

CA UIM Database Best Practices for MySQL
Version 1

CA Unified Infrastructure
Management

This documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to as
the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2018 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

http://www.ca.com/support

Contents

Contents .. 4

Chapter 1: Introduction .. 7

Background on the Unified Infrastructure Management ... 7

Chapter2: The UIM Database ... 8

UIM Database Within CA UIM (Simplified UIM Database Architecture) .. 8

UIM Database Schema Overview ... 8

Relationships Between Data Engine Tables .. 9

Database Tables .. 9

RN_QOS_DATA_ Table Columns ... 10

RN_tables Indexes .. 10

About Table Partitioning ... 10

Manual Table Partitioning .. 11

Chapter 3: Prerequisites ... 12

Supported Database Versions .. 12

Hardware Requirements ... 12

Database Server Requirements .. 12

About Database Performance .. 13

Chapter 4: General Best Practices .. 14

Storage .. 14

Backup .. 14

Periodic Maintenance ... 15

Chapter 5: Best Practices for MySQL .. 16

Checklist .. 16

Network Communication .. 16

Cluster Environment ... 17

Windows/Linux Configuration .. 17

Disks Configuration ... 18

MySQL Instance Level Configuration .. 19

MySQL Database Level Configuration... 19

Database Maintenance and Backup Strategy ... 20

Additional Resources .. 21

Chapter 6: Performance Analysis ... 22

Checklist .. 22

Example Query (Wait Statistics) ... 22

Chapter 7: Troubleshooting .. 23

Troubleshooting High CPU Issues ... 23

Server-Level CPU Bottleneck .. 23

Application-Level CPU Bottleneck .. 25

Troubleshooting Memory Issues .. 25

Tuning MySQL memory .. 25

Swapping ... 26

MySQL Database Optimization Parameters ... 27

Explain Plan for Queries .. 28

Ways to generate the Explain Plan ... 28

Other MySQL Parameters for UIM ... 29

MySQL in Large Environments .. 31

Additional Resources .. 31

Appendix A: SQL Tools and Scripts ... 32

Get Database Size Information ... 32

Get Database Information (MySQL) ... 32

Get Index Fragmentation .. 33

Find Missing Nodes in Dynamic Views .. 34

Find Most Costly Unused Indexes ... 40

Find Top Costly Missing Indexes ... 40

Find Tables without Primary Key .. 40

Find Objects with No Indexes ... 41

Find Top SQL with Highest CPU .. 41

Find Top File (table) with Highest I/O ... 42

Find Statistics Update Time .. 42

Update Statistics Queries.. 42

Find Active sessions .. 43

Find top DISK- intensive queries ... 43

Appendix B: Monitoring the Instance Health with Reports .. 44

Operating System utilities ... 44

Monitoring Sessions through queries ... 44

Using MySQL Workbench ... 45

Background on the Unified Infrastructure Management 7

Chapter 1: Introduction
This guide covers best practices for deploying, tuning, triaging, and maintaining the UIM MySQL

database, also known as the Unified Infrastructure Management (UIM), as deployed on MySQL.

The guide includes new and existing information from UIM documentation, support articles,

development tools and other internal and external sources. It organizes the information into the

following main sections:

• General description of the UIM

• Prerequisites

• Best Practices

• Best Practices for MySQL

• Performance analysis

• Troubleshooting

• Updating Table Indexes

• Advanced NIS indexing

• SQL Tools and Scripts

• Monitoring the Instance Health with Reports

This document does not attempt to fully document the programming interfaces, theory of operation

and structure of CA UIM. The documented is intended to be useful for practical issues in deploying,

maintaining and tuning database.

Background on the Unified Infrastructure Management
The UIM database is integral and critical to overall CA UIM system operation and performance. The CA

UIM solution requires a database to store the QoS, service level, configuration, alarm (optional) and

other data that is collected, processed, and displayed by the system.

The UIM database was originally introduced into the CA UIM product to hold historical QoS data derived

from raw data to enable Service Level Monitoring (SLM) features. With the introduction of expanded

reporting and dashboard features in the Unified Management Portal (UMP), the SLM took on an

expanded role and was re-named the Nimsoft Information Store, or NIS. During the CA UIM 8.0 release,

the NIS became known as the UIM Database.

As with any OLTP (Online Transactional Processing) application, the volume of stored data increases

over time. When scaled to the needs of large enterprise and managed service providers (MSPs), any

database will require periodic maintenance and performance tuning. CA UIM customers, partners, and

developers have generated a number of best practice procedures and tuning tips.

Note: Two areas outside the scope of this document are database software upgrades and cross-platform

data migration. We recommend you speak with your CA UIM sales engineer regarding these activities.

UIM Database Within CA UIM (Simplified UIM Database Architecture) 8

Chapter2: The UIM Database
These sections provide an overview of the schema and select components of the UIM Database.

UIM Database Within CA UIM (Simplified UIM Database Architecture)

UIM Database Schema Overview
For a picture of how the UIM is structured, below is an abbreviated view, listing the tables in the UIM

database. The full view is many pages long, with hundreds of tables listed.

UIM Database Schema Overview 9

Relationships Between Data Engine Tables

Database Tables
These tables are of primary interest:

Table name or pattern Type of data held

S_QOS_DATA QoS data used by the data_engine

RN_QOS_DATA_xxxx

Raw QoS data (one RN_table for
each qos_def_id)

HN_QOS_DATA_xxxx Aggregated (1hr interval) QoS data

DN_QOS_DATA_xxxx Aggregated (1 day interval) QoS
data

BN_QOS_DATA_xxxx Baseline tables

CFG_* ACE configuration information

CM_GROUP NIS_Server/USM

CM_DEVICE Discovery/configuration

CM_NETWORK Discovery

CM_NIMBUS_* Discovery/configuration

GRP_* group_server, deprecated

ump* and QUARTZ_* UMP and LifeRay

*_ Liferay

t Tmp, dashboard_engine

NAS* Alarms*

tbnLogging Sp logging

UIM Database Schema Overview 10

tbnVersion Version info

S_SLA_* and S_SLO_* Service Level Agreement info

*Note: Alarm data is held in a separate NAS database. If the NIS-bridge feature of NAS is enabled, alarms

are replicated from NAS to NIS. UMP accesses alarm data from the NIS using the NIS-bridge feature.

RN_QOS_DATA_ Table Columns

The RN_QoS_Data_tables hold raw QoS data. This QoS data is written once and never updated. It is

aggregated by 1 hour periods and stored in HN_QoS_Data_tables_xxxx. The table has the following

columns:

TableID Sampletime Samplevalue Samplestdev Samplerate Samplemax Compressed Tz_offset inserttime

Column Name Description

tableID unique identifier; key for looking up time series
data

Sampletime time the sample was taken

Samplevalue QoS value

Samplestdev standard deviation of the sample

Samplerate Rate of sampling

Samplemax Maximum sample value (e.g. 100%)

Tz_offset time zone offset

RN_tables Indexes

The default indexes on RN_tables are optimized for writing data:

Index Description

Idx0 SAMPLETIME, TABLE_ID

Idx1 TABLE_ID, SAMPLETIME, TZ_OFFSET, SAMPLERATE

There is no primary key implemented on RN_QoS_DATA_tables as both tableID and sampletime can be

duplicated.

About Table Partitioning
As RN_QoS_DATA_tables grow in size the time needed to order and index them increases, slowing

performance. Subdividing tables into multiple partitions offers several benefits:

• Partitioning allows data loads, index creation and rebuilding, and backup/recovery to occur at

the partition level rather than on the entire table.

• Partitioning improves query performance. In many cases, the results of a query can be achieved

by accessing a subset of partitions rather than the entire table.

• Partitioning can significantly reduce the impact of scheduled downtime for maintenance

operations.

UIM Database Schema Overview 11

UIM Database tables can be automatically partitioned if you are using MySQL Database. The partitioning

scheme is a sliding window partition on sampletime with one partition per day. If partitioning is enabled,

data is aged out of the RN tables by dropping the old partitions rather than deleting rows.

Manual Table Partitioning
Manual partitioning is achieved by running the data_engine partitioning stored procedure manually. You

may wish to apply partitioning to your large tables at first. We define large tables as those having over

100 million rows. Partitioning in a selective manner gives you more control over when tables are

partitioned as this process can take considerable time to complete.

Use the following approach to apply manual partitioning.
1. Disable the following probes:

• data_engine

• wasp

• dashboard_engine

2. Run the following for each table you wish to partition (one at a time is okay):

CALL spn_de_PartitionAdmin__PartitionTable

(

 ‘RN_QOS_DATA_0001’,

 ‘RN’,

'2015-07-14 11:28:49.883',

5,

@returnCode

);

3. After this has been done for the larger tables, select the Partition data tables check box in the Admin

Console data_engine GUI to enable partitioning on the rest of the tables.

4. Re-enabling the following probes:

• data_engine

• wasp

• dashboard_engine

Supported Database Versions 12

Chapter 3: Prerequisites
This guide assumes that UIM Server and the UIM Database are installed and running. We recommend

that you review the requirements and prerequisites for proper UIM Server and database installation. For

more information, see the article on Pre-Installation Planning available at wiki.ca.com/uim .

Note: These links are for UIM 8.2. Please refer to the documentation that corresponds to your specific

version.

Supported Database Versions
The following database and OS versions are supported:

Database Supported Operation System (64 bit only)

MySQL 5.6 and MySQL 5.7 Windows Server 2012 R2, Windows Server 2014,
Windows Server 2016, Redhat, Ubuntu

Hardware Requirements
We recommend deploying the database on a dedicated physical server.

Database Server Requirements
While every situation is unique, the following deployment size categories give you a starting point for

assessing your hardware requirements:

• Small (One hub, fewer than 100 robots) - Modest deployment, such as a proof-of-concept for a

small business

• Medium (Up to five hubs, fewer than 250 robots) - Medium-scale deployment, such as a small

government agency

• Large (Up to twenty hubs, fewer than 500 robots)

• Major (Up to fifty hubs, fewer than 1000 robots)

• Over 50 hubs or over 1000 robots - Consult with CA professional services or a CA UIM certified

partner.

Deployment size Processor
64-bit XEON-class,
2.0 GHz or better

Memory Storage recommendations

Small One dual-core 8 GB Obtain at least 1 TB storage
for the database.

Medium One or two quad-
core

12 GB Use RAID 10 (for speed and
reliability).

Large Two quad-core 12 GB to 18 GB Spread database files across
multiple disks to improve I/O.

https://wiki.ca.com/display/UIM82/Pre-installation+Planning

About Database Performance 13

Choose drive subsystems
with low latency/seek times,
high spindle speeds, high
interconnect bandwidth.

Major Two quad- or eight-
core

18 GB to 24 GB Continually consider data
redundancy, synchronization,
and database growth.

About Database Performance
Relational database server performance is heavily affected by disk I/O performance and server bus

bandwidth. Crowded VM hosts, clusters, or heavily shared storage in VM environments are not

recommended for UIM database hosting.

CA recommends starting with at least 1TB of RAID 10 storage for the UIM Database. Also, consider

spreading the database files across multiple disks (LUNs) to improve I/O performance. Choose drive

subsystems with low latency and seek times, high spindle speeds, and high interconnect bandwidth.

The data redundancy/synchronization model needs to be considered on an on-going basis, taking into

account the growth of the database. Selecting the right storage solution is beyond the scope of this

document, we recommend that you discuss this with your storage vendor/VAR/consultant.

Storage 14

Chapter 4: General Best Practices
This section covers operational UIM Database best practices.

Best Practice Comment

Read and observe documented pre-requisites
and pre-install information

See the article on Pre-installation Planning

available at wiki.ca.com/uim .
Always make a backup of your database before
upgrading major CA UIM components (UIM
Server and UMP)

Some upgrades contain a non-reversible upgrade
script that changes the database structure of
some tables.

Run get database information MySQL on a
regular basis

Establish a baseline so that system changes can
be easily seen and CA UIM support can quickly
respond to issues

Use SHOW PROCESSLIST This View provides information on status.

Set up periodic index maintenance See the article on data_engine configuration and
review the notes and warnings regarding the cost
of setting up index maintenance.

Carefully consider the implications of database
configuration settings

See the article on data_engine configuration.

Check database size Use this query to check database size

Check for and correct index fragmentation on a
regular basis.

Use get_index_fragmentation to check for index
fragmentation. Automatic index maintenance can
also be scheduled as described above.

Check for missing nodes in Dynamic Views Find_missing_nodes_in_dynamic_views

Storage
This section covers storage considerations for UIM database.

Best Practice Comments
Determine an overall storage strategy Discuss a storage strategy with your storage

vendor.

Backup
This section covers the UIM database backup best practices.

Best Practice Comments

Plan and schedule regular backups of the
database

Test restore operation before it is needed

Ensure sufficient disk capacity for backups

Document backup and restore procedures

https://docops.ca.com/ca-unified-infrastructure-management/8-2/en/installing/pre-installation-planning
https://docops.ca.com/ca-unified-infrastructure-management-probes/ga/en/alphabetical-probe-articles/data_engine/data_engine-versions-8-0-8-3/v8-2-data_engine-ac-configuration
https://docops.ca.com/ca-unified-infrastructure-management-probes/ga/en/alphabetical-probe-articles/data_engine/data_engine-versions-8-0-8-3/v8-2-data_engine-ac-configuration

Periodic Maintenance 15

Periodic Maintenance
This section covers the periodic maintenance of the UIM database.

Best Practice Comment

Set up periodic index maintenance

See the article on data_engine configuration and
review the notes and warnings regarding the cost
of setting up index maintenance.

Identify skewed and outdated index and column
statistics and make sure they are representative
and current

Index statistics are used by the MySQL query
optimizer to help it determine if and when an
index should be used when executing a query.

Database and log file protection and
management

Temp data maintenance

Data corruption detection

Performance monitoring

Checklist 16

Chapter 5: Best Practices for MySQL
This section provides a checklist of values and properties to check when setting up and deploying MySQL

database.

Checklist
This checklist is hierarchical in method, starting with hardware and OS settings, then MySQL instance,

then the UIM database and its maintenance.

• Network Communication

• Cluster Environment

• Windows/Linux Configuration

• Disks configuration

• MySQL Instance Configuration

• Database Level Configuration

• Database Maintenance and Backup Strategy

• Additional Resources

Network Communication
This section covers the network communication best practices for UIM database.

For Windows:

Applicable Versions of
Windows

Item

Recommendation

All NIC full duplex Network adapters and switch
ports should have matching
duplex levels or transfer speed
settings. Full duplex provides
better performance.

All Network settings

Latest basic input/output
system (BIOS) update for the
server should be installed.
Latest firmware update for the
network adapter should be
installed.
Latest driver update for the
network adapter MUST be
installed.

All NetBIOS and Server Message
Block enabled

Disable NetBIOS and Server
Message Block

Cluster Environment 17

Important! Make sure NetBIOS
is not in use.

Cluster Environment
This section covers the cluster environment best practices for UIM database.

Applicable Versions of OS and
OS Version

Item Recommendation

All Cluster nodes hardware

Cluster nodes should have
nearly identical hardware on all
cluster nodes to simplify
configuration and eliminate
potential compatibility
problems.

All Memory adjustment

In an Active-Active
environment, memory for the
MySQL instances should be set
in a way that the total memory
in the weakest node is split
between the nodes. This will
ensure that when all instances
failover to one node, they will
be able to that quickly and with
no memory issues.

Windows/Linux Configuration
For more information about Windows Server performance, see Performance Tuning Guidelines for

Windows Server 2012 R2.

Applicable Versions of OS

Item

Recommendation

All

Latest service pack

Implement the latest service
pack and hotfixes.

All 64-bit hardware and software

Required

All

Paging file

Pagefile should be 1~1.5 times
the amount of RAM and should
NOT be placed on a drive that
contains database files.
Important! We recommend
that you create multiple page
files on different disk partitions
beside C:\ (or even different

https://msdn.microsoft.com/en-us/library/windows/hardware/dn529133
https://msdn.microsoft.com/en-us/library/windows/hardware/dn529133

Disks Configuration 18

disk subsystems) for
performance reasons.

All Windows

System properties > Advanced
setting

Processor scheduling: Select
Background services.
Memory usage: Select
Programs

All

Unnecessary Services /
applications

Number of running apps and
services should be minimal.
Unnecessary services should be
stopped and disabled
(Messenger, wireless
configuration, etc.).

All

Anti-virus

The best Practice for MySQL is
not installing anti-virus on a
dedicated MySQL environment.

Disks Configuration
This section discusses the general configuration of the disk system.

Applicable Versions of OS

Item Recommendation

All Symbolic Links If the storage type is MyISAM,
you symlink the index and data
files to another disks to make
both the seek and read times
better.
Symlinks are not supported for
InnoDB tables.

All Log Files RAID 1+0 or RAID n is the
recommended RAID level for
Log files in databases.

All Data Files RAID1 and RAID 10 are
recommended levels for Data
files.

All Configuration Files Always have a backup for
configuration files whether we
use RAID or not. RAID 1+0 or
RAID 0 are recommended for
these files.

MySQL Instance Level Configuration 19

MySQL Instance Level Configuration
Note: This section describes the MySQL instance best practices.

Applicable MySQL Versions

Item

Recommendation

All Latest service pack

Latest service pack and hotfixes.

All

MySQL installed on domain
controller

MySQL should never be
installed on a domain controller

All Dedicated machine for MySQL Best Practices imply that MySQL
should be installed on its own
dedicated host machine

All

Server allowed protocols
(TCP/IP, VIA,
NPs, etc.)

Limit the supported protocols.

All

Database files location setting

The database default data
location should be changed to
point to a dedicated disk for
data files. The default location
for logs should be changed to a
dedicated location for log files
that is optimized for write
operations.

MySQL Database Level Configuration
This section describes database level configuration best practices for UIM database.

Applicable MySQL Versions

Item

Recommendation

All Database files placement

Refer the Disks on SANS
Important! At a minimum
always separate data files from
log files on separate physical
disks.

All Database files growth

Use the following general
guidelines:
• File growth should not be very
large because user activity will

https://dev.mysql.com/doc/refman/5.7/en/disk-issues.html

Database Maintenance and Backup Strategy 20

wait for the file operation to
complete.
• File growth should not be very
small to avoid issues with the
file becoming full.
• Growth should never be in
terms of % but in terms of MBs.

All InnoDB File Per Table For better performance of UIM
disable this feature by setting
innodb_file_per_table
configuration value to 0.

Database Maintenance and Backup Strategy
This section covers the backup strategy best practices for UIM database.

Applicable MySQL Versions

Item

Recommendation

All Recovery models If the binary log mode is not
enabled and incremental
backup is not enabled on
database, then there is no point
in time recovery.
In case of a failure, such as
database corruption, the
database will need to be
restored from the latest FULL
database backup/differential
backup.
If the binary log mode is
enabled and we are following
incremental backup, then make
sure all files are backed up
properly.

For better performance, don’t
backup the databases or binary
logs to the same physical disk.

All

Index maintenance tasks

For better performance, it is
strongly advised to rebuild
indexes based on their size and
fragmentation level.

Additional Resources 21

All Update statistics maintenance
task

If automatic statistics gathering
option is enabled in the
database and there is no
massive insertion/update of
data, this task is not required
(which is true in most cases).

All Maintenance and backup files
cleanup

Don’t forget to clean up old
backup files according to the
database SLA and the amount
of free space on the backup
drives.

All Database integrity checks

It is important to run integrity
checks on the database. The
earlier you find consistency
issues, the better.

Additional Resources
https://dev.mysql.com/doc/refman/5.7/en/backup-policy.html

https://dev.mysql.com/doc/refman/5.7/en/disk-issues.html

https://dev.mysql.com/doc/refman/5.7/en/point-in-time-recovery.html

https://dev.mysql.com/doc/refman/5.7/en/backup-policy.html
https://dev.mysql.com/doc/refman/5.7/en/disk-issues.html
https://dev.mysql.com/doc/refman/5.7/en/point-in-time-recovery.html

Checklist 22

Chapter 6: Performance Analysis

This section provides a checklist for analyzing overall database performance, and can be used for
continuous performance analysis and database tuning.

Checklist
Most issues listed in the right column link to a listing of the SQL query that will generate the desired

output (valid for MySQL only):

Performance Analysis Area Issue to identify

Analyze Wait Statistics Wait times (see example below)

Perform Index Analysis, identifying top issues Most Costly Unused Indexes
Top Costly Missing Indexes
Tables without Primary key
Tables with no indexes

Identify top SQL queries according to high
resource utilization

Top SQL with Highest CPU
Top SQL with Highest I/O
Top SQL with Highest Duration
Top DISK intensive queries

Example Query (Wait Statistics)
This query provides wait statistics that give a good indication of resource bottlenecks from a MySQL

perspective:

SELECT * FROM performance_schema.events_waits_summary_global_by_event_name;

Performance schema maintains metadata tables for collecting recent and current wait types. Each event

stores min, max, avg and sum values for wait types.

Example Results

Troubleshooting High CPU Issues 23

Chapter 7: Troubleshooting

This section provides best practices to triage and troubleshoot a database.

Best Practice Comments

Recognize a database where problems are
present, learn the signs

One symptom is the data_engine queue backing
up

Investigate what other processes are running Use SHOW PROCESSLIST

Investigate index fragmentation Use get_index_fragmentation to check index
fragmentation

Check disk subsystem(s) and drive failure Performance impact to RAID
Check RAID manager console

Resource constrained? Task Manger (Windows)
Top command in Linux and Solaris

Troubleshooting High CPU Issues
If UIM Server is slow and you identify that the problem is with the CPU (identified using Task Manager in

Windows and top or vmstat in Linux), perform the following tasks:

High CPU consumption can occur because of following two reasons

Server-Level CPU Bottleneck
Check the below counters to make sure server CPU is the bottleneck:

Windows

Check the “processor queue length” counter in Windows server. If this number is higher than 0, it

implies that there are more requests per core than the system can handle. This can be a cause for

significant performance issues in MySQL.

You can launch Performance Monitor using different methods:

Method 1: Start, Control Panel, Administrative Tools, Performance Monitor.

Method 2: Start, search PerfMon.exe

When Performance Monitor is launched, an interface similar to the following is displayed:

Troubleshooting High CPU Issues 24

Linux

Check run queue (r value) cpu_count in Linux. To find whether the MySQL server has the CPU

bottleneck, check the run queue value (per vmstat). If this value exceeds the number of processors on

the server (cpu_count), the server has the CPU bottleneck. The following example screenshot shows the

vmstat output:

Troubleshooting Memory Issues 25

If the processor queue length or r value in vmstat command is lower than the CPU cores, then the

problem is on the application side. If this value is always more than the CPU cores, increase the CPU

cores in the database server.

Application-Level CPU Bottleneck
If the server has enough CPU, consider tuning the database.

Checking database server side bottleneck

• Find the queries that are running when the CPU is at its 100% utilization.

• Update the statistics and check the fragmentation on the tables.

• Check for any big table scans and create appropriate indexes to avoid scans.

• Tune the queries that are taking longer duration.

Troubleshooting Memory Issues
If the UIM Server is slow and you identify that the problem is with the memory (identified using Task

Manager in Windows and top or vmstat in Linux), perform the following checks:

Check whether the database server has enough memory to handle the workload:

The buffer pool hit ratio calculates how often a requested data block has been found in the buffer pool

without requiring physical disk access.

To check the memory bottleneck on the server, find the buffer pool performance:

Performance = (innodb_buffer_pool_reads / innodb_buffer_pool_read_requests)* 100

innodb_buffer_pool_reads: innodb_buffer_pool_reads parameter indicates the number of requests

that cannot be satisfied with InnoDB buffer pool. So server has to read data pages from the disk.

innodb_buffer_pool_read_requests: innodb_buffer_pool_read_requests indicate the number of

requests of logical reads from memory. So no need to read from the disk.

The buffer Performance should be lower than 10 percent. If not, then there is an indication that the

server has less memory than required. Very minimal percentage of reads indicates that MySQL has

enough memory.

Check whether constant swapping is available on the server.

If si and so columns of the vmstat output shows constant swapping, then server is facing memory issue.

Tuning MySQL memory
InnoDB Standard Monitor output provides various metrics pertaining to the operation of the InnoDB

buffer pool, under the BUFFER POOL AND MEMORY section. InnoDB Standard Monitor can be accessed

using SHOW ENGINE INNODB STATUS. Here is some typical content:

Use the following query to find the InnoDB metrics:

SQL > SHOW ENGINE INNODB STATUS

BUFFER POOL AND MEMORY

Troubleshooting Memory Issues 26

Total large memory allocated 2198863872

Dictionary memory allocated 776332

Buffer pool size 131072

Free buffers 124908

Database pages 5720

Old database pages 2071

Modified db pages 910

Pending reads 0

Pending writes: LRU 0, flush list 0, single page 0

Pages made young 4, not young 0

0.10 youngs/s, 0.00 non-youngs/s

Pages read 197, created 5523, written 5060

0.00 reads/s, 190.89 creates/s, 244.94 writes/s

Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000

Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead 0.00/s

LRU len: 5720, unzip_LRU len: 0

I/O sum[0]: cur[0], unzip sum[0]:cur[0]

Recommendations:

• If buffer pool hit rate is lower than 90%, increase innodb_buffer_pool_size.

• If more number of free buffers are present, you may need to decrease innodb_buffer_pool_size.

Swapping

The rule for MySQL memory configuration is you should never want your MySQL to cause the OS to

swap. Even less swapping activity causes the MySQL to reduce the performance. Constant swapping of

the MySQL can be monitored by using si (Swap in) and so (Swap Out) columns in vmstat command.

Troubleshooting Memory Issues 27

Here in the above screenshot constant swapping is happening. If you have spikes of more than 1MB/sec,

or constant swap activity, you might need to revisit your memory configuration.

To know the amount of memory MySQL is using for workload use the below command:

ps aux | grep mysqld

The 5th column in the output will give you the amount of memory MySQL is using. Don’t allow the

mysqld process exceed 90% of the system memory.

You should not allocate more than 90% of your system memory to MySQL, as you must have some

reserved memory for OS.

One you know the amount of memory you want for MySQL process; you need to think about what

purpose the memory should be used within MySQL. The primary usage of memory in MySQL is workload

related because if you have many active connections and at the same time that run heavy selects uses

lot of memory for sorting or temporary tables, you might need more memory.

MySQL Database Optimization Parameters
Update the my.cnf file to optimize MySQL server settings, which is the default configuration file in

MySQL.

The following configuration items are the main factors that affect MySQL performance:

• innodb_buffer_pool_size: InnoDB depends heavily on buffer pool and this parameter should be

set properly. The recommended value for this parameter should be 80%-90% of the available

physical memory. if you have RAM bigger than your dataset setting it bit larger should be

appropriate with that keep in account of your database growth and re-adjust innodb buffer pool

size accordingly.

• innodb_buffer_pool_instances: If you have enough Buffer Pool then dividing the buffer pool

into multiple instances can improve the concurrency, by reducing the contention. This feature is

for the systems with more buffer pool available (in multi gigabytes). In MySQL 5.5 the default

value for it was 1 which is changed to 8 as new default value in MySQL 5.6. Minimum

innodb_buffer_pool_instances should be lie between 1 (minimum) & 64 (maximum). Enabling

innodb_buffer_pool_instances is useful in highly concurrent workload as it may reduce

contention.

• innodb_log_file_size: For good write performance large enough InnoDB transaction logs are

required. But also larger log files mean that recovery process will slower in case of crash. Default

value has been changed in MySQL 5.6 to 50 MB from 5 MB (old default), but it’s still too small

size for many workloads. There should be enough redo log space to handle more than an hour

of write activity. The larger the value, the less checkpoint flush activity is required in the buffer

pool, saving disk I/O.

• innodb_log_buffer_size: InnoDB stores changed data records in log buffers inside memory and
saves frequent disk I/O for large transactions as it not need to write the log of changes to disk
before transaction commit. 4 MB – 8 MB is good start unless you write a lot of huge blobs.

• max_connections: Sometimes applications do not close connections properly which is not
recommended as will take MySQL resources. A larger value will give the server more time to

Troubleshooting Memory Issues 28

recycle idled connections and it will affect the performance of the server. The recommended
maximum value is 5000.

• query_cache_size: For every identical statement is received, the server retrieves the results
from the query cache rather than parsing and executing the statement again and again. The
query cache parameter is shared among sessions. The best option is to disable it by
setting query_cache_size = 0 (default on MySQL 5.6) and to use other ways to speed up read
queries.

• innodb_file_per_table: Unlike the MyISAM storage engine, with its separate
tbl_name.MYD and tbl_name.MYI files for indexes and data, InnoDB stores the data and the
indexes together in a single.ibd file. The tbl_name.frm file is still created as usual. This value is
ON by default from MySQL 5.6. This is usually recommended to set 0 for the UIM as UIM will
create lot of tables.

Explain Plan for Queries
Explain plan can be used to analyze the individual queries in the database. Depends upon the tables,

columns, indexes and filters MySQL optimizer will select the best plan for the query. Explain plan will

analyze the query and gives information like how optimizer joins the table, whether index has been used

or not, table joining method etc.

Ways to generate the Explain Plan

Using Query

EXPLAIN statement provides the information about the query. Include EXPLAIN keyword before the

query to generate the execution plan.

Ex: EXPLAIN query;

Explain output contains below important columns:

Id: This is sequential identifier of the SELECT query.

Table: Table name on which the row of output refers.

Partitions: The partition name from which records would be matched.

Type: The join type on the tables.

Possible_keys: This column indicates the indexes from which MySQL selects data in a table. If this

column is null, then there are no indexes has been used on the table. In this case you may examine the

WHERE clause to check any indexes on filtered columns would be suitable. Create the indexes if they are

really needed.

Key: Key columns contains the Index that MySQL decided to use.

Using MySQL Workbench

MySQL workbench has the feature to examine the query execution plan in GUI mode. It also allows user

to locate and fix the problematic areas in the query. To run the query execution plan, select Query menu

and select Explain Current statement. The explain plan will be generated as shown in below screenshot:

Other MySQL Parameters for UIM 29

It will give information like Table Access Type, Rows examined per Scan and Possible_Keys etc.

Execution plan will be generated with different nodes in different colors like Red, Orange, Green and

Block. Green indicates that there is no bottleneck has been identified whereas red indicates there is a

problem with the current operation like full table scan and can be optimized by proper index.

Other MySQL Parameters for UIM
MySQL variables must be set as follows for UIM:

lower_case_table_names=1

local_infile=ON

table_definition_cache=2000

Enable the binary logs only if you use a backup or replication service, which requires the binary log files.

To do so, set the following variables:

log_bin

Important! The status of the system variable log_bin specifies whether the binary log is enabled. The --

log-bin [=base_name] command-line option enables the binary logging. When you set the --log-

bin option, the log_bin system variable is set to ON, not to the base name. The binary log file name is

present in the log_bin_basename variable. For more information, see your MySQL documentation.

log_bin_trust_function_creators=ON (if log_bin is enabled)

binlog_format=mixed (if log_bin is enabled)

Use the following procedure to view the setting for each variable.

Follow these steps:

Other MySQL Parameters for UIM 30

Log in to the MySQL server as the administrator.

For each variable, execute:

show variables like 'variable_name';

If a variable is incorrect or missing, edit the MySQL server configuration file as instructed in your MySQL

documentation.

Restart the database if you made any changes.

Max_connections=1000

When using MySQL as the backend database, if you set the data_engine thread_count_insert to any

value higher than 0, thereby enabling multi-threading, you need to be aware that you could run out of

connections. This would manifest itself in the data_engine log that there were "no free connections (er

1040)" because the data_engine could exceed the max number of connections to MySQL.

ERROR 1040 (xxxxx): Too many open connections

This setting should not be changed in a MySQL environment without investigating the MySQL server

setting first. There is a hard cap in connections on MySQL that is defined within the MySQL configuration

file. The default value for this is 151. If the setting is not high enough, this can cause the data_engine to

crash repeatedly once it has uninterrupted access to the DB (e.g., after maintenance is completed.)

To avoid this problem, error and inconsistent connections to the database when inserting data, you

need to increase the max connections settings in MySQL.

This error occurs when connection reaches the maximum limit as defined in the configuration file. The

variable holding this value is 'max_connections.'

To check the current value of this variable, login as the root user and run the following command:

 show global variables like '%max_connections%';

You can login to MySQL using the root user and increase the max_connections variable to a higher

value.

SET GLOBAL max_connections = 1000;

This method above does not require a server restart. Please note that after MySQL server restart, the

max_connection variable value will again roll back to the previous value. In order to make the

max_connections value persistent, modify the value in the configuration file.

Stop the MySQL server:

Service mysql stop

Edit the configuration file my.cnf

vi /etc/my.cnf

Find the variable max_connections under mysqld section.

MySQL in Large Environments 31

[mysql]

max connections = 1000

Set the higher value and save the file

Start the server

Service mysqld start

Note: use systemctl manager to stop and start the service if the service command is not working.

Before increasing the max_connections variable value, make sure that the server has adequate memory

for new requests and connections. Consult your MySQL DBA to determine if enough resources are

available.

MySQL pre-allocates memory for each connection and de-allocates only when the connection is closed.

When new connections are querying, the system should have enough resources such as memory,

network and computation power to satisfy the user requests.

Also, you should consider increasing the open tables limit in MySQL server to accommodate the

additional requests.

MySQL in Large Environments
If you are preparing for a large-scale or major deployment, you can change more database parameters

to allow for greater demands of such an environment. We recommend that you begin with the values

shown in the following example, and then fine-tune settings depending on your circumstances.

As the MySQL administrator, add these lines to the MySQL server configuration file:

[mysqld]

max_heap_table_size=134217728

query_cache_limit=4194304

query_cache_size=268435456

sort_buffer_size=25165824

join_buffer_size=67108864

max_tmp_tables=64

Additional Resources
https://dev.mysql.com/doc/refman/5.7/en/optimizing-innodb-diskio.html

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/classic/optimize-mysql#mysql-

database-optimization

https://dev.mysql.com/doc/refman/5.7/en/optimizing-innodb-diskio.html
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/classic/optimize-mysql#mysql-database-optimization
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/classic/optimize-mysql#mysql-database-optimization

Get Database Size Information 32

Appendix A: SQL Tools and Scripts

This section lists SQL code to perform the following tasks:

• Get database size information

• Get database information (MySQL)

• Get index fragmentation

• Find missing nodes in dynamic views

• Find most costly unused indexes

• Find top Costly Missing Indexes

• Find tables without Primary Key

• Find objects with no indexes

• Find top SQL with highest CPU

• Find Top File (table) with Highest I/O

• Find Statistics Update Time

• Find active sessions

• Find top DISK- intensive queries

Get Database Size Information
This script provides a listing of data tables, sorted by size.

SELECT

 table_schema as 'Database',

 table_name AS 'Table',

 round(((data_length + index_length) / 1024 / 1024), 2) 'Size in MB'

FROM information_schema.TABLES

ORDER BY (data_length + index_length) DESC;

Get Database Information (MySQL)
This script provides a summary of the UIM Database deployment size, what is being monitored, probe

versions, frequently used probes, database size, data location, and information on specific data tables.

-- summary of deployment size

select '1. # qos definitions' as item, COUNT(*) as cnt from S_QOS_DEFINITION

union

Get Index Fragmentation 33

select '2. # qos objects', COUNT(*) from S_QOS_DATA

union

select '3. # robots', COUNT(*) from CM_NIMBUS_ROBOT where is_hub = 0 and alive_time >

DATE_FORMAT(SYSDATE() -(1/24), '%d-%b-yy %H:%i:%s')

union

select '4. # hubs', COUNT(*) from CM_NIMBUS_ROBOT where is_hub = 1 and alive_time >

DATE_FORMAT(SYSDATE() -(1/24), '%d-%b-yy %H:%i:%s')

union

select '5. # computer systems', COUNT(*) from CM_COMPUTER_SYSTEM where alive_time >

DATE_FORMAT(SYSDATE() -(1/24), '%d-%b-yy %H:%i:%s')

-- whats being monitored

select probe, COUNT(distinct qos) as QOS, COUNT(distinct source) as sources, COUNT(distinct target) as

targets

from S_QOS_DATA

group by probe

order by targets desc, QOS desc

-- is everything running the same versions?

select probe_name, pkg_version, COUNT(*) as cnt from CM_NIMBUS_PROBE

where active = 1

and probe_name in ('controller', 'hub')

group by probe_name, pkg_version;

-- most frequently used probes

select probe_name, count(*) as Cnt

from CM_NIMBUS_PROBE

group by probe_name

order by Cnt desc

Get Index Fragmentation
This script will be used to provide the index fragmentation

SELECT

Find Missing Nodes in Dynamic Views 34

TABLE_SCHEMA,

TABLE_NAME,

CONCAT(ROUND(data_length / (1024 * 1024), 2), 'MB') DATA,

CONCAT(ROUND(data_free / (1024 * 1024), 2), 'MB') FREE ,

(data_free/(data_length+index_length))*100 AS 'Fragmention %'

FROM

information_schema.TABLES

WHERE

TABLE_SCHEMA IN ('ca_uim') AND Data_free > 0;

Recommendation:

Follow this rule to determine whether you need to optimize the table:

1) If the index has “Fragmentation %” more than 30, consider optimizing the table.

Syntax:

Sql > OPTIMIZE TABLE table_name;

Find Missing Nodes in Dynamic Views
-- # of origins not matching

select cs.origin as cmOrigin, d.origin as sqdOrigin , count(*) from CM_COMPUTER_SYSTEM cs inner join

CM_NIMBUS_ROBOT r on cs.ip = r.ip and cs.origin = r.origin inner join S_QOS_DATA d on cs.ip = d.host

where d.origin <> r.origin group by cs.origin, d.origin order by count(*) desc

-- query to see if origins match among CM_COMPUTER_SYSTEM, CM_NIMBUS_ROBOT, S_QOS_DATA

select cs.origin as cmOrigin, r.origin as robotOrigin, d.origin as sqdOrigin ,

char_length(cs.origin) as cmOriginLen,

char_length(r.origin) as robotOriginLen, char_length(d.origin) as sqdOriginLen,

cs.*,r.*

from CM_COMPUTER_SYSTEM cs

inner join CM_NIMBUS_ROBOT r

on cs.ip = r.ip

and cs.origin = r.origin

Find Missing Nodes in Dynamic Views 35

inner join S_QOS_DATA d

on cs.ip = d.host

where d.origin <> r.origin ;

-- query to see if origins match between CM_COMPUTER_SYSTEM and CM_NIMBUS_ROBOT

select cs.origin as cmOrigin, r.origin as robotOrigin, char_length(r.origin) as robotOriginLen,

char_length(cs.origin) as cmOriginLen ,cs.*,r.* from CM_COMPUTER_SYSTEM cs

inner join CM_NIMBUS_ROBOT r on cs.ip = r.ip where cs.origin <> r.origin;

-- looking for the device from S_QOS_DATA

select * from S_QOS_DATA d

left join CM_CONFIGURATION_ITEM_METRIC m

on d.ci_metric_id = m.ci_metric_id

left join CM_CONFIGURATION_ITEM i

on m.ci_id = i.ci_id

left join CM_DEVICE c

on i.dev_id = c.dev_id

where d.probe = 'cdm' and

d.robot = ''

-- device info

select * from CM_DEVICE d

where d.cs_id = ''

or d.dev_id = ''

-- looking for the device from CM_COMPUTER_SYSTEM

select * From CM_COMPUTER_SYSTEM s

left join CM_GROUP_MEMBER cm

on s.cs_id = cm.cs_id

Find Missing Nodes in Dynamic Views 36

left join CM_GROUP cg

on cg.grp_id = cm.grp_id

where s.ip = ''

or s.name = ''

or s.cs_id = ''

-- all left joins to see where things break down

select distinct

c.dev_id,

r.address nimbus_address,

r.ip robotip,

r.domain,

r.hub hubname,

s.name robotname,

cg.name groupname,

s.nimbus_type,

d.source source,

d.origin,

s.os_type os_major,

s.os_name os_minor,

s.os_version,

s.os_description,

d.ci_metric_id,

d.qos,

d.target,

d.r_table,

d.probe,

d.table_id,

d.samplevalue value

Find Missing Nodes in Dynamic Views 37

from S_QOS_DATA d

left join CM_CONFIGURATION_ITEM_METRIC m

on m.ci_metric_id=d.ci_metric_id

left join CM_CONFIGURATION_ITEM i

on i.ci_id = m.ci_id

left join CM_DEVICE c

on c.dev_id = i.dev_id

left join CM_COMPUTER_SYSTEM s

on c.cs_id = s.cs_id

left join CM_GROUP_MEMBER cm

on c.cs_id = cm.cs_id

left join CM_GROUP cg

on cg.grp_id = cm.grp_id

left join CM_NIMBUS_ROBOT r

on s.ip = r.ip and

r.origin = d.origin

where

d.probe = 'cdm'

-- and d.robot = ''

-- and d.origin = ''

-- query used by dynamic views to build the tree nodes

select distinct

c.dev_id,

r.address nimbus_address,

r.ip robotip,

r.domain,

r.hub hubname,

s.name robotname,

cg.name groupname,

Find Missing Nodes in Dynamic Views 38

s.nimbus_type,

d.source source,

d.origin,

s.os_type os_major,

s.os_name os_minor,

s.os_version,

s.os_description,

d.ci_metric_id,

d.qos,

d.target,

d.r_table,

d.probe,

d.table_id,

d.samplevalue value

from S_QOS_DATA d,

CM_CONFIGURATION_ITEM_METRIC m,

CM_CONFIGURATION_ITEM i,

CM_DEVICE c,

CM_COMPUTER_SYSTEM s,

CM_GROUP_MEMBER cm,

CM_GROUP cg,

CM_NIMBUS_ROBOT r

where

m.ci_metric_id=d.ci_metric_id and

i.ci_id = m.ci_id and

c.dev_id = i.dev_id and

c.cs_id = s.cs_id and

c.cs_id = cm.cs_id and

cg.grp_id = cm.grp_id and

Find Missing Nodes in Dynamic Views 39

s.ip = r.ip and

r.origin = d.origin and

d.probe = 'cdm'

UNION

select distinct

c.dev_id,

r.address nimbus_address,

r.ip robotip,

r.domain,

r.hub hubname,

s.name robotname,

cg.name groupname,

s.nimbus_type,

d.source source,

d.origin,

s.os_type os_major,

s.os_name os_minor,

s.os_version,

s.os_description,

d.ci_metric_id,

d.qos,

d.target,

d.r_table,

d.probe,

d.table_id,

d.samplevalue value

from S_QOS_DATA d,

CM_CONFIGURATION_ITEM_METRIC m,

CM_CONFIGURATION_ITEM i,

Find Most Costly Unused Indexes 40

CM_DEVICE c,

CM_COMPUTER_SYSTEM s,

CM_GROUP_MEMBER cm,

CM_GROUP cg,

CM_NIMBUS_ROBOT r

where

m.ci_metric_id=d.ci_metric_id and

i.ci_id = m.ci_id and

c.dev_id = i.dev_id and

c.cs_id = s.cs_id and

c.cs_id = cm.cs_id and

cg.grp_id = cm.grp_id and

r.origin = d.origin and

d.probe = 'RSP'

Find Most Costly Unused Indexes
These are the indexes that are not useful in any query execution and are consuming space on the disk.

Query to find unused indexes:

select * from sys.schema_unused_indexes order by object_name;

Recommendation:

Analyze all the unused indexes. Delete the unused indexes if they are not required.

Find Top Costly Missing Indexes
This script will be used to find missing indexes:

select * from sys.schema_tables_with_full_table_scans

Recommendation: Analyze the above tables to find why there are lot of table scans. If the tables are

accessed by using filters from the applications, then it is recommended to create indexes on them.

Find Tables without Primary Key
Use the following query to find tables without primary key.

SELECT

Find Objects with No Indexes 41

 TABLES.table_name

FROM INFORMATION_SCHEMA.TABLES

LEFT JOIN INFORMATION_SCHEMA.KEY_COLUMN_USAGE AS c

ON (

 TABLES.TABLE_NAME = c.TABLE_NAME

 AND c.CONSTRAINT_SCHEMA = TABLES.TABLE_SCHEMA

 AND c.constraint_name = 'PRIMARY'

)

WHERE

 TABLES.table_schema = 'ca_uim'

AND c.constraint_name IS NULL;

Find Objects with No Indexes
Use the following query to find tables with no indexes.

SELECT * FROM INFORMATION_SCHEMA.tables

WHERE table_schema = 'ca_uim'

AND table_name NOT IN

(

SELECT table_name -- , count(*)

FROM (

SELECT table_name, index_name

FROM information_schema.statistics

WHERE table_schema = 'ca_uim'

GROUP BY table_name, index_name) tab_ind_cols

GROUP BY table_name

)

Find Top SQL with Highest CPU
Use the following query to find top 20 CPU- and Disk-intensive queries.

SELECT SUBSTR(digest_text, 1, 50) AS digest_text_start

Find Top File (table) with Highest I/O 42

 , count_star

 , TRUNCATE(avg_timer_wait/1000000000000,6), es.*

 FROM performance_schema.events_statements_summary_by_digest es

 ORDER BY avg_timer_wait DESC

LIMIT 20;

You can also use the following query to find high cost SQL statements:

SELECT * FROM sys.x$statement_analysis

Recommendation: Analyze the queries and create all appropriate indexes on the tables involved in the

queries listed above. If all the indexes are in place and still query is taking more CPU, then try to increase

the number of cores.

Find Top File (table) with Highest I/O
Use the following query to find the top 10 queries information with more number of disk reads.

select * from sys.x$io_global_by_file_by_bytes

Recommendations:

Analyze the queries and try to decrease the number of disk reads by creating proper indexes and

updating statistics on the tables listed by above query.

Find Statistics Update Time
To check for table statistics, use the following query:

select * from mysql.innodb_table_stats where database_name='ca_uim';

To check for index statistics, use the following query:

SELECT * FROM mysql.innodb_index_stats WHERE database_name='ca_uim';

Update Statistics Queries
Query to update the statistics on the table is as follows:

ANALYZE TABLE table_name;

By default, Automatic Statistics Collection is enabled in MySQL. If it is disabled, you can enable it by

changing the below configuration parameter:

innodb_stats_auto_recalc=ON

Recommendation:

Table and index statistics should be up-to-date. If statistics are not up-to-date, then optimizer will select

wrong query execution plan.

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_stats_auto_recalc

Find Active sessions 43

Find Active sessions
Query to find active sessions information is as follows:

SHOW FULL PROCESSLIST

Find top DISK- intensive queries
Below query will give the tables with full scans:

select * from sys.schema_tables_with_full_table_scans

Operating System utilities 44

Appendix B: Monitoring the Instance Health

with Reports
MySQL Server should be monitored to find the information like CPU, I/O and concurrent user

connections etc. MySQL Server can be monitored in following three ways:

• Operating System utilities.

• MySQL commands.

• MySQL Workbench.

Operating System utilities
There are some Operating system utilities to know about MySQL related information like %CPU,

%Memory and swapping etc.

Top: Top command will give you the information like %CPU usage, %Memory usage. If MySQL is using

High CPU and if it is not coming down while no operation is running, then CPU is the bottleneck. Check

the below things if MySQL has high CPU:

• Check all the connections with SHOW FULL PROCESSLIST

• Identify long running queries and tune them if they required.

• Increase the buffer pool size if there is more free memory (check using free –h command).

Vmstat: This command will give information regarding swapping. If so and si columns are showing high

swapping, then try to increase the MySQL memory.

Steps to change the buffer pool size:

• Open the my.cnf file.

• Edit the innodb_buffer_pool_size parameter.

• Save and exit the file

• Restart the MySQL server.

Monitoring Sessions through queries
Connection manager threads always handle client connection requests on the network interfaces that

the server listens to. On all platforms, one manager thread handles TCP/IP connection requests within

MySQL. Each client connection will be associated to a thread dedicated to it by connection manager that

handles authentication and request processing for that connection.

Query to find Maximum Connections to the Server:

SELECT @@max_connections;

Query to find the total number of clients that have currently open connections to the server.

SHOW GLOBAL STATUS LIKE '%Threads_connected%';

Using MySQL Workbench 45

Note: Above command provides real-time information on how many clients are currently connected to

the server. This can help in traffic analysis or in deciding the best time for a server restart.

Query to find the number of connection attempts (successful or not) to the MySQL server.

SHOW GLOBAL STATUS LIKE 'Connections';

Note: The above command can give you a good idea of how many people and applications are accessing

the database. Over time, these numbers reveal busiest times and average usage numbers.

Query to check for unusual numbers of queries running concurrently and struggling to complete in

time.

SHOW GLOBAL STATUS LIKE "Threads_running";

Using MySQL Workbench
MySQL Workbench has a dashboard feature, which can be useful to monitor information related to

Network, Memory, Connections and Disks etc. Open the workbench and click on dashboard under

Performance section. Below is the sample screenshot of the dashboard:

It also allows user to create many Performance Reports like Memory Usage, I/O Reports, High Cost SQL

Statements, Schema Statistics, Wait Events, InnoDB statistics and User Resource Statistics. Click on

Performance Reports under Performance section and it will open window as shown in below

screenshot:

Using MySQL Workbench 46

Just click on the report type, it will automatically generate and display report on right pane.

Click on Server status under MANAGEMENT to know the Server current status as shown in below screen:

Click on Client Connections under management to know all the connections and query execution status

as shown in below screenshot:

Using MySQL Workbench 47

The above output is equivalent to SHOW FULL PROCESSLIST command. Time column in the above output

shows the time taken by the query. If any query is taking more time, then analyze the query to improve

the performance.

