Overview

The licensing framework internally does not care what licenses are being applied to, it simply identifies the license recipient by their guid.

However, specific licensing policy implementations such as Agent Based and Inventory Based licensing do care what resources are taking up licenses.

In 2007 the interaction between licensing and hierarchy/replication was brought up and the declaration by product management was that licensing of resources should only include local resources.

Base Licensing Types and Hierarchy

Agent Based Licensing

Agent based licensing policy synchronization as of NS 7.0 Beta 2 RC1 only counts agents installed on computers which are reporting to the current NS.

Inventory Based Licensing

Inventory based licensing policy synchronization as of NS 7.0 Beta 2 RC1 only counts inventory which has an associated resource which lists its OwnerNS as the current machine.

Other Licensing Policy Types

Concurrent User, Server and Unlimited licensing policies do not have synchronization implementations and so there is no hierarchy interaction.

Custom Licensing Policy Types and Hierarchy

If a solution implementas a custom licensing policy type, either from scratch or by deriving from a base licensing policy type, they will need to ensure that the synchronization implementation does not request licenses for resources which are not local to the current NS.

If a licensing policy type licenses some data other than resources which is stil associated with resources (possibly license count based on the number of total rows in a data class, where the data class is a multirow data class) then the licensing should only count the data associated with local resources.

If a licensing policy type licenses items which have nothing to do with items which may be replicated then the above does not apply.

Licensing Requests

Outside of synchronization methods licensing policies can additionally keep track of licensed resources via request. For performance reasons, licensing requests perform no validation that the guid provided to the request corresponds to a valid resource. It is up to the code making the requests to ensure the set of resources being requested are all real potential candidates for a license.

For this reason, it is up to the code performing the request to ensure that the guid which is passed to the request does not correspond to a replicated resource. In practice this should never be a problem as checks should happen at times of interaction with a resource, which is indicative that the resource is local to this NS.

Licensing Cleanup

If a custom licensing policy implementation implements cleanup of data which is unlicensed, it should be careful not to clean up data associated with replicated resources, as those resources will not have entries in the LicenseInUse table.

Checking licensing

Example for a single valid resource (to be adapted, not copied):

 using Altiris.NS.Licensing;

 ILicensingPolicy policy = LicensingPolicy.GetInstance(licensingPolicyGuid, solutionGuid);

 if (policy == null)

 {

 // Handle the license not installed case

 }

 if (policy.Status == LicensePolicyStatus.Ok || policy.Status == LicensePolicyStatus.Exceeded)

 {

 try

 {

 // This will give a license use to this resource if one has not already been given and there are still license uses available.

 policy.RequestLicense(resourceGuid);

 }

 catch (LicenseExceededException)

 {

 // Handle the license exceeded case for the requested resource.

 }

 }

 else

 {

 // Handle the license expired or invalid case.

 }

When a license check is required at some point in the code, the standard method is to obtain the instance of the licensing policy using LicensingPolicy.GetInstance(licensingPolicyGuid, solutionGuid) - the solutionGuid is needed so that when the licensing policy isn't currently cached we don't have to load up all the licensing policys for all products trying to find the one.

Having acquired the licensing policy, the status should be checked, to ensure it is not either invalid or expired. The status may return either OK or Exceeded, which are both 'valid' states, the later being an indicator that the license has had its count reduced recently and so the current list of license uses exceeds the limit.

The prefered model for checking licenses requires that you first filter the list of resources down to those which should have a license. The licensing policy does not provide a mechanism to do this, not even on the derived licensing policy types.

Once the resources have been filtered as such, licensingPolicy.RequestLicense should be called for each resource. If a license has already been assigned to the requested resource, this function does nothing. If not and there are available licenses, the licenses in use will be updated (asynchronously) to correct the fact that the requested resource does not yet have a license. If there are no licenses available, an exception will be thrown.

Request is a very fast method for validating a resource.

Determining if a resource currently uses a license

 using Altiris.NS.Licensing;

 ILicensingPolicy policy = LicensingPolicy.GetInstance(licensingPolicyGuid, solutionGuid);

 if (!policy.IsInUseLicense(resourceGuid))

 {

 // Report that the specified resource is currently not using a license.

 }

 else

 {

 // Report that the specified resource is currently using a license.

 }

When displaying a page related to a resource it might be useful to display whether that resource is currently licensed. The IsInUseLicense method provides a mechanism for performing this check.

NoteBe aware that this method performs a database request every time you call it, and as such must be considered very slow.

Additionally be aware, that it does not cause the license uses to be updated, so a resource which should have a license, but currently doesn't because a license is yet to be requested, will return false.

Checking AUP and Expiry

 using Altiris.NS.Licensing;

 ILicensingPolicy policy = LicensingPolicy.GetInstance(licensingPolicyGuid, solutionGuid);

 if (policy.Expired)

 {

 // License has expired completely.

 }

 else if (!policy.AllowUpgrade)

 {

 // License has exceeded AUP date.

 }

Licensing Policy Definition and Integration

Overview

The most fundamental aspect of intergrating licensing with solutions is deciding what kind of licensing the solution needs. Once this is decided, the license policies xml fragment needs to be written. This fragment is to be hard coded into an override on the solutions product item for the method GetLicensingXml(). If a solution needs custom licensing outside of the provided models, it will need to implement its own licensing policy, inheriting from LicensingPolicy if at all possible. However, custom licensing should be avoided where possible and requirements outside the current provided models should be communicated to the NS core team for consideration of adding the model to the NS core support.

If custom licensing is required, a solution will have to override ConstructLicensingPolicyFromDetails in order to handle additional styles which must be defined to correspond with the new custom licensing. Call into the base to handle the default licensing policy styles.

The following examples taken from Licensing Refactor show some of the possible xml fragments which can be specified in the return value of GetLicensingXml to setup the licensing policies associated with the solution.

For licensing solutions across a hierarchy, see LicensingHierarchy.

Server based licensing

Server either has unlimited licenses or has no license

Changes:

1. New style attribute, set to server

Example Xml:

 <xmlData style="server">

 <licenseGuid>{BF9D70DB-1BCB-4A4C-93A4-F9642FAFCCD2}</licenseGuid>

 <allowedTrialDays>7</allowedTrialDays>

 </xmlData>

Inventory based licensing

Require license based on existance of data in a class (1 or more rows)

Changes:

1. New style attribute, set to inventoryBased

2. New inventoryClassGuid element, which specifies the inventory class that will be checked

Example Xml:

 <xmlData style="inventoryBased">

 <licenseGuid>{BF9D70DB-1BCB-4A4C-93A4-F9642FAFCCD2}</licenseGuid>

 <allowedTrialDays>7</allowedTrialDays>

 <allowedTrialLicenses>10</allowedTrialLicenses>

 <inventoryClassGuid>A4080439-D555-4cb5-BCB8-83482D265133</inventoryClassGuid>

 </xmlData>

1. Licenses will not be requested in the dataloader when data is loaded into the system. The tracking will be done in two ways:

1. Solutions are responsible for marking InventoryCaptureItems with licenseCheckRequired

2. The system will audit the exisitng license usage on a regular basis during synchronise and ensure that license count is up to date

2. Forwarding presents a complex scenario. The inventory processor will allow through data since there is no license check when forwarded data is processed. If it is key to get rid of data at the top level, the solutions will have to implement the purge. The core will be able to provide the solutions with an accurate list of licensed resources through APIs.

Agent based licensing

Require a particular Sub Agent is installed (either Carbon Copy or Altiris Carbon Copy)

Changes:

1. New style attribute, set to agentBased

2. New agentNames element, containing agent names we are to look for in the Inv_AeX_AC_ClientAgent basic inventory class

Example Xml:

 <xmlData style="agentBased">

 <licenseGuid>{BF9D70DB-1BCB-4A4C-93A4-F9642FAFCCD2}</licenseGuid>

 <allowedTrialDays>7</allowedTrialDays>

 <allowedTrialLicenses>10</allowedTrialLicenses>

 <agentNames>

 <name>Carbon Copy</name>

 <name>Altiris Carbon Copy Agent</name>

 </agentNames>

 </xmlData>

1. Licenses will not be requested in the dataloader when data is loaded into the system.

2. Same forwarding concerns that exist for inventory based licensing exist for agent based licensing.

Concurrent user based licensing

Ability to define new licensing behaviour that will automatically reclaim licenses after a defined period of time

Changes:

1. New way RequestLicense behaves: after defined period of time license will be automatically reclaimed.

2. New style attribute, set to concurrentUserBased

3. New timeoutSecs element, specifying number of seconds after which licenses will be automatically reclaimed. While specifed in seconds, the accuracy at which the autoreclaim is performed is 1-2minutes.

4. We will add secondary key support for the RequestLicense API (Eg. RequestLicense(Guid, string)) this will allow the same guid to consume multiple licenses, in the asset scenario the secondary key will be the machines IP address. This allows a single resource guid to consume multiple licenses.

Changes not yet completed. (Will not be in march kit)

1. Add ability to track how high concurrent license usages has reached in the past.

2. There will be an API provided in (Altiris.NS) for GetCreateUserResource(name, domain). Calling this method will create a new user resource based upon the users identity and return its Guid. If a matching one already exists it will be returned instead. This GUID can then be used to request a concurrent user license.

3. An additional API will be provided to return the set of user resources that are consuming licenses, and the amount of time left on their leases.

Example Xml:

 <xmlData style="concurrentUserBased">

 <licenseGuid>{BF9D70DB-1BCB-4A4C-93A4-F9642FAFCCD2}</licenseGuid>

 <allowedTrialDays>7</allowedTrialDays>

 <allowedTrialLicenses>10</allowedTrialLicenses>

 <timeoutSecs>1800</timeoutSecs>

 </xmlData>

NoteIf you use concurrent user based licensing, you should validate that the user is a valid user before requesting a license - otherwise invalid users will be given licenses.

Rules for reclaiming licenses will be provided by core

Changes:

1. New optional reclaimOnAssetStatus element, allows you to specify the asset status you wish to reclaim licenses for. For example you may want to reclaim licenses when a machine is retired.

2. New optional reclaimOnUnmanaged element, allows you to specify what happens when a resource is unmanaged (IsManaged = 0 in ItemResource table)

3. New optional reclaimOnDeleted element, allows you to define what happens when a licensed resource is deleted.

4. Defaults will be defined in core (Reclaim on Retired or Deleted)

NoteUp to Oct kit, the status attribute of the reclaimOnAssetStatus must be lower case, otherwise you will get KeyNotFoundException with msg "The given key was not present in the dictionary" NoteIn an upcoming backwards compatible change, reclaimOnAssetStatus will additionally accept the asset status guid in case multiple solutions have included asset statuses with the same name. Furthermore the specified asset status will no longer be required to exist at all times the licensing policy is in use. If it is not present, it will be ignored. When these changes are available, it is recommended that asset statuses be specified by guid and not name. Until these changes are available, the below example will cause errors at runtime as the disposed asset status is not included in the NS core, it is provided by asset solution, if present.

Example Xml:

 <xmlData>

 <licenseGuid>{BF9D70DB-1BCB-4A4C-93A4-F9642FAFCCD2}</licenseGuid>

 <allowedTrialDays>7</allowedTrialDays>

 <allowedTrialLicenses>10</allowedTrialLicenses>

 <reclaimOnAssetStatus status="Disposed">true</reclaimOnAssetStatus>

 <reclaimOnAssetStatus status="Retired">true</reclaimOnAssetStatus>

 <reclaimOnUnmanaged>true</reclaimOnUnmanaged>

 <reclaimOnDeleted>true<reclaimOnDeleted>

 </xmlData>

Multiple licensing policies will be supportable for a single product.

Changes:

1. New optional guid attribute, allows you to specify the unique identifier of the licensing policy details. It will default to the product guid if not specified. Licensing policies must all have unique identifiers, so do not define more than one licensing policy with the default.

Example Xml:

 <xmlData style="concurrentUserBased" guid="{BF9D70DB-1BCB-4A4C-93A4-F9642FAFCCD2}" >

 <licenseGuid>{BF9D70DB-1BCB-4A4C-93A4-F9642FAFCCD2}</licenseGuid>

 <allowedTrialDays>7</allowedTrialDays>

 <allowedTrialLicenses>10</allowedTrialLicenses>

 <timeoutSecs>1800</timeoutSecs>

 </xmlData>

Providing License XML

Override the GetLicensingXml on the solution's LicensingPolicy object. To determine how a product is licensed, the licensing framework:

1. Constructs your product’s Solution item and calls the LicensingPolicies property.

2. The LicensingPolicies property calls GetLicensingXml.

3. It passes the XML returned to the protected method CreateLicensingPoliciesFromBasicXml().

4. This parses the XML and calls the protected method ConstructLicensingPolicyFromDetails() for each <xmlData> element.

5. ConstructLicensingPolicyFromDetails looks at the <xmlData> element’s style attribute and creates the appropriate class.

Reclaiming license uses

License uses for resources which are not valid, or no longer relevent should be cleared up by calling ReclaimLicense on the licensing policy. Automated reclimation comes as part of the standard licensing policies, so this is mostly only of a concern for developers of custom licensing who should consider overriding the Synchronise method to perform any additional reclimations required (by calling ReclaimLicense while in that method).

Registering license uses out of band

Custom licensing may wish to register license usage based on data populated indirectly which can not or should not be interspersed with RequestLicense calls. Custom licensing should in this case override Synchronise to directly submit LicensingPolicyRequestEvents to the LicensingPolicyEventProcessor. It should also be sure to avoid submiting any requests which are going to be immediately reclaimed to avoid a bouncing cycle.

Using Non-Certificate Licenses

For non-Altiris or Symantec products or products that use their own license mechanisms, the licensing framework supports a license provider model, using the ILicenseProvider interface, that a licensing policy can use to check what licenses are installed. To do this:

1. Create a new LicensingPolicy class that inherits from LicensingPolicyServerBased.

2. Create a class that implements ILicenseProvider that checks your licences (e.g. an enteres serial number, a BLOB an EXE, a registry key and so on) and return it from the LicenseProvider property of your LicensingPolicy.

3. Override the protected method ConstructLicensingPolicyFromDetails in your Solution class (not SolutionInstallation) to check for a unique style, e.g. “serverWithSerialNumber” and construct your new LicensingPolicy class.

4. Modify GetLicensingXml in your Solution class to include an <xmlData> element with the style attribute set to your new style.

5. Create a new class that implements ILicense. Construct, populate with the appropriate fields and return it from your LicenseProvider class's GetLicense method. You can ignore the licenseGuid parameter if appropriate, but it will be passed in with the value from your GetSolutionXml details. The platform provided license class, Altiris.NS.Licensing.License, is hard coded to work with certificates and is intentionally readonly and sealed to discourage tampering.

Top of Form

Summary

Current licensing implementation in NS 6.0 has many gaps, which is forcing solution devs to do lots of extra work when implementing licensing for their solution. Support have flagged licening as a problamatic area and spend a lot of time diagnosing licensing issues. In NS 7.0 we are trying to resolve these issues, and provide a complete toolkit for licensing.

This document contains proposed changes to the licensing framework and attempts to document the current behaviour accross altiris solutions.

Dev Managers: Please ensure that the section which specifies current licensing behaviour is up to date and accurate.

Comments

ssaffron: please type in any comments you have here ...

alangsworth: Minutes from our conversation (in no particular order):

1. "LicenseProvider" Model: Allows licenses to be delivered in some format other than an Altiris issued digitial certificate.

2. "LicenseType" Model (for want of a better name): A method to extend the types of license policies defined below (low priority, you've covered just about every base already)

3. Feature based licenses: Rather than license a product, allow licensing of features inside a product. As more products become platforms, it would be nice to allow a product to use another without requiring a full license for both.

4. Deprecate old (pre HF 18) license format.

5. You may want to specify that, ignoring feature based licenses, this document doesn't change the structure of the digital certificate.

6. Beyond the scope of what we're dealing with here, but we may want to provide some documentation to solution developers on how best to deal with licensing. For example, at least one 6.x product changed the way they license and had to do unnecessary hacks and work because they weren't aware of a better solution.

smewett:

1. AICM requires mimimum licensing APIs to available prior to the NS being installed. This may mean splitting out licensing into its own assembly and MSI.

kengel:

1. Need a plan for keeping the licensing page uncluttered, a solution needs a way of hiding an LP from the licensing page

dpratt:

1. I believe this is covered by ALangsworth comments #3., but the monitoring team had to implement a complete custom licensing model to handle monitor core and monitor packs. It would be nice if the new model could handle what they've had to do manually. Also, Endpoint security solution has requested solutions being able to share a license and have feature based licensing.

gpearce:

1. kengel's comment has not yet been address by the implementation as of march. Also feature based licensing policies don't have names to identify themselves, this needs to change.

Changes proposed for 7.0

Server based licensing

Server either has unlimited licenses or has no license

Changes:

1. New style attribute, set to server

Example Xml:

 <xmlData style="server">

 <licenseGuid>{BF9D70DB-1BCB-4A4C-93A4-F9642FAFCCD2}</licenseGuid>

 <allowedTrialDays>7</allowedTrialDays>

 </xmlData>

Inventory based licensing

Require license based on existance of data in a class (1 or more rows)

Changes:

1. New style attribute, set to inventoryBased

2. New inventoryClassGuid element, which specifies the inventory class that will be checked

Example Xml:

 <xmlData style="inventoryBased">

 <licenseGuid>{BF9D70DB-1BCB-4A4C-93A4-F9642FAFCCD2}</licenseGuid>

 <allowedTrialDays>7</allowedTrialDays>

 <allowedTrialLicenses>10</allowedTrialLicenses>

 <inventoryClassGuid>A4080439-D555-4cb5-BCB8-83482D265133</inventoryClassGuid>

 </xmlData>

1. Licenses will not be requested in the dataloader when data is loaded into the system. The tracking will be done in two ways:

1. Solutions are responsible for marking InventoryCaptureItems with licenseCheckRequired

2. The system will audit the exisitng license usage on a regular basis during synchrnise and ensure that license count is up to date

2. Forwarding presents a complex scenario. The inventory processor will allow through data since there is no license check when forwarded data is processed. If it is key to get rid of data at the top level, the solutions will have to implement the purge. The core will be able to provide the solutions with an accurate list of licensed resources through APIs.

Agent based licensing

Require a particular Sub Agent is installed (either Carbon Copy or Altiris Carbon Copy)

Changes:

1. New style attribute, set to agentBased

2. New agentNames element, containing agent names we are to look for in the Inv_AeX_AC_ClientAgent basic inventory class

Example Xml:

 <xmlData style="agentBased">

 <licenseGuid>{BF9D70DB-1BCB-4A4C-93A4-F9642FAFCCD2}</licenseGuid>

 <allowedTrialDays>7</allowedTrialDays>

 <allowedTrialLicenses>10</allowedTrialLicenses>

 <agentNames>

 <name>Carbon Copy</name>

 <name>Altiris Carbon Copy Agent</name>

 </agentNames>

 </xmlData>

1. Licenses will not be requested in the dataloader when data is loaded into the system.

2. Same forwarding concerns that exist for inventory based licensing exist for agent based licensing.

Concurrent user based licensing

Ability to define new licensing behaviour that will automatically reclaim licenses after a defined period of time

Changes:

1. New way RequestLicense behaves: after defined period of time license will be automatically reclaimed.

2. New style attribute, set to concurrentUserBased

3. New timeoutSecs element, specifying number of seconds after which licenses will be automatically reclaimed. While specifed in seconds, the accuracy at which the autoreclaim is performed is 1-2minutes.

4. We will add secondary key support for the RequestLicense API (Eg. RequestLicense(Guid, string)) this will allow the same guid to consume multiple licenses, in the asset scenario the secondary key will be the machines IP address. This allows a single resource guid to consume multiple licenses.

Changes not yet completed. (Will not be in march kit)

1. Add ability to track how high concurrent license usages has reached in the past.

2. There will be an API provided in (Altiris.NS) for GetCreateUserResource(name, domain). Calling this method will create a new user resource based upon the users identity and return its Guid. If a matching one already exists it will be returned instead. This GUID can then be used to request a concurrent user license.

3. An additional API will be provided to return the set of user resources that are consuming licenses, and the amount of time left on their leases.

Example Xml:

 <xmlData style="concurrentUserBased">

 <licenseGuid>{BF9D70DB-1BCB-4A4C-93A4-F9642FAFCCD2}</licenseGuid>

 <allowedTrialDays>7</allowedTrialDays>

 <allowedTrialLicenses>10</allowedTrialLicenses>

 <timeoutSecs>1800</timeoutSecs>

 </xmlData>

Rules for reclaiming licenses will be provided by core

Changes:

1. New optional reclaimOnAssetStatus element, allows you to specify the asset status you wish to reclaim licenses for. For example you may want to reclaim licenses when a machine is retired.

2. New optional reclaimOnUnmanaged element, allows you to specify what happens when a resource is unmanaged (IsManaged = 0 in ItemResource table)

3. New optional reclaimOnDeleted element, allows you to define what happens when a licensed resource is deleted.

4. Defaults will be defined in core (Reclaim on Retired or Deleted)

Notethe below example currently causes errors if used as the disposed status does not exist in a default core NS installation. See the LicensingIntegration version of this page for more details.

Example Xml:

 <xmlData>

 <licenseGuid>{BF9D70DB-1BCB-4A4C-93A4-F9642FAFCCD2}</licenseGuid>

 <allowedTrialDays>7</allowedTrialDays>

 <allowedTrialLicenses>10</allowedTrialLicenses>

 <reclaimOnAssetStatus status="Disposed">true</reclaimOnAssetStatus>

 <reclaimOnAssetStatus status="Retired">true</reclaimOnAssetStatus>

 <reclaimOnUnmanaged>true</reclaimOnUnmanaged>

 <reclaimOnDeleted>true<reclaimOnDeleted>

 </xmlData>

Multiple licensing policies will be supportable for a single product.

Changes:

1. New optional guid attribute, allows you to specify the unique identifier of the licensing policy details. It will default to the product guid if not specified.

Example Xml:

 <xmlData style="concurrentUserBased" guid="{BF9D70DB-1BCB-4A4C-93A4-F9642FAFCCD2}" >

 <licenseGuid>{BF9D70DB-1BCB-4A4C-93A4-F9642FAFCCD2}</licenseGuid>

 <allowedTrialDays>7</allowedTrialDays>

 <allowedTrialLicenses>10</allowedTrialLicenses>

 <timeoutSecs>1800</timeoutSecs>

 <trackMaxUsageDays>30</trackMaxUsageDays>

 </xmlData>

License lookup for client config generation will be provided by core

(no client config will be provided when exceeded for that agent)

This change has not been done at the current time. (Will not be ready for march kit)

Changes:

1. New licenseCheckRequired element for classes deriving off ClientConfigPolicy

2. IItemClientConfig has a new property named LicenseCheckRequired, if this is true a license check will be performed before generating the xml.

3. (TODO) Optionally specify the licensing policy guid incase it isn't the product guid.

Example Xml:

 <items>

 <item guid="{142F2371-E64D-43c0-A207-17DB2C0552C4}" classGuid="{980DA611-A927-40c2-AE97-331F7E88CB53}">

 <!-- class deriving from ClientConfigPolicy -->

 <name>All Windows Servers (excluding 'Package Servers')</name>

 <description>Altiris Agent Settings for 'All Windows Servers (excluding 'Package Servers')'</description>

 <itemAttributes>NoDelete</itemAttributes>

 <parentFolderGuid>BB192885-7F89-44a7-84C6-1E74CB33F70E</parentFolderGuid> <!-- Altiris Agent Configuration -->

 <licenseCheckRequired>true</licenseCheckRequired>

 </item>

 </items>

Licensing performance will be greatly improved

Changes:

1. Defer license requests when license count has not been exceeded: when a license is in compliance and there are more than 5% free licenses (configurable), calls to RequestLicense will always return with no exception, and a license request will be queued in the background.

2. A new distributed cache will track license usage (when exceeded), which means that license requests will not go crosss-appdomain via remoting in most cases

3. LicensePolicyThreadingBase in 6.0 creates one thread per licensing policy for licensing enforcement, this will be changed so there will only be one thread dealing with licensing (reduces chance of locking issues, and increses sclability)

Higher quality reporting on current license usage

This change has not been done at the current time. (Will not be ready for march kit)

Changes:

1. License page will allow you to drill down into actual license usage (list resource that are consuming licenses)

2. (In consideration) Resource manage to show license usage

3. Global resource report, which will list resources and the names of the solutions that the resource is consuming licenses for.

4. License page will query internal MS license store so the page will always reflect the real status.

Breaking Changes

ILicense and ILicense2 will be merged

1. At the moment part of the licensing implementations is in the ILicense class and extensions in ILicesnse2, this functionality will be merged in 7.0

ILicense will be extended

1. LicenseType property will be added

ILicensingPolicy will be changed

1. Request and Reclaim license will both now return void, so as to allow reclaim to proceed asynchronously and to correct the existing situation that request always returned true anyway.

Existing LicensingPolicy implementations will be removed.

Product licensing properties/methods rationalized.

1. All current licensing related properties replaced with LicensingPolicies property

2. Add protected virtual methods for defining the way the LicensingPolicies property is generated.

3. Products will at minimum need to change to override GetLicensingXml() to return a hard coded string of the new format as appropriate for their licensing needs.

Changes currently shipped in Feburary kit branch

Raw licensing changes:

1. ILicense and ILicense2 have been merged into ILicense
2. ILicenseInstance ProductRef string has been changed to LicenseGuid Guid property.

3. ILicensingPolicy ProductGuid property changed to LicensingPolicyGuid property to represent the change from one policy per product to potentially many.

4. ILicensingPolicy RequestLicense now returns void to corectly represent the current situation where an exception is thrown if a request is rejected.

5. ILicensingPolicy ReclaimLicense now returns void to represent the fact that reclaims are performed asynchronously.

6. E_LP_STATUS renamed LicensingPolicyStatus to conform to naming standards.

7. ILicensingPolicy InUseLicenses added to retrieve the current full list of resources using the licensing policy.

8. ILicensingPolicy Start and Stop removed, since the framework runs synchronize for you, rather than you being told when you can run synchronize.

9. ILicensingPolicy has new LicenseProvider property which exposes the LicenseProvider which is used by the default License property implementation to retrieve a license given a license guid.

Changes to method of configuring licensing.

1. IProduct now has one property ILicensingPolicy[] LicensingPolicies as opposed to a single licensing policy and a licensing policy type property. The default Product implementation implements LicensingPolicies property to be constructed using a protected method CreateLicensingPoliciesFromBasicXml which is passed the results of the protected overrideable GetLicensingXml(). If your licensing consists purely of licensing policies of the new 4 provided types, just override GetLicensingXml(). If you are going to have multiple LicensingPolicies, it is recommended at the current time that the first one not specify the guid attribute, and all following ones do.

2. Product provides a protected virtual method CreateLicensingPolicyFromDetails which is passed the xml fragment, the unique identifier for the licensing policy to be created, and the style of licensing policy to be created. If you need a licensing style completely different from one of the provided ones, you can override this method to handle a different style, calling the base to handle the default styles.

3. If you need to perform a custom licensing based on one of the provided models but with license certificates from a source other than the altiris licensing store (eg lic files or seperate licensing stores or otherwise), you can create a derived licensing policy which just overrides the LicenseProvider property to return your own custom ILicenseProvider implementation. ILicenseProvider is a simple interface with one method which returns an ILicense given the license guid. The default LicensingPolicy implementation calls the LicenseProvider with the policies LicenseGuid, and then again with the LicenseingPolicyGuid if the returned license is a trial license (as opposed to an extended trial or full license). The second call is to ensure that licensing policies with different trial license settings but a common license guid implement their respective trial license settings. Internally we take advantage of the license provider mechanism for testing licensing without having to instal actual licensing certificates.

Usage pattern changes.

1. Request is now very cheap operation while under license count limit. IsInUse performs a database hit where Request simply deposits an asynchronous request into a queue. Therefore unless you don't potentially want the resource using a license if it isn't already, request is a far better option than IsInUse.

2. Asynchronous nature of LicensingPolicy. You can't submit a request or reclaim and immediatley expect IsInUse to return true or false respectively. Nor can you submit a request or a reclaim and expect LicenseInUseCount to update immediately. One has to code against licensing policies with the assumption that they aren't a perfect tracking system at any given time. Once license count has hit the limit, then (after a short interval) it becomes a concrete tracking system with clearly defined results, but outside of that condition it uses asynchronous behaviour to maximise performance for our customers who have plenty of licenses.

Other changes merged into Feburary kit branch from Licensing Branch

1. GroupCommunications extended, now provides a variety of shared datastructures, enchanced using a causal protocol which corrects ordering of multicast messages to handle cause and effect.

2. Generic parts of LocalThreadPool extracted into Altiris.Common and uses replaced with NSThreadPool which performs the job LocalThreadPool used to perform within the NS.

Existing licensing implementations accross Altiris solutions

Carbon Copy

Custom Licensing: yes

SummaryA computer has a CC license if the CC agent is installed and the resource is active. (retired/disposed are not counted)

Trial Licenses: 10

Trial days: 7

Check interval: 1440

In use query:

SELECT COUNT(DISTINCT cr.ResourceId) from Inv_AeX_AC_Client_Agent inv, vComputerResource cr

where cr.Guid=inv.[_ResourceGuid]

 AND (inv.[Agent Name] = 'Carbon Copy' OR inv.[Agent Name] = 'Altiris Carbon Copy Agent')

Has License query:

SELECT COUNT(DISTINCT cr.ResourceId) from Inv_AeX_AC_Client_Agent inv, vComputerResource cr

 where cr.Guid=inv.[_ResourceGuid] AND (inv.[Agent Name] = 'Carbon Copy' OR inv.[Agent Name] = 'Altiris Carbon Copy Agent')

Inventory Solution

SummaryUses custom licensing, license requested when full inv is processes, reclaimed when no rows exist AeX OS Operating System table for the resource

In use query:

SELECT COUNT(*)

FROM ResourceUpdateSummary

join vComputerResource vc on vc.Guid = ResourceGuid

where InventoryClassGuid = '98A172EE-4355-403E-BF05-EDAF3B0ECB94'

and [RowCount] > 0

Has license query:

SELECT COUNT(DISTINCT vr.[ResourceId])

FROM InventoryClass ic INNER JOIN WrkstaInventory wi ON ic.[id] = wi.[InvClassId]

INNER JOIN vResource vr ON wi.[WrkstaId] = vr.[ResourceId]

WHERE vr.[Guid] = @ResourceGuid

AND lower(ic.[Platform]) = lower('Win32')

AND lower(ic.[Name]) = lower('AeX OS Operating System')

Notes

Schedule exists to wipe out data for retired/returned to lessor and disposed machines

If a non-active machine gets inventory it is flicked back to active

Software delivery

SummaryUses core licensing, license request on SWD event processing and (depending on caching) on generation of client policies

Known issues:

There is a license request when configuration is built for a policy, if a policy is targeted at a set of computers which include some computers that are out of licenses, policy caching can interfere with licensing and cause machines not licensed to get the policies and delay software delivery for licensed machined!

Patch management

SummaryUses core licensing, license request when patch inventory is processed, reclaimed when resource is deleted

Patch has several licensing checks.

1.) When inventory comes back from client - check for valid license, needs to be reclaimed when resource is deleted or retired.

2.) When performing PMImport, checks that the current license allows upgrade and either License is valid OR license has exceeded number allowed. In other words we always allow PMImport as long as the license allows upgrade.

3.) Check for license status when allowing users to roll out Software Updates via the All Software Bulltins page.

Something we need to think about is the same functionality should be placed into the code which allows a task to be created from the right click of the Software Update Tasks folder, which currently has no license check.

Helpdesk

SummaryUses custom licensing, one license per helpdesk worker

In use query:

select count(*) from HD_worker_view where worker_active_access = '1'

Has license query:

select 1

App Management

SummaryUses custom licensing, one license for each managed machine that ever recieved inventory for AeX SW Baseline Results (not checking for zero rows of inv)

In use query:

SELECT Count(DISTINCT(WrkstaId))

FROM InventoryClass, WrkstaInventory

WHERE WrkstaInventory.InvClassId = InventoryClass.id

 AND lower(InventoryClass.Platform) = lower('Win32')

 AND (lower(InventoryClass.Name) LIKE lower('AeX Msi%')

 OR lower(InventoryClass.Name) = lower('AeX SW Baseline Results'))

Has License:

SELECT Count(DISTINCT Wrksta.WrkstaId) FROM Wrksta, WrkstaInventory, InventoryClass

WHERE WrkstaInventory.InvClassId = InventoryClass.id

AND Wrksta.WrkstaId=WrkstaInventory.WrkstaId

AND upper(Wrksta.Guid) LIKE upper(@ResourceGuid)

AND lower(InventoryClass.Platform) = lower('Win32')

AND (lower(InventoryClass.Name) = lower('AeX SW Baseline Results') OR lower(InventoryClass.Name) LIKE lower('AeX Msi%'))

