CA SSO Federation with JWT Token (CA SSO as Idp)
(only with CA SSO 12.7)

When I’m writing this document, SWAT team and development are setting up a federation in which the CA SSO environment is acting as Service Provider. If you need more details check it in the CA internal Validate site or contact a CA representative.
This document instead explains how to implement a federation use case using JWT where CA SSO is acting as an Identity Provider (Using an Openid terminology CA SSO act both as “Client” and “Authorization Provider”).
The first important consideration regarding the federation with JWT is this protocol requires a 3 legs interaction, which is different to the standard 2 legs used for SAML.
In SAML we have only basically 2 main actors:
· The Identity Provider (Idp) which authenticates the users and generate the SAML tokens
· The Service Provider (Sp) which consumes the tokens
The typical simplest use case is the following (this is not the unique SAML use case but the simplest one):

1) The user provides credentials to the Idp
2) The Idp returns a token
3) The user send the token to the SP
The trust between Idp and SP is based on data exchanged initially (a certificate for signing or a back channel configuration)
My first approach was to try to implement a similar use case. For me it is clear that the Ipd, has to authenticate the users and generate a token (a JWT token in this case) and SP will validate the token in his side.
Because the 3 legs interaction required by the OpenId we had to configure CA SSO to assume 2 roles:
The OpenID client and the Authorization Server.
Furthermore it has to provide 2 services:
· Authorization point;
· Access point.
Before showing the configuration I have to analyze the standard openid flow. The description below is extracted from the CA SSO guide (version 12.7).
How Authorization Code Flow Works
The Authorization Code Flow is as follows:
1. The client registers with CA Single Sign-On and receives URLs for the authorization endpoint, access token endpoint, and user info endpoint.
2. The client prepares and sends an authentication request with required parameters to the authorization endpoint.
3. The authorization server authenticates the user and sends the user back to the client along with an authorization code.
4. The client sends the authorization code to the access token endpoint and requests for an access token.
5. The access token endpoint authorizes the request and sends an access token and ID token.
6. The client sends the access token to the user info endpoint.
7. The user info endpoint authenticates the request and returns claims about the user.
The following diagram details the flow:
[image: OIDC Authorization Code Flow]
 The CA SSO guide at url https://docops.ca.com/ca-single-sign-on/12-7/en/configuring/use-ca-single-sign-on-as-openid-connect-provider provides a details explanation of all these requests and their usage.
My initial SAML schema, using a 3 legs approach is transformed as follow:

A) The user provides the credentials to the authorization provider (very similar to the SAML flow), and he receives an authorization token. (steps 1) and 2))
B) The user sends the authorization token to the second leg, the access point. If correct the access point returns an access token. (steps 3) and 4))
C) Because CA SSO is working with openId token it is required now to open the openid token and extact the “id_token” which contains the JWT token. (step 5))
D) At the end the user send the JWT to the Service Provider.

Configuration

The definition of the Authorization and the Access Point are done configuring an Authorization provider as reported in the picture below:
[image:]
Inside this object we have defined:
· The User store;
· The redirect URL. The URL where a not authenticated user will be redirected. This parameter has the same purpose of the redirect url in the SAML configuration. (For this reason it is necessary that this page should be protected by a SSO Realm)
· Signature and encryption configuration;
· The user properties included in the JWT token (i.e.: mail, name e surname).

NOTE: All the pages should use an https connection. The CA SSO implementation does not accept request coming from a non https connection.
[image:]
[image:]

The definition of the federation instance is done creating a OpenId Client using the following gui:
[image:]
Il client_id code is automatically generated by CA SSO.
[image:]
The Open ID client refers to an existing authorization provider and define one or more access point urls defined in the parameter redirect_URI.

User Experience and Customization
Some additional steps were added to implement the required use case.
In my lab it was sufficient to copy the html page reported in the appendix in the /affwebservices/public folder of the CA Access Gateway.

Basically the flow is started, at Idp, with the following url:
https://<idp site>/affwebservices/CASSO/oidc/authorize?response_type=code&client_id=<openid client id>&scope=openid+email&redirect_uri=https%3A%2F%2F<idp site>%2Faffwebservices%2Fredirectjsp%2Faztoken.html
This is a standard jsp available on the federation application on the CA Access Gateway.
The expected parameters are:
· Client_id (defined in the configuration)
· Redirect_uri (the authorization point url, configured in the openid client)
In this case the redirect_URI points to a custom page, created using javascript used as a sample.
I provided it to the developers, which included it into their pages. I attach it as appendix here.
The scope of this page is the following:

Calling the initial url, the user is requested to authenticate and at the end the browser is redirected to the redirect_URI page with the authorization token in the query string.
In the first step, the aztoken.html page reads the token from the query string (code) and POST it to the access point (/affwebservices/CASSO/oidc/token).
This process is done by the javascript function “process()”:
function process(){
			var code = getParameterByName('code');
			if (code) {
				alert("missing authorization code");
			}
			$.ajax({
				url: '/affwebservices/CASSO/oidc/token',
				type: 'POST',
				contentType: 'application/x-www-form-urlencoded',
				data: 'grant_type=authorization_code&code=' + code,
				dataType: 'json'
			})

Then parsing the response in json format I get the id_token with the statement xhr.responseJSON.id_token.
This represent the JWT, as a final step another function creates an authorization header with the format:
Bearer <id_token>
And redirect the browser to the Service provider page.

Appendix A:
Aztoken.html

<!DOCTYPE html>
<html >
<head>
	<meta charset="UTF-8">
	<title>CA Services</title>
</head>
<body>
	<script src="https://code.jquery.com/jquery-3.2.1.js" integrity="sha256-DZAnKJ/6XZ9si04Hgrsxu/8s717jcIzLy3oi35EouyE=" crossorigin="anonymous"></script>
	<script type="text/javascript">
		function getParameterByName(name, url) {
			if (!url) url = window.location.href;
			name = name.replace(/[\[\]]/g, "\\$&");
			var regex = new RegExp("[?&]" + name + "(=([^&#]*)|&|#|$)"),
					results = regex.exec(url);
			if (!results) return null;
			if (!results[2]) return '';
			return decodeURIComponent(results[2].replace(/\+/g, " "));
		}
		function process(){
			console.log("Start Process");
			console.log("Init post");
			var code = getParameterByName('code');
			if (code) {
				alert("missing authorization code");
[bookmark: _GoBack]			}
			console.log("code=" + code);
			$.ajax({
				url: '/affwebservices/CASSO/oidc/token',
				type: 'POST',
				contentType: 'application/x-www-form-urlencoded',
				data: 'grant_type=authorization_code&code=' + code,
				dataType: 'json'
			})
			.done(function(data, status, xhr) {
				console.log("post ok");
				if(parseInt(xhr.getResponseHeader('response-code'),10) == 0) {
					console.log("OK");
				} else
					console.log("KO");
				})
			.fail(function(data, status, xhr) {
				console.log("FAIL");
			})
			.always(function(data, status, xhr) {
				console.log("ALWAYS");
				console.log(xhr.responseJSON.id_token);
				call_serviceProvider(xhr.responseJSON.id_token);
				console.log("always ok");
			});
			console.log("post ok");

		}

		function call_serviceProvider(id_token) {
			console.log("Start serviceProvider-testing");
			console.log("id_token=" + id_token);
			var token='Bearer ' + id_token;
			var myHeaders = new Headers({
				"Authorization": token
			});

			fetch("https://serviceProvider-testing.herokuapp.com", {
				method: 'get',
				headers: myHeaders,
				crossDomain: true,
				credentials: 'include',
				data: {
					integration: 'bam',
					foo: 'bar'
				}
			}).then(function(response) {
				console.log('This is the response: ' + response)
				// $('body').html(response);
				document.getElementById("autosubmit").submit()
			})
			.catch(function(error) {
				console.log(error);
			});

		};

	</script>
	<script type="text/javascript">
	$(document).ready(function(){
		process();
	});
	</script>
	
	<div class="wait">
		Attendere, Prego...
	</div>

	<form name="autosubmit" action="https://serviceProvider-testing.herokuapp.com" method="GET" id="autosubmit">
		<input type="hidden" name="integration" value="bam">
	</form>
</body>
</html>
oleObject2.bin
�

�

�

�

�

�

�

�

image4.png
(€]

(a_ CA Single Sign-On 2 skeminder | Server prd221wao1 | S

technologies

Infrastructure

[E1Add pre-defined provider related configuration that can be associated with multiple clients.]

Policies

Federation -

’ Clents

» Legacy Federation

Authorization Server Base URL

Reports https: //www.banc aalpimarittime. it Show |

Administration

ememoryTest https://test.banc aalpimarittime. it show |

Copyright ® 2017 CA Technologies. All ights rezerved. | Support | Community | Stemap | RESTAPT=
About CA Single Sign-On

image5.png
CASingle Sign-On : Author.
2 siteminder | Server prd221wao1

(a. CA Single Sign-On

technolog

View Authorization Providers » Modify Authorization Provider

* Provider Name: [CASSO-OP
Description: [Per ememory

Selected Directories

Available Directories
BamUtentiRegistrazione BamUserStoreMail
BamUserStoreRelax

Authentication and Authorization

* User Directories:

Search specification: [—————

n Server Base URL:

* Author

[Use Secure AUthentication URL

—

* Authorization Code Expiry Time: »

\g and Encryption
Import Generate

* Signing Certificate Alias:

sig:
® Expires on: set 11, 2027 12:03 AM CEST

* Signing Algorithm:

I Sign ID Token
[J Sian User Information

Encryption Certcate Alas:
Encryption Key ID:

image6.png
* Signing Certificate Allas: [federazionebam v/ ® Expires on: set 11, 2027 12:03 AM CEST

* Signing Algorithm: [RS256 v

¥ Sign ID Token
[J Sian User Information

Encryption Cetificate Alias: [Select one..

Encryption Key ID:

WI

Encryption Algorithm: [Select one... v

Encryption Method

[Encrypt ID Token
[Encrypt User Information

Mappings

Claims Mapping

Claim Name | | User Attribute |] Add

User Attribute

Claim Name

email mail

name gvenName

sumame sn

Scope Mapping

Scope Name [] Claim Names [J[add]

Scope Name Claim Names Action
email email,name, sumame

Save | Close

image7.png
ca CA Single Sign-On

technolog

2 siteminder | Server prd221wa01 |

Infrastructure
Policies

Federation

ect

TOEReration Provider
» Partnership Federation
» Legacy Federation

Reports
Administration

enerated.

[E Greate a client with OP to identify the client uniquely while serving requests. If the creation is successful, client credentials and URLS for supported endpoints are

Search FOr:| Giont Name & i

Search | Clear

Clients List
1242
Actions | - Client Name Client ID Authorization Provider Status
Action v | cmemoryT est 07007106-245-4481-8405-€7f4ac8deads |ememoryTest Enabled
|| Action v ememory | 3085392- 2679-4807-8d5b-7709c83bf7ce | CASSO-0P Enabled

Gopyright © 2017 CA Technalogies. All ahts reserved. | Support | Commurity | Stemap | RESTAPTS | hitos/prd22 a0 18443 ar/ sieminder/console/ a2/ aboutiop

About CA Sngle Sign-0n

image8.png
C . CA Single Sign-0On

technologies

View Giierts » Modify Client ememory

* dlient Name: ~[ememory

Description: [federation ememory
Client 1D: [3208539256 79807-805b-7705c3 3b 7ce.
Client Secret [Regenerate
Logo URL:

Disable User Consent.

User Consent Form

Client Authentication

Required

Application Type: public O Confidential

Scope Configuration
Authorization Provider: [CASSO-0P v

Scopes: ¥ openid
Response Types: /| Code

Grant Types: ¥/ Authorization Code

Send User Information in ID Token
[Send SMSession in ID Token

Redirect URIS

Gzl J[Asd]

S S

Token Expiry Time

* Access Token: 1 F

‘Copyright © 2017 CA Technologies. Allrights reserved. | Support | Community | Stamap | RESTAPT
About CA Single Sign-0n

image1.emf
Identity Provider

Service Provider

1) Provide Credentials

2) return a token

3) Send token

oleObject1.bin
�

�

�

�

�

�

�

�

image2.png
1. Authentication Request

Client

2. Authentication and Authorization

3. Authentication Response

4. Access Token Request

5. Access Token Response

6. Userinfo Request

7. Userlnfo Response

CA 550 (0P)

image3.emf
Access Point

Service Provider

1) Provide Credentials

2) return an authorization token

6) Send JWT

Authorization Server

3) Provide authorization token

4) return an access token

5) Extract JWT from OpenId token

