 To remove (deregister) the Windows Trilogy Server as a service:

 Open a DOS Prompt

 Navigate to the folder where you installed Trilogy (%TRILOGYHOME%).

 Enter trilogyserver –uninstall

 Open Control Panel

 Depending on platform, either double-click on “Services” or double-click on

“Administrative Tools” and then double-click on “Services”.

 Verify that the “Trilogy Server” entry has been removed.

 To start the Windows Trilogy Server from a DOS Prompt

 Open a DOS Prompt

 Navigate to the folder where you installed Trilogy (%TRILOGYHOME%).

 Enter trilogyserver

 You will receive a message indicating that the process has started.

Trilogy 2.3 Administrator Guide Page 28 of 275
www.trinem.com

3.4.2 Unix

 Ensure that the server has been licensed with the appropriate entries in the

$TRILOGYHOME/trilogy.lic file.

 Login as the user who you want Trilogy jobs to run as.

 Navigate to the directory where you installed the Trilogy server

($TRILOGYHOME).

 Enter:
bin/trilogyd

 You will receive a message that the server has started and is listening for

incoming connections.

Note, the server automatically puts itself in background

(daemon process).

 Testing the installation 3.5

By default, the Trilogy Server listens for incoming

connections on port 2301. This can be changed during the

installation process. If you have a firewall between the client

and the server then it must be configured to allow TCP traffic

to port 2301 (or whichever port you configured during the

install).

Ensure the Trilogy server is running

3.5.1 UNIX client
 Ensure that the DISPLAY environment variable is set to the IP address of your

X-Server or 0:0 if running locally.

 Navigate to $TRILOGYHOME

 Enter bin/trilogy demo

 A dialog will be displayed:

Trilogy 2.3 Administrator Guide Page 29 of 275
www.trinem.com

3.5.2 Windows client
 Open a DOS command box

 Navigate to %TRILOGYHOME%

 Enter trilogy demo

 A dialog will be displayed

 The dialog will be similar to this:

Trilogy 2.3 Administrator Guide Page 30 of 275
www.trinem.com

This demo dialog illustrates the basic principles of Trilogy. All dialog definitions

and scripts are held on the server whilst the client displays the dialog at run time

and interacts with the server.

The scripts and screen definitions for this demo dialog are located in

$TRILOGYHOME/demo on Unix servers and %TRILOGYHOME%\demo on Windows

servers.

More examples can be found in Appendix A at the end of this

document.

 Stopping the Trilogy Server 3.6

3.6.1 Windows

 If the Trilogy Server was installed as a Windows Service:

o Log in as “Administrator” or as a user with full admin privileges.

o Open Control Panel

o Depending on platform, either double-click on “Services” or double-click

on “Administrative Tools” and then double-click on “Services”.

o Select the Trilogy Server process and select “stop”.

 If the Trilogy Server is running from a DOS prompt:

o Simply hit CTRL-C to stop the process.

3.6.2 Unix
 Login as the user who started the trilogyd daemon process.

 Navigate to the directory where you installed Trilogy ($TRILOGYHOME)

 Enter bin/trilogyd –shutdown

 You will receive a message that the server has been shutdown.

Trilogy 2.3 Administrator Guide Page 31 of 275
www.trinem.com

4 Trilogy Dialogs

 Creating Dialogs 4.1

The Trilogy command line client can display data entry dialogs if these have been

defined on the server. The advantage of defining such dialogs at the server

cannot be overstressed – dialogs can be created once and are then available

instantly at any Trilogy client (both on Windows and Unix platforms). Should a

dialog require modification then it can be done once and all Trilogy clients will

inherit the modified dialog.

In one sense, Trilogy Dialogs are similar to a web interface in that the client

renders a display that is defined entirely on the server. Unlike web interfaces,

however, Trilogy Dialogs look like a native Windows (or Unix) application

interface. They display quickly, have a familiar “application style” look and feel

and can be invoked from inside other client tools and IDEs whilst maintaining the

feel that the dialog is a seamless extension of that tool. Unlike HTML, creating a

Trilogy Dialog can take seconds rather than hours.

Figure 4.1: By creating Dialog Definitions on the Server, they are available instantly to your entire
installed user base with no software distribution required.

Trilogy 2.3 Administrator Guide Page 32 of 275
www.trinem.com

Dialogs are defined by simply creating a text file on the Trilogy Server which

represents the dialog to display. It is simple to indicate where form components

should be placed:

Data entry fields are represented by square brackets

like this:

[]

Drop-Down lists are represented by braces like this: { }

Radio buttons are represented by a letter “oh” on its

own, like this:

o

Checkboxes are represented by a letter x on its own,

like this:

x

Named Frames are represented by a single dash

followed by the name of the frame, like this:

- named frame

Tabbed Pages are represented by a > char, followed

by the name of the tab like this:

> tab name

All other text is displayed "as is" with some minor exceptions discussed later.

Here is an example dialog file, entered in
$TRILOGYHOME/SCREENS/credentials.scn:

Username []

Password []

The dialog is added to the definition of the Trilogy Job by adding a Dialog=

directive to the appropriate stanza in the trilogy.conf file.

GET_CREDENTIALS:

 Dialog=$TRILOGYHOME/SCREENS/credentials.scn

 Program=$TRILOGYHOME/Scripts/ProcessCredentials

Now, when the command line is invoked like this:

trilogy get_credentials “Trinem Software”

A dialog box is brought up on the invoking client:

The user can then enter the data into this dialog and press the "ok" button.

When this is done, the appropriate program is run (in this case

$TRILOGYHOME/Scripts/ProcessCredentials) and the parameters passed on

the command line to the Trilogy client are passed to the command line of this

Trilogy 2.3 Administrator Guide Page 33 of 275
www.trinem.com

script. In other words, $TRILOGYHOME/Scripts/ProcessCredentials is invoked

with parameter 1 set to "Trinem Software".

In order that the invoked script can read the values from the

dialog, Trilogy places the values from the client GUI into

environment variables TRIFIELDn, where n represents the

number of the field on the screen. Fields are numbered from

left to right and from top to bottom. Therefore, in this case,

TRIFIELD1 represents the Username field and TRIFIELD2

represents the Password field. When the script runs on the

Trilogy server, it can access the data entered on the dialog by

accessing the environment variables TRIFIELD1 and

TRIFIELD2.

Scripts running on Windows Servers can also determine the

content of the client-side dialog by using the GetField()

method contained within the Trilogy Scripting Engine. In

addition, scripts written in either JScript or VBScript

(determined by the file extension .js or .vbs) will be

automatically invoked with the appropriate cscript

interpreter.

Trilogy 2.3 Administrator Guide Page 34 of 275
www.trinem.com

Here is a more complex example, which shows the field ordering and how they

map to the corresponding environment variables:

This example contains frames identified as “First Section”,

“Second Section” and “Third Section”. Creating these Named

Frames is covered later in this document.

By creating a standalone client application that invokes the Trilogy command line

client in this way, a systems administrator can build sophisticated server-side

scripts that can interact with the client user.

Presenting dialogs in this way allows multiple parameters to be passed to the

server-side process without the need to concern the end-user with either

parameter order or quoting syntax. In the next few sections, we will cover how

such Trilogy dialogs can be enhanced and validated.

$TRIFIELD1 $TRIFIELD2

$TRIFIELD3

$TRIFIELD4

$TRIFIELD6

$TRIFIELD5

$TRIFIELD7

$TRIFIELD8

$TRIFIELD9

Trilogy 2.3 Administrator Guide Page 35 of 275
www.trinem.com

 Differences between Unix and Windows Trilogy Dialogs 4.2
As already discussed, Trilogy dialogs can be defined once on a Trilogy server and

are then available instantly at any Trilogy client, regardless of its operating

platform (Windows, Unix or Linux). It is important to note that there is no

difference in the way the dialog is defined – Trilogy takes care of organising the

display on the relevant platform.

However, there are minor differences in the way the various GUI components are

rendered. For example, here is the same demo dialog shown rendered on both

Windows and Unix/Linux clients:

Windows

Unix/Linux

Note, these dialogs show named frames, checkboxes, radio

buttons and drop-down lists. The creation of these GUI

components will all be covered later in this section..

As can be seen, each GUI is rendered in the appropriate way for the client

platform.

The remainder of this document will mostly show only Windows look-and-feel. Be

aware that if you are working on a Unix platform the rendering of some

components will be different.

Trilogy 2.3 Administrator Guide Page 36 of 275
www.trinem.com

The remaining sections of this chapter show how Trilogy

dialogs can be validated and enhanced. Bear in mind that all

the scripts described herein to validate or populate dialogs

run server-side. This means that a Systems Administrator

can set up and define complex server-side scripts without any

software distribution to the clients.

 Creating Password Fields 4.3

If you do not wish the contents of a field to be visible when data is entered,

place one or more asterisk (*) characters anywhere between the opening and

closing square brackets that define the field.

Here is an example:

User Name []

Password [*]

Will be displayed by Trilogy like this:

When text is entered into the fields, the User Name field will be visible but the

Password field will be "starred out":

Although the display will not show the entered text, the

server-side script can still read what was actually entered

into the field by accessing the appropriate TRIFIELD

environment variable (or, on Windows Servers, using the

GetField method) in the usual way.

Trilogy 2.3 Administrator Guide Page 37 of 275
www.trinem.com

 Adding a Title to the Dialog 4.4

In the example above, the title of the dialog was "Trilogy". This is the default

Trilogy dialog name. To override this title with your own, include a Title=

directive in the server-side trilogy.conf:

GET_CREDENTIALS:

 Title=Enter Credentials

 Dialog=$TRILOGYHOME/SCREENS/credentials.scn

 Program=$TRILOGYHOME/SCRIPTS/ProcessCredentials

Now, when the dialog is displayed at the client, the title bar shows the Title

specified in the Title= directive:

Trilogy 2.3 Administrator Guide Page 38 of 275
www.trinem.com

 Creating Drop Down Lists 4.5

A drop down list is a field where the user can select a single item from a list of

possible options. This is useful for circumstances where you wish to restrict a

field's input or to assist the user in some way.

Trilogy supports the creation of drop down lists by the use of the

PopulateFieldnWith= directive in the server's trilogy.conf. The n represents

the field number as described earlier (fields are numbered from left to right and

top to bottom, starting at 1). The value for this directive can either be a fixed list

of hard-coded values or it can be the name of a script. If you specify a script

then the output from the script is used to populate the drop-down list.

It is important to realise that the definition of the screen

layout (defined with the Dialog= directive) remains the

same regardless of whether the data entry screen is a simple

data-entry field or a drop down list. A data entry field will

automatically be turned into a drop-down list if more than

one value is placed in it by the PopulateFieldnWith=

directive. If you wish to force Trilogy to display a drop-down

list rather than a data-entry field, use braces rather than

square brackets for the field definition.

For example, if we wished to add a drop-down (such as a domain name) to our

"get credentials" screen above, we could modify the server-side screen definition

to look like this:

User Name []

Password [*]

Domain { }

…and amend the server-side trilogy.conf job entry to populate this 3rd field with

a fixed list of values:

GET_CREDENTIALS:

 Title=Enter Credentials

 Dialog=$TRILOGYHOME/SCREENS/credentials.scn

 Program=$TRILOGYHOME/SCRIPTS/ProcessCredentials

 PopulateField3With={Domain1,Domain2,Domain3}

Now, when the Trilogy client is invoked, the third field becomes a drop down:

Trilogy 2.3 Administrator Guide Page 39 of 275
www.trinem.com

Drop down lists are identified by the presence of a selection button next to

the field. When this button is pressed, the drop down list is presented:

The user can then only select from one of the three, hard-coded options. When

the dialog is submitted (by pressing "OK") the selected option will be passed in

the environment variable TRIFIELD3 just as a normal data-entry field would.

Although powerful, such hard-coded lists are a little restrictive. You may wish to

generate the list with an external program - perhaps to read the values from an

external file or database or to vary the list content dependent on some server-

side logic

To support this, Trilogy allows you to specify the name of a script in the

PopulateFieldnWith= directive. When the dialog is invoked, Trilogy will run this

script, passing it any command line values that were included on the command

line on the client. The standard output from this script is then used to populate

the drop down list – the first line of output becomes the first selectable item, the

second line becomes the second selectable item and so on.

Note, this method of using scripts to populate fields is an

important concept in Trilogy. Remember, the first line of the

invoked script’s standard output is the first selectable item,

the second line, the second item and so on.

Since the parameters that were passed to the Trilogy client are passed to this

server-side script, the script can vary its output based on the values passed. For

example, by invoking the client (on a windows machine) thus:

Trilogy 2.3 Administrator Guide Page 40 of 275
www.trinem.com

trilogy get_crendentials %PROCESSOR_ARCHITECTURE%

The architecture of the client’s machine is passed as parameter 1 to the

PopulateFieldnWith= script. The script can then generate its output based on

this architecture and the drop-down list can be varied.

If the server-side script exits with a non-zero exit code, then

the field on the client dialog is disabled. You can use this to

prevent users from entering data into fields. This technique is

discussed in more detail later in this document.

Trilogy 2.3 Administrator Guide Page 41 of 275
www.trinem.com

 Pre-Populating Dialogs 4.6

You may find it useful to pre-populate fields when the dialog is first displayed.

You can use this to fill-in certain values based on the invoking context.

In order to support this, Trilogy employs the PopulateWith= directive. This

works almost identically to the PopulateFieldnWith= directive. You can specify

either a fixed list of discrete values (with the syntax

{field1,field2,field3,…fieldn}) or you can specify a script. In the first case,

the first specified fixed value is placed in the first field, the second in the second

and so on. Here is an example:

GET_CREDENTIALS:

 Title=Enter Credentials

 Dialog=$TRILOGYHOME/SCREENS/credentials.scn

 Program=$TRILOGYHOME/SCRIPTS/ProcessCredentials

 PopulateField3With={Domain1,Domain2,Domain3}

 PopulateWith={username,password}

Displays:

In this case, "username" has been placed in field 1 and "password" has been

passed in field 2. Since field 2 is set as a password field (by including an asterisk

character between the opening and closing braces in credentials.scn) the word

"password" is hidden.

If you specify a script, Trilogy will invoke the script (passing any command line

parameters as previously discussed) and will then read the standard output from

the script – the first line becoming the first field, the second line becoming the

second field and so on.

For example, suppose we have a script that simply outputs the parameters

passed to it, like this:

#!/bin/ksh

echo $1

echo $2

If we place this script in $TRILOGYHOME/SCRIPTS/prepop, and add it to the

server-side trilogy.conf like this:

Trilogy 2.3 Administrator Guide Page 42 of 275
www.trinem.com

GET_CREDENTIALS:

 Title=Enter Credentials

 Dialog=$TRILOGYHOME/SCREENS/credentials.scn

 Program=$TRILOGYHOME/SCRIPTS/ProcessCredentials

 PopulateField3With={Domain1,Domain2,Domain3}

 PopulateWith=$TRILOGYHOME/SCRIPTS/prepop

Then invoke the client-side UDP like this:

trilogy get_credentials abc def

Then the dialog displayed will look like this:

This is because the first field is populated with the first line of standard output

from the script $TRILOGYHOME/UDPS/prepop (echo $1). The second field is

populated with the second line of standard output from the script (echo $2). The

script has been passed the same command-line parameters as were passed in

the call to the Trilogy client. Note, there is no third line output by the script so

the Domain drop-down (TRIFIELD3) is not populated. Pre-populating drop-down

lists is covered in the next section.

Trilogy 2.3 Administrator Guide Page 43 of 275
www.trinem.com

 Pre-Populating Dialogs Containing Drop Down Lists 4.7

If you want to pre-populate a dialog containing drop down lists then you can

simply use a combination of PopulateWith= and PopulateFieldnWith=

directives. In this case, Trilogy will invoke all the PopulateFieldnWith=

directives to create the drop down lists and will then invoke the PopulateWith=

directive to set the initial values for the entry fields. When the drop down list is

pre-populated in this way, Trilogy will set the initial value of the list to the

appropriate value. Note that this will only work provided that the PopulateWith=

directive results in the field being set to a value included in the output of the

PopulateFieldnWith= directive. If not, the list is left with no initial value.

As an example, let's extend the "prepop" script described in the previous section

to output a third parameter. This will be used to populate TRIFIELD3. On our

dialog, this is a drop-down list containing the domain names.

The job definition in the server-side trilogy.conf file stays the same:

GET_CREDENTIALS:

 Title=Enter Credentials

 Dialog=$TRILOGYHOME/SCREENS/credentials.scn

 Program=$TRILOGYHOME/SCRIPTS/ProcessCredentials

 PopulateField3With={Domain1,Domain2,Domain3}

 PopulateWith=$TRILOGYHOME/SCRIPTS/prepop

But the "prepop" script is modified as shown:

#!/bin/ksh

echo $1

echo $2

echo $3

If Trilogy client is invoked like this:

trilogy get_credentials abc def Domain2

Then the dialog is shown like this:

As can be seen, field 3 is still a drop down list but it has been preset to the value

placed in field 3 by the PopulateWith= script. If the drop-down list button is

Trilogy 2.3 Administrator Guide Page 44 of 275
www.trinem.com

selected, the list can be seen just like before but with the pre-populated value

already selected:

If, on the other hand, the PopulateWith= directive results in a value being set

for the field which does not occur in the list, then no value is preselected and the

field is left blank.

To illustrate this, assume the client is invoked as follows:

trilogy add_user_to_project abc def NOSUCHDOMAIN

In this case, Trilogy will invoke the script $TRILOGYHOME/UDPS/prepop which will

simply echo the passed parameters on separate lines: the first parameter on line

1 (which Trilogy will place in the first field), the 2nd parameter on line 2 (which

Trilogy will place in the second field) and "NOSUCHDOMAIN" on line 3 (which

Trilogy will place in the 3rd field). Because the third field is a drop down list

made up of the three values "Domain1", "Domain2" and "Domain3" and since

"NOSUCHDOMAIN" is not one of these values, then Trilogy will leave the list with

no initial selection:

Trilogy 2.3 Administrator Guide Page 45 of 275
www.trinem.com

 Checkboxes and Radio Buttons 4.8

Trilogy also supports the creation of checkboxes and radio buttons.

A checkbox is an on-off toggle. It is typically displayed like this:

Clicking inside the checkbox changes its state from selected to unselected and

vice-versa.

Radio Buttons, on the other hand, are usually arranged in groups. Only one of a

group of radio buttons can be selected at any one time. Selecting a new radio

button automatically clears the state of all the other radio buttons in the group.

Here, selecting the "Value 2” radio button automatically clears the "Value 1" and

"Value 3" buttons.

4.8.1 Creating Checkboxes and Radio Buttons

You identify checkboxes inside the Trilogy dialog definition file by including a

single "x" character where you want the checkbox to be placed. You can use

either a lower-case "x" or an upper-case "X". In the latter case, the checkbox is

displayed SELECTED by default (unless the dialog has been pre-populated with a

PopulateWith= script –see below).

Conversely, you identify radio buttons inside the Trilogy dialog definition file by

including a single "o" (letter oh) character where you want the radio button to be

placed. Just like checkboxes, you can use an upper or lower case "o". If you use

an upper-case "O" then the radio button will be selected by default unless this

behaviour is altered by the use of a PopulateWith= script.

Trilogy 2.3 Administrator Guide Page 46 of 275
www.trinem.com

All radio buttons on the dialog are grouped together – selecting one clears all the

others. If you want your dialog to have multiple sets of radio-buttons then you

will need to group them using Named Frames. See Creating Named Frames in

Dialogs below for more information.

Each checkbox or radio button corresponds to a TRIFIELD environment variable

available to the server-side script, just as a data-entry field would. The values

returned into these variables are "1" if the checkbox or radio button is selected

and "0" otherwise.

Here is an example of a dialog containing checkboxes and radio buttons:

New Project Name []

Create from Template []

O Create in Active Projects

o Create in Inactive Projects

x Create User Group

X Alert when complete

This will be displayed by the Trilogy client like this:

Note that the capital O has resulted in the first radio button being preset.

Similarly, the capital X has resulted in the second checkbox being preset.

Any server-side script run as a result of this dialog can access the radio buttons

and checkboxes via TRIFIELD environment variables in the normal way. Thus, in

this case:

TRIFIELD1 is the new project name

TRIFIELD2 is the template name

TRIFIELD3 is "1" if the radio button "Create in Active Projects" is set, "0"

otherwise

TRIFIELD4 is "1" if the radio button "Create in Inactive Projects" is set, "0"

otherwise

TRIFIELD5 is "1" if the checkbox "Create User Group" is selected, "0"

otherwise

TRIFIELD6 is "1" if the checkbox "Alert when complete" is selected, "0"

otherwise.

Trilogy 2.3 Administrator Guide Page 47 of 275
www.trinem.com

4.8.2 Pre-populating Dialogs containing Radio Buttons and Checkboxes

Radio buttons and checkboxes are data entry components that map to TRIFIELD

environment variables just like regular data entry fields and drop-down lists. This

means that they can be preset using PopulateWith= and PopulateFieldnWith=

directives just like any other field.

In this case, a value of "1" sets the checkbox or radio button, any other value

clears it. If fields are set with these directives then the default settings (indicated

with the capital O or X marks) are ignored by Trilogy.

Thus, we could add a simple directive to trilogy.conf to select the other radio

button:

demo2:

 Dialog=$TRILOGYHOME/demo/screens/demo2.scn

 PopulateField4With={1}

Now, when Trilogy displays this dialog, it selects field4 (the second radio

button):

Of course, in itself this is not much use. What is of more value is setting the

default values from a script. The script can then derive the appropriate values.

Remember that the output from a PopulateWith= script is mapped to the dialog

with the first line of output going to field1, the second line to field2 and so on.

Therefore, in this case, the third line of output should be "1" to set the first radio

button, the fourth line should be "1" to set the second radio button and so on.

Therefore, if we write a simple script like this:

#!/bin/sh

echo "" # New Project Name

echo "" # Create From Template

echo "0" # Create in Active Projects (off)

echo "1" # Create in Inactive Projects (on)

echo "1" # Create User Group (on)

echo "0" # Alert when Complete (off)

and we add the PopulateWith= directive to trilogy.conf:

Trilogy 2.3 Administrator Guide Page 48 of 275
www.trinem.com

demo2:

 Dialog=$TRILOGYHOME/demo/screens/demo2.scn

 PopulateWith=$TRILOGYHOME/demo/scripts/demo2pop.sh

Then, when Trilogy displays the dialog, it sets the radio buttons and checkboxes

according to the output from this script:

 Disabling Fields 4.9
A field is automatically disabled should its associated PopulateFieldnWith

script exit with a non-zero exit code. You can use this technique to disable fields

under circumstances you determine.

 Renaming the Buttons 4.10
The two buttons “OK” and “Cancel” are present at the bottom of every dialog.

The Cancel button simply closes the window with no further action being

performed, the “OK” button submits the dialog and causes the Trilogy Server to

run any server-side script associated with the ValidateWith= and Program=

directives.

You may find it necessary to rename these buttons, either because of local

language concerns or to better reflect their function. This is done with the

OKButtonText= and CancelButtonText= directives. These directives allow the

text on the buttons to be changed.

For example, including these directives in the server-side trilogy.conf for a job:

OKButtonText=Ja

CancelButtonText=Nein

Results in the dialog being displayed at the client with the default button names

changed:

Note, the functionality of the button is not changed – only the

text displayed on it.

Trilogy 2.3 Administrator Guide Page 49 of 275
www.trinem.com

 Validating Dialog Data 4.11

One way of validating dialog data is to have your server-side script validate the

submitted data at the point where the user submits the dialog. Obviously, this is

desirable anyway but to have this as the only point of data validation it is not

ideal from an end-user's perspective. Once the job has been submitted (by

pressing OK), the GUI dialog disappears. It is very frustrating to fill out a

(potentially) large dialog and to submit it, only to be told that there was some

form of error in the input and the user is expected to re-enter all the data again.

Fortunately, Trilogy allows you to validate the contents of the dialog before it

allows the "main" server-side (Program=) task to run. This is implemented with

the "ValidateWith=" directive in trilogy.conf.

The ValidateWith= directive specifies a server-side script that Trilogy will invoke

in order to validate the form. As with the PopulateWith= and

PopulateFieldnWith= directives, the specified script is passed all the command-

line parameters that were passed to the Trilogy client. The ValidateWith= script

is also passed the contents of the fields – in other words the environment

variables TRIFIELD1, TRIFIELD2 etc are all set to the values filled out on the

Trilogy Client GUI. Given this information, the script will be able to validate the

entered data.

Trilogy handles the output of this script in the following way:

If the script completes with an exit code of 0 then Trilogy assumes that

validation was successful. In this case, the GUI disappears and the main

program (specified with the Program= directive) is run.

If the script completes with a non-zero exit code then Trilogy assumes that

validation has failed. In this case, the standard error output of the script is

displayed as a pop-up box on the Trilogy client, and the GUI is not cleared. This

allows the user to correct the error and submit the form again.

Here is an example of a simple validation script. This script ensures that the user

has filled in all required values in our get_credentials job:

#!/bin/ksh

function ExitWithError

{

 echo "$*">&2

 # failure

 exit 1

}

[[-z $TRIFIELD1]] && ExitWithError "You must specify a User Name"

[[-z $TRIFIELD2]] && ExitWithError "You must specify a Password"

[[-z $TRIFIELD3]] && ExitWithError "You must specify a Domain"

success

exit 0

Assuming that this script is in $TRILOGYHOME/SCRIPTS/validate we can add the

following directive to the server's trilogy.conf:

ValidateWith=$TRILOGYHOME/SCRIPTS/validate

Trilogy 2.3 Administrator Guide Page 50 of 275
www.trinem.com

Making the whole stanza look like this:

GET_CREDENTIALS:

 Title=Enter Credentials

 Dialog=$TRILOGYHOME/SCREENS/credentials.scn

 Program=$TRILOGYHOME/SCRIPTS/ProcessCredentials

 PopulateField3With={Domain1,Domain2,Domain3}

 PopulateWith=$TRILOGYHOME/SCRIPTS/prepop

ValidateWith=$TRILOGYHOME/SCRIPTS/validate

If the user attempts to submit the dialog without having filled in both fields, they

are now prevented from doing so:

Clicking OK on the client dialog, causes Trilogy to run the server side script

$TRILOGYHOME/SCRIPTS/validate. Since TRIFIELD3 is NULL, the script writes

"You must specify a Domain" to its standard error and exits with a failure

condition. At the client, a pop-up dialog appears, containing the validate script's

standard error output:

Clicking OK on this pop-up dialog simply clears it, leaving the original data-entry

dialog on screen, ready for another attempt.

Trilogy 2.3 Administrator Guide Page 51 of 275
www.trinem.com

 Validating Command Line Parameters Before Displaying Dialog 4.12

You may find it necessary to validate the passed command-line parameters

before bringing up the GUI for data entry.

In order to allow this, Trilogy supports the directive PreValidateWith= in the

server-side trilogy.conf file. This directive refers to a script which, if specified,

is invoked prior to the GUI being displayed. This script is passed all the

command line parameters which were included in the call from the Trilogy client.

If this Pre-Validate script returns 0 then the GUI is displayed in the normal way.

If it returns any other value then the standard error output from the script is

displayed as a pop-up dialog box at the client and the GUI dialog is not

displayed.

Since the nodename and username of the client is made

available in the environment variables TRICLIENTNODENAME

and TRICLIENTUSERNAME, you can use this technique to deny

access to functions based on either the location from where

the request is being made or the user who is performing the

operation. See Server Side Scripts – Environment Variables

set by Trilogy later in this document.

Trilogy 2.3 Administrator Guide Page 52 of 275
www.trinem.com

 Using the Same Script to perform Multiple Functions 4.13

Discussions so far have shown multiple scripts each performing a single function.

We have shown how to create scripts to:

 populate the dialog

 populate a field

 validate form data

 pre-validate the command line parameters

 execute once the dialog's "okay" button has been pressed.

Now supposing we want to populate multiple fields – if we had a separate script

for each field then we could potentially have a lot of different scripts to maintain.

To work around this problem, Trilogy allows you to write a single script and refer

to it multiple times in trilogy.conf. When the script is invoked, Trilogy sets

environment variables that allow the script to determine why it has been called

and to perform the appropriate action.

The main environment variable that controls this is TRIREASON. When the script

is invoked, it can read TRIREASON which will be set to one of the following

values:

PREVALIDATION Script has been run as a result of a PreValidateWith=

directive.

VALIDATION Script has been run as a result of a ValidateWith= directive.

POPULATE Script has been run either as a result of a PopulateWith= or

a PopulateFieldnWith= directive.

SCRIPT Script has been run as a result of a Program= directive.

LISTBOX Script has been run as a result of a ListBoxScript=

directive (see later sections for a description of the listbox).

DIALOG Script has been run as a result of a DialogScript= directive

(see later sections for a description of creating dialogs from

scripts).

TIMED Script has been run as a result of the built in scheduler (See

Chapter 10 later in this document for a discussion of the

scheduler).

In addition, the environment variables TRICURRENTFIELD and TRICHANGEDFIELD

are set whenever TRIREASON is set to "POPULATE". TRICURRENTFIELD reflects the

field number that is being populated. If 0, this means that the script has been

invoked via a PopulateWith= directive and the whole dialog is being pre-

populated. Any other number gives a reference to the field number to be

Trilogy 2.3 Administrator Guide Page 53 of 275
www.trinem.com

populated (remember that fields start at 1 and are numbered from left-to-right

and top-to-bottom).

The demo that ships with the Trilogy Server uses a single

script to populate and validate the client dialog and to

provide the run-time functionality (when the user presses

Ok). Examine this script to see how these environment

variables are used. The demo script is in

$TRILOGYHOME/demo/scripts/demo.sh on Unix Servers and

in %TRILOGYHOME%\demo\scripts\demo.bat on Windows

Servers.

Trilogy 2.3 Administrator Guide Page 54 of 275
www.trinem.com

 Creating Named Frames in Dialogs 4.14

A named frame is a means by which logical groups of fields can be represented

on a dialog. Named frames are often used within GUI based applications to

clarify and group together various data entry components.

Trilogy supports the creation of named frames by the use of special lines within

the screen definition. For example, take this as an example dialog definition file:

Tivoli Server Name []

 User Name []

 Password [*]

 SMART Number []

 Application Area []

 Package Name []

 Package Title []

 Version No []

 DESTINATION []

This will be displayed by Trilogy as follows

Whereas this will work it is not particularly attractive to look at and it looks less

like a native Windows/Unix GUI application.

Named frames can be created in the dialog definition file by starting a line with a

single dash followed by a space and then the name of the frame. A single dash

on its own ends the frame. This is only required if you wish to have fields outside

of a frame – if you create a new frame the old one is closed automatically.

Here is an example:

Trilogy 2.3 Administrator Guide Page 55 of 275
www.trinem.com

- Tivoli Server

Tivoli Server Name []

 User Name []

 Password [*]

- Deployment Details

 SMART Number []

 Application Area []

- Tivoli Package Details

 Package Name []

 Package Title []

 Version No []

 DESTINATION []

-

Here, the dialog has been broken up into three distinct "frames". The first three

fields are included in the frame "Tivoli Server", the next two (SMART Number

and Application Area) are in the frame "Deployment Details" and the remaining

fields are grouped together in the frame "Tivoli Package Details".

Trilogy will display this dialog as follows:

This obviously looks a lot clearer and more like a "proper" dialog.

Trilogy 2.3 Administrator Guide Page 56 of 275
www.trinem.com

 Grouping Radio Buttons with Named Frames 4.15

Another advantage of named frames is that Trilogy uses them to group radio

buttons together. In other words, radio buttons in one frame operate

independently of radio buttons in another frame.

You may need to do this if your dialog requires different groups of radio buttons.

As an example, let's create a front-end to some simple server-side library search

tool.

The dialog is defined like this:

- Search Criteria

ISBN []

Title []

Author []

- Edition Filter

O Latest Edition Only

o All Editions

- Location Filter

O This Library Only

o All Libraries within 10 mile radius

o Country-wide

- Language Filter

O Any o English o French

o German o Dutch o Polish

There are now three distinct "groups" of radio buttons each of which acts

independently from the other:

The first group is declared in the frame "Edition Filter" and includes the two

options for "Latest Edition Only" and "All Editions"

The second group is declared in the frame "Location Filter" and includes three

options for "This Library Only", "All Libraries within 10 mile radius" and "Country-

wide".

The third group is declared in the frame "Language Filter" and consists of 6

options, Any, English, French, German, Dutch and Polish.

Trilogy interprets and displays this dialog as follows:

Trilogy 2.3 Administrator Guide Page 57 of 275
www.trinem.com

Each group of radio buttons in each named frame now operates independently of

the other. In other words, selecting the "All Editions" radio button automatically

clears the "Latest Editions Only" radio button since both of these buttons are in

the same group. However, no other radio button is affected.

Radio Buttons within tabs are also grouped together and operate independently.

See Creating Tabbed Dialogs below for more information.

Trilogy 2.3 Administrator Guide Page 58 of 275
www.trinem.com

 Creating Tabbed Dialogs 4.16
If your dialog is particularly complex (there are lots of data entry components

grouped into different logical areas) then you may find it desirable to create a

tabbed dialog. A tabbed dialog groups fields into a number of different pages (or

tabs) which the user can then select. Displaying one tab automatically hides the

fields on the other tabs.

A tab can be created in the dialog definition file by starting a line with a single >

character (“Greater Than” symbol) followed by a space and then the name of the

tab. All the fields defined below this line will then be placed in this tab. When you

want to create a new tab, enter another > line and all the fields below this will

be placed in the new tab.

Here is an example:

- User Details

Login Name []

Password []

> General

- Connection Details

Display Name []

email []

Staff Number []

- Notifications

O On

o Off

> Contact Details

- Contact Details

Mobile No []

Desk Number []

- Branch Information

Branch ID { }

> Reporting Line

- Line Managers

Line Manager { }

Deputy { }

Here, 3 tabs have been specified with the > marker, namely “General” (line 4),

“Contact Details” (line12) and “Reporting Line” (line 18). The fields specified

between each tab definition are then rendered in a separate tab. The tab

identified as “General” will contain the fields from “Display Name” (TRIFIELD3) to

the second radio button in the “Notifications” frame (TRIFIELD7). The tab

identified as “Contact Details” will contain the fields from “Mobile No”

(TRIFIELD8) to “Branch ID” (TRIFIELD10) and the tab identified as “Reporting

Line” will contain the remaining fields “Line Manager” and “Deputy” (TRIFIELD11

and TRIFIELD12).

Trilogy 2.3 Administrator Guide Page 59 of 275
www.trinem.com

When displayed at the client, Trilogy will render the dialog like this:

Only the fields contained within the first tab are displayed. Clicking on each tab

brings up the set of fields appropriate to that tab and hides the others:

Field numbering is not affected by grouping fields into

different tabs. In the case TRIFIELD8 is the first field on the

“Contact Details” tab, TRIFIELD11 is the first field on the

“Reporting Line” tab.

Trilogy 2.3 Administrator Guide Page 60 of 275
www.trinem.com

 Adding Banners 4.17

You can add a banner to the top of any Trilogy client-side dialog by placing

appropriate entries into the server-side trilogy.conf file. Adding a banner to

our tabbed dialog changes its appearance from this:

to this:

The screen definition file remains the same. The banner content is determined

purely by entries in the server-side trilogy.conf file.

Here is the new job definition on the Trilogy Server:

Trilogy 2.3 Administrator Guide Page 61 of 275
www.trinem.com

GET_CREDENTIALS:

 Title=Enter Credentials

 Banner=on

 BannerHeading=Enter User Info

 BannerText=Please enter the information for the new user

 Dialog=$TRILOGYHOME/SCREENS/credentials.scn

 Program=$TRILOGYHOME/SCRIPTS/ProcessCredentials

 PopulateField3With={Domain1,Domain2,Domain3}

 PopulateWith=$TRILOGYHOME/SCRIPTS/prepop

 ValidateWith=$TRILOGYHOME/SCRIPTS/validate

The new directives are:

Banner=on

Switches the banner on. This directive can be placed either outside of a job-

stanza (i.e.: at the global level alongside Port= and Server= directives) in which

case it switches the banner on for any job which doesn't explicitly specify

Banner=off. Or it can be placed in the job stanza entry (as shown above) in

which case it switches the banner on for that job only.

The next directive is:

BannerHeading=Enter User Info

Specifies the text to be displayed on the first line of the banner. If this directive

is not specified and Banner=on, then the first line of the banner will be the same

as the job title (specified with the Title= directive).

The next directive is:

BannerText=Please enter the information for the new user

This specifies the text to be displayed on the second line of the banner (in a

smaller font). If this directive is not specified and Banner=on then the second

line of the banner is left blank.

The right-hand side of the banner contains an icon. This defaults to the Trilogy

icon as shown. However, this can be easily changed by including a directive:

BannerGraphic=<path to GIF file>

in the server-side trilogy.conf. Note, that the GIF file specified must reside on

the server. In common with all Trilogy dialogs, all definitions are server-side.

As an example, let us take a GIF file containing an image and reference it in the

trilogy.conf job definition. The complete stanza entry now reads like this:

Trilogy 2.3 Administrator Guide Page 62 of 275
www.trinem.com

GET_CREDENTIALS:

Title=Enter Credentials

Banner=on

BannerHeading=Enter Credentials

BannerText=Please enter your login details

BannerGraphic=$TRILOGYHOME/SCREENS/woman.gif

Dialog=$TRILOGYHOME/SCREENS/credentials.scn

Program=$TRILOGYHOME/SCRIPTS/ProcessCredentials

PopulateField3With={Domain1,Domain2,Domain3}

PopulateWith=$TRILOGYHOME/SCRIPTS/prepop

ValidateWith=$TRILOGYHOME/SCRIPTS/validate

Note the BannerGraphic entry in the job stanza. This points at the server-side

GIF file "woman.gif". If the GIF image looks like this:

Then, when the client dialog is displayed, it will look like this:

Note, there are size and format limitations of the GIF file. The maximum

dimensions are 200 pixels wide by 52 pixels high. If the GIF image exceeds

these dimensions then it is ignored and the default Trilogy Icon image is used.

For more information see BannerGraphic in Chapter 13 – trilogy.conf reference

guide.

The Crystal Icon Set is included in the icons directory on the

server ($TRILOGYHOME/icons). You can use these icons in

your dialogs.

Trilogy 2.3 Administrator Guide Page 63 of 275
www.trinem.com

 Creating Dialogs with Scripts 4.18

As well as static screen definition files as shown, Trilogy also supports a

DialogScript directive in the server-side trilogy.conf file. When used in a job

stanza, this tells the server to run the specified script and use its standard

output as a screen definition file. From that point onwards, Trilogy operates as if

the screen definition had been generated from a static script.

As usual, the server-side dialog script is passed all the command line parameters

that were passed to the client when it was invoked. This means that the script

can generate different output depending on how it was invoked. Therefore the

dialog displayed at the client can change dependent on the parameters passed at

run-time.

As an example, we will modify the get_credentials job shown earlier in this

section. We will change it so that the "Domain" drop-down list is only shown if

"showdomain" is passed as a parameter:

First, we create a script to generate the dialog:

#!/bin/ksh

echo "User Name []"

echo "Password [*]"

Now iterate through the parameters, looking for "showdomain"

for p in "$@"

do

 if [["$p" = "showdomain"]]

 then

 #

 # Echo the domain drop-down list and exit

 #

 echo "Domain { }"

 exit 0

 fi

done

exit 0

Then, we change the job definition in the server-side trilogy.conf file to use

this script rather than the static file "credentials.scn":

Trilogy 2.3 Administrator Guide Page 64 of 275
www.trinem.com

GET_CREDENTIALS:

 Title=Enter Credentials

 Banner=on

 BannerHeading=Enter Credentials

 BannerText=Please enter your login details

 BannerGraphic=$TRILOGYHOME/SCREENS/woman.gif

 #Dialog=$TRILOGYHOME/SCREENS/credentials.scn

 DialogScript=$TRILOGYHOME/SCRIPTS/gencredscn.sh

 Program=$TRILOGYHOME/SCRIPTS/ProcessCredentials

 PopulateField3With={Domain1,Domain2,Domain3}

 PopulateWith=$TRILOGYHOME/SCRIPTS/prepop

 ValidateWith=$TRILOGYHOME/SCRIPTS/validate

Note, if the dialog only has two fields in it then the PopulateField3With

directive will not be invoked.

Invoking the Trilogy client like this:

trilogy get_credentials abc def

…causes the Trilogy server to run gencredscn.sh. This outputs two lines of

screen definition. The script then iterates through the parameters ("abc" and

"def") and – finding no "showdomain" flag – it simply exits with success. The

resulting dialog is then shown at the client:

Invoking the client like this:

trilogy get_credentials abc def showdomain

…causes the server-side script "gencredscn.sh" to output a third line containing

the drop-down field for the domain. The PopulateField3With directive is then

used to populate the field in the normal way. The resulting dialog is then shown

at the client:

Trilogy 2.3 Administrator Guide Page 65 of 275
www.trinem.com

 Creating an Icon in the System Tray 4.19

This section only applies to Windows Clients. Jobs can still be

invoked from Linux/Unix clients but since they do not have a

System Tray (Notification Area), they will not exhibit the

behaviour described in this section.

Windows Clients can be set so that an icon is created in the System Tray

(Notification Area) whilst the job is running. This icon animates whilst the job is

running to provide a visual indication that a server-side job is in progress.

Having a job iconize to the system tray also allows it to receive pop-up “Balloon”

style notifications from the server-side job. This allows the server-side job to

send out notifications as it runs, notifying the user of progress or error conditions

etc.

If the Windows client is running the Trilogy Client Service

then the icon will be permanently present in the System

Tray. In these circumstances, the existing icon is re-used.

Only one Trilogy Icon will appear in the System Tray

regardless of how many jobs the user invokes. For more

information see Chapter 8 later in this document.

In order that the client “docks” to the System Tray, the following directive needs

to be included in the relevant job stanza in the server-side trilogy.conf file:

SystemTray=Yes|No|Hold

No is the default and means no icon is created in the client System Tray.

Yes means that a Trilogy Icon is created in the client’s System Tray

whenever the job is running. Note, the icon appears when the program

or script identified by the Program= directive is invoked (after any

dialog has been presented and committed by clicking OK). When the

server-side job completes, the icon disappears (after any balloon

notifications have been dismissed or have timed-out).

Hold This option is the same as Yes except that when the server-side job

completes, the icon does not automatically disappear. It stops

animating and displays a “success” or “fail” icon and is only removed

once the user right-clicks on the icon and selects “Quit”.

If the Windows client is running the Trilogy Client Service

then the icon will not disappear following the completion of

the server-side job.

Trilogy 2.3 Administrator Guide Page 66 of 275
www.trinem.com

Docking a job to the System Tray may be useful in the following circumstances:

 The server-side job is likely to run for a considerable period of time. In

these circumstances it is useful to give the user feedback that the job is

still running.

 You wish to send “Balloon” style notifications to the client from the

server-side job. You need to have an Icon present in the System Tray in

order for the Balloon to be issued. If the client is not running the Trilogy

Client Service then you will need to create an icon in order to issue such

notifications.

There are some other differences to be aware of when the job is docked to the

System Tray.

1. If Stdout or Stderr is set to “Report” then the report window is not initially

displayed. The user can open the Report Window by double-clicking on the

Trilogy Icon in the System Tray. Similarly, iconizing the Report Window

causes it to disappear from the Task Bar – it effectively iconizes to the

System Tray.

2. If Stdout or Stderr is set to “Popup” then the standard out/standard error

streams are presented as Balloon Notifications. If the standard out/standard

error streams contain more data than will fit into a single balloon, then the

output is split across as many balloons as necessary – the next balloon

displaying automatically when the first is dismissed or times out.

Trilogy 2.3 Administrator Guide Page 67 of 275
www.trinem.com

5 The List Box

 Introduction 5.1
Trilogy client dialogs can also contain a list box. If present, the list box is shown

at the bottom of the client dialog. Just like drop-down lists, a list box is

populated from a server-side script. However, unlike drop-down lists, the output

from the script is not only parsed line-by-line but also by column. It is therefore

possible to assemble a list box containing various columns of information.

When the dialog is submitted, rows selected in the client-side list box are made

available to the invoked server-side script by the use of environment variables in

the same way as drop-down lists, entry fields and radio buttons/checkboxes.

Windows Servers can also use the Trilogy Scripting Engine to

retrieve the selected contents of the list box.

Here is an example dialog, containing a list-box:

Figure 5.1: A list box included in the dialog.

The user can select an “Artist Name” from the drop-down list. When the Search

button is clicked, the list box is populated:

Trilogy 2.3 Administrator Guide Page 68 of 275
www.trinem.com

Figure 5.2: A populated list box.

 List Box Directives 5.2
There are a number of directives in the server-side trilogy.conf file that

control the presence and behaviour of the list-box when it is displayed at the

client:

5.2.1 Controlling the List Box Appearance

ListBox=on|off|auto

Included in a job stanza, this directive controls the presence of the list box on

the associated client-side dialog. If ListBox=on (or yes) then the list box is

displayed. If ListBox=off (or no) then the client-side dialog contains no list box.

This is the default. If ListBox=auto then the list box is only added to the client-

side dialog if the server-side script that generates its content actually outputs

some data to its standard output stream. If the server script’s standard output

contains no data, no list box is displayed.

5.2.2 Creating List Box Content

The server side script that generates the list-box contents is identified by the

ListBoxScript directive:

ListBoxScript=<pathname>

Trilogy 2.3 Administrator Guide Page 69 of 275
www.trinem.com

or

PopulateListBoxWith=<pathname>

Both of these directives are functionally identical and you can use either. The

directive identifies the location of the server-side script that generates the list

box content.

When the list box requires to be populated, the server-side script identified by

the ListBoxScript (or PopulateListBoxWith) directive is executed. It is passed

any parameters specified in the job stanza (via any Param or Params directives),

followed by any parameters passed to the Trilogy command line client or added

via the Trilogy Scripting Engine. The standard output from this script is then

parsed to produce the list box content for display on the client dialog. Each line

of script output is taken as a new record and each will occupy its own row within

the list box. Similarly, within each line of output, Trilogy will split the record into

individual fields and each field is then presented in its own column within the list

box.

To generate the output shown in the list box in the example above, the server-

side list box script (identified by the ListBoxScript or PopulateListBoxWith

directive) will have to generate the following to its standard output:

Love Me Do,1,1964

Can't Buy Me Love,1,1964

Twist and Shout,2,1964

Help!,1,1965

Yellow Submarine,2,1966

Lady Madonna,4,1968

Hey Jude,1,1968

Trilogy will then read each line of this output, split it at each field separator

character (default is a comma but this can be changed) and inserts the resulting

set of columns into the appropriate fields within the displayed list box at the

client.

The List Box Script has access to all the TRIFIELD environment variables which

indicate the content of the dialog ($TRIFIELD1 being the first field, $TRIFIELD2

being the second field and so on). In this way, the server-side script can control

its output based on the content of the client-side dialog. In the example above,

the List Box Script will read the value of $TRIFIELD3 (The “Artist Name” drop-

down list) to identify the artist being requested, $TRIFIELD4 (The “Title” data

entry field) and will use the two values to assemble a list of matching songs

which are then displayed in the client list box.

5.2.3 Identifying List Box Column Names

Each column of data in a list box has a header containing text which identifies

the content of the column. In the example above the headers were “Title”,

“Chart Position” and “Release Year”.

Trilogy 2.3 Administrator Guide Page 70 of 275
www.trinem.com

You can set the text which appears in these column headers in one of two ways.

The first way is to use the ColumnNames directive. This takes a list of column

names in the usual Trilogy list syntax. For example, to include the columns

“Title”, “Chart Position” and “Release Year” as shown in the example above, the

following directive would have to be included in the relevant job stanza entry in

the server-side trilogy.conf:

ColumnNames={Title,Chart Position,Release Year}

The second way is to allow the output from the List Box Script to define the

header values. This happens when no ColumnNames directive is given in the job

stanza entry. Under these circumstances, Trilogy will take the first row of data

output by the List Box Script and use it to define the text which appears in each

column header.

For example, assume the list box script outputs the following text to its standard

output:

Defect No,Raised By,Description

123,PAG,Login times out when bulk data is loaded

124,JMW,Main screen does not render correctly in Google Chrome Browsers

125,RHT,Change Required for Interest Rate Amendment

Trilogy will render the List Box as follows:

5.2.4 Identifying List Box Column Widths

The initial widths of the List Box columns are controlled by the ColumnWidths

directive. Included in the same job stanza as the ColumnNames directive (within

the server-side trilogy.conf) this directive specifies the width of each column

in pixels. Note that this width is the initial width. The user of a Trilogy dialog can

expand and contract the width of each displayed column within the list box by

dragging the border between the columns with the left-hand mouse key

depressed.

Trilogy 2.3 Administrator Guide Page 71 of 275
www.trinem.com

ColumnWidths={150,180,100}

In the case above, the “Title” column would have an initial width of 150 pixels,

the “Chart Position” column would have an initial width of 180 pixels and the

“Release Year” column would have an initial width of 100 pixels.

If you specify fewer entries in ColumnWidths than there are

columns generated by the List Box Script then any

“additional” columns are sized automatically. In other words,

if you specify ColumnWidths={100,100,120} and the script

generates 5 columns of data, then columns 4 and 5 will be

sized automatically. See Auto Sizing Columns below for more

information.

5.2.5 Auto Sizing Columns

You can specify a column width of “-“ (a single dash character without quotes) to

indicate to Trilogy that the column width should be calculated automatically. In

this case, Trilogy will determine the width of the longest piece of data in that

column and use that to set the column width. Therefore the column will be wide

enough to display the longest data item in that column automatically.

Be careful using this option as long data may adversely affect the aesthetics of

the dialog – especially if AutoStretch is set (see Controlling List Box Width

below for more information).

Columns are sized automatically if there is no ColumnWidth directive (in which

case all columns are sized automatically) or the column number being analysed

is greater than the number of columns specified in the ColumnWidth directive.

For example, this:
 ColumnWidths={100,120,-,140}

Means that the first column will have a width of 100 pixels; the second column

will have a width of 120 pixels, the third column will be sized automatically to

accommodate the data contained within it and the fourth column will have a

width of 140 pixels.

When a column is sized, the text included in the header is taken into account.

Trilogy will not size the column such that the text in the header is truncated. For

example, if the Column Name is “Reported?” and the column contains the values

“Y” and “N”, Trilogy will create the column width so that it is wide enough to

contain the word “Reported?” in the header (rather than making it wide enough

to only contain “Y” or “N”).

Trilogy 2.3 Administrator Guide Page 72 of 275
www.trinem.com

5.2.6 Creating Hidden Columns

Setting a column width of 0 (using the ColumnWidths directive above) causes

the column to be treated by Trilogy as a special case. A column with a width of 0

is not displayed within the list box at the Trilogy Client, nor can it be expanded in

order to be made visible. It does, however, still have content and the output

from the list box script is still used to populate its content. This can be used to

create “hidden” fields whose contents can be passed to other server-side scripts

on actions from the Trilogy Client – this will be detailed later in this chapter.

5.2.7 Controlling List Box Width

The client-side dialog will normally stretch to accommodate the width of all the

columns in the list box. The result of this is that the list-box is normally

displayed without a horizontal scroll bar.

This is the default behaviour. However, there may be times when you wish the

“main” Trilogy dialog to be narrower than the list box. This may be required

when the list-box includes a lot of columns or the columns are particularly wide.

In this case, the “main” Trilogy dialog may stretch beyond the point where it

looks aesthetically pleasing.

The directive AutoStretch controls the automatic scaling of the List Box. If it is

absent from the server side job-stanza then the value defaults to Yes. This

means that the “main” dialog will stretch to meet the initial width of the List Box

(which means the width of all the columns included in it).

By including the directive AutoStretch=no (or off), then this behaviour is

disabled. In this case the width of the dialog is controlled either by:

a) The length of the longest line within the dialog specified by the Dialog or

DialogScript directive in the job stanza or

b) The width given by the ListBoxWidth directive. If a ListBoxWidth is

specified then the dialog will grow horizontally (if required) to the desired

width in pixels. If the “parent” dialog is wider than the specified

ListBoxWidth then the list box will stretch to the width of the parent dialog.

In either case the List Box content will be constrained by the width of the List

Box. A horizontal scroll bar will be presented if required to allow the user to

scroll the list box sideways to view all the columns.

Specifying a ListBoxWidth will automatically turn off the

AutoStretch option.

Trilogy 2.3 Administrator Guide Page 73 of 275
www.trinem.com

5.2.8 Controlling List Box Height

The height of the List Box is controlled by the ListBoxHeight directive. This

specifies the height of the list box in rows. If this value is not specified it defaults

to 4.

5.2.9 Adding an “Apply” Button to the Dialog

The directive ApplyButton within a job stanza in the server-side trilogy.conf

controls the appearance of the apply button on the client dialog when it is

displayed. If it is set to On (or yes), the apply button appears. If it is set to No

(or off – the default) the Apply button is absent. Setting

PopulateListBox=OnApply will add the Apply Button automatically regardless of

the setting of the ApplyButton directive – see above.

The text on the button can be changed from the default (Apply) by use of the

ApplyButtonText directive. This can be used to specify any text to appear on

the button instead of “Apply”. For example:

ApplyButtonText=Search

Causes the dialog to display a “Search” button instead of “Apply”. If

PopulateListBox=OnApply then clicking the “Search” button will cause the

server-side List Box Script (identified with ListBoxScript or

PopulateListBoxWith in the same job stanza) to be executed and the results to

be sent to the client-side list box within the Trilogy Dialog.

5.2.10 Sorting the List Box

Once the List Box is displayed, the user can click on any of the column headers

to sort the List Box by that column. When the column heading is first clicked, the

sort takes place in ascending mode (A-Z, 0-9). When the column is clicked again

the sort takes place in descending mode (Z-A, 9-0).

When a sort has been applied to a List Box column then a “Decorator” will be

applied to the column heading, indicating that a sort has been applied. This

decorator will take the place of an upward arrow (for ascending sorts) or a

downward arrow (for descending sorts).

The sort takes place in “Dictionary Order”. Trilogy will ignore case (except when

two character strings would otherwise be identical. In addition, if two strings

contain embedded numbers then the numbers compare as integers, not

characters. For example, “bigBoy” would sort between “bigbang” and “bigboy”,

and “x10y” would sort between “x9y” and “x11y”.

5.2.11 Automatic Sorting

Trilogy allows a sort to be applied automatically after the list box is populated

with the ListBoxScript (either when the dialog is first displayed or when the

Trilogy 2.3 Administrator Guide Page 74 of 275
www.trinem.com

apply button is clicked, depending on the setting of PopulateListBox). This is

functionally identical to the user clicking on the appropriate column heading after

the List Box has been populated except for the fact that it occurs automatically.

To specify an automatic sort, use the AutoSort directive in the job stanza in the

server-side trilogy.conf file. AutoSort has the following syntax:

AutoSort=[-]ColumnNumber

The – character is optional. If present, it indicates the column should be sorted

in descending mode. If absent, the column is sorted in ascending mode.

The ColumnNumber parameter indicates to Trilogy the number of the column in

the List Box which should be automatically sorted following the run of the

ListBoxScript. Columns start at 1 and increase from left to right.

Hidden columns need to be counted. For example, if your

column widths are {0,100,50,100} and you want to sort by

the second displayed column, then you would need to set

AutoSort to 3 (the third column) since column 1 is not

displayed (it is a hidden column).

For example:

AutoSort=2

Will cause Trilogy to sort the List Box in ascending order of the second column

after the server-side ListBoxScript has been invoked to populate the List Box.

AutoSort=-3

Will cause Trilogy to sort the List Box in descending order of the third column

after the server-side ListBoxScript has been invoked to populate the List Box.

After AutoSort has been applied, the appropriate “Decorator” is placed on the

column to indicate it has been sorted.

AutoSort can sort by a hidden column. This is obviously not

possible manually. If sorting has taken place on a hidden

column then no decorator is visible (since the hidden column

has no header).

5.2.12 Controlling List Box Selections

The list box can be configured to allow multiple, single or no rows to be selected

by the user. The directive Selections controls this behaviour.

Trilogy 2.3 Administrator Guide Page 75 of 275
www.trinem.com

Selections=Multiple. This allows the user to select one or more rows from the

list box. This is the default option. If the Selections directive is not specified in

the job stanza then the user will be allowed to select one or more rows in the list

box.

Selection=Single. This only allows the user to select a single row from the List

Box.

Selection=None. This disables the selection of any rows in the List Box.

However, Trilogy itself can still select rows using the AutoSelect mechanism.

See Automatically Selecting List Box Rows below for more information.

5.2.13 Selecting List Box Rows

A user can select one or more rows in the list box (dependent on the setting of

the Selections directive in the job stanza). When the dialog is submitted, these

selected rows are made available to the server-side script (identified by the

Program= directive in the job stanza) via the use of environment variables. This

is the same technique used to pass Dialog Content and other information to the

script as detailed in the previous sections.

Unlike Dialog Content, these “List Box” environment variables do not have fixed

names such as TRIFIELD1. Rather, their names are based on the associated

Column Names (identified by the ColumnNames directive in the same job stanza).

The environment variables are created from these column names as follows:

TRI_{COLUMN_NAME}_{SELECTION_NUMBER}

The {COLUMN_NAME} is based on the associated Column Name from the

ColumnNames directive, converted to upper case and with spaces converted to

underscore characters. The {SELECTION_NUMBER} is based on the number of the

selection – not the row number within the list box. In other words, the first

selected row will be selection number 1, the second row will be selection number

2 and so on.

Suppose, for example, that the user had selected two rows from the list box:

Trilogy 2.3 Administrator Guide Page 76 of 275
www.trinem.com

When the OK button is clicked, the server-side job is run and the following environment

variables will be available to it:

$TRIFIELD1 User Name

$TRIFIELD2 Password

$TRIFIELD3 “The Beatles”

$TRIFIELD4 Song Title (for searching)

$TRI_TITLE_1 “Love Me Do”

$TRI_CHART_POSITION_1 “1”

$TRI_RELEASE_YEAR_1 “1964”

$TRI_TITLE_2 “Twist and Shout”

$TRI_CHART_POSITION_2 “2”

$TRI_RELEASE_YEAR_2 “1964”

5.2.14 Automatically Selecting List Box Rows

You may wish to automatically “pre-select” certain list box rows when the list

box is populated (either when the dialog is first displayed, when the Apply button

is clicked or when a field is changed). This may be useful if you are displaying a

list of entries in a database and wish to highlight which ones are currently

“selected”).

To do this, Trilogy uses the AutoSelectColumn and AutoSelectValue directives

in the relevant job stanza within the server-side trilogy.conf file. Like

AutoSort the AutoSelectColumn directive specifies a column number. If this

Trilogy 2.3 Administrator Guide Page 77 of 275
www.trinem.com

directive is present, Trilogy will look at each row in the list box (whenever the list

box is populated) and see if the value for the specified column in that row

matches the value given by the AutoSelectValue directive. If it does, then the

entire row is selected. If it does not, the row is left unselected.

AutoSelectValue defaults to “Y”. Therefore, if this directive is not specified but

AutoSelectColumn is set, then Trilogy will look for a “Y” in the specified column

and automatically select any row in which this occurs.

AutoSelectValue can be specified as a distinct value, like this:

AutoSelectValue=CRITICAL

A number of discreet values, like this:

AutoSelectValue={IMPORTANT, URGENT, CRITICAL}

or, if the values are numeric, as a range of values:

AutoSelectValue=10-100

In this case, Trilogy will select any row whose column (identified by the

AutoSelectColumn directive) contains a value that falls in the specified range

(inclusive).

As an example, consider the following Trilogy Job Definition:

SD_INTERFACE:

 Banner=On

 BannerHeading=Service Desk Records

 BannerText=Shows Active Service Desk Records

Dialog=$TRILOGYHOME/demo/screens/sdc.scn

 ListBox=Auto

 ColumnNames={select,packid,packagename,sd num,summary,release asset}

 ColumnWidths={0,0,150,100,400,190}

 PopulateListBoxWith=$TRILOGYHOME/demo/scripts/plb.bat

 PopulateListBox=OnDisplay

 ListBoxSep=|

 ApplyButton=on

 AutoSelectColumn=1

This dialog will display a list of records from a Service Desk system. We wish to

select any rows representing records that are assigned to us. To do this, the List

Box Script plb.bat can look at the environment variable $TRICLIENTUSERNAME

– this will be set to the login ID of the client user. It can then output a Y as the

first field if the record is assigned to that user.

So if the script output this:

N|81570|CR - 123426|3083455|Change Required for …

Y|81618|CR - 123578|3103461|Password Enforcement Rule Change …

N|81406|CR - 123789|2993890|Text Change only, terms and conditions …

Y|81432|DR - 124012|2993890|Defect - Session Expiry causes stack trace …

Then the client-side dialog would look like this:

Trilogy 2.3 Administrator Guide Page 78 of 275
www.trinem.com

This is because the 2nd and 4th records have a “Y” in their first (hidden) column

position. Since the AutoSelectColumn is set to “1” and there is no

AutoSelectValue directive, Trilogy will pre-select any row with a “Y” in the first

column position.

By changing the value of AutoSelectColumn and adding AutoSelectValue, we

can automatically select other rows. For example, this:

AutoSelectColumn=4

AutoSelectValue=3103461

Will result in this display:

Since Trilogy is now looking in column 4 (sd num) for a value of 3103461.

Remember that Trilogy counts columns from 1, including any hidden

columns. The first two columns from the List Box script are hidden

(their column width is 0). So the “sd num” column is 4 even though it

is only the 2nd column on the dialog.

Similarly, we can use a range of values to select the row. For example, this:

AutoSelectColumn=4

AutoSelectValue=2000000-3000000

Trilogy 2.3 Administrator Guide Page 79 of 275
www.trinem.com

Will result in this display:

Since Trilogy will now select any row whose column 4 (sd num) is between

2000000 and 3000000.

A couple of points worthy of note:

 You can use AutoSelection along with AutoSort in order to

simplify your server scripts. For example, your server script could

use one query to list all the open records assigned to the invoking

user, followed by another, separate query to list all the open records

NOT assigned to the invoking user. By using a hidden field to

identify which ones are assigned to the invoking user and setting

AutoSort to the “sd num” you can list the records in order of their ID

whilst selecting the rows appropriate to the invoking user.

 AutoSelection works even if the Selection option is set to None.

This means that rows can be pre-selected and the user cannot

change the selection – effectively once the list box is displayed, the

selection is read-only.

5.2.15 Adding a Right-Click Menu to the List Box

Trilogy also gives you the ability to create a pop-up menu that appears whenever

you right-click on a row within the list box. This menu can then invoke other

Trilogy jobs, allowing you to run additional server-side tasks on list box

selections before (or perhaps instead of) simply clicking on the OK button to

launch the server side script identified by the Program directive.

The directive that controls this is called OnRightClick. If right click menu

functionality is desired in the list box, it should be included in the relevant job

stanza within the server-side trilogy.conf. It has the following syntax:

OnRightClick={job1,job2…}

Trilogy 2.3 Administrator Guide Page 80 of 275
www.trinem.com

job1, job2 etc refer to other Trilogy Jobs referenced within the same server-side

trilogy.conf file. When the user right-clicks on a selection within the client-

side dialog list box, a menu appears listing the Titles of the jobs listed in the

OnRightClick job list. When the user selects one of these menu options, the

selected Trilogy job is executed.

The jobs listed are those available to the invoking user’s group. See

Groups and the Group Processor later in this document for more

information. This means that you can provide different menu

options for different individuals dependent on their roles within your

organisation.

The “secondary” job is passed all the same command line arguments from the

Trilogy Client as the “primary” job (the job that contains the list box). In

addition, it has access to the content of the “primary” job dialog. Since the

“secondary” job could have a dialog of its own, it is obviously not possible to use

TRIFIELD variables to allow the secondary job to read the primary dialog.

Therefore, the Primary Dialog’s content is made available to the secondary job

via the environment variables TRIPASSEDFIELDn where n is the number of the

field in the Primary Dialog. Selected List Box values are passed in

TRIPASSED_columnname_n.

 TRIPASSED variables are only set if the secondary job has a dialog

associated with it. If it does not, then the variables from the dialog

are accessible in TRIFIELDn variables in the normal way.

 Any PreValidate= script associated with the secondary job is

executed first before any dialog is displayed or the program is

executed. You can use this to validate the selection(s) made in the

list box.

The secondary job can run to completion without the primary dialog being

cleared from the client screen. Therefore, once the secondary job has completed,

a user can right click again and run another secondary job.

The List Box content is refreshed automatically after the secondary job has run

to completion. This means you can have a secondary job which modifies the

content of the list box in some way (for example, removing or adding an entry to

what is displayed). After the secondary job completes, the List Box script is re-

run and the new content displayed.

You can make Trilogy display a different right-click menu depending on

the data in the row you have clicked on. This is done by specifying a

context and having different right click menus for each context. See

Row Context below for more information.

Trilogy 2.3 Administrator Guide Page 81 of 275
www.trinem.com

5.2.16 Automatically Refreshing the List Box

You may wish the List Box to periodically refresh itself. This may be useful if the

list box contains dynamic information such as a list of running processes, tasks

awaiting a user’s attention or other “dynamic” type content. In this case, you

may wish the list box to automatically refresh in order to capture the latest

output.

This is achieved by use of the AutoRefresh option. When specified in the job

stanza, this tells Trilogy to periodically repopulate the list box. It does this by

rerunning the server-side script specified by the ListBoxScript (or

PopulateListBoxWith) directive, reparsing the output and re-populating the list

box. This happens automatically and without any client user intervention

AutoRefresh is only available if PopulateListBox is set to OnDisplay. If

PopulateListBox is set to OnApply, then AutoRefresh has no effect – the user

still has to click on the Apply button to refresh the list box.

AutoRefresh has the following syntax:

AutoRefresh=on|off|n

If set to off (the default) then no automatic refresh takes place.

If set to on then the List Box will automatically refresh every 5 seconds.

If set to n (where n is a number) then the List Box will automatically refresh

every n seconds.

The sort column order and any selected rows are retained after a refresh.

Although Trilogy will retain any selected rows in the list box, it is worth

bearing in mind that it does this by row number. This means that if the

server-side script creates a new row and this appears before a selected

row, then the selection may change.

Be cautious about the AutoRefresh setting. Every time a refresh is

performed, Trilogy Client will request that Trilogy Server rerun the List

Box Script. This can create a significant load on the server if the job is

allowed to be run from multiple clients.

5.2.17 Adding Double Click to the List Box

You can also have the list box regenerate whenever a row in the list box is

double-clicked. This allows you to “drill-down” into entries, for example to open a

folder to show its content.

This function is controlled by the DoubleClick directive. This defaults to off. To

enable Double-Click in the list box, use the directive DoubleClick=on in the job

stanza.

Trilogy 2.3 Administrator Guide Page 82 of 275
www.trinem.com

When DoubleClick is set to On, a user can double-click on a row in the list box

and the server side list box script is executed and the output used to regenerate

the list box. The list box script can use the TRI environment variables to

establish which row has been selected and use it to regenerate the list box

content.

5.2.18 Adding Icons to Each Row

You may wish to add a decorator icon to each row in the list box. This can be

used to indicate what the data in each row represents.

To do this, you first need to tell Trilogy to allow space for the icon. To do this,

use the ListBoxIcons directive. This defaults to “No” (or “off”). To turn on icons

for each row in the list box, set this directive to “yes” (or “on”) within the job

stanza. Like this:

ListBoxIcons=Yes

This will then cause Trilogy to allow space for the icon to the left of each row.

To identify which icon to display use the icon directive. This should be set to the

full path of a GIF image file on the server. This GIF image should be a 16 pixel x

16 pixel icon.

For example:

Icon=$TRILOGYHOME/icons/16x16/folder.gif

This will then cause the specified GIF image to appear next to each row in the

List Box at the client.

You can make Trilogy display different icons which change depending

on the data in each row. This is done by specifying a context and

having different icons for each context. See Row Context below for

more information.

5.2.19 Row Context

Each row displayed in a List Box can represent different types of data. For

example, a directory listing could contain both folders/directories and files. You

may wish to identify each row with a different icon (so that the user has a visual

indicator of the file type) and the right-click menu may need to differ depending

on whether the user has selected a row containing a directory or a file.

Trilogy supports this by use of a Context. Each row in the list box has its own

context and that context is used to identify which icon should be displayed (if the

row has an icon) and/or which right-click menu is appropriate for that row.

Trilogy 2.3 Administrator Guide Page 83 of 275
www.trinem.com

Contexts are identified by specifying a Column Number which contains the

character string that will be used to identify the different contexts. This Column

Number is identified using the ContextColumn directive in the server-side job

stanza.

For example, this:

ContextColumn=2

Tells Trilogy that the second column in the list box contains the character string

which identifies the context.

The Context Column can, of course, be a hidden field (just as with

AutoSelect). The column should only ever contain alpha-numeric

string data which is then used to name the context.

When ContextColumn is set, Trilogy will examine the specified column for each

row of the List Box. The context for the row is then set to the string contained

within the column for that row.

Both the Icon= and OnRightClick= directives can be modified to be context-

specific by specifying the name of the context within the directive, like this:

IconContext=<path to gif file>

OnRightClickContext={JOB1,JOB2…}

Here, Context is the name of the context. You can specify any number of Icon

and OnRightClick contexts within a job stanza.

For example, suppose your server-side script generates a directory listing. Your

script generates the following output:

DIR,My Documents,

DIR,My Music,

FILE,myfile.txt,1234

To display a different icon for each row (and change the right-click menu

according to what is clicked on), we specify the following in our job stanza:

FILELIST:

 .

 .

 ColumnNames={Type,Name,Size}

 ColumnWidths={0,200,100}

 ContextColumn=1

 OnRightClickFILE={DOWNLOAD,DISPLAY}

 IconDIR=$TRILOGYHOME/icons/16x16/folder.gif

 IconFILE=$TRILOGYHOME/icons/16x16/file.gif

 .

 .

Trilogy 2.3 Administrator Guide Page 84 of 275
www.trinem.com

Note that the OnRightClick directive has been modified to include the context in

which it operates (OnRightClickFILE). Only rows where the word FILE appears

in the first column position (as identified by the ContextColumn directive) will

see this menu. This means that a user selecting a folder and right-clicking will

not see the DOWNLOAD and DISPLAY menu options. This menu is only available

when selecting a row with FILE in the first (hidden) column.

Similarly, there are now two Icon directives – each of which contains the context

to which it applies (IconDIR and IconFILE). A row with DIR in the first column

position (as identified by the ContextColumn directive) will display the

“folder.gif” icon, a row with FILE in the first column position will display the

“file.gif” icon.

Context Names are not case-sensitive. IconFILE= and IconFile=

would both be used if the Context Column contained File, FILE or

FiLe.

Trilogy will default to using the non-context specific Icon or OnRightClick menu

should a context-specific version not exist for that row. For example, supposing

a row contained the text UNKNOWN in the first column. In this instance, Trilogy

would not know which context to apply since there are no IconUNKNOWN or

OnRightClickUNKNOWN directives present in the job stanza. In such cases,

Trilogy will use the Icon= or OnRightClick= directives if they are present. These

non-context specific directives are therefore the default.

If these default directives are not present (as in the example above) then no

default is used – no icon is displayed for rows where the context cannot be

matched to an icon and no right-click menu is presented.

For example, our job definition could look like this:

FILELIST:

 .

 .

 ColumnNames={Type,Name,Size}

 ColumnWidths={0,200,100}

 ContextColumn=1

 OnRightClick={DOWNLOAD,DISPLAY}

 OnRightClickDIR=

 Icon=$TRILOGYHOME/icons/16x16/file.gif

 IconDIR=$TRILOGYHOME/icons/16x16/folder.gif

 .

 .

Here, the “default” icon is file.gif. This will be displayed for any row which

does not have DIR in the first column. Only rows which have DIR in their first

column will display the folder.gif icon. Similarly, the default right-click menu

option contains DOWNLOAD and DISPLAY jobs. However, right-clicking on a row

with the DIR context shows no menu (OnRightClickDIR= is empty).

Trilogy 2.3 Administrator Guide Page 85 of 275
www.trinem.com

5.2.20 Controlling List Box Script Execution

The server-side List Box Script can be executed in one of six scenarios:

 When the Trilogy Client Dialog is first displayed (default)

 When the “Apply” button is clicked

 When a field changes in the dialog (see Chapter 6 – Linking Fields).

 After a right-click job has completed execution

 When a row is double-clicked in the list box.

 Automatically on a timed basis.

You may find it necessary for the List Box Script to behave in different ways

depending on the reason for the refresh. Whenever the list box script is run, the

environment variable TRIREASON is set to “LISTBOX”. In order to determine why

the List Box is being refreshed, the list box script should examine the

environment variable TRILISTBOXREASON. This will allow the list box script to

determine under what circumstances it is being run:

TRILISTBOXREASON Set when…

APPLY Apply button has been clicked.

FIELDCHANGED A field has been changed that is linked to the

listbox. Used as a result of an

OnFieldChangenUpdate={LB} clause (see Chapter 6 -

Linking Fields below for more information).

REFRESH Listbox is being refreshed automatically

(AutoRefresh)

POSTRC Listbox is being run following the execution of a

right-click job.

DBLCLICK User has double-clicked on an entry in the list-box.

The directive PopulateListBox controls the “Apply” button action. It is included

in the job stanza in the server-side trilogy.conf. If it is set to OnDisplay (the

default) then the list box script is executed on the server whenever the client

side dialog is first opened and the resulting output is used to populate the client-

side list box. If it set to OnApply then the list box is displayed with the columns

and widths populated but with no data. Only when the Apply button is clicked at

the client is the server side List Box Script executed and its standard output used

to populate the client dialog as described above.

Setting PopulateListBox=OnApply will add an “Apply” button to the client-side

dialog automatically. It can be added manually (and the text on the button can

be changed) as described below.

You can also link the list box to a field so that when the field changes, the list

box script is rerun and the list box regenerated.

Trilogy 2.3 Administrator Guide Page 86 of 275
www.trinem.com

Linking Fields is covered in Chapter 6: Linking Fields later in this

document. Populating the List Box when a field changes works

independently of the setting of PopulateListBox.

 Example – Building a List Box Application 5.3

In this section we will bring all of these components together to build a simple

remote process list application – this will list all the running processes on a Unix

Server and allow us to terminate or suspend any job we select from the list box.

First, we need to define our client-side dialog. We need to be able to filter jobs

based on their name (perhaps we’re using this tool to allow us to look for jobs

that regularly cause us trouble or perhaps to monitor their usage). So we’ll need

a data entry field for that. That’s all we need, so the dialog definition file is pretty

simple:

- Process Details

Process Name []

We create this file with a text editor and save it in
$TRILOGYHOME/screens/ProcessDetails.scn

Now we create our server-side trilogy.conf entries to set up the job and

create the dialog. Amending trilogy.conf on our Unix Server, we add the

following entries:

PROCESS_CONTROL:

 Dialog=$TRILOGYHOME/screens/ProcessDetails.scn

Banner=on

BannerHeading=Process Control

BannerText=Allows Process to be listed, Suspended or Killed

 ListBox=Yes

 PopulateListBox=OnApply

 ApplyButton=Yes

 ApplyButtonText=Scan

 ColumnNames={pid,ppid,User,Start Time,CPU Time,Process Name}

 ColumnWidths={50,50,100,100,100,400}

 AutoStretch=No

Save the server-side trilogy.conf file with these additional entries. Moving to

our client machine we invoke trilogy:

trilogy process_control

The following dialog is displayed:

Trilogy 2.3 Administrator Guide Page 87 of 275
www.trinem.com

So far, this looks fine. Let’s add the List Box Script. This script needs to perform

a “ps” listing, filtering the output based on jobs containing the text specified in

our “Process Name” field ($TRIFIELD1). Here’s the script:

#!/bin/ksh

[[-z "$TRIFIELD1"]] && TRIFIELD1="^.*$"

ps -eo "pid ppid user stime time comm" | nawk -v p="$TRIFIELD1" '

{

 if (NR>1 && $NF ~ p)

 {

 print $1","$2","$3","$4","$5","$6

 }

}'

This script is for Sun Solaris – it will differ under other Unix variants. Save this

file to $TRILOGYHOME/scripts/plist on the server. Now add the ListBoxScript

directive to our server-side trilogy.conf:

ListBoxScript=$TRILOGYHOME/scripts/plist

Now on the client, we can invoke Trilogy again to bring up the dialog. This time

when we click “Scan” (which is the Apply button) the server-side “plist” script

will run. If nothing is entered in the Process Name field, then $TRIFIELD1 will be

blank and the script will list all the processes on the system.

Trilogy 2.3 Administrator Guide Page 88 of 275
www.trinem.com

Since AutoStretch was set to “No”, we need to drag the dialog to expand the list

box:

Entering some text into “Process Name” and clicking Scan again results in a

filtered list:

Trilogy 2.3 Administrator Guide Page 89 of 275
www.trinem.com

This looks like what we need. However, there is still no mechanism to allow us to

suspend or terminate jobs. This is where the OnRightClick directive comes in.

We amend the server-side trilogy.conf so that it now looks like this:

PROCESS_CONTROL:

 Dialog=$TRILOGYHOME/screens/ProcessDetails.scn

 Banner=on

 BannerHeading=Process Control

 BannerText=Allows Process to be listed, Suspended or Killed

 ListBox=Yes

 PopulateListBox=OnApply

 ApplyButton=Yes

 ApplyButtonText=Scan

 ColumnNames={pid,ppid,User,Start Time,CPU Time,Process Name}

 ColumnWidths={50,50,100,100,100,400}

 ListBoxScript=$TRILOGYHOME/scripts/plist

 OnRightClick={KILL_JOB,SUSPEND_JOB}

KILL_JOB:

 Title=Kill Job

 Program=/usr/bin/kill

 Param=-9

 Param=$TRI_PID_1

SUSPEND_JOB:

 Title=Suspend Job

 Program=/usr/bin/kill

 Param=-STOP

 Param=$TRI_PID_1

Note the only addition to our original PROCESS_CONTROL job is the OnRightClick

directive. This points us at two additional Trilogy jobs – KILL_JOB and

SUSPEND_JOB. The titles of these jobs (Kill Job and Suspend Job) will now be

listed in a pop-up menu at the client when we right-click on a selection in the list

box.

Trilogy 2.3 Administrator Guide Page 90 of 275
www.trinem.com

Opening the dialog on our client, we now see that right-clicking on a selection in

the list-box brings up the menu:

Selecting “Kill Job” on /etc/init will run the Trilogy Job “KILL_JOB” on the

server. This will run the server-side program /usr/bin/kill, passing it two

parameters (defined by the Param= directives). The first parameter (-9) is the

signal number to pass to the process – 9 equating to SIGKILL which cannot be

caught by the process and will kill it). The second parameter to /usr/bin/kill

is the process id. This is passed from the primary dialog because it is in the

environment variable $TRI_PID_1. This is because the first column is called “pid”

so Trilogy constructed an environment variable called $TRI_PID_1 and set it to

the first selected PID column value.

Trilogy will therefore issue the /usr/bin/kill -9 command to the process id

specified in the PID column. By default, the standard error stream of an invoked

process is routed to a pop-up dialog box. So if we try to do that on an operating

system process like /etc/init, this is what we get:

If we try this on a process to which we do have control, the process will be killed.

Trilogy 2.3 Administrator Guide Page 91 of 275
www.trinem.com

6 Linking Fields

 Introduction to Linked Fields 6.1

Sometimes there is a requirement to have a field change dynamically whenever

another field on the dialog is changed. For example, fields can be disabled or

enabled dependent on the setting of a checkbox or radio button; a drop-down

list can be populated with different content based on the selection in another

drop-down list; a read-only data entry field can be populated dynamically as a

user types into another data entry field and so on.

 Creating Linked Fields. 6.2

Linked Fields are defined in Trilogy with the use of a directive entry in the

server-side trilogy.conf file. This entry is placed in the desired job stanza and

specifies which fields should be updated whenever a specified field is changed on

the client dialog.

The directive is called OnFieldChangenUpdate and its syntax is as follows:

OnFieldChangenUpdate={fieldno,fieldno…}

Where n is the field which needs to change to trigger the update and

fieldno is either the number of a field to be updated or is the word LB or

LISTBOX to update any attached list box present on the dialog.

A field is updated by Trilogy automatically running the appropriate

PopulateFieldnWith script in the same job stanza whenever the "source" field

changes. Similarly, the list box is updated by Trilogy automatically running the

ListBoxScript (or PopulateListBoxWith) whenever the “source” field changes.

 Linking Drop Down Lists 6.3

As an example, consider the following server-side trilogy.conf entries for the

Trilogy Job "SHOW_CARS":

SHOW_CARS:

 Dialog=$TRILOGYHOME/screens/cars.scn

 PopulateField1With=$TRILOGYHOME/scripts/show_manufacturers.sh

 PopulateField2With=$TRILOGYHOME/scripts/show_cars.sh

 PopulateField3With=$TRILOGYHOME/scripts/show_engines.sh

 OnFieldChange1Update={2,3}

 OnFieldChange2Update={3}

Here is the dialog "cars.scn" defined on the server in

$TRILOGYHOME/screens/cars.scn:

Trilogy 2.3 Administrator Guide Page 92 of 275
www.trinem.com

- Vehicle Choice

Manufacturer { }

Model Range { }

Engine Size { }

And here is how it is displayed at the client:

Figure 5.1: Initially Populated Dialog

When the dialog is first displayed at the client, the show_manufacturers.sh

script is run on the server, producing a list of vehicle manufacturers to its

standard output. This is then used to populate the client-side drop down in field

1.

The show_cars.sh and show_engines.sh scripts will also run. However, they

should produce no output to leave the corresponding drop-down lists on the

client dialog blank. Indeed, it may be best if they exited with a fail condition (exit

code non-zero) so that the Trilogy Client will disable the field as shown above. To

do this, they can either determine the value of $TRIFIELD1 (which will be NULL

when the dialog is first displayed) or they can examine the environment variable

$TRICHANGEDFIELD which will be null on initial dialog creation.

The client now sees a dialog with a drop-down list of vehicle manufacturers and

nothing in the Model Range (TRIFIELD2) and Engine Size (TRIFIELD3) drop

down lists. However, when the user selects a manufacturer from the drop down

list on the client dialog, Trilogy Server will automatically run show_cars.sh and

show_engines.sh again. This is because OnFieldChange1Update is set to 2,3.

The field update script for field 2 is show_cars.sh and the field update script for

field 3 is show_engines.sh. This time, however, $TRIFIELD1 will be set to

whichever manufacturer was selected by the client user, and $TRICHANGEDFIELD

will be set to “1”. The show_cars.sh script can then produce a list of vehicles

built by the specified manufacturer. Sending this list to its standard output will

result in the client dialog being updated and field 2 (the "Model Range" drop-

down list) being populated with the appropriate list of vehicles.

Trilogy 2.3 Administrator Guide Page 93 of 275
www.trinem.com

Figure 5.2: Selecting a manufacturer populates fields 2 &3.

The show_engines.sh script is designed to show the engines available for a

particular car. Since the user has not selected a car from field 2 yet (the list is

populated now but no selection has been made), then $TRIFIELD2 is still NULL.

Given that $TRICHANGEDFIELD is “1” (the manufacturer selection has changed)

then show_engines.sh can simply return nothing and exit with a non-zero exit

core which will result in the "Engine" Size drop down field on the client dialog

remaining blank and disabled (as shown).

Now the user selects a car from the field 2 drop-down list. As soon as the

selection is made in the client dialog, Trilogy Server will automatically run

show_engines.sh again. This is because field 2 has changed and

OnFieldChange2Update is set to 3. The field update script for field 3 is

show_engines.sh. This time, $TRIFIELD1 is the name of the selected

manufacturer and $TRIFIELD2 is the name of the selected vehicle.

$TRICHANGEDFIELD is 2. This will allow the server-side script show_engines.sh

to send a list of engines available for that particular vehicle to its standard

output which – in turn – will populate the "Engine Size" drop down in the client

dialog.

Figure 5.3a – Selecting a model updates the Engine Size field….

Trilogy 2.3 Administrator Guide Page 94 of 275
www.trinem.com

Figure 5.3b - …with the engines available for the chosen model range.

If the manufacturer selection changes, the drop-down list in field 2 will change to

show a new list of vehicles and the drop-down list in field 3 will be cleared. In

this way, the drop-down lists in the dialog dynamically amend their content

based on the selections made by the user.

Figure 5.4 – changing the Manufacturer re-populates the model range drop-down list.

Trilogy 2.3 Administrator Guide Page 95 of 275
www.trinem.com

 Linking radio buttons and checkboxes 6.4

The same technique can also be used whenever a checkbox or radio button is

clicked. You can use this to disable certain fields on the dialog if a checkbox or

radio button is not selected. Remember that the TRIFIELD environment variable

corresponding to the radio button or checkbox is "1" if the item is selected and

"0" otherwise.

Consider the following example. We have created a dialog in which only one of

two data entry fields can be considered valid. To switch between the two we

create a pair of radio buttons. Selecting one radio button enables one data-entry

field and disables the other. The dialog will look like this:

Enter Some Data

O Enter This []

o Enter That []

TRIFIELD1 is the "Enter This" radio button, TRIFIELD2 is the data entry field on

the same line, TRIFIELD3 is the "Enter That" radio button and TRIFIELD4 is its

data entry field.

If you wished to disable the data entry field for the non-selected entry field you

would set up something like this in the server-side trilogy.conf:

ENTER_DATA:

Dialog=$TRILOGYHOME/screens/EnterSomeData.txt

OnFieldChange1Update={2,4}

OnFieldChange3Update={2,4}

PopulateField2With=$TRILOGYHOME/scripts/EnterThis.sh

PopulateField4With=$TRILOGYHOME/scripts/EnterThat.sh

Here is what EnterThis.sh would look on a Unix Server:

#!/bin/ksh

case "$TRICHANGEDFIELD" in

 1) exit 0;;

 3) exit 1;;

 *) exit 0;;

esac

And here is EnterThat.sh:

#!/bin/ksh

case "$TRICHANGEDFIELD" in

 1) exit 1;;

 3) exit 0;;

 *) exit 1;;

esac

Here's what the dialog will look like when it is first displayed:

Trilogy 2.3 Administrator Guide Page 96 of 275
www.trinem.com

Figure 5.5 – Initial display. EnterThat.sh exits with failure and disables the field.

When the dialog is first displayed, Trilogy will run the server side scripts

EnterThis.sh and EnterThat.sh – these scripts can determine if they are being

invoked during an initial population by checking the value of the environment

variable $TRICHANGEDFIELD – if it is NULL then they are being invoked during

initial population and EnterThat.sh can exit with a failure and EnterThis.sh

can exit with success. This results in the initial dialog display shown in figure 5.5

above.

Now, whenever one of the radio buttons is clicked, the EnterThis.sh and

EnterThat.sh scripts are run again. They can then use $TRICHANGEDFIELD to

determine which radio button has been clicked and can exit with a success or

failure code accordingly. For example, if $TRICHANGEDFIELD is 1 then “Enter

This” has been clicked and EnterThis.sh can return 0 (success) and

EnterThat.sh can return 1 (failure). This will result in the "Enter This" data

entry field being available at the client, whilst the "Enter That" data entry field is

disabled. Similarly, if $TRICHANGEDFIELD is 3 then that means "Enter That" has

been clicked and EnterThis.sh can return 1 (failure) and EnterThat.sh can

return 0 (success). This results in "Enter This" data entry field being disabled and

the "Enter That" data entry field being enabled.

Figure 5.6 – Clicking on the second radio button disables the first data entry field and enables the

second.

Trilogy 2.3 Administrator Guide Page 97 of 275
www.trinem.com

 Linking a Field to the List Box 6.5

You can link the list box (if displayed) to a field such that when the field

changes, the list box is automatically regenerated.

To do this, specify either LB or LISTBOX as the “field” to change in a

OnFieldChangenUpdate= directive.

For example, to update the list box whenever a drop-down field changes its

value, use:

.

.

PopulateField1With={Value1,Value2,Value3}

OnFieldChange1Update={2,LB}

PopulateListBoxWith=$TRILOGYHOME/scripts/listbox.vbs

PopulateField2With=$TRILOGYHOME/scripts/field2.bat

ListBox=Yes

.

.

These directives ensure that whenever the value of the first field (a drop-down

containing “Value1”, “Value2” and “Value3”) changes, Trilogy will run

$TRILOGYHOME/scripts/listbox.vbs to repopulate the list box and

$TRILOGYHOME/scripts/field2.bat to repopulate the drop-down for field 2.

 Linking List Box to Fields 6.6

You can also link the list box (if displayed) to other fields such that whenever the

list box content or selection changes, the specified fields are automatically

refreshed.

To do this, use the OnListBoxChangeUpdate= directive. This is similar to the

OnFieldChangenUpdate= directive in that the value is a set of fields that should

be updated whenever the list box content changes (or a selection is made or

changed within the list box).

For example, this directive:

OnListBoxChangeUpdate={2,3}

Specifies that fields 2 and 3 should be re-populated whenever the List Box

content changes.

The list box content changes when:

 It is manually refreshed by clicking the apply button

 It is refreshed automatically (AutoRefresh is set)

 The selection inside the list box is changed by the user selecting rows.

Trilogy 2.3 Administrator Guide Page 98 of 275
www.trinem.com

 Linking Data Entry Fields 6.7

You can also set up a link between different data entry fields. For example, you

might wish to populate a read-only field with a string whose value changes as

the user types into another data entry field.

This is very simple to set up in Trilogy. Let's say that we had a "Create New

Project" dialog. This allows us to type in a free-text project name which will be

converted to a fixed-format project name as we type. Let's say we need to prefix

the name of the project with "PREFIX_" and convert any lower-case letters to

upper-case and any spaces to underscores. Thus, "My Project" would become

"PREFIX_MY_PROJECT".

First, let's create an entry dialog. This will have two fields – the field we're going

to type into and a second (disabled) field that will display the project name to be

created. The dialog looks like this:

- Project Details

Project Name []

Created Project []

Now, we create a server-side script to populate the second field. The script is

quite simple – it simply takes the current value of "Project Name" ($TRIFIELD1)

and converts it into our desired format:

#!/bin/ksh

newname=$(echo "$TRIFIELD1" | tr '[a-z] ' '[A-Z]_')

echo "PREFIX_${newname}"

exit 1

Note the "exit 1" at the end of the script. This failure indication is used by Trilogy

to disable the field at the client, thereby preventing the user from amending its

content directly.

We set up the server-side trilogy.conf to create our job reference. Here are

the entries:

CREATE_PROJECT:

 Dialog=$TRILOGYHOME/demo/screens/testlink.scn

 PopulateField2With=$TRILOGYHOME/demo/scripts/echoname.sh

 OnFieldChange1Update={2}

If the user invokes the dialog at our client, this is what they see:

Figure 5.7 – Initial Display with dynamic field update.

Trilogy 2.3 Administrator Guide Page 99 of 275
www.trinem.com

Now, every time they type a character into the "Project Name" field, Trilogy will

trigger the server-side job echoname.sh. This will echo the current value of

"Project Name" ($TRIFIELD1), convert it according to our rules (lower case to

upper case, spaces to underscores) and echo it out to the standard output.

Trilogy will then use that output to update TRIFIELD2 (Created Project). Since

this happens for every typed character, the second field on the dialog updates

dynamically as the user types:

Figure 5.8 – Second entry field is updated as the user types into the first field.

 Linking a Field to Itself 6.8

Linking a field to itself can be useful if you wish to restrict the characters that

can be entered into a data-entry field. This is a very similar technique to that

outlined above for linking two data entry fields. In this case, however, we will

echo the converted string back to the updating field.

For example, let's assume we have a field that is only supposed to contain

numeric characters. We could test for this when the dialog is submitted (with the

ValidateWith clause) but it would be much better if we could prevent non-

numeric characters being entered in the first place.

To do this, we create a simple server-side script to filter out all non-numeric

characters:

#!/bin/ksh

echo "$TRIFIELD1" | sed 's/[^0-9]//g'

exit 0

Then we set up the server-side trilogy.conf to trigger this script whenever the

content of the data entry field changes:

TESTLINK:

 Dialog=$TRILOGYHOME/demo/screens/testlink.scn

 PopulateField1With=$TRILOGYHOME/demo/scripts/echoname2.sh

 OnFieldChange1Update={1}

The OnFieldChange1Update={1} tells Trilogy that whenever field 1 changes, it

should be refreshed with the output from echoname2.sh. That takes the old

value of TRIFIELD1 and strips all non-numeric characters from it. It is therefore

impossible for the user to enter any non-numeric characters into the field:

Trilogy 2.3 Administrator Guide Page 100 of 275
www.trinem.com

Figure 5.9 – It is impossible to enter non-numeric characters in the "Defect Number" field.

 Caveats 6.9

There are a couple of issues to bear in mind when designing Trilogy Dialogs with

linked fields.

o On initial population, no TRIFIELD environment variables are set – even if a

PopulateWith script has run to pre-populate the dialog content. A script

called to populate a field cannot use TRIFIELD variables to read the dialog

content unless it has been triggered due a field change ($TRICHANGEDFIELD

not null).

o Linking fields to radio buttons only works when the chosen radio button is

selected. For example consider the following dialog definition we used

earlier:

Enter Some Data

O Enter This []

o Enter That []

TRIFIELD1 is the "Enter This" radio button, TRIFIELD2 is the data entry field

on the same line, TRIFIELD3 is the "Enter That" radio button and TRIFIELD4

is its data entry field.

If you wished to disable the data entry field for the non-selected entry field

you might set up something like this in the server-side trilogy.conf:

ENTER_DATA:

Dialog=$TRILOGYHOME/screens/EnterSomeData.txt

OnFieldChange1Update={2,4}

UpdateField2With=$TRILOGYHOME/scripts/EnterThis.sh

UpdateField4With=$TRILOGYHOME/scripts/EnterThat.sh

This looks intuitively correct, when the radio button for "Enter That" is

clicked, Field 1 (Radio button for "Enter This") will clear. That's a change and

therefore fields 2 and 4 should be updated. Unfortunately, Trilogy does not

work that way. Only the field that is clicked on will trigger the running of the

field update scripts. You would therefore need to have two

Trilogy 2.3 Administrator Guide Page 101 of 275
www.trinem.com

OnFieldChangenUpdate entries, one for each radio button as shown in the

example earlier.

Trilogy 2.3 Administrator Guide Page 102 of 275
www.trinem.com

7 Linking Jobs

 Controlling Access 7.1
A Trilogy Job can have access controls placed on it so that it can only be

invoked:

 By users in specified user groups

 If other specified Trilogy Jobs are currently running

 If other specified Trilogy jobs are not currently running

User Groups and the ability to control access to Trilogy Jobs

via these groups is discussed in the next chapter.

Creating conditions on jobs such as they cannot be run unless other named jobs

are running (or cannot be run if other named jobs are running) is known as

Linking Jobs.

 Overview of Job Linking 7.2
Linking Jobs allows you to either:

 Place controls on a Trilogy job such that it cannot be invoked if another

named job is currently running.

 Place controls on a Trilogy job such that it can only be invoked if another

named job is currently running.

Suppose you wish to prevent jobs from being run if another Trilogy Job is

currently running. As an example, suppose you have two build processes. You

would set up your server-side trilogy.conf file like this:

BUILD_APP_1:

 Dialog=$TRILOGYHOME/screens/build1.scn

 Program=$TRILOGYHOME/scripts/build1.bat

BUILD_APP_2:

 Dialog=$TRILOGYHOME/screens/build2.scn

 Program=$TRILOGYHOME/scripts/build2.bat

Any user from any client can now invoke BUILD_APP_1 or BUILD_APP_2.

However, suppose that each build job uses the same resources. In this case,

each job is mutually exclusive – when build1.bat is running, one cannot run

build2.bat and vice-versa.

To enforce this restriction, you will need to link the jobs.

Trilogy 2.3 Administrator Guide Page 103 of 275
www.trinem.com

 Preventing Jobs from Running 7.3
To prevent Trilogy jobs from being run when they may clash with other jobs, you

need to link the jobs such that each job is mutually exclusive. To do this, Trilogy

supports the DenyIfJobRunning= directive. This allows you to name the jobs (or

job) that, if running, prevents the associated job from being invoked.

Taking the example above, by placing this directive into the appropriate job

stanza, you can prevent BUILD_APP_2 from being invoked if BUILD_APP_1 is

currently running (and vice versa):

BUILD_APP_1:

 Dialog=$TRILOGYHOME/screens/build1.scn

 Program=$TRILOGYHOME/scripts/build1.bat

 DenyIfJobRunning=BUILD_APP_2

BUILD_APP_2:

 Dialog=$TRILOGYHOME/screens/build2.scn

 Program=$TRILOGYHOME/scripts/build2.bat

 DenyIfJobRunning=BUILD_APP_1

Now, any attempt to invoke BUILD_APP_1 whilst BUILD_APP_2 is running will fail.

Similarly any attempt to invoke BUILD_APP_2 whilst BUILD_APP_1 is running will

be denied. The user will receive an appropriate error message:

You can also use this technique to prevent a job from being invoked more than

once at any one time. By setting the DenyIfJobRunning attribute to point to its

own job name, you can effectively prevent the job from being invoked more than

once.

This job, for example, can only ever be run one at a time:

CRITICAL_BUILD:

 Dialog=$TRILOGYHOME/screens/build1.scn

 Program=$TRILOGYHOME/scripts/build1.bat

 DenyIfJobRunning=CRITICAL_BUILD

Note, that in these circumstances, the error message displayed is different:

Trilogy 2.3 Administrator Guide Page 104 of 275
www.trinem.com

Note, you can list more than one job in the DenyIfJobRunning directive. Simply

list each job name and separate them with commas:

BUILD_APP_1:

 Dialog=$TRILOGYHOME/screens/build1.scn

 Program=$TRILOGYHOME/scripts/build1.bat

 DenyIfJobRunning=BUILD_APP_1,BUILD_APP_2

BUILD_APP_2:

 Dialog=$TRILOGYHOME/screens/build2.scn

 Program=$TRILOGYHOME/scripts/build2.bat

 DenyIfJobRunning=BUILD_APP_1,BUILD_APP_2

Here each build is mutually exclusive and only one instance of itself can be run

at any one time.

Please be aware, that the server-side job (i.e.: that identified

by the Program directive in the server-side trilogy.conf

file) has to be have been started by Trilogy. Scripts can still

be invoked to populate dialogs and list-boxes. If any dialogs

are associated with the job then they must have been

committed (by clicking OK).

It is also possible to define a Trilogy job that can only be invoked if another job

is currently running. For example, you may wish to create a job that monitors (in

real time) the output of another job.

To do this, add the directive AllowIfJobRunning directive to the appropriate

server-side trilogy.conf job stanza. The parameter to this directive is a list of

any Trilogy Jobs that need to be running before this job is allowed to be started.

If any of the listed jobs are running then the job is allowed to be started. If none

of the listed jobs are running, then the job cannot be invoked.

Trilogy 2.3 Administrator Guide Page 105 of 275
www.trinem.com

Here is an example:

BUILD_APP_1:

 Dialog=$TRILOGYHOME/screens/build1.scn

 Program=$TRILOGYHOME/scripts/build1.bat

 DenyIfJobRunning=BUILD_APP_1,BUILD_APP_2

BUILD_APP_2:

 Dialog=$TRILOGYHOME/screens/build2.scn

 Program=$TRILOGYHOME/scripts/build2.bat

 DenyIfJobRunning=BUILD_APP_1,BUILD_APP_2

MONITOR_BUILD_OUTPUT:

 Program=$TRILOGYHOME/scripts/showbuildresults.bat

Stdout=Report

 AllowIfJobRunning=BUILD_APP_1,BUILD_APP_2

Here, the Trilogy Job MONITOR_BUILD_OUTPUT is only allowed to be invoked if

either BUILD_APP_1 or BUILD_APP_2 is running. If this is true, then a report

window is opened and the standard output of the script showbuildresults.bat

is written into it.

If access to a Trilogy Job is denied due to other jobs running

(or not running) then the job will not appear as a right-click

option from the system tray even if the job is shown as

being available from the System Tray Menu. See Trilogy

Client Service for Windows later in this document for more

information on creating Menu Options in the System Tray.

Trilogy 2.3 Administrator Guide Page 106 of 275
www.trinem.com

8 Groups and the Group Processor

 Overview 8.1
Trilogy Server can control access to Trilogy Jobs by use of Groups. A group

consists of one or more users. When a Trilogy Client connects to the server, it

identifies the client via the user’s login id. Trilogy can then identify which group

the user is in and allow (or deny) permission to run Trilogy Jobs.

In order to make this process as flexible as possible, Trilogy Server uses a Group

Processor. A Group Processor is a library (DLL on Windows platforms, .a or .so

on Linux/Unix) which Trilogy Server calls in order to determine the group

membership for a user. This mechanism allows for Trilogy to interact with a

number of different sources for its group information:

 A file on the Trilogy Server

 LDAP server

 CA Technologies Software Change Manager

It is also possible to create your own plug-in provided it meets the interface

specification. This specification is detailed below.

Use of the Group Processor is optional. If you restrict access to a job via a

Group= directive (see Controlling Job Access below) then you must specify a

Group Processor, otherwise the job will not be accessible.

If your clients are using the Trilogy Client Service for

Windows (described in the next section) you can also use

Groups to notify group members that jobs are running or

send them “Balloon” style pop-up notifications from a server-

side job (either Linux/Unix or Windows)

 Group Processor Plug-In 8.2
The Group Processor is identified by use of the GroupProcessor= directive in the

server-side trilogy.conf file. This is a global directive (i.e.: not associated with

a job stanza) and the value should be a full path to the desired Group Processor

library file.

For example, to use the “File” mechanism to map users to groups, use the

following directive:

Windows:

GroupProcessor=$TRILOGYHOME/filegroups.dll

Trilogy 2.3 Administrator Guide Page 107 of 275
www.trinem.com

Unix/Linux:

GroupProcessor=$TRILOGYHOME/filegroups.so

You can use other Group Processor plug-in DLLs if desired.

The Trilogy Server will need to be restarted to install the Group Processor. When

Trilogy detects the presence of a Group Processor plug-in, it will load the library

and ensure that all the required functions are accessible. Should the library pass

this test, then the trigp_initialize() function within the library is called. If this

returns successfully, then the library is considered valid and Group Processing is

activated.

More information concerning the functions contained within the Group Processor

are detailed later in this document.

 Controlling Job Access 8.3
A Trilogy Job can have group access restrictions placed on it by using a group=

directive in the appropriate Trilogy Job stanza entry in the server-side

trilogy.conf file.

For example, the following trilogy.conf:

Server=localhost

Port=2301

GroupProcessor=$TRILOGYHOME/filegroups.dll

BuildApp1:

 Dialog=$TRILOGYHOME/screens/builapp1.scn

 Program=$TRILOGYHOME/scripts/buildapp1.vbs

 Group={developer}

BuildApp2:

 Dialog=$TRILOGYHOME/screens/builapp2.scn

 Program=$TRILOGYHOME/scripts/buildapp2.vbs

 Groups={developer,devmgr}

ChangePassword:

Dialog=$TRILOGYHOME/screens/chngpsswd.scn

 Program=$TRILOGYHOME/scripts/chngpsswd.bat

 Group={devmgr}

Timesheet:

Dialog=$TRILOGYHOME/screens/timesheet.scn

 Program=$TRILOGYHOME/scripts/timesheet.bat

In this case, a user in the “developer” user group can run the Trilogy jobs

“BuildApp1” and “BuildApp2”. A user in the “devmgr” user group can run the

Trilogy jobs “BuildApp2” and “ChangePassword”.

Any client can invoke the “Timesheet” job as there is no Group= directive in the

job stanza entry and therefore no group restrictions are enforced.

Trilogy 2.3 Administrator Guide Page 108 of 275
www.trinem.com

A user in the “developer” user group cannot run the “ChangePassword” job. If

they attempt to do so, the Trilogy Client will return the error “Trilogy Job not

found”.

The error message displayed by the client is always “Trilogy

Job Not Found” regardless if the job does not exist or the

user is not in the correct group. This is a security feature.

The server-side log (if logging is enabled) will record whether

the job was denied due to group permission or did not exist.

When receiving a request from a client to run a job with group access

restrictions, the Trilogy server will interact with the specified Group Processor

plug-in (in this example, filegroups.dll). If no Group Processor is specified or

the Group Processor failed to initialise properly, then access to the job is

automatically denied. This prevents access to a job being accidentally granted if

the Group Processor should fail.

 Group Processor Functions 8.4
Trilogy can interact with any group processor library provided it exports the

following functions and it meets the “C” interface standard.

By using “C” (rather than C++) you can use any C Compiler

to create your own Group Processor.

When a Group Processor is specified, Trilogy Server will load the library and

ensure that the following functions are present.

Function Name Description
int trigp_initialise()

Initialise the Group

Processor
unsigned long trigp_get_last_update_timestamp()

Returns the last

update timestamp
char **trigp_get_groups_for_user(char *UserName)

Get the groups for

a user
char **trigp_get_users_in_group(char *GroupName)

Get the users for a

group
void trigp_delete_list(char **List)

Remove a returned

list

These functions are described in more details in the following pages.

Trilogy 2.3 Administrator Guide Page 109 of 275
www.trinem.com

int trigp_initialise()

This function is called when Trilogy Server starts. This process can be used to set

up connections to whichever system is providing the group information (for

example, a remote LDAP server or a relational database). The function should

return 0 on success. Trilogy will only use the Group Processor should its initial

call to trigp_initialise() return 0.

Trilogy 2.3 Administrator Guide Page 110 of 275
www.trinem.com

unsigned long trigp_get_last_update_timestamp()

This function is called by Trilogy before any call to the group membership

functions. The Group Processor should return a number that represents the last

time the group membership changed. The number should increase whenever the

group membership changes in any way.

For the “file” Group Processor, this represents the timestamp when the group

membership file was last amended. Any change to the group membership file will

result in a later timestamp.

Trilogy uses the value returned from this function to determine whether to call

the function in the Group Processor. If the value has not changed since the last

time it was called, then it uses its own “cached” version of the data and thus

avoids calling the Group Processor. This has significant performance benefits

should the Group Processor need to access a remote system or a relational

database.

Trilogy 2.3 Administrator Guide Page 111 of 275
www.trinem.com

char **trigp_get_groups_for_user(char *UserName)

This function is called by Trilogy when it needs to ascertain which group(s) a

user is a member of. The return value should be an array of pointers to

character strings with the last entry a NULL pointer.

For example, assume the user “Dave” is a member of the groups “Developer”

and “DevMgr”. When “Dave” attempts to access a function that is group

restricted, Trilogy will call this function with a pointer to the null-terminated

character string “Dave” as a parameter:

char **res = trigp_get_groups_for_user(“Dave”)

This function should then return a pointer to an array of character pointers, with

the last pointer set to NULL. Thus:

res[0]=”Developer”

res[1]=”DevMgr”

res[2]=(char *)0

This will allow Trilogy to determine the user’s group membership and allow or

disallow access accordingly.

Trilogy will only call this function if a call to

trigp_get_last_update_timestamp() returns a higher

value than the previous call OR it has not previously asked

for the group membership list for this user.

The list returned should be allocated using a heap-based memory manager

(malloc() for example). When Trilogy is finished processing this list it will call

trigp_delete_list in the Group Processor to release the memory.

Trilogy 2.3 Administrator Guide Page 112 of 275
www.trinem.com

char **trigp_get_users_in_group(char *GroupName)

This function is called by Trilogy when it needs to ascertain which user(s) are

members of the specified group. The return value should be a array of pointers

to character strings with the last entry a NULL pointer.

For example, assume the group “Developer” has the users “Dave”, “Julie”,

“Mandy” and “Simon” as members. When Trilogy is trying to establish which

users should receive group notifications (see the next section), this function will

be called with a pointer to the null-terminated character string “Developer” as a

parameter:

char **res = trigp_get_users_in_group(“Developer”)

This function should then return a pointer to an array of character pointers, with

the last pointer set to NULL. Thus:

res[0]=”Dave”

res[1]=”Julie”

res[2]=”Mandy”

res[3]=”Simon”

res[4]=(char *)0

This will allow Trilogy to determine which users and in the group and determine

which users should receive the notification.

Trilogy will only call this function if a call to

trigp_get_last_update_timestamp() returns a higher

value than the previous call OR it has not previously asked

for the users who are members of this group.

The list returned should be allocated using a heap-based memory manager

(malloc() for example). When Trilogy is finished processing this list it will call

trigp_delete_list in the Group Processor to release the memory.

Trilogy 2.3 Administrator Guide Page 113 of 275
www.trinem.com

void trigp_delete_list(char **List)

This function is used to delete the list previously returned by the functions

trigp_get_groups_for_user() and trigp_get_users_in_group(). Trilogy will

call this function automatically when it has finished processing the values

returned from these functions. This function should free the member returned by

these functions.

Trilogy 2.3 Administrator Guide Page 114 of 275
www.trinem.com

9 Trilogy Client Service for Windows

This section applies only to Windows Clients

 Overview 9.1
Windows clients can choose to install Trilogy Client as a Windows Service. When

the client is installed as a Windows Service, it places an icon in the System Tray

(Also known as the Notification Area). The user can then right-click on this icon

to select and run specified Trilogy Jobs (those identified as being available from

the System Tray).

Having the Trilogy Client running as a Windows Service also allows Balloon-Style

“notifications” to be sent from Trilogy Servers to users in particular groups.

Group Membership is established through a Group Processor

(see previous section).

These Balloon Notifications can be sent to specific users, specific groups, specific

client machines or a combination of all three. You can also specify that certain

user groups should be notified when certain Trilogy Jobs are running. When this

is configured, the Trilogy icon on the desktops of users in the specified group(s)

will blink whenever certain jobs are running. This can be used – for example – to

notify developers that a build is in progress.

 Installing Trilogy Client as a Service 9.2
Trilogy Client can be installed as a service during the normal installation

procedure (see section 3.2). If this has not been done, then it can be added as a

service after installation by running:

trilogy –install

from a command window. This will then add “Trilogy Client” to the Services list.

Users of Windows Vista, Windows 7 or Windows Server will

need to ensure that the command window has been run with

Administrative Privileges (run as Administrator).

The service is set to “Automatic” so that it starts automatically when the

Windows machine is started.

Trilogy 2.3 Administrator Guide Page 115 of 275
www.trinem.com

 System Tray Icon 9.3
When the “Trilogy Client” Service is running an icon appears in the Desktop

System Tray (Known as the Notification Area in Windows Vista and Windows 7)

Users of Windows Vista or Windows 7 will need to ensure that

“Trilogy Client” is displayed in the Notification Area. The icon

will not be displayed by default. To configure, click on the

small up-arrow on the left-hand side of the Notification Area

and click “Customize” or use Control Panel -> Appearance

and Personalization -> “Taskbar and Start Menu Properties“

and then click on “Customize” within the “Notification Area”

frame.

In either case, in the resulting dialog, identify the “Trilogy

Client” and then change the corresponding drop-down to

“Show Icon and Notifications”.

The icon that is visible in the System Tray will vary depending on whether the

Trilogy Client has successfully connected to the Trilogy Server.

Figure 8.1 Trilogy Icon connected to the Trilogy Server successfully.

Figure 8.2 Trilogy Icon when connection to the Trilogy Server cannot be established.

The Trilogy Client Service will try periodically (every minute) to connect to the

Trilogy Server. The server details (hostname and port number) of the Trilogy

Server is held in the client-side trilogy.conf file. When a connection is

established, the icon will change to the “Available” state automatically. Similarly,

should the connection to the Trilogy Server be lost, then the icon will

automatically change to the “Unavailable” state. There is therefore no need to

restart the Trilogy Client service as it will reattempt connection to the server by

itself.

Only one Trilogy Icon can appear in the System Tray at any

one time. This means that if you have a Trilogy Job with a

Systray=Y directive in its job stanza (which places an icon in

the system tray when it runs), then the icon used by the

Trilogy Client Service is used by the job instead.

Trilogy 2.3 Administrator Guide Page 116 of 275
www.trinem.com

 Running Jobs from the System Tray 9.4
If connection to the Trilogy Server has been established then the user can right-

click on the icon and select from one or more jobs to which they have access.

Jobs are only selected for inclusion in the right-click menu if the directive

TrayMenu=Y is included in the job stanza in the server-side trilogy.conf file.

The menu presented uses the Job’s “title” field to construct the menu item. If the

job does not have a “title” attribute then the job name is presented instead.

Access to the job is based on any Group= directive in the job stanza entry. If a

group attribute is present then the Group Processor is invoked to check whether

the invoking client user (their login id) is a member of the specified group. If

they are not, then the job is not presented on the right-click menu.

For example, consider the following server-side trilogy.conf file.

BUILD_APP1:

 Program=$TRILOGYHOME/scripts/buildapp1.bat

 Title=Build Trilogy

 Group=developer

 TrayMenu=Yes

BUILD_APP2:

Program=$TRILOGYHOME/scripts/buildapp2.bat

 Title=Build RTI

 Group=developer

 TrayMenu=Yes

DAILY_TIMESHEET:

 Program=$TRILOGYHOME/scripts/timesheet.vbs

 Dialog=$TRILOGYHOME/screens/timesheet.scn

 Title=Enter Daily Timesheet

 TrayMenu=Yes

DEPLOY_APP1:

 Program=$TRILOGYHOME/scripts/deployapp1.bat

 Title=Deploy Trilogy

 Group=Test Manager

 TrayMenu=Yes

DEPLOY_APP2:

 Program=$TRILOGYHOME/scripts/deployapp2.bat

 Title=Deploy RTI

 Group=Test Manager

 TrayMenu=Yes

CHECK_CODE:

 Program=$TRILOGYHOME/scripts/checkcode.bat

If a user in the “developer” user group right-clicks on their Trilogy Client Service

icon in the System Tray (Notification Area) then they are presented with a menu

based on the jobs marked as being available from the System Tray and to which

the user has access:

Trilogy 2.3 Administrator Guide Page 117 of 275
www.trinem.com

Figure 8.3 Right clicking on the Trilogy Icon on the client presents a menu of server-side jobs to
invoke including those jobs marked with TrayMenu=Yes and to which the user has been allowed
access.

In this example, the user sees “Build Trilogy” (the job title for the Trilogy Job

BUILD_APP1), “Build RTI” (the job title for the Trilogy Job BUILD_APP2) and

“Enter Daily Timesheeet” (the job title for the Trilogy Job DAILY_TIMESHEET).

BUILD_APP1 and BUILD_APP2 are presented because these are restricted to users

within the “developer” user group. DAILY_TIMESHEET is presented as there is no

Group= directive in the job but TrayMenu=Yes. CHECK_CODE is not presented since

it does not have a TrayMenu=Yes directive. DEPLOY_APP1 and DEPLOY_APP2 are

not presented since the user is not in the “Test Manager” user group.

If a user is in the “Test Manager” user group and they right-click on their Trilogy

Client Service icon in the System Tray (Notification Area), then they are

presented with a menu tailored to their role:

Figure 8.4 The menu presented is based on any user roles.

Selecting any of these jobs allows the server-side job to be run. Any dialog

specified in the job will be presented first in the usual way.

The job(s) that are displayed take any DenyIfJobRunning and

AllowIfJobRunning directives into account. If the job is not allowed to be

invoked because another job is running (or is not running) then the

corresponding menu option is not presented.

Trilogy 2.3 Administrator Guide Page 118 of 275
www.trinem.com

 Sending “Balloon” Notifications 9.5
A job running on the Trilogy Server can send “Balloon” style notifications to

Trilogy Clients which are docked to the System Tray (Notification Area). These

Balloon Notifications can be sent to a specific user, a specific client machine, a

user group (or groups) or a combination of all three.

A balloon message can be sent to the user who started the

job without needing the Trilogy Client Service to be running.

For this to work, the SysTray=Yes directive must be included

in the job stanza which will cause Trilogy Clients running on

Windows to create a Trilogy Icon in the System Tray and

animate it to show the job is running.

In order to send a balloon notification, the server-side script can either run the

command line tool “trinotify” (for Unix or Windows servers) or – if the server

side script is written in JScript or VBScript on Windows –it can use the Trilogy

Scripting Engine.

The trinotify command-line tool issues a balloon notification to each matching

user who has a Trilogy Icon docked to the System Tray (Notification Area).

The trinotify command-line tool has the following options:

-b <servername> The name of the Trilogy Server. Defaults to the

server name contained within the server-side

trilogy.conf file.
-p <port number> The port number on which the Trilogy Server is

listening. Defaults to the port number contained

within the server-side trilogy.conf file.
-group <group names> A comma-separated list of user groups to

receive the notification.
-client <client machine> The hostname of the client machine to receive

the notification.
-user <user name> The name of the user to receive the notification
-title <title> The title to be placed on the balloon
-text <text> The text body of the balloon
-icon <icontype> The icon to be placed on the balloon. One of:

none No Icon (default)

warning A Warning Icon

error An Error Icon

info An Information Icon
-now Displays the balloon immediately. Balloon

Notification messages are normally queued with

the “next” balloon being displayed when the

first balloon is removed due to timeout or is

closed by the user.

For example, running the following command will cause a balloon notification to

be displayed on the appropriate client:

Trilogy 2.3 Administrator Guide Page 119 of 275
www.trinem.com

trinotify -title "The Balloon Title" -text "The Balloon Text" -icon

warning -user Dave

In this case, Trilogy will determine at which client machine(s) the user with the

login ID of “Dave” is logged in, and will display the balloon accordingly at each

appropriate desktop.

Figure 8.5 A Balloon Notification sent from a server-side script.

The balloon will be displayed for an amount of time before it fades from view. If

the user does not move the mouse or operate the keyboard, the balloon will stay

permanently (since the user may well be away from their machine) but it will

fade when mouse or keyboard activity resume.

Remember that “trinotify” is a server-side command line tool

and, as such, is available on Unix and Linux servers as well

as Windows. It is therefore possible to have a Unix Shell

Script notify Windows Clients of its activity via balloon

messages.

The following criteria can be used to determine the user desktops to be targeted

with a balloon-style notification.

9.5.1 Notifying Groups

To notify a group use either:

-group group-name

or

-group group-name,group-name …

Either the name of a single group or a comma-separated list of groups. This

causes Trilogy to find each user associated with the specified group(s) and locate

the desktop on which they are logged-in. Each identified user will then receive

the balloon notification.

Trilogy 2.3 Administrator Guide Page 120 of 275
www.trinem.com

9.5.2 Notifying Users

To notify a user:

-user user-name

This will find each client machine and desktop where the user is logged in and

send the notification to that desktop.

Note, the notification will be sent to each client desktop which has a Trilogy

Client icon docked to the System Tray and where the specified user is logged in.

This targeting can be further restricted by adding a –client directive as outlined

below.

9.5.3 Notifying Client Machines

To send a notification to a client machine, use:

-client client-hostname

This will send the notification balloon to each desktop which exists on the

specified client machine. If three people are logged into this machine, each user

will receive the balloon notification.

If you wish to restrict the notification to a particular desktop on the client

machine then use –client along with –user. This will then target the notification

to a particular user on that particular machine.

9.5.4 Automatic Notification Routing

If –client is not specified on the command line then trinotify will take the

value from the environment variable TRICLIENTNODENAME.

If –user is not specified on the command line then trinotify will take the value

from the environment variable TRICLIENTUSERNAME.

Both TRICLIENTNODENAME and TRICLIENTUSERNAME are set automatically by

Trilogy whenever it invokes a server-side job on request from a client. Therefore,

a server-side job invoking trinotify without specifying any other routing

parameters will automatically send the notification to the invoking user’s desktop

on the client machine from where they instigated the job. Thus, running

trinotify like this:

trinotify –title “Build Information” –text “Build is Complete”

Will automatically send the balloon notification to the client desktop where the

job was started.

Trilogy 2.3 Administrator Guide Page 121 of 275
www.trinem.com

9.5.5 Balloon Icon Types

When using Balloon Notifications, it is possible to specify different icons for the

balloon. Using trinotify you can specify an icon type using the –icon <icontype>

directive. The result of each icon type is shown here:

Icon = none

trinotify -title "The Balloon Title" -text "The Balloon Text" -icon

none -user Dave

Figure 8.6. A Balloon Notification with no icon

Note, “none” is the default for the icon.

Icon = Warning

trinotify -title "The Balloon Title" -text "The Balloon Text" -icon

warning -user Dave

Figure 8.6 A Balloon Notification with a Warning Icon

Icon = Info

trinotify -title "The Balloon Title" -text "The Balloon Text" -icon

info -user Dave

Figure 8.7 A Balloon Notification with an Information Icon

Trilogy 2.3 Administrator Guide Page 122 of 275
www.trinem.com

Icon = Error

trinotify -title "The Balloon Title" -text "The Balloon Text" -icon

error -user Dave

Figure 8.8 A Balloon Notification with an Error Icon

9.5.6 Balloon Display Order

Normally, balloons are displayed by the Trilogy Client in the order in which they

were called by the server-side script. This means that if the server-side script

sends a “Job Started” balloon notification followed by a “Job Ended” balloon

notification, then the client will display “Job Started” and will only display “Job

Ended” when the first “Job Started” balloon has either timed out or has been

closed by the client user.

There may be circumstances where you want the balloon to be displayed

immediately. For example, the “Job Ended” message should really replace the

“Job Started” message immediately it is issued. In that way, the user will know

that the job is actually complete without having to wait for the balloon to

change.

In addition, it may be desirable to show error conditions immediately so the

users are aware of any issue as soon as it has arisen.

To this end, trinotify supports a –now flag. If trinotify is called with this flag

then any Trilogy balloon notification that is currently being displayed by the

docked Trilogy Icon will be removed and the new balloon content will

immediately replace it.

Note that any “pending” balloon notifications are still held in the queue at the

client and are displayed after the “now” balloon has been cleared (either by the

user closing the balloon or via a timeout).

9.5.7 Standard Output As Balloon Message
If the job’s Standard Output stream is set to “Popup” (stdout=popup) and the

job is set to run in the System Tray (SystemTray=Yes) then the standard output

stream from the server-side job is displayed at the client as a balloon message

rather than a dialog box. If the standard output exceeds the amount of

characters that will fit into a single balloon then the output is split and multiple

balloons are displayed containing each part of the standard output.

 Notify Users of Job Running 9.6
You may find it desirable to notify groups of users when a job is running. This

can be done with balloon notifications (by sending a balloon message to the

Trilogy 2.3 Administrator Guide Page 123 of 275
www.trinem.com

appropriate user group notifying them that a server-side job has started and

again when it is complete).

However, if the job is particularly long-running then your users may need to

know that it is still running.

To support this, Trilogy Server supports a NotifyRunGroup= directive. This

directive should be placed in the server-side trilogy.conf in the stanza entry

for the required job. By using this directive, you can specify a group (or groups)

which are to be notified when the Trilogy Job is running.

For example:

DO_BUILD:

 Program=$TRILOGYHOME/scripts/build.sh

 NotifyRunGroup=Developer

When the “DO_BUILD” job is running, every user in the “Developer” user group

(as determined by the Group Processor) who has a docked Trilogy Client icon,

will see the icon flash as though a job were running.

When the job completes the icon on the Developer users’ desktops will stop

flashing.

You can notify more than one user group by including a comma-separated list of

groups like this:

DO_BUILD:

 Program=$TRILOGYHOME/scripts/build.sh

 NotifyRunGroup={Developer,DevMgr}

Here, users in the Developer and the DevMgr user groups are notified whenever

the DO_BUILD job is running.

Remember that users in the targeted group need to have the

Trilogy Client docked in the system tray (Notification Area) in

order to see the “Job Running” indication. Informing users

that a job is running only sets the Icon blinking. There is no

indication as to which job is executing. It is recommended

that the server-side job issues a Balloon Notification to the

same group(s) in order that the target user(s) can identify

which job has started or stopped.

 Client Port Number 9.7
Both “Balloon” style notifications and the icon animation that indicates that a job

is running require a message to be sent from the Trilogy Server to the

appropriate Trilogy Client(s). To do this, each Trilogy Client running on a client

machine opens a UDP port to listen for these messages from the Trilogy Server.

Trilogy 2.3 Administrator Guide Page 124 of 275
www.trinem.com

Normally, the Trilogy Client opens an “ephemeral” UDP port (that is, a random

port number that is not being used by any other application) and sends the port

number it is using to the Trilogy Server so that server knows how to

communicate with that client.

If you have a firewall running, you may need to “fix” the UDP port that the client

uses to allow a connection to take place from the Trilogy Server to the Trilogy

Client.

To fix the UDP port, use the directive ClientPort in the client-side

trilogy.conf file. For example, the directive:

ClientPort=60000

instructs the client to open the UDP port 60000 to listen for incoming

connections. You should then open UDP port 60000 through the firewall to allow

the server to connect to the client.

You can see the port number that the client is using by

running the Trilogy Server using the –showdocked option.

This will list all the Windows Client Services that have

registered with the server as being docked, along with the

port number that they are using.

 Advanced Configuration – Communicating Across Subnets 9.8
When a Windows Client notifies the server that it is “docked” (and can receive

balloon style notifications), the server records the client’s IP address and the

UDP port on which it is listening for notifications. When the server wishes to send

the client a notification, it does so by communicating with the client using this IP

address and the UDP port.

The reason for using an IP address is that host name resolution may not

necessarily work from a server to a client. It is normal for a client to be able to

resolve the IP address of “Server12” – less common that “Server12” can resolve

the IP address of “Client9812”.

However, there may be issues if the server is on a different subnet to the clients.

In this case the server will attempt to communicate with the client using its IP

address – if the IP address is in a different network then the message may not

be able to be routed to the client.

For example, suppose the server is in the 192.x.x.x network and the clients are

in the 10.x.x.x network. The default gateway from the 10.x.x.x network will

allow the client to connect to the server. However, when the server attempts to

send a message to a client in the 10.x.x.x network it may be unable to route.

Trilogy 2.3 Administrator Guide Page 125 of 275
www.trinem.com

The problem is compounded if the subnets share a common network ID. This can

happen if the Trilogy Server is installed in a hosted (cloud) environment with

NAT translation between the networks. Here, the Trilogy Server may exist in a

10.x.x.x network, the clients are in another 10.x.x.x network with connectivity

between the two performed by a single gateway with NAT. In this case, the

server will see a client IP address of 10.x.x.x and will assume that this is in its

own network. This means that messages from the server to the clients will be

lost.

The solution to this problem is to set up a Trilogy Server as a “relay”. To do this,

install another Trilogy Server on a machine in the same subnet as the clients.

The only function of this server is to receive messages from the “main” Trilogy

Server and route them on to the appropriate client(s) within its own network.

The “main” Trilogy Server (the one hosted outside of the subnet where the

clients are connected) can then be pointed to this “relay” server with the use of a

RelayServer= and a RelayPort=directive in its trilogy.conf file. This entry is

outside of any job stanza (alongside the Port= directive).

The server identified by the RelayServer= directive should be addressable from

the external network so will probably require a NAT entry to enable IP traffic to

be routed from the external network to the client network.

10.x.x.x
network

10.x.x.x
network

Cloud Service Provider Network

Client (Customer) Network

NAT gateway

used to

communicate

between
networks.

Figure 9.1 In a hosted environment, sending notifications to clients is complicated by the lack of a
common network.

Trilogy 2.3 Administrator Guide Page 126 of 275
www.trinem.com

If a RelayServer= directive is present then no attempt is made by the Trilogy

Server to send messages direct to the client. Instead, the message is sent to the

Trilogy Server identified by the RelayServer= directive (to the port identified by

the RelayPort= directive). This Trilogy Server will then route the message on to

the required client(s).

10.x.x.x
network

10.x.x.x
network

Cloud Service Provider Network

Client (Customer) Network

NAT gateway

used to

communicate

between

networks.

Figure 9.2 Use Relay to route client notifications across networks.

RelayServer= directive

points to Trilogy Server
in client network.

Trilogy 2.3 Administrator Guide Page 127 of 275
www.trinem.com

10 The Scheduler

 Introduction 10.1
Trilogy Server has a built-in scheduler. You can use scheduler directives to allow

Trilogy Jobs to be invoked automatically on specified dates and times.

The scheduler also allows dependent jobs to be configured. This means that

other jobs can be launched automatically dependent on the exit status of a

scheduled job. This means you can run a task on an automatic timed basis (for

example, a build) and – if that job was successful – run a second job

automatically (for example, a deployment). If the timed job were to fail, then

Trilogy can automatically run another job (for example, to send out an email

warning of the failure).

The directive NotifyRunGroup can be used to indicate to particular groups of

users that the job is running (just as if it had been invoked by a user) and the

job itself can use issue balloon-style notifications when it runs.

A scheduled job cannot interact with the user beyond the

notifications described above. Therefore, any User-Interface

directives included in the job stanza (for example Dialog or

DialogScript) are ignored.

 Specifying a Scheduled Job 10.2
For a Trilogy job to be scheduled to run under control of the scheduler, the

directive AutoRun=Yes must be specified in the job stanza. If this is not done,

then the job will not be under scheduler control.

When AutoRun=yes is specified, other directives control the dates and times on

which the job will be invoked. The only mandatory directive is AutoRunTimes.

This lists the times of day on which the job will be run. All other directives are

optional and are used to limit the dates and days on which the job will be run.

When a job runs under control of the Trilogy scheduler, the script or program

specified by the Program= directive is invoked on the Trilogy Server whenever

the pre-determined date and time is reached. The Standard Output and Standard

Error of the job is captured and stored in a log file.

A dependent job has access to this log file. It can read the

output from its “parent” job (the job on which it depends)

and can use it as it wants (for example, by sending it as an

email attachment).

Trilogy 2.3 Administrator Guide Page 128 of 275
www.trinem.com

 Related Directives 10.3
A job running under the control of the Trilogy Scheduler cannot display or

interact with any client-side dialog since the job was not instigated from a client

machine. Therefore, any directives related to client-side dialog definitions are

ignored. For example, Dialog, DialogScript, PopulateFieldnWith,

PopulateListBox, etc. are all ignored when a job is running under control of the

scheduler.

However, you may find the following directives useful when specifying a

scheduled job:

10.3.1 NotifyRunGroup
You can use NotifyRunGroup to indicate to the end-users that a timed job is in

progress. The server side script can also run “trinotify” to send out balloon-style

notifications to the appropriate user group.

10.3.2 Environment
You can set up an environment for the server-side job so that it runs with the

appropriate environment variables.

10.3.3 Param
Use the Param (or Params) directive to specify parameters that are passed to the

script specified by the Program directory.

 Specifying Run Times 10.4
The directive AutoRunTimes is used to specify the times of day on which the job

will be run. Times are specified in 24 hour format.

The timer resolution is one minute. Trilogy Server will scan

for jobs to run every minute (whenever the minute of the

system clock changes). Times are specified in hours and

minutes – it is not possible to specify seconds.

One or more times can be specified. For example, this job entry:

TIMED_JOB:

 AutoRun=yes

AutoRunTimes=15:00

Program=$TRILOGYHOME/scripts/timedjob.vbs

Means that the job “TIMED_JOB” will run at 3pm (the script timedjob.vbs will

be invoked automatically on the Trilogy Server at 3pm).

Trilogy 2.3 Administrator Guide Page 129 of 275
www.trinem.com

This:

TIMED_JOB:

AutoRun=yes

AutoRunTimes={0:00,3:00,15:15,23:09}

Program=$TRILOGYHOME/scripts/timedjob.vbs

Means that the job “TIMED_JOB” will run at Midnight, 3am, 3:15pm and

11:09pm (the script timedjob.vbs will be invoked automatically on the Trilogy

Server at these times).

You can also specify a single range of times, along with an “interval” like this:

TIMED_JOB:

AutoRun=yes

AutoRunTimes=20:00-21:15

AutoRunInterval=15

Program=$TRILOGYHOME/scripts/timedjob.vbs

This means that the job will run automatically at 8pm and then every 15 minutes

until 9:15pm. That is, the script timedjob.vbs will be run automatically at:

8pm (20:00)

8:15pm (20:15)

8:30pm (20:30)

8:45pm (20:45)

9pm (21:00)

9:15pm (21:15)

Without any other directives, the job will run every day at the times specified by

the AutoRunTimes directive. If you want to limit the job to run on particular

dates or days, then you can use other directives listed below.

 Specifying Run Days 10.5
If you want to limit the days on which the job will run, use the AutoRunDays

directive.

The value of AutoRunDays is a single day, a group of days (separated by

commas), a range of days or a combination of any of these.

Days can be specified either using common English abbreviations (Mon, Tue,

Wed, Thu, Fri, Sat, Sun) or as numbers (Monday = 1, Tuesday = 2, Wednesday

= 3, Thursday =4, Friday = 5, Saturday = 6 or Sunday = 7)

For example, this job:

TIMED_JOB:

 AutoRun=yes

 AutoRunDays=Mon

AutoRunTimes=20:00-21:15

AutoRunInterval=15

Trilogy 2.3 Administrator Guide Page 130 of 275
www.trinem.com

Program=$TRILOGYHOME/scripts/timedjob.vbs

Is run automatically every 15 minutes between 8pm and 9:15pm but only on a

Monday.

This job:

TIMED_JOB:

 AutoRun=yes

 AutoRunDays=Mon,Fri

AutoRunTimes=20:00-21:15

AutoRunInterval=15

Program=$TRILOGYHOME/scripts/timedjob.vbs

Is run automatically every 15 minutes between 8pm and 9:15pm on a Monday

and Friday.

This job:

TIMED_JOB:

 AutoRun=yes

 AutoRunDays=Mon-Fri

AutoRunTimes=20:00-21:15

AutoRunInterval=15

Program=$TRILOGYHOME/scripts/timedjob.vbs

Is run automatically every 15 minutes between 8pm and 9:15pm on Monday,

Tuesday, Wednesday, Thursday and Friday. This is equivalent to this:

TIMED_JOB:

AutoRun=yes

 AutoRunDays=1-5

AutoRunTimes=20:00-21:15

AutoRunInterval=15

Program=$TRILOGYHOME/scripts/timedjob.vbs

 Specifying Run Dates 10.6
To limit the job to run on particular dates, use the AutoRunDates directive.

AutoRunDates specifies a single date, a group of dates (separated by commas),

a range of dates or a combination of these.

Dates are a number between 1-31 and refer to the day of the month.

For example, this job:

TIMED_JOB:

 AutoRun=yes

 AutoRunDates=1

AutoRunTimes=20:00

Program=$TRILOGYHOME/scripts/timedjob.vbs

Is run automatically at 8pm on the first day of every month.

Trilogy 2.3 Administrator Guide Page 131 of 275
www.trinem.com

You can specify a number of dates:

TIMED_JOB:

 AutoRun=yes

 AutoRunDates=1-5

AutoRunTimes=20:00

Program=$TRILOGYHOME/scripts/timedjob.vbs

This job runs at 8pm on the 1st, 2nd, 3rd, 4th and 5th of each month.

You can combine AutoRunDates with AutoRunDays, in which case the two criteria

are combined to limit when the job can run. For example this job:

TIMED_JOB:

 AutoRun=yes

 AutoRunDates=1-7

 AutoRunDays=Mon

AutoRunTimes=20:00

Program=$TRILOGYHOME/scripts/timedjob.vbs

Runs on the first Monday of every month (the first Monday that coincides with a

date in the range 1st-7th of the month).

 Specifying Run Months 10.7
You can further restrict a scheduled job to run only during particular months. To

do this use the AutoRunMonths directive.

Months can be specified either using common English abbreviations (Jan, Feb,

Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec) or as numbers (January = 1,

December = 12).

AutoRunMonths can be given as a single month, a group of months (separated

by commas), a range of months or a combination of these.

For example, this job:

TIMED_JOB:

 AutoRun=yes

 AutoRunMonths=Jan-Nov

 AutoRunDates=1-7

 AutoRunDays=Mon

AutoRunTimes=20:00

Program=$TRILOGYHOME/scripts/timedjob.vbs

Runs at 8pm on the first Monday of every month except in December.

Trilogy 2.3 Administrator Guide Page 132 of 275
www.trinem.com

 Setting Standard Input 10.8
A job’s standard input is normally closed. However, you can specify that a job

should read its standard input from a server-side file.

To do this, use the AutoRunStandardInput directive. For example:

AutoRunStandardInput=$TRILOGYHOME/standardinput.txt

When the job runs the script specified by the Program directive will have its

standard input taken from the file standardinput.txt in the TRILOGYHOME

directory.

Any environment variables in the specified file name are not

expanded until the job is being executed. This means you can

have dependent jobs whose standard input is taken as the

output from the timed job. Simply specify the standard input

of the dependent job like this:

AutoRunStandardInput=$TRIPARENTLOGFILE

See Dependent Jobs and Environment Variables below for

more information.

 Dependent Jobs 10.9
A job running under control of the Trilogy Scheduler can have dependent jobs. A

dependent job is a job that is run automatically by Trilogy whenever the timed

job completes.

A dependent job can be set to run whenever the “parent” job (that is, the job on

which it is dependant) exits either with a successful exit code (0) or a non-

successful exit code (!=0). In this way, you can invoke jobs which run

automatically following the completion of a timed job to either:

a) Continue processing (for example, an automatic deploy following a timed

build) or

b) Handle an error condition (for example, by emailing a failure warning).

A job invoked by the scheduler can have zero, one or multiple dependent jobs.

Dependent jobs are specified by the AutoRunOnSuccess or AutoRunOnFailure

directives.

Trilogy 2.3 Administrator Guide Page 133 of 275
www.trinem.com

For example, consider these jobs:

BUILD:

 AutoRun=yes

 AutoRunMonths=Jan-Nov

 AutoRunDays=Wed,Fri

AutoRunTimes=8:00

Program=$TRILOGYHOME/scripts/build.sh

Param=/build/build_directory

AutoRunOnSuccess=DEPLOY

AutoRunOnFailure=LOGFAIL

DEPLOY:

 Environment=$TRILOGYHOME/scripts/env.txt

 Program=$TRILOGYHOME/scripts/deploy.sh

 Param=/build/build_directory

LOGFAIL:

 Program=$TRILOGYHOME/scripts/logfail.sh

Here, the “BUILD” timed job is set to execute on Wednesday and Friday

mornings at 8am (except in December because the site has a change freeze in

force during December). The script build.sh is executed by Trilogy

automatically at these times. The Param directive specifies that the script is

passed a single parameter /build/build_directory. If the build.sh script

exits with a success code (exit code 0) then Trilogy will automatically run the

job(s) specified by the AutoRunOnSuccess directive. In this example, this means

that Trilogy will automatically run the DEPLOY job. This will then run the

deploy.sh script in order to deploy the newly created build. The deploy.sh

script is passed a single parameter of /build/build_directory.

If the BUILD job were to fail (build.sh returns a non-zero exit code), then

Trilogy will run the job(s) specified by the AutoRunOnFailure directive. This

means that Trilogy will automatically run the job LOGFAIL. This will run the script

logfail.sh which can then notify users that the job has failed. This can be done

with a balloon-style notification to Windows Clients (for example) or with an

email.

A dependent job can read the output from its parent job (the job on which it is

dependant) by using the environment variable TRIPARENTLOG. This variable gives

the full path of the output log file containing the standard output and error

streams from the parent job. Thus, “logfail.sh” could, for example, send this file

as an attachment in an email.

Trilogy 2.3 Administrator Guide Page 134 of 275
www.trinem.com

You can also specify multiple dependent jobs both for AutoRunOnSuccess and

AutoRunOnFailure. To specify multiple dependent jobs, separate them with

commas. For example, this:

BUILD:

 AutoRun=yes

 AutoRunMonths=Jan-Nov

 AutoRunDays=Wed,Fri

AutoRunTimes=8:00

Program=$TRILOGYHOME/scripts/build.sh

Param=/build/build_directory

AutoRunOnSuccess=DEPLOY,NOTIFY_SUCCESS

AutoRunOnFailure=LOGFAIL

Means that if build.sh exits with a successful exit code (0), then Trilogy will

invoke both the DEPLOY and NOTIFY_SUCCESS jobs in parallel.

Dependent jobs can be dependent on other dependent jobs – not just on timed

jobs. You can use this to build a “chain” of dependent jobs that run automatically

whenever a timed job completes.

Dependent jobs are only available to jobs invoked via the

Trilogy Scheduler (Timed Jobs or Dependent Jobs).

Dependent Jobs are not invoked when a job is started from a

Trilogy Client.

 Environment Variables 10.10
When a script is invoked by the scheduler, Trilogy sets the environment variable

TRIREASON to “TIMED”. This is the same regardless of whether the job was

invoked directly by the scheduler or as a dependent job. Dependent jobs have 3

other environment variables set:

TRIPARENTJOB The name of the job that ran on which this job is

dependent.

TRIPARENTEXITCODE The exit status of the parent job

TRIPARENTLOGFILE The name of the log file where the parent’s standard

output and error streams are stored.

Trilogy 2.3 Administrator Guide Page 135 of 275
www.trinem.com

11 Trilogy - Command Line Options

 Trilogy Client 11.1
A number of command line options are available to the Trilogy Command Line

tool. These are details below.

-bg Background working. Causes the Trilogy client

to detach itself from its parent process and to

continue running "in background". This is useful

when invoking Trilogy from inside scripts such

that the server-side job runs asynchronously.

Notification dialogs can be brought to the screen

by specifying a destination of “Popup” for either

the standard out or standard error streams of

the server process. See section 12.11 for more

information.

-b <server name> Specifies an alternate server name. If specified,

this overrides the Server= directive in

trilogy.conf.

-i <filename>

Specifies a client-side file from which the

standard input of the server-side job will take

its data. Technically, there is no difference

between using the –i <filename> option and

redirecting the file to the Trilogy command-line

client’s standard input. However, using the –i

<filename> option sets the TRISTDINFILENAME

environment variable for the server-side script.

See Server Side Job Control below for more

information.

-p <port number> Specifies an alternate port number. If specified,

this overrides the Port= directive in

trilogy.conf.

Use this directive if you have multiple Trilogy

Servers each listening on different ports.

-nd No Display. Prevents Trilogy from opening any

dialog boxes. Useful when the Trilogy Client is

operating on a remote machine when no user

interaction is possible.

-jobs Presents a dialog listing all the Trilogy Jobs

accessible to the calling user.

Trilogy 2.3 Administrator Guide Page 136 of 275
www.trinem.com

-s Unix Only. Using this option simulates the

operation of the Windows Trilogy Scripting

Engine. When this option is specified on a Unix

Client, the associated script (Program=) is not

run on the server. Instead, the values of the

fields are printed to standard out in the form

TRIFIELDn=”value”, one entry per line.

By using this technique it is easy to set the

values into Unix shell scripts. Simply invoke

Trilogy via an expr command to set the

environment variables into the local script:

expr `trilogy –s my_dialog`

or

expr $(trilogy –s my_dialog)

-x

Unix Only. Used in conjunction with the –s

option described above, this option adds “;

export TRIFIELDn” command to each

TRIFIELDn=”value” output line.

Trilogy 2.3 Administrator Guide Page 137 of 275
www.trinem.com

 Trilogy Server 11.2
Running the server process with no command line options simply starts the

server. There are, however, a number of options that can be specified which

return useful information:

-dumplic Dumps out the current license usage. Lists the

number of client nodes used, the maximum number

of clients available (by virtue of the installed license

key) and a list of each client hostname that has

connected to this server.

-showdocked Lists all the Windows clients that have the Trilogy

Client Service running. The output shows the

Windows user name (the user who is logged in at the

client), the hostname of the client machine, its IP

Address and the UDP port on which it is listening for

incoming connections. This UDP port is used for both

balloon style notifications and for animating the

System Tray Icon during a NotifyRunGroup.

-showjobs Lists the jobs that are currently running under the

control of the Trilogy Server. This will list both

scheduled jobs and jobs running as a result of a

client request. The output shows the user who is

running the job (SCHEDULER for timed jobs), the total

run time since the job was started and the process

id.

-killjob <process id> Kills the job specified by the process id.

-shutdown Shuts down the Trilogy Server.

Trilogy 2.3 Administrator Guide Page 138 of 275
www.trinem.com

12 Server Side Job Control

 Introduction 12.1
All jobs invoked by Trilogy are executed by the Trilogy Server application and

run on the same node as the Trilogy Server. In this section we will detail the

characteristics of Trilogy Job Control – how the jobs are launched, how they

communicate with the client, the environment they inherit and so on.

 Environment 12.2

An Environment means the set of environment variables to which a process has

access. On a Windows platform, environment variables are divided into "System"

and "User" variables. Effectively, "System" variables are created and owned by

the operating system, whilst "User" variables are created and owned by the

individual user who has logged on to the machine.

On Unix/Linux, this differentiation between system and user variables is

controlled by "system" level shell files such as /etc/profile and "local" shell files

such as .profile within the user's home directory.

In either case, an application has access to these environment variables. Within

an application, no distinction is made between "system" and "user" variables.

Environment variables can be used for many different purposes. Some, such as

PATH are used by the operating system. Others (such as TRILOGYHOME) are

used by individual applications.

Generally speaking, an application inherits a copy of the environment when it

starts. An application can make changes to its copy of the environment but such

changes are not visible to the "parent" environment – such changes are retained

only in the application's copy of the environment.

Figure 8.1 – Environment Variables

Operating System
Environment Variables

Name Value

A 10

B 20

C 30

D 40

Trilogy 2.3 Administrator Guide Page 139 of 275
www.trinem.com

Should an application launch (spawn) a new application, then this new

application inherits a copy of the parent's environment.

Figure 8.2: A launched application inherits a copy of the environment.

This copy of the environment is separate to the operating system's environment.

Thus, any change made by the application to its environment is visible only to

itself – the operating system sees no changes.

Figure 8.3. Here, the application has made a change to its Environment (C=35). The change is not
visible to the caller.

If a parent process alters its environment and then starts a new process, this

new process sees the changes made by its parent. However, any changes made

by the child to its copy of the environment will not be visible to the parent.

Figure 8.4: If an application launches a "Child" application, that child is given a copy of the
environment of its parent. Thus, it sees any changes to the environment made by the parent (in this
case C=35) but any changes it makes to its own environment are not visible to the parent (D=45).

Operating System
Environment Variables

Name Value

A 10

B 20

C 30

D 40

Application
Environment Variables

Name Value

A 10

B 20

C 30

D 40

Operating System
Environment Variables

Name Value

A 10

B 20

C 30

D 40

BannerText=Dem

onstrates Basic

Dialog Creation

and Field

Numbering

Application
Environment Variables

Name Value

A 10

B 20

C 35

D 40

Operating System
Environment Variables

Name Value

A 10

B 20

C 30

D 40

Application
Environment Variables

Name Value

A 10

B 20

C 35

D 40

Child Application
Environment Variables

Name Value

A 10

B 20

C 35

D 45

Trilogy 2.3 Administrator Guide Page 140 of 275
www.trinem.com

 Trilogy Server Environment 12.3

When Trilogy Server is started, a copy of the current environment is taken.

Therefore – as discussed above – any jobs launched by Trilogy Server would

normally inherit the same environment as that of Trilogy Server itself.

In practice, this means that variables such as PATH would be inherited by

processes launched by Trilogy. This may lead to security considerations.

In order to work around such problems, Trilogy provides an Environment

directive. This is included in the server-side trilogy.conf file – either globally

(outside a job stanza) or associated with a particular job. In either case it points

to a file containing environment definitions like this:

name=value

When programs are executed by Trilogy Server, the environment file is read and

the environment variables referenced therein are added to the program’s

environment. If an environment variable referenced in this way already exists in

the environment, then it is overwritten. In this way, you can control which

environment variables are made available to launched programs and which

values they take.

More information on the Environment directive is available in Chapter 13 –

trilogy,conf Reference Guide.

Trilogy Server will set other environment variables before launching a child

process and the name and content of these environment variables is detailed

later in this section.

 How Jobs are started 12.4

The manner in which jobs are started and controlled differ between Unix, Linux

and Windows Servers.

12.4.1 Unix/Linux Servers

On Unix/Linux Servers, a connection from a Trilogy Client results in Trilogy

Server forking a copy of itself to handle the connection. If a server-side job is

required to be executed, then this copy does a fork/exec in order to execute the

job. Anonymous pipes are used to direct the standard in, standard out and

standard error streams from the launched application to the copy of the Trilogy

Server and thence – if required – back to the client. Thus, when a process is

running under the control of Trilogy, you will see three processes running on the

Unix/Linux Server – trilogyd (the "master" Trilogy Server), another trilogyd

(a child process whose parent process id is that of the "master" Trilogy Server)

and finally the job itself (whose parent process id is that of the "child" Trilogy

Server).

Trilogy 2.3 Administrator Guide Page 141 of 275
www.trinem.com

12.4.2 Windows Servers

On Windows Servers, a connection from a Trilogy Client starts a new thread. If a

server-side job is required to be executed, then this thread takes a copy of the

environment and passes this to a CreateProcess call. Threads are started to

read and write the standard input, standard output and standard error of the

launched jobs and anonymous pipes are used to direct these various streams to

and from the launched application and thence - if required – back to the client.

If real-time output is required at the client (Stdout=Report or Stdout=Output)

then a process called trilogytty is launched by the Trilogy Server and

trilogytty then starts the desired application. This is used to change the

buffering characteristics of the launched application. More information on

buffering is provided below.

 Buffering 12.5

On Unix, Linux and Windows systems, the Operating System controls the

buffering of the standard output and error streams. Standard Error is not

normally buffered. The buffering utilised for Standard Output will depend on

where the stream is being routed. If the output is a terminal or console then

"line" buffering is used. Whenever a line-end sequence is output by the

application (Linefeed (0x0a) for Unix and Linux, Carriage-Return, Linefeed (0x0d

0x0a) for Windows) then the output buffer is flushed. This means that whenever

an application writes a line to its standard output, the results are visible

immediately.

If the output is not a terminal (it has been redirected to a file for example, or the

output is being piped to another application) then "block" buffering is used. The

buffer is only flushed when it becomes full. Such buffers are typically around 4k

in size.

Any job launched by Trilogy Server has its output redirected via pipes so that it

can be read by the Trilogy Server and pushed back over the network to the

Trilogy Client if required. If the job being launched is a script (shell script or

batch file) this normally makes no difference. However, if the job launched is a

binary executable (compiled code) then the run-time libraries will determine that

the output is being sent to a pipe and the standard output will be set to block-

buffered.

What this means in practice is that the output from the server-side job is

collated together until the output buffer is full (4,000 characters or so) or the job

completes.

If a job has been invoked via Trilogy – and Stdout is Report or Output - then

real-time output is required (line-buffering). The way that Trilogy Server

achieves this is different on Unix, Linux and Windows Servers.

Trilogy 2.3 Administrator Guide Page 142 of 275
www.trinem.com

12.5.1 Unix/Linux

On Unix/Linux servers, a free terminal device is opened (usually /dev/ttynn

where nn is a two-digit number). Output from the server-side job is written to

this terminal device and Trilogy Server reads this output from this terminal

device. This has the effect of making the output of the job look like it is going to

a terminal (in other words, isatty will return true). The result is line-buffered

output and the client will display the results of the server-side job in real-time.

A side-effect of this process is that jobs whose output changes dependent on

whether they are routing their output to a terminal device or a pipe (such as ls),

will act as though they are talking to a terminal.

12.5.2 Windows

On Windows servers, a job called trilogytty is launched and this job then

starts the required server-side job. trilogytty creates an invisible console for

the job. As the job writes to the console, trilogytty reads its output and sends

it back to the Trilogy Server which then routes it to the Trilogy Client. This

results in real-time output.

A side effect of trilogytty is that it will corrupt binary

output. If you are planning on sending binary output to the

standard output of your Windows server-side script with

StdOut=Output (and redirecting this output at your client)

then you should set UseTTY=no. See UseTTY below for more

information.

12.5.3 UseTTY Directive

The UseTTY directive in the server-side trilogy.conf file overrides the default

buffering behaviour. When the Stdout directive of the job is set to Report or

Output then UseTTY is set to "Y" automatically. For any other value, UseTTY is

set to "N". When UseTTY is set to "Y", the output of the server-side job is forced

to be line-buffered using the techniques described above. Therefore, this flag is

only necessary in a job stanza if you wish to override Trilogy's default behaviour.

More information on the UseTTY flag can be found in the trilogy.conf

Reference Guide in the next section.

 Standard Input 12.6
A server side job run by Trilogy Server as a result of a Program= directive, takes

its standard input from Trilogy Server itself. The source of this standard input

varies depending on settings within the server-side trilogy.conf file and/or

what is being fed to the standard input of the Trilogy Client.

Trilogy 2.3 Administrator Guide Page 143 of 275
www.trinem.com

Unless otherwise directed, any standard input passed to the Trilogy Client will be

passed verbatim over the network and be fed to the standard input of the

server-side job. The stdin directive in the server-side trilogy.conf file can

override this, forcing input for a particular job to be taken from a file (either

fixed or via a file-chooser dialog). Note, that this only applies to jobs launched as

a result of the Program directive (user has clicked OK on the client-side dialog or

there was no dialog to display). Any server-side scripts invoked to create drop-

down lists, populate dialogs or listboxes or validate/prevalidate dialogs are

passed no standard input.

There are a number of ways of setting the standard input stream:

Pipes

On Both Windows and Unix clients, data can be “piped” into the standard input of

the Trilogy command-line client.

For example:

Windows:

type myfile.txt | trilogy copyfile

Unix/Linux:

cat myfile.txt | trilogy copyfile

In both these cases, the contents of the file “myfile.txt” is passed to the

standard input of the Trilogy client and thence onto the script defined by the

Program directive in the server-side trilogy.conf file.

With the –i command line switch.

On both Windows and Unix clients, the –i <filename> switch opens the

specified file and passes its content to the standard input of the server-side job.

When invoked in this way, the server-side environment variable

TRISTDINFILENAME is set to equal the filename of the client-side file specified

with the –i switch. The server-side job can then read this environment variable

to determine the filename of the client file.

Windows Server Scripts running VBScript or JScript can also

use the GetInputFilename method of the Trilogy Scripting

Engine to get this value.

Trilogy 2.3 Administrator Guide Page 144 of 275
www.trinem.com

Using a filechooser

Both Windows and Unix clients can be set to prompt the user to select a file

using a file chooser dialog. To configure this behaviour, include the following

directive in the server-side trilogy.conf file for the desired job:

Stdin=Filechooser

When the job is started (after any dialog has been presented and submitted by

clicking OK) a file chooser dialog is opened. The user can then select a file to be

opened and passed to the standard-input of the server side job.

When invoked in this way, the server-side environment variable

TRISTDINFILENAME is set to equal the filename of the client-side file chosen by

the file chooser. The server-side job can then read this environment variable to

determine the filename of the client file.

Windows Server Scripts running VBScript or JScript can also

use the GetInputFilename method of the Trilogy Scripting

Engine to get this value.

Trilogy Scripting Engine

The methods OpenFile, ChooseFile, SetStandardInput and SetStream can be

used by Windows Clients running VBScript or JScript to open a file and pass it to

the standard input of the server-side script.

When invoked in this way, the server-side environment variable

TRISTDINFILENAME is set to equal the filename of the client-side file specified by

the client-side script. The server-side job can then read this environment

variable to determine the filename of the client file.

Windows Server Scripts running VBScript or JScript can also

use the GetInputFilename method of the Trilogy Scripting

Engine to get this value.

 Receiving Standard Input 12.7
Server side scripts are passed the standard input from the client.

Unix servers can access this stream by means of a simple redirect:

> /tmp/$(basename “$STDINFILENAME”)

This will save the standard input to the same filename as that chosen on the

client.

Trilogy 2.3 Administrator Guide Page 145 of 275
www.trinem.com

When writing server-side scripts for Windows, you can use the “tee” command

that ships with Trilogy Server for Windows to provide similar functionality.

The “tee” command

tee is only available on Trilogy Servers running on the

Windows platform. Unix Servers have “tee” available as part

of the Operating System.

tee has the following options:

tee [-a] [<filename>]

With no parameters, tee simply copies its standard input (supplied by Trilogy

Server) to its standard output.

With an optional filename, tee copies its standard input to the named file.

The –a flag specifies ASCII transfer mode. In this mode, text files sent from Unix

or Linux clients have their line endings translated automatically by tee such that

LF line endings are translated into CR-LF for Windows platforms.

Do not specify the –a flag if the standard input data is binary.

 Listing Running Jobs 12.8

Trilogy Server maintains a list of all the jobs that are running under its control. If

you have access to the Trilogy Server, you can ask it to list all the jobs that are

currently running.

To do this, enter:

trilogyserver –showjobs

This will produce a list showing the Trilogy Job Name, the user who started it,

the total amount of time it has been running and the process id.

If the TRIEASON environment variable is set to LISTBOX then the output is a

Comma-Separated-Value list. This means it is easy to create a Trilogy Job to

show this output on a client machine inside a list box.

You can use the process ID to stop a server-side job.

Trilogy 2.3 Administrator Guide Page 146 of 275
www.trinem.com

 Stopping Server-Side Jobs 12.9

If the Stdout or Stderr is set to Report and AllowStop is not "N", then the

report window opened at the client includes a "Stop" button. If the user clicks

this button, then the server-side job – and any children it has launched – is

terminated.

A user with access to the Trilogy Server can also terminate any running job by

running trilogyserver –killjob <process id>. The process id can be found

by running trilogyserver –showjobs as outlined above.

The way the running job is terminated differs between Windows, Unix and Linux

Servers.

12.9.1 Unix/Linux Servers

When a server-side job is launched it is set to be head of a Process Group.

Should the client terminate the job, then SIGINTR (-2) is sent to all members of

the Process Group followed 2 seconds later by SIGKILL (-9). This will result in

the launched process - and any descendants – being terminated.

12.9.2 Windows Servers

A snapshot is taken of the process list and the list is traversed recursively in

order to capture the invoked process itself and all its descendants. Any process

with no child process is terminated first (Using TerminateProcess) followed by

the process that launched that process and so on until the invoked process itself

is terminated. In this way, all processes invoked as a result of the Server Side

job are terminated.

Trilogy 2.3 Administrator Guide Page 147 of 275
www.trinem.com

 Server Side Scripts – Environment Variables set by Trilogy 12.10

In addition to TRIFIELD1 – TRIFIELDn which represent the contents of the

Trilogy dialog, Trilogy also makes other environment variables available to the

invoked server-side script. These are listed below:

TRIJOBNAME

or

TRIDIALOGNAME

Indicates the Trilogy Name used to invoke the

Trilogy client. For example, if the client was

invoked as:

trilogy mydialog “p1”

then TRIJOBNAME would be set to "mydialog".

This can be used by validation and target scripts

to determine how they were invoked. For

example, you can use different dialogs and yet

invoke the same server-side script. The script can

then use this variable to determine its course of

action.

Note, TRIDIALOGNAME is also set to maintain

backward compatibility with earlier versions of

Trilogy. Its use is deprecated.

TRICLIENTNODENAME The name of the client node (hostname) from

which the request was issued.

TRICLIENTUSERNAME The login name of the user who is issuing the

request.

TRIREASON Gives the reason why Trilogy has invoked the

script. Is set to one of:

PREVALIDATE Script has been run as a

result of a PreValidateWith=

directive.

VALIDATION Script has been run as a

result of a ValidateWith=

directive.

POPULATE Script has been run either as

a result of a PopulateWith= or a

PopulateFieldnWith= directive.

SCRIPT Script has been run as a

result of a Program directive.

LISTBOX Script has been run as a

result of the ListBoxScript= (or

PopulateListBoxWith=) directive.

DIALOG Script has been run in order

to create a dialog definition.

Trilogy 2.3 Administrator Guide Page 148 of 275
www.trinem.com

TIMED Script has been run by the

Trilogy Scheduler

(AutoRun=yes)

The invoked script can use this variable to

determine the actions it should perform. Using

this field and TRICURRENTFIELD (below) you can use

a single server script to perform all the

validation, population and actions required by

your Trilogy client-side dialog.

TRILISTBOXREASON Gives the reason why Trilogy is running the

listbox script. When TRIREASON is set to

LISTBOX, TRILISTBOXREASON is set to one of:

APPLY Apply button has been

clicked.

FIELDCHANGED A field has been changed that

is linked to the listbox. Used

as a result of an
OnFieldChangenUpdate={LB}

clause.

REFRESH Listbox is being refreshed

automatically (AutoRefresh)

POSTRC Listbox is being run following

the execution of a right-click

job.

DBLCLICK User has double-clicked on

an entry in the list-box.

The invoked script can use this variable to

determine how to populate the listbox.

TRILISTBOXSELECTIONS The number of rows selected in any list box.

TRICURRENTFIELD Set to the "current field" when Trilogy is running

the script as a result of a PopulateWith= or

PopulateFieldnWith= directive. In the former case,

TRICURRENTFIELD is set to 0 indicating that the

entire dialog is being pre-populated. In the latter

case, TRICURRENTFIELD is set to the field number

that Trilogy is wishing the script to provide values

for.

TRICHANGEDFIELD The field number that has changed thereby

triggering a rerun of the field populate script.

Used as a result of an OnFieldChangenUpdate={}

clause.

TRISTDINFILENAME The name of the file on the client from which

standard input is being taken (provided it has

been specified with the –i option)

Trilogy 2.3 Administrator Guide Page 149 of 275
www.trinem.com

TRIPARENTJOB Script has been run as a dependent job by the

Trilogy Scheduler – this variable contains the

Trilogy Job Name of the “parent” job that was

run.

TRIPARENTEXITCODE Script has been run as a dependent job by the

Trilogy Scheduler – this variable contains the Exit

Code of the “parent” job that was run.

TRIPARENTLOG Script has been run as a dependent job by the

Trilogy Scheduler – this variable contains the file

name of the log file containing the “parent” job

standard output and error streams.

 Running Jobs in Background 12.11

You may wish to have a server-side job take place "in background" without

holding up your calling session. In this way, the job can continue to run on the

server whilst the client is freed for other purposes. Upon completion, the client

can be notified by a pop-up dialog.

The Trilogy command-line client gives you a simple option to support

asynchronous execution of server-side jobs. By including the –bg (background)

flag on the command line, the Trilogy Client will exit immediately with a 0 exit

code (success) and will then continue to operate "in background". When the

server-side task completes, its standard output and standard error will be routed

back to the client where it can be displayed as a pop-up dialog box.

Trilogy 2.3 Administrator Guide Page 150 of 275
www.trinem.com

13 trilogy.conf – Reference Guide
This section details each entry in the server-side trilogy.conf file that controls

the appearance of the client-side dialog and which controls how server-side jobs

are executed on response from the client.

Figure 9.1: Anatomy of a Dialog

Title=Trilogy 2.1 Demo Dialog

BannerGraphic=/opt/trinem/a.gif

Banner=on BannerHeading=Trilogy 2.1 Demo

BannerText=Demonstrates Basic Dialog Creation and Field Numbering

Trilogy 2.3 Administrator Guide Page 151 of 275
www.trinem.com

Logfile

Syntax:

Logfile=<path to logfile>

Description:

This entry is set at the global level in the server-side trilogy.conf (i.e.: outside of

a job stanza entry). Its purpose is to enable the logging of server-side activity

information and – if enabled – to specify the location and filename of the log file.

Special environment variables are set which are expanded automatically

whenever the logfile is written. By constructing the logfile name with these

variables, it is possible to automatically create a new log file every day or every

month, or have a fixed log file capturing all output.

For example:

Logfile=$TRILOGYHOME/log/$YYYYMMDD.log

Will create a new log file for every day of activity.

Logfile=$TRILOGYHOME/log/Trilogy_$DD.log

Will create a logfile called Trilogy_01.log on the 1st of the month, Trilogy_31.log

on the 31st of the month.

Log file output contains server-side script runs, requests from clients as well as

debug and failure indications. It can be very useful, when trying to track a

problem with a Trilogy job, to look at the log file. However, switching logging on

will inevitably blunt performance. It is probably best to leave logging off and only

switch it on when trying to trace a problem.

Environment Variables:

$YYYY 4-digit current year
$YY 2-digit current year
$MM 2-digit month (01-12)
$DD 2-digit day of month (01-31)

Trilogy 2.3 Administrator Guide Page 152 of 275
www.trinem.com

Port

Syntax:

Port=<Port Number>

Description:

This entry is set at the global level in the server-side trilogy.conf (i.e.: outside

of a job stanza entry). It specifies the port number on which the Trilogy Server

should listen for connection requests.

For example:

Port=2301

Means that the Trilogy Server will listen for incoming connections on port 2301.

Trilogy 2.3 Administrator Guide Page 153 of 275
www.trinem.com

RelayServer

Syntax:

RelayServer=<ServerName>

Description:

This entry is set at the global level in the server-side trilogy.conf (i.e.: outside

of a job stanza entry). It specifies the hostname of a Trilogy Server which is

being used to route notification messages to clients.

For example:

RelayServer=remotehost.client.net

RelayPort=2301

Means that any notification messages that the Trilogy Server would normally

send directly to client machine(s) (for example, balloon-style notifications) are,

instead routed to the Trilogy Server hosted on remotehost.client.net which is

listening on port 2301.

This directive is useful when the Trilogy Server and the Trilogy Clients are

located on different subnets where the clients are not directly addressable from

the server. In this case, routing messages to clients has to take place via an

intermediate server.

See also:

RelayPort, Chapter 9: “Windows Client Service”

Trilogy 2.3 Administrator Guide Page 154 of 275
www.trinem.com

RelayPort

Syntax:

RelayPort=<Port Number>

Description:

This entry is set at the global level in the server-side trilogy.conf (i.e.: outside

of a job stanza entry). It specifies the port number of a Trilogy Server which is

being used to route notification messages to clients.

For example:

RelayServer=remotehost.client.net

RelayPort=2301

Means that any notification messages that the Trilogy Server would normally

send directly to client machine(s) (for example, balloon-style notifications) are,

instead routed to the Trilogy Server hosted on remotehost.client.net which is

listening on port 2301.

This directive is useful when the Trilogy Server and the Trilogy Clients are

located on different subnets where the clients are not directly addressable from

the server. In this case, routing messages to clients has to take place via an

intermediate server.

See also:

RelayServer, Chapter 9: “Windows Client Service”

Trilogy 2.3 Administrator Guide Page 155 of 275
www.trinem.com

AllowIfJobRunning

Syntax:

AllowIfJobRunning=jobname[,jobname...]

Description:

Set in a job stanza, this directive specifies that the job can only be executed

provided that one of the specified Trilogy Jobs is currently running. If none of the

listed jobs are currently executing then access to the job is denied.

Note, if access to the job is denied then the job will not be presented if a user

right-clicks on the Trilogy Client Service icon, even if the Traymenu directive is

set to Yes and the user is in the appropriate user group.

See also:

DenyIfJobRunning, Traymenu

Trilogy 2.3 Administrator Guide Page 156 of 275
www.trinem.com

AutoRefresh

Syntax:
AutoRefresh=on|off|n

Description:

Specifies than an automatic refresh applies to the List Box. Whenever an

automatic refresh occurs, the server-side script that populates the list box is

rerun and the client-side list box is regenerated with no client user interaction.

By default, no automatic refresh takes place. The List Box script is run only when

the dialog is first displayed, when the Apply button is clicked or when a linked

field is changed (depending on the value of PopulateListBox and any

OnFieldChangenUpdate directives).

Included in a Job Stanza, the AutoRefresh directive tells Trilogy to rerun the

server-side ListBoxScript periodically.

If it is set to off (the default) no automatic refresh takes place.

If it is set to on then an automatic refresh takes place every 5 seconds.

If it is set to n (where n is an integer number) then the refresh takes place every

n seconds.

Any selections or column sorts are retained following an AutoRefresh.

See also:

ListBoxScript, PopulateListBox, ApplyButton, ListBoxSep,

ColumnNames, ColumnWidths, OnRightClick, AutoSort,

Chapter 5 “The List Box”

Trilogy 2.3 Administrator Guide Page 157 of 275
www.trinem.com

AutoRun

Syntax:
AutoRun=yes|no

Description:

Specifies that the job should be run under control of the Trilogy Scheduler.

The AutoRun directive defaults to no. If this directive is not specified, then the

job can only be invoked by a Trilogy Client. Other AutoRun directives are ignored

if this directive is absent or is set to no.

If this directive is set to yes, then the job can be started by the Trilogy

Scheduler. In this case, the directive AutoRunTimes also needs to be specified in

the same job stanza to give the times at which the job should be run.

The other AutoRun directives are optional and – if specified – serve to further

restrict when the job will be run.

See also:

AutoRunTimes, AutoRunDates, AutoRunInterval, AutoRunDays,

AutoRunMonths, AutoRunOnSuccess, AutoRunOnFailure, Chapter 10 “The

Scheduler”

Trilogy 2.3 Administrator Guide Page 158 of 275
www.trinem.com

AutoRunTimes

Syntax:
AutoRunTimes=hh:mm[,hh:mm …] | [hh:mm-hh:mm]

Description:

Specifies the times of day that a job should run when AutoRun is set to yes.

AutoRunTimes can specify a single time, a group of times (separated by

commas) or a range of times. If a range is given, then the directive

AutoRunInterval also needs to be set.

Times are specified in 24 hour format, with the hours and minutes separated by

a colon. For example 03:27 is 3:27 am, 15:30 is 3:30 pm.

See also:

AutoRun, AutoRunInterval, AutoRunDates, AutoRunDays, AutoRunMonths,

AutoRunOnSuccess, AutoRunOnFailure, Chapter 10 “The Scheduler”

Trilogy 2.3 Administrator Guide Page 159 of 275
www.trinem.com

AutoRunInterval

Syntax:
AutoRunInterval=n

Description:

Specifies the number of minutes that should elapse between each automatic run

of the job. The interval is applied between the start and end times given by the

AutoRunTimes directive.

If AutoRunTimes specifies a range of values (AutoRunTimes=hh:mm-hh:mm) then

AutoRunInterval is a required directive.

If AutoRunTimes specifies a single time or a group of individual times, then

AutoRunInterval is ignored.

See also:

AutoRun, AutoRunTimes, AutoRunDates, AutoRunDays, AutoRunMonths,

AutoRunOnSuccess, AutoRunOnFailure, Chapter 10 “The Scheduler”

Trilogy 2.3 Administrator Guide Page 160 of 275
www.trinem.com

AutoRunDates

Syntax:
AutoRunDates=dom [,dom …]

Description:

Specifies the day of the month on which the job should be run. Dates are

specified as a number from 1 – 31.

This directive is ignored unless AutoRun=yes.

This directive needs to be specified along with AutoRunTimes. When specified,

the job will run at the times specified with AutoRunTimes but only when the day

of the month matches that given by AutoRunDates.

See also:

AutoRun, AutoRunTimes, AutoRunInterval, AutoRunDays, AutoRunMonths,

AutoRunOnSuccess, AutoRunOnFailure, Chapter 10 “The Scheduler”

Trilogy 2.3 Administrator Guide Page 161 of 275
www.trinem.com

AutoRunDays

Syntax:
AutoRunDays=day[-day] [,day[-day] …]

Description:

Specifies the day of the week on which the job should be run. Days are specified

with the common English abbreviation (Mon, Tue, Wed, Thu, Fri, Sat, Sun) or as

a number (Monday = 1 … Sunday = 7)

This directive is ignored unless AutoRun=yes.

This directive needs to be specified along with AutoRunTimes. When specified,

the job will run at the times specified with AutoRunTimes but only when the day

of the week matches one of the days that given by AutoRunDays.

This directive can be specified along with AutoRunDates to restrict the days on

which the job will run to specified dates (for example, AutoRunDays=Mon and

AutoRunDates=1-7 will cause the job to run on the first Monday of the month).

See also:

AutoRun, AutoRunTimes, AutoRunInterval, AutoRunDates, AutoRunMonths,

AutoRunOnSuccess, AutoRunOnFailure, Chapter 10 “The Scheduler”

Trilogy 2.3 Administrator Guide Page 162 of 275
www.trinem.com

AutoRunMonths

Syntax:
AutoRunMonths=month[-month] [,month[-month] …]

Description:

Specifies the month of the year on which the job should be run. Months are

specified with the common English abbreviation (Jan, Feb, Mar, Apr, May, Jun,

Jul, Aug, Sep, Oct, Nov, Dec) or as a number (January = 1 … December = 12)

This directive is ignored unless AutoRun=yes.

This directive needs to be specified along with AutoRunTimes. When specified,

the job will run at the times specified with AutoRunTimes but only when the

month of the year matches one of the days that given by AutoRunMonths.

See also:

AutoRun, AutoRunTimes, AutoRunInterval, AutoRunDates, AutoRunDays,

AutoRunOnSuccess, AutoRunOnFailure, Chapter 10 “The Scheduler”

Trilogy 2.3 Administrator Guide Page 163 of 275
www.trinem.com

AutoRunStandardInput

Syntax:
AutoRunStandardInput=<filename>

Description:

Specifies a server-side file that is to be used for the standard input of the job

when it runs under the control of the scheduler.

If this directive is not specified then the job has no standard input.

Any environment variables specified in the filename are not expanded until the

job is being executed. Therefore, you can include Trilogy-generated environment

variables such as $TRIPARENTLOGFILE so that a dependent job can read its

parent’s standard output.

See also:

AutoRun, AutoRunTimes, AutoRunInterval, AutoRunDates, AutoRunDays,

AutoRunMonths, AutoRunOnFailure, Chapter 10 “The Scheduler”

Trilogy 2.3 Administrator Guide Page 164 of 275
www.trinem.com

AutoRunOnSuccess

Syntax:
AutoRunOnSuccess=job [,job …]

Description:

Specifies job(s) to be started should the script specified by the program directive

for this job exit with a successful exit code (exit code = 0).

This directive has no effect if the Trilogy job is launched by a Trilogy Client. It

only affects jobs launched by the Trilogy Scheduler.

If more than one job is specified, then each job is launched in parallel.

See also:

AutoRun, AutoRunTimes, AutoRunInterval, AutoRunDates, AutoRunDays,

AutoRunMonths, AutoRunOnFailure, Chapter 10 “The Scheduler”

Trilogy 2.3 Administrator Guide Page 165 of 275
www.trinem.com

AutoRunOnFailure

Syntax:
AutoRunOnFailure=job [,job …]

Description:

Specifies job(s) to be started should the script specified by the program directive

for this job exit with a non-successful exit code (exit code != 0).

This directive has no effect if the Trilogy job is launched by a Trilogy Client. It

only affects jobs launched by the Trilogy Scheduler.

If more than one job is specified, then each job is launched in parallel.

See also:

AutoRun, AutoRunTimes, AutoRunInterval, AutoRunDates, AutoRunDays,

AutoRunMonths, AutoRunOnSuccess, Chapter 10 “The Scheduler”

Trilogy 2.3 Administrator Guide Page 166 of 275
www.trinem.com

AutoSort

Syntax:
AutoSort=[-]ColumnNumber

Description:

Specifies than an automatic sort should be applied to a List Box whenever it is

populated.

By default, no sort takes place. When a List Box is populated (by the

ListBoxScript) then the rows are displayed in the order they were output by

the server-side script.

Included in a Job Stanza, the AutoSort directive forces Trilogy into applying a

sort on the List Box after it is populated. This is functionally identical to the user

clicking on the appropriate column heading after the List Box has been

populated, except that it is done automatically.

Columns are numbered from 1. Hidden columns are counted. It is possible to

automatically sort by a hidden column which is not possible manually.

The sort happens in ascending mode, unless a negative ColumnNumber is given

to the AutoSort directive (the ColumnNumber starts with a – character). In this

case the sort happens in descending mode.

See also:

ListBoxScript, PopulateListBox, ApplyButton, ListBoxSep,

ColumnNames, ColumnWidths, OnRightClick, Chapter 5 “The List Box”

Trilogy 2.3 Administrator Guide Page 167 of 275
www.trinem.com

AutoSelectColumn

Syntax:
AutoSelectColumn=ColumnNumber

Description:

Controls if and how rows are automatically selected when the list box is

populated.

If this directive is not specified then no rows are selected when the list box is

populated. This is the default.

If this directive is specified then it gives the number of a column in which to look

for specific values. These values are specified by the AutoSelectValue directive.

If AutoSelectValue is not set, then this value defaults to “Y”.

Any row which has a value in the specified column that matches that specified by

AutoSelectValue is automatically selected.

Note, that this selection happens independently of the Selections option. Thus,

AutoSelectColumn can select multiple rows, even if Selections is set to Single

or None. In the latter case, this prevents the user from changing the selections

made by AutoSelectColumn.

See also:

AutoSelectValue, AutoSort, ListBoxScript, PopulateListBox,

ApplyButton, ListBoxSep, ColumnNames, ColumnWidths, OnRightClick,

Chapter 5 “The List Box”

Trilogy 2.3 Administrator Guide Page 168 of 275
www.trinem.com

AutoSelectValue

Syntax:
AutoSelectValue=val

AutoSelectValues={val1,val2…}

AutoSelectValue=fromn-ton

Description:

Works with the AutoSelectColumn directive in order to control if and how rows

are automatically selected when the list box is populated.

This directive is ignored unless AutoSelectColumn is specified in the same job

definition.

If this directive is not specified then it defaults to “Y”.

The AutoSelectValue directive specifies which value(s) should be present in the

column specified by the AutoSelectColumn directive in order for the row to be

automatically selected when the list box is populated. These values can be

specified in one of three ways:

 As a discreet value: AutoSelectValue=val1

 As a set of discreet values: AutoSelectValue={val1,val2}

 As a range of numbers (from low number to high number). This only

works with numeric values in the specified column:
AutoSelectValue=12-15

See also:

AutoSelectColumn, AutoSort, ListBoxScript, PopulateListBox,

ApplyButton, ListBoxSep, ColumnNames, ColumnWidths, OnRightClick,

Chapter 5 “The List Box”

Trilogy 2.3 Administrator Guide Page 169 of 275
www.trinem.com

AutoStretch

Syntax:
AutoStretch=on|off

Description:

Controls how the dialog is sized with relation to the list box (if the list box is

included in the dialog).

If Autostretch is set to on then the dialog will grow automatically so that its

width is the same as the width of the list box (i.e.: the sum of all the widths of

the columns in the list box). This is the default. If no AutoStretch directive is

included in the Job Stanza then this is the behaviour that the dialog will exhibit

when it is displayed at the client.

If Autostretch is set to off then the list box’s width will be bounded to the size

of the parent dialog. A horizontal scroll bar will be presented if necessary. In this

case the dialog’s width is controlled by the text in the Dialog file (or the lines

generated by the DialogScript).

See also:

ListBoxScript, PopulateListBox, ApplyButton, ListBoxSep,

ColumnNames, ColumnWidths, OnRightClick, Chapter 5 “The List Box”

Trilogy 2.3 Administrator Guide Page 170 of 275
www.trinem.com

Banner

Syntax:

Banner=on|off

Description:

Controls the appearance of the graphic banner at the top of the client dialog.

This can be set at a global level (i.e.: outside of a job stanza entry) in which case

the setting applies to all jobs which do not stipulate a value for Banner. In other

words, setting Banner=on at a global level will mean all jobs that do not stipulate

Banner=off will have the banner presented on the dialog. Setting Banner=off at

the global level will mean all jobs that do not stipulate Banner=on will have no

banner presented on the dialog.

The banner consists of a Banner Heading, Banner Text and a Banner Graphic (gif

image). The GIF image will default to the Trilogy default icon, the Banner

Heading will default to be the same as the job Title and the Banner Text will be

clear. For the best effects, these settings should be specified for any job which

has a Banner.

See Figure 9.1: Anatomy of a Dialog above to see the demo dialog and how the

banner is constructed from the various components.

See also:

BannerHeading, BannerText, BannerGraphic.

Trilogy 2.3 Administrator Guide Page 171 of 275
www.trinem.com

BannerHeading

Syntax:

BannerHeading=<heading text>

Description:

Set in a job stanza, this indicates the text to be displayed on line 1 of the

Banner.

Note: the banner must be on for the Banner Heading to be displayed.

See also:

Banner, BannerText, BannerGraphic

Trilogy 2.3 Administrator Guide Page 172 of 275
www.trinem.com

BannerText

Syntax:

BannerText=<text>

Description:

Set in a job stanza, this indicates the text to be displayed on line 2 of the

Banner.

Note: the banner must be on for the Banner Text to be displayed.

See also:

Banner, BannerHeading, BannerGraphic

Trilogy 2.3 Administrator Guide Page 173 of 275
www.trinem.com

BannerGraphic

Syntax:

BannerGraphic=<path to GIF file>

Description:

Set in a job stanza, this specifies a path to a GIF file (on the server) which will

be displayed in the right hand side of the banner whenever the dialog is

displayed at the client.

In order for the image to be displayed correctly in the client banner, the

following conditions must be met:

 The file exists on the server and is readable by the Trilogy Server.

 The file is in GIF format (GIF87a or GIF89a)

 The image is less than or equal to 200 pixels (width) x 52 pixels (height)

If all these conditions are met then the image is included in the client-side

dialog. If any of the conditions are not met, then a warning message is written to

the Trilogy log file (if logging is enabled), and the image in the banner reverts to

the Trilogy default icon.

Note: the banner must be on for the graphic to be displayed.

See also:

Banner, BannerText, BannerHeading, LogFile

Trilogy 2.3 Administrator Guide Page 174 of 275
www.trinem.com

CancelButtonText

Syntax:

CancelButtonText=<text>

Description:

Defaults to "Cancel". Specifies what text should appear on the Cancel Button.

When this button is clicked the dialog exits with no further action.

See Also:

ApplyButtonText, OKButtonText

Trilogy 2.3 Administrator Guide Page 175 of 275
www.trinem.com

ContextColumn

Syntax:

ContextColumn=Column Number

Description:

Specifies the number of the column in the List Box which is to be used to identify

the context for the row.

Contexts can be named for both Icon and OnRightClick directives. Identifying a

Context Column allows a list box row to display different Icon Decorators and/or

different right-click menus depending on the row content.

ContextColumn defaults to 0 (no context). If set, it identifies the column from

which to read the row context.

See Also:

Icon, OnRightClick, Chapter 5: “The List Box”.

Trilogy 2.3 Administrator Guide Page 176 of 275
www.trinem.com

DenyIfJobRunning

Syntax:

DenyIfJobRunning=jobname[,jobname...]

Description:

Set in a job stanza, this directive specifies that the job can be run only if none of

the Trilogy jobs named in the parameter are currently running. If any of the

named jobs is running, then access to the job is denied.

By specifying its own job name, this directive can be used to prevent a job from

being executed more than once at any one time.

Note, if access to the job is denied then the job will not be presented if a user

right-clicks on the Trilogy Client Service icon, even if the Traymenu directive is

set to Yes and the user is in the appropriate user group.

See also:

AllowIfJobRunning. TrayMenu

Trilogy 2.3 Administrator Guide Page 177 of 275
www.trinem.com

Dialog

Syntax:

Dialog=<path to Dialog File>

Description:

Specifies a path to a file on the server containing the dialog definition for the job.

If this entry is not present in a job stanza, then a client invoking this job will

result in the immediate execution of the server-side program/script identified by

the Program directive. If a Dialog directive is present, then a client invoking the

job will be presented with a dialog constructed at run-time from the contents of

this server-side dialog file.

Section 4.2 gives more information on how the dialog file is constructed.

See also:

Banner, DialogScript, PopulateDialog, PopulateFieldnWith,

OnFieldChangenUpdate

Trilogy 2.3 Administrator Guide Page 178 of 275
www.trinem.com

DialogScript

Syntax:

DialogScript=<path to executable>

Description:

Specifies the path to a server-side script whose standard output will be used to

construct the client-side dialog. The output from this script will be taken as a

dialog definition file and Trilogy will proceed with presenting the dialog at the

client, just as if a fixed Dialog definition file had been stipulated for the job.

The advantage of using DialogScript is that the script invoked is passed all the

parameters passed to the Trilogy client (as are all Trilogy Server Scripts) as well

as any additional command line parameters specified for the job. It is therefore

possible to create dialogs whose content and layout change dependent on the

passed parameters.

See also:

Dialog

Trilogy 2.3 Administrator Guide Page 179 of 275
www.trinem.com

DoubleClick

Syntax:
DoubleClick=off|on|yes|no

Description:

Specifies whether a user is allowed to double-click entries within the List Box (if

displayed). This value defaults to off/no (no Double Click functionality is

provided). If set to yes (or on), then a user can double-click on rows within the

displayed list box. When this is done, the server-side list box script is run and

the list box is repopulated at the client.

The list box script can use the TRI_ variables to establish which row(s) have

been selected and double-clicked. It can then generate a new list accordingly.

See also:

ListBoxScript, PopulateListBox, ApplyButton, ListBoxSep,

ColumnNames, ColumnWidths, OnRightClick, Chapter 5 “The List Box”

Trilogy 2.3 Administrator Guide Page 180 of 275
www.trinem.com

Environment

Syntax:

Environment=<path to environment file>

Description:

Specifies the path to a server-side file which contains lines in the format

var=name

Each line is read and, if it contains a variable declaration as described above, it is

added to the environment of any job executed by Trilogy as a result of a

PrevalidateWith, ValidateWith, PopulateWith, PopulateFieldnWith,

ListBoxScript or Program directive.

The directive can be associated with a Trilogy Job – in which case the

environment variables contained within the file are only added to those server-

side programs invoked for that Job – or it can be global (outside of a job stanza)

in which case it is added to the environment of every program invoked by Trilogy

regardless of the job.

If the environment variables referenced in the file are already in the environment

then they are overwritten. Therefore, you can use this directive to enforce

security by setting default PATH values etc.

See also:

PreValidateWith, ValidateWith, PopulateWith, PopulateFieldnWith,

ListBoxScript, Program, Chapter 11 “Server Side Job Control”

Trilogy 2.3 Administrator Guide Page 181 of 275
www.trinem.com

Group

Syntax:
Group=GroupName

or
Groups=GroupName[,GroupName ..]

Description:

Specifies a user group (or list of user groups) that have access to the specified

job.

If the client user (identified by their login id) is not part of the specified user

group, then access to the job is denied.

Trilogy will invoke the specified GroupProcessor in order to calculate the group

membership. Therefore, a Group Processor plug-in must be enabled before this

directive can be used. If the “Group” directive is used without a Group Processor

being specified (or the Group Processor has not been initialized properly) then

access to the job will be denied for all users.

If the job also has the TrayMenu directive set to Yes, then Group Membership is

taken into account when deciding which jobs are presented to the client user

when they right-click on the System Tray Icon (Trilogy Client Service).

See also:
GroupProcessor, TrayMenu

Trilogy 2.3 Administrator Guide Page 182 of 275
www.trinem.com

GroupProcessor

Syntax:
GroupProcessor=<Path to Group Processor Library>

Description:

This entry is global and, if specified, points to a library (Windows DLL or

Unix/Linux Shared Object or Archive) that contains a Group Processor.

Functions in the Group Processor are called when Trilogy needs to determine:

 If the client user is part of a user group (when trying to access jobs

which have a Group restriction)

 Which users are part of a specified user group (when sending group

notifications)

See also:

Group, TrayMenu, Chapter 8: “Groups and the Group Processor”

Trilogy 2.3 Administrator Guide Page 183 of 275
www.trinem.com

Icon

Syntax:
Icon[context]=<path to GIF file>

Description:

Specifies the full path of a GIF file which represents an icon to display in the list

box. This option is ignored unless the ListBoxIcon directive is set to Yes (or

On).

The GIF file specified should be a maximum of 16x16 pixels in order to fit into

the list box row.

[context] is optional. If specified, it indicates that the icon should only be used

for rows which belong in the specified context. The directive ContextColumn is

used to indicate which column in the list box output contains the Context.

Any number of Icon directives can be included in a job stanza, provided they are

in different contexts.

See Also:

ListBoxIcon, ContextColumn, Chapter 5: “The List Box”.

Trilogy 2.3 Administrator Guide Page 184 of 275
www.trinem.com

NotifyRunGroup

Syntax:
NotifyRunGroup=GroupName[,GroupName ..]

Description:

If included in a Job Stanza, this directive tells Trilogy to notify every client user

who is

 in one or more of the specified user group(s) and

 is running the Trilogy Client Service

that the job is running. Trilogy notifies those users by animating the Trilogy

Client Icon in the clients’ system tray (Notification Area) to indicate the job is

running.

When the job completes, the Trilogy Client Icon in the clients’ system tray

(Notification Area) stops animating.

This can be useful to notify users that a job (for example a build or a

deployment) is in progress.

Note, Trilogy will invoke the Group Processor in order to determine which users

to notify when the job is running. Therefore, a Group Processor plug-in must be

enabled before this directive can be used. If the “NotifyRunGroup” directive is

used without a Group Processor being specified (or the Group Processor has not

been initialized properly) then no notification will be provided.

See also:

GroupProcessor, Chapter 8: Groups and the Group Processor

Trilogy 2.3 Administrator Guide Page 185 of 275
www.trinem.com

OkButtonText

Syntax:

OkButtonText=<text>

Description:

Defaults to "OK". Specifies what text should appear on the OK Button. When this

button is clicked the server side ValidateWith= script is invoked first (if

specified) and, if this exits with a success exit code (0) the server side Program=

script is invoked (if specified).

See Also:

ApplyButtonText, OKButtonText

Trilogy 2.3 Administrator Guide Page 186 of 275
www.trinem.com

OnFieldChangenUpdate

Syntax:

OnFieldChangenUpdate={field1, field2, field3 …}

Description:

Links related fields in a dialog. The “n” is a number indicating the field number to

be linked (e.g.: OnFieldChange4Update=…)

This directive is used to update the dialog dynamically whenever a field on the

dialog changes. When the field indicated by the number n in the

OnFieldChangenUpdate directive is changed, Trilogy will run the Field Populate

Script(s) for each field number specified in the associated list (and any List Box

Script if the field name is given as “LB”). If the fields are drop-down lists, their

contents are cleared and the field populate scripts are once more run on the

server to repopulate the lists.

This can be used to create dynamic dialogs. For example, you may have a drop-

down list containing car manufacturers, another containing models of car and a

third containing engine sizes and fuel types. The “models” and “engine size”

fields are initially blank. When the user selects a manufacturer, Trilogy updates

the second drop-down with a list of models made by that manufacturer. When a

model is selected, the third drop-down contains a list of engine sizes.

The scripts are invoked in an identical way to initial population (when the client-

side dialog is first created) but when the invocation is due to a field being

changed, the environment variable $TRICHANGEDFIELD is set and the contents of

the dialog are made available through the environment variables $TRIFIELD1 to

$TRIFIELDn where n is the number of fields in the dialog.

Environment Variables:

$TRIREASON "POPULATE" / “LISTBOX”
$TRIJOBNAME Trilogy Job ID
$TRICLIENTNODENAME Host Name of the invoking client
$TRICLIENTUSERNAME User Name of the invoking user
$TRICURRENTFIELD Field number being updated
$TRICHANGEDFIELD n (where n is the number of the field being changed).
$TRIFIELD1-

$TRIFIELDn
Dialog Content

$TRI_columname_1-

$TRI_columnname_n
List Box Selections

See also:

Dialog, DialogScript, PopulateFieldnWith, OnListBoxChangeUpdate,

Chapter 6 – Linking Fields

Trilogy 2.3 Administrator Guide Page 187 of 275
www.trinem.com

OnListBoxChangeUpdate

Syntax:

OnListBoxChangeUpdate={field1, field2, field3 …}

Description:

Links fields on a dialog to the List Box such that when the list box content or the

current list box selection changes, the corresponding fields are repopulated.

Trilogy will run the Field Populate Script(s) for each field number specified in the

associated list. If the fields are drop-down lists, their contents are cleared and

the field populate scripts are once more run on the server to repopulate the lists.

Environment Variables:

$TRIREASON "POPULATE"
$TRIJOBNAME Trilogy Job ID
$TRICLIENTNODENAME Host Name of the invoking client
$TRICLIENTUSERNAME User Name of the invoking user
$TRICURRENTFIELD Field number being updated
$TRICHANGEDFIELD “LISTBOX”
$TRIFIELD1-

$TRIFIELDn
Dialog Content

$TRI_columnname_1-

$TRI_columnanem_n
List Box Selections

See also:

Dialog, DialogScript, PopulateFieldnWith, OnFieldChangenUpdate,

Chapter 6 – Linking Fields

Trilogy 2.3 Administrator Guide Page 188 of 275
www.trinem.com

PopulateWith

Syntax:

PopulateWith=<path to script> | {field1, field2, field3 …}

or
PopulateDialogWith=<path to script> | {field1, field2, field3 …}

Description:

Specifies the initial field values for a dialog. There are two ways in which this

directive can be used. The first is to specify the path to a server-side script. In

this case, the script is run and the standard output from the server-side script is

used to pre-populate the client dialog. The first line of the server-side script’s

output is used to populate the first field of the client-side dialog, the second line

of the script’s output is used to populate the second field of the dialog and so on.

Any server-side script invoked to populate a dialog is passed all the parameters

specified in any Param or Params directive in the job stanza and also any passed

from the command line client or via the AddParameter method in the Trilogy

Scripting Engine.

The second method involves specifying a fixed list of values in the format

{field1, field2, field3 …} In this case, the value of “field1” is used to set the

initial value of the first field on the client dialog, the value of “field2” the second

field on the client dialog and so on.

When the field being populated is a drop-down list then the value for the field

must exist as one of the drop-down options. If this is the case then the option is

automatically selected from the drop-down. If the field content specified does

not exist as an option in the drop-down then no selection is made and the drop-

down is left as the default (non-selected).

When the field being populated is a radio button or checkbox then a value of “1”

selects the field and a value of “0” clears it. If multiple radio buttons within the

same frame are selected with “1”, then only the last radio button retains its

selected status.

Environment Variables:

$TRIREASON "POPULATE"
$TRIDIALOGNAME Trilogy Job ID
$TRICLIENTNODENAME Host Name of the invoking client
$TRICURRENTFIELD "0"

See also:

Dialog, DialogScript, PopulateFieldnWith

Trilogy 2.3 Administrator Guide Page 189 of 275
www.trinem.com

PopulateFieldnWith

Syntax:

PopulateFieldnWith=<path to script> | {option1, option2, option3 …}

Description:

Specifies the values for a drop-down field in a dialog. The “n” is a number

indicating the field number to be populated (e.g.: PopulateField4With=…)

There are two ways in which this directive can be used. The first is to specify the

path to a server-side script. In this case, the script is run and the standard

output from the server-side script is used to populate the client field. The first

line of the server-side script’s output becomes the first option in the drop-down

list, the second line of the script’s output becomes the second option and so on.

If the script exits with a non-zero exit code (fail), then the corresponding client

field is disabled.

Any server-side script invoked to populate a field is passed all the parameters

specified in any Param or Params directive in the job stanza and also any passed

from the command line client or via the AddParameter method in the Trilogy

Scripting Engine.

The second method involves specifying a fixed list of values in the format

{option1, option2, option3 …} In this case, the value of “option1” becomes

the first option in the drop-down list, the value of “option2” becomes the second

option and so on.

When the field being populated is a radio button or checkbox then a value of “1”

selects the field and a value of “0” clears it. If multiple radio buttons within the

same frame are selected with “1”, then only the last radio button retains its

selected status.

Environment Variables:

$TRIREASON "POPULATE"
$TRIDIALOGNAME Trilogy Job ID
$TRICLIENTNODENAME Host Name of the invoking client
$TRICURRENTFIELD n (where n is the number of the field being populated).
$TRICHANGEDFIELD NULL for Initial Dialog population, otherwise the

number of the field that changed to trigger this update

– see OnFieldnUpdate.
$TRIFIELD1-

$TRIFIELDn
All NULL on Initial Dialog population, otherwise Dialog

Content - see OnFieldnUpdate.

See also:

Dialog, DialogScript, PopulateWith, OnFieldnUpdate

Trilogy 2.3 Administrator Guide Page 190 of 275
www.trinem.com

Selections

Syntax:
Selections=Multiple|Single|None

Description:

Controls how many rows the user is allowed to select from the list box (if the

client dialog includes a list box)

Multiple is the default. If Selections is not specified, then the list box defaults

to this behaviour. Multiple allows one or more rows to be selected from the list

box.

Single specifies that only one row at a time can be selected in the list box.

None specifies that no rows can be selected in the list box.

See also:

ListBoxScript, PopulateListBox, ApplyButton, ListBoxSep,

ColumnNames, ColumnWidths, OnRightClick, Chapter 5 “The List Box”

Trilogy 2.3 Administrator Guide Page 191 of 275
www.trinem.com

SystemTray

Syntax:
SystemTray=Yes|No|On|Off|Hold

Description:

Specifies that the associated job should cause Windows Clients to create an icon

in the System Tray (Notification Area) whilst the job is running.

A Windows Client requires an icon in the System Tray in order to receive Balloon

Style notification messages. If your server-side job needs to send such Balloon

notifications to the invoking client (and the client is not running the Trilogy Client

Service) then you will need this directive in order to create an icon when the job

is running.

The icon will animate whilst the server-side job is running. What happens when

the server side job completes depends on the value of SystemTray:

If the SystemTray parameter is set to Yes (or On) then the icon will disappear

automatically when the server-side job completes (after the last balloon

notification has been displayed).

If the SystemTray parameter is set to Hold then the icon will stop animating and

will receive a decorator appropriate to the exit status of the server-side job –

either a green tick (job exited with code 0) or a red exclamation mark (job

exited with a non-zero exit code). The icon will only disappear when the user

right-clicks on the icon and selects “Quit”.

Note, if the client is running the Trilogy Client Service, then the icon will already

be present in the System Tray. When the job completes, the icon will remain in

the System Tray.

The presence of this directive also changes the behaviour of any Report Window.

If Stdout or Stderr is set to “Report”, then the Report Window is not displayed

immediately the job starts. Instead, it starts iconized to the System Tray. The

client user has to double-click on the Trilogy Icon in the System Tray in order to

open the Report Window. Similarly, iconizing the Report Window removes it from

the display and the Task Bar – effectively it iconizes to the System Tray.

Note, Unix and Linux Clients silently ignore this directive.

See also:

Stdout, Stderr, Chapter 9 “Trilogy Client Service for Windows”

Trilogy 2.3 Administrator Guide Page 192 of 275
www.trinem.com

Title

Syntax:

Title=<title>

Description:

Specifies the title to be displayed in the window’s title bar at the top of the

dialog. Defaults to “trilogy”. Also used as a menu title should the job be available

via a right-click in a List Box or when invoked from the Trilogy Client Service in

the System Tray or Notification Area.

See also:

Banner, Dialog, DialogScript, OnRightClick, TrayMenu, Chapter 5 “The

List Box”, Chapter 9 “Trilogy Client Service for Windows”

Trilogy 2.3 Administrator Guide Page 193 of 275
www.trinem.com

TrayMenu

Syntax:
TrayMenu=Yes|No|On|off

Description:

Specifies that the associated job should be available to users of the Windows

Trilogy Client Service.

Windows clients running the Trilogy Client Service will have a Trilogy Icon

displayed in their System Tray (Notification Area). Right Clicking on this icon will

present a list of Trilogy Jobs that they can invoke.

The list of jobs available to the user is built as follows:

 Only Jobs with TrayMenu=Yes (or TrayMenu=On) are included

 If the Job has a Group= directive then the Group Processor is invoked in

order to determine user membership of the group. If the client user

(determined by their login id) is not in the specified group, then access to

the job is denied and it is not listed.

 If the job has an AllowIfJobRunning directive then the list of associated

jobs is checked. If none of the specified jobs is currently running, then

access to the job is denied and it is not listed.

 If the job has a DenyIfJobRunning directive then the list of associated

jobs is checked. If any of the specified jobs is currently running, then

access to the job is denied and it is not listed.

See also:

AllowIfJobRunning, DenyIfJobRunning, Title, Group, GroupProcessor,

Chapter 8 “Groups and the Group Processor”, Chapter 9 “Trilogy Client Service

for Windows”

Trilogy 2.3 Administrator Guide Page 194 of 275
www.trinem.com

ListBox

Syntax:

ListBox=on|off|yes|no|auto

Description:

Specifies whether a ListBox is to be displayed at the bottom of the client dialog.

If set to on/yes then the listbox is displayed. If set to off/no (the default) then

no list box is displayed.

The “auto” setting (ListBox=auto) displays the listbox only if the listbox script’s

standard output contains some data. If output is produced, the listbox is

displayed and populated with the standard output from the listbox script. If the

listbox script produces no output then the listbox is not displayed.

See also:

ListBoxScript, PopulateListBox, ApplyButton, ListBoxSep, ColumnNames,

ColumnWidths, OnRightClick, Chapter 5 “The List Box”

Trilogy 2.3 Administrator Guide Page 195 of 275
www.trinem.com

OnRightClick

Syntax:
OnRightClick[context]={jobname,jobname…}

Description:

Specifies a list of Trilogy jobnames to be listed whenever a selection in a listbox

row is right-clicked.

If a list box is displayed and no OnRightClick directive is present in the job

stanza, then right-click functionality is disabled at the client. If an OnRightClick

is present in the job stanza, then - when a user right-clicks on a selection in the

list box - a pop-up menu is presented. The menu options are taken from the

Title directives of the specified trilogy jobs.

Only jobs which are allowed to be run by the invoking user are displayed in the

right-click menu (see Group Processor).

Should a user select one of the jobs from this menu, then the selected job is

executed in the normal Trilogy manner. The original job (along with its dialog

and list box) becomes the “primary” job; the invoked job becomes the secondary

job. If a Dialog directive is present, then this secondary dialog is displayed, any

secondary PrevalidateWith and ValidateWith scripts are run and – finally –

the secondary program specified by the Program directive is invoked. The

standard output and standard error streams from this invoked secondary

program are handled according to the Stdout and Stderr entries for the

secondary job and not for the primary (invoking) job.

In order for the secondary job to establish which entries have been selected in

the primary listbox, environment variables are set. The names of these

environment variables are taken from the column titles in the list box (with any

spaces replaced with underscores and any lower case letters translated to upper

case) along with a trailing number which indicates its selection number.

For example, if the primary job contained a list box with these columns:

ColumnNames={ProcessID,Parent Process,Full Path}

…and these right-click jobs

OnRightClick={KillProcess,MoreDetails}

…and the KillProcess job was defined like this:

KillProcess:

 Title=Kill This Process

 Program=/usr/bin/kill

 Param=-9

 Param=$TRI_PROCESSID_1

Trilogy 2.3 Administrator Guide Page 196 of 275
www.trinem.com

Then when the user right-clicks in the list box (containing the columns

“ProcessID”, “Parent Process” and “Full Path”) they will be presented a pop-up

menu containing two options, one of which will be “Kill This Process” (the menu

option being taken from the Title of the secondary job KillProcess).

If the user selects “Kill This Process”, then the secondary job KillProcess will

run. The program /usr/bin/kill will be invoked with two parameters, the first

being -9 (as specified in the Param directive of the secondary job), the second

being the process ID of the selected row in the list box. This is set in the

environment variable $TRI_PROCESSID_1 – the TRI_ being the standard prefix,

PROCESSID being an upper-cased representation of the column title ProcessID

and _1 meaning the first selected row. The other environment variables available

to this secondary job are TRI_PARENT_PROCESS_1 (PARENT_PROCESS being

derived from the column title Parent Process) and TRI_FULL_PATH_1

(FULL_PATH being derived from the column title Full Path).

When specifying this directive, the [context] is optional. If specified it indicates

that the right-click menu only applies to rows which are in the specified context.

A row is identified as being in a particular context by use of the ContextColumn

directive which indicates which row of the List Box output contains the context

name.

See Also:

ColumnNames, ColumnWidths, ListBox, ListBoxScript, ContextColumn,

Chapter 5 “The List Box”.

Trilogy 2.3 Administrator Guide Page 197 of 275
www.trinem.com

HelpText

Syntax:

HelpText=<help text>

Description:

Specifies text to be displayed at the client should a user run trilogy –jobs to

list the available Trilogy jobs on this server.

See also:

Trilogy 2.3 Administrator Guide Page 198 of 275
www.trinem.com

UseTTY

Syntax:

UseTTY=yes|no|on|off

Description:

Unix Servers: Specifies whether the server-side program invoked when

the OK button is clicked on the client-side dialog runs with

an attached terminal (tty) or not.

Windows Servers: Runs the server-side program with a console attached,

reading output from the console.

Depending on the server-side operating system – and the language in which the

server-side program is written - the setting of UseTTY can have a bearing on the

output of the program and on the buffering of the standard output. For example,

binary applications tend to be line-buffered if they have a controlling terminal

and block-buffered if their standard output is directed to a pipe. In a similar

manner, Unix programs like “ls” can detect whether they are talking to a

terminal or a pipe or file and adjust their output accordingly.

The default setting of this flag depends on the value of the stdout= directive in

the stanza. If stdout=report or stdout=display then UseTTY defaults to yes.

This ensures that the application invoked has its standard output set to line-

buffered and the report display (or client standard output) is updated in real-

time. If stdout is set to any of the other valid values then UseTTY defaults to no.

You can therefore use the UseTTY directive to change the default behaviour. For

example, using stdout=report and UseTTY=no in the same job stanza means

that the server-side job runs with no attached tty (or console for Windows

Servers) and the output will be block-buffered. This means that the client-side

report display will not appear to be running in real time and will tend to receive

updates only sporadically (typically when the job ends). Similarly, if you use

stdout=popup and UseTTY=yes in the same job stanza, the server-side job will

run with an attached TTY and the output will be line-buffered. Although this will

have no effect on the client display (since in this mode, Trilogy will collate all the

output before displaying the results in a pop-up dialog) it may well have a

bearing on the format of the output if the invoked program uses C library calls

such as isatty() to determine if the output is being routed to a terminal or not.

The default setting should be sufficient for most cases but you can use the

UseTTY flag to change the default if desired.

See Also:

Program, Stdout

Trilogy 2.3 Administrator Guide Page 199 of 275
www.trinem.com

PreValidateWith

Syntax:

PreValidateWith=<script name>

Description:

Runs the specified script on the server before any dialog is displayed at the

client. The script invoked is passed all the parameters that were specified in any

Param= or Params= directives, followed by the command line parameters that

were passed to the client (command line tool) or via the AddParameter method

of the Trilogy Scripting Engine. A Pre-Validate script is typically used to validate

the command-line parameters passed. If the script exits with a non-zero exit

code (error) the script's standard error output is displayed as a pop-up dialog

box at the client and the dialog (if any) is not displayed. Main script (specified

with the Program= directive in the job stanza) is not executed.

Environment Variables:

$TRIREASON "PREVALIDATE"
$TRIDIALOGNAME Trilogy Job ID
$TRICLIENTNODENAME Host Name of the invoking client
$TRICURRENTFIELD ""
$TRICHANGEDFIELD ""

See Also:

Program, ValidateWith, Param

Trilogy 2.3 Administrator Guide Page 200 of 275
www.trinem.com

ValidateWith

Syntax:

ValidateWith=<script name>

Description:

Runs the specified script on the server after the OK button has been pressed on

the client-side dialog but before the Main Script (Program=) is executed. The

script invoked is passed all the parameters that were specified in any Param= or

Params= directives, followed by the command line parameters that were passed

to the client (command line tool) or via the AddParameter method of the Trilogy

Scripting Engine. All populated fields on the dialog are present in $TRIFIELDn

environment variables. A Validate script is typically used to validate the fields

entered in the client-side dialog. If the script exits with a non-zero exit code

(error) the script's standard error output is displayed as a pop-up dialog box at

the client and the dialog is not cleared. The main script (Program=) is not

executed. When the user clears the client pop-up containing the standard-error

output from the server-side script, the dialog is still present allowing them to

correct any error before clicking "OK" again to resubmit the dialog. At this point

the script specified in this ValidateWith= directive is run again. Only when the

invoked script returns a zero exit code is the client-side dialog destroyed and the

main server-side script (Program=) run.

Note, this script is only invoked if a dialog is present in the job description. If no

dialog is defined (Either with Dialog= or DialogScript=) then this directive is

ignored.

Environment Variables:

$TRIREASON "VALIDATION"
$TRIDIALOGNAME Trilogy Job ID
$TRICLIENTNODENAME Host Name of the invoking client
$TRICURRENTFIELD ""
$TRICHANGEDFIELD ""
$TRIFIELD1 -

$TRIFIELDn
Contents of Client Side Dialog

See Also:

Program, PreValidateWith, Param

Trilogy 2.3 Administrator Guide Page 201 of 275
www.trinem.com

ApplyButton

Syntax:

ApplyButton=on|off|yes|no

Description:

Specifies whether the "apply" button should be present on the dialog. Defaults to

off/no. If set to Yes or On, the Apply Button is displayed next to the OK and

Cancel buttons on the bottom of the dialog.

The button has no functionality unless the ListBoxScript= directive is also

specified in the job. Clicking on the Apply button on the client side dialog runs

the script on the server identified by the ListBoxScript directive.

See Also:

ApplyButtonText, PopulateListBox, ListBoxScript, ListBox

Trilogy 2.3 Administrator Guide Page 202 of 275
www.trinem.com

ApplyButtonText

Syntax:

ApplyButtonText=<text>

Description:

Defaults to "Apply". Specifies what text should appear on the Apply Button (if set

with ApplyButton=on).

See Also:

ApplyButton, PopulateListBox, ListBoxScript, ListBox

Trilogy 2.3 Administrator Guide Page 203 of 275
www.trinem.com

PopulateListBox

Syntax:

PopulateListBox=OnDisplay|OnApply

Description:

Specifies when the server-side ListBoxScript should be run to populate the

client-side list box (if a list box has been specified with ListBox=on or

ListBox=auto). If set to OnDisplay (the default) the ListBoxScript is executed

on the server at the point when the dialog is first created at the client and its

output is used to populate the listbox. If set to OnApply, the apply button is

added to the client dialog automatically (regardless of the setting of the

ApplyButton= directive) and the ListBoxScript is only run on the server when

the Apply button is clicked on the client-side dialog.

If PopulateListBox=OnDisplay and the apply button is present on the client-

side dialog (by use of the ApplyButton=on directive) then the server-side

ListBoxScript is executed both on initial dialog display at the client and

whenever the apply button is clicked on the client dialog.

See Also:

ListBoxScript

Trilogy 2.3 Administrator Guide Page 204 of 275
www.trinem.com

ListBoxHeight

Syntax:
ListBoxHeight=Num Rows

Description:

Specifies the height of any list box which is included in the client-side dialog (due

to ListBox=On or ListBox=Auto). The height is specified as a number of rows. If

this parameter is not given then any list box will default to 4 rows in height.

See Also:

ListBox, AutoStretch

Trilogy 2.3 Administrator Guide Page 205 of 275
www.trinem.com

ListBoxWidth

Syntax:
ListBoxWidth=Num Pixels

Description:

Specifies the initial width in pixels of any list box which is included in the client-

side dialog (due to ListBox=On or ListBox=Auto). If this parameter is not given

then any list box will either stretch horizontally in order to accommodate all the

columns in the list box (if AutoStretch=on) or will be constrained by the size of

the dialog in which it is contained (if AutoStretch=off).

Note that setting this option automatically disables AutoStretch. Any

AutoStretch directive in the same job definition as ListBoxWidth is ignored.

See Also:

ApplyButton, AutoStretch, PopulateListBox, ListBoxWidth,

ListBoxHeight, ListBoxScript, ListBox, Chapter 5 “The List Box”

Trilogy 2.3 Administrator Guide Page 206 of 275
www.trinem.com

ListBoxScript

Syntax:

ListBoxScript=<script name>

or

PopulateListBoxWith=<script name>

Description:

Runs the specified script on the server whenever the listbox in the client dialog

(if specified with ListBox=on or ListBox=auto) requires to be populated. This

can be when the dialog is first displayed (PopulateListBox=OnDisplay) or

whenever the Apply button is clicked on the client dialog

(PopulateListBox=OnApply).

If the server-side script exits with code 0 (success), then its standard output is

parsed and broken into columns based on the ListBoxSep character (normally a

comma). The client list box is then populated with the output from this server-

side script, organized into the appropriate columns.

If AutoSort is specified for the Job, then the List Box is sorted automatically by

the specified column after the ListBoxScript has been executed.

If the server-side script exits with a non-zero exit code (failure), then the client-

side list box is not populated. Any standard error from the server-side script is

displayed as a pop-up dialog at the client.

Environment Variables:

$TRIREASON "LISTBOX"
$TRIDIALOGNAME Trilogy Job ID
$TRICLIENTNODENAME Host Name of the invoking client
$TRICURRENTFIELD "0"
$TRICHANGEDFIELD ""
$TRIFIELD1 -

$TRIFIELDn
Contents of Client Side Dialog

See Also:

ListBox, ListBoxSep, PopulateListBox, AutoSort

Trilogy 2.3 Administrator Guide Page 207 of 275
www.trinem.com

ListBoxSep

Syntax:

ListBoxSep=<char>

Description:

Specifies the character that is used to delimit columns in the standard output

from the server-side script specified in the ListBoxScript= directive. Defaults to

a comma.

See Also:

ListBoxScript, PopulateListBox, ApplyButton, AutoSort

Trilogy 2.3 Administrator Guide Page 208 of 275
www.trinem.com

ColumnNames

Syntax:

ColumnNames={col1,col2,col3….}

Description:

Specifies a list of names for the columns in the client-side List Box (if one has

been specified with ListBox=yes or ListBox=auto).

The column names are not only used for the column headings but are also used

when setting environment variables for any server-side scripts that need to

determine the selected rows (if any) in the client-side list box.

If this directive is not present and a list box is included in the dialog, then the

column names will be taken from the first row of the output from the

ListBoxScript.

See Also:

ColumnWidths, Chapter 5 "The List Box".

Trilogy 2.3 Administrator Guide Page 209 of 275
www.trinem.com

ColumnWidths

Syntax:

ColumnWidths={width1,width2,width3….}

Description:

Specifies the widths (in pixels) of the columns specified in the ColumnNames=

directive.

A column width of 0 is a special case. Columns with a width of 0 are suppressed

from the client side list box dialog and cannot be displayed. However, the output

from the server side script used to populate the client-side list box

(ListBoxScript=) is still used to populate these "hidden" columns. When the

row is selected, these columns still have their environment variables set just as if

they had been displayed. This technique can be used to create hidden fields

(containing object ids for example) that will be useful to the server-side scripts

you wish to invoke but which you do not wish to display to the end-user at the

client.

AutoSort can be applied to a hidden column.

A column width of “-“ (a single dash without quotes) will cause Trilogy to

automatically set the column width to that that of the longest field within the

column.

See Also:

AutoSort, ColumnNames,AutoStretch, Chapter 5 "The List Box".

Trilogy 2.3 Administrator Guide Page 210 of 275
www.trinem.com

AllowStop

Syntax:

AllowStop=Yes|No

Description:

When the stdout or stderr streams are set to Report, a dialog is displayed at

the client showing the output from the server-side script (defined by the

Program= directive) as it happens in real-time. This client-side dialog normally

includes a "Stop" button which – if pressed – terminates the server-side job and

any of its child processes. This is the default behaviour. To suppress the

appearance of the "Stop" button, include the directive AllowStop=No in the job

stanza.

Note, that this option does not prevent the job from being killed using the –

killjob option from the Trilogy Server.

See also:

Stderr, Stdout, UseTTY

Trilogy 2.3 Administrator Guide Page 211 of 275
www.trinem.com

Param

Syntax:

Param=<Param>

Description:

Creates a fixed parameter, which is pre-pended to any parameter list passed

from the client. Any server-side job invoked by Trilogy (for field population, pre-

validation, dialog validation, list box population or as the main program) is

passed any parameters set by a Param= (or Params=) call, followed by any

parameters passed to the command line client or via the AddParameter call of

the Trilogy Scripting Engine.

If more than one Param= directive is included in the job stanza, then the first

directive is taken as supplying the first parameter, the second directive supplies

the second and so on.

For example, if a server-side job is defined like this:

vscript:
 Program=c:\windows\system32\myscript.vbs

 Param=x1

a client invoking Trilogy like this:

trilogy vscript p1 p2

will result in the myscript.vbs script being invoked. This script can then read

its parameters which will be “x1” “p1” and “p2”.

See Also:

Program, PopulateWith, PopulateFieldnWith, PreValidateWith,

ValidateWith, ListBoxScript

Trilogy 2.3 Administrator Guide Page 212 of 275
www.trinem.com

Params

Syntax:

Params={param1,param2…paramN}

Description:

Creates a list of parameters which are pre-pended to any parameter list passed

from the client. Any server-side job invoked by Trilogy (for field population, pre-

validation, dialog validation, list box population or as the main program) is

passed any parameters set by a Param= (or Params=) call, followed by any

parameters passed to the command line client or via the AddParameter call of

the Trilogy Scripting Engine.

Param= and Params= directives can be intermixed freely in the job stanza. In

this instances, the parameters are assembled in the order in which they appear

in the stanza.

For example, if a server-side job is defined like this:

deploy:

 Program=c:\program files\Trinem\trilogy\dm\dm.exe

 Param=-b

 Param=$BROKER

 Params=(-usr,abc,-pw,def}

 Param=-en

 Param=project1

a client invoking Trilogy like this:

trilogy deploy pack1 pack2

will result in the server-side script “dm.exe” being invoked as follows:

dm.exe –b $BROKER –usr abc –pw def –en project1 pack1 pack2

See Also:

Program, PopulateWith, PopulateFieldnWith, PreValidateWith,

ValidateWith, ListBoxScript

Trilogy 2.3 Administrator Guide Page 213 of 275
www.trinem.com

Stdout

Syntax:

Stdout=discard|display|popup|report|filechooser|file

Description:

Determines how trilogy handles the standard output stream from the server-side

script identified by the Program directive in the job stanza.

discard

The standard output from the job is discarded. No standard output from the

server side job is displayed at the client.

display

The standard output from the server-side job is routed back to the trilogy client

where it is sent to the trilogy client’s standard output. This is the default.

popup

The standard output from the server-side job is routed back to the trilogy client

where it is collated and displayed in a pop-up dialog when the server-side job

has completed. If the client is running on Windows and SystemTray=Yes then

the popup is displayed as a balloon-style notification.

report

Opens a scrolling window on the client display. The standard output from the

server-side job is routed back and displayed in this window. The window contains

a real-time clock that monitors total run time, along with a STOP button (unless

AllowStop=No has been included in the job stanza) that allows for the server-

side job to be terminated on request from the client.

filechooser:<filename>

Opens a file chooser dialog on the client, allowing a user to specify a target file.

If <filename> is specified, then the file chooser dialog selects the relevant

directory/file by default and allows the user to change the selection. Once the file

is selected and the client-side file chooser dialog is closed, the server-side job is

run and its standard output is routed back to the trilogy client and saved in the

client-side file chosen.

file:<filename>

The standard output from the server-side job is routed back to the client and

saved in the specified client-side file.

See Also:

Program, Stderr

Trilogy 2.3 Administrator Guide Page 214 of 275
www.trinem.com

Stderr

Syntax:

Stderr=discard|display|popup|report|filechooser|file

Description:

Determines how trilogy handles the standard error stream from the server-side

script identified by the Program directive in the job stanza.

discard

The standard error from the job is discarded. No standard error from the server

side job is displayed at the client.

display

The standard error from the server-side job is routed back to the trilogy client

where it is sent to the trilogy client’s standard error.

popup

The standard error from the server-side job is routed back to the trilogy client

where it is collated and displayed in a pop-up dialog when the server-side job

has completed. This is the default.

report

Opens a scrolling window on the client display. The standard error from the

server-side job is routed back and displayed in this window. See Stdout for more

information. Note, if both stdout and stderr are set to report then only one

report window is created and both streams are routed into this window. Under

these circumstances the standard error stream is displayed in red (to

differentiate it from the standard output stream).

filechooser:<filename>

Opens a file chooser dialog on the client, allowing a user to specify a target file.

If <filename> is specified, then the file chooser dialog selects the relevant

directory/file by default and allows the user to change the selection. Once the file

is selected and the client-side file chooser dialog is closed, the server-side job is

run and its standard error is routed back to the trilogy client and saved in the

client-side file chosen.

file:<filename>

The standard error from the server-side job is routed back to the client and

saved in the specified client-side file.

See Also:

Program, Stdout

Trilogy 2.3 Administrator Guide Page 215 of 275
www.trinem.com

Stdin

Syntax:

Stdin=filechooser:<filename>|file:<filename>

Description:

Normally, the standard input of the trilogy client is routed to the standard input

of the trilogy server-side job identified by the Program directive. Including this

directive in the job stanza allows the server-side job to take its standard input

from a client-side file (either a fixed file or one chosen by a file chooser dialog).

filechooser:<filename>

Opens a file chooser dialog on the client, allowing a user to specify a source file.

If <filename> is specified, then the file chooser dialog selects the relevant

directory/file by default and allows the user to change the selection. Once the file

is selected and the client-side file chooser dialog is closed, the server-side job is

run and its standard input is taken from the client-side file chosen.

file:<filename>

The standard input for the server-side job is taken from specified client-side file.

Environment Variables:

$TRISTDINFILE Client-Side filename of the standard input.

See Also:

Program, Chapter 10: Trilogy Client Command Line Options

Trilogy 2.3 Administrator Guide Page 216 of 275
www.trinem.com

Program

Syntax:

Program=<Path to Program>

Description:

Specifies the server-side program to be invoked when the OK button is clicked

on any client-side dialog (or when any PreValidate script has exited

successfully if no dialog is present or immediately on request from the Trilogy

Client or Trilogy Scripting Engine if neither a PreValidate script nor a Dialog is

present).

The standard input for the program is taken from the standard input from the

Trilogy command line client or from a client-side file (if a Stdin directive is

present in the job stanza or the Trilogy client has been invoked with the –i

<file> option). The standard output and standard error streams are handled

according to the options specified by the Stdout and Stderr directives in the job

stanza.

Environment Variables:

$TRIREASON "SCRIPT"

$TRIDIALOGNAME Trilogy Job ID

$TRICLIENTNODENAME Host Name of the invoking client

$TRICLIENTUSERNAME The Login id of the invoking client user

$TRICURRENTFIELD ""

$TRICHANGEDFIELD ""

$TRISTDINFILE Client Side file from which standard input is being

taken.

$TRIFIELD1 -

$TRIFIELDn

Contents of Client Side Dialog

$TRI_columnname_1-

$TRI_columnname_n

Client Side List Box Selections

See Also:

Stdin, Stdout, Stderr, OnRightClick

Trilogy 2.3 Administrator Guide Page 217 of 275
www.trinem.com

14 Trilogy Scripting Engine

This Chapter is specific to Windows Platforms. The Trilogy

Scripting Engine is available both Client Side and Server

Side. Server Side refers to Windows Servers only.

 Introduction 14.1

The Trilogy Scripting Engine is a Windows ActiveX (COM) component that can

be accessed from scripts written in VB Script, JScript, Perl or any other Windows-

based scripting or programming language that can instantiate a COM object. The

control identifies itself as being safe so it can be safely embedded into windows-

based HTML forms without warnings being generated of unsafe ActiveX

components.

The Scripting Engine can be used on Windows Clients (where it can be used to

invoke remote Trilogy Jobs on Trilogy Servers, passing those jobs parameters

and capturing their output). It can also be used in Trilogy Jobs written in

VBScript or JScript running under Windows Servers. Using the Trilogy Scripting

Engine from such scripts makes it easier to read the content of the client-side

dialog than would normally be the case using the normal method of reading

Environment Variables. In addition, the Scripting Engine exposes a number of

additional methods that make writing server-side scripts in VBScript or JScript

much easier.

The Trilogy Scripting Engine can be inserted into the script by the use of the

CreateObject command in VBScript/Perl or by the use of the ActiveXObject

class in JScript. Note, that this will only work if the relevant dll (atlcom3.dll)

has been registered. This should happen automatically when Trilogy is installed

through its supplied installer. Should it be necessary to register this dll manually

this can be done by opening a DOS prompt, switching to the Trilogy home

directory and typing:

regsvr32 atlcom3.dll

Users of Windows Vista, Windows 7 or Windows Server will

need to ensure that the command window has been run with

Administrative Privileges (run as Administrator). Otherwise,

regsvr32 will fail.

Trilogy 2.3 Administrator Guide Page 218 of 275
www.trinem.com

Here is an example of how to embed the Trilogy Scripting Engine in both VB

Script and JavaScript:

VB Script

Dim Trilogy

Set Trilogy = CreateObject("Trilogy.Scripting");

JavaScript

var Trilogy = new ActiveXObject("Trilogy.Scripting");

Perl

ActiveState:

use OLE;

$Trilogy = CreateObject OLE “Trilogy.Scripting”

or die “Cannot create Trilogy Scripting Object”

Standard Distro:

use Win32::OLE;

Win32::OLE::CreateObject(“Trilogy.Scripting”,$Trilogy)

 or die “Cannot create Trilogy Scripting Object”

All of these methods create an object called "Trilogy" which then encapsulates

various methods.

Trilogy 2.3 Administrator Guide Page 219 of 275
www.trinem.com

 Using the Trilogy Scripting Engine Client Side – Overview 14.2

The general technique when using the Trilogy Scripting Engine from a client is:

 Use SetProgramID to set the Program ID (Trilogy Job Name).

 Use the AddParameter method to add any command-line parameters you

wish to pass to the server-side script

 Either:

 Use the ShowDialog method to bring up the dialog associated with the

Trilogy Name specified in SetProgramID or…

 Use the AddFieldValue method to add any field values you wish the server-

side script to use. These will be set in TRIFIELD1 to TRIFIELDn as though

the normal client GUI has been invoked.

 Use the SetStandardInput method to set the standard input (if any) for the

server-side script.

 Call the Execute method to run the server-side script

 Use the getline method to read the output from the server-side script.

 Using the Trilogy Scripting Engine Server Side – Overview 14.3
The general technique when using the Trilogy Scripting Engine from a server-

side Trilogy Job is:

 Use the GetExecutionReason() method to determine the reason the

script has been called

 Use GetField() to read the client-side dialog content

Trilogy 2.3 Administrator Guide Page 220 of 275
www.trinem.com

 Scripting Engine Methods 14.4

The methods available to the Trilogy Scripting Engine are documented below.

Note that object refers to the object name used in the script when you

instantiated the ActiveX Scripting component – i.e.:

Set object = CreateObject("Trilogy.Scripting");

Each method can be run either client-side (when a client is running jobs and

interacting with a remote Trilogy Server) or server-side (when a Windows Server

is running a script which is using methods in the Trilogy Scripting Engine). A few

methods can be run either on the client or the server.

Each method is identified as being able to be run client-side or server-side.

If an attempt is made to run a client-side method on the server (or vice-versa)

then an error is returned by the method.

Trilogy 2.3 Administrator Guide Page 221 of 275
www.trinem.com

SetServerName

 Client

 Server

object.SetServerName servername

Sets the name of the host where the Trilogy Server is located. Used to override

the Server= setting in the client’s local trilogy.conf file. Use this if you need to

run a job on a different Trilogy Server than the default.

Example:

VB Script

Trilogy.SetServerName "ServerName"

JavaScript

Trilogy.SetServerName("ServerName");

Perl

$Trilogy->SetServerName(“ServerName”);

Trilogy 2.3 Administrator Guide Page 222 of 275
www.trinem.com

SetServerPort

 Client

 Server

object.SetServerPort Port Number

Sets the number of the port on which the Trilogy Server is listening. Used to

override the Port= setting in the client’s local trilogy.conf file. Use this if you

need to run a job on a different Trilogy Server than the default.

Example:

VB Script

Trilogy.SetServerPort 2032

JavaScript

Trilogy.SetServerPort(2032);

Perl

$Trilogy->SetServerPort(2032);

Trilogy 2.3 Administrator Guide Page 223 of 275
www.trinem.com

Set Program ID

 Client

 Server

object.SetProgramID programid

Sets the Trilogy Job Name. This is used by Trilogy to locate the attributes on the

Trilogy Server which defines the job to be run. Note, invoking this method

automatically clears the associated parameter and field list. See Adding

Command Line Parameters and Setting Field Values below.

Example:

VB Script

Trilogy.SetProgramID "add_user_to_project"

JavaScript

Trilogy.SetProgramID("add_user_to_project");

Perl

$Trilogy->SetProgramID(“add_user_to_project”);

Trilogy 2.3 Administrator Guide Page 224 of 275
www.trinem.com

Adding Command Line Parameters

 Client

 Server

object.AddParameter ParameterValue

Adds a new parameter ParameterValue to the end of the current parameter list.

Since the specified parameter is always added to the end of the current list, use

the first call to add the first parameter, the second to add the second and so on.

Remember, this list is cleared whenever you invoke the

SetProgramID method. Therefore, if you want to invoke two

Trilogy jobs, you must specify the parameter list again after

the second call to SetProgramID.

Example:

VB Script

Trilogy.AddParameter "Parameter 1"

Trilogy.AddParameter "Parameter 2"

Trilogy.AddParameter "Parameter 3"

JavaScript

Trilogy.AddParameter("Parameter 1");

Trilogy.AddParameter("Parameter 2");

Trilogy.AddParameter("Parameter 3");

Perl

$Trilogy->AddParameter(“Parameter 1”);

$Trilogy->AddParameter(“Parameter 2”);

$Trilogy->AddParameter(“Parameter 3”);

Trilogy 2.3 Administrator Guide Page 225 of 275
www.trinem.com

Adding Field Values

 Client

 Server

object.SetField FieldNumber ParameterValue

Sets the Trilogy field identified by FieldNumber to the passed ParameterValue.

When the server-side script is invoked, it will have access to these values via the

TRIFIELDn environment variables. In other words, running this command in your

script:

Trilogy.SetField 2 "test project"

… causes TRIFIELD2 to be set to "test project" when the server-side script is

invoked. This means that server-side scripts using the Trilogy Scripting Engine

can also access the field content using the GetField method.

Remember, all the fields are reset following a call to the

SetProgramID method. Also, all the fields are reset should

you invoke the ShowDialog method.

You can use this technique to allow field values from your own dialogs (such as

HTML based forms) to be passed to Trilogy clients.

Example:

VB Script

Trilogy.SetField 1 "Field 1 value"

Trilogy.SetField 2 "Field 2 value"

Trilogy.SetField 3 "Field 3 value"

JavaScript

Trilogy.SetField(1,"Field 1 value");

Trilogy.SetField(2,"Field 2 value");

Trilogy.SetField(3,"Field 3 value");

Perl

$Trilogy->SetField(1,“Field 1 value”);

$Trilogy->SetField(2,“Field 2 value”);

$Trilogy->SetField(3,“Field 3 value”);

Trilogy 2.3 Administrator Guide Page 226 of 275
www.trinem.com

Displaying a Trilogy Dialog

 Client

 Server

res = object.ShowDialog

Opens up the appropriate Trilogy dialog, identified via the Trilogy Name set in

the call to SetProgramID. ShowDialog does not return until the user exits the

dialog (either by cancelling it or pressing "okay" to submit the values.

Should the user press "okay" then any field values set by calls to the SetField

method are lost and the field values are replaced by those from the dialog.

Note - unlike the Trilogy command-line tool, when a dialog is submitted (via its

"okay" button), the Scripting Engine does not automatically run the associated

server-side script. Instead, control is returned to the invoking script with the

field contents available via calls to GetField. However, validation scripts

(PreValidateWith= and ValidateWith=) and population scripts (PopulateWith=

and PopulateFieldnWith=) are invoked by the Trilogy server in the normal way

in order to construct and validate the dialog.

This means that you can use Trilogy merely to present more sophisticated

dialogs to the end-user than would normally be available to VBScript or Perl. In

this case, no Program= directive need be present in the trilogy.conf stanza

entry. To read the field values into your script you can use the GetField method

after ShowDialog has returned.

If you want to execute the server-side script you must invoke the execute

method following the call to ShowDialog.

Return Values:

The ShowDialog method returns a code that your script can use to determine

how to proceed:

Returned Value Meaning

0 No Dialog. There is no Dialog= directive in the appropriate

trilogy.conf stanza entry.

1 Dialog Not Found. There was a Dialog= directive but it

referred to a file that was either not present or for which

read permission was not granted.

2 Dialog Invalid. The dialog definition was syntactically

incorrect and could not be converted into a Trilogy client-

side GUI.

3 "OKAY". The user has exited the dialog by pressing the

Trilogy 2.3 Administrator Guide Page 227 of 275
www.trinem.com

"okay" button.

4 "CANCEL". The user has cancelled the dialog by pressing the

"cancel" button.

5 Pre-validation failed. A PreValidateWith= directive was

present in the trilogy.conf stanza entry and the script

returned a non-zero exit code. The standard error output

from this script can be read with a call to getline(2).

6 Cannot connect – number of permitted nodes exceeded.

7 Cannot connect – Server license has expired.

Example:

VB Script

res = Trilogy.ShowDialog

if res = 3 Then

 ' User has pressed "okay" - Proceed

Else

 ' something else has happened

End If

JavaScript

Trilogy.ShowDialog();

Perl

$Trilogy->ShowDialog();

Trilogy 2.3 Administrator Guide Page 228 of 275
www.trinem.com

Retrieving Field Values

 Client

 Server

res = object.GetField

Client-Side, this call returns the contents of the specified field number, following

a call to either SetField or ShowDialog. If you want to read the values of fields

following the display of a Trilogy dialog, then use this method.

Remember, that fields start at 1 and are numbered from left

to right and from top to bottom of the dialog.

Also remember that Radio Buttons and Checkboxes return

"1" if they are set and "0" otherwise.

Server-side (on Windows Servers) this call can be used to read the content of

the client-side dialog when the server-side script is invoked.

Example:

VB Script

Field1Value = Trilogy.GetField(1)

Field2Value = Trilogy.GetField(2)

Field3Value = Trilogy.GetField(3)

JavaScript

Field1Value = Trilogy.GetField(1);

Field2Value = Trilogy.GetField(2);

Field3Value = Trilogy.GetField(3);

Perl

$Field1Value = $Trilogy->GetField(1);

$Field2Value = $Trilogy->GetField(2);

$Field3Value = $Trilogy->GetField(3);

Trilogy 2.3 Administrator Guide Page 229 of 275
www.trinem.com

Executing Trilogy Job

 Client

 Server

object.execute [0|1]

Runs the appropriate job on the Trilogy server, identified by the previously

specified Trilogy Job Name (see "Set Program ID" above), passing it any

parameters specified in previous calls to AddParameter. Values set via calls to

SetField (or set as a result of a call to ShowDialog) are made available to the

server-side script in the environment variable TRIFIELD1 to TRIFIELDn.

Control normally returns to the calling script when the server side job completes.

The only exception to this is if the job has SystemTray=yes in its configuration

and the Trilogy Client Service is not running. In these circumstances, the job will

create its own icon in the System Tray (also known as the Notification Area) and

will animate this to indicate the job is running.

When the job has created an icon in this way, control will only return to the

calling program when:

 The last “Balloon Style” notification has been dismissed (either by clicking

to close it or by it timing out).

 If SystemTray is set to “Hold” then the icon has been dismissed (by right-

clicking and selecting “Quit”

If control were to be returned before the last balloon was displayed then the

invoking script may well exit which would remove the icon prematurely.

Therefore, Trilogy will not return the control to the calling script unless it is safe

to do so.

To override this behaviour, execute takes an optional parameter. If you specify

nothing or 0 (the default), execute will wait until the icon is idle (no outstanding

balloon notifications and/or user has selected Quit on a held job). If you specify

1 (or any non-zero code) then execute will return immediately the server side

job completes. Should the calling script exit, the icon will be removed from the

System Tray and any outstanding balloon notifications will be lost.

Example:

VB Script

Trilogy.execute

JavaScript

Trilogy.execute();

Perl
$Trilogy->execute();

Trilogy 2.3 Administrator Guide Page 230 of 275
www.trinem.com

Finding Exit Status of Job

 Client

 Server

object.exitcode

Returns the exit code of the server-side script after the job has successfully

executed.

Example:

VB Script

Dim retcode

retcode = Trilogy.exitcode

JavaScript

var retcode = Trilogy.exitcode();

Perl

$retcode = $Trilogy->exitcode();

Trilogy 2.3 Administrator Guide Page 231 of 275
www.trinem.com

Reading Results from Executed Jobs

 Client

 Server

object.getline (streamno)

Reads the next line from the specified stream number:

1 = standard output

2 = standard error

These streams represent the output from the invoked server-side script. In

addition, stream 2 (standard error) can also represent the output from any pre-

validation script that has returned a non-zero exit code prior to the display of a

Trilogy dialog. See the ShowDialog method above.

Note, it is usual to use the EndOfStream method to determine whether there is

data to read before invoking the getline method. See EndOfStream below.

Example:

VB Script

opline = Trilogy.getline(1)

errline = Trilogy.getline(2)

JavaScript

opline = Trilogy.getline(1);

errline = Trilogy.getline(2);

Perl

$opline = $Trilogy->getline(1);

$errline = $Trilogy->getline(2);

Trilogy 2.3 Administrator Guide Page 232 of 275
www.trinem.com

Checking for end of stream

 Client

 Server

object.EndOfStream(streamno)

Returns 1 if the specified stream is exhausted (no more data available), or 0 if

there is more data to be read. Streams are identified by:

1 = standard output

2 = standard error

Example:

while Trilogy.EndOfStream(1) = 0

opline = Trilogy.getline(1)

wend

Trilogy 2.3 Administrator Guide Page 233 of 275
www.trinem.com

Displaying Standard Output as a Pop-up

 Client

 Server

object.ShowStandardOutput()

Displays all the standard output from the server-side job in a pop-up dialog.

Trilogy 2.3 Administrator Guide Page 234 of 275
www.trinem.com

Displaying Standard Error as a Pop-up

 Client

 Server

object.ShowStandardError()

Displays all the standard error from the server-side job in a pop-up dialog.

Trilogy 2.3 Administrator Guide Page 235 of 275
www.trinem.com

Setting Standard Input

 Client

 Server

object.SetStandardInput(filename)

Specifies that the standard input for the server-side job should be read from the

client side file specified by filename.

The basename of the specified file (i.e. just the filename component minus any

leading directory hierarchy) will be placed into the environment variable

TRISTDINFILENAME which is then available in the invoked server-side script.

Trilogy 2.3 Administrator Guide Page 236 of 275
www.trinem.com

Choosing a File

 Client

 Server

filenum = object.ChooseFile(filename,mode)

Opens a file chooser dialog either to open a file for reading (mode=”r”) or writing

(mode=”w”) and returns a corresponding handle to the opened file.

If the dialog is cancelled the return value is 0. Otherwise, the return value is a

handle to the opened file.

If “filename” points to a directory then the directory is opened with no file pre-

selected.

If “filename” points to a file then the directory in which the file is located is

opened with the file pre-selected.

Trilogy 2.3 Administrator Guide Page 237 of 275
www.trinem.com

Opening a File

 Client

 Server

filenum = object.OpenFile(filename,mode)

Opens a file for reading (mode=”r”) or writing (mode=”w”) and returns a

corresponding handle to the opened file.

If the file cannot be opened the return value is -1. Otherwise, the return value is

a handle to the opened file.

Trilogy 2.3 Administrator Guide Page 238 of 275
www.trinem.com

Closing a File

 Client

 Server

object.CloseFile(filenum)

Closes a file previously opened with either ChooseFile or OpenFile. The

parameter is the file handle previously returned by these calls.

Trilogy 2.3 Administrator Guide Page 239 of 275
www.trinem.com

Setting a stream to a file

 Client

 Server

res = object. SetStream(streamno,filenum)

Sets the specified stream (Standard Input, Standard Output or Standard Error)

of the server-side job to come from or to the specified file handle (previously

opened with OpenFile or ChooseFile.

streamno should be either 0 (Standard input), 1 (Standard Output) or 2

(Standard Error).

filenum should be a file handle as returned from OpenFile or ChooseFile.

Return value is one of:

0 Stream has been set successfully

1 filenum is invalid

2 streamno is invalid (not one of 0, 1 or 2)

3 filenum is opened in wrong mode. If you are setting the standard input

stream (streamno=0) then filenum should have been opened in Read Mode.

If you are setting standard output (streamno=1) or standard error

(streamno=2) then filenum should have been opened in Write Mode.

Trilogy 2.3 Administrator Guide Page 240 of 275
www.trinem.com

Getting the Pathname of a File

 Client

 Server

path = object. GetPathName(filenum)

Returns the full path name (directory and filename) for the specified filenum.

filenum should be a file handle as returned from OpenFile or ChooseFile.

Trilogy 2.3 Administrator Guide Page 241 of 275
www.trinem.com

Getting the Directory Name of a File

 Client

 Server

path = object. GetDirName(filenum)

Returns the directory name for the specified filenum.

filenum should be a file handle as returned from OpenFile or ChooseFile.

Trilogy 2.3 Administrator Guide Page 242 of 275
www.trinem.com

Getting the File Name of a File

 Client

 Server

path = object. GetFileName(filenum)

Returns the file name for the specified filenum (i.e.: the base file name excluding

the directory).

filenum should be a file handle as returned from OpenFile or ChooseFile.

Trilogy 2.3 Administrator Guide Page 243 of 275
www.trinem.com

Suspending Execution

 Client

 Server

object. Wait(millisecs)

Suspends execution for the specified number of milliseconds.

Trilogy 2.3 Administrator Guide Page 244 of 275
www.trinem.com

Finding Job Name

 Client

 Server

jobname = object. GetJobName()

Returns the name of the Trilogy Job under which the server-side script is

running.

Trilogy 2.3 Administrator Guide Page 245 of 275
www.trinem.com

Finding Number of List Box Selections

 Client

 Server

selections = object. GetListBoxSelectionCount()

Returns the number of selections in the client-side List Box.

Trilogy 2.3 Administrator Guide Page 246 of 275
www.trinem.com

Retrieving List Box Selections

 Client

 Server

value = object. GetListBoxField(rownum,columnname)

Returns the value of the specified column name for the specified selected row

number.

rownum is the selected row number (from 1 to the value returned by

GetListBoxSelectionCount)

columnname is the name of the column (as specified by the ColumnNames

directive in the server-side trilogy.conf file).

Trilogy 2.3 Administrator Guide Page 247 of 275
www.trinem.com

Finding Standard Input Filename

 Client

 Server

filename = object. GetInputFileName()

Returns the name of the client-side file that is forming the standard input for the

server-side job (assuming that the file has been specified through the –i flag of

the Trilogy Client or has been specified via Stdin=file:<filename> or the

filechooser).

If standard input is being “piped” into the Trilogy Client then this value is not set.

Trilogy 2.3 Administrator Guide Page 248 of 275
www.trinem.com

Finding Client Machine Name

 Client

 Server

clientnodename = object. GetClientNodeName()

Returns the hostname of the client machine from where the run request was

issued.

Trilogy 2.3 Administrator Guide Page 249 of 275
www.trinem.com

Finding Client User Name

 Client

 Server

clientusername = object. GetClientUserName()

Returns the login ID of the client user who has issued the run request.

Trilogy 2.3 Administrator Guide Page 250 of 275
www.trinem.com

Finding Execution Reason

 Client

 Server

reason = object. GetExecutionReason()

Returns the reason why the server-side script has been invoked. The following

string values are returned:

LISTBOX Script has been run as a result of the ListBoxScript= (or

PopulateListBoxWith=) directive.

POPULATE Script has been run either as a result of a PopulateWith= or a

PopulateFieldnWith= directive.

SCRIPT Script has been run as a result of a Program directive.

VALIDATION Script has been run as a result of a ValidateWith= directive.

PREVALIDATE Script has been run as a result of a PreValidateWith= directive.

DIALOG Script has been run in order to create a dialog definition.

Trilogy 2.3 Administrator Guide Page 251 of 275
www.trinem.com

Getting Current Field Number

 Client

 Server

fieldno = object. GetCurrentField ()

Returns the field that Trilogy wishes the script to populate (GetExecutionReason

returns POPULATE).

Trilogy 2.3 Administrator Guide Page 252 of 275
www.trinem.com

Getting Changed Field Number

 Client

 Server

fieldno = object. GetChangedField ()

Returns the field that has changed on the client side dialog which has resulted in

the linked field needing to be repopulated (GetExecutionReason returns

POPULATE).

Trilogy 2.3 Administrator Guide Page 253 of 275
www.trinem.com

Writing to Standard Output

 Client

 Server

object. WriteToStandardOutput(text)

Writes the specified text to the Standard Output stream.

Trilogy 2.3 Administrator Guide Page 254 of 275
www.trinem.com

Writing to Standard Error

 Client

 Server

object. WriteToStandardError(text)

Writes the specified text to the Standard Error stream.

Trilogy 2.3 Administrator Guide Page 255 of 275
www.trinem.com

Sending a Balloon Message

 Client

 Server

object. Balloon(icon,title,text)

Creates a balloon message at the invoking client with the specified title, text and

icon.

Icon should be one of:

0 No Icon

1 Information

2 Warning

3 Error

Note, the client must either be running Trilogy Client for Windows Service or the

job need the Systray=Yes directive in order to create an icon in the notification

area. The Trilogy icon needs to be in the System Tray (Notification Area) in order

for the balloon to be received.

Trilogy 2.3 Administrator Guide Page 256 of 275
www.trinem.com

Sending a Balloon Message to a Group

 Client

 Server

object. BalloonToGroup(groupname,icon,title,text)

Creates a balloon message at each logged in user in the specified group with the

specified title, text and icon.

Icon should be one of:

0 No Icon

1 Information

2 Warning

3 Error

Note, the targeted client(s) must be running Trilogy Client for Windows Service

in order for the balloon to be received.

Trilogy Server will interact with the specified Group Processor in order to

determine which users will receive the balloon message.

Trilogy 2.3 Administrator Guide Page 257 of 275
www.trinem.com

Appendix A – Examples
In this section we show a number of example scripts and dialogs.

A.1 Demo Dialog/Script

As discussed in the installation guide, the Trilogy server installation ships with a

number of demo screens and scripts. You can invoke these demos on any client

machine that can access the server and that has the Trilogy Client installed.

You can perform the client operations at the server machine

since installing a Trilogy Server automatically installs a

Trilogy Client.

To invoke the demonstration dialog, logon to a client machine and run the

Trilogy command-line client with:

trilogy demo

This will bring a dialog to the screen. Pressing “okay” simply dumps the contents

of the dialog in a pop-up box.

If you have installed the Trilogy Client Service for Windows,

you can right click on the Trilogy Icon in the System Tray and

select “Trilogy Demo Dialog”

The “source” screen definition is installed on the server in:

UNIX:
$TRILOGYHOME/demo/screens/demo.scn

WINDOWS:
%TRILOGYHOME%\demo\screens\demo.scn

The script used to populate the dialog, its pull-down lists and which takes the

GUI parameters at the point of execution is installed on the server in:

UNIX:
$TRILOGYHOME/demo/scripts/demo.sh

WINDOWS:
%TRILOGYHOME%\demo\scripts\demo.bat

You can use these files (and the shipped trilogy.conf file) to gain an

understanding of the field numbering convention and how dialogs can be

created.

Trilogy 2.3 Administrator Guide Page 258 of 275
www.trinem.com

A.2 Change the Demo

Try changing the shipped demonstration dialog and see what happens.

A.2.1 Add a new tab

Using a text editor (such as vi or notepad) on the server, open up the demo

dialog screen definition in:

Unix:

$TRILOGYHOME/demo/screens/demo.scn

Windows:

%TRILOGYHOME%\demo\screens\demo.scn

Add a new tab to the screen by adding the following lines to the bottom of the

file:

> My New Tab

X A checkbox

x another checkbox

- Some Radio Buttons

O Yes

o No

Data Entry Field []

A Drop Down { }

Save the file and then run the demo again from your client machine. See how a

new tab is present on the dialog and how the additional fields have been

rendered.

A.2.2 Populate the new Drop Down

You will notice that the drop-down field you added (“A Drop Down”) has no

content. This is because we have not told Trilogy how to populate the field.

On the Server, open up the trilogy.conf configuration file (this will be found in

the TRILOGYHOME root directory of your installation). Find the entries which relate

to the DEMO job. Add the following directive:

PopulateField22With={My Data 1,My Data 2,My Data 3}

Launch the demo dialog again, click on your new tab (“My New Tab”) and see

how the drop-down list “A Drop Down” is populated.

Create a script on the server which outputs some lines to standard output. Here

is an example:

Windows:

Trilogy 2.3 Administrator Guide Page 259 of 275
www.trinem.com

@echo off

echo This Line 1 is from a Script

echo This Line 2 is from a Script

echo This Line 3 is from a Script

Unix/Linux:

#!/bin/sh

echo “This Line 1 is from a Script”

echo “This Line 2 is from a Script”

echo “This Line 3 is from a Script”

On Unix/Linux servers, make sure the script you’ve created is

executable.

Change your new PopulateField22With line in trilogy.conf so that it points to

this script rather than having a list of hard-coded values:

PopulateField22With=$TRILOGYHOME/demo/scripts/myscript.bat

(or equivalent depending on your platform and where you placed the script).

Rerun the demo at the client and see how the script’s output populates your new

drop-down list.

A.2.3 Change the Output Format

Alter trilogy.conf on the server and add a new directive to the DEMO job

definition:

SystemTray=Yes

Rerun the demo on a windows client. Click OK on the presented dialog. Note that

a Trilogy Icon appears in the System tray (notification area) and that the

standard output from the server side script is now presented in a balloon from

that icon. Note how the output is split across multiple balloon notifications. Note

how the icon disappears after the last balloon is dismissed.

Alter trilogy.conf on the server and change the SystemTray directive to Hold

so that it now looks like this:

SystemTray=Hold

Rerun the demo on a windows client. Click OK on the presented dialog. Note that

a Trilogy Icon appears as before in the System Tray and that the standard

output from the server side script is presented as a series of balloon style

notifications. Note, however, that after the last balloon is dismissed the icon

does not disappear and remains in the System Tray. In order to close the icon

you need to right-click the Icon and select “Quit”.

Trilogy 2.3 Administrator Guide Page 260 of 275
www.trinem.com

Alter trilogy.conf on the server and change the Stdout directive for the DEMO

dialog from Popup to Report and switch off the SystemTray icon like this:

Stdout=Report

SystemTray=No

Rerun the demo at the client and see how the output is presented in a “Report”

window.

Alter the SystemTray option to Yes and rerun the demo from the client. Note

how the report window is not displayed. Double Click on the Trilogy Icon in the

System Tray in order to open the report window. Iconize the Report Window and

note how it disappears from the task bar – it is iconized back to the Trilogy Icon

in the System Tray. Double clicking the icon will restore the report window.

You can close the job by right-clicking the Trilogy Icon in the System Tray and

selecting “Quit” or opening the Report Window and clicking OK.

A.3 List Box Demo

Trilogy ships with a List Box Demonstration dialog. To run this demo either type:

trilogy listbox_demo

from a command line on a client machine or – if you are running on a Windows

Client and you are running the Trilogy Client Service – right-click on the icon in

the System Tray and select “Trilogy Listbox Demo”

Doing this will open a dialog containing a list box. You can select a decade from

the first drop-down – this will populate the second drop-down list with a list of

artists. Selecting an artist will populate the list box with some selected hits of the

selected artist. Records that reached number 1 are illustrated with a star icon in

the first column.

If you select “The Beatles” you will see 2 of their records automatically selected.

You can select one or more rows in the list box – doing this will populate a field

showing the song selection made. You can also right-click in the list box and

select the “Show Hidden Field Value” option – this will open a pop-up box

showing the hidden fields relating to the selected row(s).

This demo illustrates the following principles:

 Linking fields

 Linking fields to the List Box

 Hidden List Box Fields

 Context Sensitive Icons

 Context Columns

 Right-Click Jobs

 Auto Sorting

 Auto Selection of Columns

Trilogy 2.3 Administrator Guide Page 261 of 275
www.trinem.com

Examine the trilogy.conf server-side file alongside the listbox script. The

script can be found in either:

Unix/Linux:

$TRILOGYHOME/demo/scripts/listbox.sh

Windows:

%TRILOGYHOME%\demo\scripts\listbox.vbs

You should be able to see how the various Trilogy directives control how the

script’s output is presented at the client.

A.4 System Tray Demonstration

Trilogy ships with a dialog which illustrates how icons can be placed into the

System Tray on Windows Clients and how that icon can be animated to show

that the job is running.

To invoke this demo either type:

trilogy traydemo

from a command line on a Windows client machine or – if you are running the

Trilogy Client Service – right-click on the icon in the System Tray and select

“Trilogy System Tray Demo”

Doing this presents a dialog with two tabs – a “start” icon, title and text and an

“end” icon, title and text. Fill in the details and click OK. A Trilogy Icon appears

in the System Tray (if it was not there already) and a balloon is presented

containing the information entered in the first tab. The script will then run for 15

seconds. During this time the icon animates in the System Tray to indicate to the

user that the job is running. At the conclusion of this time the icon stops

animating and a second balloon is presented containing the information entered

in the second tab.

Examine the trilogy.conf server-side file alongside the traydemo script. The

script can be found in either:

Unix/Linux:

$TRILOGYHOME/demo/scripts/traydemo.sh

Windows:

%TRILOGYHOME%\demo\scripts\traydemo.vbs

You should be able to see how the various Trilogy directives control how the

script’s output is presented at the client.

Trilogy 2.3 Administrator Guide Page 262 of 275
www.trinem.com

A.5 A UNIX Backup Program

In this example, we will show how to create a simple, server-side script which –

when invoked by Trilogy – will allow a tar file to be created and saved on the

machine on which the Trilogy Client is running. In this way, a simple “backup”

can be made of a directory and the resulting tar file can be copied and saved on

the instigating machine in a location specified by the user.

First, we need to create a simple server-side shell-script to create the tar file.

Note that the file is written to the script’s standard output stream:

#!/bin/ksh

cd $HOME

tar cvf - .

This file should be saved on the server as “backup.ksh”. Note, that the tar

command writes its output to the standard output stream (the – option specifies

that output is to be sent to stdout). Also note the “v” option – this tells tar to

write the name of each file to standard error as it’s being processed.

Now, we set up the server-side trilogy.conf file. We add the following entries:

BACKUP:

 Program=$TRILOGYHOME/scripts/backup.ksh

 Stderr=Report

 Stdout=Filechooser:C:\backup.tar

This tells Trilogy to run the backup.ksh script on the server when a client

requests us to run the “BACKUP” job. The standard error output (which is the list

of files as they are processed) is to be displayed in a scrolling “report” window on

the client. The standard output (which is the actual tarred up output file) is to be

written to a file on the client, the precise name and location of which is to be

specified by the user by means of a file chooser dialog. By default, the file

chosen will be “backup.tar” in the user’s C: drive.

The job is now done. By invoking Trilogy as follows:

trilogy backup

the file chooser dialog is automatically opened:

Trilogy 2.3 Administrator Guide Page 263 of 275
www.trinem.com

By default, the file to be written is called “backup.tar”. The user now has the

option of changing this name or the location in which it is to be stored.

Once the user has clicked “Save”, the main job (backup.ksh) is run on the

server. The standard output of the job is passed back to the client in real time

and written to the specified file. The standard error of the job is written to the

“report” window, again in real time. The user can therefore see the progress of

the backup as it occurs:

Trilogy 2.3 Administrator Guide Page 264 of 275
www.trinem.com

At the conclusion of processing, the backup will have been written to the chosen

file on the Trilogy Client machine.

A.6 Trilogy Job Control

As mentioned in Server Side Job Control, you can invoke the Trilogy Server

executable with the –showjobs option to list all the jobs that are running under

Trilogy control. If TRIREASON is set to LISTBOX, then the list generated is

comma separated and is suitable for inclusion in a client-side List Box display.

By using the AutoRefresh option, an administrator can easily set up a dynamic

monitoring tool which can be used to view (and terminate) Trilogy Jobs.

To do this, first create an empty dialog definition file (we do not need any entry

fields for this dialog but you cannot display a list box without a dialog). An empty

dialog definition file is a file containing no text (it’s zero-length).

Then create two job definitions in the server-side trilogy.conf file as follows:

SHOW_RUNNING_JOBS:

 Dialog=$TRILOGYHOME/screens/running.scn

 Banner=On

 BannerHeading=Running Jobs

 Title=Show Running Trilogy Jobs

 BannerText=Shows Jobs Running Under Trilogy Control

 ListBox=On

 ColumnNames={Job Name,User,Total Run Time,Process ID}

 ColumnWidths={100,100,100,70}

Selection=Single

 PopulateListBoxWith=$TRILOGYHOME/trilogyserver.exe

 Param=-showjobs

 OnRightClick={KILL_RUNNING_JOB}

 TrayMenu=Yes

 AutoRefresh=1

 Group=Administrators

KILL_RUNNING_JOB:

 Title=Kill Job

 Program=$TRILOGYHOME/trilogyserver.exe

 Param=-killjob

 Param=$TRI_PROCESS_ID_1

 Stdout=Popup

The dialog definition file running.scn is an empty file. The list box is populated

by executing trilogyserver.exe (PopulateListBoxWith) with a parameter

of -showjobs (Param=). Since TRIREASON will be set to LISTBOX,

trilogyserver.exe will generate a comma-separated list of values which will be

incorporated into the client-side list box. The List Box is set to automatically

refresh every second (AutoRefresh=1) so the “Total Run Time” of each running

job will increment in real time and any new jobs will appear automatically in the

list.

Trilogy 2.3 Administrator Guide Page 265 of 275
www.trinem.com

Dynamic Display (Total Run Time increaments automatically).

The user can select a single row in the list box (Selection=Single). By selecting

and right-clicking on a job (OnRightClick={KILL_RUNNING_JOB}) the invoking

client user can select a “Kill Job” menu option (Title=Kill Job in the

KILL_RUNNING_JOB job). Selecting this option calls trilogyserver.exe with

the -killjob parameter (Param=-killjob) and the selected process id as

selected from the list box (Param=$TRI_PROCESS_ID_1). The output from the kill

operation is then set to be displayed in a pop-up dialog (Stdout=Popup).

Right Clicking to bring up Kill Job option

Trilogy 2.3 Administrator Guide Page 266 of 275
www.trinem.com

Standard Output from Kill Job process present as pop-up

Job automatically removed from list.

Trilogy 2.3 Administrator Guide Page 267 of 275
www.trinem.com

Appendix B – License Terms and Conditions

B.1 Terms Used in this License

"We", "us" and "our" refers to Trinem Software. "You" and "your" refers to the

individual or entity that has ordered the programs from us. "Programs" refers to

the various software components that make up the entire Trilogy application

suite and includes the documentation. "License" refers to your right to use the

programs under the terms of this agreement. The laws of the United Kingdom

govern this agreement. You and Trinem Software agree to submit to the

exclusive jurisdiction of, and venue in, the courts of the United Kingdom in any

dispute relating to this agreement.

B.2 License Overview

We are willing to license the programs to you only upon the condition that you

accept all the terms contained in this agreement. Read the terms carefully as the

installation of any portion of the Trilogy software on one or more of your

organization’s computers confirms your acceptance. If you are not willing to be

bound by these terms please do not install any portion of the Trilogy software.

B.3 License Rights

We grant you a non-exclusive, non-transferable license to use the programs only

for the purposes described in the documentation. Trilogy is licensed on a client

basis - you should not install the Trilogy client software components on more

workstations than are governed by your purchase order. Your purchase order will

list the number of client workstations on which you are permitted to install

Trilogy. If you wish to install the Trilogy client on more than this number of

workstations then you must purchase additional licenses. Contact Trinem

Software for more information.

B.4 Ownership and Restrictions

We retain all ownership and Intellectual Property Rights in the programs

(excluding those open-source components supplied by external organisations –

see below). The programs may be installed on your computers only and must

not be installed on any other organisation's computers. You may make one copy

of the original media for backup purposes.

Trilogy 2.3 Administrator Guide Page 268 of 275
www.trinem.com

You must not:

1) Remove or modify any program markings or any notice of our proprietary

rights;

2) Make the programs available in any manner to any third party;

3) Use the programs to provide third-party training;

4) Assign this agreement or give or transfer the programs or an interest in

them to another individual or entity;

5) Cause or permit reverse engineering or de-compilation of the programs

except as expressly provided for in the license terms for any third-party

software included in the distribution as described below.

6) Disclose results of any program operation, functionality or benchmark tests

without our prior consent

7) Use any Trinem Software name, trademark or logo.

B.5 Export

You agree that United Kingdom export control laws and other application export

and import laws govern your use of the programs, including technical data. You

agree that neither the programs nor any direct product thereof will be exported,

directly or indirectly, in violation of these laws, or will be used for any purpose

prohibited by these laws including, without limitation, nuclear, chemical, or

biological weapons proliferation.

B.6 Disclaimer of Warranty and Exclusive Remedies

THE PROGRAMS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. WE

FURTHER DISCLAIM ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING

WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL WE BE LIABLE FOR ANY INDIRECT, INCIDENTAL, SPECIAL,

PUNITIVE OR CONSEQUENTIAL DAMAGES, OR DAMAGES FOR LOSS OR

PROFITS, REVENUE, DATA OR DATA USE, INCURRED BY YOU OR ANY THIRD

PARTY, WHETHER IN AN ACTION IN CONTRACT OR TORT, EVEN IF WE HAVE

BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. OUR ENTIRE

LIABILTIY FOR DAMAGES HEREUNDER SHALL IN NO EVENT EXCEED THE

PURCHASE PRICE OF THE PROGRAMS.

B.7 Technical Support

Our technical support team will provide web and email based technical support

and updates to you for the programs licensed under this agreement for the

duration of any technical support agreement detailed in the purchase order.

Trilogy 2.3 Administrator Guide Page 269 of 275
www.trinem.com

B.8 End of Agreement

You may terminate this agreement by destroying all copies of the programs. We

have the right to terminate your right to use the programs if you fail to comply

with any of the terms of this agreement, in which case you shall destroy all

copies of the programs.

B.9 Relationship Between the Parties

The relationship between you and us is that of licensee/licensor. Neither party

will represent that it has any authority to assume or create any obligation,

express or implied, on behalf of the other party, nor to represent the other party

as agent, employee, franchisee, or in any other capacity. Nothing in this

agreement shall be construed to limit either party's right to independently

develop or distribute software that is functionally similar to the other party's

products, so long as proprietary information of the other party is not included in

such software.

B.10 Entire Agreement

You agree that this agreement is the complete agreement for the programs and

licenses, and the agreement supersedes all prior or contemporaneous

agreements or representations. If any term of this agreement is found to be

invalid or unenforceable, the remaining provisions will remain effective.

Trilogy 2.3 Administrator Guide Page 270 of 275
www.trinem.com

B.11 Acknowledgements and Third-Party Software License Agreements

Some components of Trilogy include software licensed from third-party vendors.

The following are the license terms for these additional components:

TCL/TK LICENSE TERMS

This software is copyrighted by the Regents of the

University of California, Sun Microsystems, Inc., Scriptics

Corporation, and other parties. The following terms apply

to all files associated with the software unless explicitly

disclaimed in individual files.

The authors hereby grant permission to use, copy, modify,

distribute, and license this software and its documentation

for any purpose, provided that existing copyright notices are

retained in all copies and that this notice is included

verbatim in any distributions. No written agreement,

license, or royalty fee is required for any of the authorized

uses. Modifications to this software may be copyrighted by their authors and

need not follow the licensing terms described here, provided that the new terms

are clearly indicated on the first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY

PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS

DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS

HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-

INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE

AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE

MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S.

government, the Government shall have only "Restricted Rights" in the software

and related documentation as defined in the Federal Acquisition Regulations

(FARs) in Clause 52.227.19 (c) (2). If you are acquiring the software on behalf

of the Department of Defense, the software shall be classified as "Commercial

Computer Software" and the Government shall have only "Restricted Rights" as

defined in Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the

foregoing, the authors grant the U.S. Government and others acting in its behalf

permission to use and distribute the software in accordance with the terms

specified in this license.

Trilogy 2.3 Administrator Guide Page 271 of 275
www.trinem.com

Crystal Icons Set

Crystal Icon Set, licensed under the LGPL.

TITLE: Crystal Project Icons

AUTHOR: Everaldo Coelho

SITE: http://www.everaldo.com

CONTACT: everaldo@everaldo.com

Copyright (c) 2006-2007 Everaldo Coelho.

Trilogy 2.3 Administrator Guide Page 272 of 275
www.trinem.com

Index

A
AllowIfJobRunning, 104, 155

AllowStop, 210

ApplyButton, 201

ApplyButtonText, 202

AutoRun, 127, 157

AutoRunDates, 130, 160

AutoRunDays, 129, 161

AutoRunInterval, 159

AutoRunMonths, 131, 162

AutoRunOnFailure, 132, 165

AutoRunOnSuccess, 132, 164

AutoRunStandardInput, 163

AutoRunTimes, 128, 158

AutoSelectColumn, 167

AutoSelectValue, 168

AutoSort, 73, 166

AutoStretch, 72, 169

B
Background Running, 135, 149

Balloon Notifications, 118

Displaying Balloon Immediately, 122

Icon Types, 121

Notify Groups, 119

Notifying Client Machines, 120

Notifying Invoking Client User, 120

Notifying Users, 120

Standard Output As, 122

Banner, 170

BannerGraphic, 173

BannerHeading, 171

BannerText, 172

Binary Data

Redirecting, 142

UseTTY, 142

Buffering, 141, 142

C
Cancel Button

Renaming, 48, 174

CancelButtonText, 48, 174

Checkboxes, 45

Linking to Other Fields, 95

Client Installation Guide - Unix, 23

Client Installation Guide - Windows, 21

ColumnNames, 69, 208

ColumnWidths, 70, 209

Command Line Options, 135

ContextColumn, 175

D
Demo

List Box, 260

Running, 28, 257

System Tray, 261

DenyIfJobRunning, 103, 176

Dialog, 177

Dialogs

Allowed Characters in Fields, 99

Banner, 60, 170, 171, 172, 173

Checkboxes and Radio Buttons, 45

Drop-Down Lists, 38

Dynamic with Script, 63

Grouping Radio Buttons, 56

Linking Fields, 91, 186, 187

List Box, 67

ListBox, 194

Named Frames, 54

Overview, 31

Password Fields, 36

Populating Fields, 189

Pre-Populating, 188

Pre-populating fields, 41

Tabbed Dialogs, 58

Title, 37, 192

Validating, 49

DialogScript, 178

Disabling Fields, 40, 48

DoubleClick, 179

Drop Down Lists, 38

E
Environment, 138, 140, 180

Environment Variables, 12, 147

G
Group, 181

Group Processor, 106

Creating Custom, 108

Plug-In Mechanism, 106

trigp_delete_list(), 113

trigp_get_groups_for_user(), 111

trigp_get_last_update_timestamp(), 110

trigp_get_users_in_group(), 112

trigp_initialise(), 109

GroupProcessor, 182

Groups. See User Groups

H
HelpText, 197

Trilogy 2.3 Administrator Guide Page 273 of 275
www.trinem.com

I
Icon, 183

Icons

Adding to List Box, 82

Context Sensitive, 82

J
Job Control

Buffering, 141

Environment, 138, 140

Introduction to, 138

Linking Jobs, 102

Preventing Execution, 103

Starting, 140

Stopping, 146

L
Licensing, 25

Linking Fields, 91, 186, 187

Disabling Fields, 93, See Disabling Fields

Linking a Field to Itself, 99, See Dialogs: Allowed

Characters in Fields

Linking Data Entry Fields, 98

Linking Drop Down Lists, 91

Linking Radio Buttons and Checkboxes, 95

Linking to List Box, 86, 91, 97

OnFieldChange, 91

Linking Jobs, 102

Preventing Jobs from Running, 102

List Box, 194

Adding Apply Button, 73, 201

Apply Button, 85

AutoRefresh, 81, 156

AutoSelectColumn, 76, 167

AutoSelectValue, 76, 168

AutoSort, 73, 166

AutoStretch, 72, 169

ColumnNames, 69, 208

ColumnWidths, 70, 209

Context, 80, 82

Context Sensitive Icons, 82

Context Sensitive Menus, 80, 82

Demo, 260

Double-Click, 81, 179

Dynamic Content, 81, 156

Example, 86

Height, 73, 204

Hidden Columns, 72, 209

Icons, 82

Limiting Selections, 74, 190

OnRightClick, 79, 195

Overview, 67

Populating with Script, 85, 206

Right Click Menu, 79, 195

Row Icons, 82

Selecting Rows, 75

Selecting Rows Automatically, 76, 167, 168

Sorting Automatically, 73, 166

Sorting Manually, 73

Width, 72, 169, 205

ListBoxHeight, 73, 204

ListBoxScript, 206

ListBoxSep, 207

ListBoxWidth, 205

Logfile, 151

M
Menus

Adding to List Box, 79

Context Sensitive, 82

N
Notification Area. See System Tray

Configuring for Windows Vista and Windows 7,

115

Notifying Users of Scheduled Job, 128

NotifyRunGroup, 184

O
OK Button

Renaming, 48, 185

OkButtonText, 48, 185

OnFieldChangenUpdate, 91, 186

OnListBoxChangeUpdate, 97, 187

OnRightClick, 79, 195

P
Param, 211

Params, 212

Password Fields, 36, See Dialogs

PopulateFieldnWith, 38, 39, 40, 41, 43, 47, 48, 49, 52,

91, 147, 148, 177, 180, 186, 187, 188, 189, 226,

250

PopulateListBox, 85, 203

PopulateListBoxWith, 206

PopulateWith, 52, 188

Port, 152

PreValidate, 216

PreValidateWith, 51, 199

Program, 216

R
Radio Buttons, 45

Grouping with Named Frames, 56

Linking to Other Fields, 95

RelayPort, 154

RelayServer, 153

Renaming Buttons, 48

S
Scheduler, 127

AutoRun, 127, 157

Trilogy 2.3 Administrator Guide Page 274 of 275
www.trinem.com

AutoRunDates, 130, 160

AutoRunDays, 129, 161

AutoRunInterval, 159

AutoRunMonths, 131, 162

AutoRunOnFailure, 165

AutoRunOnSuccess, 164

AutoRunStandardInput, 163

AutoRunTimes, 128, 158

Dependent Jobs, 132

Environment Variables set by, 134

Notifying Users, 128

Passing Parameters to Scripts, 128

Setting Environment, 128

Scripting Engine

AddParameter, 224

Balloon, 255

BalloonToGroup, 256

ChooseFile, 236

CloseFile, 238

EndOfStream, 232

execute, 229

exitcode, 230

GetChangedField, 252

GetClientNodeName, 248

GetClientUserName, 249

GetCurrentField, 251

GetDirName, 241

GetExecutionReason, 250

GetField, 228

GetFileName, 242

GetInputFileName, 247

GetJobName, 244

getline, 231

GetListBoxField, 246

GetListBoxSelectionCount, 245

GetPathName, 240

OpenFile, 237

SetField, 225

SetPort, 222

SetProgramID, 223

SetServerName, 221

SetStandardInput, 235

SetStream, 239

ShowDialog, 226

ShowStandardError, 234

ShowStandardOutput, 233

Wait, 243

WriteToStandardError, 254

WriteToStandardOutput, 253

Scripts, 13

Selections, 190

Server Installation Guide - Unix, 19

Server Installation Guide - Windows, 16

Server Side Job Control, 138

Sorting the List Box

AutoSort, 73

Manually, 73

Standard Error, 13

Standard Input, 142

tee command, 145

Translating Line Endings, 145

Standard Output, 13

Starting Server - Unix, 28

Starting Server - Windows, 27

stderr, 13, 214

stdin, 215

stdout, 13, 213

Stopping running jobs, 146

Stopping Server - Unix, 30

Stopping Server - Windows, 30

System Tray, 114, 115

Balloon Notifications, 118

Demo, 261

Running Jobs from, 114

SystemTray, 191

T
Tabbed Dialogs, 58

tee command, 145

Title, 192

TrayMenu, 193

TRICHANGEDFIELD, 52, 92, 93, 96, 100, 148

TRICLIENTNODENAME, 51, 120, 147

TRICLIENTUSERNAME, 51, 120, 147

TRICURRENTFIELD, 52, 148

TRIDIALOGNAME, 147

TRIFIELDn, 33, 46, 69

Trilogy Client Service, 114

trilogy.lic, 25

TRIPASSEDFIELDn, 80

TRIREASON, 52, 147, 148

TRISTDINFILENAME, 135, 148

U
Unix Backup - Example, 262

User Groups

"Group" Directive, 181

"GroupProcessor" Directive, 182

Controlling Access to Jobs With, 107

Group Processor, 106

Sending Balloon Notification to, 119

UseTTY, 142, 198

V
Validate, 51, 199, 200

ValidateWith, 49, 200

Validating Dialogs, 49, 51, 199, 200, 216

W
Windows Service, 27

	1 Introduction
	1.1 What is Trilogy?
	1.2 About This Book
	1.3 Typographical Conventions
	1.4 Symbols Used in This Book

	2 Trilogy – Overview
	2.1 Trilogy Jobs
	2.2 The Trilogy Configuration File
	2.2.1 Client
	2.2.2 Server

	2.3 Running Server Side Scripts with Trilogy
	2.4 Trilogy Client Service

	3 Installation Guide
	3.1 Installing a Trilogy Server
	3.1.1 Windows
	3.1.2 Unix

	3.2 Installing a Trilogy Client
	3.2.1 Windows
	3.2.2 Unix

	3.3 Licensing the Trilogy Server
	3.4 Starting the Trilogy Server
	3.4.1 Windows
	3.4.2 Unix

	3.5 Testing the installation
	3.5.1 UNIX client
	3.5.2 Windows client

	3.6 Stopping the Trilogy Server
	3.6.1 Windows
	3.6.2 Unix

	4 Trilogy Dialogs
	4.1 Creating Dialogs
	4.2 Differences between Unix and Windows Trilogy Dialogs
	4.3 Creating Password Fields
	4.4 Adding a Title to the Dialog
	4.5 Creating Drop Down Lists
	4.6 Pre-Populating Dialogs
	4.7 Pre-Populating Dialogs Containing Drop Down Lists
	4.8 Checkboxes and Radio Buttons
	4.8.1 Creating Checkboxes and Radio Buttons
	4.8.2 Pre-populating Dialogs containing Radio Buttons and Checkboxes

	4.9 Disabling Fields
	4.10 Renaming the Buttons
	4.11 Validating Dialog Data
	4.12 Validating Command Line Parameters Before Displaying Dialog
	4.13 Using the Same Script to perform Multiple Functions
	4.14 Creating Named Frames in Dialogs
	4.15 Grouping Radio Buttons with Named Frames
	4.16 Creating Tabbed Dialogs
	4.17 Adding Banners
	4.18 Creating Dialogs with Scripts
	4.19 Creating an Icon in the System Tray

	5 The List Box
	5.1 Introduction
	5.2 List Box Directives
	5.2.1 Controlling the List Box Appearance
	5.2.2 Creating List Box Content
	5.2.3 Identifying List Box Column Names
	5.2.4 Identifying List Box Column Widths
	5.2.5 Auto Sizing Columns
	5.2.6 Creating Hidden Columns
	5.2.7 Controlling List Box Width
	5.2.8 Controlling List Box Height
	5.2.9 Adding an “Apply” Button to the Dialog
	5.2.10 Sorting the List Box
	5.2.11 Automatic Sorting
	5.2.12 Controlling List Box Selections
	5.2.13 Selecting List Box Rows
	5.2.14 Automatically Selecting List Box Rows
	5.2.15 Adding a Right-Click Menu to the List Box
	5.2.16 Automatically Refreshing the List Box
	5.2.17 Adding Double Click to the List Box
	5.2.18 Adding Icons to Each Row
	5.2.19 Row Context
	5.2.20 Controlling List Box Script Execution

	5.3 Example – Building a List Box Application

	6 Linking Fields
	6.1 Introduction to Linked Fields
	6.2 Creating Linked Fields.
	6.3 Linking Drop Down Lists
	6.4 Linking radio buttons and checkboxes
	6.5 Linking a Field to the List Box
	6.6 Linking List Box to Fields
	6.7 Linking Data Entry Fields
	6.8 Linking a Field to Itself
	6.9 Caveats

	7 Linking Jobs
	7.1 Controlling Access
	7.2 Overview of Job Linking
	7.3 Preventing Jobs from Running

	8 Groups and the Group Processor
	8.1 Overview
	8.2 Group Processor Plug-In
	8.3 Controlling Job Access
	8.4 Group Processor Functions

	9 Trilogy Client Service for Windows
	9.1 Overview
	9.2 Installing Trilogy Client as a Service
	9.3 System Tray Icon
	9.4 Running Jobs from the System Tray
	9.5 Sending “Balloon” Notifications
	9.5.1 Notifying Groups
	9.5.2 Notifying Users
	9.5.3 Notifying Client Machines
	9.5.4 Automatic Notification Routing
	9.5.5 Balloon Icon Types
	9.5.6 Balloon Display Order
	9.5.7 Standard Output As Balloon Message

	9.6 Notify Users of Job Running
	9.7 Client Port Number
	9.8 Advanced Configuration – Communicating Across Subnets

	10 The Scheduler
	10.1 Introduction
	10.2 Specifying a Scheduled Job
	10.3 Related Directives
	10.3.1 NotifyRunGroup
	10.3.2 Environment
	10.3.3 Param

	10.4 Specifying Run Times
	10.5 Specifying Run Days
	10.6 Specifying Run Dates
	10.7 Specifying Run Months
	10.8 Setting Standard Input
	10.9 Dependent Jobs
	10.10 Environment Variables

	11 Trilogy - Command Line Options
	11.1 Trilogy Client
	11.2 Trilogy Server

	12 Server Side Job Control
	12.1 Introduction
	12.2 Environment
	12.3 Trilogy Server Environment
	12.4 How Jobs are started
	12.4.1 Unix/Linux Servers
	12.4.2 Windows Servers

	12.5 Buffering
	12.5.1 Unix/Linux
	12.5.2 Windows
	12.5.3 UseTTY Directive

	12.6 Standard Input
	12.7 Receiving Standard Input
	12.8 Listing Running Jobs
	12.9 Stopping Server-Side Jobs
	12.9.1 Unix/Linux Servers
	12.9.2 Windows Servers

	12.10 Server Side Scripts – Environment Variables set by Trilogy
	12.11 Running Jobs in Background

	13 trilogy.conf – Reference Guide
	Logfile
	AllowIfJobRunning
	AutoRefresh
	AutoRun
	AutoRunTimes
	AutoRunInterval
	AutoRunDates
	AutoRunDays
	AutoRunMonths
	AutoRunStandardInput
	AutoRunOnSuccess
	AutoRunOnFailure
	AutoSort
	AutoSelectColumn
	AutoSelectValue
	AutoStretch
	Banner
	BannerHeading
	BannerText
	BannerGraphic
	CancelButtonText
	ContextColumn
	DenyIfJobRunning
	Dialog
	DialogScript
	DoubleClick
	Environment
	Group
	GroupProcessor
	Icon
	NotifyRunGroup
	OkButtonText
	OnFieldChangenUpdate
	OnListBoxChangeUpdate
	PopulateWith
	PopulateFieldnWith
	Selections
	SystemTray
	Title
	TrayMenu
	ListBox
	OnRightClick
	HelpText
	UseTTY
	PreValidateWith
	ValidateWith
	ApplyButton
	ApplyButtonText
	PopulateListBox
	ListBoxHeight
	ListBoxScript
	ListBoxSep
	ColumnNames
	ColumnWidths
	AllowStop
	Param
	Params
	Stdout
	Stderr
	Stdin
	Program

	14 Trilogy Scripting Engine
	14.1 Introduction
	14.2 Using the Trilogy Scripting Engine Client Side – Overview
	14.3 Using the Trilogy Scripting Engine Server Side – Overview
	14.4 Scripting Engine Methods
	SetServerName
	SetServerPort
	Set Program ID
	Adding Command Line Parameters
	Adding Field Values
	Displaying a Trilogy Dialog
	Retrieving Field Values
	Executing Trilogy Job
	Finding Exit Status of Job
	Reading Results from Executed Jobs
	Checking for end of stream
	Displaying Standard Output as a Pop-up
	Displaying Standard Error as a Pop-up
	Setting Standard Input
	Choosing a File
	Opening a File
	Closing a File
	Setting a stream to a file
	Getting the Pathname of a File
	Getting the Directory Name of a File
	Getting the File Name of a File
	Suspending Execution
	Finding Job Name
	Finding Number of List Box Selections
	Retrieving List Box Selections
	Finding Standard Input Filename
	Finding Client Machine Name
	Finding Client User Name
	Finding Execution Reason
	Getting Current Field Number
	Getting Changed Field Number
	Writing to Standard Output
	Writing to Standard Error
	Sending a Balloon Message
	Sending a Balloon Message to a Group

	Appendix A – Examples
	Appendix B – License Terms and Conditions
	Index

