SSH and SFTP Extensions
These utilities let the user perform activities which are very common in the Linux world. The SSH Step is similar to the use of something like "putty" or "xterm" to run remote commands. This may be to get a list of processes on a remote machine, start or stop programs, etc. The SFTP Step is similar to the existing FTP step but it has some additional support for the security features which are common in current Linux environments.
SSH Step:
Put in the connection information for the remote server on the left-hand side. There are multiple types of authentication schemes supported, see down below for more details about authentication. If you hit the "Test Connection" button you should see if LISA is able to authenticate you with the server. Then simply put your SSH command that you want to run and hit the "Test SSH Command" button. All of the values can be parameterized.

Known Limitations
No Session
In the current version of the SSH step, it does not keep a session. That means if you run a command like "cd" to change a directory in Step1, then perform "ls" in Step2 you will find that the "ls" doesn't return what you expect. It's because each of these calls is made in their own session. The workaround for this is for the "ls" command to have the entire path that you need - that way you're certain to get the directory listing you want.

No Interactive Capability
In the current version of the SSH step, it is only able to login and perform a single command. It does not support the concept of an interactive command where the OS may ask additional questions which would be answered by the user. For example if you're running an installer it will ask you what directory you want, which options, etc. There are some workarounds for this such as using response files for installers and such.
The big thing that cannot be done is that the "su" command will not work because it prompts for a password. That in combination with not having a session means that you can't "su" in as root. As a workaround, ask the admin to allow that user to log in directly without running "su" (for instance by providing a public/private key).

[bookmark: _GoBack]
SFTP Step
The SFTP Step lets you create new remote files, over write existing files, read files, or get directory listings (all in SFTP format). For SCP it lets you put or get files (similar to what is capable from the scp command line utility). It uses the same type of connection information as SSH.

Detailed Background on SSH
Compatibility
The LISA SSH/SFTP extension has been tested with two main SSH Server implementations.
· OpenSSH (www.openssh.org) - this is commonly found in the Linux world
· Tectia (www.ssh.com) - this is commonly found in enterprise customers (aka SSH2)
Note that the LISA SSH/SFTP steps are based on the Trilead SSH project, which uses OpenSSH for its client implementation.
Authentication Schemes with SSH/SFTP
Note that in SSH there are 3 types of authentication that the LISA extension supports:
· Password - this is commonly disabled, but is just plain-old user/pass over a secure connection
· Keyboard-interactive - this is often enabled for individual users, and it can be enhanced with lots of challenge questions
· Public/Private Key - this is used so you don't have to supply a password, only a key (although in a strange twist the key may be password protected)
It is common that users will login with keyboard auth, after which they must use the "su" command to become a higher user such as root. It is also common that admins will allow root access directly through the Public/Private Key approach. This is because it should be very safe since nobody except them will have the private key which is required.
To use public/private key authentication, the remote server must have SSH2 installed and running. Then an administrator generates a public/private key pair. They install the public key on the server with SSH2, or even better on 100 boxes running SSH2, and they don't have to manage 100 passwords. So they keep the private key on their own machine and don't share with anyone.
SSH2 and OpenSSH Incompatible?
Sometimes OpenSSH gets a bad rap because you may have a client from one program that doesn't work with a server from the other. This is most likely to occur when using the Public/Private Key authentication scheme. The reason is because the keys are stored in different formats.
The good news is that the keys can be converted from one format to another using a variety of techniques. The SSH admin may need to be familiar with every possible type of conversion, but we only care about 1 type of conversion. We only care about converting a Private SSH2 Key to OpenSSH format (or generating a new key from scratch).
Why? We don't want the users to have to change anything that is already working on their system. So we should not require them to convert their public keys (these are never used by LISA). And if they have a Private OpenSSH Key, then it will already work with LISA.
To Convert Private SSH2 Key to OpenSSH Format
In this case I used the utility PuttyGen to convert an existing Private SSH2 Key to OpenSSH format so I could use it with LISA.
1. First make sure the Public/Private Key Authentication is properly installed by having the administrator demonstrate it to you. They should show you their configuration in Tectia SSH Client where they are using the Key.
2. Get a copy of their Private Key (this may take some coercion, such as the promise of a free Taco Bell lunch or something).
3. On your Windows machine run the puttygen utility.
1. File -> Load Private Key. Supply the key they provided.
1.
2. You should see a message like this. Note that since we're not using putty with this key, we don't care about their note to save in putty format.
1.
3. Conversions -> Export OpenSSH Key. Save this off with a different extension, this will be the key we need in LISA.
1.
How Do I Know What Key I Have?
Simple. Open in your favorite text editor.
· An SSH2 Private Key looks like this at the top:
---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----
· An SSH2 or OpenSSH Public Key may look like this at the top:
---- BEGIN SSH2 PUBLIC KEY ----
· An OpenSSH Private Key looks like this (note instead of DSA it may have a different algorithm listed):
· -----BEGIN DSA PRIVATE KEY-----
-----BEGIN RSA PRIVATE KEY-----
· A PuttyGen key (used only by Putty) looks like this. We can't use this key with LISA or with Tectia SSH Client, no matter what we'll have to convert to some other format to use it:
PuTTY-User-Key-File-2: ssh-dss
Using LISA SSH/SFTP with Public/Private Key Authentication
In order to use the LISA SSH/SFTP extension in conjunction with Public/Private Key Authentication, you will need at a minimum the following information:
· Username
· Hostname
· Private Key Text in OpenSSH format
· Private Key Passphrase (sometimes the passphrase is blank)
The only tricky part is getting the Private Key text into your test case. You can use the "read a file" step and read in the file contents, or you could use a Configuration and just paste the Private Key in there. Then in the Private Key field just use the property that contains the value of the Key.

Then hit the "Test Connection" button and you should be all set. If the connection fails, then you can turn on debug mode to see if you can get the entire stack trace. That may give you some more information.
Troubleshooting with Private Key
If you are using the wrong Private Key (for instance the SSH2 version), then you may see a failure message indicating that Private Key authentication failed. The stack trace that LISA shows is only the "last" stack trace, and this will sometimes hide the original exception that caused the problem. So look in the system messages window, and you should see multiple stack traces. Look for one that is java.io.IOException, and text like this:
java.io.IOException: Invalid PEM structure, '-----BEGIN...' missing
If you see this error, you know that you are not using an OpenSSH Private Key, so go back and double-check that you are using the correct key.
image6.jpeg
Connection Information

Username: sa ©
Password: |

Host: thekbea-aqudoge-3 53]
Authentication Scheme | Authenticate with Pubc Key v
Private Key {fisa.read-private-key rsph &3]

Private Key Passphrase

Test Connection | [_Execute Command

image1.jpeg
Connection Informatian Command Informatian

Username: ken © Shell Mode
S5 Conmend s of D

ot et e o com =L

Authentication Scheme | Autherticate with Keyboard Interactive

Passuord:

root 3607 1354
daemon 2166 1354
deemon 2232 1354
daemon 2188 1354
deemon 2182 1354

:06:
05
06
:0s:
:0s:

/usr/lib/sendmail -bd -gism
usr/1ib/nfs/statd

usr/1ib/nfs/ lockd

/usr/1ib/nfs/nfsmapid

Jusr/1ib/nEs/nfsachd ~

root 3680 1354 o £is1 0 ex /usr/lib/smmp/smmpdx -y -¢ /etc/snmp/cont
: :
: :
: ?
: ;
: :

source

image2.jpeg
Connection Information ‘Command Information

Userae = Da ot s v
Password TP Conmands [l o
Host: et dles ko com D= Scp Command

Authercation scheme. | Athencate wih Keyboard Interactve] Remckepathi | fogertomefen =L
et Key “m Remote e ~m
v Key passphase Contens ~m

Test Connection Execite Command Save to file:

Destination Path;

<2l versio

" encoding="UTF-8"2>

427>, installay</file>

EDT 20097 size="206">.Xauthority</ile>
EDT 2008" 150775 .bash_profile</file>

<file atine:

350875 ICEauthor ity</£ile>

Headers| i [DOM Tres|

image3.jpeg
P PuTTY Key Generator

Fie Key Conversions Help

Load private key

image4.jpeg
PuTTYgen Natice

Successfull mported foreign key
{ssh.com 55t private key).

To use this key with PUTTY, you need to
use the "Save private key command to
Save tin PUTTV' oun formet.

image5.jpeg
P PuTTY Key Generator

Fie Koy | Conversins
Koy | Importhey
Bublick Export OpenssHkey

B e = om o
ey Eportsheomier |

el

