
 

 

 
 
CA Gen Integration 
Building CA Gen code through Jenkins 
 
Christian Kersters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Broadcom Limited 
Web: www.broadcom.com 

Corporate Headquarters: San Jose, CA 

Broadcom Proprietary. © 2019 Broadcom. All rights reserved. 
 



Building CA Gen code through Jenkins 

Revision History 
 

Revision Date Change Description 

v1.0 2019/09/30 Initial version 

v1.1 2019/10/15 Minor corrections (copyright notices) 

   

   

   

 

  

Broadcom Proprietary. © 2019 Broadcom. All rights reserved. 

 
. 

1 



Building CA Gen code through Jenkins 

Contents 
Revision History 1 

Contents 2 

Introduction 3 

The Jenkins job 4 
Splitting RMT files 4 

CA Gen-based Jenkins split job 4 
Parameters 4 
Build Step 5 

Building CA Gen executable artifacts 5 
CA Gen-based Jenkins build job 5 

Parameters 5 
Build Step 5 

External tool-based build job 6 
Java Proxy build with Ant 6 

Parameters 6 
Build Step 7 

Submitting Jenkins builds 8 
Use of a Build Pipeline 8 

Static Jenkins Pipeline 8 
Dynamic Jenkins Pipeline 8 
Build triggering 9 

Individual Build jobs 9 
Submission of Jenkins build jobs 9 

RMT discovery 9 
Scanning of CSE log files 9 
Scanning of folders 10 

 

  

Broadcom Proprietary. © 2019 Broadcom. All rights reserved. 

 
. 

2 



Building CA Gen code through Jenkins 

Introduction 
Jenkins is a widely used Continuous Integration platform, many organizations rely on to 
integrate their developments with. 
 
By lack of in-depth knowledge of CA Gen, however, many customers haven’t tried to push the 
use of Jenkins in CA Gen territory. This results in a loss of major opportunities: 

● Communication: Although CA Gen is very different from other development 
environments, from a CI perspective, the difference stops when CA Gen toolset or 
encyclopedia has generated the source files corresponding to the code ( C, Cobol, …). 
This helps communication between DevOps teams, reducing the barrier generally 
separating CA Gen from other development teams 

● Integration: Once created, a CA Gen build / split / transfer step can easily be integrated 
into a Jenkins pipeline, to achieve more complex integration processes and DevOps 
workflows 

● Workload reduction: Using only one tool, DevOps teams only need to check at one 
place, to identify any issue occurring in the integration process 

● Configuration management: Jenkins can easily ensure the presence of the right / latest 
versions of software (like EAB libraries, bitmaps, …) the CA Gen application requires, 
increasing the quality of the CA Gen builds 

● 3rd-party products usage: with the easiness with which Jenkins can work across 
environments, CA Gen build steps can be concentrated on a single computer only, 
significantly reducing the required licenses of 3rd-party products. Also, concentration on 
one environment makes 3rd-party products upgrades much easier and safer 

 
Whatever the target environment, such integration can easily be achieved with CA Gen. 
 
Although integration with Jenkins could be achieved in all types of environments, this document 
will focus on generation with the Client/Server Encyclopedia, as: 

● It contains a shared, official snapshot of CA Gen applications, as opposed to Developer 
workstations 

● Its generators apply to all supported target environments. 
 
In this document, we will see: 

1. How to create a Jenkins job to process CA Gen code and what CA Gen-specific features 
can be processed with Jenkins 

2. What main possibilities are available to submit Jenkins jobs for build of CA Gen 
applications using Jenkins 

3. Some possibilities to discover RMT files that need to be built. 

Broadcom Proprietary. © 2019 Broadcom. All rights reserved. 

 
. 

3 



Building CA Gen code through Jenkins 

The Jenkins job 
The Jenkins job receives the location and name of the remote (RMT) or installation control 
module (ICM) file to process as a minimum. 
There are normally 3 possible actions (not necessarily exclusive) the Jenkins job can perform: 

1. Transfer: the RMT file can be transferred to its target destination, using, for instance, 
(S)FTP or, for mainframe code, CA Brightside / Zowe  1

The next step will then consist in the split. 
If file transfer is needed, there will then be 2 options: 

a. Using a Jenkins agent to process the RMT 
b. Using the CA Gen Build tool to perform a distributed build 

 
2. Split: A RMT file is easy to split into its individual components. So, here also 2 options 

are possible: 
a. Use custom tools to split the RMT file. This option can be preferred if CA Gen 

Build Tool is not used to process the file 
b. Use the Build Tool to split the RMT file. This is safer, as the build tool will also 

check the integrity of the files that are extracted. When this option is selected, 
split and build processing are normally done together 

3. Build: Here again, 2 options are possible: 
a. Build the load module / RI Trigger library using the CA Gen Build Tool 
b. Build the load module / RI Trigger library using a custom build procedure (make, 

ant, Endevor, …). 
 
As this document relies on real-world implementation, not all steps or options will be detailed in 
the current version. Based on feedback / experience, future versions will incorporate 
documentation of more options. 

Splitting RMT files 

CA Gen-based Jenkins split job 
Using CA Gen Build tool to split a RMT file is very easy. 
 

Parameters 
I suggest having 2 parameters: 

1. LoadModule: load module name (or name of RMT file without extension) 

1 Although transfer of individual files making up the RMT could be considered, it’s strongly advised 
(because much easier) to transfer the RMT as a whole and split it in the target location 

Broadcom Proprietary. © 2019 Broadcom. All rights reserved. 

 
. 

4 



Building CA Gen code through Jenkins 

2. RMTFolder: folder containing remote files generated by CA Gen  2

 

Build Step 
This step will consist in a Windows batch command (or similar for another OS). The build step 
can call the bldtool.bat file (located in the Gen folder of Developer workstations), or, more 
generically and with less overhead, call the bt.ui.jar file (Gen\bt folder of Developer 
workstations). 
With the second solution,  a typical build step to split a RMT file would be: 
 

cd /D "%RMTFolder%" 

call java -jar "C:\Program Files 

(x86)\CA\Gen86\Gen\bt\bt.ui.jar" -c command -a SPLIT -l . -n 

%LoadModule%.rmt 

if "%errorlevel%" == "1" type %LoadModule%.out & exit 

Building CA Gen executable artifacts 

CA Gen-based Jenkins build job 

Parameters 
Same parameters can be used for Build as for Split step, with a few additions: 

1. LoadModule: load module name (or name of RMT/ICM file without extension) 
2. SourceFolder: folder containing source files generated by CA Gen  3

3. BuildProfile: optionally, if you need specific build profile to build your load modules, you 
can add a BuildProfile parameter, with an adequate default value 

4. ProfilesFolder: location of the build profiles definitions (with default, for easy use / 
change) 

5. BuildProfile: name of build profile (optionally with default for most common profile) 

Build Step 
This step will consist in a Windows batch command (or similar for another OS). The build step 
can call the bldtool.bat file (located in the Gen folder of Developer workstations), or, more 

2 We will here consider that the folder is not where the RMT file was generated, because it would then 
contain all the necessary files, so a split would not be needed 
3 If directly generated from the CSE, it consists of the Source Code / Installation Control / Remote 
Installation path, specified in the CSE configuration, followed by Operating System and 
language, as always added by the CA Gen Construction server. If you want to build it directly 
from the RMT, no need for a distinct split step, everything can be done at once, selecting a 
SourceFolder equal to the RMTFolder of the previous (Split) step. 
 

Broadcom Proprietary. © 2019 Broadcom. All rights reserved. 

 
. 

5 



Building CA Gen code through Jenkins 

generically and with less overhead, call the bt.ui.jar file (Gen\bt folder of Developer 
workstations). 
With the second solution,  a typical build step for an ICM file would be: 
 

cd /D "%SourceFolder%" 

call java -Duser.home="%ProfilesFolder%" -jar "C:\Program Files 

(x86)\CA\Gen86\Gen\bt\bt.ui.jar" -c command -a BUILD -l . -n 

%LoadModule%.icm -f %BuildProfile% >%loadModule%.java.out 

type %loadModule%.java.out 

for /F "tokens=1-9" %%f in (%LoadModule%.java.out) do call 

:process %%f %%g %%h %%i %%j %%k %%l %%m %%n 

if "%errorlevel%" == "1" type %LoadModule%.out & exit 

%errorlevel% 

goto :EOF 

:process 

if "%1" == "Build-FAILED" set errorlevel=1& goto :EOF 

shift /1 

if not "%1" == "" goto :process 

goto :EOF 

 
(Note the special logic to detect a build failure and report it to Jenkins). 
To process RMT files, simply replace %LoadModule%.icm with %LoadModule%.rmt  4

External tool-based build job 
As previously mentioned, build is not a specific CA Gen activity: it only uses the Build Tool 
scripts to drive execution of the relevant 3rd-party products on the source files mentioned in the 
ICM. 
Based on the environment and the generated pieces of code, this can however be more or less 
complicated. 

Java Proxy build with Ant 
Building a generated Java Proxy with Anit is very simple. 

Parameters 

Again, you need the similar 2 parameters: 
1. Proxy: name of the  proxy (or name of RMT/ICM file without extension) 
2. SourceFolder: folder containing source files generated for the proxy by CA Gen  5

4 Or add an icm/rmt parameter to the job 
5 If directly generated from the CSE, it consists of the Source Code / Installation Control / Remote 
Installation path, specified in the CSE configuration, followed by /proxy/java, as always added 
by the CA Gen Construction server. If you want to build it directly from the RMT, no need for a 

Broadcom Proprietary. © 2019 Broadcom. All rights reserved. 

 
. 

6 



Building CA Gen code through Jenkins 

Build Step 

This time, the build step is an Ant step. There, you need to  specify a version of Apache Ant 
installed in Jenkins, together with a pointer to the buid script that will be executed, as shown 
below (in this specific case, using parameters) 

 
The ant script would then look like: 
 

<project name='JProxy' default='all'> 

  <property environment="env"/> 

  <path id='classpath.base'> 

    <pathelement location='C:\Program Files 

(x86)\CA\Gen86\Gen\classes\Gen86.jar'/> 

  </path> 

  <target name='all' depends='compile,jar'/> 

  <target name='compile'> 

    <property environment="env"/> 

    <echo message='... Compiling Java code'/> 

    <mkdir dir='${env.SourceFolder}/classes/${env.Proxy}'/> 

    <javac fork="yes" 

executable="${env.JAVA_HOME}/bin/javac.exe" 

srcdir='${env.SourceFolder}/src/${env.Proxy}' 

destdir='${env.SourceFolder}/classes/${env.Proxy}' 

         includes='com/**' 

         debug='on' target='1.6' source='1.6' 

classpathref='classpath.base'/> 

  </target> 

  <target name='jar'> 

    <echo message='... Building JAR file'/> 

distinct split step, everything can be done at once, selecting a SourceFolder equal to the 
RMTFolder of the previous (Split) step. 
 

Broadcom Proprietary. © 2019 Broadcom. All rights reserved. 

 
. 

7 



Building CA Gen code through Jenkins 

    <mkdir dir='${env.SourceFolder}/deploy'/> 

    <jar destfile='${env.SourceFolder}/deploy/${env.Proxy}.jar' 

basedir='${env.SourceFolder}/classes/${Proxy}' update='false' 

includes='**'/> 

  </target> 

</project> 

 

Submitting Jenkins builds 
Submitting Jenkins builds for CA Gen code is fairly easy. There is however no automated way 
to trigger such builds just after generation of CA Gen code from the CSE. 
 
The 3 easiest possibilities are: 

● Build submission using Jenkins console 
● Use of a build pipeline 
● Execution of individual jobs, based upon some form of RMT discovery 

 
The first approach is trivial, for Jenkins users, and won’t be detailed here. 

Use of a Build Pipeline 

Static Jenkins Pipeline 
Use of a static Build Pipeline is certainly the most powerful approach, as you specify: 

- Initialization step 
- Termination step 
- All intermediary build steps, with relevant parameters for each. 

Jenkins pipelines are very powerful, and support many requirements. The disadvantage is that 
you need to manually keep it in sync with your application architecture. Whenever it changes 
(like addition of a load module), you need to update it (or you need to create a repetitive build 
step, with loss of modularity and flexibility). 

Dynamic Jenkins Pipeline 
A dynamic Jenkins pipeline can also be created. Based upon some form of RMT discovery, a 
Jenkins Pipeline is created to trigger build of all [new] remote files  
This approach is fine if you build all your RMT files with the same settings (like build profile), but 
becomes much more complex if some flexibility is needed. 
Also, a Dynamic Pipeline requires usage of a Source Control System.That dynamic pipeline 
could be created from a Jenkins build, or externally, then committed to the selected Source 
Control System. 

Broadcom Proprietary. © 2019 Broadcom. All rights reserved. 

 
. 

8 



Building CA Gen code through Jenkins 

Build triggering 
Whatever the solution, the job can run periodically (including discovery for the second 
possibility), or upon demand, by use of the Jenkins console or any external trigger. 

Individual Build jobs 
Rather than using Build Pipelines, individual build jobs can be triggered, separately or based 
upon a discovery mechanism, be it from Jenkins itself or from an external utility. 
Of course, such a solution is not suitable / advisable for workflows, but can be used as a point 
solution. 

Submission of Jenkins build jobs 
Depending on the type of submission desired, different approaches need to be taken for the 
submission of Jenkins build jobs for CA Gen: 

● For static pipelines, the best approach is scheduling. If not feasible or suitable, 
on-demand submission is the alternative 

● For dynamic pipelines, it is recommended to chain the discovery step with the 
execution of the pipeline in Jenkins. Once again, scheduling or on-demand triggering are 
possible. The first step would then: 

○ Specify the dynamic pipeline using the selected RMT discovery mechanism 
○ Commit the pipeline to the  Source Control System 
○ Chain to the execution of the pipeline 

● For individual jobs, as they are point solutions: 
○ If there are very few jobs to submit, the Jenkins console is the right tool 
○ Otherwise, best is to couple the discovery activity with a utility that posts build 

requests to Jenkins, through its REST interface. 

RMT discovery 
2 approaches are easy to implement, for discovery of remote files: 

● Scanning of CSE log files 
● Directory scanning 

Scanning of CSE log files 
The iefmd<nnn>.log file contains information issued by the Construction Server, in the form of 
lines like: 
 

Command Line:  "C:\Program Files 

(x86)\CA\Gen86\CSE\bin\rfg.exe" "HLL" "WINDOWS" 

Broadcom Proprietary. © 2019 Broadcom. All rights reserved. 

 
. 

9 



Building CA Gen code through Jenkins 

"C:\temp\gentest\ENCYADMN\remote.ctl" 

"C:\temp\gentest\ENCYADMN\rfg.txt" "NODELETE" "*" "Y" 

Packaging of C:\temp\gentest\mvs\cobol\P900.icm is complete 

[...] 

1684 UTLGENCD End Time: 2019-09-30 10:34:23 

 

From there, it should be possible to determine the RMT files that need to be processed and build them. 

Scanning of folders 
Another possibility consists in scanning folders to discover the files that need to be built. 
As an example, here is some windows command code for unconditional discovery of remote 
files. (This could be enhanced with conditional discovery, based, for instance, on remote file 
creation date). 
 

@echo off 

for /R %%f in (*.rmt) do call :process "%%f" 

goto :EOF 

 

:process 

set rmt=%1 

set rmt=%rmt:"=% 

echo Submitting build job for %rmt% 

for /F "delims=\ tokens=1-7" %%f in ("%rmt%") do call :submit 

"%%f//%%g//%%h//%%i//%%j//%%k" %%l 

goto :EOF 

 

:submit 

set path=%1 

set path=%path:"=% 

for /F "delims=. tokens=1" %%f in ("%2") do call SubmitJenkins 

-p "BaseFolder=%path%" -p LoadModule=%%f 

 
In this example, the command file automatically pushes build requests through its REST 
interface. Although, in this specific case, the SubmitJenkins code is in Java, many ways are 
available to achieve the same result. Basically, the call is a HTTP POST to an URL like: 
 

http://<jenkinsHost>:<jenkinsPort>/job/<jobName>/build 

or  
http://<jenkinsHost>:<jenkinsPort>/job/<jobName>/buildWithParam

eters?parm1=val1&parm2=val2 

and basic authorization. 
 

Broadcom Proprietary. © 2019 Broadcom. All rights reserved. 

 
. 

10 



Building CA Gen code through Jenkins 

If successful, the reply will contain a location header field, with value similar to: 
http://<jenkinsHost>:<jenkinsPort>/queue/item/1/ 

Broadcom Proprietary. © 2019 Broadcom. All rights reserved. 

 
. 

11 


