

Broadcom CA Test Data Manager

and

Amazon Redshift Database

Continuous Testing Solution Engineering Team

DRAFT version 0.5

August, 2021

TDM and Amazon Redshift

Page 2 August 2021

Table of Contents
Introduction 3

TDM Architecture Diagram 3

Broadcom CA Test Data Manager and Amazon Redshift Demo Overview 4

Synthetic Data Generation 4

Masking 5

Demo Setup 6

Synthetic Data Generation Detail 7

Masking Detail 13

TDM and Amazon Redshift

Page 3 August 2021

Introduction
Amazon Redshift comes from a PostgreSQL foundation, but the interface has significantly changed in

recent years, so that the standard PostgreSQL drivers no longer work with it. Amazon has created their

own Redshift ODBC/JDBC drivers, that are not supported with TDM. Therefore, Redshift capabilities in

TDM is limited to whatever use cases that can be implemented using a bulk load/unload methodology

(Synthetic Data Generation, Masking).

The steps described below are for a PROOF OF CONCEPT implementation.

TDM Architecture Diagram
The below diagram shows a basic TDM – Amazon Redshift deployment architecture.

TDM and Amazon Redshift

Page 4 August 2021

Broadcom CA Test Data Manager and Amazon Redshift Demo Overview

There are two TDM Use Cases that are suitable for Amazon Redshift – Synthetic Data Generation and

Masking. Details about the steps required to enable these use cases follow:

Synthetic Data Generation

Amazon’s documentation itself recommends using bulk loading for large quantities of information:

 “We strongly recommend using the COPY command to load large amounts of data. Using

individual INSERT statements to populate a table might be prohibitively slow.”

This document describes how to setup & execute the use cases with Test Data Manager.

The options for the COPY do not include a simple upload of a delimited file. Therefore, we’ll use the

load from S3 option to demonstrate this capability.

S3 Buckets can be created via the Amazon CLI

Followed by a AWS S3 CLI mv command to load the files from local storage to the S3 Bucket:

Followed by a RedShift COPY command

Followed by a Delete Bucket (once the COPY is complete into Redshift) - unless you want this to always

be available instead of transient

https://docs.aws.amazon.com/redshift/latest/dg/t_Loading_tables_with_the_COPY_command.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Loading-data-from-S3.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/create-bucket.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/mv.html
https://docs.aws.amazon.com/redshift/latest/dg/t_loading-tables-from-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteBucket.html

TDM and Amazon Redshift

Page 5 August 2021

Masking

To mask Redshift data, one will need to Unload, Mask, and Upsert the data tables. The tables/fields to

mask will need to be manually identified (no PII audit scan is available due to driver incompatibility).

The Test Data Engineer will then be very selective determining how much data to extract to minimize

the data flow.

NOTE: You will need to export key row identifier(s) along with the columns to mask to ensure the

Upsert/Merge can take place after masking.

Redshift table data would need to be exported to a delimited file format that Fast Data Masker can

process.

Unload the data you wish to mask

Redshift provides a number of options for export/unload. We will use the unload to S3 option for this

exercise. Any of the delimited file options should work with FDM. Once the delimited files are in the S3

bucket, you can use the AWS S3 CLI mv command to move them locally for processing.

Mask the data

Now that the files are in a local directory, follow standard Fast Data Masker methods to mask delimited

files. The output will be .scramble files.

Upsert of the data will require a multi-step process

(1) Use the AWS S3 CLI mv command to upload the .scramble files into an S3 Bucket (as you did for

the Synthetic Data Generation above)

(2) Use the Redshift COPY command to copy the data into Staging Table(s)

(3) Use the documented best practices to Upsert the data

https://docs.aws.amazon.com/redshift/latest/dg/c_unloading_data.html
https://docs.aws.amazon.com/redshift/latest/dg/t_unloading_fixed_width_data.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/mv.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/mv.html
https://docs.aws.amazon.com/redshift/latest/dg/t_loading-tables-from-s3.html
https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-upsert.html

TDM and Amazon Redshift

Page 6 August 2021

Demo Setup

Pre-requisites:

Amazon AWS ID, Tutorial database available (for this proof, we’ll use the Tutorial: Loading data from

Amazon S3 to setup our testbed), and the AWS CLI v2 client downloaded, installed, and configured on

the TDM Server.

Install & Configure:

In order for TDM to work with the RedShift data structures, we need to identify the most efficient way

to catalog those structures. You’ll want to use the export to Delimited Files function to get .csv files to

register into TDM.

Extract Table Structures for Masking Setup

If you still have the S3 bucket from the Tutorial installation, we’ll reuse it. For each table that has

columns that require masking of PII, create & execute commands to export the data structure (with a

single header line, a single data line, and including the primary key/unique identifier of the row) to the

S3 Bucket. Example for customer table, where we’ll just mask the customer name (in the c_name

column):

unload ('select c_custkey,c_name from customer where c_custkey = 1')

to 's3://broadcom-tdm-bucket/unload/customer_'

ACCESS_KEY_ID 'YOURKEYID'

SECRET_ACCESS_KEY 'YOURACCESSKEY'

header

CSV

parallel off;

Repeat for each table & field that will need to be masked. Once you’ve completed this, use the AWS

CLIv2 to move the files from the bucket to a local directory:

aws s3 mv s3://broadcom-tdm-bucket/unload . --recursive

(If you have not already setup the AWS CLI config files, do so before executing this command)

Extract Table Structures for Data Generation

Use “select *’ to unload all the columns as the generator will need to generate all. Unload into a

separate prep directory for registration.

https://docs.aws.amazon.com/redshift/latest/dg/tutorial-loading-data.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-loading-data.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-windows.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

TDM and Amazon Redshift

Page 7 August 2021

Synthetic Data Generation Detail

Project Configuration

Use TDM Portal to create a new Project using the New Project Wizard on the homepage

Select Modeling, then Objects, then click the Register New Objects button

Change to Delimited(CSV) and select the files you’ve downloaded (you may need to add a .csv extension

to allow for registration).

TDM and Amazon Redshift

Page 8 August 2021

Click the Register button.

Create a new generator:

Choose Data Generation functions that align with the data in the existing tables. For the unique ids,

choose a starting number that is unique/much larger than the existing number to indicate the data is

generated. Sample functions follow:

TDM and Amazon Redshift

Page 9 August 2021

customer_000 c_custkey 9@leftpad(~NEXT~,0,4)@

customer_000 c_name

 @left(@randlov(0,@seedlist(Companies)@)@@randlov(0,@seedlist(Flowers)@)@,25)@

customer_000 c_address

@left(@randrange(1,9999)@

@percval(10%N.,5%North,10%E.,5%East,10%S.,5%South,10%W.,5%West,40%)@

@percval(10%Second St.,10%Main St.,10%Park Ave.,10%Oak St.,10%Pine St.,10%Maple

Ln.,10%Washington St.,10%Lake Dr.,10%Hill Ave.,10%Ninth St.)@,25)@

customer_000 c_city @randlov(0,@seedlist(US Zip-Codes)@,3)@

customer_000 c_nation US

customer_000 c_region @randlov(0,@seedlist(US Zip-Codes)@,2)@

customer_000 c_phone @randlov(0,@seedlist(US Phone no)@)@

customer_000 c_mktsegment

 @percval(20%BUILDING,20%FURNITURE,20%AUTOMOBILE,20%HOUSEHOLD,20%MACHINERY

)@

dwdate_000 d_datekey @date(~CDATE-4000~,YYYYMMDD)@

dwdate_000 d_date @string(^d_datekey^,mmmmmmm dd yyyy)@

dwdate_000 d_dayofweek

 @case(@dow(^d_datekey^)@=1,Sunday,@dow(^d_datekey^)@=2,Monday,@dow(^d_dateke

y^)@=3,Tuesday,@dow(^d_datekey^)@=4,Wednesday,@dow(^d_datekey^)@=5,Thursday,@dow(^d

_datekey^)@=6,Friday,@dow(^d_datekey^)@=7,Saturday)@

dwdate_000 d_month @string(^d_datekey^,mmmmmmm)@

dwdate_000 d_year @string(^d_datekey^,yyyy)@

dwdate_000 d_yearmonthnum @string(^d_datekey^,YYYYMM)@

dwdate_000 d_yearmonth @string(^d_datekey^,mmmyyyy)@

dwdate_000 d_daynuminweek @dow(^d_datekey^)@

dwdate_000 d_daynuminmonth @string(^d_datekey^,dd)@

dwdate_000 d_daynuminyear

dwdate_000 d_monthnuminyear

dwdate_000 d_weeknuminyear

TDM and Amazon Redshift

Page 10 August 2021

dwdate_000 d_sellingseason

dwdate_000 d_lastdayinweekfl

dwdate_000 d_lastdayinmonthfl

dwdate_000 d_holidayfl

dwdate_000 d_weekdayfl

lineorder_000 lo_orderkey ~NEXT~

lineorder_000 lo_linenumber 1

lineorder_000 lo_custkey ^customer_000.c_custkey(1)^

lineorder_000 lo_partkey ^part_000.p_partkey(1)^

lineorder_000 lo_suppkey ^supplier_000.s_suppkey(1)^

lineorder_000 lo_orderdate ^dwdate_000.d_datekey(1)^

lineorder_000 lo_orderpriority @percval(50%2-HIGH,50%5-LOW)@

lineorder_000 lo_shippriority 0

lineorder_000 lo_quantity @randrange(1,100)@

lineorder_000 lo_extendedprice @randrange(5,5000)@

lineorder_000 lo_ordertotalprice @multiply(^lo_quantity^,^lo_extendedprice^)@

lineorder_000 lo_discount @randrange(2,20)@

lineorder_000 lo_revenue

 @subtract(^lo_extendedprice^,@multiply(^lo_extendedprice^,@multiply(@subtract(100,^lo_

discount^)@,.01)@)@)@

lineorder_000 lo_supplycost @multiply(^lo_extendedprice^,.20)@

lineorder_000 lo_tax @randrange(2,12)@

lineorder_000 lo_commitdate

 @randdate(@adddays(^lo_orderdate^,2)@,@adddays(^lo_orderdate^,90)@)@

lineorder_000 lo_shipmode @percval(20%MAIL,20%REG AIR,20%FOB,20%AIR,20%TRUCK)@

part_000 p_partkey 9@leftpad(~NEXT~,0,4)@

part_000 p_name

 @left(@randlov(0,@seedlist(Fruit)@)@@randlov(0,@seedlist(Name)@)@,22)@

TDM and Amazon Redshift

Page 11 August 2021

part_000 p_mfgr MFR@randtext(3,3,UPPER)@

part_000 p_category @left(@randlov(0,@seedlist(Flowers)@)@,7)@

part_000 p_brand1 ABC

part_000 p_color @left(@randlov(0,@seedlist(Flowers)@)@,11)@

part_000 p_type @percval(34%MODULE,33%COMPONENT,33%PART)@

part_000 p_size @percval(34%SMALL,33%MEDIUM,33%LARGE)@

part_000 p_container @percval(10%JUMBO PKG,10%MED BAG,10%JUMBO CAN,10%MED

DRUM,10%WRAP PKG,10%WRAP DRUM,10%LG PACK,10%SM JAR,10%MED PKG,10%LG JAR)@

supplier_000 s_suppkey 9@leftpad(~NEXT~,0,5)@

supplier_000 s_name @left(@randlov(0,@seedlist(Stocks)@,2)@,25)@

supplier_000 s_address

@left(@randrange(1,9999)@

@percval(10%N.,5%North,10%E.,5%East,10%S.,5%South,10%W.,5%West,40%)@

@percval(10%Second St.,10%Main St.,10%Park Ave.,10%Oak St.,10%Pine St.,10%Maple

Ln.,10%Washington St.,10%Lake Dr.,10%Hill Ave.,10%Ninth St.)@,25)@

supplier_000 s_city @randlov(0,@seedlist(US Zip-Codes)@,3)@

supplier_000 s_nation US

supplier_000 s_region @randlov(0,@seedlist(US Zip-Codes)@,2)@

supplier_000 s_phone @randlov(0,@seedlist(US Phone no)@)@

TDM and Amazon Redshift

Page 12 August 2021

Publish to CSV.

Once you’ve completed this, use the AWS CLIv2 to move the files from the local directory to a bucket:

aws s3 cp . s3://broadcom-tdm-bucket/load --recursive

where the . signifies the directory where the published .csv files have been published or downloaded to.

Then use the COPY command to load the tables

copy part from 's3://broadcom-tdm-bucket/load/part_000.CSV'

ACCESS_KEY_ID 'YOURID'

SECRET_ACCESS_KEY 'YOURKEY'

CSV

IGNOREHEADER 1;

Query to confirm the new part (in the 9xxxx range exists).

Repeat for each of the tables.

Consider creating an AWS Pipeline to configure the imports.

https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-copydata-redshift-cli.html

TDM and Amazon Redshift

Page 13 August 2021

Masking Detail

For each table that has columns that require masking of PII, create & execute commands to export the

data structure (with a single header line, a single data line, and including the primary key/unique

identifier of the row) to the S3 Bucket. Example for customer table, where we’ll just mask the customer

name (in the c_name column):

unload ('select c_custkey,c_name from customer where c_custkey = 1')

to 's3://broadcom-tdm-bucket/unload/customer_'

ACCESS_KEY_ID 'YOURKEYID'

SECRET_ACCESS_KEY 'YOURACCESSKEY'

header

CSV

parallel off;

Repeat for each table & field that will need to be masked (skip those that do not). Once you’ve

completed this, use the AWS CLIv2 to move the files from the bucket to a local directory:

aws s3 mv s3://broadcom-tdm-bucket/unload . --recursive

Launch Fast Data Masker and create a connection to the directory where the examples have been

downloaded. Add a .csv extension on the files.

Create a connection, and individually create definition files for each of the table extracts. Use the

definitions folder capability on the Connection string to reference all the definition files (comma

separated list).

TDM and Amazon Redshift

Page 14 August 2021

After connection, specify the masking techniques desired on the specific fields in each table.

Execute the mask job. The resulting .scramble files will be produced.

Upload the .scramble files to the S3 bucket:

aws s3 cp . s3://broadcom-tdm-bucket/load --recursive –exclude “*” --include "*.scramble"

Create Staging Tables for the modified records

create table customer_temp(c_custkey int, c_name varchar(25), primary key(c_custkey));

COPY the records into the Staging Tables

copy customer_temp from 's3://broadcom-tdm-
bucket/load/customer_000.csv.scramble'

ACCESS_KEY_ID 'YOURID'

SECRET_ACCESS_KEY 'YOURKEY'

CSV

IGNOREHEADER 1;

TDM and Amazon Redshift

Page 15 August 2021

Execute the SQL updates to merge/overwrite the Database tables.

begin transaction;

update customer

set c_name = customer_temp.c_name

from customer_temp

where customer.c_custkey = customer_temp.c_custkey;

end transaction;

Query the table to validate:

